mm/page_alloc: prevent MIGRATE_RESERVE pages from being misplaced
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page, const char *reason,
299 unsigned long bad_flags)
300 {
301 static unsigned long resume;
302 static unsigned long nr_shown;
303 static unsigned long nr_unshown;
304
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page)) {
307 page_mapcount_reset(page); /* remove PageBuddy */
308 return;
309 }
310
311 /*
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
314 */
315 if (nr_shown == 60) {
316 if (time_before(jiffies, resume)) {
317 nr_unshown++;
318 goto out;
319 }
320 if (nr_unshown) {
321 printk(KERN_ALERT
322 "BUG: Bad page state: %lu messages suppressed\n",
323 nr_unshown);
324 nr_unshown = 0;
325 }
326 nr_shown = 0;
327 }
328 if (nr_shown++ == 0)
329 resume = jiffies + 60 * HZ;
330
331 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
332 current->comm, page_to_pfn(page));
333 dump_page_badflags(page, reason, bad_flags);
334
335 print_modules();
336 dump_stack();
337 out:
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 page_mapcount_reset(page); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
341 }
342
343 /*
344 * Higher-order pages are called "compound pages". They are structured thusly:
345 *
346 * The first PAGE_SIZE page is called the "head page".
347 *
348 * The remaining PAGE_SIZE pages are called "tail pages".
349 *
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
352 *
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
356 */
357
358 static void free_compound_page(struct page *page)
359 {
360 __free_pages_ok(page, compound_order(page));
361 }
362
363 void prep_compound_page(struct page *page, unsigned long order)
364 {
365 int i;
366 int nr_pages = 1 << order;
367
368 set_compound_page_dtor(page, free_compound_page);
369 set_compound_order(page, order);
370 __SetPageHead(page);
371 for (i = 1; i < nr_pages; i++) {
372 struct page *p = page + i;
373 set_page_count(p, 0);
374 p->first_page = page;
375 /* Make sure p->first_page is always valid for PageTail() */
376 smp_wmb();
377 __SetPageTail(p);
378 }
379 }
380
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page *page, unsigned long order)
383 {
384 int i;
385 int nr_pages = 1 << order;
386 int bad = 0;
387
388 if (unlikely(compound_order(page) != order)) {
389 bad_page(page, "wrong compound order", 0);
390 bad++;
391 }
392
393 __ClearPageHead(page);
394
395 for (i = 1; i < nr_pages; i++) {
396 struct page *p = page + i;
397
398 if (unlikely(!PageTail(p))) {
399 bad_page(page, "PageTail not set", 0);
400 bad++;
401 } else if (unlikely(p->first_page != page)) {
402 bad_page(page, "first_page not consistent", 0);
403 bad++;
404 }
405 __ClearPageTail(p);
406 }
407
408 return bad;
409 }
410
411 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
412 {
413 int i;
414
415 /*
416 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
417 * and __GFP_HIGHMEM from hard or soft interrupt context.
418 */
419 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
420 for (i = 0; i < (1 << order); i++)
421 clear_highpage(page + i);
422 }
423
424 #ifdef CONFIG_DEBUG_PAGEALLOC
425 unsigned int _debug_guardpage_minorder;
426
427 static int __init debug_guardpage_minorder_setup(char *buf)
428 {
429 unsigned long res;
430
431 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
432 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
433 return 0;
434 }
435 _debug_guardpage_minorder = res;
436 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
437 return 0;
438 }
439 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
440
441 static inline void set_page_guard_flag(struct page *page)
442 {
443 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
444 }
445
446 static inline void clear_page_guard_flag(struct page *page)
447 {
448 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
449 }
450 #else
451 static inline void set_page_guard_flag(struct page *page) { }
452 static inline void clear_page_guard_flag(struct page *page) { }
453 #endif
454
455 static inline void set_page_order(struct page *page, int order)
456 {
457 set_page_private(page, order);
458 __SetPageBuddy(page);
459 }
460
461 static inline void rmv_page_order(struct page *page)
462 {
463 __ClearPageBuddy(page);
464 set_page_private(page, 0);
465 }
466
467 /*
468 * Locate the struct page for both the matching buddy in our
469 * pair (buddy1) and the combined O(n+1) page they form (page).
470 *
471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
472 * the following equation:
473 * B2 = B1 ^ (1 << O)
474 * For example, if the starting buddy (buddy2) is #8 its order
475 * 1 buddy is #10:
476 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
477 *
478 * 2) Any buddy B will have an order O+1 parent P which
479 * satisfies the following equation:
480 * P = B & ~(1 << O)
481 *
482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
483 */
484 static inline unsigned long
485 __find_buddy_index(unsigned long page_idx, unsigned int order)
486 {
487 return page_idx ^ (1 << order);
488 }
489
490 /*
491 * This function checks whether a page is free && is the buddy
492 * we can do coalesce a page and its buddy if
493 * (a) the buddy is not in a hole &&
494 * (b) the buddy is in the buddy system &&
495 * (c) a page and its buddy have the same order &&
496 * (d) a page and its buddy are in the same zone.
497 *
498 * For recording whether a page is in the buddy system, we set ->_mapcount
499 * PAGE_BUDDY_MAPCOUNT_VALUE.
500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
501 * serialized by zone->lock.
502 *
503 * For recording page's order, we use page_private(page).
504 */
505 static inline int page_is_buddy(struct page *page, struct page *buddy,
506 int order)
507 {
508 if (!pfn_valid_within(page_to_pfn(buddy)))
509 return 0;
510
511 if (page_zone_id(page) != page_zone_id(buddy))
512 return 0;
513
514 if (page_is_guard(buddy) && page_order(buddy) == order) {
515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
516 return 1;
517 }
518
519 if (PageBuddy(buddy) && page_order(buddy) == order) {
520 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
521 return 1;
522 }
523 return 0;
524 }
525
526 /*
527 * Freeing function for a buddy system allocator.
528 *
529 * The concept of a buddy system is to maintain direct-mapped table
530 * (containing bit values) for memory blocks of various "orders".
531 * The bottom level table contains the map for the smallest allocatable
532 * units of memory (here, pages), and each level above it describes
533 * pairs of units from the levels below, hence, "buddies".
534 * At a high level, all that happens here is marking the table entry
535 * at the bottom level available, and propagating the changes upward
536 * as necessary, plus some accounting needed to play nicely with other
537 * parts of the VM system.
538 * At each level, we keep a list of pages, which are heads of continuous
539 * free pages of length of (1 << order) and marked with _mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
541 * field.
542 * So when we are allocating or freeing one, we can derive the state of the
543 * other. That is, if we allocate a small block, and both were
544 * free, the remainder of the region must be split into blocks.
545 * If a block is freed, and its buddy is also free, then this
546 * triggers coalescing into a block of larger size.
547 *
548 * -- nyc
549 */
550
551 static inline void __free_one_page(struct page *page,
552 struct zone *zone, unsigned int order,
553 int migratetype)
554 {
555 unsigned long page_idx;
556 unsigned long combined_idx;
557 unsigned long uninitialized_var(buddy_idx);
558 struct page *buddy;
559
560 VM_BUG_ON(!zone_is_initialized(zone));
561
562 if (unlikely(PageCompound(page)))
563 if (unlikely(destroy_compound_page(page, order)))
564 return;
565
566 VM_BUG_ON(migratetype == -1);
567
568 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
569
570 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
571 VM_BUG_ON_PAGE(bad_range(zone, page), page);
572
573 while (order < MAX_ORDER-1) {
574 buddy_idx = __find_buddy_index(page_idx, order);
575 buddy = page + (buddy_idx - page_idx);
576 if (!page_is_buddy(page, buddy, order))
577 break;
578 /*
579 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
580 * merge with it and move up one order.
581 */
582 if (page_is_guard(buddy)) {
583 clear_page_guard_flag(buddy);
584 set_page_private(page, 0);
585 __mod_zone_freepage_state(zone, 1 << order,
586 migratetype);
587 } else {
588 list_del(&buddy->lru);
589 zone->free_area[order].nr_free--;
590 rmv_page_order(buddy);
591 }
592 combined_idx = buddy_idx & page_idx;
593 page = page + (combined_idx - page_idx);
594 page_idx = combined_idx;
595 order++;
596 }
597 set_page_order(page, order);
598
599 /*
600 * If this is not the largest possible page, check if the buddy
601 * of the next-highest order is free. If it is, it's possible
602 * that pages are being freed that will coalesce soon. In case,
603 * that is happening, add the free page to the tail of the list
604 * so it's less likely to be used soon and more likely to be merged
605 * as a higher order page
606 */
607 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
608 struct page *higher_page, *higher_buddy;
609 combined_idx = buddy_idx & page_idx;
610 higher_page = page + (combined_idx - page_idx);
611 buddy_idx = __find_buddy_index(combined_idx, order + 1);
612 higher_buddy = higher_page + (buddy_idx - combined_idx);
613 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
614 list_add_tail(&page->lru,
615 &zone->free_area[order].free_list[migratetype]);
616 goto out;
617 }
618 }
619
620 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
621 out:
622 zone->free_area[order].nr_free++;
623 }
624
625 static inline int free_pages_check(struct page *page)
626 {
627 const char *bad_reason = NULL;
628 unsigned long bad_flags = 0;
629
630 if (unlikely(page_mapcount(page)))
631 bad_reason = "nonzero mapcount";
632 if (unlikely(page->mapping != NULL))
633 bad_reason = "non-NULL mapping";
634 if (unlikely(atomic_read(&page->_count) != 0))
635 bad_reason = "nonzero _count";
636 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
637 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
638 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
639 }
640 if (unlikely(mem_cgroup_bad_page_check(page)))
641 bad_reason = "cgroup check failed";
642 if (unlikely(bad_reason)) {
643 bad_page(page, bad_reason, bad_flags);
644 return 1;
645 }
646 page_cpupid_reset_last(page);
647 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
648 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
649 return 0;
650 }
651
652 /*
653 * Frees a number of pages from the PCP lists
654 * Assumes all pages on list are in same zone, and of same order.
655 * count is the number of pages to free.
656 *
657 * If the zone was previously in an "all pages pinned" state then look to
658 * see if this freeing clears that state.
659 *
660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
661 * pinned" detection logic.
662 */
663 static void free_pcppages_bulk(struct zone *zone, int count,
664 struct per_cpu_pages *pcp)
665 {
666 int migratetype = 0;
667 int batch_free = 0;
668 int to_free = count;
669
670 spin_lock(&zone->lock);
671 zone->pages_scanned = 0;
672
673 while (to_free) {
674 struct page *page;
675 struct list_head *list;
676
677 /*
678 * Remove pages from lists in a round-robin fashion. A
679 * batch_free count is maintained that is incremented when an
680 * empty list is encountered. This is so more pages are freed
681 * off fuller lists instead of spinning excessively around empty
682 * lists
683 */
684 do {
685 batch_free++;
686 if (++migratetype == MIGRATE_PCPTYPES)
687 migratetype = 0;
688 list = &pcp->lists[migratetype];
689 } while (list_empty(list));
690
691 /* This is the only non-empty list. Free them all. */
692 if (batch_free == MIGRATE_PCPTYPES)
693 batch_free = to_free;
694
695 do {
696 int mt; /* migratetype of the to-be-freed page */
697
698 page = list_entry(list->prev, struct page, lru);
699 /* must delete as __free_one_page list manipulates */
700 list_del(&page->lru);
701 mt = get_freepage_migratetype(page);
702 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
703 __free_one_page(page, zone, 0, mt);
704 trace_mm_page_pcpu_drain(page, 0, mt);
705 if (likely(!is_migrate_isolate_page(page))) {
706 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
707 if (is_migrate_cma(mt))
708 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
709 }
710 } while (--to_free && --batch_free && !list_empty(list));
711 }
712 spin_unlock(&zone->lock);
713 }
714
715 static void free_one_page(struct zone *zone, struct page *page, int order,
716 int migratetype)
717 {
718 spin_lock(&zone->lock);
719 zone->pages_scanned = 0;
720
721 __free_one_page(page, zone, order, migratetype);
722 if (unlikely(!is_migrate_isolate(migratetype)))
723 __mod_zone_freepage_state(zone, 1 << order, migratetype);
724 spin_unlock(&zone->lock);
725 }
726
727 static bool free_pages_prepare(struct page *page, unsigned int order)
728 {
729 int i;
730 int bad = 0;
731
732 trace_mm_page_free(page, order);
733 kmemcheck_free_shadow(page, order);
734
735 if (PageAnon(page))
736 page->mapping = NULL;
737 for (i = 0; i < (1 << order); i++)
738 bad += free_pages_check(page + i);
739 if (bad)
740 return false;
741
742 if (!PageHighMem(page)) {
743 debug_check_no_locks_freed(page_address(page),
744 PAGE_SIZE << order);
745 debug_check_no_obj_freed(page_address(page),
746 PAGE_SIZE << order);
747 }
748 arch_free_page(page, order);
749 kernel_map_pages(page, 1 << order, 0);
750
751 return true;
752 }
753
754 static void __free_pages_ok(struct page *page, unsigned int order)
755 {
756 unsigned long flags;
757 int migratetype;
758
759 if (!free_pages_prepare(page, order))
760 return;
761
762 local_irq_save(flags);
763 __count_vm_events(PGFREE, 1 << order);
764 migratetype = get_pageblock_migratetype(page);
765 set_freepage_migratetype(page, migratetype);
766 free_one_page(page_zone(page), page, order, migratetype);
767 local_irq_restore(flags);
768 }
769
770 void __init __free_pages_bootmem(struct page *page, unsigned int order)
771 {
772 unsigned int nr_pages = 1 << order;
773 struct page *p = page;
774 unsigned int loop;
775
776 prefetchw(p);
777 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
778 prefetchw(p + 1);
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
781 }
782 __ClearPageReserved(p);
783 set_page_count(p, 0);
784
785 page_zone(page)->managed_pages += nr_pages;
786 set_page_refcounted(page);
787 __free_pages(page, order);
788 }
789
790 #ifdef CONFIG_CMA
791 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
792 void __init init_cma_reserved_pageblock(struct page *page)
793 {
794 unsigned i = pageblock_nr_pages;
795 struct page *p = page;
796
797 do {
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
800 } while (++p, --i);
801
802 set_page_refcounted(page);
803 set_pageblock_migratetype(page, MIGRATE_CMA);
804 __free_pages(page, pageblock_order);
805 adjust_managed_page_count(page, pageblock_nr_pages);
806 }
807 #endif
808
809 /*
810 * The order of subdivision here is critical for the IO subsystem.
811 * Please do not alter this order without good reasons and regression
812 * testing. Specifically, as large blocks of memory are subdivided,
813 * the order in which smaller blocks are delivered depends on the order
814 * they're subdivided in this function. This is the primary factor
815 * influencing the order in which pages are delivered to the IO
816 * subsystem according to empirical testing, and this is also justified
817 * by considering the behavior of a buddy system containing a single
818 * large block of memory acted on by a series of small allocations.
819 * This behavior is a critical factor in sglist merging's success.
820 *
821 * -- nyc
822 */
823 static inline void expand(struct zone *zone, struct page *page,
824 int low, int high, struct free_area *area,
825 int migratetype)
826 {
827 unsigned long size = 1 << high;
828
829 while (high > low) {
830 area--;
831 high--;
832 size >>= 1;
833 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
834
835 #ifdef CONFIG_DEBUG_PAGEALLOC
836 if (high < debug_guardpage_minorder()) {
837 /*
838 * Mark as guard pages (or page), that will allow to
839 * merge back to allocator when buddy will be freed.
840 * Corresponding page table entries will not be touched,
841 * pages will stay not present in virtual address space
842 */
843 INIT_LIST_HEAD(&page[size].lru);
844 set_page_guard_flag(&page[size]);
845 set_page_private(&page[size], high);
846 /* Guard pages are not available for any usage */
847 __mod_zone_freepage_state(zone, -(1 << high),
848 migratetype);
849 continue;
850 }
851 #endif
852 list_add(&page[size].lru, &area->free_list[migratetype]);
853 area->nr_free++;
854 set_page_order(&page[size], high);
855 }
856 }
857
858 /*
859 * This page is about to be returned from the page allocator
860 */
861 static inline int check_new_page(struct page *page)
862 {
863 const char *bad_reason = NULL;
864 unsigned long bad_flags = 0;
865
866 if (unlikely(page_mapcount(page)))
867 bad_reason = "nonzero mapcount";
868 if (unlikely(page->mapping != NULL))
869 bad_reason = "non-NULL mapping";
870 if (unlikely(atomic_read(&page->_count) != 0))
871 bad_reason = "nonzero _count";
872 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
873 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
874 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
875 }
876 if (unlikely(mem_cgroup_bad_page_check(page)))
877 bad_reason = "cgroup check failed";
878 if (unlikely(bad_reason)) {
879 bad_page(page, bad_reason, bad_flags);
880 return 1;
881 }
882 return 0;
883 }
884
885 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
886 {
887 int i;
888
889 for (i = 0; i < (1 << order); i++) {
890 struct page *p = page + i;
891 if (unlikely(check_new_page(p)))
892 return 1;
893 }
894
895 set_page_private(page, 0);
896 set_page_refcounted(page);
897
898 arch_alloc_page(page, order);
899 kernel_map_pages(page, 1 << order, 1);
900
901 if (gfp_flags & __GFP_ZERO)
902 prep_zero_page(page, order, gfp_flags);
903
904 if (order && (gfp_flags & __GFP_COMP))
905 prep_compound_page(page, order);
906
907 return 0;
908 }
909
910 /*
911 * Go through the free lists for the given migratetype and remove
912 * the smallest available page from the freelists
913 */
914 static inline
915 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
916 int migratetype)
917 {
918 unsigned int current_order;
919 struct free_area *area;
920 struct page *page;
921
922 /* Find a page of the appropriate size in the preferred list */
923 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
924 area = &(zone->free_area[current_order]);
925 if (list_empty(&area->free_list[migratetype]))
926 continue;
927
928 page = list_entry(area->free_list[migratetype].next,
929 struct page, lru);
930 list_del(&page->lru);
931 rmv_page_order(page);
932 area->nr_free--;
933 expand(zone, page, order, current_order, area, migratetype);
934 set_freepage_migratetype(page, migratetype);
935 return page;
936 }
937
938 return NULL;
939 }
940
941
942 /*
943 * This array describes the order lists are fallen back to when
944 * the free lists for the desirable migrate type are depleted
945 */
946 static int fallbacks[MIGRATE_TYPES][4] = {
947 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
948 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
949 #ifdef CONFIG_CMA
950 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
951 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
952 #else
953 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
954 #endif
955 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
956 #ifdef CONFIG_MEMORY_ISOLATION
957 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
958 #endif
959 };
960
961 /*
962 * Move the free pages in a range to the free lists of the requested type.
963 * Note that start_page and end_pages are not aligned on a pageblock
964 * boundary. If alignment is required, use move_freepages_block()
965 */
966 int move_freepages(struct zone *zone,
967 struct page *start_page, struct page *end_page,
968 int migratetype)
969 {
970 struct page *page;
971 unsigned long order;
972 int pages_moved = 0;
973
974 #ifndef CONFIG_HOLES_IN_ZONE
975 /*
976 * page_zone is not safe to call in this context when
977 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
978 * anyway as we check zone boundaries in move_freepages_block().
979 * Remove at a later date when no bug reports exist related to
980 * grouping pages by mobility
981 */
982 BUG_ON(page_zone(start_page) != page_zone(end_page));
983 #endif
984
985 for (page = start_page; page <= end_page;) {
986 /* Make sure we are not inadvertently changing nodes */
987 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
988
989 if (!pfn_valid_within(page_to_pfn(page))) {
990 page++;
991 continue;
992 }
993
994 if (!PageBuddy(page)) {
995 page++;
996 continue;
997 }
998
999 order = page_order(page);
1000 list_move(&page->lru,
1001 &zone->free_area[order].free_list[migratetype]);
1002 set_freepage_migratetype(page, migratetype);
1003 page += 1 << order;
1004 pages_moved += 1 << order;
1005 }
1006
1007 return pages_moved;
1008 }
1009
1010 int move_freepages_block(struct zone *zone, struct page *page,
1011 int migratetype)
1012 {
1013 unsigned long start_pfn, end_pfn;
1014 struct page *start_page, *end_page;
1015
1016 start_pfn = page_to_pfn(page);
1017 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1018 start_page = pfn_to_page(start_pfn);
1019 end_page = start_page + pageblock_nr_pages - 1;
1020 end_pfn = start_pfn + pageblock_nr_pages - 1;
1021
1022 /* Do not cross zone boundaries */
1023 if (!zone_spans_pfn(zone, start_pfn))
1024 start_page = page;
1025 if (!zone_spans_pfn(zone, end_pfn))
1026 return 0;
1027
1028 return move_freepages(zone, start_page, end_page, migratetype);
1029 }
1030
1031 static void change_pageblock_range(struct page *pageblock_page,
1032 int start_order, int migratetype)
1033 {
1034 int nr_pageblocks = 1 << (start_order - pageblock_order);
1035
1036 while (nr_pageblocks--) {
1037 set_pageblock_migratetype(pageblock_page, migratetype);
1038 pageblock_page += pageblock_nr_pages;
1039 }
1040 }
1041
1042 /*
1043 * If breaking a large block of pages, move all free pages to the preferred
1044 * allocation list. If falling back for a reclaimable kernel allocation, be
1045 * more aggressive about taking ownership of free pages.
1046 *
1047 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1048 * nor move CMA pages to different free lists. We don't want unmovable pages
1049 * to be allocated from MIGRATE_CMA areas.
1050 *
1051 * Returns the new migratetype of the pageblock (or the same old migratetype
1052 * if it was unchanged).
1053 */
1054 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1055 int start_type, int fallback_type)
1056 {
1057 int current_order = page_order(page);
1058
1059 /*
1060 * When borrowing from MIGRATE_CMA, we need to release the excess
1061 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1062 * is set to CMA so it is returned to the correct freelist in case
1063 * the page ends up being not actually allocated from the pcp lists.
1064 */
1065 if (is_migrate_cma(fallback_type))
1066 return fallback_type;
1067
1068 /* Take ownership for orders >= pageblock_order */
1069 if (current_order >= pageblock_order) {
1070 change_pageblock_range(page, current_order, start_type);
1071 return start_type;
1072 }
1073
1074 if (current_order >= pageblock_order / 2 ||
1075 start_type == MIGRATE_RECLAIMABLE ||
1076 page_group_by_mobility_disabled) {
1077 int pages;
1078
1079 pages = move_freepages_block(zone, page, start_type);
1080
1081 /* Claim the whole block if over half of it is free */
1082 if (pages >= (1 << (pageblock_order-1)) ||
1083 page_group_by_mobility_disabled) {
1084
1085 set_pageblock_migratetype(page, start_type);
1086 return start_type;
1087 }
1088
1089 }
1090
1091 return fallback_type;
1092 }
1093
1094 /* Remove an element from the buddy allocator from the fallback list */
1095 static inline struct page *
1096 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1097 {
1098 struct free_area *area;
1099 int current_order;
1100 struct page *page;
1101 int migratetype, new_type, i;
1102
1103 /* Find the largest possible block of pages in the other list */
1104 for (current_order = MAX_ORDER-1; current_order >= order;
1105 --current_order) {
1106 for (i = 0;; i++) {
1107 migratetype = fallbacks[start_migratetype][i];
1108
1109 /* MIGRATE_RESERVE handled later if necessary */
1110 if (migratetype == MIGRATE_RESERVE)
1111 break;
1112
1113 area = &(zone->free_area[current_order]);
1114 if (list_empty(&area->free_list[migratetype]))
1115 continue;
1116
1117 page = list_entry(area->free_list[migratetype].next,
1118 struct page, lru);
1119 area->nr_free--;
1120
1121 new_type = try_to_steal_freepages(zone, page,
1122 start_migratetype,
1123 migratetype);
1124
1125 /* Remove the page from the freelists */
1126 list_del(&page->lru);
1127 rmv_page_order(page);
1128
1129 expand(zone, page, order, current_order, area,
1130 new_type);
1131 /* The freepage_migratetype may differ from pageblock's
1132 * migratetype depending on the decisions in
1133 * try_to_steal_freepages. This is OK as long as it does
1134 * not differ for MIGRATE_CMA type.
1135 */
1136 set_freepage_migratetype(page, new_type);
1137
1138 trace_mm_page_alloc_extfrag(page, order, current_order,
1139 start_migratetype, migratetype, new_type);
1140
1141 return page;
1142 }
1143 }
1144
1145 return NULL;
1146 }
1147
1148 /*
1149 * Do the hard work of removing an element from the buddy allocator.
1150 * Call me with the zone->lock already held.
1151 */
1152 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1153 int migratetype)
1154 {
1155 struct page *page;
1156
1157 retry_reserve:
1158 page = __rmqueue_smallest(zone, order, migratetype);
1159
1160 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1161 page = __rmqueue_fallback(zone, order, migratetype);
1162
1163 /*
1164 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1165 * is used because __rmqueue_smallest is an inline function
1166 * and we want just one call site
1167 */
1168 if (!page) {
1169 migratetype = MIGRATE_RESERVE;
1170 goto retry_reserve;
1171 }
1172 }
1173
1174 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1175 return page;
1176 }
1177
1178 /*
1179 * Obtain a specified number of elements from the buddy allocator, all under
1180 * a single hold of the lock, for efficiency. Add them to the supplied list.
1181 * Returns the number of new pages which were placed at *list.
1182 */
1183 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1184 unsigned long count, struct list_head *list,
1185 int migratetype, int cold)
1186 {
1187 int i;
1188
1189 spin_lock(&zone->lock);
1190 for (i = 0; i < count; ++i) {
1191 struct page *page = __rmqueue(zone, order, migratetype);
1192 if (unlikely(page == NULL))
1193 break;
1194
1195 /*
1196 * Split buddy pages returned by expand() are received here
1197 * in physical page order. The page is added to the callers and
1198 * list and the list head then moves forward. From the callers
1199 * perspective, the linked list is ordered by page number in
1200 * some conditions. This is useful for IO devices that can
1201 * merge IO requests if the physical pages are ordered
1202 * properly.
1203 */
1204 if (likely(cold == 0))
1205 list_add(&page->lru, list);
1206 else
1207 list_add_tail(&page->lru, list);
1208 list = &page->lru;
1209 if (is_migrate_cma(get_freepage_migratetype(page)))
1210 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1211 -(1 << order));
1212 }
1213 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1214 spin_unlock(&zone->lock);
1215 return i;
1216 }
1217
1218 #ifdef CONFIG_NUMA
1219 /*
1220 * Called from the vmstat counter updater to drain pagesets of this
1221 * currently executing processor on remote nodes after they have
1222 * expired.
1223 *
1224 * Note that this function must be called with the thread pinned to
1225 * a single processor.
1226 */
1227 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1228 {
1229 unsigned long flags;
1230 int to_drain;
1231 unsigned long batch;
1232
1233 local_irq_save(flags);
1234 batch = ACCESS_ONCE(pcp->batch);
1235 if (pcp->count >= batch)
1236 to_drain = batch;
1237 else
1238 to_drain = pcp->count;
1239 if (to_drain > 0) {
1240 free_pcppages_bulk(zone, to_drain, pcp);
1241 pcp->count -= to_drain;
1242 }
1243 local_irq_restore(flags);
1244 }
1245 #endif
1246
1247 /*
1248 * Drain pages of the indicated processor.
1249 *
1250 * The processor must either be the current processor and the
1251 * thread pinned to the current processor or a processor that
1252 * is not online.
1253 */
1254 static void drain_pages(unsigned int cpu)
1255 {
1256 unsigned long flags;
1257 struct zone *zone;
1258
1259 for_each_populated_zone(zone) {
1260 struct per_cpu_pageset *pset;
1261 struct per_cpu_pages *pcp;
1262
1263 local_irq_save(flags);
1264 pset = per_cpu_ptr(zone->pageset, cpu);
1265
1266 pcp = &pset->pcp;
1267 if (pcp->count) {
1268 free_pcppages_bulk(zone, pcp->count, pcp);
1269 pcp->count = 0;
1270 }
1271 local_irq_restore(flags);
1272 }
1273 }
1274
1275 /*
1276 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1277 */
1278 void drain_local_pages(void *arg)
1279 {
1280 drain_pages(smp_processor_id());
1281 }
1282
1283 /*
1284 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1285 *
1286 * Note that this code is protected against sending an IPI to an offline
1287 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1288 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1289 * nothing keeps CPUs from showing up after we populated the cpumask and
1290 * before the call to on_each_cpu_mask().
1291 */
1292 void drain_all_pages(void)
1293 {
1294 int cpu;
1295 struct per_cpu_pageset *pcp;
1296 struct zone *zone;
1297
1298 /*
1299 * Allocate in the BSS so we wont require allocation in
1300 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1301 */
1302 static cpumask_t cpus_with_pcps;
1303
1304 /*
1305 * We don't care about racing with CPU hotplug event
1306 * as offline notification will cause the notified
1307 * cpu to drain that CPU pcps and on_each_cpu_mask
1308 * disables preemption as part of its processing
1309 */
1310 for_each_online_cpu(cpu) {
1311 bool has_pcps = false;
1312 for_each_populated_zone(zone) {
1313 pcp = per_cpu_ptr(zone->pageset, cpu);
1314 if (pcp->pcp.count) {
1315 has_pcps = true;
1316 break;
1317 }
1318 }
1319 if (has_pcps)
1320 cpumask_set_cpu(cpu, &cpus_with_pcps);
1321 else
1322 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1323 }
1324 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1325 }
1326
1327 #ifdef CONFIG_HIBERNATION
1328
1329 void mark_free_pages(struct zone *zone)
1330 {
1331 unsigned long pfn, max_zone_pfn;
1332 unsigned long flags;
1333 int order, t;
1334 struct list_head *curr;
1335
1336 if (zone_is_empty(zone))
1337 return;
1338
1339 spin_lock_irqsave(&zone->lock, flags);
1340
1341 max_zone_pfn = zone_end_pfn(zone);
1342 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1343 if (pfn_valid(pfn)) {
1344 struct page *page = pfn_to_page(pfn);
1345
1346 if (!swsusp_page_is_forbidden(page))
1347 swsusp_unset_page_free(page);
1348 }
1349
1350 for_each_migratetype_order(order, t) {
1351 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1352 unsigned long i;
1353
1354 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1355 for (i = 0; i < (1UL << order); i++)
1356 swsusp_set_page_free(pfn_to_page(pfn + i));
1357 }
1358 }
1359 spin_unlock_irqrestore(&zone->lock, flags);
1360 }
1361 #endif /* CONFIG_PM */
1362
1363 /*
1364 * Free a 0-order page
1365 * cold == 1 ? free a cold page : free a hot page
1366 */
1367 void free_hot_cold_page(struct page *page, int cold)
1368 {
1369 struct zone *zone = page_zone(page);
1370 struct per_cpu_pages *pcp;
1371 unsigned long flags;
1372 int migratetype;
1373
1374 if (!free_pages_prepare(page, 0))
1375 return;
1376
1377 migratetype = get_pageblock_migratetype(page);
1378 set_freepage_migratetype(page, migratetype);
1379 local_irq_save(flags);
1380 __count_vm_event(PGFREE);
1381
1382 /*
1383 * We only track unmovable, reclaimable and movable on pcp lists.
1384 * Free ISOLATE pages back to the allocator because they are being
1385 * offlined but treat RESERVE as movable pages so we can get those
1386 * areas back if necessary. Otherwise, we may have to free
1387 * excessively into the page allocator
1388 */
1389 if (migratetype >= MIGRATE_PCPTYPES) {
1390 if (unlikely(is_migrate_isolate(migratetype))) {
1391 free_one_page(zone, page, 0, migratetype);
1392 goto out;
1393 }
1394 migratetype = MIGRATE_MOVABLE;
1395 }
1396
1397 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1398 if (cold)
1399 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1400 else
1401 list_add(&page->lru, &pcp->lists[migratetype]);
1402 pcp->count++;
1403 if (pcp->count >= pcp->high) {
1404 unsigned long batch = ACCESS_ONCE(pcp->batch);
1405 free_pcppages_bulk(zone, batch, pcp);
1406 pcp->count -= batch;
1407 }
1408
1409 out:
1410 local_irq_restore(flags);
1411 }
1412
1413 /*
1414 * Free a list of 0-order pages
1415 */
1416 void free_hot_cold_page_list(struct list_head *list, int cold)
1417 {
1418 struct page *page, *next;
1419
1420 list_for_each_entry_safe(page, next, list, lru) {
1421 trace_mm_page_free_batched(page, cold);
1422 free_hot_cold_page(page, cold);
1423 }
1424 }
1425
1426 /*
1427 * split_page takes a non-compound higher-order page, and splits it into
1428 * n (1<<order) sub-pages: page[0..n]
1429 * Each sub-page must be freed individually.
1430 *
1431 * Note: this is probably too low level an operation for use in drivers.
1432 * Please consult with lkml before using this in your driver.
1433 */
1434 void split_page(struct page *page, unsigned int order)
1435 {
1436 int i;
1437
1438 VM_BUG_ON_PAGE(PageCompound(page), page);
1439 VM_BUG_ON_PAGE(!page_count(page), page);
1440
1441 #ifdef CONFIG_KMEMCHECK
1442 /*
1443 * Split shadow pages too, because free(page[0]) would
1444 * otherwise free the whole shadow.
1445 */
1446 if (kmemcheck_page_is_tracked(page))
1447 split_page(virt_to_page(page[0].shadow), order);
1448 #endif
1449
1450 for (i = 1; i < (1 << order); i++)
1451 set_page_refcounted(page + i);
1452 }
1453 EXPORT_SYMBOL_GPL(split_page);
1454
1455 static int __isolate_free_page(struct page *page, unsigned int order)
1456 {
1457 unsigned long watermark;
1458 struct zone *zone;
1459 int mt;
1460
1461 BUG_ON(!PageBuddy(page));
1462
1463 zone = page_zone(page);
1464 mt = get_pageblock_migratetype(page);
1465
1466 if (!is_migrate_isolate(mt)) {
1467 /* Obey watermarks as if the page was being allocated */
1468 watermark = low_wmark_pages(zone) + (1 << order);
1469 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1470 return 0;
1471
1472 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1473 }
1474
1475 /* Remove page from free list */
1476 list_del(&page->lru);
1477 zone->free_area[order].nr_free--;
1478 rmv_page_order(page);
1479
1480 /* Set the pageblock if the isolated page is at least a pageblock */
1481 if (order >= pageblock_order - 1) {
1482 struct page *endpage = page + (1 << order) - 1;
1483 for (; page < endpage; page += pageblock_nr_pages) {
1484 int mt = get_pageblock_migratetype(page);
1485 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1486 set_pageblock_migratetype(page,
1487 MIGRATE_MOVABLE);
1488 }
1489 }
1490
1491 return 1UL << order;
1492 }
1493
1494 /*
1495 * Similar to split_page except the page is already free. As this is only
1496 * being used for migration, the migratetype of the block also changes.
1497 * As this is called with interrupts disabled, the caller is responsible
1498 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1499 * are enabled.
1500 *
1501 * Note: this is probably too low level an operation for use in drivers.
1502 * Please consult with lkml before using this in your driver.
1503 */
1504 int split_free_page(struct page *page)
1505 {
1506 unsigned int order;
1507 int nr_pages;
1508
1509 order = page_order(page);
1510
1511 nr_pages = __isolate_free_page(page, order);
1512 if (!nr_pages)
1513 return 0;
1514
1515 /* Split into individual pages */
1516 set_page_refcounted(page);
1517 split_page(page, order);
1518 return nr_pages;
1519 }
1520
1521 /*
1522 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1523 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1524 * or two.
1525 */
1526 static inline
1527 struct page *buffered_rmqueue(struct zone *preferred_zone,
1528 struct zone *zone, int order, gfp_t gfp_flags,
1529 int migratetype)
1530 {
1531 unsigned long flags;
1532 struct page *page;
1533 int cold = !!(gfp_flags & __GFP_COLD);
1534
1535 again:
1536 if (likely(order == 0)) {
1537 struct per_cpu_pages *pcp;
1538 struct list_head *list;
1539
1540 local_irq_save(flags);
1541 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1542 list = &pcp->lists[migratetype];
1543 if (list_empty(list)) {
1544 pcp->count += rmqueue_bulk(zone, 0,
1545 pcp->batch, list,
1546 migratetype, cold);
1547 if (unlikely(list_empty(list)))
1548 goto failed;
1549 }
1550
1551 if (cold)
1552 page = list_entry(list->prev, struct page, lru);
1553 else
1554 page = list_entry(list->next, struct page, lru);
1555
1556 list_del(&page->lru);
1557 pcp->count--;
1558 } else {
1559 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1560 /*
1561 * __GFP_NOFAIL is not to be used in new code.
1562 *
1563 * All __GFP_NOFAIL callers should be fixed so that they
1564 * properly detect and handle allocation failures.
1565 *
1566 * We most definitely don't want callers attempting to
1567 * allocate greater than order-1 page units with
1568 * __GFP_NOFAIL.
1569 */
1570 WARN_ON_ONCE(order > 1);
1571 }
1572 spin_lock_irqsave(&zone->lock, flags);
1573 page = __rmqueue(zone, order, migratetype);
1574 spin_unlock(&zone->lock);
1575 if (!page)
1576 goto failed;
1577 __mod_zone_freepage_state(zone, -(1 << order),
1578 get_freepage_migratetype(page));
1579 }
1580
1581 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1582
1583 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1584 zone_statistics(preferred_zone, zone, gfp_flags);
1585 local_irq_restore(flags);
1586
1587 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1588 if (prep_new_page(page, order, gfp_flags))
1589 goto again;
1590 return page;
1591
1592 failed:
1593 local_irq_restore(flags);
1594 return NULL;
1595 }
1596
1597 #ifdef CONFIG_FAIL_PAGE_ALLOC
1598
1599 static struct {
1600 struct fault_attr attr;
1601
1602 u32 ignore_gfp_highmem;
1603 u32 ignore_gfp_wait;
1604 u32 min_order;
1605 } fail_page_alloc = {
1606 .attr = FAULT_ATTR_INITIALIZER,
1607 .ignore_gfp_wait = 1,
1608 .ignore_gfp_highmem = 1,
1609 .min_order = 1,
1610 };
1611
1612 static int __init setup_fail_page_alloc(char *str)
1613 {
1614 return setup_fault_attr(&fail_page_alloc.attr, str);
1615 }
1616 __setup("fail_page_alloc=", setup_fail_page_alloc);
1617
1618 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1619 {
1620 if (order < fail_page_alloc.min_order)
1621 return false;
1622 if (gfp_mask & __GFP_NOFAIL)
1623 return false;
1624 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1625 return false;
1626 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1627 return false;
1628
1629 return should_fail(&fail_page_alloc.attr, 1 << order);
1630 }
1631
1632 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1633
1634 static int __init fail_page_alloc_debugfs(void)
1635 {
1636 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1637 struct dentry *dir;
1638
1639 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1640 &fail_page_alloc.attr);
1641 if (IS_ERR(dir))
1642 return PTR_ERR(dir);
1643
1644 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1645 &fail_page_alloc.ignore_gfp_wait))
1646 goto fail;
1647 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1648 &fail_page_alloc.ignore_gfp_highmem))
1649 goto fail;
1650 if (!debugfs_create_u32("min-order", mode, dir,
1651 &fail_page_alloc.min_order))
1652 goto fail;
1653
1654 return 0;
1655 fail:
1656 debugfs_remove_recursive(dir);
1657
1658 return -ENOMEM;
1659 }
1660
1661 late_initcall(fail_page_alloc_debugfs);
1662
1663 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1664
1665 #else /* CONFIG_FAIL_PAGE_ALLOC */
1666
1667 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1668 {
1669 return false;
1670 }
1671
1672 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1673
1674 /*
1675 * Return true if free pages are above 'mark'. This takes into account the order
1676 * of the allocation.
1677 */
1678 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1679 int classzone_idx, int alloc_flags, long free_pages)
1680 {
1681 /* free_pages my go negative - that's OK */
1682 long min = mark;
1683 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1684 int o;
1685 long free_cma = 0;
1686
1687 free_pages -= (1 << order) - 1;
1688 if (alloc_flags & ALLOC_HIGH)
1689 min -= min / 2;
1690 if (alloc_flags & ALLOC_HARDER)
1691 min -= min / 4;
1692 #ifdef CONFIG_CMA
1693 /* If allocation can't use CMA areas don't use free CMA pages */
1694 if (!(alloc_flags & ALLOC_CMA))
1695 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1696 #endif
1697
1698 if (free_pages - free_cma <= min + lowmem_reserve)
1699 return false;
1700 for (o = 0; o < order; o++) {
1701 /* At the next order, this order's pages become unavailable */
1702 free_pages -= z->free_area[o].nr_free << o;
1703
1704 /* Require fewer higher order pages to be free */
1705 min >>= 1;
1706
1707 if (free_pages <= min)
1708 return false;
1709 }
1710 return true;
1711 }
1712
1713 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1714 int classzone_idx, int alloc_flags)
1715 {
1716 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1717 zone_page_state(z, NR_FREE_PAGES));
1718 }
1719
1720 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1721 int classzone_idx, int alloc_flags)
1722 {
1723 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1724
1725 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1726 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1727
1728 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1729 free_pages);
1730 }
1731
1732 #ifdef CONFIG_NUMA
1733 /*
1734 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1735 * skip over zones that are not allowed by the cpuset, or that have
1736 * been recently (in last second) found to be nearly full. See further
1737 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1738 * that have to skip over a lot of full or unallowed zones.
1739 *
1740 * If the zonelist cache is present in the passed zonelist, then
1741 * returns a pointer to the allowed node mask (either the current
1742 * tasks mems_allowed, or node_states[N_MEMORY].)
1743 *
1744 * If the zonelist cache is not available for this zonelist, does
1745 * nothing and returns NULL.
1746 *
1747 * If the fullzones BITMAP in the zonelist cache is stale (more than
1748 * a second since last zap'd) then we zap it out (clear its bits.)
1749 *
1750 * We hold off even calling zlc_setup, until after we've checked the
1751 * first zone in the zonelist, on the theory that most allocations will
1752 * be satisfied from that first zone, so best to examine that zone as
1753 * quickly as we can.
1754 */
1755 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1756 {
1757 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1758 nodemask_t *allowednodes; /* zonelist_cache approximation */
1759
1760 zlc = zonelist->zlcache_ptr;
1761 if (!zlc)
1762 return NULL;
1763
1764 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1765 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1766 zlc->last_full_zap = jiffies;
1767 }
1768
1769 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1770 &cpuset_current_mems_allowed :
1771 &node_states[N_MEMORY];
1772 return allowednodes;
1773 }
1774
1775 /*
1776 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1777 * if it is worth looking at further for free memory:
1778 * 1) Check that the zone isn't thought to be full (doesn't have its
1779 * bit set in the zonelist_cache fullzones BITMAP).
1780 * 2) Check that the zones node (obtained from the zonelist_cache
1781 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1782 * Return true (non-zero) if zone is worth looking at further, or
1783 * else return false (zero) if it is not.
1784 *
1785 * This check -ignores- the distinction between various watermarks,
1786 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1787 * found to be full for any variation of these watermarks, it will
1788 * be considered full for up to one second by all requests, unless
1789 * we are so low on memory on all allowed nodes that we are forced
1790 * into the second scan of the zonelist.
1791 *
1792 * In the second scan we ignore this zonelist cache and exactly
1793 * apply the watermarks to all zones, even it is slower to do so.
1794 * We are low on memory in the second scan, and should leave no stone
1795 * unturned looking for a free page.
1796 */
1797 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1798 nodemask_t *allowednodes)
1799 {
1800 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1801 int i; /* index of *z in zonelist zones */
1802 int n; /* node that zone *z is on */
1803
1804 zlc = zonelist->zlcache_ptr;
1805 if (!zlc)
1806 return 1;
1807
1808 i = z - zonelist->_zonerefs;
1809 n = zlc->z_to_n[i];
1810
1811 /* This zone is worth trying if it is allowed but not full */
1812 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1813 }
1814
1815 /*
1816 * Given 'z' scanning a zonelist, set the corresponding bit in
1817 * zlc->fullzones, so that subsequent attempts to allocate a page
1818 * from that zone don't waste time re-examining it.
1819 */
1820 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1821 {
1822 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1823 int i; /* index of *z in zonelist zones */
1824
1825 zlc = zonelist->zlcache_ptr;
1826 if (!zlc)
1827 return;
1828
1829 i = z - zonelist->_zonerefs;
1830
1831 set_bit(i, zlc->fullzones);
1832 }
1833
1834 /*
1835 * clear all zones full, called after direct reclaim makes progress so that
1836 * a zone that was recently full is not skipped over for up to a second
1837 */
1838 static void zlc_clear_zones_full(struct zonelist *zonelist)
1839 {
1840 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1841
1842 zlc = zonelist->zlcache_ptr;
1843 if (!zlc)
1844 return;
1845
1846 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1847 }
1848
1849 static bool zone_local(struct zone *local_zone, struct zone *zone)
1850 {
1851 return local_zone->node == zone->node;
1852 }
1853
1854 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1855 {
1856 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1857 RECLAIM_DISTANCE;
1858 }
1859
1860 #else /* CONFIG_NUMA */
1861
1862 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1863 {
1864 return NULL;
1865 }
1866
1867 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1868 nodemask_t *allowednodes)
1869 {
1870 return 1;
1871 }
1872
1873 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1874 {
1875 }
1876
1877 static void zlc_clear_zones_full(struct zonelist *zonelist)
1878 {
1879 }
1880
1881 static bool zone_local(struct zone *local_zone, struct zone *zone)
1882 {
1883 return true;
1884 }
1885
1886 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1887 {
1888 return true;
1889 }
1890
1891 #endif /* CONFIG_NUMA */
1892
1893 /*
1894 * get_page_from_freelist goes through the zonelist trying to allocate
1895 * a page.
1896 */
1897 static struct page *
1898 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1899 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1900 struct zone *preferred_zone, int migratetype)
1901 {
1902 struct zoneref *z;
1903 struct page *page = NULL;
1904 int classzone_idx;
1905 struct zone *zone;
1906 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1907 int zlc_active = 0; /* set if using zonelist_cache */
1908 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1909
1910 classzone_idx = zone_idx(preferred_zone);
1911 zonelist_scan:
1912 /*
1913 * Scan zonelist, looking for a zone with enough free.
1914 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1915 */
1916 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1917 high_zoneidx, nodemask) {
1918 unsigned long mark;
1919
1920 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1921 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1922 continue;
1923 if ((alloc_flags & ALLOC_CPUSET) &&
1924 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1925 continue;
1926 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1927 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1928 goto try_this_zone;
1929 /*
1930 * Distribute pages in proportion to the individual
1931 * zone size to ensure fair page aging. The zone a
1932 * page was allocated in should have no effect on the
1933 * time the page has in memory before being reclaimed.
1934 */
1935 if (alloc_flags & ALLOC_FAIR) {
1936 if (!zone_local(preferred_zone, zone))
1937 continue;
1938 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1939 continue;
1940 }
1941 /*
1942 * When allocating a page cache page for writing, we
1943 * want to get it from a zone that is within its dirty
1944 * limit, such that no single zone holds more than its
1945 * proportional share of globally allowed dirty pages.
1946 * The dirty limits take into account the zone's
1947 * lowmem reserves and high watermark so that kswapd
1948 * should be able to balance it without having to
1949 * write pages from its LRU list.
1950 *
1951 * This may look like it could increase pressure on
1952 * lower zones by failing allocations in higher zones
1953 * before they are full. But the pages that do spill
1954 * over are limited as the lower zones are protected
1955 * by this very same mechanism. It should not become
1956 * a practical burden to them.
1957 *
1958 * XXX: For now, allow allocations to potentially
1959 * exceed the per-zone dirty limit in the slowpath
1960 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1961 * which is important when on a NUMA setup the allowed
1962 * zones are together not big enough to reach the
1963 * global limit. The proper fix for these situations
1964 * will require awareness of zones in the
1965 * dirty-throttling and the flusher threads.
1966 */
1967 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1968 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1969 goto this_zone_full;
1970
1971 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1972 if (!zone_watermark_ok(zone, order, mark,
1973 classzone_idx, alloc_flags)) {
1974 int ret;
1975
1976 if (IS_ENABLED(CONFIG_NUMA) &&
1977 !did_zlc_setup && nr_online_nodes > 1) {
1978 /*
1979 * we do zlc_setup if there are multiple nodes
1980 * and before considering the first zone allowed
1981 * by the cpuset.
1982 */
1983 allowednodes = zlc_setup(zonelist, alloc_flags);
1984 zlc_active = 1;
1985 did_zlc_setup = 1;
1986 }
1987
1988 if (zone_reclaim_mode == 0 ||
1989 !zone_allows_reclaim(preferred_zone, zone))
1990 goto this_zone_full;
1991
1992 /*
1993 * As we may have just activated ZLC, check if the first
1994 * eligible zone has failed zone_reclaim recently.
1995 */
1996 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1997 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1998 continue;
1999
2000 ret = zone_reclaim(zone, gfp_mask, order);
2001 switch (ret) {
2002 case ZONE_RECLAIM_NOSCAN:
2003 /* did not scan */
2004 continue;
2005 case ZONE_RECLAIM_FULL:
2006 /* scanned but unreclaimable */
2007 continue;
2008 default:
2009 /* did we reclaim enough */
2010 if (zone_watermark_ok(zone, order, mark,
2011 classzone_idx, alloc_flags))
2012 goto try_this_zone;
2013
2014 /*
2015 * Failed to reclaim enough to meet watermark.
2016 * Only mark the zone full if checking the min
2017 * watermark or if we failed to reclaim just
2018 * 1<<order pages or else the page allocator
2019 * fastpath will prematurely mark zones full
2020 * when the watermark is between the low and
2021 * min watermarks.
2022 */
2023 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2024 ret == ZONE_RECLAIM_SOME)
2025 goto this_zone_full;
2026
2027 continue;
2028 }
2029 }
2030
2031 try_this_zone:
2032 page = buffered_rmqueue(preferred_zone, zone, order,
2033 gfp_mask, migratetype);
2034 if (page)
2035 break;
2036 this_zone_full:
2037 if (IS_ENABLED(CONFIG_NUMA))
2038 zlc_mark_zone_full(zonelist, z);
2039 }
2040
2041 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2042 /* Disable zlc cache for second zonelist scan */
2043 zlc_active = 0;
2044 goto zonelist_scan;
2045 }
2046
2047 if (page)
2048 /*
2049 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2050 * necessary to allocate the page. The expectation is
2051 * that the caller is taking steps that will free more
2052 * memory. The caller should avoid the page being used
2053 * for !PFMEMALLOC purposes.
2054 */
2055 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2056
2057 return page;
2058 }
2059
2060 /*
2061 * Large machines with many possible nodes should not always dump per-node
2062 * meminfo in irq context.
2063 */
2064 static inline bool should_suppress_show_mem(void)
2065 {
2066 bool ret = false;
2067
2068 #if NODES_SHIFT > 8
2069 ret = in_interrupt();
2070 #endif
2071 return ret;
2072 }
2073
2074 static DEFINE_RATELIMIT_STATE(nopage_rs,
2075 DEFAULT_RATELIMIT_INTERVAL,
2076 DEFAULT_RATELIMIT_BURST);
2077
2078 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2079 {
2080 unsigned int filter = SHOW_MEM_FILTER_NODES;
2081
2082 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2083 debug_guardpage_minorder() > 0)
2084 return;
2085
2086 /*
2087 * This documents exceptions given to allocations in certain
2088 * contexts that are allowed to allocate outside current's set
2089 * of allowed nodes.
2090 */
2091 if (!(gfp_mask & __GFP_NOMEMALLOC))
2092 if (test_thread_flag(TIF_MEMDIE) ||
2093 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2094 filter &= ~SHOW_MEM_FILTER_NODES;
2095 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2096 filter &= ~SHOW_MEM_FILTER_NODES;
2097
2098 if (fmt) {
2099 struct va_format vaf;
2100 va_list args;
2101
2102 va_start(args, fmt);
2103
2104 vaf.fmt = fmt;
2105 vaf.va = &args;
2106
2107 pr_warn("%pV", &vaf);
2108
2109 va_end(args);
2110 }
2111
2112 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2113 current->comm, order, gfp_mask);
2114
2115 dump_stack();
2116 if (!should_suppress_show_mem())
2117 show_mem(filter);
2118 }
2119
2120 static inline int
2121 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2122 unsigned long did_some_progress,
2123 unsigned long pages_reclaimed)
2124 {
2125 /* Do not loop if specifically requested */
2126 if (gfp_mask & __GFP_NORETRY)
2127 return 0;
2128
2129 /* Always retry if specifically requested */
2130 if (gfp_mask & __GFP_NOFAIL)
2131 return 1;
2132
2133 /*
2134 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2135 * making forward progress without invoking OOM. Suspend also disables
2136 * storage devices so kswapd will not help. Bail if we are suspending.
2137 */
2138 if (!did_some_progress && pm_suspended_storage())
2139 return 0;
2140
2141 /*
2142 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2143 * means __GFP_NOFAIL, but that may not be true in other
2144 * implementations.
2145 */
2146 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2147 return 1;
2148
2149 /*
2150 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2151 * specified, then we retry until we no longer reclaim any pages
2152 * (above), or we've reclaimed an order of pages at least as
2153 * large as the allocation's order. In both cases, if the
2154 * allocation still fails, we stop retrying.
2155 */
2156 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2157 return 1;
2158
2159 return 0;
2160 }
2161
2162 static inline struct page *
2163 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 nodemask_t *nodemask, struct zone *preferred_zone,
2166 int migratetype)
2167 {
2168 struct page *page;
2169
2170 /* Acquire the OOM killer lock for the zones in zonelist */
2171 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2172 schedule_timeout_uninterruptible(1);
2173 return NULL;
2174 }
2175
2176 /*
2177 * Go through the zonelist yet one more time, keep very high watermark
2178 * here, this is only to catch a parallel oom killing, we must fail if
2179 * we're still under heavy pressure.
2180 */
2181 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2182 order, zonelist, high_zoneidx,
2183 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2184 preferred_zone, migratetype);
2185 if (page)
2186 goto out;
2187
2188 if (!(gfp_mask & __GFP_NOFAIL)) {
2189 /* The OOM killer will not help higher order allocs */
2190 if (order > PAGE_ALLOC_COSTLY_ORDER)
2191 goto out;
2192 /* The OOM killer does not needlessly kill tasks for lowmem */
2193 if (high_zoneidx < ZONE_NORMAL)
2194 goto out;
2195 /*
2196 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2197 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2198 * The caller should handle page allocation failure by itself if
2199 * it specifies __GFP_THISNODE.
2200 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2201 */
2202 if (gfp_mask & __GFP_THISNODE)
2203 goto out;
2204 }
2205 /* Exhausted what can be done so it's blamo time */
2206 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2207
2208 out:
2209 clear_zonelist_oom(zonelist, gfp_mask);
2210 return page;
2211 }
2212
2213 #ifdef CONFIG_COMPACTION
2214 /* Try memory compaction for high-order allocations before reclaim */
2215 static struct page *
2216 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2217 struct zonelist *zonelist, enum zone_type high_zoneidx,
2218 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2219 int migratetype, bool sync_migration,
2220 bool *contended_compaction, bool *deferred_compaction,
2221 unsigned long *did_some_progress)
2222 {
2223 if (!order)
2224 return NULL;
2225
2226 if (compaction_deferred(preferred_zone, order)) {
2227 *deferred_compaction = true;
2228 return NULL;
2229 }
2230
2231 current->flags |= PF_MEMALLOC;
2232 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2233 nodemask, sync_migration,
2234 contended_compaction);
2235 current->flags &= ~PF_MEMALLOC;
2236
2237 if (*did_some_progress != COMPACT_SKIPPED) {
2238 struct page *page;
2239
2240 /* Page migration frees to the PCP lists but we want merging */
2241 drain_pages(get_cpu());
2242 put_cpu();
2243
2244 page = get_page_from_freelist(gfp_mask, nodemask,
2245 order, zonelist, high_zoneidx,
2246 alloc_flags & ~ALLOC_NO_WATERMARKS,
2247 preferred_zone, migratetype);
2248 if (page) {
2249 preferred_zone->compact_blockskip_flush = false;
2250 compaction_defer_reset(preferred_zone, order, true);
2251 count_vm_event(COMPACTSUCCESS);
2252 return page;
2253 }
2254
2255 /*
2256 * It's bad if compaction run occurs and fails.
2257 * The most likely reason is that pages exist,
2258 * but not enough to satisfy watermarks.
2259 */
2260 count_vm_event(COMPACTFAIL);
2261
2262 /*
2263 * As async compaction considers a subset of pageblocks, only
2264 * defer if the failure was a sync compaction failure.
2265 */
2266 if (sync_migration)
2267 defer_compaction(preferred_zone, order);
2268
2269 cond_resched();
2270 }
2271
2272 return NULL;
2273 }
2274 #else
2275 static inline struct page *
2276 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2277 struct zonelist *zonelist, enum zone_type high_zoneidx,
2278 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2279 int migratetype, bool sync_migration,
2280 bool *contended_compaction, bool *deferred_compaction,
2281 unsigned long *did_some_progress)
2282 {
2283 return NULL;
2284 }
2285 #endif /* CONFIG_COMPACTION */
2286
2287 /* Perform direct synchronous page reclaim */
2288 static int
2289 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2290 nodemask_t *nodemask)
2291 {
2292 struct reclaim_state reclaim_state;
2293 int progress;
2294
2295 cond_resched();
2296
2297 /* We now go into synchronous reclaim */
2298 cpuset_memory_pressure_bump();
2299 current->flags |= PF_MEMALLOC;
2300 lockdep_set_current_reclaim_state(gfp_mask);
2301 reclaim_state.reclaimed_slab = 0;
2302 current->reclaim_state = &reclaim_state;
2303
2304 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2305
2306 current->reclaim_state = NULL;
2307 lockdep_clear_current_reclaim_state();
2308 current->flags &= ~PF_MEMALLOC;
2309
2310 cond_resched();
2311
2312 return progress;
2313 }
2314
2315 /* The really slow allocator path where we enter direct reclaim */
2316 static inline struct page *
2317 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2318 struct zonelist *zonelist, enum zone_type high_zoneidx,
2319 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2320 int migratetype, unsigned long *did_some_progress)
2321 {
2322 struct page *page = NULL;
2323 bool drained = false;
2324
2325 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2326 nodemask);
2327 if (unlikely(!(*did_some_progress)))
2328 return NULL;
2329
2330 /* After successful reclaim, reconsider all zones for allocation */
2331 if (IS_ENABLED(CONFIG_NUMA))
2332 zlc_clear_zones_full(zonelist);
2333
2334 retry:
2335 page = get_page_from_freelist(gfp_mask, nodemask, order,
2336 zonelist, high_zoneidx,
2337 alloc_flags & ~ALLOC_NO_WATERMARKS,
2338 preferred_zone, migratetype);
2339
2340 /*
2341 * If an allocation failed after direct reclaim, it could be because
2342 * pages are pinned on the per-cpu lists. Drain them and try again
2343 */
2344 if (!page && !drained) {
2345 drain_all_pages();
2346 drained = true;
2347 goto retry;
2348 }
2349
2350 return page;
2351 }
2352
2353 /*
2354 * This is called in the allocator slow-path if the allocation request is of
2355 * sufficient urgency to ignore watermarks and take other desperate measures
2356 */
2357 static inline struct page *
2358 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2359 struct zonelist *zonelist, enum zone_type high_zoneidx,
2360 nodemask_t *nodemask, struct zone *preferred_zone,
2361 int migratetype)
2362 {
2363 struct page *page;
2364
2365 do {
2366 page = get_page_from_freelist(gfp_mask, nodemask, order,
2367 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2368 preferred_zone, migratetype);
2369
2370 if (!page && gfp_mask & __GFP_NOFAIL)
2371 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2372 } while (!page && (gfp_mask & __GFP_NOFAIL));
2373
2374 return page;
2375 }
2376
2377 static void reset_alloc_batches(struct zonelist *zonelist,
2378 enum zone_type high_zoneidx,
2379 struct zone *preferred_zone)
2380 {
2381 struct zoneref *z;
2382 struct zone *zone;
2383
2384 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2385 /*
2386 * Only reset the batches of zones that were actually
2387 * considered in the fairness pass, we don't want to
2388 * trash fairness information for zones that are not
2389 * actually part of this zonelist's round-robin cycle.
2390 */
2391 if (!zone_local(preferred_zone, zone))
2392 continue;
2393 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2394 high_wmark_pages(zone) - low_wmark_pages(zone) -
2395 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2396 }
2397 }
2398
2399 static void wake_all_kswapds(unsigned int order,
2400 struct zonelist *zonelist,
2401 enum zone_type high_zoneidx,
2402 struct zone *preferred_zone)
2403 {
2404 struct zoneref *z;
2405 struct zone *zone;
2406
2407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2408 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2409 }
2410
2411 static inline int
2412 gfp_to_alloc_flags(gfp_t gfp_mask)
2413 {
2414 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2415 const gfp_t wait = gfp_mask & __GFP_WAIT;
2416
2417 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2418 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2419
2420 /*
2421 * The caller may dip into page reserves a bit more if the caller
2422 * cannot run direct reclaim, or if the caller has realtime scheduling
2423 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2424 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2425 */
2426 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2427
2428 if (!wait) {
2429 /*
2430 * Not worth trying to allocate harder for
2431 * __GFP_NOMEMALLOC even if it can't schedule.
2432 */
2433 if (!(gfp_mask & __GFP_NOMEMALLOC))
2434 alloc_flags |= ALLOC_HARDER;
2435 /*
2436 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2437 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2438 */
2439 alloc_flags &= ~ALLOC_CPUSET;
2440 } else if (unlikely(rt_task(current)) && !in_interrupt())
2441 alloc_flags |= ALLOC_HARDER;
2442
2443 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2444 if (gfp_mask & __GFP_MEMALLOC)
2445 alloc_flags |= ALLOC_NO_WATERMARKS;
2446 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2447 alloc_flags |= ALLOC_NO_WATERMARKS;
2448 else if (!in_interrupt() &&
2449 ((current->flags & PF_MEMALLOC) ||
2450 unlikely(test_thread_flag(TIF_MEMDIE))))
2451 alloc_flags |= ALLOC_NO_WATERMARKS;
2452 }
2453 #ifdef CONFIG_CMA
2454 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2455 alloc_flags |= ALLOC_CMA;
2456 #endif
2457 return alloc_flags;
2458 }
2459
2460 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2461 {
2462 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2463 }
2464
2465 static inline struct page *
2466 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2467 struct zonelist *zonelist, enum zone_type high_zoneidx,
2468 nodemask_t *nodemask, struct zone *preferred_zone,
2469 int migratetype)
2470 {
2471 const gfp_t wait = gfp_mask & __GFP_WAIT;
2472 struct page *page = NULL;
2473 int alloc_flags;
2474 unsigned long pages_reclaimed = 0;
2475 unsigned long did_some_progress;
2476 bool sync_migration = false;
2477 bool deferred_compaction = false;
2478 bool contended_compaction = false;
2479
2480 /*
2481 * In the slowpath, we sanity check order to avoid ever trying to
2482 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2483 * be using allocators in order of preference for an area that is
2484 * too large.
2485 */
2486 if (order >= MAX_ORDER) {
2487 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2488 return NULL;
2489 }
2490
2491 /*
2492 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2493 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2494 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2495 * using a larger set of nodes after it has established that the
2496 * allowed per node queues are empty and that nodes are
2497 * over allocated.
2498 */
2499 if (IS_ENABLED(CONFIG_NUMA) &&
2500 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2501 goto nopage;
2502
2503 restart:
2504 if (!(gfp_mask & __GFP_NO_KSWAPD))
2505 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2506
2507 /*
2508 * OK, we're below the kswapd watermark and have kicked background
2509 * reclaim. Now things get more complex, so set up alloc_flags according
2510 * to how we want to proceed.
2511 */
2512 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2513
2514 /*
2515 * Find the true preferred zone if the allocation is unconstrained by
2516 * cpusets.
2517 */
2518 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2519 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2520 &preferred_zone);
2521
2522 rebalance:
2523 /* This is the last chance, in general, before the goto nopage. */
2524 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2525 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2526 preferred_zone, migratetype);
2527 if (page)
2528 goto got_pg;
2529
2530 /* Allocate without watermarks if the context allows */
2531 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2532 /*
2533 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2534 * the allocation is high priority and these type of
2535 * allocations are system rather than user orientated
2536 */
2537 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2538
2539 page = __alloc_pages_high_priority(gfp_mask, order,
2540 zonelist, high_zoneidx, nodemask,
2541 preferred_zone, migratetype);
2542 if (page) {
2543 goto got_pg;
2544 }
2545 }
2546
2547 /* Atomic allocations - we can't balance anything */
2548 if (!wait) {
2549 /*
2550 * All existing users of the deprecated __GFP_NOFAIL are
2551 * blockable, so warn of any new users that actually allow this
2552 * type of allocation to fail.
2553 */
2554 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2555 goto nopage;
2556 }
2557
2558 /* Avoid recursion of direct reclaim */
2559 if (current->flags & PF_MEMALLOC)
2560 goto nopage;
2561
2562 /* Avoid allocations with no watermarks from looping endlessly */
2563 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2564 goto nopage;
2565
2566 /*
2567 * Try direct compaction. The first pass is asynchronous. Subsequent
2568 * attempts after direct reclaim are synchronous
2569 */
2570 page = __alloc_pages_direct_compact(gfp_mask, order,
2571 zonelist, high_zoneidx,
2572 nodemask,
2573 alloc_flags, preferred_zone,
2574 migratetype, sync_migration,
2575 &contended_compaction,
2576 &deferred_compaction,
2577 &did_some_progress);
2578 if (page)
2579 goto got_pg;
2580 sync_migration = true;
2581
2582 /*
2583 * If compaction is deferred for high-order allocations, it is because
2584 * sync compaction recently failed. In this is the case and the caller
2585 * requested a movable allocation that does not heavily disrupt the
2586 * system then fail the allocation instead of entering direct reclaim.
2587 */
2588 if ((deferred_compaction || contended_compaction) &&
2589 (gfp_mask & __GFP_NO_KSWAPD))
2590 goto nopage;
2591
2592 /* Try direct reclaim and then allocating */
2593 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2594 zonelist, high_zoneidx,
2595 nodemask,
2596 alloc_flags, preferred_zone,
2597 migratetype, &did_some_progress);
2598 if (page)
2599 goto got_pg;
2600
2601 /*
2602 * If we failed to make any progress reclaiming, then we are
2603 * running out of options and have to consider going OOM
2604 */
2605 if (!did_some_progress) {
2606 if (oom_gfp_allowed(gfp_mask)) {
2607 if (oom_killer_disabled)
2608 goto nopage;
2609 /* Coredumps can quickly deplete all memory reserves */
2610 if ((current->flags & PF_DUMPCORE) &&
2611 !(gfp_mask & __GFP_NOFAIL))
2612 goto nopage;
2613 page = __alloc_pages_may_oom(gfp_mask, order,
2614 zonelist, high_zoneidx,
2615 nodemask, preferred_zone,
2616 migratetype);
2617 if (page)
2618 goto got_pg;
2619
2620 if (!(gfp_mask & __GFP_NOFAIL)) {
2621 /*
2622 * The oom killer is not called for high-order
2623 * allocations that may fail, so if no progress
2624 * is being made, there are no other options and
2625 * retrying is unlikely to help.
2626 */
2627 if (order > PAGE_ALLOC_COSTLY_ORDER)
2628 goto nopage;
2629 /*
2630 * The oom killer is not called for lowmem
2631 * allocations to prevent needlessly killing
2632 * innocent tasks.
2633 */
2634 if (high_zoneidx < ZONE_NORMAL)
2635 goto nopage;
2636 }
2637
2638 goto restart;
2639 }
2640 }
2641
2642 /* Check if we should retry the allocation */
2643 pages_reclaimed += did_some_progress;
2644 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2645 pages_reclaimed)) {
2646 /* Wait for some write requests to complete then retry */
2647 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2648 goto rebalance;
2649 } else {
2650 /*
2651 * High-order allocations do not necessarily loop after
2652 * direct reclaim and reclaim/compaction depends on compaction
2653 * being called after reclaim so call directly if necessary
2654 */
2655 page = __alloc_pages_direct_compact(gfp_mask, order,
2656 zonelist, high_zoneidx,
2657 nodemask,
2658 alloc_flags, preferred_zone,
2659 migratetype, sync_migration,
2660 &contended_compaction,
2661 &deferred_compaction,
2662 &did_some_progress);
2663 if (page)
2664 goto got_pg;
2665 }
2666
2667 nopage:
2668 warn_alloc_failed(gfp_mask, order, NULL);
2669 return page;
2670 got_pg:
2671 if (kmemcheck_enabled)
2672 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2673
2674 return page;
2675 }
2676
2677 /*
2678 * This is the 'heart' of the zoned buddy allocator.
2679 */
2680 struct page *
2681 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2682 struct zonelist *zonelist, nodemask_t *nodemask)
2683 {
2684 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2685 struct zone *preferred_zone;
2686 struct page *page = NULL;
2687 int migratetype = allocflags_to_migratetype(gfp_mask);
2688 unsigned int cpuset_mems_cookie;
2689 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2690
2691 gfp_mask &= gfp_allowed_mask;
2692
2693 lockdep_trace_alloc(gfp_mask);
2694
2695 might_sleep_if(gfp_mask & __GFP_WAIT);
2696
2697 if (should_fail_alloc_page(gfp_mask, order))
2698 return NULL;
2699
2700 /*
2701 * Check the zones suitable for the gfp_mask contain at least one
2702 * valid zone. It's possible to have an empty zonelist as a result
2703 * of GFP_THISNODE and a memoryless node
2704 */
2705 if (unlikely(!zonelist->_zonerefs->zone))
2706 return NULL;
2707
2708 retry_cpuset:
2709 cpuset_mems_cookie = read_mems_allowed_begin();
2710
2711 /* The preferred zone is used for statistics later */
2712 first_zones_zonelist(zonelist, high_zoneidx,
2713 nodemask ? : &cpuset_current_mems_allowed,
2714 &preferred_zone);
2715 if (!preferred_zone)
2716 goto out;
2717
2718 #ifdef CONFIG_CMA
2719 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2720 alloc_flags |= ALLOC_CMA;
2721 #endif
2722 retry:
2723 /* First allocation attempt */
2724 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2725 zonelist, high_zoneidx, alloc_flags,
2726 preferred_zone, migratetype);
2727 if (unlikely(!page)) {
2728 /*
2729 * The first pass makes sure allocations are spread
2730 * fairly within the local node. However, the local
2731 * node might have free pages left after the fairness
2732 * batches are exhausted, and remote zones haven't
2733 * even been considered yet. Try once more without
2734 * fairness, and include remote zones now, before
2735 * entering the slowpath and waking kswapd: prefer
2736 * spilling to a remote zone over swapping locally.
2737 */
2738 if (alloc_flags & ALLOC_FAIR) {
2739 reset_alloc_batches(zonelist, high_zoneidx,
2740 preferred_zone);
2741 alloc_flags &= ~ALLOC_FAIR;
2742 goto retry;
2743 }
2744 /*
2745 * Runtime PM, block IO and its error handling path
2746 * can deadlock because I/O on the device might not
2747 * complete.
2748 */
2749 gfp_mask = memalloc_noio_flags(gfp_mask);
2750 page = __alloc_pages_slowpath(gfp_mask, order,
2751 zonelist, high_zoneidx, nodemask,
2752 preferred_zone, migratetype);
2753 }
2754
2755 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2756
2757 out:
2758 /*
2759 * When updating a task's mems_allowed, it is possible to race with
2760 * parallel threads in such a way that an allocation can fail while
2761 * the mask is being updated. If a page allocation is about to fail,
2762 * check if the cpuset changed during allocation and if so, retry.
2763 */
2764 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2765 goto retry_cpuset;
2766
2767 return page;
2768 }
2769 EXPORT_SYMBOL(__alloc_pages_nodemask);
2770
2771 /*
2772 * Common helper functions.
2773 */
2774 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2775 {
2776 struct page *page;
2777
2778 /*
2779 * __get_free_pages() returns a 32-bit address, which cannot represent
2780 * a highmem page
2781 */
2782 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2783
2784 page = alloc_pages(gfp_mask, order);
2785 if (!page)
2786 return 0;
2787 return (unsigned long) page_address(page);
2788 }
2789 EXPORT_SYMBOL(__get_free_pages);
2790
2791 unsigned long get_zeroed_page(gfp_t gfp_mask)
2792 {
2793 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2794 }
2795 EXPORT_SYMBOL(get_zeroed_page);
2796
2797 void __free_pages(struct page *page, unsigned int order)
2798 {
2799 if (put_page_testzero(page)) {
2800 if (order == 0)
2801 free_hot_cold_page(page, 0);
2802 else
2803 __free_pages_ok(page, order);
2804 }
2805 }
2806
2807 EXPORT_SYMBOL(__free_pages);
2808
2809 void free_pages(unsigned long addr, unsigned int order)
2810 {
2811 if (addr != 0) {
2812 VM_BUG_ON(!virt_addr_valid((void *)addr));
2813 __free_pages(virt_to_page((void *)addr), order);
2814 }
2815 }
2816
2817 EXPORT_SYMBOL(free_pages);
2818
2819 /*
2820 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2821 * of the current memory cgroup.
2822 *
2823 * It should be used when the caller would like to use kmalloc, but since the
2824 * allocation is large, it has to fall back to the page allocator.
2825 */
2826 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2827 {
2828 struct page *page;
2829 struct mem_cgroup *memcg = NULL;
2830
2831 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2832 return NULL;
2833 page = alloc_pages(gfp_mask, order);
2834 memcg_kmem_commit_charge(page, memcg, order);
2835 return page;
2836 }
2837
2838 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2839 {
2840 struct page *page;
2841 struct mem_cgroup *memcg = NULL;
2842
2843 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2844 return NULL;
2845 page = alloc_pages_node(nid, gfp_mask, order);
2846 memcg_kmem_commit_charge(page, memcg, order);
2847 return page;
2848 }
2849
2850 /*
2851 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2852 * alloc_kmem_pages.
2853 */
2854 void __free_kmem_pages(struct page *page, unsigned int order)
2855 {
2856 memcg_kmem_uncharge_pages(page, order);
2857 __free_pages(page, order);
2858 }
2859
2860 void free_kmem_pages(unsigned long addr, unsigned int order)
2861 {
2862 if (addr != 0) {
2863 VM_BUG_ON(!virt_addr_valid((void *)addr));
2864 __free_kmem_pages(virt_to_page((void *)addr), order);
2865 }
2866 }
2867
2868 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2869 {
2870 if (addr) {
2871 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2872 unsigned long used = addr + PAGE_ALIGN(size);
2873
2874 split_page(virt_to_page((void *)addr), order);
2875 while (used < alloc_end) {
2876 free_page(used);
2877 used += PAGE_SIZE;
2878 }
2879 }
2880 return (void *)addr;
2881 }
2882
2883 /**
2884 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2885 * @size: the number of bytes to allocate
2886 * @gfp_mask: GFP flags for the allocation
2887 *
2888 * This function is similar to alloc_pages(), except that it allocates the
2889 * minimum number of pages to satisfy the request. alloc_pages() can only
2890 * allocate memory in power-of-two pages.
2891 *
2892 * This function is also limited by MAX_ORDER.
2893 *
2894 * Memory allocated by this function must be released by free_pages_exact().
2895 */
2896 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2897 {
2898 unsigned int order = get_order(size);
2899 unsigned long addr;
2900
2901 addr = __get_free_pages(gfp_mask, order);
2902 return make_alloc_exact(addr, order, size);
2903 }
2904 EXPORT_SYMBOL(alloc_pages_exact);
2905
2906 /**
2907 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2908 * pages on a node.
2909 * @nid: the preferred node ID where memory should be allocated
2910 * @size: the number of bytes to allocate
2911 * @gfp_mask: GFP flags for the allocation
2912 *
2913 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2914 * back.
2915 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2916 * but is not exact.
2917 */
2918 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2919 {
2920 unsigned order = get_order(size);
2921 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2922 if (!p)
2923 return NULL;
2924 return make_alloc_exact((unsigned long)page_address(p), order, size);
2925 }
2926 EXPORT_SYMBOL(alloc_pages_exact_nid);
2927
2928 /**
2929 * free_pages_exact - release memory allocated via alloc_pages_exact()
2930 * @virt: the value returned by alloc_pages_exact.
2931 * @size: size of allocation, same value as passed to alloc_pages_exact().
2932 *
2933 * Release the memory allocated by a previous call to alloc_pages_exact.
2934 */
2935 void free_pages_exact(void *virt, size_t size)
2936 {
2937 unsigned long addr = (unsigned long)virt;
2938 unsigned long end = addr + PAGE_ALIGN(size);
2939
2940 while (addr < end) {
2941 free_page(addr);
2942 addr += PAGE_SIZE;
2943 }
2944 }
2945 EXPORT_SYMBOL(free_pages_exact);
2946
2947 /**
2948 * nr_free_zone_pages - count number of pages beyond high watermark
2949 * @offset: The zone index of the highest zone
2950 *
2951 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2952 * high watermark within all zones at or below a given zone index. For each
2953 * zone, the number of pages is calculated as:
2954 * managed_pages - high_pages
2955 */
2956 static unsigned long nr_free_zone_pages(int offset)
2957 {
2958 struct zoneref *z;
2959 struct zone *zone;
2960
2961 /* Just pick one node, since fallback list is circular */
2962 unsigned long sum = 0;
2963
2964 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2965
2966 for_each_zone_zonelist(zone, z, zonelist, offset) {
2967 unsigned long size = zone->managed_pages;
2968 unsigned long high = high_wmark_pages(zone);
2969 if (size > high)
2970 sum += size - high;
2971 }
2972
2973 return sum;
2974 }
2975
2976 /**
2977 * nr_free_buffer_pages - count number of pages beyond high watermark
2978 *
2979 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2980 * watermark within ZONE_DMA and ZONE_NORMAL.
2981 */
2982 unsigned long nr_free_buffer_pages(void)
2983 {
2984 return nr_free_zone_pages(gfp_zone(GFP_USER));
2985 }
2986 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2987
2988 /**
2989 * nr_free_pagecache_pages - count number of pages beyond high watermark
2990 *
2991 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2992 * high watermark within all zones.
2993 */
2994 unsigned long nr_free_pagecache_pages(void)
2995 {
2996 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2997 }
2998
2999 static inline void show_node(struct zone *zone)
3000 {
3001 if (IS_ENABLED(CONFIG_NUMA))
3002 printk("Node %d ", zone_to_nid(zone));
3003 }
3004
3005 void si_meminfo(struct sysinfo *val)
3006 {
3007 val->totalram = totalram_pages;
3008 val->sharedram = 0;
3009 val->freeram = global_page_state(NR_FREE_PAGES);
3010 val->bufferram = nr_blockdev_pages();
3011 val->totalhigh = totalhigh_pages;
3012 val->freehigh = nr_free_highpages();
3013 val->mem_unit = PAGE_SIZE;
3014 }
3015
3016 EXPORT_SYMBOL(si_meminfo);
3017
3018 #ifdef CONFIG_NUMA
3019 void si_meminfo_node(struct sysinfo *val, int nid)
3020 {
3021 int zone_type; /* needs to be signed */
3022 unsigned long managed_pages = 0;
3023 pg_data_t *pgdat = NODE_DATA(nid);
3024
3025 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3026 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3027 val->totalram = managed_pages;
3028 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3029 #ifdef CONFIG_HIGHMEM
3030 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3031 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3032 NR_FREE_PAGES);
3033 #else
3034 val->totalhigh = 0;
3035 val->freehigh = 0;
3036 #endif
3037 val->mem_unit = PAGE_SIZE;
3038 }
3039 #endif
3040
3041 /*
3042 * Determine whether the node should be displayed or not, depending on whether
3043 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3044 */
3045 bool skip_free_areas_node(unsigned int flags, int nid)
3046 {
3047 bool ret = false;
3048 unsigned int cpuset_mems_cookie;
3049
3050 if (!(flags & SHOW_MEM_FILTER_NODES))
3051 goto out;
3052
3053 do {
3054 cpuset_mems_cookie = read_mems_allowed_begin();
3055 ret = !node_isset(nid, cpuset_current_mems_allowed);
3056 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3057 out:
3058 return ret;
3059 }
3060
3061 #define K(x) ((x) << (PAGE_SHIFT-10))
3062
3063 static void show_migration_types(unsigned char type)
3064 {
3065 static const char types[MIGRATE_TYPES] = {
3066 [MIGRATE_UNMOVABLE] = 'U',
3067 [MIGRATE_RECLAIMABLE] = 'E',
3068 [MIGRATE_MOVABLE] = 'M',
3069 [MIGRATE_RESERVE] = 'R',
3070 #ifdef CONFIG_CMA
3071 [MIGRATE_CMA] = 'C',
3072 #endif
3073 #ifdef CONFIG_MEMORY_ISOLATION
3074 [MIGRATE_ISOLATE] = 'I',
3075 #endif
3076 };
3077 char tmp[MIGRATE_TYPES + 1];
3078 char *p = tmp;
3079 int i;
3080
3081 for (i = 0; i < MIGRATE_TYPES; i++) {
3082 if (type & (1 << i))
3083 *p++ = types[i];
3084 }
3085
3086 *p = '\0';
3087 printk("(%s) ", tmp);
3088 }
3089
3090 /*
3091 * Show free area list (used inside shift_scroll-lock stuff)
3092 * We also calculate the percentage fragmentation. We do this by counting the
3093 * memory on each free list with the exception of the first item on the list.
3094 * Suppresses nodes that are not allowed by current's cpuset if
3095 * SHOW_MEM_FILTER_NODES is passed.
3096 */
3097 void show_free_areas(unsigned int filter)
3098 {
3099 int cpu;
3100 struct zone *zone;
3101
3102 for_each_populated_zone(zone) {
3103 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3104 continue;
3105 show_node(zone);
3106 printk("%s per-cpu:\n", zone->name);
3107
3108 for_each_online_cpu(cpu) {
3109 struct per_cpu_pageset *pageset;
3110
3111 pageset = per_cpu_ptr(zone->pageset, cpu);
3112
3113 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3114 cpu, pageset->pcp.high,
3115 pageset->pcp.batch, pageset->pcp.count);
3116 }
3117 }
3118
3119 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3120 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3121 " unevictable:%lu"
3122 " dirty:%lu writeback:%lu unstable:%lu\n"
3123 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3124 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3125 " free_cma:%lu\n",
3126 global_page_state(NR_ACTIVE_ANON),
3127 global_page_state(NR_INACTIVE_ANON),
3128 global_page_state(NR_ISOLATED_ANON),
3129 global_page_state(NR_ACTIVE_FILE),
3130 global_page_state(NR_INACTIVE_FILE),
3131 global_page_state(NR_ISOLATED_FILE),
3132 global_page_state(NR_UNEVICTABLE),
3133 global_page_state(NR_FILE_DIRTY),
3134 global_page_state(NR_WRITEBACK),
3135 global_page_state(NR_UNSTABLE_NFS),
3136 global_page_state(NR_FREE_PAGES),
3137 global_page_state(NR_SLAB_RECLAIMABLE),
3138 global_page_state(NR_SLAB_UNRECLAIMABLE),
3139 global_page_state(NR_FILE_MAPPED),
3140 global_page_state(NR_SHMEM),
3141 global_page_state(NR_PAGETABLE),
3142 global_page_state(NR_BOUNCE),
3143 global_page_state(NR_FREE_CMA_PAGES));
3144
3145 for_each_populated_zone(zone) {
3146 int i;
3147
3148 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3149 continue;
3150 show_node(zone);
3151 printk("%s"
3152 " free:%lukB"
3153 " min:%lukB"
3154 " low:%lukB"
3155 " high:%lukB"
3156 " active_anon:%lukB"
3157 " inactive_anon:%lukB"
3158 " active_file:%lukB"
3159 " inactive_file:%lukB"
3160 " unevictable:%lukB"
3161 " isolated(anon):%lukB"
3162 " isolated(file):%lukB"
3163 " present:%lukB"
3164 " managed:%lukB"
3165 " mlocked:%lukB"
3166 " dirty:%lukB"
3167 " writeback:%lukB"
3168 " mapped:%lukB"
3169 " shmem:%lukB"
3170 " slab_reclaimable:%lukB"
3171 " slab_unreclaimable:%lukB"
3172 " kernel_stack:%lukB"
3173 " pagetables:%lukB"
3174 " unstable:%lukB"
3175 " bounce:%lukB"
3176 " free_cma:%lukB"
3177 " writeback_tmp:%lukB"
3178 " pages_scanned:%lu"
3179 " all_unreclaimable? %s"
3180 "\n",
3181 zone->name,
3182 K(zone_page_state(zone, NR_FREE_PAGES)),
3183 K(min_wmark_pages(zone)),
3184 K(low_wmark_pages(zone)),
3185 K(high_wmark_pages(zone)),
3186 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3187 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3188 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3189 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3190 K(zone_page_state(zone, NR_UNEVICTABLE)),
3191 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3192 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3193 K(zone->present_pages),
3194 K(zone->managed_pages),
3195 K(zone_page_state(zone, NR_MLOCK)),
3196 K(zone_page_state(zone, NR_FILE_DIRTY)),
3197 K(zone_page_state(zone, NR_WRITEBACK)),
3198 K(zone_page_state(zone, NR_FILE_MAPPED)),
3199 K(zone_page_state(zone, NR_SHMEM)),
3200 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3201 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3202 zone_page_state(zone, NR_KERNEL_STACK) *
3203 THREAD_SIZE / 1024,
3204 K(zone_page_state(zone, NR_PAGETABLE)),
3205 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3206 K(zone_page_state(zone, NR_BOUNCE)),
3207 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3208 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3209 zone->pages_scanned,
3210 (!zone_reclaimable(zone) ? "yes" : "no")
3211 );
3212 printk("lowmem_reserve[]:");
3213 for (i = 0; i < MAX_NR_ZONES; i++)
3214 printk(" %lu", zone->lowmem_reserve[i]);
3215 printk("\n");
3216 }
3217
3218 for_each_populated_zone(zone) {
3219 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3220 unsigned char types[MAX_ORDER];
3221
3222 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3223 continue;
3224 show_node(zone);
3225 printk("%s: ", zone->name);
3226
3227 spin_lock_irqsave(&zone->lock, flags);
3228 for (order = 0; order < MAX_ORDER; order++) {
3229 struct free_area *area = &zone->free_area[order];
3230 int type;
3231
3232 nr[order] = area->nr_free;
3233 total += nr[order] << order;
3234
3235 types[order] = 0;
3236 for (type = 0; type < MIGRATE_TYPES; type++) {
3237 if (!list_empty(&area->free_list[type]))
3238 types[order] |= 1 << type;
3239 }
3240 }
3241 spin_unlock_irqrestore(&zone->lock, flags);
3242 for (order = 0; order < MAX_ORDER; order++) {
3243 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3244 if (nr[order])
3245 show_migration_types(types[order]);
3246 }
3247 printk("= %lukB\n", K(total));
3248 }
3249
3250 hugetlb_show_meminfo();
3251
3252 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3253
3254 show_swap_cache_info();
3255 }
3256
3257 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3258 {
3259 zoneref->zone = zone;
3260 zoneref->zone_idx = zone_idx(zone);
3261 }
3262
3263 /*
3264 * Builds allocation fallback zone lists.
3265 *
3266 * Add all populated zones of a node to the zonelist.
3267 */
3268 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3269 int nr_zones)
3270 {
3271 struct zone *zone;
3272 enum zone_type zone_type = MAX_NR_ZONES;
3273
3274 do {
3275 zone_type--;
3276 zone = pgdat->node_zones + zone_type;
3277 if (populated_zone(zone)) {
3278 zoneref_set_zone(zone,
3279 &zonelist->_zonerefs[nr_zones++]);
3280 check_highest_zone(zone_type);
3281 }
3282 } while (zone_type);
3283
3284 return nr_zones;
3285 }
3286
3287
3288 /*
3289 * zonelist_order:
3290 * 0 = automatic detection of better ordering.
3291 * 1 = order by ([node] distance, -zonetype)
3292 * 2 = order by (-zonetype, [node] distance)
3293 *
3294 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3295 * the same zonelist. So only NUMA can configure this param.
3296 */
3297 #define ZONELIST_ORDER_DEFAULT 0
3298 #define ZONELIST_ORDER_NODE 1
3299 #define ZONELIST_ORDER_ZONE 2
3300
3301 /* zonelist order in the kernel.
3302 * set_zonelist_order() will set this to NODE or ZONE.
3303 */
3304 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3305 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3306
3307
3308 #ifdef CONFIG_NUMA
3309 /* The value user specified ....changed by config */
3310 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3311 /* string for sysctl */
3312 #define NUMA_ZONELIST_ORDER_LEN 16
3313 char numa_zonelist_order[16] = "default";
3314
3315 /*
3316 * interface for configure zonelist ordering.
3317 * command line option "numa_zonelist_order"
3318 * = "[dD]efault - default, automatic configuration.
3319 * = "[nN]ode - order by node locality, then by zone within node
3320 * = "[zZ]one - order by zone, then by locality within zone
3321 */
3322
3323 static int __parse_numa_zonelist_order(char *s)
3324 {
3325 if (*s == 'd' || *s == 'D') {
3326 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3327 } else if (*s == 'n' || *s == 'N') {
3328 user_zonelist_order = ZONELIST_ORDER_NODE;
3329 } else if (*s == 'z' || *s == 'Z') {
3330 user_zonelist_order = ZONELIST_ORDER_ZONE;
3331 } else {
3332 printk(KERN_WARNING
3333 "Ignoring invalid numa_zonelist_order value: "
3334 "%s\n", s);
3335 return -EINVAL;
3336 }
3337 return 0;
3338 }
3339
3340 static __init int setup_numa_zonelist_order(char *s)
3341 {
3342 int ret;
3343
3344 if (!s)
3345 return 0;
3346
3347 ret = __parse_numa_zonelist_order(s);
3348 if (ret == 0)
3349 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3350
3351 return ret;
3352 }
3353 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3354
3355 /*
3356 * sysctl handler for numa_zonelist_order
3357 */
3358 int numa_zonelist_order_handler(ctl_table *table, int write,
3359 void __user *buffer, size_t *length,
3360 loff_t *ppos)
3361 {
3362 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3363 int ret;
3364 static DEFINE_MUTEX(zl_order_mutex);
3365
3366 mutex_lock(&zl_order_mutex);
3367 if (write) {
3368 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3369 ret = -EINVAL;
3370 goto out;
3371 }
3372 strcpy(saved_string, (char *)table->data);
3373 }
3374 ret = proc_dostring(table, write, buffer, length, ppos);
3375 if (ret)
3376 goto out;
3377 if (write) {
3378 int oldval = user_zonelist_order;
3379
3380 ret = __parse_numa_zonelist_order((char *)table->data);
3381 if (ret) {
3382 /*
3383 * bogus value. restore saved string
3384 */
3385 strncpy((char *)table->data, saved_string,
3386 NUMA_ZONELIST_ORDER_LEN);
3387 user_zonelist_order = oldval;
3388 } else if (oldval != user_zonelist_order) {
3389 mutex_lock(&zonelists_mutex);
3390 build_all_zonelists(NULL, NULL);
3391 mutex_unlock(&zonelists_mutex);
3392 }
3393 }
3394 out:
3395 mutex_unlock(&zl_order_mutex);
3396 return ret;
3397 }
3398
3399
3400 #define MAX_NODE_LOAD (nr_online_nodes)
3401 static int node_load[MAX_NUMNODES];
3402
3403 /**
3404 * find_next_best_node - find the next node that should appear in a given node's fallback list
3405 * @node: node whose fallback list we're appending
3406 * @used_node_mask: nodemask_t of already used nodes
3407 *
3408 * We use a number of factors to determine which is the next node that should
3409 * appear on a given node's fallback list. The node should not have appeared
3410 * already in @node's fallback list, and it should be the next closest node
3411 * according to the distance array (which contains arbitrary distance values
3412 * from each node to each node in the system), and should also prefer nodes
3413 * with no CPUs, since presumably they'll have very little allocation pressure
3414 * on them otherwise.
3415 * It returns -1 if no node is found.
3416 */
3417 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3418 {
3419 int n, val;
3420 int min_val = INT_MAX;
3421 int best_node = NUMA_NO_NODE;
3422 const struct cpumask *tmp = cpumask_of_node(0);
3423
3424 /* Use the local node if we haven't already */
3425 if (!node_isset(node, *used_node_mask)) {
3426 node_set(node, *used_node_mask);
3427 return node;
3428 }
3429
3430 for_each_node_state(n, N_MEMORY) {
3431
3432 /* Don't want a node to appear more than once */
3433 if (node_isset(n, *used_node_mask))
3434 continue;
3435
3436 /* Use the distance array to find the distance */
3437 val = node_distance(node, n);
3438
3439 /* Penalize nodes under us ("prefer the next node") */
3440 val += (n < node);
3441
3442 /* Give preference to headless and unused nodes */
3443 tmp = cpumask_of_node(n);
3444 if (!cpumask_empty(tmp))
3445 val += PENALTY_FOR_NODE_WITH_CPUS;
3446
3447 /* Slight preference for less loaded node */
3448 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3449 val += node_load[n];
3450
3451 if (val < min_val) {
3452 min_val = val;
3453 best_node = n;
3454 }
3455 }
3456
3457 if (best_node >= 0)
3458 node_set(best_node, *used_node_mask);
3459
3460 return best_node;
3461 }
3462
3463
3464 /*
3465 * Build zonelists ordered by node and zones within node.
3466 * This results in maximum locality--normal zone overflows into local
3467 * DMA zone, if any--but risks exhausting DMA zone.
3468 */
3469 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3470 {
3471 int j;
3472 struct zonelist *zonelist;
3473
3474 zonelist = &pgdat->node_zonelists[0];
3475 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3476 ;
3477 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3478 zonelist->_zonerefs[j].zone = NULL;
3479 zonelist->_zonerefs[j].zone_idx = 0;
3480 }
3481
3482 /*
3483 * Build gfp_thisnode zonelists
3484 */
3485 static void build_thisnode_zonelists(pg_data_t *pgdat)
3486 {
3487 int j;
3488 struct zonelist *zonelist;
3489
3490 zonelist = &pgdat->node_zonelists[1];
3491 j = build_zonelists_node(pgdat, zonelist, 0);
3492 zonelist->_zonerefs[j].zone = NULL;
3493 zonelist->_zonerefs[j].zone_idx = 0;
3494 }
3495
3496 /*
3497 * Build zonelists ordered by zone and nodes within zones.
3498 * This results in conserving DMA zone[s] until all Normal memory is
3499 * exhausted, but results in overflowing to remote node while memory
3500 * may still exist in local DMA zone.
3501 */
3502 static int node_order[MAX_NUMNODES];
3503
3504 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3505 {
3506 int pos, j, node;
3507 int zone_type; /* needs to be signed */
3508 struct zone *z;
3509 struct zonelist *zonelist;
3510
3511 zonelist = &pgdat->node_zonelists[0];
3512 pos = 0;
3513 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3514 for (j = 0; j < nr_nodes; j++) {
3515 node = node_order[j];
3516 z = &NODE_DATA(node)->node_zones[zone_type];
3517 if (populated_zone(z)) {
3518 zoneref_set_zone(z,
3519 &zonelist->_zonerefs[pos++]);
3520 check_highest_zone(zone_type);
3521 }
3522 }
3523 }
3524 zonelist->_zonerefs[pos].zone = NULL;
3525 zonelist->_zonerefs[pos].zone_idx = 0;
3526 }
3527
3528 static int default_zonelist_order(void)
3529 {
3530 int nid, zone_type;
3531 unsigned long low_kmem_size, total_size;
3532 struct zone *z;
3533 int average_size;
3534 /*
3535 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3536 * If they are really small and used heavily, the system can fall
3537 * into OOM very easily.
3538 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3539 */
3540 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3541 low_kmem_size = 0;
3542 total_size = 0;
3543 for_each_online_node(nid) {
3544 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3545 z = &NODE_DATA(nid)->node_zones[zone_type];
3546 if (populated_zone(z)) {
3547 if (zone_type < ZONE_NORMAL)
3548 low_kmem_size += z->managed_pages;
3549 total_size += z->managed_pages;
3550 } else if (zone_type == ZONE_NORMAL) {
3551 /*
3552 * If any node has only lowmem, then node order
3553 * is preferred to allow kernel allocations
3554 * locally; otherwise, they can easily infringe
3555 * on other nodes when there is an abundance of
3556 * lowmem available to allocate from.
3557 */
3558 return ZONELIST_ORDER_NODE;
3559 }
3560 }
3561 }
3562 if (!low_kmem_size || /* there are no DMA area. */
3563 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3564 return ZONELIST_ORDER_NODE;
3565 /*
3566 * look into each node's config.
3567 * If there is a node whose DMA/DMA32 memory is very big area on
3568 * local memory, NODE_ORDER may be suitable.
3569 */
3570 average_size = total_size /
3571 (nodes_weight(node_states[N_MEMORY]) + 1);
3572 for_each_online_node(nid) {
3573 low_kmem_size = 0;
3574 total_size = 0;
3575 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3576 z = &NODE_DATA(nid)->node_zones[zone_type];
3577 if (populated_zone(z)) {
3578 if (zone_type < ZONE_NORMAL)
3579 low_kmem_size += z->present_pages;
3580 total_size += z->present_pages;
3581 }
3582 }
3583 if (low_kmem_size &&
3584 total_size > average_size && /* ignore small node */
3585 low_kmem_size > total_size * 70/100)
3586 return ZONELIST_ORDER_NODE;
3587 }
3588 return ZONELIST_ORDER_ZONE;
3589 }
3590
3591 static void set_zonelist_order(void)
3592 {
3593 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3594 current_zonelist_order = default_zonelist_order();
3595 else
3596 current_zonelist_order = user_zonelist_order;
3597 }
3598
3599 static void build_zonelists(pg_data_t *pgdat)
3600 {
3601 int j, node, load;
3602 enum zone_type i;
3603 nodemask_t used_mask;
3604 int local_node, prev_node;
3605 struct zonelist *zonelist;
3606 int order = current_zonelist_order;
3607
3608 /* initialize zonelists */
3609 for (i = 0; i < MAX_ZONELISTS; i++) {
3610 zonelist = pgdat->node_zonelists + i;
3611 zonelist->_zonerefs[0].zone = NULL;
3612 zonelist->_zonerefs[0].zone_idx = 0;
3613 }
3614
3615 /* NUMA-aware ordering of nodes */
3616 local_node = pgdat->node_id;
3617 load = nr_online_nodes;
3618 prev_node = local_node;
3619 nodes_clear(used_mask);
3620
3621 memset(node_order, 0, sizeof(node_order));
3622 j = 0;
3623
3624 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3625 /*
3626 * We don't want to pressure a particular node.
3627 * So adding penalty to the first node in same
3628 * distance group to make it round-robin.
3629 */
3630 if (node_distance(local_node, node) !=
3631 node_distance(local_node, prev_node))
3632 node_load[node] = load;
3633
3634 prev_node = node;
3635 load--;
3636 if (order == ZONELIST_ORDER_NODE)
3637 build_zonelists_in_node_order(pgdat, node);
3638 else
3639 node_order[j++] = node; /* remember order */
3640 }
3641
3642 if (order == ZONELIST_ORDER_ZONE) {
3643 /* calculate node order -- i.e., DMA last! */
3644 build_zonelists_in_zone_order(pgdat, j);
3645 }
3646
3647 build_thisnode_zonelists(pgdat);
3648 }
3649
3650 /* Construct the zonelist performance cache - see further mmzone.h */
3651 static void build_zonelist_cache(pg_data_t *pgdat)
3652 {
3653 struct zonelist *zonelist;
3654 struct zonelist_cache *zlc;
3655 struct zoneref *z;
3656
3657 zonelist = &pgdat->node_zonelists[0];
3658 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3659 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3660 for (z = zonelist->_zonerefs; z->zone; z++)
3661 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3662 }
3663
3664 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3665 /*
3666 * Return node id of node used for "local" allocations.
3667 * I.e., first node id of first zone in arg node's generic zonelist.
3668 * Used for initializing percpu 'numa_mem', which is used primarily
3669 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3670 */
3671 int local_memory_node(int node)
3672 {
3673 struct zone *zone;
3674
3675 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3676 gfp_zone(GFP_KERNEL),
3677 NULL,
3678 &zone);
3679 return zone->node;
3680 }
3681 #endif
3682
3683 #else /* CONFIG_NUMA */
3684
3685 static void set_zonelist_order(void)
3686 {
3687 current_zonelist_order = ZONELIST_ORDER_ZONE;
3688 }
3689
3690 static void build_zonelists(pg_data_t *pgdat)
3691 {
3692 int node, local_node;
3693 enum zone_type j;
3694 struct zonelist *zonelist;
3695
3696 local_node = pgdat->node_id;
3697
3698 zonelist = &pgdat->node_zonelists[0];
3699 j = build_zonelists_node(pgdat, zonelist, 0);
3700
3701 /*
3702 * Now we build the zonelist so that it contains the zones
3703 * of all the other nodes.
3704 * We don't want to pressure a particular node, so when
3705 * building the zones for node N, we make sure that the
3706 * zones coming right after the local ones are those from
3707 * node N+1 (modulo N)
3708 */
3709 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3710 if (!node_online(node))
3711 continue;
3712 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3713 }
3714 for (node = 0; node < local_node; node++) {
3715 if (!node_online(node))
3716 continue;
3717 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3718 }
3719
3720 zonelist->_zonerefs[j].zone = NULL;
3721 zonelist->_zonerefs[j].zone_idx = 0;
3722 }
3723
3724 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3725 static void build_zonelist_cache(pg_data_t *pgdat)
3726 {
3727 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3728 }
3729
3730 #endif /* CONFIG_NUMA */
3731
3732 /*
3733 * Boot pageset table. One per cpu which is going to be used for all
3734 * zones and all nodes. The parameters will be set in such a way
3735 * that an item put on a list will immediately be handed over to
3736 * the buddy list. This is safe since pageset manipulation is done
3737 * with interrupts disabled.
3738 *
3739 * The boot_pagesets must be kept even after bootup is complete for
3740 * unused processors and/or zones. They do play a role for bootstrapping
3741 * hotplugged processors.
3742 *
3743 * zoneinfo_show() and maybe other functions do
3744 * not check if the processor is online before following the pageset pointer.
3745 * Other parts of the kernel may not check if the zone is available.
3746 */
3747 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3748 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3749 static void setup_zone_pageset(struct zone *zone);
3750
3751 /*
3752 * Global mutex to protect against size modification of zonelists
3753 * as well as to serialize pageset setup for the new populated zone.
3754 */
3755 DEFINE_MUTEX(zonelists_mutex);
3756
3757 /* return values int ....just for stop_machine() */
3758 static int __build_all_zonelists(void *data)
3759 {
3760 int nid;
3761 int cpu;
3762 pg_data_t *self = data;
3763
3764 #ifdef CONFIG_NUMA
3765 memset(node_load, 0, sizeof(node_load));
3766 #endif
3767
3768 if (self && !node_online(self->node_id)) {
3769 build_zonelists(self);
3770 build_zonelist_cache(self);
3771 }
3772
3773 for_each_online_node(nid) {
3774 pg_data_t *pgdat = NODE_DATA(nid);
3775
3776 build_zonelists(pgdat);
3777 build_zonelist_cache(pgdat);
3778 }
3779
3780 /*
3781 * Initialize the boot_pagesets that are going to be used
3782 * for bootstrapping processors. The real pagesets for
3783 * each zone will be allocated later when the per cpu
3784 * allocator is available.
3785 *
3786 * boot_pagesets are used also for bootstrapping offline
3787 * cpus if the system is already booted because the pagesets
3788 * are needed to initialize allocators on a specific cpu too.
3789 * F.e. the percpu allocator needs the page allocator which
3790 * needs the percpu allocator in order to allocate its pagesets
3791 * (a chicken-egg dilemma).
3792 */
3793 for_each_possible_cpu(cpu) {
3794 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3795
3796 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3797 /*
3798 * We now know the "local memory node" for each node--
3799 * i.e., the node of the first zone in the generic zonelist.
3800 * Set up numa_mem percpu variable for on-line cpus. During
3801 * boot, only the boot cpu should be on-line; we'll init the
3802 * secondary cpus' numa_mem as they come on-line. During
3803 * node/memory hotplug, we'll fixup all on-line cpus.
3804 */
3805 if (cpu_online(cpu))
3806 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3807 #endif
3808 }
3809
3810 return 0;
3811 }
3812
3813 /*
3814 * Called with zonelists_mutex held always
3815 * unless system_state == SYSTEM_BOOTING.
3816 */
3817 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3818 {
3819 set_zonelist_order();
3820
3821 if (system_state == SYSTEM_BOOTING) {
3822 __build_all_zonelists(NULL);
3823 mminit_verify_zonelist();
3824 cpuset_init_current_mems_allowed();
3825 } else {
3826 #ifdef CONFIG_MEMORY_HOTPLUG
3827 if (zone)
3828 setup_zone_pageset(zone);
3829 #endif
3830 /* we have to stop all cpus to guarantee there is no user
3831 of zonelist */
3832 stop_machine(__build_all_zonelists, pgdat, NULL);
3833 /* cpuset refresh routine should be here */
3834 }
3835 vm_total_pages = nr_free_pagecache_pages();
3836 /*
3837 * Disable grouping by mobility if the number of pages in the
3838 * system is too low to allow the mechanism to work. It would be
3839 * more accurate, but expensive to check per-zone. This check is
3840 * made on memory-hotadd so a system can start with mobility
3841 * disabled and enable it later
3842 */
3843 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3844 page_group_by_mobility_disabled = 1;
3845 else
3846 page_group_by_mobility_disabled = 0;
3847
3848 printk("Built %i zonelists in %s order, mobility grouping %s. "
3849 "Total pages: %ld\n",
3850 nr_online_nodes,
3851 zonelist_order_name[current_zonelist_order],
3852 page_group_by_mobility_disabled ? "off" : "on",
3853 vm_total_pages);
3854 #ifdef CONFIG_NUMA
3855 printk("Policy zone: %s\n", zone_names[policy_zone]);
3856 #endif
3857 }
3858
3859 /*
3860 * Helper functions to size the waitqueue hash table.
3861 * Essentially these want to choose hash table sizes sufficiently
3862 * large so that collisions trying to wait on pages are rare.
3863 * But in fact, the number of active page waitqueues on typical
3864 * systems is ridiculously low, less than 200. So this is even
3865 * conservative, even though it seems large.
3866 *
3867 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3868 * waitqueues, i.e. the size of the waitq table given the number of pages.
3869 */
3870 #define PAGES_PER_WAITQUEUE 256
3871
3872 #ifndef CONFIG_MEMORY_HOTPLUG
3873 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3874 {
3875 unsigned long size = 1;
3876
3877 pages /= PAGES_PER_WAITQUEUE;
3878
3879 while (size < pages)
3880 size <<= 1;
3881
3882 /*
3883 * Once we have dozens or even hundreds of threads sleeping
3884 * on IO we've got bigger problems than wait queue collision.
3885 * Limit the size of the wait table to a reasonable size.
3886 */
3887 size = min(size, 4096UL);
3888
3889 return max(size, 4UL);
3890 }
3891 #else
3892 /*
3893 * A zone's size might be changed by hot-add, so it is not possible to determine
3894 * a suitable size for its wait_table. So we use the maximum size now.
3895 *
3896 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3897 *
3898 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3899 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3900 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3901 *
3902 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3903 * or more by the traditional way. (See above). It equals:
3904 *
3905 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3906 * ia64(16K page size) : = ( 8G + 4M)byte.
3907 * powerpc (64K page size) : = (32G +16M)byte.
3908 */
3909 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3910 {
3911 return 4096UL;
3912 }
3913 #endif
3914
3915 /*
3916 * This is an integer logarithm so that shifts can be used later
3917 * to extract the more random high bits from the multiplicative
3918 * hash function before the remainder is taken.
3919 */
3920 static inline unsigned long wait_table_bits(unsigned long size)
3921 {
3922 return ffz(~size);
3923 }
3924
3925 /*
3926 * Check if a pageblock contains reserved pages
3927 */
3928 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3929 {
3930 unsigned long pfn;
3931
3932 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3933 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3934 return 1;
3935 }
3936 return 0;
3937 }
3938
3939 /*
3940 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3941 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3942 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3943 * higher will lead to a bigger reserve which will get freed as contiguous
3944 * blocks as reclaim kicks in
3945 */
3946 static void setup_zone_migrate_reserve(struct zone *zone)
3947 {
3948 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3949 struct page *page;
3950 unsigned long block_migratetype;
3951 int reserve;
3952 int old_reserve;
3953
3954 /*
3955 * Get the start pfn, end pfn and the number of blocks to reserve
3956 * We have to be careful to be aligned to pageblock_nr_pages to
3957 * make sure that we always check pfn_valid for the first page in
3958 * the block.
3959 */
3960 start_pfn = zone->zone_start_pfn;
3961 end_pfn = zone_end_pfn(zone);
3962 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3963 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3964 pageblock_order;
3965
3966 /*
3967 * Reserve blocks are generally in place to help high-order atomic
3968 * allocations that are short-lived. A min_free_kbytes value that
3969 * would result in more than 2 reserve blocks for atomic allocations
3970 * is assumed to be in place to help anti-fragmentation for the
3971 * future allocation of hugepages at runtime.
3972 */
3973 reserve = min(2, reserve);
3974 old_reserve = zone->nr_migrate_reserve_block;
3975
3976 /* When memory hot-add, we almost always need to do nothing */
3977 if (reserve == old_reserve)
3978 return;
3979 zone->nr_migrate_reserve_block = reserve;
3980
3981 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3982 if (!pfn_valid(pfn))
3983 continue;
3984 page = pfn_to_page(pfn);
3985
3986 /* Watch out for overlapping nodes */
3987 if (page_to_nid(page) != zone_to_nid(zone))
3988 continue;
3989
3990 block_migratetype = get_pageblock_migratetype(page);
3991
3992 /* Only test what is necessary when the reserves are not met */
3993 if (reserve > 0) {
3994 /*
3995 * Blocks with reserved pages will never free, skip
3996 * them.
3997 */
3998 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3999 if (pageblock_is_reserved(pfn, block_end_pfn))
4000 continue;
4001
4002 /* If this block is reserved, account for it */
4003 if (block_migratetype == MIGRATE_RESERVE) {
4004 reserve--;
4005 continue;
4006 }
4007
4008 /* Suitable for reserving if this block is movable */
4009 if (block_migratetype == MIGRATE_MOVABLE) {
4010 set_pageblock_migratetype(page,
4011 MIGRATE_RESERVE);
4012 move_freepages_block(zone, page,
4013 MIGRATE_RESERVE);
4014 reserve--;
4015 continue;
4016 }
4017 } else if (!old_reserve) {
4018 /*
4019 * At boot time we don't need to scan the whole zone
4020 * for turning off MIGRATE_RESERVE.
4021 */
4022 break;
4023 }
4024
4025 /*
4026 * If the reserve is met and this is a previous reserved block,
4027 * take it back
4028 */
4029 if (block_migratetype == MIGRATE_RESERVE) {
4030 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4031 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4032 }
4033 }
4034 }
4035
4036 /*
4037 * Initially all pages are reserved - free ones are freed
4038 * up by free_all_bootmem() once the early boot process is
4039 * done. Non-atomic initialization, single-pass.
4040 */
4041 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4042 unsigned long start_pfn, enum memmap_context context)
4043 {
4044 struct page *page;
4045 unsigned long end_pfn = start_pfn + size;
4046 unsigned long pfn;
4047 struct zone *z;
4048
4049 if (highest_memmap_pfn < end_pfn - 1)
4050 highest_memmap_pfn = end_pfn - 1;
4051
4052 z = &NODE_DATA(nid)->node_zones[zone];
4053 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4054 /*
4055 * There can be holes in boot-time mem_map[]s
4056 * handed to this function. They do not
4057 * exist on hotplugged memory.
4058 */
4059 if (context == MEMMAP_EARLY) {
4060 if (!early_pfn_valid(pfn))
4061 continue;
4062 if (!early_pfn_in_nid(pfn, nid))
4063 continue;
4064 }
4065 page = pfn_to_page(pfn);
4066 set_page_links(page, zone, nid, pfn);
4067 mminit_verify_page_links(page, zone, nid, pfn);
4068 init_page_count(page);
4069 page_mapcount_reset(page);
4070 page_cpupid_reset_last(page);
4071 SetPageReserved(page);
4072 /*
4073 * Mark the block movable so that blocks are reserved for
4074 * movable at startup. This will force kernel allocations
4075 * to reserve their blocks rather than leaking throughout
4076 * the address space during boot when many long-lived
4077 * kernel allocations are made. Later some blocks near
4078 * the start are marked MIGRATE_RESERVE by
4079 * setup_zone_migrate_reserve()
4080 *
4081 * bitmap is created for zone's valid pfn range. but memmap
4082 * can be created for invalid pages (for alignment)
4083 * check here not to call set_pageblock_migratetype() against
4084 * pfn out of zone.
4085 */
4086 if ((z->zone_start_pfn <= pfn)
4087 && (pfn < zone_end_pfn(z))
4088 && !(pfn & (pageblock_nr_pages - 1)))
4089 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4090
4091 INIT_LIST_HEAD(&page->lru);
4092 #ifdef WANT_PAGE_VIRTUAL
4093 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4094 if (!is_highmem_idx(zone))
4095 set_page_address(page, __va(pfn << PAGE_SHIFT));
4096 #endif
4097 }
4098 }
4099
4100 static void __meminit zone_init_free_lists(struct zone *zone)
4101 {
4102 int order, t;
4103 for_each_migratetype_order(order, t) {
4104 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4105 zone->free_area[order].nr_free = 0;
4106 }
4107 }
4108
4109 #ifndef __HAVE_ARCH_MEMMAP_INIT
4110 #define memmap_init(size, nid, zone, start_pfn) \
4111 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4112 #endif
4113
4114 static int __meminit zone_batchsize(struct zone *zone)
4115 {
4116 #ifdef CONFIG_MMU
4117 int batch;
4118
4119 /*
4120 * The per-cpu-pages pools are set to around 1000th of the
4121 * size of the zone. But no more than 1/2 of a meg.
4122 *
4123 * OK, so we don't know how big the cache is. So guess.
4124 */
4125 batch = zone->managed_pages / 1024;
4126 if (batch * PAGE_SIZE > 512 * 1024)
4127 batch = (512 * 1024) / PAGE_SIZE;
4128 batch /= 4; /* We effectively *= 4 below */
4129 if (batch < 1)
4130 batch = 1;
4131
4132 /*
4133 * Clamp the batch to a 2^n - 1 value. Having a power
4134 * of 2 value was found to be more likely to have
4135 * suboptimal cache aliasing properties in some cases.
4136 *
4137 * For example if 2 tasks are alternately allocating
4138 * batches of pages, one task can end up with a lot
4139 * of pages of one half of the possible page colors
4140 * and the other with pages of the other colors.
4141 */
4142 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4143
4144 return batch;
4145
4146 #else
4147 /* The deferral and batching of frees should be suppressed under NOMMU
4148 * conditions.
4149 *
4150 * The problem is that NOMMU needs to be able to allocate large chunks
4151 * of contiguous memory as there's no hardware page translation to
4152 * assemble apparent contiguous memory from discontiguous pages.
4153 *
4154 * Queueing large contiguous runs of pages for batching, however,
4155 * causes the pages to actually be freed in smaller chunks. As there
4156 * can be a significant delay between the individual batches being
4157 * recycled, this leads to the once large chunks of space being
4158 * fragmented and becoming unavailable for high-order allocations.
4159 */
4160 return 0;
4161 #endif
4162 }
4163
4164 /*
4165 * pcp->high and pcp->batch values are related and dependent on one another:
4166 * ->batch must never be higher then ->high.
4167 * The following function updates them in a safe manner without read side
4168 * locking.
4169 *
4170 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4171 * those fields changing asynchronously (acording the the above rule).
4172 *
4173 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4174 * outside of boot time (or some other assurance that no concurrent updaters
4175 * exist).
4176 */
4177 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4178 unsigned long batch)
4179 {
4180 /* start with a fail safe value for batch */
4181 pcp->batch = 1;
4182 smp_wmb();
4183
4184 /* Update high, then batch, in order */
4185 pcp->high = high;
4186 smp_wmb();
4187
4188 pcp->batch = batch;
4189 }
4190
4191 /* a companion to pageset_set_high() */
4192 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4193 {
4194 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4195 }
4196
4197 static void pageset_init(struct per_cpu_pageset *p)
4198 {
4199 struct per_cpu_pages *pcp;
4200 int migratetype;
4201
4202 memset(p, 0, sizeof(*p));
4203
4204 pcp = &p->pcp;
4205 pcp->count = 0;
4206 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4207 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4208 }
4209
4210 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4211 {
4212 pageset_init(p);
4213 pageset_set_batch(p, batch);
4214 }
4215
4216 /*
4217 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4218 * to the value high for the pageset p.
4219 */
4220 static void pageset_set_high(struct per_cpu_pageset *p,
4221 unsigned long high)
4222 {
4223 unsigned long batch = max(1UL, high / 4);
4224 if ((high / 4) > (PAGE_SHIFT * 8))
4225 batch = PAGE_SHIFT * 8;
4226
4227 pageset_update(&p->pcp, high, batch);
4228 }
4229
4230 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4231 struct per_cpu_pageset *pcp)
4232 {
4233 if (percpu_pagelist_fraction)
4234 pageset_set_high(pcp,
4235 (zone->managed_pages /
4236 percpu_pagelist_fraction));
4237 else
4238 pageset_set_batch(pcp, zone_batchsize(zone));
4239 }
4240
4241 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4242 {
4243 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4244
4245 pageset_init(pcp);
4246 pageset_set_high_and_batch(zone, pcp);
4247 }
4248
4249 static void __meminit setup_zone_pageset(struct zone *zone)
4250 {
4251 int cpu;
4252 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4253 for_each_possible_cpu(cpu)
4254 zone_pageset_init(zone, cpu);
4255 }
4256
4257 /*
4258 * Allocate per cpu pagesets and initialize them.
4259 * Before this call only boot pagesets were available.
4260 */
4261 void __init setup_per_cpu_pageset(void)
4262 {
4263 struct zone *zone;
4264
4265 for_each_populated_zone(zone)
4266 setup_zone_pageset(zone);
4267 }
4268
4269 static noinline __init_refok
4270 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4271 {
4272 int i;
4273 size_t alloc_size;
4274
4275 /*
4276 * The per-page waitqueue mechanism uses hashed waitqueues
4277 * per zone.
4278 */
4279 zone->wait_table_hash_nr_entries =
4280 wait_table_hash_nr_entries(zone_size_pages);
4281 zone->wait_table_bits =
4282 wait_table_bits(zone->wait_table_hash_nr_entries);
4283 alloc_size = zone->wait_table_hash_nr_entries
4284 * sizeof(wait_queue_head_t);
4285
4286 if (!slab_is_available()) {
4287 zone->wait_table = (wait_queue_head_t *)
4288 memblock_virt_alloc_node_nopanic(
4289 alloc_size, zone->zone_pgdat->node_id);
4290 } else {
4291 /*
4292 * This case means that a zone whose size was 0 gets new memory
4293 * via memory hot-add.
4294 * But it may be the case that a new node was hot-added. In
4295 * this case vmalloc() will not be able to use this new node's
4296 * memory - this wait_table must be initialized to use this new
4297 * node itself as well.
4298 * To use this new node's memory, further consideration will be
4299 * necessary.
4300 */
4301 zone->wait_table = vmalloc(alloc_size);
4302 }
4303 if (!zone->wait_table)
4304 return -ENOMEM;
4305
4306 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4307 init_waitqueue_head(zone->wait_table + i);
4308
4309 return 0;
4310 }
4311
4312 static __meminit void zone_pcp_init(struct zone *zone)
4313 {
4314 /*
4315 * per cpu subsystem is not up at this point. The following code
4316 * relies on the ability of the linker to provide the
4317 * offset of a (static) per cpu variable into the per cpu area.
4318 */
4319 zone->pageset = &boot_pageset;
4320
4321 if (populated_zone(zone))
4322 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4323 zone->name, zone->present_pages,
4324 zone_batchsize(zone));
4325 }
4326
4327 int __meminit init_currently_empty_zone(struct zone *zone,
4328 unsigned long zone_start_pfn,
4329 unsigned long size,
4330 enum memmap_context context)
4331 {
4332 struct pglist_data *pgdat = zone->zone_pgdat;
4333 int ret;
4334 ret = zone_wait_table_init(zone, size);
4335 if (ret)
4336 return ret;
4337 pgdat->nr_zones = zone_idx(zone) + 1;
4338
4339 zone->zone_start_pfn = zone_start_pfn;
4340
4341 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4342 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4343 pgdat->node_id,
4344 (unsigned long)zone_idx(zone),
4345 zone_start_pfn, (zone_start_pfn + size));
4346
4347 zone_init_free_lists(zone);
4348
4349 return 0;
4350 }
4351
4352 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4353 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4354 /*
4355 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4356 * Architectures may implement their own version but if add_active_range()
4357 * was used and there are no special requirements, this is a convenient
4358 * alternative
4359 */
4360 int __meminit __early_pfn_to_nid(unsigned long pfn)
4361 {
4362 unsigned long start_pfn, end_pfn;
4363 int nid;
4364 /*
4365 * NOTE: The following SMP-unsafe globals are only used early in boot
4366 * when the kernel is running single-threaded.
4367 */
4368 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4369 static int __meminitdata last_nid;
4370
4371 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4372 return last_nid;
4373
4374 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4375 if (nid != -1) {
4376 last_start_pfn = start_pfn;
4377 last_end_pfn = end_pfn;
4378 last_nid = nid;
4379 }
4380
4381 return nid;
4382 }
4383 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4384
4385 int __meminit early_pfn_to_nid(unsigned long pfn)
4386 {
4387 int nid;
4388
4389 nid = __early_pfn_to_nid(pfn);
4390 if (nid >= 0)
4391 return nid;
4392 /* just returns 0 */
4393 return 0;
4394 }
4395
4396 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4397 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4398 {
4399 int nid;
4400
4401 nid = __early_pfn_to_nid(pfn);
4402 if (nid >= 0 && nid != node)
4403 return false;
4404 return true;
4405 }
4406 #endif
4407
4408 /**
4409 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4410 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4411 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4412 *
4413 * If an architecture guarantees that all ranges registered with
4414 * add_active_ranges() contain no holes and may be freed, this
4415 * this function may be used instead of calling memblock_free_early_nid()
4416 * manually.
4417 */
4418 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4419 {
4420 unsigned long start_pfn, end_pfn;
4421 int i, this_nid;
4422
4423 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4424 start_pfn = min(start_pfn, max_low_pfn);
4425 end_pfn = min(end_pfn, max_low_pfn);
4426
4427 if (start_pfn < end_pfn)
4428 memblock_free_early_nid(PFN_PHYS(start_pfn),
4429 (end_pfn - start_pfn) << PAGE_SHIFT,
4430 this_nid);
4431 }
4432 }
4433
4434 /**
4435 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4436 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4437 *
4438 * If an architecture guarantees that all ranges registered with
4439 * add_active_ranges() contain no holes and may be freed, this
4440 * function may be used instead of calling memory_present() manually.
4441 */
4442 void __init sparse_memory_present_with_active_regions(int nid)
4443 {
4444 unsigned long start_pfn, end_pfn;
4445 int i, this_nid;
4446
4447 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4448 memory_present(this_nid, start_pfn, end_pfn);
4449 }
4450
4451 /**
4452 * get_pfn_range_for_nid - Return the start and end page frames for a node
4453 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4454 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4455 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4456 *
4457 * It returns the start and end page frame of a node based on information
4458 * provided by an arch calling add_active_range(). If called for a node
4459 * with no available memory, a warning is printed and the start and end
4460 * PFNs will be 0.
4461 */
4462 void __meminit get_pfn_range_for_nid(unsigned int nid,
4463 unsigned long *start_pfn, unsigned long *end_pfn)
4464 {
4465 unsigned long this_start_pfn, this_end_pfn;
4466 int i;
4467
4468 *start_pfn = -1UL;
4469 *end_pfn = 0;
4470
4471 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4472 *start_pfn = min(*start_pfn, this_start_pfn);
4473 *end_pfn = max(*end_pfn, this_end_pfn);
4474 }
4475
4476 if (*start_pfn == -1UL)
4477 *start_pfn = 0;
4478 }
4479
4480 /*
4481 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4482 * assumption is made that zones within a node are ordered in monotonic
4483 * increasing memory addresses so that the "highest" populated zone is used
4484 */
4485 static void __init find_usable_zone_for_movable(void)
4486 {
4487 int zone_index;
4488 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4489 if (zone_index == ZONE_MOVABLE)
4490 continue;
4491
4492 if (arch_zone_highest_possible_pfn[zone_index] >
4493 arch_zone_lowest_possible_pfn[zone_index])
4494 break;
4495 }
4496
4497 VM_BUG_ON(zone_index == -1);
4498 movable_zone = zone_index;
4499 }
4500
4501 /*
4502 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4503 * because it is sized independent of architecture. Unlike the other zones,
4504 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4505 * in each node depending on the size of each node and how evenly kernelcore
4506 * is distributed. This helper function adjusts the zone ranges
4507 * provided by the architecture for a given node by using the end of the
4508 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4509 * zones within a node are in order of monotonic increases memory addresses
4510 */
4511 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4512 unsigned long zone_type,
4513 unsigned long node_start_pfn,
4514 unsigned long node_end_pfn,
4515 unsigned long *zone_start_pfn,
4516 unsigned long *zone_end_pfn)
4517 {
4518 /* Only adjust if ZONE_MOVABLE is on this node */
4519 if (zone_movable_pfn[nid]) {
4520 /* Size ZONE_MOVABLE */
4521 if (zone_type == ZONE_MOVABLE) {
4522 *zone_start_pfn = zone_movable_pfn[nid];
4523 *zone_end_pfn = min(node_end_pfn,
4524 arch_zone_highest_possible_pfn[movable_zone]);
4525
4526 /* Adjust for ZONE_MOVABLE starting within this range */
4527 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4528 *zone_end_pfn > zone_movable_pfn[nid]) {
4529 *zone_end_pfn = zone_movable_pfn[nid];
4530
4531 /* Check if this whole range is within ZONE_MOVABLE */
4532 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4533 *zone_start_pfn = *zone_end_pfn;
4534 }
4535 }
4536
4537 /*
4538 * Return the number of pages a zone spans in a node, including holes
4539 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4540 */
4541 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4542 unsigned long zone_type,
4543 unsigned long node_start_pfn,
4544 unsigned long node_end_pfn,
4545 unsigned long *ignored)
4546 {
4547 unsigned long zone_start_pfn, zone_end_pfn;
4548
4549 /* Get the start and end of the zone */
4550 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4551 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4552 adjust_zone_range_for_zone_movable(nid, zone_type,
4553 node_start_pfn, node_end_pfn,
4554 &zone_start_pfn, &zone_end_pfn);
4555
4556 /* Check that this node has pages within the zone's required range */
4557 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4558 return 0;
4559
4560 /* Move the zone boundaries inside the node if necessary */
4561 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4562 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4563
4564 /* Return the spanned pages */
4565 return zone_end_pfn - zone_start_pfn;
4566 }
4567
4568 /*
4569 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4570 * then all holes in the requested range will be accounted for.
4571 */
4572 unsigned long __meminit __absent_pages_in_range(int nid,
4573 unsigned long range_start_pfn,
4574 unsigned long range_end_pfn)
4575 {
4576 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4577 unsigned long start_pfn, end_pfn;
4578 int i;
4579
4580 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4581 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4582 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4583 nr_absent -= end_pfn - start_pfn;
4584 }
4585 return nr_absent;
4586 }
4587
4588 /**
4589 * absent_pages_in_range - Return number of page frames in holes within a range
4590 * @start_pfn: The start PFN to start searching for holes
4591 * @end_pfn: The end PFN to stop searching for holes
4592 *
4593 * It returns the number of pages frames in memory holes within a range.
4594 */
4595 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4596 unsigned long end_pfn)
4597 {
4598 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4599 }
4600
4601 /* Return the number of page frames in holes in a zone on a node */
4602 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4603 unsigned long zone_type,
4604 unsigned long node_start_pfn,
4605 unsigned long node_end_pfn,
4606 unsigned long *ignored)
4607 {
4608 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4609 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4610 unsigned long zone_start_pfn, zone_end_pfn;
4611
4612 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4613 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4614
4615 adjust_zone_range_for_zone_movable(nid, zone_type,
4616 node_start_pfn, node_end_pfn,
4617 &zone_start_pfn, &zone_end_pfn);
4618 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4619 }
4620
4621 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4622 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4623 unsigned long zone_type,
4624 unsigned long node_start_pfn,
4625 unsigned long node_end_pfn,
4626 unsigned long *zones_size)
4627 {
4628 return zones_size[zone_type];
4629 }
4630
4631 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4632 unsigned long zone_type,
4633 unsigned long node_start_pfn,
4634 unsigned long node_end_pfn,
4635 unsigned long *zholes_size)
4636 {
4637 if (!zholes_size)
4638 return 0;
4639
4640 return zholes_size[zone_type];
4641 }
4642
4643 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4644
4645 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4646 unsigned long node_start_pfn,
4647 unsigned long node_end_pfn,
4648 unsigned long *zones_size,
4649 unsigned long *zholes_size)
4650 {
4651 unsigned long realtotalpages, totalpages = 0;
4652 enum zone_type i;
4653
4654 for (i = 0; i < MAX_NR_ZONES; i++)
4655 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4656 node_start_pfn,
4657 node_end_pfn,
4658 zones_size);
4659 pgdat->node_spanned_pages = totalpages;
4660
4661 realtotalpages = totalpages;
4662 for (i = 0; i < MAX_NR_ZONES; i++)
4663 realtotalpages -=
4664 zone_absent_pages_in_node(pgdat->node_id, i,
4665 node_start_pfn, node_end_pfn,
4666 zholes_size);
4667 pgdat->node_present_pages = realtotalpages;
4668 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4669 realtotalpages);
4670 }
4671
4672 #ifndef CONFIG_SPARSEMEM
4673 /*
4674 * Calculate the size of the zone->blockflags rounded to an unsigned long
4675 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4676 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4677 * round what is now in bits to nearest long in bits, then return it in
4678 * bytes.
4679 */
4680 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4681 {
4682 unsigned long usemapsize;
4683
4684 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4685 usemapsize = roundup(zonesize, pageblock_nr_pages);
4686 usemapsize = usemapsize >> pageblock_order;
4687 usemapsize *= NR_PAGEBLOCK_BITS;
4688 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4689
4690 return usemapsize / 8;
4691 }
4692
4693 static void __init setup_usemap(struct pglist_data *pgdat,
4694 struct zone *zone,
4695 unsigned long zone_start_pfn,
4696 unsigned long zonesize)
4697 {
4698 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4699 zone->pageblock_flags = NULL;
4700 if (usemapsize)
4701 zone->pageblock_flags =
4702 memblock_virt_alloc_node_nopanic(usemapsize,
4703 pgdat->node_id);
4704 }
4705 #else
4706 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4707 unsigned long zone_start_pfn, unsigned long zonesize) {}
4708 #endif /* CONFIG_SPARSEMEM */
4709
4710 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4711
4712 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4713 void __paginginit set_pageblock_order(void)
4714 {
4715 unsigned int order;
4716
4717 /* Check that pageblock_nr_pages has not already been setup */
4718 if (pageblock_order)
4719 return;
4720
4721 if (HPAGE_SHIFT > PAGE_SHIFT)
4722 order = HUGETLB_PAGE_ORDER;
4723 else
4724 order = MAX_ORDER - 1;
4725
4726 /*
4727 * Assume the largest contiguous order of interest is a huge page.
4728 * This value may be variable depending on boot parameters on IA64 and
4729 * powerpc.
4730 */
4731 pageblock_order = order;
4732 }
4733 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4734
4735 /*
4736 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4737 * is unused as pageblock_order is set at compile-time. See
4738 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4739 * the kernel config
4740 */
4741 void __paginginit set_pageblock_order(void)
4742 {
4743 }
4744
4745 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4746
4747 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4748 unsigned long present_pages)
4749 {
4750 unsigned long pages = spanned_pages;
4751
4752 /*
4753 * Provide a more accurate estimation if there are holes within
4754 * the zone and SPARSEMEM is in use. If there are holes within the
4755 * zone, each populated memory region may cost us one or two extra
4756 * memmap pages due to alignment because memmap pages for each
4757 * populated regions may not naturally algined on page boundary.
4758 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4759 */
4760 if (spanned_pages > present_pages + (present_pages >> 4) &&
4761 IS_ENABLED(CONFIG_SPARSEMEM))
4762 pages = present_pages;
4763
4764 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4765 }
4766
4767 /*
4768 * Set up the zone data structures:
4769 * - mark all pages reserved
4770 * - mark all memory queues empty
4771 * - clear the memory bitmaps
4772 *
4773 * NOTE: pgdat should get zeroed by caller.
4774 */
4775 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4776 unsigned long node_start_pfn, unsigned long node_end_pfn,
4777 unsigned long *zones_size, unsigned long *zholes_size)
4778 {
4779 enum zone_type j;
4780 int nid = pgdat->node_id;
4781 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4782 int ret;
4783
4784 pgdat_resize_init(pgdat);
4785 #ifdef CONFIG_NUMA_BALANCING
4786 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4787 pgdat->numabalancing_migrate_nr_pages = 0;
4788 pgdat->numabalancing_migrate_next_window = jiffies;
4789 #endif
4790 init_waitqueue_head(&pgdat->kswapd_wait);
4791 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4792 pgdat_page_cgroup_init(pgdat);
4793
4794 for (j = 0; j < MAX_NR_ZONES; j++) {
4795 struct zone *zone = pgdat->node_zones + j;
4796 unsigned long size, realsize, freesize, memmap_pages;
4797
4798 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4799 node_end_pfn, zones_size);
4800 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4801 node_start_pfn,
4802 node_end_pfn,
4803 zholes_size);
4804
4805 /*
4806 * Adjust freesize so that it accounts for how much memory
4807 * is used by this zone for memmap. This affects the watermark
4808 * and per-cpu initialisations
4809 */
4810 memmap_pages = calc_memmap_size(size, realsize);
4811 if (freesize >= memmap_pages) {
4812 freesize -= memmap_pages;
4813 if (memmap_pages)
4814 printk(KERN_DEBUG
4815 " %s zone: %lu pages used for memmap\n",
4816 zone_names[j], memmap_pages);
4817 } else
4818 printk(KERN_WARNING
4819 " %s zone: %lu pages exceeds freesize %lu\n",
4820 zone_names[j], memmap_pages, freesize);
4821
4822 /* Account for reserved pages */
4823 if (j == 0 && freesize > dma_reserve) {
4824 freesize -= dma_reserve;
4825 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4826 zone_names[0], dma_reserve);
4827 }
4828
4829 if (!is_highmem_idx(j))
4830 nr_kernel_pages += freesize;
4831 /* Charge for highmem memmap if there are enough kernel pages */
4832 else if (nr_kernel_pages > memmap_pages * 2)
4833 nr_kernel_pages -= memmap_pages;
4834 nr_all_pages += freesize;
4835
4836 zone->spanned_pages = size;
4837 zone->present_pages = realsize;
4838 /*
4839 * Set an approximate value for lowmem here, it will be adjusted
4840 * when the bootmem allocator frees pages into the buddy system.
4841 * And all highmem pages will be managed by the buddy system.
4842 */
4843 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4844 #ifdef CONFIG_NUMA
4845 zone->node = nid;
4846 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4847 / 100;
4848 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4849 #endif
4850 zone->name = zone_names[j];
4851 spin_lock_init(&zone->lock);
4852 spin_lock_init(&zone->lru_lock);
4853 zone_seqlock_init(zone);
4854 zone->zone_pgdat = pgdat;
4855 zone_pcp_init(zone);
4856
4857 /* For bootup, initialized properly in watermark setup */
4858 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4859
4860 lruvec_init(&zone->lruvec);
4861 if (!size)
4862 continue;
4863
4864 set_pageblock_order();
4865 setup_usemap(pgdat, zone, zone_start_pfn, size);
4866 ret = init_currently_empty_zone(zone, zone_start_pfn,
4867 size, MEMMAP_EARLY);
4868 BUG_ON(ret);
4869 memmap_init(size, nid, j, zone_start_pfn);
4870 zone_start_pfn += size;
4871 }
4872 }
4873
4874 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4875 {
4876 /* Skip empty nodes */
4877 if (!pgdat->node_spanned_pages)
4878 return;
4879
4880 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4881 /* ia64 gets its own node_mem_map, before this, without bootmem */
4882 if (!pgdat->node_mem_map) {
4883 unsigned long size, start, end;
4884 struct page *map;
4885
4886 /*
4887 * The zone's endpoints aren't required to be MAX_ORDER
4888 * aligned but the node_mem_map endpoints must be in order
4889 * for the buddy allocator to function correctly.
4890 */
4891 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4892 end = pgdat_end_pfn(pgdat);
4893 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4894 size = (end - start) * sizeof(struct page);
4895 map = alloc_remap(pgdat->node_id, size);
4896 if (!map)
4897 map = memblock_virt_alloc_node_nopanic(size,
4898 pgdat->node_id);
4899 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4900 }
4901 #ifndef CONFIG_NEED_MULTIPLE_NODES
4902 /*
4903 * With no DISCONTIG, the global mem_map is just set as node 0's
4904 */
4905 if (pgdat == NODE_DATA(0)) {
4906 mem_map = NODE_DATA(0)->node_mem_map;
4907 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4908 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4909 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4910 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4911 }
4912 #endif
4913 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4914 }
4915
4916 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4917 unsigned long node_start_pfn, unsigned long *zholes_size)
4918 {
4919 pg_data_t *pgdat = NODE_DATA(nid);
4920 unsigned long start_pfn = 0;
4921 unsigned long end_pfn = 0;
4922
4923 /* pg_data_t should be reset to zero when it's allocated */
4924 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4925
4926 pgdat->node_id = nid;
4927 pgdat->node_start_pfn = node_start_pfn;
4928 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4929 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4930 #endif
4931 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4932 zones_size, zholes_size);
4933
4934 alloc_node_mem_map(pgdat);
4935 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4936 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4937 nid, (unsigned long)pgdat,
4938 (unsigned long)pgdat->node_mem_map);
4939 #endif
4940
4941 free_area_init_core(pgdat, start_pfn, end_pfn,
4942 zones_size, zholes_size);
4943 }
4944
4945 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4946
4947 #if MAX_NUMNODES > 1
4948 /*
4949 * Figure out the number of possible node ids.
4950 */
4951 void __init setup_nr_node_ids(void)
4952 {
4953 unsigned int node;
4954 unsigned int highest = 0;
4955
4956 for_each_node_mask(node, node_possible_map)
4957 highest = node;
4958 nr_node_ids = highest + 1;
4959 }
4960 #endif
4961
4962 /**
4963 * node_map_pfn_alignment - determine the maximum internode alignment
4964 *
4965 * This function should be called after node map is populated and sorted.
4966 * It calculates the maximum power of two alignment which can distinguish
4967 * all the nodes.
4968 *
4969 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4970 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4971 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4972 * shifted, 1GiB is enough and this function will indicate so.
4973 *
4974 * This is used to test whether pfn -> nid mapping of the chosen memory
4975 * model has fine enough granularity to avoid incorrect mapping for the
4976 * populated node map.
4977 *
4978 * Returns the determined alignment in pfn's. 0 if there is no alignment
4979 * requirement (single node).
4980 */
4981 unsigned long __init node_map_pfn_alignment(void)
4982 {
4983 unsigned long accl_mask = 0, last_end = 0;
4984 unsigned long start, end, mask;
4985 int last_nid = -1;
4986 int i, nid;
4987
4988 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4989 if (!start || last_nid < 0 || last_nid == nid) {
4990 last_nid = nid;
4991 last_end = end;
4992 continue;
4993 }
4994
4995 /*
4996 * Start with a mask granular enough to pin-point to the
4997 * start pfn and tick off bits one-by-one until it becomes
4998 * too coarse to separate the current node from the last.
4999 */
5000 mask = ~((1 << __ffs(start)) - 1);
5001 while (mask && last_end <= (start & (mask << 1)))
5002 mask <<= 1;
5003
5004 /* accumulate all internode masks */
5005 accl_mask |= mask;
5006 }
5007
5008 /* convert mask to number of pages */
5009 return ~accl_mask + 1;
5010 }
5011
5012 /* Find the lowest pfn for a node */
5013 static unsigned long __init find_min_pfn_for_node(int nid)
5014 {
5015 unsigned long min_pfn = ULONG_MAX;
5016 unsigned long start_pfn;
5017 int i;
5018
5019 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5020 min_pfn = min(min_pfn, start_pfn);
5021
5022 if (min_pfn == ULONG_MAX) {
5023 printk(KERN_WARNING
5024 "Could not find start_pfn for node %d\n", nid);
5025 return 0;
5026 }
5027
5028 return min_pfn;
5029 }
5030
5031 /**
5032 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5033 *
5034 * It returns the minimum PFN based on information provided via
5035 * add_active_range().
5036 */
5037 unsigned long __init find_min_pfn_with_active_regions(void)
5038 {
5039 return find_min_pfn_for_node(MAX_NUMNODES);
5040 }
5041
5042 /*
5043 * early_calculate_totalpages()
5044 * Sum pages in active regions for movable zone.
5045 * Populate N_MEMORY for calculating usable_nodes.
5046 */
5047 static unsigned long __init early_calculate_totalpages(void)
5048 {
5049 unsigned long totalpages = 0;
5050 unsigned long start_pfn, end_pfn;
5051 int i, nid;
5052
5053 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5054 unsigned long pages = end_pfn - start_pfn;
5055
5056 totalpages += pages;
5057 if (pages)
5058 node_set_state(nid, N_MEMORY);
5059 }
5060 return totalpages;
5061 }
5062
5063 /*
5064 * Find the PFN the Movable zone begins in each node. Kernel memory
5065 * is spread evenly between nodes as long as the nodes have enough
5066 * memory. When they don't, some nodes will have more kernelcore than
5067 * others
5068 */
5069 static void __init find_zone_movable_pfns_for_nodes(void)
5070 {
5071 int i, nid;
5072 unsigned long usable_startpfn;
5073 unsigned long kernelcore_node, kernelcore_remaining;
5074 /* save the state before borrow the nodemask */
5075 nodemask_t saved_node_state = node_states[N_MEMORY];
5076 unsigned long totalpages = early_calculate_totalpages();
5077 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5078 struct memblock_region *r;
5079
5080 /* Need to find movable_zone earlier when movable_node is specified. */
5081 find_usable_zone_for_movable();
5082
5083 /*
5084 * If movable_node is specified, ignore kernelcore and movablecore
5085 * options.
5086 */
5087 if (movable_node_is_enabled()) {
5088 for_each_memblock(memory, r) {
5089 if (!memblock_is_hotpluggable(r))
5090 continue;
5091
5092 nid = r->nid;
5093
5094 usable_startpfn = PFN_DOWN(r->base);
5095 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5096 min(usable_startpfn, zone_movable_pfn[nid]) :
5097 usable_startpfn;
5098 }
5099
5100 goto out2;
5101 }
5102
5103 /*
5104 * If movablecore=nn[KMG] was specified, calculate what size of
5105 * kernelcore that corresponds so that memory usable for
5106 * any allocation type is evenly spread. If both kernelcore
5107 * and movablecore are specified, then the value of kernelcore
5108 * will be used for required_kernelcore if it's greater than
5109 * what movablecore would have allowed.
5110 */
5111 if (required_movablecore) {
5112 unsigned long corepages;
5113
5114 /*
5115 * Round-up so that ZONE_MOVABLE is at least as large as what
5116 * was requested by the user
5117 */
5118 required_movablecore =
5119 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5120 corepages = totalpages - required_movablecore;
5121
5122 required_kernelcore = max(required_kernelcore, corepages);
5123 }
5124
5125 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5126 if (!required_kernelcore)
5127 goto out;
5128
5129 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5130 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5131
5132 restart:
5133 /* Spread kernelcore memory as evenly as possible throughout nodes */
5134 kernelcore_node = required_kernelcore / usable_nodes;
5135 for_each_node_state(nid, N_MEMORY) {
5136 unsigned long start_pfn, end_pfn;
5137
5138 /*
5139 * Recalculate kernelcore_node if the division per node
5140 * now exceeds what is necessary to satisfy the requested
5141 * amount of memory for the kernel
5142 */
5143 if (required_kernelcore < kernelcore_node)
5144 kernelcore_node = required_kernelcore / usable_nodes;
5145
5146 /*
5147 * As the map is walked, we track how much memory is usable
5148 * by the kernel using kernelcore_remaining. When it is
5149 * 0, the rest of the node is usable by ZONE_MOVABLE
5150 */
5151 kernelcore_remaining = kernelcore_node;
5152
5153 /* Go through each range of PFNs within this node */
5154 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5155 unsigned long size_pages;
5156
5157 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5158 if (start_pfn >= end_pfn)
5159 continue;
5160
5161 /* Account for what is only usable for kernelcore */
5162 if (start_pfn < usable_startpfn) {
5163 unsigned long kernel_pages;
5164 kernel_pages = min(end_pfn, usable_startpfn)
5165 - start_pfn;
5166
5167 kernelcore_remaining -= min(kernel_pages,
5168 kernelcore_remaining);
5169 required_kernelcore -= min(kernel_pages,
5170 required_kernelcore);
5171
5172 /* Continue if range is now fully accounted */
5173 if (end_pfn <= usable_startpfn) {
5174
5175 /*
5176 * Push zone_movable_pfn to the end so
5177 * that if we have to rebalance
5178 * kernelcore across nodes, we will
5179 * not double account here
5180 */
5181 zone_movable_pfn[nid] = end_pfn;
5182 continue;
5183 }
5184 start_pfn = usable_startpfn;
5185 }
5186
5187 /*
5188 * The usable PFN range for ZONE_MOVABLE is from
5189 * start_pfn->end_pfn. Calculate size_pages as the
5190 * number of pages used as kernelcore
5191 */
5192 size_pages = end_pfn - start_pfn;
5193 if (size_pages > kernelcore_remaining)
5194 size_pages = kernelcore_remaining;
5195 zone_movable_pfn[nid] = start_pfn + size_pages;
5196
5197 /*
5198 * Some kernelcore has been met, update counts and
5199 * break if the kernelcore for this node has been
5200 * satisfied
5201 */
5202 required_kernelcore -= min(required_kernelcore,
5203 size_pages);
5204 kernelcore_remaining -= size_pages;
5205 if (!kernelcore_remaining)
5206 break;
5207 }
5208 }
5209
5210 /*
5211 * If there is still required_kernelcore, we do another pass with one
5212 * less node in the count. This will push zone_movable_pfn[nid] further
5213 * along on the nodes that still have memory until kernelcore is
5214 * satisfied
5215 */
5216 usable_nodes--;
5217 if (usable_nodes && required_kernelcore > usable_nodes)
5218 goto restart;
5219
5220 out2:
5221 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5222 for (nid = 0; nid < MAX_NUMNODES; nid++)
5223 zone_movable_pfn[nid] =
5224 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5225
5226 out:
5227 /* restore the node_state */
5228 node_states[N_MEMORY] = saved_node_state;
5229 }
5230
5231 /* Any regular or high memory on that node ? */
5232 static void check_for_memory(pg_data_t *pgdat, int nid)
5233 {
5234 enum zone_type zone_type;
5235
5236 if (N_MEMORY == N_NORMAL_MEMORY)
5237 return;
5238
5239 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5240 struct zone *zone = &pgdat->node_zones[zone_type];
5241 if (populated_zone(zone)) {
5242 node_set_state(nid, N_HIGH_MEMORY);
5243 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5244 zone_type <= ZONE_NORMAL)
5245 node_set_state(nid, N_NORMAL_MEMORY);
5246 break;
5247 }
5248 }
5249 }
5250
5251 /**
5252 * free_area_init_nodes - Initialise all pg_data_t and zone data
5253 * @max_zone_pfn: an array of max PFNs for each zone
5254 *
5255 * This will call free_area_init_node() for each active node in the system.
5256 * Using the page ranges provided by add_active_range(), the size of each
5257 * zone in each node and their holes is calculated. If the maximum PFN
5258 * between two adjacent zones match, it is assumed that the zone is empty.
5259 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5260 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5261 * starts where the previous one ended. For example, ZONE_DMA32 starts
5262 * at arch_max_dma_pfn.
5263 */
5264 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5265 {
5266 unsigned long start_pfn, end_pfn;
5267 int i, nid;
5268
5269 /* Record where the zone boundaries are */
5270 memset(arch_zone_lowest_possible_pfn, 0,
5271 sizeof(arch_zone_lowest_possible_pfn));
5272 memset(arch_zone_highest_possible_pfn, 0,
5273 sizeof(arch_zone_highest_possible_pfn));
5274 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5275 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5276 for (i = 1; i < MAX_NR_ZONES; i++) {
5277 if (i == ZONE_MOVABLE)
5278 continue;
5279 arch_zone_lowest_possible_pfn[i] =
5280 arch_zone_highest_possible_pfn[i-1];
5281 arch_zone_highest_possible_pfn[i] =
5282 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5283 }
5284 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5285 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5286
5287 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5288 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5289 find_zone_movable_pfns_for_nodes();
5290
5291 /* Print out the zone ranges */
5292 printk("Zone ranges:\n");
5293 for (i = 0; i < MAX_NR_ZONES; i++) {
5294 if (i == ZONE_MOVABLE)
5295 continue;
5296 printk(KERN_CONT " %-8s ", zone_names[i]);
5297 if (arch_zone_lowest_possible_pfn[i] ==
5298 arch_zone_highest_possible_pfn[i])
5299 printk(KERN_CONT "empty\n");
5300 else
5301 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5302 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5303 (arch_zone_highest_possible_pfn[i]
5304 << PAGE_SHIFT) - 1);
5305 }
5306
5307 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5308 printk("Movable zone start for each node\n");
5309 for (i = 0; i < MAX_NUMNODES; i++) {
5310 if (zone_movable_pfn[i])
5311 printk(" Node %d: %#010lx\n", i,
5312 zone_movable_pfn[i] << PAGE_SHIFT);
5313 }
5314
5315 /* Print out the early node map */
5316 printk("Early memory node ranges\n");
5317 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5318 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5319 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5320
5321 /* Initialise every node */
5322 mminit_verify_pageflags_layout();
5323 setup_nr_node_ids();
5324 for_each_online_node(nid) {
5325 pg_data_t *pgdat = NODE_DATA(nid);
5326 free_area_init_node(nid, NULL,
5327 find_min_pfn_for_node(nid), NULL);
5328
5329 /* Any memory on that node */
5330 if (pgdat->node_present_pages)
5331 node_set_state(nid, N_MEMORY);
5332 check_for_memory(pgdat, nid);
5333 }
5334 }
5335
5336 static int __init cmdline_parse_core(char *p, unsigned long *core)
5337 {
5338 unsigned long long coremem;
5339 if (!p)
5340 return -EINVAL;
5341
5342 coremem = memparse(p, &p);
5343 *core = coremem >> PAGE_SHIFT;
5344
5345 /* Paranoid check that UL is enough for the coremem value */
5346 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5347
5348 return 0;
5349 }
5350
5351 /*
5352 * kernelcore=size sets the amount of memory for use for allocations that
5353 * cannot be reclaimed or migrated.
5354 */
5355 static int __init cmdline_parse_kernelcore(char *p)
5356 {
5357 return cmdline_parse_core(p, &required_kernelcore);
5358 }
5359
5360 /*
5361 * movablecore=size sets the amount of memory for use for allocations that
5362 * can be reclaimed or migrated.
5363 */
5364 static int __init cmdline_parse_movablecore(char *p)
5365 {
5366 return cmdline_parse_core(p, &required_movablecore);
5367 }
5368
5369 early_param("kernelcore", cmdline_parse_kernelcore);
5370 early_param("movablecore", cmdline_parse_movablecore);
5371
5372 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5373
5374 void adjust_managed_page_count(struct page *page, long count)
5375 {
5376 spin_lock(&managed_page_count_lock);
5377 page_zone(page)->managed_pages += count;
5378 totalram_pages += count;
5379 #ifdef CONFIG_HIGHMEM
5380 if (PageHighMem(page))
5381 totalhigh_pages += count;
5382 #endif
5383 spin_unlock(&managed_page_count_lock);
5384 }
5385 EXPORT_SYMBOL(adjust_managed_page_count);
5386
5387 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5388 {
5389 void *pos;
5390 unsigned long pages = 0;
5391
5392 start = (void *)PAGE_ALIGN((unsigned long)start);
5393 end = (void *)((unsigned long)end & PAGE_MASK);
5394 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5395 if ((unsigned int)poison <= 0xFF)
5396 memset(pos, poison, PAGE_SIZE);
5397 free_reserved_page(virt_to_page(pos));
5398 }
5399
5400 if (pages && s)
5401 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5402 s, pages << (PAGE_SHIFT - 10), start, end);
5403
5404 return pages;
5405 }
5406 EXPORT_SYMBOL(free_reserved_area);
5407
5408 #ifdef CONFIG_HIGHMEM
5409 void free_highmem_page(struct page *page)
5410 {
5411 __free_reserved_page(page);
5412 totalram_pages++;
5413 page_zone(page)->managed_pages++;
5414 totalhigh_pages++;
5415 }
5416 #endif
5417
5418
5419 void __init mem_init_print_info(const char *str)
5420 {
5421 unsigned long physpages, codesize, datasize, rosize, bss_size;
5422 unsigned long init_code_size, init_data_size;
5423
5424 physpages = get_num_physpages();
5425 codesize = _etext - _stext;
5426 datasize = _edata - _sdata;
5427 rosize = __end_rodata - __start_rodata;
5428 bss_size = __bss_stop - __bss_start;
5429 init_data_size = __init_end - __init_begin;
5430 init_code_size = _einittext - _sinittext;
5431
5432 /*
5433 * Detect special cases and adjust section sizes accordingly:
5434 * 1) .init.* may be embedded into .data sections
5435 * 2) .init.text.* may be out of [__init_begin, __init_end],
5436 * please refer to arch/tile/kernel/vmlinux.lds.S.
5437 * 3) .rodata.* may be embedded into .text or .data sections.
5438 */
5439 #define adj_init_size(start, end, size, pos, adj) \
5440 do { \
5441 if (start <= pos && pos < end && size > adj) \
5442 size -= adj; \
5443 } while (0)
5444
5445 adj_init_size(__init_begin, __init_end, init_data_size,
5446 _sinittext, init_code_size);
5447 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5448 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5449 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5450 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5451
5452 #undef adj_init_size
5453
5454 printk("Memory: %luK/%luK available "
5455 "(%luK kernel code, %luK rwdata, %luK rodata, "
5456 "%luK init, %luK bss, %luK reserved"
5457 #ifdef CONFIG_HIGHMEM
5458 ", %luK highmem"
5459 #endif
5460 "%s%s)\n",
5461 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5462 codesize >> 10, datasize >> 10, rosize >> 10,
5463 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5464 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5465 #ifdef CONFIG_HIGHMEM
5466 totalhigh_pages << (PAGE_SHIFT-10),
5467 #endif
5468 str ? ", " : "", str ? str : "");
5469 }
5470
5471 /**
5472 * set_dma_reserve - set the specified number of pages reserved in the first zone
5473 * @new_dma_reserve: The number of pages to mark reserved
5474 *
5475 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5476 * In the DMA zone, a significant percentage may be consumed by kernel image
5477 * and other unfreeable allocations which can skew the watermarks badly. This
5478 * function may optionally be used to account for unfreeable pages in the
5479 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5480 * smaller per-cpu batchsize.
5481 */
5482 void __init set_dma_reserve(unsigned long new_dma_reserve)
5483 {
5484 dma_reserve = new_dma_reserve;
5485 }
5486
5487 void __init free_area_init(unsigned long *zones_size)
5488 {
5489 free_area_init_node(0, zones_size,
5490 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5491 }
5492
5493 static int page_alloc_cpu_notify(struct notifier_block *self,
5494 unsigned long action, void *hcpu)
5495 {
5496 int cpu = (unsigned long)hcpu;
5497
5498 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5499 lru_add_drain_cpu(cpu);
5500 drain_pages(cpu);
5501
5502 /*
5503 * Spill the event counters of the dead processor
5504 * into the current processors event counters.
5505 * This artificially elevates the count of the current
5506 * processor.
5507 */
5508 vm_events_fold_cpu(cpu);
5509
5510 /*
5511 * Zero the differential counters of the dead processor
5512 * so that the vm statistics are consistent.
5513 *
5514 * This is only okay since the processor is dead and cannot
5515 * race with what we are doing.
5516 */
5517 cpu_vm_stats_fold(cpu);
5518 }
5519 return NOTIFY_OK;
5520 }
5521
5522 void __init page_alloc_init(void)
5523 {
5524 hotcpu_notifier(page_alloc_cpu_notify, 0);
5525 }
5526
5527 /*
5528 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5529 * or min_free_kbytes changes.
5530 */
5531 static void calculate_totalreserve_pages(void)
5532 {
5533 struct pglist_data *pgdat;
5534 unsigned long reserve_pages = 0;
5535 enum zone_type i, j;
5536
5537 for_each_online_pgdat(pgdat) {
5538 for (i = 0; i < MAX_NR_ZONES; i++) {
5539 struct zone *zone = pgdat->node_zones + i;
5540 unsigned long max = 0;
5541
5542 /* Find valid and maximum lowmem_reserve in the zone */
5543 for (j = i; j < MAX_NR_ZONES; j++) {
5544 if (zone->lowmem_reserve[j] > max)
5545 max = zone->lowmem_reserve[j];
5546 }
5547
5548 /* we treat the high watermark as reserved pages. */
5549 max += high_wmark_pages(zone);
5550
5551 if (max > zone->managed_pages)
5552 max = zone->managed_pages;
5553 reserve_pages += max;
5554 /*
5555 * Lowmem reserves are not available to
5556 * GFP_HIGHUSER page cache allocations and
5557 * kswapd tries to balance zones to their high
5558 * watermark. As a result, neither should be
5559 * regarded as dirtyable memory, to prevent a
5560 * situation where reclaim has to clean pages
5561 * in order to balance the zones.
5562 */
5563 zone->dirty_balance_reserve = max;
5564 }
5565 }
5566 dirty_balance_reserve = reserve_pages;
5567 totalreserve_pages = reserve_pages;
5568 }
5569
5570 /*
5571 * setup_per_zone_lowmem_reserve - called whenever
5572 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5573 * has a correct pages reserved value, so an adequate number of
5574 * pages are left in the zone after a successful __alloc_pages().
5575 */
5576 static void setup_per_zone_lowmem_reserve(void)
5577 {
5578 struct pglist_data *pgdat;
5579 enum zone_type j, idx;
5580
5581 for_each_online_pgdat(pgdat) {
5582 for (j = 0; j < MAX_NR_ZONES; j++) {
5583 struct zone *zone = pgdat->node_zones + j;
5584 unsigned long managed_pages = zone->managed_pages;
5585
5586 zone->lowmem_reserve[j] = 0;
5587
5588 idx = j;
5589 while (idx) {
5590 struct zone *lower_zone;
5591
5592 idx--;
5593
5594 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5595 sysctl_lowmem_reserve_ratio[idx] = 1;
5596
5597 lower_zone = pgdat->node_zones + idx;
5598 lower_zone->lowmem_reserve[j] = managed_pages /
5599 sysctl_lowmem_reserve_ratio[idx];
5600 managed_pages += lower_zone->managed_pages;
5601 }
5602 }
5603 }
5604
5605 /* update totalreserve_pages */
5606 calculate_totalreserve_pages();
5607 }
5608
5609 static void __setup_per_zone_wmarks(void)
5610 {
5611 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5612 unsigned long lowmem_pages = 0;
5613 struct zone *zone;
5614 unsigned long flags;
5615
5616 /* Calculate total number of !ZONE_HIGHMEM pages */
5617 for_each_zone(zone) {
5618 if (!is_highmem(zone))
5619 lowmem_pages += zone->managed_pages;
5620 }
5621
5622 for_each_zone(zone) {
5623 u64 tmp;
5624
5625 spin_lock_irqsave(&zone->lock, flags);
5626 tmp = (u64)pages_min * zone->managed_pages;
5627 do_div(tmp, lowmem_pages);
5628 if (is_highmem(zone)) {
5629 /*
5630 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5631 * need highmem pages, so cap pages_min to a small
5632 * value here.
5633 *
5634 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5635 * deltas controls asynch page reclaim, and so should
5636 * not be capped for highmem.
5637 */
5638 unsigned long min_pages;
5639
5640 min_pages = zone->managed_pages / 1024;
5641 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5642 zone->watermark[WMARK_MIN] = min_pages;
5643 } else {
5644 /*
5645 * If it's a lowmem zone, reserve a number of pages
5646 * proportionate to the zone's size.
5647 */
5648 zone->watermark[WMARK_MIN] = tmp;
5649 }
5650
5651 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5652 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5653
5654 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5655 high_wmark_pages(zone) -
5656 low_wmark_pages(zone) -
5657 zone_page_state(zone, NR_ALLOC_BATCH));
5658
5659 setup_zone_migrate_reserve(zone);
5660 spin_unlock_irqrestore(&zone->lock, flags);
5661 }
5662
5663 /* update totalreserve_pages */
5664 calculate_totalreserve_pages();
5665 }
5666
5667 /**
5668 * setup_per_zone_wmarks - called when min_free_kbytes changes
5669 * or when memory is hot-{added|removed}
5670 *
5671 * Ensures that the watermark[min,low,high] values for each zone are set
5672 * correctly with respect to min_free_kbytes.
5673 */
5674 void setup_per_zone_wmarks(void)
5675 {
5676 mutex_lock(&zonelists_mutex);
5677 __setup_per_zone_wmarks();
5678 mutex_unlock(&zonelists_mutex);
5679 }
5680
5681 /*
5682 * The inactive anon list should be small enough that the VM never has to
5683 * do too much work, but large enough that each inactive page has a chance
5684 * to be referenced again before it is swapped out.
5685 *
5686 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5687 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5688 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5689 * the anonymous pages are kept on the inactive list.
5690 *
5691 * total target max
5692 * memory ratio inactive anon
5693 * -------------------------------------
5694 * 10MB 1 5MB
5695 * 100MB 1 50MB
5696 * 1GB 3 250MB
5697 * 10GB 10 0.9GB
5698 * 100GB 31 3GB
5699 * 1TB 101 10GB
5700 * 10TB 320 32GB
5701 */
5702 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5703 {
5704 unsigned int gb, ratio;
5705
5706 /* Zone size in gigabytes */
5707 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5708 if (gb)
5709 ratio = int_sqrt(10 * gb);
5710 else
5711 ratio = 1;
5712
5713 zone->inactive_ratio = ratio;
5714 }
5715
5716 static void __meminit setup_per_zone_inactive_ratio(void)
5717 {
5718 struct zone *zone;
5719
5720 for_each_zone(zone)
5721 calculate_zone_inactive_ratio(zone);
5722 }
5723
5724 /*
5725 * Initialise min_free_kbytes.
5726 *
5727 * For small machines we want it small (128k min). For large machines
5728 * we want it large (64MB max). But it is not linear, because network
5729 * bandwidth does not increase linearly with machine size. We use
5730 *
5731 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5732 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5733 *
5734 * which yields
5735 *
5736 * 16MB: 512k
5737 * 32MB: 724k
5738 * 64MB: 1024k
5739 * 128MB: 1448k
5740 * 256MB: 2048k
5741 * 512MB: 2896k
5742 * 1024MB: 4096k
5743 * 2048MB: 5792k
5744 * 4096MB: 8192k
5745 * 8192MB: 11584k
5746 * 16384MB: 16384k
5747 */
5748 int __meminit init_per_zone_wmark_min(void)
5749 {
5750 unsigned long lowmem_kbytes;
5751 int new_min_free_kbytes;
5752
5753 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5754 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5755
5756 if (new_min_free_kbytes > user_min_free_kbytes) {
5757 min_free_kbytes = new_min_free_kbytes;
5758 if (min_free_kbytes < 128)
5759 min_free_kbytes = 128;
5760 if (min_free_kbytes > 65536)
5761 min_free_kbytes = 65536;
5762 } else {
5763 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5764 new_min_free_kbytes, user_min_free_kbytes);
5765 }
5766 setup_per_zone_wmarks();
5767 refresh_zone_stat_thresholds();
5768 setup_per_zone_lowmem_reserve();
5769 setup_per_zone_inactive_ratio();
5770 return 0;
5771 }
5772 module_init(init_per_zone_wmark_min)
5773
5774 /*
5775 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5776 * that we can call two helper functions whenever min_free_kbytes
5777 * changes.
5778 */
5779 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5780 void __user *buffer, size_t *length, loff_t *ppos)
5781 {
5782 int rc;
5783
5784 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5785 if (rc)
5786 return rc;
5787
5788 if (write) {
5789 user_min_free_kbytes = min_free_kbytes;
5790 setup_per_zone_wmarks();
5791 }
5792 return 0;
5793 }
5794
5795 #ifdef CONFIG_NUMA
5796 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5797 void __user *buffer, size_t *length, loff_t *ppos)
5798 {
5799 struct zone *zone;
5800 int rc;
5801
5802 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5803 if (rc)
5804 return rc;
5805
5806 for_each_zone(zone)
5807 zone->min_unmapped_pages = (zone->managed_pages *
5808 sysctl_min_unmapped_ratio) / 100;
5809 return 0;
5810 }
5811
5812 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5813 void __user *buffer, size_t *length, loff_t *ppos)
5814 {
5815 struct zone *zone;
5816 int rc;
5817
5818 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5819 if (rc)
5820 return rc;
5821
5822 for_each_zone(zone)
5823 zone->min_slab_pages = (zone->managed_pages *
5824 sysctl_min_slab_ratio) / 100;
5825 return 0;
5826 }
5827 #endif
5828
5829 /*
5830 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5831 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5832 * whenever sysctl_lowmem_reserve_ratio changes.
5833 *
5834 * The reserve ratio obviously has absolutely no relation with the
5835 * minimum watermarks. The lowmem reserve ratio can only make sense
5836 * if in function of the boot time zone sizes.
5837 */
5838 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5839 void __user *buffer, size_t *length, loff_t *ppos)
5840 {
5841 proc_dointvec_minmax(table, write, buffer, length, ppos);
5842 setup_per_zone_lowmem_reserve();
5843 return 0;
5844 }
5845
5846 /*
5847 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5848 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5849 * pagelist can have before it gets flushed back to buddy allocator.
5850 */
5851 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5852 void __user *buffer, size_t *length, loff_t *ppos)
5853 {
5854 struct zone *zone;
5855 unsigned int cpu;
5856 int ret;
5857
5858 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5859 if (!write || (ret < 0))
5860 return ret;
5861
5862 mutex_lock(&pcp_batch_high_lock);
5863 for_each_populated_zone(zone) {
5864 unsigned long high;
5865 high = zone->managed_pages / percpu_pagelist_fraction;
5866 for_each_possible_cpu(cpu)
5867 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5868 high);
5869 }
5870 mutex_unlock(&pcp_batch_high_lock);
5871 return 0;
5872 }
5873
5874 int hashdist = HASHDIST_DEFAULT;
5875
5876 #ifdef CONFIG_NUMA
5877 static int __init set_hashdist(char *str)
5878 {
5879 if (!str)
5880 return 0;
5881 hashdist = simple_strtoul(str, &str, 0);
5882 return 1;
5883 }
5884 __setup("hashdist=", set_hashdist);
5885 #endif
5886
5887 /*
5888 * allocate a large system hash table from bootmem
5889 * - it is assumed that the hash table must contain an exact power-of-2
5890 * quantity of entries
5891 * - limit is the number of hash buckets, not the total allocation size
5892 */
5893 void *__init alloc_large_system_hash(const char *tablename,
5894 unsigned long bucketsize,
5895 unsigned long numentries,
5896 int scale,
5897 int flags,
5898 unsigned int *_hash_shift,
5899 unsigned int *_hash_mask,
5900 unsigned long low_limit,
5901 unsigned long high_limit)
5902 {
5903 unsigned long long max = high_limit;
5904 unsigned long log2qty, size;
5905 void *table = NULL;
5906
5907 /* allow the kernel cmdline to have a say */
5908 if (!numentries) {
5909 /* round applicable memory size up to nearest megabyte */
5910 numentries = nr_kernel_pages;
5911
5912 /* It isn't necessary when PAGE_SIZE >= 1MB */
5913 if (PAGE_SHIFT < 20)
5914 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5915
5916 /* limit to 1 bucket per 2^scale bytes of low memory */
5917 if (scale > PAGE_SHIFT)
5918 numentries >>= (scale - PAGE_SHIFT);
5919 else
5920 numentries <<= (PAGE_SHIFT - scale);
5921
5922 /* Make sure we've got at least a 0-order allocation.. */
5923 if (unlikely(flags & HASH_SMALL)) {
5924 /* Makes no sense without HASH_EARLY */
5925 WARN_ON(!(flags & HASH_EARLY));
5926 if (!(numentries >> *_hash_shift)) {
5927 numentries = 1UL << *_hash_shift;
5928 BUG_ON(!numentries);
5929 }
5930 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5931 numentries = PAGE_SIZE / bucketsize;
5932 }
5933 numentries = roundup_pow_of_two(numentries);
5934
5935 /* limit allocation size to 1/16 total memory by default */
5936 if (max == 0) {
5937 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5938 do_div(max, bucketsize);
5939 }
5940 max = min(max, 0x80000000ULL);
5941
5942 if (numentries < low_limit)
5943 numentries = low_limit;
5944 if (numentries > max)
5945 numentries = max;
5946
5947 log2qty = ilog2(numentries);
5948
5949 do {
5950 size = bucketsize << log2qty;
5951 if (flags & HASH_EARLY)
5952 table = memblock_virt_alloc_nopanic(size, 0);
5953 else if (hashdist)
5954 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5955 else {
5956 /*
5957 * If bucketsize is not a power-of-two, we may free
5958 * some pages at the end of hash table which
5959 * alloc_pages_exact() automatically does
5960 */
5961 if (get_order(size) < MAX_ORDER) {
5962 table = alloc_pages_exact(size, GFP_ATOMIC);
5963 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5964 }
5965 }
5966 } while (!table && size > PAGE_SIZE && --log2qty);
5967
5968 if (!table)
5969 panic("Failed to allocate %s hash table\n", tablename);
5970
5971 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5972 tablename,
5973 (1UL << log2qty),
5974 ilog2(size) - PAGE_SHIFT,
5975 size);
5976
5977 if (_hash_shift)
5978 *_hash_shift = log2qty;
5979 if (_hash_mask)
5980 *_hash_mask = (1 << log2qty) - 1;
5981
5982 return table;
5983 }
5984
5985 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5986 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5987 unsigned long pfn)
5988 {
5989 #ifdef CONFIG_SPARSEMEM
5990 return __pfn_to_section(pfn)->pageblock_flags;
5991 #else
5992 return zone->pageblock_flags;
5993 #endif /* CONFIG_SPARSEMEM */
5994 }
5995
5996 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5997 {
5998 #ifdef CONFIG_SPARSEMEM
5999 pfn &= (PAGES_PER_SECTION-1);
6000 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6001 #else
6002 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6003 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6004 #endif /* CONFIG_SPARSEMEM */
6005 }
6006
6007 /**
6008 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6009 * @page: The page within the block of interest
6010 * @start_bitidx: The first bit of interest to retrieve
6011 * @end_bitidx: The last bit of interest
6012 * returns pageblock_bits flags
6013 */
6014 unsigned long get_pageblock_flags_group(struct page *page,
6015 int start_bitidx, int end_bitidx)
6016 {
6017 struct zone *zone;
6018 unsigned long *bitmap;
6019 unsigned long pfn, bitidx;
6020 unsigned long flags = 0;
6021 unsigned long value = 1;
6022
6023 zone = page_zone(page);
6024 pfn = page_to_pfn(page);
6025 bitmap = get_pageblock_bitmap(zone, pfn);
6026 bitidx = pfn_to_bitidx(zone, pfn);
6027
6028 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6029 if (test_bit(bitidx + start_bitidx, bitmap))
6030 flags |= value;
6031
6032 return flags;
6033 }
6034
6035 /**
6036 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6037 * @page: The page within the block of interest
6038 * @start_bitidx: The first bit of interest
6039 * @end_bitidx: The last bit of interest
6040 * @flags: The flags to set
6041 */
6042 void set_pageblock_flags_group(struct page *page, unsigned long flags,
6043 int start_bitidx, int end_bitidx)
6044 {
6045 struct zone *zone;
6046 unsigned long *bitmap;
6047 unsigned long pfn, bitidx;
6048 unsigned long value = 1;
6049
6050 zone = page_zone(page);
6051 pfn = page_to_pfn(page);
6052 bitmap = get_pageblock_bitmap(zone, pfn);
6053 bitidx = pfn_to_bitidx(zone, pfn);
6054 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6055
6056 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6057 if (flags & value)
6058 __set_bit(bitidx + start_bitidx, bitmap);
6059 else
6060 __clear_bit(bitidx + start_bitidx, bitmap);
6061 }
6062
6063 /*
6064 * This function checks whether pageblock includes unmovable pages or not.
6065 * If @count is not zero, it is okay to include less @count unmovable pages
6066 *
6067 * PageLRU check without isolation or lru_lock could race so that
6068 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6069 * expect this function should be exact.
6070 */
6071 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6072 bool skip_hwpoisoned_pages)
6073 {
6074 unsigned long pfn, iter, found;
6075 int mt;
6076
6077 /*
6078 * For avoiding noise data, lru_add_drain_all() should be called
6079 * If ZONE_MOVABLE, the zone never contains unmovable pages
6080 */
6081 if (zone_idx(zone) == ZONE_MOVABLE)
6082 return false;
6083 mt = get_pageblock_migratetype(page);
6084 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6085 return false;
6086
6087 pfn = page_to_pfn(page);
6088 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6089 unsigned long check = pfn + iter;
6090
6091 if (!pfn_valid_within(check))
6092 continue;
6093
6094 page = pfn_to_page(check);
6095
6096 /*
6097 * Hugepages are not in LRU lists, but they're movable.
6098 * We need not scan over tail pages bacause we don't
6099 * handle each tail page individually in migration.
6100 */
6101 if (PageHuge(page)) {
6102 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6103 continue;
6104 }
6105
6106 /*
6107 * We can't use page_count without pin a page
6108 * because another CPU can free compound page.
6109 * This check already skips compound tails of THP
6110 * because their page->_count is zero at all time.
6111 */
6112 if (!atomic_read(&page->_count)) {
6113 if (PageBuddy(page))
6114 iter += (1 << page_order(page)) - 1;
6115 continue;
6116 }
6117
6118 /*
6119 * The HWPoisoned page may be not in buddy system, and
6120 * page_count() is not 0.
6121 */
6122 if (skip_hwpoisoned_pages && PageHWPoison(page))
6123 continue;
6124
6125 if (!PageLRU(page))
6126 found++;
6127 /*
6128 * If there are RECLAIMABLE pages, we need to check it.
6129 * But now, memory offline itself doesn't call shrink_slab()
6130 * and it still to be fixed.
6131 */
6132 /*
6133 * If the page is not RAM, page_count()should be 0.
6134 * we don't need more check. This is an _used_ not-movable page.
6135 *
6136 * The problematic thing here is PG_reserved pages. PG_reserved
6137 * is set to both of a memory hole page and a _used_ kernel
6138 * page at boot.
6139 */
6140 if (found > count)
6141 return true;
6142 }
6143 return false;
6144 }
6145
6146 bool is_pageblock_removable_nolock(struct page *page)
6147 {
6148 struct zone *zone;
6149 unsigned long pfn;
6150
6151 /*
6152 * We have to be careful here because we are iterating over memory
6153 * sections which are not zone aware so we might end up outside of
6154 * the zone but still within the section.
6155 * We have to take care about the node as well. If the node is offline
6156 * its NODE_DATA will be NULL - see page_zone.
6157 */
6158 if (!node_online(page_to_nid(page)))
6159 return false;
6160
6161 zone = page_zone(page);
6162 pfn = page_to_pfn(page);
6163 if (!zone_spans_pfn(zone, pfn))
6164 return false;
6165
6166 return !has_unmovable_pages(zone, page, 0, true);
6167 }
6168
6169 #ifdef CONFIG_CMA
6170
6171 static unsigned long pfn_max_align_down(unsigned long pfn)
6172 {
6173 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6174 pageblock_nr_pages) - 1);
6175 }
6176
6177 static unsigned long pfn_max_align_up(unsigned long pfn)
6178 {
6179 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6180 pageblock_nr_pages));
6181 }
6182
6183 /* [start, end) must belong to a single zone. */
6184 static int __alloc_contig_migrate_range(struct compact_control *cc,
6185 unsigned long start, unsigned long end)
6186 {
6187 /* This function is based on compact_zone() from compaction.c. */
6188 unsigned long nr_reclaimed;
6189 unsigned long pfn = start;
6190 unsigned int tries = 0;
6191 int ret = 0;
6192
6193 migrate_prep();
6194
6195 while (pfn < end || !list_empty(&cc->migratepages)) {
6196 if (fatal_signal_pending(current)) {
6197 ret = -EINTR;
6198 break;
6199 }
6200
6201 if (list_empty(&cc->migratepages)) {
6202 cc->nr_migratepages = 0;
6203 pfn = isolate_migratepages_range(cc->zone, cc,
6204 pfn, end, true);
6205 if (!pfn) {
6206 ret = -EINTR;
6207 break;
6208 }
6209 tries = 0;
6210 } else if (++tries == 5) {
6211 ret = ret < 0 ? ret : -EBUSY;
6212 break;
6213 }
6214
6215 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6216 &cc->migratepages);
6217 cc->nr_migratepages -= nr_reclaimed;
6218
6219 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6220 0, MIGRATE_SYNC, MR_CMA);
6221 }
6222 if (ret < 0) {
6223 putback_movable_pages(&cc->migratepages);
6224 return ret;
6225 }
6226 return 0;
6227 }
6228
6229 /**
6230 * alloc_contig_range() -- tries to allocate given range of pages
6231 * @start: start PFN to allocate
6232 * @end: one-past-the-last PFN to allocate
6233 * @migratetype: migratetype of the underlaying pageblocks (either
6234 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6235 * in range must have the same migratetype and it must
6236 * be either of the two.
6237 *
6238 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6239 * aligned, however it's the caller's responsibility to guarantee that
6240 * we are the only thread that changes migrate type of pageblocks the
6241 * pages fall in.
6242 *
6243 * The PFN range must belong to a single zone.
6244 *
6245 * Returns zero on success or negative error code. On success all
6246 * pages which PFN is in [start, end) are allocated for the caller and
6247 * need to be freed with free_contig_range().
6248 */
6249 int alloc_contig_range(unsigned long start, unsigned long end,
6250 unsigned migratetype)
6251 {
6252 unsigned long outer_start, outer_end;
6253 int ret = 0, order;
6254
6255 struct compact_control cc = {
6256 .nr_migratepages = 0,
6257 .order = -1,
6258 .zone = page_zone(pfn_to_page(start)),
6259 .sync = true,
6260 .ignore_skip_hint = true,
6261 };
6262 INIT_LIST_HEAD(&cc.migratepages);
6263
6264 /*
6265 * What we do here is we mark all pageblocks in range as
6266 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6267 * have different sizes, and due to the way page allocator
6268 * work, we align the range to biggest of the two pages so
6269 * that page allocator won't try to merge buddies from
6270 * different pageblocks and change MIGRATE_ISOLATE to some
6271 * other migration type.
6272 *
6273 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6274 * migrate the pages from an unaligned range (ie. pages that
6275 * we are interested in). This will put all the pages in
6276 * range back to page allocator as MIGRATE_ISOLATE.
6277 *
6278 * When this is done, we take the pages in range from page
6279 * allocator removing them from the buddy system. This way
6280 * page allocator will never consider using them.
6281 *
6282 * This lets us mark the pageblocks back as
6283 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6284 * aligned range but not in the unaligned, original range are
6285 * put back to page allocator so that buddy can use them.
6286 */
6287
6288 ret = start_isolate_page_range(pfn_max_align_down(start),
6289 pfn_max_align_up(end), migratetype,
6290 false);
6291 if (ret)
6292 return ret;
6293
6294 ret = __alloc_contig_migrate_range(&cc, start, end);
6295 if (ret)
6296 goto done;
6297
6298 /*
6299 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6300 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6301 * more, all pages in [start, end) are free in page allocator.
6302 * What we are going to do is to allocate all pages from
6303 * [start, end) (that is remove them from page allocator).
6304 *
6305 * The only problem is that pages at the beginning and at the
6306 * end of interesting range may be not aligned with pages that
6307 * page allocator holds, ie. they can be part of higher order
6308 * pages. Because of this, we reserve the bigger range and
6309 * once this is done free the pages we are not interested in.
6310 *
6311 * We don't have to hold zone->lock here because the pages are
6312 * isolated thus they won't get removed from buddy.
6313 */
6314
6315 lru_add_drain_all();
6316 drain_all_pages();
6317
6318 order = 0;
6319 outer_start = start;
6320 while (!PageBuddy(pfn_to_page(outer_start))) {
6321 if (++order >= MAX_ORDER) {
6322 ret = -EBUSY;
6323 goto done;
6324 }
6325 outer_start &= ~0UL << order;
6326 }
6327
6328 /* Make sure the range is really isolated. */
6329 if (test_pages_isolated(outer_start, end, false)) {
6330 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6331 outer_start, end);
6332 ret = -EBUSY;
6333 goto done;
6334 }
6335
6336
6337 /* Grab isolated pages from freelists. */
6338 outer_end = isolate_freepages_range(&cc, outer_start, end);
6339 if (!outer_end) {
6340 ret = -EBUSY;
6341 goto done;
6342 }
6343
6344 /* Free head and tail (if any) */
6345 if (start != outer_start)
6346 free_contig_range(outer_start, start - outer_start);
6347 if (end != outer_end)
6348 free_contig_range(end, outer_end - end);
6349
6350 done:
6351 undo_isolate_page_range(pfn_max_align_down(start),
6352 pfn_max_align_up(end), migratetype);
6353 return ret;
6354 }
6355
6356 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6357 {
6358 unsigned int count = 0;
6359
6360 for (; nr_pages--; pfn++) {
6361 struct page *page = pfn_to_page(pfn);
6362
6363 count += page_count(page) != 1;
6364 __free_page(page);
6365 }
6366 WARN(count != 0, "%d pages are still in use!\n", count);
6367 }
6368 #endif
6369
6370 #ifdef CONFIG_MEMORY_HOTPLUG
6371 /*
6372 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6373 * page high values need to be recalulated.
6374 */
6375 void __meminit zone_pcp_update(struct zone *zone)
6376 {
6377 unsigned cpu;
6378 mutex_lock(&pcp_batch_high_lock);
6379 for_each_possible_cpu(cpu)
6380 pageset_set_high_and_batch(zone,
6381 per_cpu_ptr(zone->pageset, cpu));
6382 mutex_unlock(&pcp_batch_high_lock);
6383 }
6384 #endif
6385
6386 void zone_pcp_reset(struct zone *zone)
6387 {
6388 unsigned long flags;
6389 int cpu;
6390 struct per_cpu_pageset *pset;
6391
6392 /* avoid races with drain_pages() */
6393 local_irq_save(flags);
6394 if (zone->pageset != &boot_pageset) {
6395 for_each_online_cpu(cpu) {
6396 pset = per_cpu_ptr(zone->pageset, cpu);
6397 drain_zonestat(zone, pset);
6398 }
6399 free_percpu(zone->pageset);
6400 zone->pageset = &boot_pageset;
6401 }
6402 local_irq_restore(flags);
6403 }
6404
6405 #ifdef CONFIG_MEMORY_HOTREMOVE
6406 /*
6407 * All pages in the range must be isolated before calling this.
6408 */
6409 void
6410 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6411 {
6412 struct page *page;
6413 struct zone *zone;
6414 int order, i;
6415 unsigned long pfn;
6416 unsigned long flags;
6417 /* find the first valid pfn */
6418 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6419 if (pfn_valid(pfn))
6420 break;
6421 if (pfn == end_pfn)
6422 return;
6423 zone = page_zone(pfn_to_page(pfn));
6424 spin_lock_irqsave(&zone->lock, flags);
6425 pfn = start_pfn;
6426 while (pfn < end_pfn) {
6427 if (!pfn_valid(pfn)) {
6428 pfn++;
6429 continue;
6430 }
6431 page = pfn_to_page(pfn);
6432 /*
6433 * The HWPoisoned page may be not in buddy system, and
6434 * page_count() is not 0.
6435 */
6436 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6437 pfn++;
6438 SetPageReserved(page);
6439 continue;
6440 }
6441
6442 BUG_ON(page_count(page));
6443 BUG_ON(!PageBuddy(page));
6444 order = page_order(page);
6445 #ifdef CONFIG_DEBUG_VM
6446 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6447 pfn, 1 << order, end_pfn);
6448 #endif
6449 list_del(&page->lru);
6450 rmv_page_order(page);
6451 zone->free_area[order].nr_free--;
6452 for (i = 0; i < (1 << order); i++)
6453 SetPageReserved((page+i));
6454 pfn += (1 << order);
6455 }
6456 spin_unlock_irqrestore(&zone->lock, flags);
6457 }
6458 #endif
6459
6460 #ifdef CONFIG_MEMORY_FAILURE
6461 bool is_free_buddy_page(struct page *page)
6462 {
6463 struct zone *zone = page_zone(page);
6464 unsigned long pfn = page_to_pfn(page);
6465 unsigned long flags;
6466 int order;
6467
6468 spin_lock_irqsave(&zone->lock, flags);
6469 for (order = 0; order < MAX_ORDER; order++) {
6470 struct page *page_head = page - (pfn & ((1 << order) - 1));
6471
6472 if (PageBuddy(page_head) && page_order(page_head) >= order)
6473 break;
6474 }
6475 spin_unlock_irqrestore(&zone->lock, flags);
6476
6477 return order < MAX_ORDER;
6478 }
6479 #endif
6480
6481 static const struct trace_print_flags pageflag_names[] = {
6482 {1UL << PG_locked, "locked" },
6483 {1UL << PG_error, "error" },
6484 {1UL << PG_referenced, "referenced" },
6485 {1UL << PG_uptodate, "uptodate" },
6486 {1UL << PG_dirty, "dirty" },
6487 {1UL << PG_lru, "lru" },
6488 {1UL << PG_active, "active" },
6489 {1UL << PG_slab, "slab" },
6490 {1UL << PG_owner_priv_1, "owner_priv_1" },
6491 {1UL << PG_arch_1, "arch_1" },
6492 {1UL << PG_reserved, "reserved" },
6493 {1UL << PG_private, "private" },
6494 {1UL << PG_private_2, "private_2" },
6495 {1UL << PG_writeback, "writeback" },
6496 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6497 {1UL << PG_head, "head" },
6498 {1UL << PG_tail, "tail" },
6499 #else
6500 {1UL << PG_compound, "compound" },
6501 #endif
6502 {1UL << PG_swapcache, "swapcache" },
6503 {1UL << PG_mappedtodisk, "mappedtodisk" },
6504 {1UL << PG_reclaim, "reclaim" },
6505 {1UL << PG_swapbacked, "swapbacked" },
6506 {1UL << PG_unevictable, "unevictable" },
6507 #ifdef CONFIG_MMU
6508 {1UL << PG_mlocked, "mlocked" },
6509 #endif
6510 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6511 {1UL << PG_uncached, "uncached" },
6512 #endif
6513 #ifdef CONFIG_MEMORY_FAILURE
6514 {1UL << PG_hwpoison, "hwpoison" },
6515 #endif
6516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6517 {1UL << PG_compound_lock, "compound_lock" },
6518 #endif
6519 };
6520
6521 static void dump_page_flags(unsigned long flags)
6522 {
6523 const char *delim = "";
6524 unsigned long mask;
6525 int i;
6526
6527 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6528
6529 printk(KERN_ALERT "page flags: %#lx(", flags);
6530
6531 /* remove zone id */
6532 flags &= (1UL << NR_PAGEFLAGS) - 1;
6533
6534 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6535
6536 mask = pageflag_names[i].mask;
6537 if ((flags & mask) != mask)
6538 continue;
6539
6540 flags &= ~mask;
6541 printk("%s%s", delim, pageflag_names[i].name);
6542 delim = "|";
6543 }
6544
6545 /* check for left over flags */
6546 if (flags)
6547 printk("%s%#lx", delim, flags);
6548
6549 printk(")\n");
6550 }
6551
6552 void dump_page_badflags(struct page *page, const char *reason,
6553 unsigned long badflags)
6554 {
6555 printk(KERN_ALERT
6556 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6557 page, atomic_read(&page->_count), page_mapcount(page),
6558 page->mapping, page->index);
6559 dump_page_flags(page->flags);
6560 if (reason)
6561 pr_alert("page dumped because: %s\n", reason);
6562 if (page->flags & badflags) {
6563 pr_alert("bad because of flags:\n");
6564 dump_page_flags(page->flags & badflags);
6565 }
6566 mem_cgroup_print_bad_page(page);
6567 }
6568
6569 void dump_page(struct page *page, const char *reason)
6570 {
6571 dump_page_badflags(page, reason, 0);
6572 }
6573 EXPORT_SYMBOL(dump_page);
This page took 0.254959 seconds and 6 git commands to generate.