Merge tag 'linux-kselftest-4.8-rc1-update' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 /*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 unsigned long max_initialise;
307
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
317
318 (*nr_initialised)++;
319 if ((*nr_initialised > max_initialise) &&
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 return false;
335 }
336
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340 {
341 return true;
342 }
343 #endif
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 /**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398 {
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406
407 /**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444 }
445
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
450 migratetype = MIGRATE_UNMOVABLE;
451
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454 }
455
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
462 unsigned long sp, start_pfn;
463
464 do {
465 seq = zone_span_seqbegin(zone);
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
468 if (!zone_spans_pfn(zone, pfn))
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
472 if (ret)
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
476
477 return ret;
478 }
479
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 if (!pfn_valid_within(page_to_pfn(page)))
483 return 0;
484 if (zone != page_zone(page))
485 return 0;
486
487 return 1;
488 }
489 /*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 if (page_outside_zone_boundaries(zone, page))
495 return 1;
496 if (!page_is_consistent(zone, page))
497 return 1;
498
499 return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 return 0;
505 }
506 #endif
507
508 static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
510 {
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
525 pr_alert(
526 "BUG: Bad page state: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
536 current->comm, page_to_pfn(page));
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
542 dump_page_owner(page);
543
544 print_modules();
545 dump_stack();
546 out:
547 /* Leave bad fields for debug, except PageBuddy could make trouble */
548 page_mapcount_reset(page); /* remove PageBuddy */
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556 *
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559 *
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
562 *
563 * The first tail page's ->compound_order holds the order of allocation.
564 * This usage means that zero-order pages may not be compound.
565 */
566
567 void free_compound_page(struct page *page)
568 {
569 __free_pages_ok(page, compound_order(page));
570 }
571
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 int i;
575 int nr_pages = 1 << order;
576
577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
582 set_page_count(p, 0);
583 p->mapping = TAIL_MAPPING;
584 set_compound_head(p, page);
585 }
586 atomic_set(compound_mapcount_ptr(page), -1);
587 }
588
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 if (!buf)
599 return -EINVAL;
600 return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603
604 static bool need_debug_guardpage(void)
605 {
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
610 return true;
611 }
612
613 static void init_debug_guardpage(void)
614 {
615 if (!debug_pagealloc_enabled())
616 return;
617
618 _debug_guardpage_enabled = true;
619 }
620
621 struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624 };
625
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
631 pr_err("Bad debug_guardpage_minorder value\n");
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
642 {
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
649 if (unlikely(!page_ext))
650 return;
651
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
662 {
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return;
671
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
684 #endif
685
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 set_page_private(page, order);
689 __SetPageBuddy(page);
690 }
691
692 static inline void rmv_page_order(struct page *page)
693 {
694 __ClearPageBuddy(page);
695 set_page_private(page, 0);
696 }
697
698 /*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
701 * (a) the buddy is not in a hole &&
702 * (b) the buddy is in the buddy system &&
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
705 *
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
710 *
711 * For recording page's order, we use page_private(page).
712 */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 unsigned int order)
715 {
716 if (!pfn_valid_within(page_to_pfn(buddy)))
717 return 0;
718
719 if (page_is_guard(buddy) && page_order(buddy) == order) {
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
725 return 1;
726 }
727
728 if (PageBuddy(buddy) && page_order(buddy) == order) {
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
739 return 1;
740 }
741 return 0;
742 }
743
744 /*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
760 * So when we are allocating or freeing one, we can derive the state of the
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
763 * If a block is freed, and its buddy is also free, then this
764 * triggers coalescing into a block of larger size.
765 *
766 * -- nyc
767 */
768
769 static inline void __free_one_page(struct page *page,
770 unsigned long pfn,
771 struct zone *zone, unsigned int order,
772 int migratetype)
773 {
774 unsigned long page_idx;
775 unsigned long combined_idx;
776 unsigned long uninitialized_var(buddy_idx);
777 struct page *buddy;
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781
782 VM_BUG_ON(!zone_is_initialized(zone));
783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784
785 VM_BUG_ON(migratetype == -1);
786 if (likely(!is_migrate_isolate(migratetype)))
787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
788
789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
790
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
793
794 continue_merging:
795 while (order < max_order - 1) {
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
798 if (!page_is_buddy(page, buddy, order))
799 goto done_merging;
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
805 clear_page_guard(zone, buddy, order, migratetype);
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
811 combined_idx = buddy_idx & page_idx;
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841 done_merging:
842 set_page_order(page, order);
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 struct page *higher_page, *higher_buddy;
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 higher_buddy = higher_page + (buddy_idx - combined_idx);
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 zone->free_area[order].nr_free++;
868 }
869
870 /*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875 static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877 {
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885 #endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890 }
891
892 static void free_pages_check_bad(struct page *page)
893 {
894 const char *bad_reason;
895 unsigned long bad_flags;
896
897 bad_reason = NULL;
898 bad_flags = 0;
899
900 if (unlikely(atomic_read(&page->_mapcount) != -1))
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
904 if (unlikely(page_ref_count(page) != 0))
905 bad_reason = "nonzero _refcount";
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
910 #ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913 #endif
914 bad_page(page, bad_reason, bad_flags);
915 }
916
917 static inline int free_pages_check(struct page *page)
918 {
919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 return 0;
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
924 return 1;
925 }
926
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971 out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975 }
976
977 static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
979 {
980 int bad = 0;
981
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996
997 if (compound)
998 ClearPageDoubleMap(page);
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
1009 if (PageMappingFlags(page))
1010 page->mapping = NULL;
1011 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1012 memcg_kmem_uncharge(page, order);
1013 __ClearPageKmemcg(page);
1014 }
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
1019
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 debug_check_no_obj_freed(page_address(page),
1028 PAGE_SIZE << order);
1029 }
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
1033 kasan_free_pages(page, order);
1034
1035 return true;
1036 }
1037
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page *page)
1040 {
1041 return free_pages_prepare(page, 0, true);
1042 }
1043
1044 static inline bool bulkfree_pcp_prepare(struct page *page)
1045 {
1046 return false;
1047 }
1048 #else
1049 static bool free_pcp_prepare(struct page *page)
1050 {
1051 return free_pages_prepare(page, 0, false);
1052 }
1053
1054 static bool bulkfree_pcp_prepare(struct page *page)
1055 {
1056 return free_pages_check(page);
1057 }
1058 #endif /* CONFIG_DEBUG_VM */
1059
1060 /*
1061 * Frees a number of pages from the PCP lists
1062 * Assumes all pages on list are in same zone, and of same order.
1063 * count is the number of pages to free.
1064 *
1065 * If the zone was previously in an "all pages pinned" state then look to
1066 * see if this freeing clears that state.
1067 *
1068 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1069 * pinned" detection logic.
1070 */
1071 static void free_pcppages_bulk(struct zone *zone, int count,
1072 struct per_cpu_pages *pcp)
1073 {
1074 int migratetype = 0;
1075 int batch_free = 0;
1076 unsigned long nr_scanned;
1077 bool isolated_pageblocks;
1078
1079 spin_lock(&zone->lock);
1080 isolated_pageblocks = has_isolate_pageblock(zone);
1081 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1082 if (nr_scanned)
1083 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1084
1085 while (count) {
1086 struct page *page;
1087 struct list_head *list;
1088
1089 /*
1090 * Remove pages from lists in a round-robin fashion. A
1091 * batch_free count is maintained that is incremented when an
1092 * empty list is encountered. This is so more pages are freed
1093 * off fuller lists instead of spinning excessively around empty
1094 * lists
1095 */
1096 do {
1097 batch_free++;
1098 if (++migratetype == MIGRATE_PCPTYPES)
1099 migratetype = 0;
1100 list = &pcp->lists[migratetype];
1101 } while (list_empty(list));
1102
1103 /* This is the only non-empty list. Free them all. */
1104 if (batch_free == MIGRATE_PCPTYPES)
1105 batch_free = count;
1106
1107 do {
1108 int mt; /* migratetype of the to-be-freed page */
1109
1110 page = list_last_entry(list, struct page, lru);
1111 /* must delete as __free_one_page list manipulates */
1112 list_del(&page->lru);
1113
1114 mt = get_pcppage_migratetype(page);
1115 /* MIGRATE_ISOLATE page should not go to pcplists */
1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 /* Pageblock could have been isolated meanwhile */
1118 if (unlikely(isolated_pageblocks))
1119 mt = get_pageblock_migratetype(page);
1120
1121 if (bulkfree_pcp_prepare(page))
1122 continue;
1123
1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1125 trace_mm_page_pcpu_drain(page, 0, mt);
1126 } while (--count && --batch_free && !list_empty(list));
1127 }
1128 spin_unlock(&zone->lock);
1129 }
1130
1131 static void free_one_page(struct zone *zone,
1132 struct page *page, unsigned long pfn,
1133 unsigned int order,
1134 int migratetype)
1135 {
1136 unsigned long nr_scanned;
1137 spin_lock(&zone->lock);
1138 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1139 if (nr_scanned)
1140 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1141
1142 if (unlikely(has_isolate_pageblock(zone) ||
1143 is_migrate_isolate(migratetype))) {
1144 migratetype = get_pfnblock_migratetype(page, pfn);
1145 }
1146 __free_one_page(page, pfn, zone, order, migratetype);
1147 spin_unlock(&zone->lock);
1148 }
1149
1150 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1151 unsigned long zone, int nid)
1152 {
1153 set_page_links(page, zone, nid, pfn);
1154 init_page_count(page);
1155 page_mapcount_reset(page);
1156 page_cpupid_reset_last(page);
1157
1158 INIT_LIST_HEAD(&page->lru);
1159 #ifdef WANT_PAGE_VIRTUAL
1160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1161 if (!is_highmem_idx(zone))
1162 set_page_address(page, __va(pfn << PAGE_SHIFT));
1163 #endif
1164 }
1165
1166 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1167 int nid)
1168 {
1169 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1170 }
1171
1172 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1173 static void init_reserved_page(unsigned long pfn)
1174 {
1175 pg_data_t *pgdat;
1176 int nid, zid;
1177
1178 if (!early_page_uninitialised(pfn))
1179 return;
1180
1181 nid = early_pfn_to_nid(pfn);
1182 pgdat = NODE_DATA(nid);
1183
1184 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1185 struct zone *zone = &pgdat->node_zones[zid];
1186
1187 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1188 break;
1189 }
1190 __init_single_pfn(pfn, zid, nid);
1191 }
1192 #else
1193 static inline void init_reserved_page(unsigned long pfn)
1194 {
1195 }
1196 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1197
1198 /*
1199 * Initialised pages do not have PageReserved set. This function is
1200 * called for each range allocated by the bootmem allocator and
1201 * marks the pages PageReserved. The remaining valid pages are later
1202 * sent to the buddy page allocator.
1203 */
1204 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1205 {
1206 unsigned long start_pfn = PFN_DOWN(start);
1207 unsigned long end_pfn = PFN_UP(end);
1208
1209 for (; start_pfn < end_pfn; start_pfn++) {
1210 if (pfn_valid(start_pfn)) {
1211 struct page *page = pfn_to_page(start_pfn);
1212
1213 init_reserved_page(start_pfn);
1214
1215 /* Avoid false-positive PageTail() */
1216 INIT_LIST_HEAD(&page->lru);
1217
1218 SetPageReserved(page);
1219 }
1220 }
1221 }
1222
1223 static void __free_pages_ok(struct page *page, unsigned int order)
1224 {
1225 unsigned long flags;
1226 int migratetype;
1227 unsigned long pfn = page_to_pfn(page);
1228
1229 if (!free_pages_prepare(page, order, true))
1230 return;
1231
1232 migratetype = get_pfnblock_migratetype(page, pfn);
1233 local_irq_save(flags);
1234 __count_vm_events(PGFREE, 1 << order);
1235 free_one_page(page_zone(page), page, pfn, order, migratetype);
1236 local_irq_restore(flags);
1237 }
1238
1239 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1240 {
1241 unsigned int nr_pages = 1 << order;
1242 struct page *p = page;
1243 unsigned int loop;
1244
1245 prefetchw(p);
1246 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1247 prefetchw(p + 1);
1248 __ClearPageReserved(p);
1249 set_page_count(p, 0);
1250 }
1251 __ClearPageReserved(p);
1252 set_page_count(p, 0);
1253
1254 page_zone(page)->managed_pages += nr_pages;
1255 set_page_refcounted(page);
1256 __free_pages(page, order);
1257 }
1258
1259 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1260 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1261
1262 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1263
1264 int __meminit early_pfn_to_nid(unsigned long pfn)
1265 {
1266 static DEFINE_SPINLOCK(early_pfn_lock);
1267 int nid;
1268
1269 spin_lock(&early_pfn_lock);
1270 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1271 if (nid < 0)
1272 nid = first_online_node;
1273 spin_unlock(&early_pfn_lock);
1274
1275 return nid;
1276 }
1277 #endif
1278
1279 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1280 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1281 struct mminit_pfnnid_cache *state)
1282 {
1283 int nid;
1284
1285 nid = __early_pfn_to_nid(pfn, state);
1286 if (nid >= 0 && nid != node)
1287 return false;
1288 return true;
1289 }
1290
1291 /* Only safe to use early in boot when initialisation is single-threaded */
1292 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1293 {
1294 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1295 }
1296
1297 #else
1298
1299 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1300 {
1301 return true;
1302 }
1303 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
1305 {
1306 return true;
1307 }
1308 #endif
1309
1310
1311 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1312 unsigned int order)
1313 {
1314 if (early_page_uninitialised(pfn))
1315 return;
1316 return __free_pages_boot_core(page, order);
1317 }
1318
1319 /*
1320 * Check that the whole (or subset of) a pageblock given by the interval of
1321 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1322 * with the migration of free compaction scanner. The scanners then need to
1323 * use only pfn_valid_within() check for arches that allow holes within
1324 * pageblocks.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 */
1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 unsigned long end_pfn, struct zone *zone)
1338 {
1339 struct page *start_page;
1340 struct page *end_page;
1341
1342 /* end_pfn is one past the range we are checking */
1343 end_pfn--;
1344
1345 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1346 return NULL;
1347
1348 start_page = pfn_to_page(start_pfn);
1349
1350 if (page_zone(start_page) != zone)
1351 return NULL;
1352
1353 end_page = pfn_to_page(end_pfn);
1354
1355 /* This gives a shorter code than deriving page_zone(end_page) */
1356 if (page_zone_id(start_page) != page_zone_id(end_page))
1357 return NULL;
1358
1359 return start_page;
1360 }
1361
1362 void set_zone_contiguous(struct zone *zone)
1363 {
1364 unsigned long block_start_pfn = zone->zone_start_pfn;
1365 unsigned long block_end_pfn;
1366
1367 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1368 for (; block_start_pfn < zone_end_pfn(zone);
1369 block_start_pfn = block_end_pfn,
1370 block_end_pfn += pageblock_nr_pages) {
1371
1372 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1373
1374 if (!__pageblock_pfn_to_page(block_start_pfn,
1375 block_end_pfn, zone))
1376 return;
1377 }
1378
1379 /* We confirm that there is no hole */
1380 zone->contiguous = true;
1381 }
1382
1383 void clear_zone_contiguous(struct zone *zone)
1384 {
1385 zone->contiguous = false;
1386 }
1387
1388 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1389 static void __init deferred_free_range(struct page *page,
1390 unsigned long pfn, int nr_pages)
1391 {
1392 int i;
1393
1394 if (!page)
1395 return;
1396
1397 /* Free a large naturally-aligned chunk if possible */
1398 if (nr_pages == MAX_ORDER_NR_PAGES &&
1399 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1400 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1401 __free_pages_boot_core(page, MAX_ORDER-1);
1402 return;
1403 }
1404
1405 for (i = 0; i < nr_pages; i++, page++)
1406 __free_pages_boot_core(page, 0);
1407 }
1408
1409 /* Completion tracking for deferred_init_memmap() threads */
1410 static atomic_t pgdat_init_n_undone __initdata;
1411 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1412
1413 static inline void __init pgdat_init_report_one_done(void)
1414 {
1415 if (atomic_dec_and_test(&pgdat_init_n_undone))
1416 complete(&pgdat_init_all_done_comp);
1417 }
1418
1419 /* Initialise remaining memory on a node */
1420 static int __init deferred_init_memmap(void *data)
1421 {
1422 pg_data_t *pgdat = data;
1423 int nid = pgdat->node_id;
1424 struct mminit_pfnnid_cache nid_init_state = { };
1425 unsigned long start = jiffies;
1426 unsigned long nr_pages = 0;
1427 unsigned long walk_start, walk_end;
1428 int i, zid;
1429 struct zone *zone;
1430 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1431 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1432
1433 if (first_init_pfn == ULONG_MAX) {
1434 pgdat_init_report_one_done();
1435 return 0;
1436 }
1437
1438 /* Bind memory initialisation thread to a local node if possible */
1439 if (!cpumask_empty(cpumask))
1440 set_cpus_allowed_ptr(current, cpumask);
1441
1442 /* Sanity check boundaries */
1443 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1444 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1445 pgdat->first_deferred_pfn = ULONG_MAX;
1446
1447 /* Only the highest zone is deferred so find it */
1448 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1449 zone = pgdat->node_zones + zid;
1450 if (first_init_pfn < zone_end_pfn(zone))
1451 break;
1452 }
1453
1454 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1455 unsigned long pfn, end_pfn;
1456 struct page *page = NULL;
1457 struct page *free_base_page = NULL;
1458 unsigned long free_base_pfn = 0;
1459 int nr_to_free = 0;
1460
1461 end_pfn = min(walk_end, zone_end_pfn(zone));
1462 pfn = first_init_pfn;
1463 if (pfn < walk_start)
1464 pfn = walk_start;
1465 if (pfn < zone->zone_start_pfn)
1466 pfn = zone->zone_start_pfn;
1467
1468 for (; pfn < end_pfn; pfn++) {
1469 if (!pfn_valid_within(pfn))
1470 goto free_range;
1471
1472 /*
1473 * Ensure pfn_valid is checked every
1474 * MAX_ORDER_NR_PAGES for memory holes
1475 */
1476 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1477 if (!pfn_valid(pfn)) {
1478 page = NULL;
1479 goto free_range;
1480 }
1481 }
1482
1483 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1484 page = NULL;
1485 goto free_range;
1486 }
1487
1488 /* Minimise pfn page lookups and scheduler checks */
1489 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1490 page++;
1491 } else {
1492 nr_pages += nr_to_free;
1493 deferred_free_range(free_base_page,
1494 free_base_pfn, nr_to_free);
1495 free_base_page = NULL;
1496 free_base_pfn = nr_to_free = 0;
1497
1498 page = pfn_to_page(pfn);
1499 cond_resched();
1500 }
1501
1502 if (page->flags) {
1503 VM_BUG_ON(page_zone(page) != zone);
1504 goto free_range;
1505 }
1506
1507 __init_single_page(page, pfn, zid, nid);
1508 if (!free_base_page) {
1509 free_base_page = page;
1510 free_base_pfn = pfn;
1511 nr_to_free = 0;
1512 }
1513 nr_to_free++;
1514
1515 /* Where possible, batch up pages for a single free */
1516 continue;
1517 free_range:
1518 /* Free the current block of pages to allocator */
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page, free_base_pfn,
1521 nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
1524 }
1525
1526 first_init_pfn = max(end_pfn, first_init_pfn);
1527 }
1528
1529 /* Sanity check that the next zone really is unpopulated */
1530 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1531
1532 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1533 jiffies_to_msecs(jiffies - start));
1534
1535 pgdat_init_report_one_done();
1536 return 0;
1537 }
1538 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1539
1540 void __init page_alloc_init_late(void)
1541 {
1542 struct zone *zone;
1543
1544 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1545 int nid;
1546
1547 /* There will be num_node_state(N_MEMORY) threads */
1548 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1549 for_each_node_state(nid, N_MEMORY) {
1550 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1551 }
1552
1553 /* Block until all are initialised */
1554 wait_for_completion(&pgdat_init_all_done_comp);
1555
1556 /* Reinit limits that are based on free pages after the kernel is up */
1557 files_maxfiles_init();
1558 #endif
1559
1560 for_each_populated_zone(zone)
1561 set_zone_contiguous(zone);
1562 }
1563
1564 #ifdef CONFIG_CMA
1565 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1566 void __init init_cma_reserved_pageblock(struct page *page)
1567 {
1568 unsigned i = pageblock_nr_pages;
1569 struct page *p = page;
1570
1571 do {
1572 __ClearPageReserved(p);
1573 set_page_count(p, 0);
1574 } while (++p, --i);
1575
1576 set_pageblock_migratetype(page, MIGRATE_CMA);
1577
1578 if (pageblock_order >= MAX_ORDER) {
1579 i = pageblock_nr_pages;
1580 p = page;
1581 do {
1582 set_page_refcounted(p);
1583 __free_pages(p, MAX_ORDER - 1);
1584 p += MAX_ORDER_NR_PAGES;
1585 } while (i -= MAX_ORDER_NR_PAGES);
1586 } else {
1587 set_page_refcounted(page);
1588 __free_pages(page, pageblock_order);
1589 }
1590
1591 adjust_managed_page_count(page, pageblock_nr_pages);
1592 }
1593 #endif
1594
1595 /*
1596 * The order of subdivision here is critical for the IO subsystem.
1597 * Please do not alter this order without good reasons and regression
1598 * testing. Specifically, as large blocks of memory are subdivided,
1599 * the order in which smaller blocks are delivered depends on the order
1600 * they're subdivided in this function. This is the primary factor
1601 * influencing the order in which pages are delivered to the IO
1602 * subsystem according to empirical testing, and this is also justified
1603 * by considering the behavior of a buddy system containing a single
1604 * large block of memory acted on by a series of small allocations.
1605 * This behavior is a critical factor in sglist merging's success.
1606 *
1607 * -- nyc
1608 */
1609 static inline void expand(struct zone *zone, struct page *page,
1610 int low, int high, struct free_area *area,
1611 int migratetype)
1612 {
1613 unsigned long size = 1 << high;
1614
1615 while (high > low) {
1616 area--;
1617 high--;
1618 size >>= 1;
1619 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1620
1621 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1622 debug_guardpage_enabled() &&
1623 high < debug_guardpage_minorder()) {
1624 /*
1625 * Mark as guard pages (or page), that will allow to
1626 * merge back to allocator when buddy will be freed.
1627 * Corresponding page table entries will not be touched,
1628 * pages will stay not present in virtual address space
1629 */
1630 set_page_guard(zone, &page[size], high, migratetype);
1631 continue;
1632 }
1633 list_add(&page[size].lru, &area->free_list[migratetype]);
1634 area->nr_free++;
1635 set_page_order(&page[size], high);
1636 }
1637 }
1638
1639 static void check_new_page_bad(struct page *page)
1640 {
1641 const char *bad_reason = NULL;
1642 unsigned long bad_flags = 0;
1643
1644 if (unlikely(atomic_read(&page->_mapcount) != -1))
1645 bad_reason = "nonzero mapcount";
1646 if (unlikely(page->mapping != NULL))
1647 bad_reason = "non-NULL mapping";
1648 if (unlikely(page_ref_count(page) != 0))
1649 bad_reason = "nonzero _count";
1650 if (unlikely(page->flags & __PG_HWPOISON)) {
1651 bad_reason = "HWPoisoned (hardware-corrupted)";
1652 bad_flags = __PG_HWPOISON;
1653 /* Don't complain about hwpoisoned pages */
1654 page_mapcount_reset(page); /* remove PageBuddy */
1655 return;
1656 }
1657 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1658 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1659 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1660 }
1661 #ifdef CONFIG_MEMCG
1662 if (unlikely(page->mem_cgroup))
1663 bad_reason = "page still charged to cgroup";
1664 #endif
1665 bad_page(page, bad_reason, bad_flags);
1666 }
1667
1668 /*
1669 * This page is about to be returned from the page allocator
1670 */
1671 static inline int check_new_page(struct page *page)
1672 {
1673 if (likely(page_expected_state(page,
1674 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1675 return 0;
1676
1677 check_new_page_bad(page);
1678 return 1;
1679 }
1680
1681 static inline bool free_pages_prezeroed(bool poisoned)
1682 {
1683 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1684 page_poisoning_enabled() && poisoned;
1685 }
1686
1687 #ifdef CONFIG_DEBUG_VM
1688 static bool check_pcp_refill(struct page *page)
1689 {
1690 return false;
1691 }
1692
1693 static bool check_new_pcp(struct page *page)
1694 {
1695 return check_new_page(page);
1696 }
1697 #else
1698 static bool check_pcp_refill(struct page *page)
1699 {
1700 return check_new_page(page);
1701 }
1702 static bool check_new_pcp(struct page *page)
1703 {
1704 return false;
1705 }
1706 #endif /* CONFIG_DEBUG_VM */
1707
1708 static bool check_new_pages(struct page *page, unsigned int order)
1709 {
1710 int i;
1711 for (i = 0; i < (1 << order); i++) {
1712 struct page *p = page + i;
1713
1714 if (unlikely(check_new_page(p)))
1715 return true;
1716 }
1717
1718 return false;
1719 }
1720
1721 inline void post_alloc_hook(struct page *page, unsigned int order,
1722 gfp_t gfp_flags)
1723 {
1724 set_page_private(page, 0);
1725 set_page_refcounted(page);
1726
1727 arch_alloc_page(page, order);
1728 kernel_map_pages(page, 1 << order, 1);
1729 kernel_poison_pages(page, 1 << order, 1);
1730 kasan_alloc_pages(page, order);
1731 set_page_owner(page, order, gfp_flags);
1732 }
1733
1734 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1735 unsigned int alloc_flags)
1736 {
1737 int i;
1738 bool poisoned = true;
1739
1740 for (i = 0; i < (1 << order); i++) {
1741 struct page *p = page + i;
1742 if (poisoned)
1743 poisoned &= page_is_poisoned(p);
1744 }
1745
1746 post_alloc_hook(page, order, gfp_flags);
1747
1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
1751
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1754
1755 /*
1756 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1757 * allocate the page. The expectation is that the caller is taking
1758 * steps that will free more memory. The caller should avoid the page
1759 * being used for !PFMEMALLOC purposes.
1760 */
1761 if (alloc_flags & ALLOC_NO_WATERMARKS)
1762 set_page_pfmemalloc(page);
1763 else
1764 clear_page_pfmemalloc(page);
1765 }
1766
1767 /*
1768 * Go through the free lists for the given migratetype and remove
1769 * the smallest available page from the freelists
1770 */
1771 static inline
1772 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1773 int migratetype)
1774 {
1775 unsigned int current_order;
1776 struct free_area *area;
1777 struct page *page;
1778
1779 /* Find a page of the appropriate size in the preferred list */
1780 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1781 area = &(zone->free_area[current_order]);
1782 page = list_first_entry_or_null(&area->free_list[migratetype],
1783 struct page, lru);
1784 if (!page)
1785 continue;
1786 list_del(&page->lru);
1787 rmv_page_order(page);
1788 area->nr_free--;
1789 expand(zone, page, order, current_order, area, migratetype);
1790 set_pcppage_migratetype(page, migratetype);
1791 return page;
1792 }
1793
1794 return NULL;
1795 }
1796
1797
1798 /*
1799 * This array describes the order lists are fallen back to when
1800 * the free lists for the desirable migrate type are depleted
1801 */
1802 static int fallbacks[MIGRATE_TYPES][4] = {
1803 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1806 #ifdef CONFIG_CMA
1807 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1808 #endif
1809 #ifdef CONFIG_MEMORY_ISOLATION
1810 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1811 #endif
1812 };
1813
1814 #ifdef CONFIG_CMA
1815 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1816 unsigned int order)
1817 {
1818 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819 }
1820 #else
1821 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order) { return NULL; }
1823 #endif
1824
1825 /*
1826 * Move the free pages in a range to the free lists of the requested type.
1827 * Note that start_page and end_pages are not aligned on a pageblock
1828 * boundary. If alignment is required, use move_freepages_block()
1829 */
1830 int move_freepages(struct zone *zone,
1831 struct page *start_page, struct page *end_page,
1832 int migratetype)
1833 {
1834 struct page *page;
1835 unsigned int order;
1836 int pages_moved = 0;
1837
1838 #ifndef CONFIG_HOLES_IN_ZONE
1839 /*
1840 * page_zone is not safe to call in this context when
1841 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1842 * anyway as we check zone boundaries in move_freepages_block().
1843 * Remove at a later date when no bug reports exist related to
1844 * grouping pages by mobility
1845 */
1846 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1847 #endif
1848
1849 for (page = start_page; page <= end_page;) {
1850 /* Make sure we are not inadvertently changing nodes */
1851 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1852
1853 if (!pfn_valid_within(page_to_pfn(page))) {
1854 page++;
1855 continue;
1856 }
1857
1858 if (!PageBuddy(page)) {
1859 page++;
1860 continue;
1861 }
1862
1863 order = page_order(page);
1864 list_move(&page->lru,
1865 &zone->free_area[order].free_list[migratetype]);
1866 page += 1 << order;
1867 pages_moved += 1 << order;
1868 }
1869
1870 return pages_moved;
1871 }
1872
1873 int move_freepages_block(struct zone *zone, struct page *page,
1874 int migratetype)
1875 {
1876 unsigned long start_pfn, end_pfn;
1877 struct page *start_page, *end_page;
1878
1879 start_pfn = page_to_pfn(page);
1880 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1881 start_page = pfn_to_page(start_pfn);
1882 end_page = start_page + pageblock_nr_pages - 1;
1883 end_pfn = start_pfn + pageblock_nr_pages - 1;
1884
1885 /* Do not cross zone boundaries */
1886 if (!zone_spans_pfn(zone, start_pfn))
1887 start_page = page;
1888 if (!zone_spans_pfn(zone, end_pfn))
1889 return 0;
1890
1891 return move_freepages(zone, start_page, end_page, migratetype);
1892 }
1893
1894 static void change_pageblock_range(struct page *pageblock_page,
1895 int start_order, int migratetype)
1896 {
1897 int nr_pageblocks = 1 << (start_order - pageblock_order);
1898
1899 while (nr_pageblocks--) {
1900 set_pageblock_migratetype(pageblock_page, migratetype);
1901 pageblock_page += pageblock_nr_pages;
1902 }
1903 }
1904
1905 /*
1906 * When we are falling back to another migratetype during allocation, try to
1907 * steal extra free pages from the same pageblocks to satisfy further
1908 * allocations, instead of polluting multiple pageblocks.
1909 *
1910 * If we are stealing a relatively large buddy page, it is likely there will
1911 * be more free pages in the pageblock, so try to steal them all. For
1912 * reclaimable and unmovable allocations, we steal regardless of page size,
1913 * as fragmentation caused by those allocations polluting movable pageblocks
1914 * is worse than movable allocations stealing from unmovable and reclaimable
1915 * pageblocks.
1916 */
1917 static bool can_steal_fallback(unsigned int order, int start_mt)
1918 {
1919 /*
1920 * Leaving this order check is intended, although there is
1921 * relaxed order check in next check. The reason is that
1922 * we can actually steal whole pageblock if this condition met,
1923 * but, below check doesn't guarantee it and that is just heuristic
1924 * so could be changed anytime.
1925 */
1926 if (order >= pageblock_order)
1927 return true;
1928
1929 if (order >= pageblock_order / 2 ||
1930 start_mt == MIGRATE_RECLAIMABLE ||
1931 start_mt == MIGRATE_UNMOVABLE ||
1932 page_group_by_mobility_disabled)
1933 return true;
1934
1935 return false;
1936 }
1937
1938 /*
1939 * This function implements actual steal behaviour. If order is large enough,
1940 * we can steal whole pageblock. If not, we first move freepages in this
1941 * pageblock and check whether half of pages are moved or not. If half of
1942 * pages are moved, we can change migratetype of pageblock and permanently
1943 * use it's pages as requested migratetype in the future.
1944 */
1945 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1946 int start_type)
1947 {
1948 unsigned int current_order = page_order(page);
1949 int pages;
1950
1951 /* Take ownership for orders >= pageblock_order */
1952 if (current_order >= pageblock_order) {
1953 change_pageblock_range(page, current_order, start_type);
1954 return;
1955 }
1956
1957 pages = move_freepages_block(zone, page, start_type);
1958
1959 /* Claim the whole block if over half of it is free */
1960 if (pages >= (1 << (pageblock_order-1)) ||
1961 page_group_by_mobility_disabled)
1962 set_pageblock_migratetype(page, start_type);
1963 }
1964
1965 /*
1966 * Check whether there is a suitable fallback freepage with requested order.
1967 * If only_stealable is true, this function returns fallback_mt only if
1968 * we can steal other freepages all together. This would help to reduce
1969 * fragmentation due to mixed migratetype pages in one pageblock.
1970 */
1971 int find_suitable_fallback(struct free_area *area, unsigned int order,
1972 int migratetype, bool only_stealable, bool *can_steal)
1973 {
1974 int i;
1975 int fallback_mt;
1976
1977 if (area->nr_free == 0)
1978 return -1;
1979
1980 *can_steal = false;
1981 for (i = 0;; i++) {
1982 fallback_mt = fallbacks[migratetype][i];
1983 if (fallback_mt == MIGRATE_TYPES)
1984 break;
1985
1986 if (list_empty(&area->free_list[fallback_mt]))
1987 continue;
1988
1989 if (can_steal_fallback(order, migratetype))
1990 *can_steal = true;
1991
1992 if (!only_stealable)
1993 return fallback_mt;
1994
1995 if (*can_steal)
1996 return fallback_mt;
1997 }
1998
1999 return -1;
2000 }
2001
2002 /*
2003 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2004 * there are no empty page blocks that contain a page with a suitable order
2005 */
2006 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2007 unsigned int alloc_order)
2008 {
2009 int mt;
2010 unsigned long max_managed, flags;
2011
2012 /*
2013 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2014 * Check is race-prone but harmless.
2015 */
2016 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2017 if (zone->nr_reserved_highatomic >= max_managed)
2018 return;
2019
2020 spin_lock_irqsave(&zone->lock, flags);
2021
2022 /* Recheck the nr_reserved_highatomic limit under the lock */
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 goto out_unlock;
2025
2026 /* Yoink! */
2027 mt = get_pageblock_migratetype(page);
2028 if (mt != MIGRATE_HIGHATOMIC &&
2029 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2030 zone->nr_reserved_highatomic += pageblock_nr_pages;
2031 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2032 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2033 }
2034
2035 out_unlock:
2036 spin_unlock_irqrestore(&zone->lock, flags);
2037 }
2038
2039 /*
2040 * Used when an allocation is about to fail under memory pressure. This
2041 * potentially hurts the reliability of high-order allocations when under
2042 * intense memory pressure but failed atomic allocations should be easier
2043 * to recover from than an OOM.
2044 */
2045 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046 {
2047 struct zonelist *zonelist = ac->zonelist;
2048 unsigned long flags;
2049 struct zoneref *z;
2050 struct zone *zone;
2051 struct page *page;
2052 int order;
2053
2054 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2055 ac->nodemask) {
2056 /* Preserve at least one pageblock */
2057 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2058 continue;
2059
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < MAX_ORDER; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063
2064 page = list_first_entry_or_null(
2065 &area->free_list[MIGRATE_HIGHATOMIC],
2066 struct page, lru);
2067 if (!page)
2068 continue;
2069
2070 /*
2071 * It should never happen but changes to locking could
2072 * inadvertently allow a per-cpu drain to add pages
2073 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2074 * and watch for underflows.
2075 */
2076 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2077 zone->nr_reserved_highatomic);
2078
2079 /*
2080 * Convert to ac->migratetype and avoid the normal
2081 * pageblock stealing heuristics. Minimally, the caller
2082 * is doing the work and needs the pages. More
2083 * importantly, if the block was always converted to
2084 * MIGRATE_UNMOVABLE or another type then the number
2085 * of pageblocks that cannot be completely freed
2086 * may increase.
2087 */
2088 set_pageblock_migratetype(page, ac->migratetype);
2089 move_freepages_block(zone, page, ac->migratetype);
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091 return;
2092 }
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 }
2095 }
2096
2097 /* Remove an element from the buddy allocator from the fallback list */
2098 static inline struct page *
2099 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2100 {
2101 struct free_area *area;
2102 unsigned int current_order;
2103 struct page *page;
2104 int fallback_mt;
2105 bool can_steal;
2106
2107 /* Find the largest possible block of pages in the other list */
2108 for (current_order = MAX_ORDER-1;
2109 current_order >= order && current_order <= MAX_ORDER-1;
2110 --current_order) {
2111 area = &(zone->free_area[current_order]);
2112 fallback_mt = find_suitable_fallback(area, current_order,
2113 start_migratetype, false, &can_steal);
2114 if (fallback_mt == -1)
2115 continue;
2116
2117 page = list_first_entry(&area->free_list[fallback_mt],
2118 struct page, lru);
2119 if (can_steal)
2120 steal_suitable_fallback(zone, page, start_migratetype);
2121
2122 /* Remove the page from the freelists */
2123 area->nr_free--;
2124 list_del(&page->lru);
2125 rmv_page_order(page);
2126
2127 expand(zone, page, order, current_order, area,
2128 start_migratetype);
2129 /*
2130 * The pcppage_migratetype may differ from pageblock's
2131 * migratetype depending on the decisions in
2132 * find_suitable_fallback(). This is OK as long as it does not
2133 * differ for MIGRATE_CMA pageblocks. Those can be used as
2134 * fallback only via special __rmqueue_cma_fallback() function
2135 */
2136 set_pcppage_migratetype(page, start_migratetype);
2137
2138 trace_mm_page_alloc_extfrag(page, order, current_order,
2139 start_migratetype, fallback_mt);
2140
2141 return page;
2142 }
2143
2144 return NULL;
2145 }
2146
2147 /*
2148 * Do the hard work of removing an element from the buddy allocator.
2149 * Call me with the zone->lock already held.
2150 */
2151 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2152 int migratetype)
2153 {
2154 struct page *page;
2155
2156 page = __rmqueue_smallest(zone, order, migratetype);
2157 if (unlikely(!page)) {
2158 if (migratetype == MIGRATE_MOVABLE)
2159 page = __rmqueue_cma_fallback(zone, order);
2160
2161 if (!page)
2162 page = __rmqueue_fallback(zone, order, migratetype);
2163 }
2164
2165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2166 return page;
2167 }
2168
2169 /*
2170 * Obtain a specified number of elements from the buddy allocator, all under
2171 * a single hold of the lock, for efficiency. Add them to the supplied list.
2172 * Returns the number of new pages which were placed at *list.
2173 */
2174 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2175 unsigned long count, struct list_head *list,
2176 int migratetype, bool cold)
2177 {
2178 int i;
2179
2180 spin_lock(&zone->lock);
2181 for (i = 0; i < count; ++i) {
2182 struct page *page = __rmqueue(zone, order, migratetype);
2183 if (unlikely(page == NULL))
2184 break;
2185
2186 if (unlikely(check_pcp_refill(page)))
2187 continue;
2188
2189 /*
2190 * Split buddy pages returned by expand() are received here
2191 * in physical page order. The page is added to the callers and
2192 * list and the list head then moves forward. From the callers
2193 * perspective, the linked list is ordered by page number in
2194 * some conditions. This is useful for IO devices that can
2195 * merge IO requests if the physical pages are ordered
2196 * properly.
2197 */
2198 if (likely(!cold))
2199 list_add(&page->lru, list);
2200 else
2201 list_add_tail(&page->lru, list);
2202 list = &page->lru;
2203 if (is_migrate_cma(get_pcppage_migratetype(page)))
2204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2205 -(1 << order));
2206 }
2207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2208 spin_unlock(&zone->lock);
2209 return i;
2210 }
2211
2212 #ifdef CONFIG_NUMA
2213 /*
2214 * Called from the vmstat counter updater to drain pagesets of this
2215 * currently executing processor on remote nodes after they have
2216 * expired.
2217 *
2218 * Note that this function must be called with the thread pinned to
2219 * a single processor.
2220 */
2221 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2222 {
2223 unsigned long flags;
2224 int to_drain, batch;
2225
2226 local_irq_save(flags);
2227 batch = READ_ONCE(pcp->batch);
2228 to_drain = min(pcp->count, batch);
2229 if (to_drain > 0) {
2230 free_pcppages_bulk(zone, to_drain, pcp);
2231 pcp->count -= to_drain;
2232 }
2233 local_irq_restore(flags);
2234 }
2235 #endif
2236
2237 /*
2238 * Drain pcplists of the indicated processor and zone.
2239 *
2240 * The processor must either be the current processor and the
2241 * thread pinned to the current processor or a processor that
2242 * is not online.
2243 */
2244 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2245 {
2246 unsigned long flags;
2247 struct per_cpu_pageset *pset;
2248 struct per_cpu_pages *pcp;
2249
2250 local_irq_save(flags);
2251 pset = per_cpu_ptr(zone->pageset, cpu);
2252
2253 pcp = &pset->pcp;
2254 if (pcp->count) {
2255 free_pcppages_bulk(zone, pcp->count, pcp);
2256 pcp->count = 0;
2257 }
2258 local_irq_restore(flags);
2259 }
2260
2261 /*
2262 * Drain pcplists of all zones on the indicated processor.
2263 *
2264 * The processor must either be the current processor and the
2265 * thread pinned to the current processor or a processor that
2266 * is not online.
2267 */
2268 static void drain_pages(unsigned int cpu)
2269 {
2270 struct zone *zone;
2271
2272 for_each_populated_zone(zone) {
2273 drain_pages_zone(cpu, zone);
2274 }
2275 }
2276
2277 /*
2278 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2279 *
2280 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2281 * the single zone's pages.
2282 */
2283 void drain_local_pages(struct zone *zone)
2284 {
2285 int cpu = smp_processor_id();
2286
2287 if (zone)
2288 drain_pages_zone(cpu, zone);
2289 else
2290 drain_pages(cpu);
2291 }
2292
2293 /*
2294 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 *
2296 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 *
2298 * Note that this code is protected against sending an IPI to an offline
2299 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2300 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2301 * nothing keeps CPUs from showing up after we populated the cpumask and
2302 * before the call to on_each_cpu_mask().
2303 */
2304 void drain_all_pages(struct zone *zone)
2305 {
2306 int cpu;
2307
2308 /*
2309 * Allocate in the BSS so we wont require allocation in
2310 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 */
2312 static cpumask_t cpus_with_pcps;
2313
2314 /*
2315 * We don't care about racing with CPU hotplug event
2316 * as offline notification will cause the notified
2317 * cpu to drain that CPU pcps and on_each_cpu_mask
2318 * disables preemption as part of its processing
2319 */
2320 for_each_online_cpu(cpu) {
2321 struct per_cpu_pageset *pcp;
2322 struct zone *z;
2323 bool has_pcps = false;
2324
2325 if (zone) {
2326 pcp = per_cpu_ptr(zone->pageset, cpu);
2327 if (pcp->pcp.count)
2328 has_pcps = true;
2329 } else {
2330 for_each_populated_zone(z) {
2331 pcp = per_cpu_ptr(z->pageset, cpu);
2332 if (pcp->pcp.count) {
2333 has_pcps = true;
2334 break;
2335 }
2336 }
2337 }
2338
2339 if (has_pcps)
2340 cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 else
2342 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 }
2344 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2345 zone, 1);
2346 }
2347
2348 #ifdef CONFIG_HIBERNATION
2349
2350 void mark_free_pages(struct zone *zone)
2351 {
2352 unsigned long pfn, max_zone_pfn;
2353 unsigned long flags;
2354 unsigned int order, t;
2355 struct page *page;
2356
2357 if (zone_is_empty(zone))
2358 return;
2359
2360 spin_lock_irqsave(&zone->lock, flags);
2361
2362 max_zone_pfn = zone_end_pfn(zone);
2363 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2364 if (pfn_valid(pfn)) {
2365 page = pfn_to_page(pfn);
2366
2367 if (page_zone(page) != zone)
2368 continue;
2369
2370 if (!swsusp_page_is_forbidden(page))
2371 swsusp_unset_page_free(page);
2372 }
2373
2374 for_each_migratetype_order(order, t) {
2375 list_for_each_entry(page,
2376 &zone->free_area[order].free_list[t], lru) {
2377 unsigned long i;
2378
2379 pfn = page_to_pfn(page);
2380 for (i = 0; i < (1UL << order); i++)
2381 swsusp_set_page_free(pfn_to_page(pfn + i));
2382 }
2383 }
2384 spin_unlock_irqrestore(&zone->lock, flags);
2385 }
2386 #endif /* CONFIG_PM */
2387
2388 /*
2389 * Free a 0-order page
2390 * cold == true ? free a cold page : free a hot page
2391 */
2392 void free_hot_cold_page(struct page *page, bool cold)
2393 {
2394 struct zone *zone = page_zone(page);
2395 struct per_cpu_pages *pcp;
2396 unsigned long flags;
2397 unsigned long pfn = page_to_pfn(page);
2398 int migratetype;
2399
2400 if (!free_pcp_prepare(page))
2401 return;
2402
2403 migratetype = get_pfnblock_migratetype(page, pfn);
2404 set_pcppage_migratetype(page, migratetype);
2405 local_irq_save(flags);
2406 __count_vm_event(PGFREE);
2407
2408 /*
2409 * We only track unmovable, reclaimable and movable on pcp lists.
2410 * Free ISOLATE pages back to the allocator because they are being
2411 * offlined but treat RESERVE as movable pages so we can get those
2412 * areas back if necessary. Otherwise, we may have to free
2413 * excessively into the page allocator
2414 */
2415 if (migratetype >= MIGRATE_PCPTYPES) {
2416 if (unlikely(is_migrate_isolate(migratetype))) {
2417 free_one_page(zone, page, pfn, 0, migratetype);
2418 goto out;
2419 }
2420 migratetype = MIGRATE_MOVABLE;
2421 }
2422
2423 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2424 if (!cold)
2425 list_add(&page->lru, &pcp->lists[migratetype]);
2426 else
2427 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2428 pcp->count++;
2429 if (pcp->count >= pcp->high) {
2430 unsigned long batch = READ_ONCE(pcp->batch);
2431 free_pcppages_bulk(zone, batch, pcp);
2432 pcp->count -= batch;
2433 }
2434
2435 out:
2436 local_irq_restore(flags);
2437 }
2438
2439 /*
2440 * Free a list of 0-order pages
2441 */
2442 void free_hot_cold_page_list(struct list_head *list, bool cold)
2443 {
2444 struct page *page, *next;
2445
2446 list_for_each_entry_safe(page, next, list, lru) {
2447 trace_mm_page_free_batched(page, cold);
2448 free_hot_cold_page(page, cold);
2449 }
2450 }
2451
2452 /*
2453 * split_page takes a non-compound higher-order page, and splits it into
2454 * n (1<<order) sub-pages: page[0..n]
2455 * Each sub-page must be freed individually.
2456 *
2457 * Note: this is probably too low level an operation for use in drivers.
2458 * Please consult with lkml before using this in your driver.
2459 */
2460 void split_page(struct page *page, unsigned int order)
2461 {
2462 int i;
2463
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
2466
2467 #ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474 #endif
2475
2476 for (i = 1; i < (1 << order); i++)
2477 set_page_refcounted(page + i);
2478 split_page_owner(page, order);
2479 }
2480 EXPORT_SYMBOL_GPL(split_page);
2481
2482 int __isolate_free_page(struct page *page, unsigned int order)
2483 {
2484 unsigned long watermark;
2485 struct zone *zone;
2486 int mt;
2487
2488 BUG_ON(!PageBuddy(page));
2489
2490 zone = page_zone(page);
2491 mt = get_pageblock_migratetype(page);
2492
2493 if (!is_migrate_isolate(mt)) {
2494 /* Obey watermarks as if the page was being allocated */
2495 watermark = low_wmark_pages(zone) + (1 << order);
2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 return 0;
2498
2499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2500 }
2501
2502 /* Remove page from free list */
2503 list_del(&page->lru);
2504 zone->free_area[order].nr_free--;
2505 rmv_page_order(page);
2506
2507 /*
2508 * Set the pageblock if the isolated page is at least half of a
2509 * pageblock
2510 */
2511 if (order >= pageblock_order - 1) {
2512 struct page *endpage = page + (1 << order) - 1;
2513 for (; page < endpage; page += pageblock_nr_pages) {
2514 int mt = get_pageblock_migratetype(page);
2515 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2516 set_pageblock_migratetype(page,
2517 MIGRATE_MOVABLE);
2518 }
2519 }
2520
2521
2522 return 1UL << order;
2523 }
2524
2525 /*
2526 * Update NUMA hit/miss statistics
2527 *
2528 * Must be called with interrupts disabled.
2529 *
2530 * When __GFP_OTHER_NODE is set assume the node of the preferred
2531 * zone is the local node. This is useful for daemons who allocate
2532 * memory on behalf of other processes.
2533 */
2534 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2535 gfp_t flags)
2536 {
2537 #ifdef CONFIG_NUMA
2538 int local_nid = numa_node_id();
2539 enum zone_stat_item local_stat = NUMA_LOCAL;
2540
2541 if (unlikely(flags & __GFP_OTHER_NODE)) {
2542 local_stat = NUMA_OTHER;
2543 local_nid = preferred_zone->node;
2544 }
2545
2546 if (z->node == local_nid) {
2547 __inc_zone_state(z, NUMA_HIT);
2548 __inc_zone_state(z, local_stat);
2549 } else {
2550 __inc_zone_state(z, NUMA_MISS);
2551 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2552 }
2553 #endif
2554 }
2555
2556 /*
2557 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2558 */
2559 static inline
2560 struct page *buffered_rmqueue(struct zone *preferred_zone,
2561 struct zone *zone, unsigned int order,
2562 gfp_t gfp_flags, unsigned int alloc_flags,
2563 int migratetype)
2564 {
2565 unsigned long flags;
2566 struct page *page;
2567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2568
2569 if (likely(order == 0)) {
2570 struct per_cpu_pages *pcp;
2571 struct list_head *list;
2572
2573 local_irq_save(flags);
2574 do {
2575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2576 list = &pcp->lists[migratetype];
2577 if (list_empty(list)) {
2578 pcp->count += rmqueue_bulk(zone, 0,
2579 pcp->batch, list,
2580 migratetype, cold);
2581 if (unlikely(list_empty(list)))
2582 goto failed;
2583 }
2584
2585 if (cold)
2586 page = list_last_entry(list, struct page, lru);
2587 else
2588 page = list_first_entry(list, struct page, lru);
2589
2590 list_del(&page->lru);
2591 pcp->count--;
2592
2593 } while (check_new_pcp(page));
2594 } else {
2595 /*
2596 * We most definitely don't want callers attempting to
2597 * allocate greater than order-1 page units with __GFP_NOFAIL.
2598 */
2599 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2600 spin_lock_irqsave(&zone->lock, flags);
2601
2602 do {
2603 page = NULL;
2604 if (alloc_flags & ALLOC_HARDER) {
2605 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2606 if (page)
2607 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2608 }
2609 if (!page)
2610 page = __rmqueue(zone, order, migratetype);
2611 } while (page && check_new_pages(page, order));
2612 spin_unlock(&zone->lock);
2613 if (!page)
2614 goto failed;
2615 __mod_zone_freepage_state(zone, -(1 << order),
2616 get_pcppage_migratetype(page));
2617 }
2618
2619 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2620 zone_statistics(preferred_zone, zone, gfp_flags);
2621 local_irq_restore(flags);
2622
2623 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2624 return page;
2625
2626 failed:
2627 local_irq_restore(flags);
2628 return NULL;
2629 }
2630
2631 #ifdef CONFIG_FAIL_PAGE_ALLOC
2632
2633 static struct {
2634 struct fault_attr attr;
2635
2636 bool ignore_gfp_highmem;
2637 bool ignore_gfp_reclaim;
2638 u32 min_order;
2639 } fail_page_alloc = {
2640 .attr = FAULT_ATTR_INITIALIZER,
2641 .ignore_gfp_reclaim = true,
2642 .ignore_gfp_highmem = true,
2643 .min_order = 1,
2644 };
2645
2646 static int __init setup_fail_page_alloc(char *str)
2647 {
2648 return setup_fault_attr(&fail_page_alloc.attr, str);
2649 }
2650 __setup("fail_page_alloc=", setup_fail_page_alloc);
2651
2652 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2653 {
2654 if (order < fail_page_alloc.min_order)
2655 return false;
2656 if (gfp_mask & __GFP_NOFAIL)
2657 return false;
2658 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2659 return false;
2660 if (fail_page_alloc.ignore_gfp_reclaim &&
2661 (gfp_mask & __GFP_DIRECT_RECLAIM))
2662 return false;
2663
2664 return should_fail(&fail_page_alloc.attr, 1 << order);
2665 }
2666
2667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2668
2669 static int __init fail_page_alloc_debugfs(void)
2670 {
2671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2672 struct dentry *dir;
2673
2674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2675 &fail_page_alloc.attr);
2676 if (IS_ERR(dir))
2677 return PTR_ERR(dir);
2678
2679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2680 &fail_page_alloc.ignore_gfp_reclaim))
2681 goto fail;
2682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2683 &fail_page_alloc.ignore_gfp_highmem))
2684 goto fail;
2685 if (!debugfs_create_u32("min-order", mode, dir,
2686 &fail_page_alloc.min_order))
2687 goto fail;
2688
2689 return 0;
2690 fail:
2691 debugfs_remove_recursive(dir);
2692
2693 return -ENOMEM;
2694 }
2695
2696 late_initcall(fail_page_alloc_debugfs);
2697
2698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2699
2700 #else /* CONFIG_FAIL_PAGE_ALLOC */
2701
2702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2703 {
2704 return false;
2705 }
2706
2707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2708
2709 /*
2710 * Return true if free base pages are above 'mark'. For high-order checks it
2711 * will return true of the order-0 watermark is reached and there is at least
2712 * one free page of a suitable size. Checking now avoids taking the zone lock
2713 * to check in the allocation paths if no pages are free.
2714 */
2715 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2716 int classzone_idx, unsigned int alloc_flags,
2717 long free_pages)
2718 {
2719 long min = mark;
2720 int o;
2721 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2722
2723 /* free_pages may go negative - that's OK */
2724 free_pages -= (1 << order) - 1;
2725
2726 if (alloc_flags & ALLOC_HIGH)
2727 min -= min / 2;
2728
2729 /*
2730 * If the caller does not have rights to ALLOC_HARDER then subtract
2731 * the high-atomic reserves. This will over-estimate the size of the
2732 * atomic reserve but it avoids a search.
2733 */
2734 if (likely(!alloc_harder))
2735 free_pages -= z->nr_reserved_highatomic;
2736 else
2737 min -= min / 4;
2738
2739 #ifdef CONFIG_CMA
2740 /* If allocation can't use CMA areas don't use free CMA pages */
2741 if (!(alloc_flags & ALLOC_CMA))
2742 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2743 #endif
2744
2745 /*
2746 * Check watermarks for an order-0 allocation request. If these
2747 * are not met, then a high-order request also cannot go ahead
2748 * even if a suitable page happened to be free.
2749 */
2750 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2751 return false;
2752
2753 /* If this is an order-0 request then the watermark is fine */
2754 if (!order)
2755 return true;
2756
2757 /* For a high-order request, check at least one suitable page is free */
2758 for (o = order; o < MAX_ORDER; o++) {
2759 struct free_area *area = &z->free_area[o];
2760 int mt;
2761
2762 if (!area->nr_free)
2763 continue;
2764
2765 if (alloc_harder)
2766 return true;
2767
2768 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2769 if (!list_empty(&area->free_list[mt]))
2770 return true;
2771 }
2772
2773 #ifdef CONFIG_CMA
2774 if ((alloc_flags & ALLOC_CMA) &&
2775 !list_empty(&area->free_list[MIGRATE_CMA])) {
2776 return true;
2777 }
2778 #endif
2779 }
2780 return false;
2781 }
2782
2783 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2784 int classzone_idx, unsigned int alloc_flags)
2785 {
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 zone_page_state(z, NR_FREE_PAGES));
2788 }
2789
2790 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2791 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2792 {
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794 long cma_pages = 0;
2795
2796 #ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
2799 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2800 #endif
2801
2802 /*
2803 * Fast check for order-0 only. If this fails then the reserves
2804 * need to be calculated. There is a corner case where the check
2805 * passes but only the high-order atomic reserve are free. If
2806 * the caller is !atomic then it'll uselessly search the free
2807 * list. That corner case is then slower but it is harmless.
2808 */
2809 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2810 return true;
2811
2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 free_pages);
2814 }
2815
2816 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2817 unsigned long mark, int classzone_idx)
2818 {
2819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820
2821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2823
2824 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2825 free_pages);
2826 }
2827
2828 #ifdef CONFIG_NUMA
2829 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2830 {
2831 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2832 RECLAIM_DISTANCE;
2833 }
2834 #else /* CONFIG_NUMA */
2835 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2836 {
2837 return true;
2838 }
2839 #endif /* CONFIG_NUMA */
2840
2841 /*
2842 * get_page_from_freelist goes through the zonelist trying to allocate
2843 * a page.
2844 */
2845 static struct page *
2846 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2847 const struct alloc_context *ac)
2848 {
2849 struct zoneref *z = ac->preferred_zoneref;
2850 struct zone *zone;
2851 struct pglist_data *last_pgdat_dirty_limit = NULL;
2852
2853 /*
2854 * Scan zonelist, looking for a zone with enough free.
2855 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2856 */
2857 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2858 ac->nodemask) {
2859 struct page *page;
2860 unsigned long mark;
2861
2862 if (cpusets_enabled() &&
2863 (alloc_flags & ALLOC_CPUSET) &&
2864 !__cpuset_zone_allowed(zone, gfp_mask))
2865 continue;
2866 /*
2867 * When allocating a page cache page for writing, we
2868 * want to get it from a node that is within its dirty
2869 * limit, such that no single node holds more than its
2870 * proportional share of globally allowed dirty pages.
2871 * The dirty limits take into account the node's
2872 * lowmem reserves and high watermark so that kswapd
2873 * should be able to balance it without having to
2874 * write pages from its LRU list.
2875 *
2876 * XXX: For now, allow allocations to potentially
2877 * exceed the per-node dirty limit in the slowpath
2878 * (spread_dirty_pages unset) before going into reclaim,
2879 * which is important when on a NUMA setup the allowed
2880 * nodes are together not big enough to reach the
2881 * global limit. The proper fix for these situations
2882 * will require awareness of nodes in the
2883 * dirty-throttling and the flusher threads.
2884 */
2885 if (ac->spread_dirty_pages) {
2886 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2887 continue;
2888
2889 if (!node_dirty_ok(zone->zone_pgdat)) {
2890 last_pgdat_dirty_limit = zone->zone_pgdat;
2891 continue;
2892 }
2893 }
2894
2895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2896 if (!zone_watermark_fast(zone, order, mark,
2897 ac_classzone_idx(ac), alloc_flags)) {
2898 int ret;
2899
2900 /* Checked here to keep the fast path fast */
2901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2902 if (alloc_flags & ALLOC_NO_WATERMARKS)
2903 goto try_this_zone;
2904
2905 if (node_reclaim_mode == 0 ||
2906 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2907 continue;
2908
2909 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2910 switch (ret) {
2911 case NODE_RECLAIM_NOSCAN:
2912 /* did not scan */
2913 continue;
2914 case NODE_RECLAIM_FULL:
2915 /* scanned but unreclaimable */
2916 continue;
2917 default:
2918 /* did we reclaim enough */
2919 if (zone_watermark_ok(zone, order, mark,
2920 ac_classzone_idx(ac), alloc_flags))
2921 goto try_this_zone;
2922
2923 continue;
2924 }
2925 }
2926
2927 try_this_zone:
2928 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2929 gfp_mask, alloc_flags, ac->migratetype);
2930 if (page) {
2931 prep_new_page(page, order, gfp_mask, alloc_flags);
2932
2933 /*
2934 * If this is a high-order atomic allocation then check
2935 * if the pageblock should be reserved for the future
2936 */
2937 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2938 reserve_highatomic_pageblock(page, zone, order);
2939
2940 return page;
2941 }
2942 }
2943
2944 return NULL;
2945 }
2946
2947 /*
2948 * Large machines with many possible nodes should not always dump per-node
2949 * meminfo in irq context.
2950 */
2951 static inline bool should_suppress_show_mem(void)
2952 {
2953 bool ret = false;
2954
2955 #if NODES_SHIFT > 8
2956 ret = in_interrupt();
2957 #endif
2958 return ret;
2959 }
2960
2961 static DEFINE_RATELIMIT_STATE(nopage_rs,
2962 DEFAULT_RATELIMIT_INTERVAL,
2963 DEFAULT_RATELIMIT_BURST);
2964
2965 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2966 {
2967 unsigned int filter = SHOW_MEM_FILTER_NODES;
2968
2969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2970 debug_guardpage_minorder() > 0)
2971 return;
2972
2973 /*
2974 * This documents exceptions given to allocations in certain
2975 * contexts that are allowed to allocate outside current's set
2976 * of allowed nodes.
2977 */
2978 if (!(gfp_mask & __GFP_NOMEMALLOC))
2979 if (test_thread_flag(TIF_MEMDIE) ||
2980 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
2982 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2983 filter &= ~SHOW_MEM_FILTER_NODES;
2984
2985 if (fmt) {
2986 struct va_format vaf;
2987 va_list args;
2988
2989 va_start(args, fmt);
2990
2991 vaf.fmt = fmt;
2992 vaf.va = &args;
2993
2994 pr_warn("%pV", &vaf);
2995
2996 va_end(args);
2997 }
2998
2999 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3000 current->comm, order, gfp_mask, &gfp_mask);
3001 dump_stack();
3002 if (!should_suppress_show_mem())
3003 show_mem(filter);
3004 }
3005
3006 static inline struct page *
3007 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3008 const struct alloc_context *ac, unsigned long *did_some_progress)
3009 {
3010 struct oom_control oc = {
3011 .zonelist = ac->zonelist,
3012 .nodemask = ac->nodemask,
3013 .memcg = NULL,
3014 .gfp_mask = gfp_mask,
3015 .order = order,
3016 };
3017 struct page *page;
3018
3019 *did_some_progress = 0;
3020
3021 /*
3022 * Acquire the oom lock. If that fails, somebody else is
3023 * making progress for us.
3024 */
3025 if (!mutex_trylock(&oom_lock)) {
3026 *did_some_progress = 1;
3027 schedule_timeout_uninterruptible(1);
3028 return NULL;
3029 }
3030
3031 /*
3032 * Go through the zonelist yet one more time, keep very high watermark
3033 * here, this is only to catch a parallel oom killing, we must fail if
3034 * we're still under heavy pressure.
3035 */
3036 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3037 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3038 if (page)
3039 goto out;
3040
3041 if (!(gfp_mask & __GFP_NOFAIL)) {
3042 /* Coredumps can quickly deplete all memory reserves */
3043 if (current->flags & PF_DUMPCORE)
3044 goto out;
3045 /* The OOM killer will not help higher order allocs */
3046 if (order > PAGE_ALLOC_COSTLY_ORDER)
3047 goto out;
3048 /* The OOM killer does not needlessly kill tasks for lowmem */
3049 if (ac->high_zoneidx < ZONE_NORMAL)
3050 goto out;
3051 if (pm_suspended_storage())
3052 goto out;
3053 /*
3054 * XXX: GFP_NOFS allocations should rather fail than rely on
3055 * other request to make a forward progress.
3056 * We are in an unfortunate situation where out_of_memory cannot
3057 * do much for this context but let's try it to at least get
3058 * access to memory reserved if the current task is killed (see
3059 * out_of_memory). Once filesystems are ready to handle allocation
3060 * failures more gracefully we should just bail out here.
3061 */
3062
3063 /* The OOM killer may not free memory on a specific node */
3064 if (gfp_mask & __GFP_THISNODE)
3065 goto out;
3066 }
3067 /* Exhausted what can be done so it's blamo time */
3068 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3069 *did_some_progress = 1;
3070
3071 if (gfp_mask & __GFP_NOFAIL) {
3072 page = get_page_from_freelist(gfp_mask, order,
3073 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3074 /*
3075 * fallback to ignore cpuset restriction if our nodes
3076 * are depleted
3077 */
3078 if (!page)
3079 page = get_page_from_freelist(gfp_mask, order,
3080 ALLOC_NO_WATERMARKS, ac);
3081 }
3082 }
3083 out:
3084 mutex_unlock(&oom_lock);
3085 return page;
3086 }
3087
3088 /*
3089 * Maximum number of compaction retries wit a progress before OOM
3090 * killer is consider as the only way to move forward.
3091 */
3092 #define MAX_COMPACT_RETRIES 16
3093
3094 #ifdef CONFIG_COMPACTION
3095 /* Try memory compaction for high-order allocations before reclaim */
3096 static struct page *
3097 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3098 unsigned int alloc_flags, const struct alloc_context *ac,
3099 enum compact_priority prio, enum compact_result *compact_result)
3100 {
3101 struct page *page;
3102
3103 if (!order)
3104 return NULL;
3105
3106 current->flags |= PF_MEMALLOC;
3107 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3108 prio);
3109 current->flags &= ~PF_MEMALLOC;
3110
3111 if (*compact_result <= COMPACT_INACTIVE)
3112 return NULL;
3113
3114 /*
3115 * At least in one zone compaction wasn't deferred or skipped, so let's
3116 * count a compaction stall
3117 */
3118 count_vm_event(COMPACTSTALL);
3119
3120 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3121
3122 if (page) {
3123 struct zone *zone = page_zone(page);
3124
3125 zone->compact_blockskip_flush = false;
3126 compaction_defer_reset(zone, order, true);
3127 count_vm_event(COMPACTSUCCESS);
3128 return page;
3129 }
3130
3131 /*
3132 * It's bad if compaction run occurs and fails. The most likely reason
3133 * is that pages exist, but not enough to satisfy watermarks.
3134 */
3135 count_vm_event(COMPACTFAIL);
3136
3137 cond_resched();
3138
3139 return NULL;
3140 }
3141
3142 static inline bool
3143 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3144 enum compact_result compact_result,
3145 enum compact_priority *compact_priority,
3146 int compaction_retries)
3147 {
3148 int max_retries = MAX_COMPACT_RETRIES;
3149
3150 if (!order)
3151 return false;
3152
3153 /*
3154 * compaction considers all the zone as desperately out of memory
3155 * so it doesn't really make much sense to retry except when the
3156 * failure could be caused by insufficient priority
3157 */
3158 if (compaction_failed(compact_result)) {
3159 if (*compact_priority > MIN_COMPACT_PRIORITY) {
3160 (*compact_priority)--;
3161 return true;
3162 }
3163 return false;
3164 }
3165
3166 /*
3167 * make sure the compaction wasn't deferred or didn't bail out early
3168 * due to locks contention before we declare that we should give up.
3169 * But do not retry if the given zonelist is not suitable for
3170 * compaction.
3171 */
3172 if (compaction_withdrawn(compact_result))
3173 return compaction_zonelist_suitable(ac, order, alloc_flags);
3174
3175 /*
3176 * !costly requests are much more important than __GFP_REPEAT
3177 * costly ones because they are de facto nofail and invoke OOM
3178 * killer to move on while costly can fail and users are ready
3179 * to cope with that. 1/4 retries is rather arbitrary but we
3180 * would need much more detailed feedback from compaction to
3181 * make a better decision.
3182 */
3183 if (order > PAGE_ALLOC_COSTLY_ORDER)
3184 max_retries /= 4;
3185 if (compaction_retries <= max_retries)
3186 return true;
3187
3188 return false;
3189 }
3190 #else
3191 static inline struct page *
3192 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3193 unsigned int alloc_flags, const struct alloc_context *ac,
3194 enum compact_priority prio, enum compact_result *compact_result)
3195 {
3196 *compact_result = COMPACT_SKIPPED;
3197 return NULL;
3198 }
3199
3200 static inline bool
3201 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3202 enum compact_result compact_result,
3203 enum compact_priority *compact_priority,
3204 int compaction_retries)
3205 {
3206 struct zone *zone;
3207 struct zoneref *z;
3208
3209 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3210 return false;
3211
3212 /*
3213 * There are setups with compaction disabled which would prefer to loop
3214 * inside the allocator rather than hit the oom killer prematurely.
3215 * Let's give them a good hope and keep retrying while the order-0
3216 * watermarks are OK.
3217 */
3218 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3219 ac->nodemask) {
3220 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3221 ac_classzone_idx(ac), alloc_flags))
3222 return true;
3223 }
3224 return false;
3225 }
3226 #endif /* CONFIG_COMPACTION */
3227
3228 /* Perform direct synchronous page reclaim */
3229 static int
3230 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3231 const struct alloc_context *ac)
3232 {
3233 struct reclaim_state reclaim_state;
3234 int progress;
3235
3236 cond_resched();
3237
3238 /* We now go into synchronous reclaim */
3239 cpuset_memory_pressure_bump();
3240 current->flags |= PF_MEMALLOC;
3241 lockdep_set_current_reclaim_state(gfp_mask);
3242 reclaim_state.reclaimed_slab = 0;
3243 current->reclaim_state = &reclaim_state;
3244
3245 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3246 ac->nodemask);
3247
3248 current->reclaim_state = NULL;
3249 lockdep_clear_current_reclaim_state();
3250 current->flags &= ~PF_MEMALLOC;
3251
3252 cond_resched();
3253
3254 return progress;
3255 }
3256
3257 /* The really slow allocator path where we enter direct reclaim */
3258 static inline struct page *
3259 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3260 unsigned int alloc_flags, const struct alloc_context *ac,
3261 unsigned long *did_some_progress)
3262 {
3263 struct page *page = NULL;
3264 bool drained = false;
3265
3266 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3267 if (unlikely(!(*did_some_progress)))
3268 return NULL;
3269
3270 retry:
3271 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3272
3273 /*
3274 * If an allocation failed after direct reclaim, it could be because
3275 * pages are pinned on the per-cpu lists or in high alloc reserves.
3276 * Shrink them them and try again
3277 */
3278 if (!page && !drained) {
3279 unreserve_highatomic_pageblock(ac);
3280 drain_all_pages(NULL);
3281 drained = true;
3282 goto retry;
3283 }
3284
3285 return page;
3286 }
3287
3288 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3289 {
3290 struct zoneref *z;
3291 struct zone *zone;
3292 pg_data_t *last_pgdat = NULL;
3293
3294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3295 ac->high_zoneidx, ac->nodemask) {
3296 if (last_pgdat != zone->zone_pgdat)
3297 wakeup_kswapd(zone, order, ac->high_zoneidx);
3298 last_pgdat = zone->zone_pgdat;
3299 }
3300 }
3301
3302 static inline unsigned int
3303 gfp_to_alloc_flags(gfp_t gfp_mask)
3304 {
3305 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3306
3307 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3308 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3309
3310 /*
3311 * The caller may dip into page reserves a bit more if the caller
3312 * cannot run direct reclaim, or if the caller has realtime scheduling
3313 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3314 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3315 */
3316 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3317
3318 if (gfp_mask & __GFP_ATOMIC) {
3319 /*
3320 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3321 * if it can't schedule.
3322 */
3323 if (!(gfp_mask & __GFP_NOMEMALLOC))
3324 alloc_flags |= ALLOC_HARDER;
3325 /*
3326 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3327 * comment for __cpuset_node_allowed().
3328 */
3329 alloc_flags &= ~ALLOC_CPUSET;
3330 } else if (unlikely(rt_task(current)) && !in_interrupt())
3331 alloc_flags |= ALLOC_HARDER;
3332
3333 #ifdef CONFIG_CMA
3334 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3335 alloc_flags |= ALLOC_CMA;
3336 #endif
3337 return alloc_flags;
3338 }
3339
3340 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3341 {
3342 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3343 return false;
3344
3345 if (gfp_mask & __GFP_MEMALLOC)
3346 return true;
3347 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3348 return true;
3349 if (!in_interrupt() &&
3350 ((current->flags & PF_MEMALLOC) ||
3351 unlikely(test_thread_flag(TIF_MEMDIE))))
3352 return true;
3353
3354 return false;
3355 }
3356
3357 /*
3358 * Maximum number of reclaim retries without any progress before OOM killer
3359 * is consider as the only way to move forward.
3360 */
3361 #define MAX_RECLAIM_RETRIES 16
3362
3363 /*
3364 * Checks whether it makes sense to retry the reclaim to make a forward progress
3365 * for the given allocation request.
3366 * The reclaim feedback represented by did_some_progress (any progress during
3367 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3368 * any progress in a row) is considered as well as the reclaimable pages on the
3369 * applicable zone list (with a backoff mechanism which is a function of
3370 * no_progress_loops).
3371 *
3372 * Returns true if a retry is viable or false to enter the oom path.
3373 */
3374 static inline bool
3375 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3376 struct alloc_context *ac, int alloc_flags,
3377 bool did_some_progress, int no_progress_loops)
3378 {
3379 struct zone *zone;
3380 struct zoneref *z;
3381
3382 /*
3383 * Make sure we converge to OOM if we cannot make any progress
3384 * several times in the row.
3385 */
3386 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3387 return false;
3388
3389 /*
3390 * Keep reclaiming pages while there is a chance this will lead
3391 * somewhere. If none of the target zones can satisfy our allocation
3392 * request even if all reclaimable pages are considered then we are
3393 * screwed and have to go OOM.
3394 */
3395 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3396 ac->nodemask) {
3397 unsigned long available;
3398 unsigned long reclaimable;
3399
3400 available = reclaimable = zone_reclaimable_pages(zone);
3401 available -= DIV_ROUND_UP(no_progress_loops * available,
3402 MAX_RECLAIM_RETRIES);
3403 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3404
3405 /*
3406 * Would the allocation succeed if we reclaimed the whole
3407 * available?
3408 */
3409 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3410 ac_classzone_idx(ac), alloc_flags, available)) {
3411 /*
3412 * If we didn't make any progress and have a lot of
3413 * dirty + writeback pages then we should wait for
3414 * an IO to complete to slow down the reclaim and
3415 * prevent from pre mature OOM
3416 */
3417 if (!did_some_progress) {
3418 unsigned long write_pending;
3419
3420 write_pending = zone_page_state_snapshot(zone,
3421 NR_ZONE_WRITE_PENDING);
3422
3423 if (2 * write_pending > reclaimable) {
3424 congestion_wait(BLK_RW_ASYNC, HZ/10);
3425 return true;
3426 }
3427 }
3428
3429 /*
3430 * Memory allocation/reclaim might be called from a WQ
3431 * context and the current implementation of the WQ
3432 * concurrency control doesn't recognize that
3433 * a particular WQ is congested if the worker thread is
3434 * looping without ever sleeping. Therefore we have to
3435 * do a short sleep here rather than calling
3436 * cond_resched().
3437 */
3438 if (current->flags & PF_WQ_WORKER)
3439 schedule_timeout_uninterruptible(1);
3440 else
3441 cond_resched();
3442
3443 return true;
3444 }
3445 }
3446
3447 return false;
3448 }
3449
3450 static inline struct page *
3451 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3452 struct alloc_context *ac)
3453 {
3454 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3455 struct page *page = NULL;
3456 unsigned int alloc_flags;
3457 unsigned long did_some_progress;
3458 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3459 enum compact_result compact_result;
3460 int compaction_retries = 0;
3461 int no_progress_loops = 0;
3462
3463 /*
3464 * In the slowpath, we sanity check order to avoid ever trying to
3465 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3466 * be using allocators in order of preference for an area that is
3467 * too large.
3468 */
3469 if (order >= MAX_ORDER) {
3470 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3471 return NULL;
3472 }
3473
3474 /*
3475 * We also sanity check to catch abuse of atomic reserves being used by
3476 * callers that are not in atomic context.
3477 */
3478 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3479 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3480 gfp_mask &= ~__GFP_ATOMIC;
3481
3482 /*
3483 * The fast path uses conservative alloc_flags to succeed only until
3484 * kswapd needs to be woken up, and to avoid the cost of setting up
3485 * alloc_flags precisely. So we do that now.
3486 */
3487 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3488
3489 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3490 wake_all_kswapds(order, ac);
3491
3492 /*
3493 * The adjusted alloc_flags might result in immediate success, so try
3494 * that first
3495 */
3496 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3497 if (page)
3498 goto got_pg;
3499
3500 /*
3501 * For costly allocations, try direct compaction first, as it's likely
3502 * that we have enough base pages and don't need to reclaim. Don't try
3503 * that for allocations that are allowed to ignore watermarks, as the
3504 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3505 */
3506 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3507 !gfp_pfmemalloc_allowed(gfp_mask)) {
3508 page = __alloc_pages_direct_compact(gfp_mask, order,
3509 alloc_flags, ac,
3510 INIT_COMPACT_PRIORITY,
3511 &compact_result);
3512 if (page)
3513 goto got_pg;
3514
3515 /*
3516 * Checks for costly allocations with __GFP_NORETRY, which
3517 * includes THP page fault allocations
3518 */
3519 if (gfp_mask & __GFP_NORETRY) {
3520 /*
3521 * If compaction is deferred for high-order allocations,
3522 * it is because sync compaction recently failed. If
3523 * this is the case and the caller requested a THP
3524 * allocation, we do not want to heavily disrupt the
3525 * system, so we fail the allocation instead of entering
3526 * direct reclaim.
3527 */
3528 if (compact_result == COMPACT_DEFERRED)
3529 goto nopage;
3530
3531 /*
3532 * Looks like reclaim/compaction is worth trying, but
3533 * sync compaction could be very expensive, so keep
3534 * using async compaction.
3535 */
3536 compact_priority = INIT_COMPACT_PRIORITY;
3537 }
3538 }
3539
3540 retry:
3541 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3542 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3543 wake_all_kswapds(order, ac);
3544
3545 if (gfp_pfmemalloc_allowed(gfp_mask))
3546 alloc_flags = ALLOC_NO_WATERMARKS;
3547
3548 /*
3549 * Reset the zonelist iterators if memory policies can be ignored.
3550 * These allocations are high priority and system rather than user
3551 * orientated.
3552 */
3553 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3554 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3555 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3556 ac->high_zoneidx, ac->nodemask);
3557 }
3558
3559 /* Attempt with potentially adjusted zonelist and alloc_flags */
3560 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3561 if (page)
3562 goto got_pg;
3563
3564 /* Caller is not willing to reclaim, we can't balance anything */
3565 if (!can_direct_reclaim) {
3566 /*
3567 * All existing users of the __GFP_NOFAIL are blockable, so warn
3568 * of any new users that actually allow this type of allocation
3569 * to fail.
3570 */
3571 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3572 goto nopage;
3573 }
3574
3575 /* Avoid recursion of direct reclaim */
3576 if (current->flags & PF_MEMALLOC) {
3577 /*
3578 * __GFP_NOFAIL request from this context is rather bizarre
3579 * because we cannot reclaim anything and only can loop waiting
3580 * for somebody to do a work for us.
3581 */
3582 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3583 cond_resched();
3584 goto retry;
3585 }
3586 goto nopage;
3587 }
3588
3589 /* Avoid allocations with no watermarks from looping endlessly */
3590 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3591 goto nopage;
3592
3593
3594 /* Try direct reclaim and then allocating */
3595 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3596 &did_some_progress);
3597 if (page)
3598 goto got_pg;
3599
3600 /* Try direct compaction and then allocating */
3601 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3602 compact_priority, &compact_result);
3603 if (page)
3604 goto got_pg;
3605
3606 if (order && compaction_made_progress(compact_result))
3607 compaction_retries++;
3608
3609 /* Do not loop if specifically requested */
3610 if (gfp_mask & __GFP_NORETRY)
3611 goto nopage;
3612
3613 /*
3614 * Do not retry costly high order allocations unless they are
3615 * __GFP_REPEAT
3616 */
3617 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3618 goto nopage;
3619
3620 /*
3621 * Costly allocations might have made a progress but this doesn't mean
3622 * their order will become available due to high fragmentation so
3623 * always increment the no progress counter for them
3624 */
3625 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3626 no_progress_loops = 0;
3627 else
3628 no_progress_loops++;
3629
3630 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3631 did_some_progress > 0, no_progress_loops))
3632 goto retry;
3633
3634 /*
3635 * It doesn't make any sense to retry for the compaction if the order-0
3636 * reclaim is not able to make any progress because the current
3637 * implementation of the compaction depends on the sufficient amount
3638 * of free memory (see __compaction_suitable)
3639 */
3640 if (did_some_progress > 0 &&
3641 should_compact_retry(ac, order, alloc_flags,
3642 compact_result, &compact_priority,
3643 compaction_retries))
3644 goto retry;
3645
3646 /* Reclaim has failed us, start killing things */
3647 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3648 if (page)
3649 goto got_pg;
3650
3651 /* Retry as long as the OOM killer is making progress */
3652 if (did_some_progress) {
3653 no_progress_loops = 0;
3654 goto retry;
3655 }
3656
3657 nopage:
3658 warn_alloc_failed(gfp_mask, order, NULL);
3659 got_pg:
3660 return page;
3661 }
3662
3663 /*
3664 * This is the 'heart' of the zoned buddy allocator.
3665 */
3666 struct page *
3667 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3668 struct zonelist *zonelist, nodemask_t *nodemask)
3669 {
3670 struct page *page;
3671 unsigned int cpuset_mems_cookie;
3672 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3673 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3674 struct alloc_context ac = {
3675 .high_zoneidx = gfp_zone(gfp_mask),
3676 .zonelist = zonelist,
3677 .nodemask = nodemask,
3678 .migratetype = gfpflags_to_migratetype(gfp_mask),
3679 };
3680
3681 if (cpusets_enabled()) {
3682 alloc_mask |= __GFP_HARDWALL;
3683 alloc_flags |= ALLOC_CPUSET;
3684 if (!ac.nodemask)
3685 ac.nodemask = &cpuset_current_mems_allowed;
3686 }
3687
3688 gfp_mask &= gfp_allowed_mask;
3689
3690 lockdep_trace_alloc(gfp_mask);
3691
3692 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3693
3694 if (should_fail_alloc_page(gfp_mask, order))
3695 return NULL;
3696
3697 /*
3698 * Check the zones suitable for the gfp_mask contain at least one
3699 * valid zone. It's possible to have an empty zonelist as a result
3700 * of __GFP_THISNODE and a memoryless node
3701 */
3702 if (unlikely(!zonelist->_zonerefs->zone))
3703 return NULL;
3704
3705 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3706 alloc_flags |= ALLOC_CMA;
3707
3708 retry_cpuset:
3709 cpuset_mems_cookie = read_mems_allowed_begin();
3710
3711 /* Dirty zone balancing only done in the fast path */
3712 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3713
3714 /*
3715 * The preferred zone is used for statistics but crucially it is
3716 * also used as the starting point for the zonelist iterator. It
3717 * may get reset for allocations that ignore memory policies.
3718 */
3719 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3720 ac.high_zoneidx, ac.nodemask);
3721 if (!ac.preferred_zoneref) {
3722 page = NULL;
3723 goto no_zone;
3724 }
3725
3726 /* First allocation attempt */
3727 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3728 if (likely(page))
3729 goto out;
3730
3731 /*
3732 * Runtime PM, block IO and its error handling path can deadlock
3733 * because I/O on the device might not complete.
3734 */
3735 alloc_mask = memalloc_noio_flags(gfp_mask);
3736 ac.spread_dirty_pages = false;
3737
3738 /*
3739 * Restore the original nodemask if it was potentially replaced with
3740 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3741 */
3742 if (cpusets_enabled())
3743 ac.nodemask = nodemask;
3744 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3745
3746 no_zone:
3747 /*
3748 * When updating a task's mems_allowed, it is possible to race with
3749 * parallel threads in such a way that an allocation can fail while
3750 * the mask is being updated. If a page allocation is about to fail,
3751 * check if the cpuset changed during allocation and if so, retry.
3752 */
3753 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3754 alloc_mask = gfp_mask;
3755 goto retry_cpuset;
3756 }
3757
3758 out:
3759 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3760 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3761 __free_pages(page, order);
3762 page = NULL;
3763 } else
3764 __SetPageKmemcg(page);
3765 }
3766
3767 if (kmemcheck_enabled && page)
3768 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3769
3770 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3771
3772 return page;
3773 }
3774 EXPORT_SYMBOL(__alloc_pages_nodemask);
3775
3776 /*
3777 * Common helper functions.
3778 */
3779 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3780 {
3781 struct page *page;
3782
3783 /*
3784 * __get_free_pages() returns a 32-bit address, which cannot represent
3785 * a highmem page
3786 */
3787 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3788
3789 page = alloc_pages(gfp_mask, order);
3790 if (!page)
3791 return 0;
3792 return (unsigned long) page_address(page);
3793 }
3794 EXPORT_SYMBOL(__get_free_pages);
3795
3796 unsigned long get_zeroed_page(gfp_t gfp_mask)
3797 {
3798 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3799 }
3800 EXPORT_SYMBOL(get_zeroed_page);
3801
3802 void __free_pages(struct page *page, unsigned int order)
3803 {
3804 if (put_page_testzero(page)) {
3805 if (order == 0)
3806 free_hot_cold_page(page, false);
3807 else
3808 __free_pages_ok(page, order);
3809 }
3810 }
3811
3812 EXPORT_SYMBOL(__free_pages);
3813
3814 void free_pages(unsigned long addr, unsigned int order)
3815 {
3816 if (addr != 0) {
3817 VM_BUG_ON(!virt_addr_valid((void *)addr));
3818 __free_pages(virt_to_page((void *)addr), order);
3819 }
3820 }
3821
3822 EXPORT_SYMBOL(free_pages);
3823
3824 /*
3825 * Page Fragment:
3826 * An arbitrary-length arbitrary-offset area of memory which resides
3827 * within a 0 or higher order page. Multiple fragments within that page
3828 * are individually refcounted, in the page's reference counter.
3829 *
3830 * The page_frag functions below provide a simple allocation framework for
3831 * page fragments. This is used by the network stack and network device
3832 * drivers to provide a backing region of memory for use as either an
3833 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3834 */
3835 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3836 gfp_t gfp_mask)
3837 {
3838 struct page *page = NULL;
3839 gfp_t gfp = gfp_mask;
3840
3841 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3842 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3843 __GFP_NOMEMALLOC;
3844 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3845 PAGE_FRAG_CACHE_MAX_ORDER);
3846 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3847 #endif
3848 if (unlikely(!page))
3849 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3850
3851 nc->va = page ? page_address(page) : NULL;
3852
3853 return page;
3854 }
3855
3856 void *__alloc_page_frag(struct page_frag_cache *nc,
3857 unsigned int fragsz, gfp_t gfp_mask)
3858 {
3859 unsigned int size = PAGE_SIZE;
3860 struct page *page;
3861 int offset;
3862
3863 if (unlikely(!nc->va)) {
3864 refill:
3865 page = __page_frag_refill(nc, gfp_mask);
3866 if (!page)
3867 return NULL;
3868
3869 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3870 /* if size can vary use size else just use PAGE_SIZE */
3871 size = nc->size;
3872 #endif
3873 /* Even if we own the page, we do not use atomic_set().
3874 * This would break get_page_unless_zero() users.
3875 */
3876 page_ref_add(page, size - 1);
3877
3878 /* reset page count bias and offset to start of new frag */
3879 nc->pfmemalloc = page_is_pfmemalloc(page);
3880 nc->pagecnt_bias = size;
3881 nc->offset = size;
3882 }
3883
3884 offset = nc->offset - fragsz;
3885 if (unlikely(offset < 0)) {
3886 page = virt_to_page(nc->va);
3887
3888 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3889 goto refill;
3890
3891 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3892 /* if size can vary use size else just use PAGE_SIZE */
3893 size = nc->size;
3894 #endif
3895 /* OK, page count is 0, we can safely set it */
3896 set_page_count(page, size);
3897
3898 /* reset page count bias and offset to start of new frag */
3899 nc->pagecnt_bias = size;
3900 offset = size - fragsz;
3901 }
3902
3903 nc->pagecnt_bias--;
3904 nc->offset = offset;
3905
3906 return nc->va + offset;
3907 }
3908 EXPORT_SYMBOL(__alloc_page_frag);
3909
3910 /*
3911 * Frees a page fragment allocated out of either a compound or order 0 page.
3912 */
3913 void __free_page_frag(void *addr)
3914 {
3915 struct page *page = virt_to_head_page(addr);
3916
3917 if (unlikely(put_page_testzero(page)))
3918 __free_pages_ok(page, compound_order(page));
3919 }
3920 EXPORT_SYMBOL(__free_page_frag);
3921
3922 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3923 size_t size)
3924 {
3925 if (addr) {
3926 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3927 unsigned long used = addr + PAGE_ALIGN(size);
3928
3929 split_page(virt_to_page((void *)addr), order);
3930 while (used < alloc_end) {
3931 free_page(used);
3932 used += PAGE_SIZE;
3933 }
3934 }
3935 return (void *)addr;
3936 }
3937
3938 /**
3939 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3940 * @size: the number of bytes to allocate
3941 * @gfp_mask: GFP flags for the allocation
3942 *
3943 * This function is similar to alloc_pages(), except that it allocates the
3944 * minimum number of pages to satisfy the request. alloc_pages() can only
3945 * allocate memory in power-of-two pages.
3946 *
3947 * This function is also limited by MAX_ORDER.
3948 *
3949 * Memory allocated by this function must be released by free_pages_exact().
3950 */
3951 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3952 {
3953 unsigned int order = get_order(size);
3954 unsigned long addr;
3955
3956 addr = __get_free_pages(gfp_mask, order);
3957 return make_alloc_exact(addr, order, size);
3958 }
3959 EXPORT_SYMBOL(alloc_pages_exact);
3960
3961 /**
3962 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3963 * pages on a node.
3964 * @nid: the preferred node ID where memory should be allocated
3965 * @size: the number of bytes to allocate
3966 * @gfp_mask: GFP flags for the allocation
3967 *
3968 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3969 * back.
3970 */
3971 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3972 {
3973 unsigned int order = get_order(size);
3974 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3975 if (!p)
3976 return NULL;
3977 return make_alloc_exact((unsigned long)page_address(p), order, size);
3978 }
3979
3980 /**
3981 * free_pages_exact - release memory allocated via alloc_pages_exact()
3982 * @virt: the value returned by alloc_pages_exact.
3983 * @size: size of allocation, same value as passed to alloc_pages_exact().
3984 *
3985 * Release the memory allocated by a previous call to alloc_pages_exact.
3986 */
3987 void free_pages_exact(void *virt, size_t size)
3988 {
3989 unsigned long addr = (unsigned long)virt;
3990 unsigned long end = addr + PAGE_ALIGN(size);
3991
3992 while (addr < end) {
3993 free_page(addr);
3994 addr += PAGE_SIZE;
3995 }
3996 }
3997 EXPORT_SYMBOL(free_pages_exact);
3998
3999 /**
4000 * nr_free_zone_pages - count number of pages beyond high watermark
4001 * @offset: The zone index of the highest zone
4002 *
4003 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4004 * high watermark within all zones at or below a given zone index. For each
4005 * zone, the number of pages is calculated as:
4006 * managed_pages - high_pages
4007 */
4008 static unsigned long nr_free_zone_pages(int offset)
4009 {
4010 struct zoneref *z;
4011 struct zone *zone;
4012
4013 /* Just pick one node, since fallback list is circular */
4014 unsigned long sum = 0;
4015
4016 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4017
4018 for_each_zone_zonelist(zone, z, zonelist, offset) {
4019 unsigned long size = zone->managed_pages;
4020 unsigned long high = high_wmark_pages(zone);
4021 if (size > high)
4022 sum += size - high;
4023 }
4024
4025 return sum;
4026 }
4027
4028 /**
4029 * nr_free_buffer_pages - count number of pages beyond high watermark
4030 *
4031 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4032 * watermark within ZONE_DMA and ZONE_NORMAL.
4033 */
4034 unsigned long nr_free_buffer_pages(void)
4035 {
4036 return nr_free_zone_pages(gfp_zone(GFP_USER));
4037 }
4038 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4039
4040 /**
4041 * nr_free_pagecache_pages - count number of pages beyond high watermark
4042 *
4043 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4044 * high watermark within all zones.
4045 */
4046 unsigned long nr_free_pagecache_pages(void)
4047 {
4048 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4049 }
4050
4051 static inline void show_node(struct zone *zone)
4052 {
4053 if (IS_ENABLED(CONFIG_NUMA))
4054 printk("Node %d ", zone_to_nid(zone));
4055 }
4056
4057 long si_mem_available(void)
4058 {
4059 long available;
4060 unsigned long pagecache;
4061 unsigned long wmark_low = 0;
4062 unsigned long pages[NR_LRU_LISTS];
4063 struct zone *zone;
4064 int lru;
4065
4066 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4067 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4068
4069 for_each_zone(zone)
4070 wmark_low += zone->watermark[WMARK_LOW];
4071
4072 /*
4073 * Estimate the amount of memory available for userspace allocations,
4074 * without causing swapping.
4075 */
4076 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4077
4078 /*
4079 * Not all the page cache can be freed, otherwise the system will
4080 * start swapping. Assume at least half of the page cache, or the
4081 * low watermark worth of cache, needs to stay.
4082 */
4083 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4084 pagecache -= min(pagecache / 2, wmark_low);
4085 available += pagecache;
4086
4087 /*
4088 * Part of the reclaimable slab consists of items that are in use,
4089 * and cannot be freed. Cap this estimate at the low watermark.
4090 */
4091 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4092 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4093
4094 if (available < 0)
4095 available = 0;
4096 return available;
4097 }
4098 EXPORT_SYMBOL_GPL(si_mem_available);
4099
4100 void si_meminfo(struct sysinfo *val)
4101 {
4102 val->totalram = totalram_pages;
4103 val->sharedram = global_node_page_state(NR_SHMEM);
4104 val->freeram = global_page_state(NR_FREE_PAGES);
4105 val->bufferram = nr_blockdev_pages();
4106 val->totalhigh = totalhigh_pages;
4107 val->freehigh = nr_free_highpages();
4108 val->mem_unit = PAGE_SIZE;
4109 }
4110
4111 EXPORT_SYMBOL(si_meminfo);
4112
4113 #ifdef CONFIG_NUMA
4114 void si_meminfo_node(struct sysinfo *val, int nid)
4115 {
4116 int zone_type; /* needs to be signed */
4117 unsigned long managed_pages = 0;
4118 unsigned long managed_highpages = 0;
4119 unsigned long free_highpages = 0;
4120 pg_data_t *pgdat = NODE_DATA(nid);
4121
4122 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4123 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4124 val->totalram = managed_pages;
4125 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4126 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4127 #ifdef CONFIG_HIGHMEM
4128 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4129 struct zone *zone = &pgdat->node_zones[zone_type];
4130
4131 if (is_highmem(zone)) {
4132 managed_highpages += zone->managed_pages;
4133 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4134 }
4135 }
4136 val->totalhigh = managed_highpages;
4137 val->freehigh = free_highpages;
4138 #else
4139 val->totalhigh = managed_highpages;
4140 val->freehigh = free_highpages;
4141 #endif
4142 val->mem_unit = PAGE_SIZE;
4143 }
4144 #endif
4145
4146 /*
4147 * Determine whether the node should be displayed or not, depending on whether
4148 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4149 */
4150 bool skip_free_areas_node(unsigned int flags, int nid)
4151 {
4152 bool ret = false;
4153 unsigned int cpuset_mems_cookie;
4154
4155 if (!(flags & SHOW_MEM_FILTER_NODES))
4156 goto out;
4157
4158 do {
4159 cpuset_mems_cookie = read_mems_allowed_begin();
4160 ret = !node_isset(nid, cpuset_current_mems_allowed);
4161 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4162 out:
4163 return ret;
4164 }
4165
4166 #define K(x) ((x) << (PAGE_SHIFT-10))
4167
4168 static void show_migration_types(unsigned char type)
4169 {
4170 static const char types[MIGRATE_TYPES] = {
4171 [MIGRATE_UNMOVABLE] = 'U',
4172 [MIGRATE_MOVABLE] = 'M',
4173 [MIGRATE_RECLAIMABLE] = 'E',
4174 [MIGRATE_HIGHATOMIC] = 'H',
4175 #ifdef CONFIG_CMA
4176 [MIGRATE_CMA] = 'C',
4177 #endif
4178 #ifdef CONFIG_MEMORY_ISOLATION
4179 [MIGRATE_ISOLATE] = 'I',
4180 #endif
4181 };
4182 char tmp[MIGRATE_TYPES + 1];
4183 char *p = tmp;
4184 int i;
4185
4186 for (i = 0; i < MIGRATE_TYPES; i++) {
4187 if (type & (1 << i))
4188 *p++ = types[i];
4189 }
4190
4191 *p = '\0';
4192 printk("(%s) ", tmp);
4193 }
4194
4195 /*
4196 * Show free area list (used inside shift_scroll-lock stuff)
4197 * We also calculate the percentage fragmentation. We do this by counting the
4198 * memory on each free list with the exception of the first item on the list.
4199 *
4200 * Bits in @filter:
4201 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4202 * cpuset.
4203 */
4204 void show_free_areas(unsigned int filter)
4205 {
4206 unsigned long free_pcp = 0;
4207 int cpu;
4208 struct zone *zone;
4209 pg_data_t *pgdat;
4210
4211 for_each_populated_zone(zone) {
4212 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4213 continue;
4214
4215 for_each_online_cpu(cpu)
4216 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4217 }
4218
4219 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4220 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4221 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4222 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4223 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4224 " free:%lu free_pcp:%lu free_cma:%lu\n",
4225 global_node_page_state(NR_ACTIVE_ANON),
4226 global_node_page_state(NR_INACTIVE_ANON),
4227 global_node_page_state(NR_ISOLATED_ANON),
4228 global_node_page_state(NR_ACTIVE_FILE),
4229 global_node_page_state(NR_INACTIVE_FILE),
4230 global_node_page_state(NR_ISOLATED_FILE),
4231 global_node_page_state(NR_UNEVICTABLE),
4232 global_node_page_state(NR_FILE_DIRTY),
4233 global_node_page_state(NR_WRITEBACK),
4234 global_node_page_state(NR_UNSTABLE_NFS),
4235 global_page_state(NR_SLAB_RECLAIMABLE),
4236 global_page_state(NR_SLAB_UNRECLAIMABLE),
4237 global_node_page_state(NR_FILE_MAPPED),
4238 global_node_page_state(NR_SHMEM),
4239 global_page_state(NR_PAGETABLE),
4240 global_page_state(NR_BOUNCE),
4241 global_page_state(NR_FREE_PAGES),
4242 free_pcp,
4243 global_page_state(NR_FREE_CMA_PAGES));
4244
4245 for_each_online_pgdat(pgdat) {
4246 printk("Node %d"
4247 " active_anon:%lukB"
4248 " inactive_anon:%lukB"
4249 " active_file:%lukB"
4250 " inactive_file:%lukB"
4251 " unevictable:%lukB"
4252 " isolated(anon):%lukB"
4253 " isolated(file):%lukB"
4254 " mapped:%lukB"
4255 " dirty:%lukB"
4256 " writeback:%lukB"
4257 " shmem:%lukB"
4258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4259 " shmem_thp: %lukB"
4260 " shmem_pmdmapped: %lukB"
4261 " anon_thp: %lukB"
4262 #endif
4263 " writeback_tmp:%lukB"
4264 " unstable:%lukB"
4265 " pages_scanned:%lu"
4266 " all_unreclaimable? %s"
4267 "\n",
4268 pgdat->node_id,
4269 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4270 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4271 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4272 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4273 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4274 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4275 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4276 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4277 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4278 K(node_page_state(pgdat, NR_WRITEBACK)),
4279 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4281 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4282 * HPAGE_PMD_NR),
4283 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4284 #endif
4285 K(node_page_state(pgdat, NR_SHMEM)),
4286 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4287 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4288 node_page_state(pgdat, NR_PAGES_SCANNED),
4289 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4290 }
4291
4292 for_each_populated_zone(zone) {
4293 int i;
4294
4295 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4296 continue;
4297
4298 free_pcp = 0;
4299 for_each_online_cpu(cpu)
4300 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4301
4302 show_node(zone);
4303 printk("%s"
4304 " free:%lukB"
4305 " min:%lukB"
4306 " low:%lukB"
4307 " high:%lukB"
4308 " active_anon:%lukB"
4309 " inactive_anon:%lukB"
4310 " active_file:%lukB"
4311 " inactive_file:%lukB"
4312 " unevictable:%lukB"
4313 " writepending:%lukB"
4314 " present:%lukB"
4315 " managed:%lukB"
4316 " mlocked:%lukB"
4317 " slab_reclaimable:%lukB"
4318 " slab_unreclaimable:%lukB"
4319 " kernel_stack:%lukB"
4320 " pagetables:%lukB"
4321 " bounce:%lukB"
4322 " free_pcp:%lukB"
4323 " local_pcp:%ukB"
4324 " free_cma:%lukB"
4325 "\n",
4326 zone->name,
4327 K(zone_page_state(zone, NR_FREE_PAGES)),
4328 K(min_wmark_pages(zone)),
4329 K(low_wmark_pages(zone)),
4330 K(high_wmark_pages(zone)),
4331 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4332 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4333 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4334 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4335 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4336 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4337 K(zone->present_pages),
4338 K(zone->managed_pages),
4339 K(zone_page_state(zone, NR_MLOCK)),
4340 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4341 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4342 zone_page_state(zone, NR_KERNEL_STACK_KB),
4343 K(zone_page_state(zone, NR_PAGETABLE)),
4344 K(zone_page_state(zone, NR_BOUNCE)),
4345 K(free_pcp),
4346 K(this_cpu_read(zone->pageset->pcp.count)),
4347 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4348 printk("lowmem_reserve[]:");
4349 for (i = 0; i < MAX_NR_ZONES; i++)
4350 printk(" %ld", zone->lowmem_reserve[i]);
4351 printk("\n");
4352 }
4353
4354 for_each_populated_zone(zone) {
4355 unsigned int order;
4356 unsigned long nr[MAX_ORDER], flags, total = 0;
4357 unsigned char types[MAX_ORDER];
4358
4359 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4360 continue;
4361 show_node(zone);
4362 printk("%s: ", zone->name);
4363
4364 spin_lock_irqsave(&zone->lock, flags);
4365 for (order = 0; order < MAX_ORDER; order++) {
4366 struct free_area *area = &zone->free_area[order];
4367 int type;
4368
4369 nr[order] = area->nr_free;
4370 total += nr[order] << order;
4371
4372 types[order] = 0;
4373 for (type = 0; type < MIGRATE_TYPES; type++) {
4374 if (!list_empty(&area->free_list[type]))
4375 types[order] |= 1 << type;
4376 }
4377 }
4378 spin_unlock_irqrestore(&zone->lock, flags);
4379 for (order = 0; order < MAX_ORDER; order++) {
4380 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4381 if (nr[order])
4382 show_migration_types(types[order]);
4383 }
4384 printk("= %lukB\n", K(total));
4385 }
4386
4387 hugetlb_show_meminfo();
4388
4389 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4390
4391 show_swap_cache_info();
4392 }
4393
4394 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4395 {
4396 zoneref->zone = zone;
4397 zoneref->zone_idx = zone_idx(zone);
4398 }
4399
4400 /*
4401 * Builds allocation fallback zone lists.
4402 *
4403 * Add all populated zones of a node to the zonelist.
4404 */
4405 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4406 int nr_zones)
4407 {
4408 struct zone *zone;
4409 enum zone_type zone_type = MAX_NR_ZONES;
4410
4411 do {
4412 zone_type--;
4413 zone = pgdat->node_zones + zone_type;
4414 if (populated_zone(zone)) {
4415 zoneref_set_zone(zone,
4416 &zonelist->_zonerefs[nr_zones++]);
4417 check_highest_zone(zone_type);
4418 }
4419 } while (zone_type);
4420
4421 return nr_zones;
4422 }
4423
4424
4425 /*
4426 * zonelist_order:
4427 * 0 = automatic detection of better ordering.
4428 * 1 = order by ([node] distance, -zonetype)
4429 * 2 = order by (-zonetype, [node] distance)
4430 *
4431 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4432 * the same zonelist. So only NUMA can configure this param.
4433 */
4434 #define ZONELIST_ORDER_DEFAULT 0
4435 #define ZONELIST_ORDER_NODE 1
4436 #define ZONELIST_ORDER_ZONE 2
4437
4438 /* zonelist order in the kernel.
4439 * set_zonelist_order() will set this to NODE or ZONE.
4440 */
4441 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4442 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4443
4444
4445 #ifdef CONFIG_NUMA
4446 /* The value user specified ....changed by config */
4447 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4448 /* string for sysctl */
4449 #define NUMA_ZONELIST_ORDER_LEN 16
4450 char numa_zonelist_order[16] = "default";
4451
4452 /*
4453 * interface for configure zonelist ordering.
4454 * command line option "numa_zonelist_order"
4455 * = "[dD]efault - default, automatic configuration.
4456 * = "[nN]ode - order by node locality, then by zone within node
4457 * = "[zZ]one - order by zone, then by locality within zone
4458 */
4459
4460 static int __parse_numa_zonelist_order(char *s)
4461 {
4462 if (*s == 'd' || *s == 'D') {
4463 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4464 } else if (*s == 'n' || *s == 'N') {
4465 user_zonelist_order = ZONELIST_ORDER_NODE;
4466 } else if (*s == 'z' || *s == 'Z') {
4467 user_zonelist_order = ZONELIST_ORDER_ZONE;
4468 } else {
4469 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4470 return -EINVAL;
4471 }
4472 return 0;
4473 }
4474
4475 static __init int setup_numa_zonelist_order(char *s)
4476 {
4477 int ret;
4478
4479 if (!s)
4480 return 0;
4481
4482 ret = __parse_numa_zonelist_order(s);
4483 if (ret == 0)
4484 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4485
4486 return ret;
4487 }
4488 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4489
4490 /*
4491 * sysctl handler for numa_zonelist_order
4492 */
4493 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4494 void __user *buffer, size_t *length,
4495 loff_t *ppos)
4496 {
4497 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4498 int ret;
4499 static DEFINE_MUTEX(zl_order_mutex);
4500
4501 mutex_lock(&zl_order_mutex);
4502 if (write) {
4503 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4504 ret = -EINVAL;
4505 goto out;
4506 }
4507 strcpy(saved_string, (char *)table->data);
4508 }
4509 ret = proc_dostring(table, write, buffer, length, ppos);
4510 if (ret)
4511 goto out;
4512 if (write) {
4513 int oldval = user_zonelist_order;
4514
4515 ret = __parse_numa_zonelist_order((char *)table->data);
4516 if (ret) {
4517 /*
4518 * bogus value. restore saved string
4519 */
4520 strncpy((char *)table->data, saved_string,
4521 NUMA_ZONELIST_ORDER_LEN);
4522 user_zonelist_order = oldval;
4523 } else if (oldval != user_zonelist_order) {
4524 mutex_lock(&zonelists_mutex);
4525 build_all_zonelists(NULL, NULL);
4526 mutex_unlock(&zonelists_mutex);
4527 }
4528 }
4529 out:
4530 mutex_unlock(&zl_order_mutex);
4531 return ret;
4532 }
4533
4534
4535 #define MAX_NODE_LOAD (nr_online_nodes)
4536 static int node_load[MAX_NUMNODES];
4537
4538 /**
4539 * find_next_best_node - find the next node that should appear in a given node's fallback list
4540 * @node: node whose fallback list we're appending
4541 * @used_node_mask: nodemask_t of already used nodes
4542 *
4543 * We use a number of factors to determine which is the next node that should
4544 * appear on a given node's fallback list. The node should not have appeared
4545 * already in @node's fallback list, and it should be the next closest node
4546 * according to the distance array (which contains arbitrary distance values
4547 * from each node to each node in the system), and should also prefer nodes
4548 * with no CPUs, since presumably they'll have very little allocation pressure
4549 * on them otherwise.
4550 * It returns -1 if no node is found.
4551 */
4552 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4553 {
4554 int n, val;
4555 int min_val = INT_MAX;
4556 int best_node = NUMA_NO_NODE;
4557 const struct cpumask *tmp = cpumask_of_node(0);
4558
4559 /* Use the local node if we haven't already */
4560 if (!node_isset(node, *used_node_mask)) {
4561 node_set(node, *used_node_mask);
4562 return node;
4563 }
4564
4565 for_each_node_state(n, N_MEMORY) {
4566
4567 /* Don't want a node to appear more than once */
4568 if (node_isset(n, *used_node_mask))
4569 continue;
4570
4571 /* Use the distance array to find the distance */
4572 val = node_distance(node, n);
4573
4574 /* Penalize nodes under us ("prefer the next node") */
4575 val += (n < node);
4576
4577 /* Give preference to headless and unused nodes */
4578 tmp = cpumask_of_node(n);
4579 if (!cpumask_empty(tmp))
4580 val += PENALTY_FOR_NODE_WITH_CPUS;
4581
4582 /* Slight preference for less loaded node */
4583 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4584 val += node_load[n];
4585
4586 if (val < min_val) {
4587 min_val = val;
4588 best_node = n;
4589 }
4590 }
4591
4592 if (best_node >= 0)
4593 node_set(best_node, *used_node_mask);
4594
4595 return best_node;
4596 }
4597
4598
4599 /*
4600 * Build zonelists ordered by node and zones within node.
4601 * This results in maximum locality--normal zone overflows into local
4602 * DMA zone, if any--but risks exhausting DMA zone.
4603 */
4604 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4605 {
4606 int j;
4607 struct zonelist *zonelist;
4608
4609 zonelist = &pgdat->node_zonelists[0];
4610 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4611 ;
4612 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4613 zonelist->_zonerefs[j].zone = NULL;
4614 zonelist->_zonerefs[j].zone_idx = 0;
4615 }
4616
4617 /*
4618 * Build gfp_thisnode zonelists
4619 */
4620 static void build_thisnode_zonelists(pg_data_t *pgdat)
4621 {
4622 int j;
4623 struct zonelist *zonelist;
4624
4625 zonelist = &pgdat->node_zonelists[1];
4626 j = build_zonelists_node(pgdat, zonelist, 0);
4627 zonelist->_zonerefs[j].zone = NULL;
4628 zonelist->_zonerefs[j].zone_idx = 0;
4629 }
4630
4631 /*
4632 * Build zonelists ordered by zone and nodes within zones.
4633 * This results in conserving DMA zone[s] until all Normal memory is
4634 * exhausted, but results in overflowing to remote node while memory
4635 * may still exist in local DMA zone.
4636 */
4637 static int node_order[MAX_NUMNODES];
4638
4639 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4640 {
4641 int pos, j, node;
4642 int zone_type; /* needs to be signed */
4643 struct zone *z;
4644 struct zonelist *zonelist;
4645
4646 zonelist = &pgdat->node_zonelists[0];
4647 pos = 0;
4648 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4649 for (j = 0; j < nr_nodes; j++) {
4650 node = node_order[j];
4651 z = &NODE_DATA(node)->node_zones[zone_type];
4652 if (populated_zone(z)) {
4653 zoneref_set_zone(z,
4654 &zonelist->_zonerefs[pos++]);
4655 check_highest_zone(zone_type);
4656 }
4657 }
4658 }
4659 zonelist->_zonerefs[pos].zone = NULL;
4660 zonelist->_zonerefs[pos].zone_idx = 0;
4661 }
4662
4663 #if defined(CONFIG_64BIT)
4664 /*
4665 * Devices that require DMA32/DMA are relatively rare and do not justify a
4666 * penalty to every machine in case the specialised case applies. Default
4667 * to Node-ordering on 64-bit NUMA machines
4668 */
4669 static int default_zonelist_order(void)
4670 {
4671 return ZONELIST_ORDER_NODE;
4672 }
4673 #else
4674 /*
4675 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4676 * by the kernel. If processes running on node 0 deplete the low memory zone
4677 * then reclaim will occur more frequency increasing stalls and potentially
4678 * be easier to OOM if a large percentage of the zone is under writeback or
4679 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4680 * Hence, default to zone ordering on 32-bit.
4681 */
4682 static int default_zonelist_order(void)
4683 {
4684 return ZONELIST_ORDER_ZONE;
4685 }
4686 #endif /* CONFIG_64BIT */
4687
4688 static void set_zonelist_order(void)
4689 {
4690 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4691 current_zonelist_order = default_zonelist_order();
4692 else
4693 current_zonelist_order = user_zonelist_order;
4694 }
4695
4696 static void build_zonelists(pg_data_t *pgdat)
4697 {
4698 int i, node, load;
4699 nodemask_t used_mask;
4700 int local_node, prev_node;
4701 struct zonelist *zonelist;
4702 unsigned int order = current_zonelist_order;
4703
4704 /* initialize zonelists */
4705 for (i = 0; i < MAX_ZONELISTS; i++) {
4706 zonelist = pgdat->node_zonelists + i;
4707 zonelist->_zonerefs[0].zone = NULL;
4708 zonelist->_zonerefs[0].zone_idx = 0;
4709 }
4710
4711 /* NUMA-aware ordering of nodes */
4712 local_node = pgdat->node_id;
4713 load = nr_online_nodes;
4714 prev_node = local_node;
4715 nodes_clear(used_mask);
4716
4717 memset(node_order, 0, sizeof(node_order));
4718 i = 0;
4719
4720 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4721 /*
4722 * We don't want to pressure a particular node.
4723 * So adding penalty to the first node in same
4724 * distance group to make it round-robin.
4725 */
4726 if (node_distance(local_node, node) !=
4727 node_distance(local_node, prev_node))
4728 node_load[node] = load;
4729
4730 prev_node = node;
4731 load--;
4732 if (order == ZONELIST_ORDER_NODE)
4733 build_zonelists_in_node_order(pgdat, node);
4734 else
4735 node_order[i++] = node; /* remember order */
4736 }
4737
4738 if (order == ZONELIST_ORDER_ZONE) {
4739 /* calculate node order -- i.e., DMA last! */
4740 build_zonelists_in_zone_order(pgdat, i);
4741 }
4742
4743 build_thisnode_zonelists(pgdat);
4744 }
4745
4746 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4747 /*
4748 * Return node id of node used for "local" allocations.
4749 * I.e., first node id of first zone in arg node's generic zonelist.
4750 * Used for initializing percpu 'numa_mem', which is used primarily
4751 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4752 */
4753 int local_memory_node(int node)
4754 {
4755 struct zoneref *z;
4756
4757 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4758 gfp_zone(GFP_KERNEL),
4759 NULL);
4760 return z->zone->node;
4761 }
4762 #endif
4763
4764 #else /* CONFIG_NUMA */
4765
4766 static void set_zonelist_order(void)
4767 {
4768 current_zonelist_order = ZONELIST_ORDER_ZONE;
4769 }
4770
4771 static void build_zonelists(pg_data_t *pgdat)
4772 {
4773 int node, local_node;
4774 enum zone_type j;
4775 struct zonelist *zonelist;
4776
4777 local_node = pgdat->node_id;
4778
4779 zonelist = &pgdat->node_zonelists[0];
4780 j = build_zonelists_node(pgdat, zonelist, 0);
4781
4782 /*
4783 * Now we build the zonelist so that it contains the zones
4784 * of all the other nodes.
4785 * We don't want to pressure a particular node, so when
4786 * building the zones for node N, we make sure that the
4787 * zones coming right after the local ones are those from
4788 * node N+1 (modulo N)
4789 */
4790 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4791 if (!node_online(node))
4792 continue;
4793 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4794 }
4795 for (node = 0; node < local_node; node++) {
4796 if (!node_online(node))
4797 continue;
4798 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4799 }
4800
4801 zonelist->_zonerefs[j].zone = NULL;
4802 zonelist->_zonerefs[j].zone_idx = 0;
4803 }
4804
4805 #endif /* CONFIG_NUMA */
4806
4807 /*
4808 * Boot pageset table. One per cpu which is going to be used for all
4809 * zones and all nodes. The parameters will be set in such a way
4810 * that an item put on a list will immediately be handed over to
4811 * the buddy list. This is safe since pageset manipulation is done
4812 * with interrupts disabled.
4813 *
4814 * The boot_pagesets must be kept even after bootup is complete for
4815 * unused processors and/or zones. They do play a role for bootstrapping
4816 * hotplugged processors.
4817 *
4818 * zoneinfo_show() and maybe other functions do
4819 * not check if the processor is online before following the pageset pointer.
4820 * Other parts of the kernel may not check if the zone is available.
4821 */
4822 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4823 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4824 static void setup_zone_pageset(struct zone *zone);
4825
4826 /*
4827 * Global mutex to protect against size modification of zonelists
4828 * as well as to serialize pageset setup for the new populated zone.
4829 */
4830 DEFINE_MUTEX(zonelists_mutex);
4831
4832 /* return values int ....just for stop_machine() */
4833 static int __build_all_zonelists(void *data)
4834 {
4835 int nid;
4836 int cpu;
4837 pg_data_t *self = data;
4838
4839 #ifdef CONFIG_NUMA
4840 memset(node_load, 0, sizeof(node_load));
4841 #endif
4842
4843 if (self && !node_online(self->node_id)) {
4844 build_zonelists(self);
4845 }
4846
4847 for_each_online_node(nid) {
4848 pg_data_t *pgdat = NODE_DATA(nid);
4849
4850 build_zonelists(pgdat);
4851 }
4852
4853 /*
4854 * Initialize the boot_pagesets that are going to be used
4855 * for bootstrapping processors. The real pagesets for
4856 * each zone will be allocated later when the per cpu
4857 * allocator is available.
4858 *
4859 * boot_pagesets are used also for bootstrapping offline
4860 * cpus if the system is already booted because the pagesets
4861 * are needed to initialize allocators on a specific cpu too.
4862 * F.e. the percpu allocator needs the page allocator which
4863 * needs the percpu allocator in order to allocate its pagesets
4864 * (a chicken-egg dilemma).
4865 */
4866 for_each_possible_cpu(cpu) {
4867 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4868
4869 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4870 /*
4871 * We now know the "local memory node" for each node--
4872 * i.e., the node of the first zone in the generic zonelist.
4873 * Set up numa_mem percpu variable for on-line cpus. During
4874 * boot, only the boot cpu should be on-line; we'll init the
4875 * secondary cpus' numa_mem as they come on-line. During
4876 * node/memory hotplug, we'll fixup all on-line cpus.
4877 */
4878 if (cpu_online(cpu))
4879 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4880 #endif
4881 }
4882
4883 return 0;
4884 }
4885
4886 static noinline void __init
4887 build_all_zonelists_init(void)
4888 {
4889 __build_all_zonelists(NULL);
4890 mminit_verify_zonelist();
4891 cpuset_init_current_mems_allowed();
4892 }
4893
4894 /*
4895 * Called with zonelists_mutex held always
4896 * unless system_state == SYSTEM_BOOTING.
4897 *
4898 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4899 * [we're only called with non-NULL zone through __meminit paths] and
4900 * (2) call of __init annotated helper build_all_zonelists_init
4901 * [protected by SYSTEM_BOOTING].
4902 */
4903 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4904 {
4905 set_zonelist_order();
4906
4907 if (system_state == SYSTEM_BOOTING) {
4908 build_all_zonelists_init();
4909 } else {
4910 #ifdef CONFIG_MEMORY_HOTPLUG
4911 if (zone)
4912 setup_zone_pageset(zone);
4913 #endif
4914 /* we have to stop all cpus to guarantee there is no user
4915 of zonelist */
4916 stop_machine(__build_all_zonelists, pgdat, NULL);
4917 /* cpuset refresh routine should be here */
4918 }
4919 vm_total_pages = nr_free_pagecache_pages();
4920 /*
4921 * Disable grouping by mobility if the number of pages in the
4922 * system is too low to allow the mechanism to work. It would be
4923 * more accurate, but expensive to check per-zone. This check is
4924 * made on memory-hotadd so a system can start with mobility
4925 * disabled and enable it later
4926 */
4927 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4928 page_group_by_mobility_disabled = 1;
4929 else
4930 page_group_by_mobility_disabled = 0;
4931
4932 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4933 nr_online_nodes,
4934 zonelist_order_name[current_zonelist_order],
4935 page_group_by_mobility_disabled ? "off" : "on",
4936 vm_total_pages);
4937 #ifdef CONFIG_NUMA
4938 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4939 #endif
4940 }
4941
4942 /*
4943 * Helper functions to size the waitqueue hash table.
4944 * Essentially these want to choose hash table sizes sufficiently
4945 * large so that collisions trying to wait on pages are rare.
4946 * But in fact, the number of active page waitqueues on typical
4947 * systems is ridiculously low, less than 200. So this is even
4948 * conservative, even though it seems large.
4949 *
4950 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4951 * waitqueues, i.e. the size of the waitq table given the number of pages.
4952 */
4953 #define PAGES_PER_WAITQUEUE 256
4954
4955 #ifndef CONFIG_MEMORY_HOTPLUG
4956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4957 {
4958 unsigned long size = 1;
4959
4960 pages /= PAGES_PER_WAITQUEUE;
4961
4962 while (size < pages)
4963 size <<= 1;
4964
4965 /*
4966 * Once we have dozens or even hundreds of threads sleeping
4967 * on IO we've got bigger problems than wait queue collision.
4968 * Limit the size of the wait table to a reasonable size.
4969 */
4970 size = min(size, 4096UL);
4971
4972 return max(size, 4UL);
4973 }
4974 #else
4975 /*
4976 * A zone's size might be changed by hot-add, so it is not possible to determine
4977 * a suitable size for its wait_table. So we use the maximum size now.
4978 *
4979 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4980 *
4981 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4982 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4983 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4984 *
4985 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4986 * or more by the traditional way. (See above). It equals:
4987 *
4988 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4989 * ia64(16K page size) : = ( 8G + 4M)byte.
4990 * powerpc (64K page size) : = (32G +16M)byte.
4991 */
4992 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4993 {
4994 return 4096UL;
4995 }
4996 #endif
4997
4998 /*
4999 * This is an integer logarithm so that shifts can be used later
5000 * to extract the more random high bits from the multiplicative
5001 * hash function before the remainder is taken.
5002 */
5003 static inline unsigned long wait_table_bits(unsigned long size)
5004 {
5005 return ffz(~size);
5006 }
5007
5008 /*
5009 * Initially all pages are reserved - free ones are freed
5010 * up by free_all_bootmem() once the early boot process is
5011 * done. Non-atomic initialization, single-pass.
5012 */
5013 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5014 unsigned long start_pfn, enum memmap_context context)
5015 {
5016 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5017 unsigned long end_pfn = start_pfn + size;
5018 pg_data_t *pgdat = NODE_DATA(nid);
5019 unsigned long pfn;
5020 unsigned long nr_initialised = 0;
5021 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5022 struct memblock_region *r = NULL, *tmp;
5023 #endif
5024
5025 if (highest_memmap_pfn < end_pfn - 1)
5026 highest_memmap_pfn = end_pfn - 1;
5027
5028 /*
5029 * Honor reservation requested by the driver for this ZONE_DEVICE
5030 * memory
5031 */
5032 if (altmap && start_pfn == altmap->base_pfn)
5033 start_pfn += altmap->reserve;
5034
5035 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5036 /*
5037 * There can be holes in boot-time mem_map[]s handed to this
5038 * function. They do not exist on hotplugged memory.
5039 */
5040 if (context != MEMMAP_EARLY)
5041 goto not_early;
5042
5043 if (!early_pfn_valid(pfn))
5044 continue;
5045 if (!early_pfn_in_nid(pfn, nid))
5046 continue;
5047 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5048 break;
5049
5050 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5051 /*
5052 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5053 * from zone_movable_pfn[nid] to end of each node should be
5054 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5055 */
5056 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5057 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5058 continue;
5059
5060 /*
5061 * Check given memblock attribute by firmware which can affect
5062 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5063 * mirrored, it's an overlapped memmap init. skip it.
5064 */
5065 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5066 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5067 for_each_memblock(memory, tmp)
5068 if (pfn < memblock_region_memory_end_pfn(tmp))
5069 break;
5070 r = tmp;
5071 }
5072 if (pfn >= memblock_region_memory_base_pfn(r) &&
5073 memblock_is_mirror(r)) {
5074 /* already initialized as NORMAL */
5075 pfn = memblock_region_memory_end_pfn(r);
5076 continue;
5077 }
5078 }
5079 #endif
5080
5081 not_early:
5082 /*
5083 * Mark the block movable so that blocks are reserved for
5084 * movable at startup. This will force kernel allocations
5085 * to reserve their blocks rather than leaking throughout
5086 * the address space during boot when many long-lived
5087 * kernel allocations are made.
5088 *
5089 * bitmap is created for zone's valid pfn range. but memmap
5090 * can be created for invalid pages (for alignment)
5091 * check here not to call set_pageblock_migratetype() against
5092 * pfn out of zone.
5093 */
5094 if (!(pfn & (pageblock_nr_pages - 1))) {
5095 struct page *page = pfn_to_page(pfn);
5096
5097 __init_single_page(page, pfn, zone, nid);
5098 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5099 } else {
5100 __init_single_pfn(pfn, zone, nid);
5101 }
5102 }
5103 }
5104
5105 static void __meminit zone_init_free_lists(struct zone *zone)
5106 {
5107 unsigned int order, t;
5108 for_each_migratetype_order(order, t) {
5109 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5110 zone->free_area[order].nr_free = 0;
5111 }
5112 }
5113
5114 #ifndef __HAVE_ARCH_MEMMAP_INIT
5115 #define memmap_init(size, nid, zone, start_pfn) \
5116 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5117 #endif
5118
5119 static int zone_batchsize(struct zone *zone)
5120 {
5121 #ifdef CONFIG_MMU
5122 int batch;
5123
5124 /*
5125 * The per-cpu-pages pools are set to around 1000th of the
5126 * size of the zone. But no more than 1/2 of a meg.
5127 *
5128 * OK, so we don't know how big the cache is. So guess.
5129 */
5130 batch = zone->managed_pages / 1024;
5131 if (batch * PAGE_SIZE > 512 * 1024)
5132 batch = (512 * 1024) / PAGE_SIZE;
5133 batch /= 4; /* We effectively *= 4 below */
5134 if (batch < 1)
5135 batch = 1;
5136
5137 /*
5138 * Clamp the batch to a 2^n - 1 value. Having a power
5139 * of 2 value was found to be more likely to have
5140 * suboptimal cache aliasing properties in some cases.
5141 *
5142 * For example if 2 tasks are alternately allocating
5143 * batches of pages, one task can end up with a lot
5144 * of pages of one half of the possible page colors
5145 * and the other with pages of the other colors.
5146 */
5147 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5148
5149 return batch;
5150
5151 #else
5152 /* The deferral and batching of frees should be suppressed under NOMMU
5153 * conditions.
5154 *
5155 * The problem is that NOMMU needs to be able to allocate large chunks
5156 * of contiguous memory as there's no hardware page translation to
5157 * assemble apparent contiguous memory from discontiguous pages.
5158 *
5159 * Queueing large contiguous runs of pages for batching, however,
5160 * causes the pages to actually be freed in smaller chunks. As there
5161 * can be a significant delay between the individual batches being
5162 * recycled, this leads to the once large chunks of space being
5163 * fragmented and becoming unavailable for high-order allocations.
5164 */
5165 return 0;
5166 #endif
5167 }
5168
5169 /*
5170 * pcp->high and pcp->batch values are related and dependent on one another:
5171 * ->batch must never be higher then ->high.
5172 * The following function updates them in a safe manner without read side
5173 * locking.
5174 *
5175 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5176 * those fields changing asynchronously (acording the the above rule).
5177 *
5178 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5179 * outside of boot time (or some other assurance that no concurrent updaters
5180 * exist).
5181 */
5182 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5183 unsigned long batch)
5184 {
5185 /* start with a fail safe value for batch */
5186 pcp->batch = 1;
5187 smp_wmb();
5188
5189 /* Update high, then batch, in order */
5190 pcp->high = high;
5191 smp_wmb();
5192
5193 pcp->batch = batch;
5194 }
5195
5196 /* a companion to pageset_set_high() */
5197 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5198 {
5199 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5200 }
5201
5202 static void pageset_init(struct per_cpu_pageset *p)
5203 {
5204 struct per_cpu_pages *pcp;
5205 int migratetype;
5206
5207 memset(p, 0, sizeof(*p));
5208
5209 pcp = &p->pcp;
5210 pcp->count = 0;
5211 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5212 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5213 }
5214
5215 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5216 {
5217 pageset_init(p);
5218 pageset_set_batch(p, batch);
5219 }
5220
5221 /*
5222 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5223 * to the value high for the pageset p.
5224 */
5225 static void pageset_set_high(struct per_cpu_pageset *p,
5226 unsigned long high)
5227 {
5228 unsigned long batch = max(1UL, high / 4);
5229 if ((high / 4) > (PAGE_SHIFT * 8))
5230 batch = PAGE_SHIFT * 8;
5231
5232 pageset_update(&p->pcp, high, batch);
5233 }
5234
5235 static void pageset_set_high_and_batch(struct zone *zone,
5236 struct per_cpu_pageset *pcp)
5237 {
5238 if (percpu_pagelist_fraction)
5239 pageset_set_high(pcp,
5240 (zone->managed_pages /
5241 percpu_pagelist_fraction));
5242 else
5243 pageset_set_batch(pcp, zone_batchsize(zone));
5244 }
5245
5246 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5247 {
5248 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5249
5250 pageset_init(pcp);
5251 pageset_set_high_and_batch(zone, pcp);
5252 }
5253
5254 static void __meminit setup_zone_pageset(struct zone *zone)
5255 {
5256 int cpu;
5257 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5258 for_each_possible_cpu(cpu)
5259 zone_pageset_init(zone, cpu);
5260
5261 if (!zone->zone_pgdat->per_cpu_nodestats) {
5262 zone->zone_pgdat->per_cpu_nodestats =
5263 alloc_percpu(struct per_cpu_nodestat);
5264 }
5265 }
5266
5267 /*
5268 * Allocate per cpu pagesets and initialize them.
5269 * Before this call only boot pagesets were available.
5270 */
5271 void __init setup_per_cpu_pageset(void)
5272 {
5273 struct zone *zone;
5274
5275 for_each_populated_zone(zone)
5276 setup_zone_pageset(zone);
5277 }
5278
5279 static noinline __init_refok
5280 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5281 {
5282 int i;
5283 size_t alloc_size;
5284
5285 /*
5286 * The per-page waitqueue mechanism uses hashed waitqueues
5287 * per zone.
5288 */
5289 zone->wait_table_hash_nr_entries =
5290 wait_table_hash_nr_entries(zone_size_pages);
5291 zone->wait_table_bits =
5292 wait_table_bits(zone->wait_table_hash_nr_entries);
5293 alloc_size = zone->wait_table_hash_nr_entries
5294 * sizeof(wait_queue_head_t);
5295
5296 if (!slab_is_available()) {
5297 zone->wait_table = (wait_queue_head_t *)
5298 memblock_virt_alloc_node_nopanic(
5299 alloc_size, zone->zone_pgdat->node_id);
5300 } else {
5301 /*
5302 * This case means that a zone whose size was 0 gets new memory
5303 * via memory hot-add.
5304 * But it may be the case that a new node was hot-added. In
5305 * this case vmalloc() will not be able to use this new node's
5306 * memory - this wait_table must be initialized to use this new
5307 * node itself as well.
5308 * To use this new node's memory, further consideration will be
5309 * necessary.
5310 */
5311 zone->wait_table = vmalloc(alloc_size);
5312 }
5313 if (!zone->wait_table)
5314 return -ENOMEM;
5315
5316 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5317 init_waitqueue_head(zone->wait_table + i);
5318
5319 return 0;
5320 }
5321
5322 static __meminit void zone_pcp_init(struct zone *zone)
5323 {
5324 /*
5325 * per cpu subsystem is not up at this point. The following code
5326 * relies on the ability of the linker to provide the
5327 * offset of a (static) per cpu variable into the per cpu area.
5328 */
5329 zone->pageset = &boot_pageset;
5330
5331 if (populated_zone(zone))
5332 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5333 zone->name, zone->present_pages,
5334 zone_batchsize(zone));
5335 }
5336
5337 int __meminit init_currently_empty_zone(struct zone *zone,
5338 unsigned long zone_start_pfn,
5339 unsigned long size)
5340 {
5341 struct pglist_data *pgdat = zone->zone_pgdat;
5342 int ret;
5343 ret = zone_wait_table_init(zone, size);
5344 if (ret)
5345 return ret;
5346 pgdat->nr_zones = zone_idx(zone) + 1;
5347
5348 zone->zone_start_pfn = zone_start_pfn;
5349
5350 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5351 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5352 pgdat->node_id,
5353 (unsigned long)zone_idx(zone),
5354 zone_start_pfn, (zone_start_pfn + size));
5355
5356 zone_init_free_lists(zone);
5357
5358 return 0;
5359 }
5360
5361 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5362 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5363
5364 /*
5365 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5366 */
5367 int __meminit __early_pfn_to_nid(unsigned long pfn,
5368 struct mminit_pfnnid_cache *state)
5369 {
5370 unsigned long start_pfn, end_pfn;
5371 int nid;
5372
5373 if (state->last_start <= pfn && pfn < state->last_end)
5374 return state->last_nid;
5375
5376 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5377 if (nid != -1) {
5378 state->last_start = start_pfn;
5379 state->last_end = end_pfn;
5380 state->last_nid = nid;
5381 }
5382
5383 return nid;
5384 }
5385 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5386
5387 /**
5388 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5389 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5390 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5391 *
5392 * If an architecture guarantees that all ranges registered contain no holes
5393 * and may be freed, this this function may be used instead of calling
5394 * memblock_free_early_nid() manually.
5395 */
5396 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5397 {
5398 unsigned long start_pfn, end_pfn;
5399 int i, this_nid;
5400
5401 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5402 start_pfn = min(start_pfn, max_low_pfn);
5403 end_pfn = min(end_pfn, max_low_pfn);
5404
5405 if (start_pfn < end_pfn)
5406 memblock_free_early_nid(PFN_PHYS(start_pfn),
5407 (end_pfn - start_pfn) << PAGE_SHIFT,
5408 this_nid);
5409 }
5410 }
5411
5412 /**
5413 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5414 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5415 *
5416 * If an architecture guarantees that all ranges registered contain no holes and may
5417 * be freed, this function may be used instead of calling memory_present() manually.
5418 */
5419 void __init sparse_memory_present_with_active_regions(int nid)
5420 {
5421 unsigned long start_pfn, end_pfn;
5422 int i, this_nid;
5423
5424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5425 memory_present(this_nid, start_pfn, end_pfn);
5426 }
5427
5428 /**
5429 * get_pfn_range_for_nid - Return the start and end page frames for a node
5430 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5431 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5432 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5433 *
5434 * It returns the start and end page frame of a node based on information
5435 * provided by memblock_set_node(). If called for a node
5436 * with no available memory, a warning is printed and the start and end
5437 * PFNs will be 0.
5438 */
5439 void __meminit get_pfn_range_for_nid(unsigned int nid,
5440 unsigned long *start_pfn, unsigned long *end_pfn)
5441 {
5442 unsigned long this_start_pfn, this_end_pfn;
5443 int i;
5444
5445 *start_pfn = -1UL;
5446 *end_pfn = 0;
5447
5448 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5449 *start_pfn = min(*start_pfn, this_start_pfn);
5450 *end_pfn = max(*end_pfn, this_end_pfn);
5451 }
5452
5453 if (*start_pfn == -1UL)
5454 *start_pfn = 0;
5455 }
5456
5457 /*
5458 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5459 * assumption is made that zones within a node are ordered in monotonic
5460 * increasing memory addresses so that the "highest" populated zone is used
5461 */
5462 static void __init find_usable_zone_for_movable(void)
5463 {
5464 int zone_index;
5465 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5466 if (zone_index == ZONE_MOVABLE)
5467 continue;
5468
5469 if (arch_zone_highest_possible_pfn[zone_index] >
5470 arch_zone_lowest_possible_pfn[zone_index])
5471 break;
5472 }
5473
5474 VM_BUG_ON(zone_index == -1);
5475 movable_zone = zone_index;
5476 }
5477
5478 /*
5479 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5480 * because it is sized independent of architecture. Unlike the other zones,
5481 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5482 * in each node depending on the size of each node and how evenly kernelcore
5483 * is distributed. This helper function adjusts the zone ranges
5484 * provided by the architecture for a given node by using the end of the
5485 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5486 * zones within a node are in order of monotonic increases memory addresses
5487 */
5488 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5489 unsigned long zone_type,
5490 unsigned long node_start_pfn,
5491 unsigned long node_end_pfn,
5492 unsigned long *zone_start_pfn,
5493 unsigned long *zone_end_pfn)
5494 {
5495 /* Only adjust if ZONE_MOVABLE is on this node */
5496 if (zone_movable_pfn[nid]) {
5497 /* Size ZONE_MOVABLE */
5498 if (zone_type == ZONE_MOVABLE) {
5499 *zone_start_pfn = zone_movable_pfn[nid];
5500 *zone_end_pfn = min(node_end_pfn,
5501 arch_zone_highest_possible_pfn[movable_zone]);
5502
5503 /* Check if this whole range is within ZONE_MOVABLE */
5504 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5505 *zone_start_pfn = *zone_end_pfn;
5506 }
5507 }
5508
5509 /*
5510 * Return the number of pages a zone spans in a node, including holes
5511 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5512 */
5513 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5514 unsigned long zone_type,
5515 unsigned long node_start_pfn,
5516 unsigned long node_end_pfn,
5517 unsigned long *zone_start_pfn,
5518 unsigned long *zone_end_pfn,
5519 unsigned long *ignored)
5520 {
5521 /* When hotadd a new node from cpu_up(), the node should be empty */
5522 if (!node_start_pfn && !node_end_pfn)
5523 return 0;
5524
5525 /* Get the start and end of the zone */
5526 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5527 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5528 adjust_zone_range_for_zone_movable(nid, zone_type,
5529 node_start_pfn, node_end_pfn,
5530 zone_start_pfn, zone_end_pfn);
5531
5532 /* Check that this node has pages within the zone's required range */
5533 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5534 return 0;
5535
5536 /* Move the zone boundaries inside the node if necessary */
5537 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5538 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5539
5540 /* Return the spanned pages */
5541 return *zone_end_pfn - *zone_start_pfn;
5542 }
5543
5544 /*
5545 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5546 * then all holes in the requested range will be accounted for.
5547 */
5548 unsigned long __meminit __absent_pages_in_range(int nid,
5549 unsigned long range_start_pfn,
5550 unsigned long range_end_pfn)
5551 {
5552 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5553 unsigned long start_pfn, end_pfn;
5554 int i;
5555
5556 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5557 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5558 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5559 nr_absent -= end_pfn - start_pfn;
5560 }
5561 return nr_absent;
5562 }
5563
5564 /**
5565 * absent_pages_in_range - Return number of page frames in holes within a range
5566 * @start_pfn: The start PFN to start searching for holes
5567 * @end_pfn: The end PFN to stop searching for holes
5568 *
5569 * It returns the number of pages frames in memory holes within a range.
5570 */
5571 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5572 unsigned long end_pfn)
5573 {
5574 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5575 }
5576
5577 /* Return the number of page frames in holes in a zone on a node */
5578 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5579 unsigned long zone_type,
5580 unsigned long node_start_pfn,
5581 unsigned long node_end_pfn,
5582 unsigned long *ignored)
5583 {
5584 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5585 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5586 unsigned long zone_start_pfn, zone_end_pfn;
5587 unsigned long nr_absent;
5588
5589 /* When hotadd a new node from cpu_up(), the node should be empty */
5590 if (!node_start_pfn && !node_end_pfn)
5591 return 0;
5592
5593 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5594 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5595
5596 adjust_zone_range_for_zone_movable(nid, zone_type,
5597 node_start_pfn, node_end_pfn,
5598 &zone_start_pfn, &zone_end_pfn);
5599 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5600
5601 /*
5602 * ZONE_MOVABLE handling.
5603 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5604 * and vice versa.
5605 */
5606 if (zone_movable_pfn[nid]) {
5607 if (mirrored_kernelcore) {
5608 unsigned long start_pfn, end_pfn;
5609 struct memblock_region *r;
5610
5611 for_each_memblock(memory, r) {
5612 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5613 zone_start_pfn, zone_end_pfn);
5614 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5615 zone_start_pfn, zone_end_pfn);
5616
5617 if (zone_type == ZONE_MOVABLE &&
5618 memblock_is_mirror(r))
5619 nr_absent += end_pfn - start_pfn;
5620
5621 if (zone_type == ZONE_NORMAL &&
5622 !memblock_is_mirror(r))
5623 nr_absent += end_pfn - start_pfn;
5624 }
5625 } else {
5626 if (zone_type == ZONE_NORMAL)
5627 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5628 }
5629 }
5630
5631 return nr_absent;
5632 }
5633
5634 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5635 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5636 unsigned long zone_type,
5637 unsigned long node_start_pfn,
5638 unsigned long node_end_pfn,
5639 unsigned long *zone_start_pfn,
5640 unsigned long *zone_end_pfn,
5641 unsigned long *zones_size)
5642 {
5643 unsigned int zone;
5644
5645 *zone_start_pfn = node_start_pfn;
5646 for (zone = 0; zone < zone_type; zone++)
5647 *zone_start_pfn += zones_size[zone];
5648
5649 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5650
5651 return zones_size[zone_type];
5652 }
5653
5654 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5655 unsigned long zone_type,
5656 unsigned long node_start_pfn,
5657 unsigned long node_end_pfn,
5658 unsigned long *zholes_size)
5659 {
5660 if (!zholes_size)
5661 return 0;
5662
5663 return zholes_size[zone_type];
5664 }
5665
5666 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5667
5668 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5669 unsigned long node_start_pfn,
5670 unsigned long node_end_pfn,
5671 unsigned long *zones_size,
5672 unsigned long *zholes_size)
5673 {
5674 unsigned long realtotalpages = 0, totalpages = 0;
5675 enum zone_type i;
5676
5677 for (i = 0; i < MAX_NR_ZONES; i++) {
5678 struct zone *zone = pgdat->node_zones + i;
5679 unsigned long zone_start_pfn, zone_end_pfn;
5680 unsigned long size, real_size;
5681
5682 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5683 node_start_pfn,
5684 node_end_pfn,
5685 &zone_start_pfn,
5686 &zone_end_pfn,
5687 zones_size);
5688 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5689 node_start_pfn, node_end_pfn,
5690 zholes_size);
5691 if (size)
5692 zone->zone_start_pfn = zone_start_pfn;
5693 else
5694 zone->zone_start_pfn = 0;
5695 zone->spanned_pages = size;
5696 zone->present_pages = real_size;
5697
5698 totalpages += size;
5699 realtotalpages += real_size;
5700 }
5701
5702 pgdat->node_spanned_pages = totalpages;
5703 pgdat->node_present_pages = realtotalpages;
5704 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5705 realtotalpages);
5706 }
5707
5708 #ifndef CONFIG_SPARSEMEM
5709 /*
5710 * Calculate the size of the zone->blockflags rounded to an unsigned long
5711 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5712 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5713 * round what is now in bits to nearest long in bits, then return it in
5714 * bytes.
5715 */
5716 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5717 {
5718 unsigned long usemapsize;
5719
5720 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5721 usemapsize = roundup(zonesize, pageblock_nr_pages);
5722 usemapsize = usemapsize >> pageblock_order;
5723 usemapsize *= NR_PAGEBLOCK_BITS;
5724 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5725
5726 return usemapsize / 8;
5727 }
5728
5729 static void __init setup_usemap(struct pglist_data *pgdat,
5730 struct zone *zone,
5731 unsigned long zone_start_pfn,
5732 unsigned long zonesize)
5733 {
5734 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5735 zone->pageblock_flags = NULL;
5736 if (usemapsize)
5737 zone->pageblock_flags =
5738 memblock_virt_alloc_node_nopanic(usemapsize,
5739 pgdat->node_id);
5740 }
5741 #else
5742 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5743 unsigned long zone_start_pfn, unsigned long zonesize) {}
5744 #endif /* CONFIG_SPARSEMEM */
5745
5746 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5747
5748 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5749 void __paginginit set_pageblock_order(void)
5750 {
5751 unsigned int order;
5752
5753 /* Check that pageblock_nr_pages has not already been setup */
5754 if (pageblock_order)
5755 return;
5756
5757 if (HPAGE_SHIFT > PAGE_SHIFT)
5758 order = HUGETLB_PAGE_ORDER;
5759 else
5760 order = MAX_ORDER - 1;
5761
5762 /*
5763 * Assume the largest contiguous order of interest is a huge page.
5764 * This value may be variable depending on boot parameters on IA64 and
5765 * powerpc.
5766 */
5767 pageblock_order = order;
5768 }
5769 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5770
5771 /*
5772 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5773 * is unused as pageblock_order is set at compile-time. See
5774 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5775 * the kernel config
5776 */
5777 void __paginginit set_pageblock_order(void)
5778 {
5779 }
5780
5781 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5782
5783 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5784 unsigned long present_pages)
5785 {
5786 unsigned long pages = spanned_pages;
5787
5788 /*
5789 * Provide a more accurate estimation if there are holes within
5790 * the zone and SPARSEMEM is in use. If there are holes within the
5791 * zone, each populated memory region may cost us one or two extra
5792 * memmap pages due to alignment because memmap pages for each
5793 * populated regions may not naturally algined on page boundary.
5794 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5795 */
5796 if (spanned_pages > present_pages + (present_pages >> 4) &&
5797 IS_ENABLED(CONFIG_SPARSEMEM))
5798 pages = present_pages;
5799
5800 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5801 }
5802
5803 /*
5804 * Set up the zone data structures:
5805 * - mark all pages reserved
5806 * - mark all memory queues empty
5807 * - clear the memory bitmaps
5808 *
5809 * NOTE: pgdat should get zeroed by caller.
5810 */
5811 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5812 {
5813 enum zone_type j;
5814 int nid = pgdat->node_id;
5815 int ret;
5816
5817 pgdat_resize_init(pgdat);
5818 #ifdef CONFIG_NUMA_BALANCING
5819 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5820 pgdat->numabalancing_migrate_nr_pages = 0;
5821 pgdat->numabalancing_migrate_next_window = jiffies;
5822 #endif
5823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5824 spin_lock_init(&pgdat->split_queue_lock);
5825 INIT_LIST_HEAD(&pgdat->split_queue);
5826 pgdat->split_queue_len = 0;
5827 #endif
5828 init_waitqueue_head(&pgdat->kswapd_wait);
5829 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5830 #ifdef CONFIG_COMPACTION
5831 init_waitqueue_head(&pgdat->kcompactd_wait);
5832 #endif
5833 pgdat_page_ext_init(pgdat);
5834 spin_lock_init(&pgdat->lru_lock);
5835 lruvec_init(node_lruvec(pgdat));
5836
5837 for (j = 0; j < MAX_NR_ZONES; j++) {
5838 struct zone *zone = pgdat->node_zones + j;
5839 unsigned long size, realsize, freesize, memmap_pages;
5840 unsigned long zone_start_pfn = zone->zone_start_pfn;
5841
5842 size = zone->spanned_pages;
5843 realsize = freesize = zone->present_pages;
5844
5845 /*
5846 * Adjust freesize so that it accounts for how much memory
5847 * is used by this zone for memmap. This affects the watermark
5848 * and per-cpu initialisations
5849 */
5850 memmap_pages = calc_memmap_size(size, realsize);
5851 if (!is_highmem_idx(j)) {
5852 if (freesize >= memmap_pages) {
5853 freesize -= memmap_pages;
5854 if (memmap_pages)
5855 printk(KERN_DEBUG
5856 " %s zone: %lu pages used for memmap\n",
5857 zone_names[j], memmap_pages);
5858 } else
5859 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5860 zone_names[j], memmap_pages, freesize);
5861 }
5862
5863 /* Account for reserved pages */
5864 if (j == 0 && freesize > dma_reserve) {
5865 freesize -= dma_reserve;
5866 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5867 zone_names[0], dma_reserve);
5868 }
5869
5870 if (!is_highmem_idx(j))
5871 nr_kernel_pages += freesize;
5872 /* Charge for highmem memmap if there are enough kernel pages */
5873 else if (nr_kernel_pages > memmap_pages * 2)
5874 nr_kernel_pages -= memmap_pages;
5875 nr_all_pages += freesize;
5876
5877 /*
5878 * Set an approximate value for lowmem here, it will be adjusted
5879 * when the bootmem allocator frees pages into the buddy system.
5880 * And all highmem pages will be managed by the buddy system.
5881 */
5882 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5883 #ifdef CONFIG_NUMA
5884 zone->node = nid;
5885 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
5886 / 100;
5887 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
5888 #endif
5889 zone->name = zone_names[j];
5890 zone->zone_pgdat = pgdat;
5891 spin_lock_init(&zone->lock);
5892 zone_seqlock_init(zone);
5893 zone_pcp_init(zone);
5894
5895 if (!size)
5896 continue;
5897
5898 set_pageblock_order();
5899 setup_usemap(pgdat, zone, zone_start_pfn, size);
5900 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5901 BUG_ON(ret);
5902 memmap_init(size, nid, j, zone_start_pfn);
5903 }
5904 }
5905
5906 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5907 {
5908 unsigned long __maybe_unused start = 0;
5909 unsigned long __maybe_unused offset = 0;
5910
5911 /* Skip empty nodes */
5912 if (!pgdat->node_spanned_pages)
5913 return;
5914
5915 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5916 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5917 offset = pgdat->node_start_pfn - start;
5918 /* ia64 gets its own node_mem_map, before this, without bootmem */
5919 if (!pgdat->node_mem_map) {
5920 unsigned long size, end;
5921 struct page *map;
5922
5923 /*
5924 * The zone's endpoints aren't required to be MAX_ORDER
5925 * aligned but the node_mem_map endpoints must be in order
5926 * for the buddy allocator to function correctly.
5927 */
5928 end = pgdat_end_pfn(pgdat);
5929 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5930 size = (end - start) * sizeof(struct page);
5931 map = alloc_remap(pgdat->node_id, size);
5932 if (!map)
5933 map = memblock_virt_alloc_node_nopanic(size,
5934 pgdat->node_id);
5935 pgdat->node_mem_map = map + offset;
5936 }
5937 #ifndef CONFIG_NEED_MULTIPLE_NODES
5938 /*
5939 * With no DISCONTIG, the global mem_map is just set as node 0's
5940 */
5941 if (pgdat == NODE_DATA(0)) {
5942 mem_map = NODE_DATA(0)->node_mem_map;
5943 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5944 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5945 mem_map -= offset;
5946 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5947 }
5948 #endif
5949 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5950 }
5951
5952 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5953 unsigned long node_start_pfn, unsigned long *zholes_size)
5954 {
5955 pg_data_t *pgdat = NODE_DATA(nid);
5956 unsigned long start_pfn = 0;
5957 unsigned long end_pfn = 0;
5958
5959 /* pg_data_t should be reset to zero when it's allocated */
5960 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5961
5962 reset_deferred_meminit(pgdat);
5963 pgdat->node_id = nid;
5964 pgdat->node_start_pfn = node_start_pfn;
5965 pgdat->per_cpu_nodestats = NULL;
5966 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5967 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5968 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5969 (u64)start_pfn << PAGE_SHIFT,
5970 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5971 #else
5972 start_pfn = node_start_pfn;
5973 #endif
5974 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5975 zones_size, zholes_size);
5976
5977 alloc_node_mem_map(pgdat);
5978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5979 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5980 nid, (unsigned long)pgdat,
5981 (unsigned long)pgdat->node_mem_map);
5982 #endif
5983
5984 free_area_init_core(pgdat);
5985 }
5986
5987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5988
5989 #if MAX_NUMNODES > 1
5990 /*
5991 * Figure out the number of possible node ids.
5992 */
5993 void __init setup_nr_node_ids(void)
5994 {
5995 unsigned int highest;
5996
5997 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5998 nr_node_ids = highest + 1;
5999 }
6000 #endif
6001
6002 /**
6003 * node_map_pfn_alignment - determine the maximum internode alignment
6004 *
6005 * This function should be called after node map is populated and sorted.
6006 * It calculates the maximum power of two alignment which can distinguish
6007 * all the nodes.
6008 *
6009 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6010 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6011 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6012 * shifted, 1GiB is enough and this function will indicate so.
6013 *
6014 * This is used to test whether pfn -> nid mapping of the chosen memory
6015 * model has fine enough granularity to avoid incorrect mapping for the
6016 * populated node map.
6017 *
6018 * Returns the determined alignment in pfn's. 0 if there is no alignment
6019 * requirement (single node).
6020 */
6021 unsigned long __init node_map_pfn_alignment(void)
6022 {
6023 unsigned long accl_mask = 0, last_end = 0;
6024 unsigned long start, end, mask;
6025 int last_nid = -1;
6026 int i, nid;
6027
6028 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6029 if (!start || last_nid < 0 || last_nid == nid) {
6030 last_nid = nid;
6031 last_end = end;
6032 continue;
6033 }
6034
6035 /*
6036 * Start with a mask granular enough to pin-point to the
6037 * start pfn and tick off bits one-by-one until it becomes
6038 * too coarse to separate the current node from the last.
6039 */
6040 mask = ~((1 << __ffs(start)) - 1);
6041 while (mask && last_end <= (start & (mask << 1)))
6042 mask <<= 1;
6043
6044 /* accumulate all internode masks */
6045 accl_mask |= mask;
6046 }
6047
6048 /* convert mask to number of pages */
6049 return ~accl_mask + 1;
6050 }
6051
6052 /* Find the lowest pfn for a node */
6053 static unsigned long __init find_min_pfn_for_node(int nid)
6054 {
6055 unsigned long min_pfn = ULONG_MAX;
6056 unsigned long start_pfn;
6057 int i;
6058
6059 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6060 min_pfn = min(min_pfn, start_pfn);
6061
6062 if (min_pfn == ULONG_MAX) {
6063 pr_warn("Could not find start_pfn for node %d\n", nid);
6064 return 0;
6065 }
6066
6067 return min_pfn;
6068 }
6069
6070 /**
6071 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6072 *
6073 * It returns the minimum PFN based on information provided via
6074 * memblock_set_node().
6075 */
6076 unsigned long __init find_min_pfn_with_active_regions(void)
6077 {
6078 return find_min_pfn_for_node(MAX_NUMNODES);
6079 }
6080
6081 /*
6082 * early_calculate_totalpages()
6083 * Sum pages in active regions for movable zone.
6084 * Populate N_MEMORY for calculating usable_nodes.
6085 */
6086 static unsigned long __init early_calculate_totalpages(void)
6087 {
6088 unsigned long totalpages = 0;
6089 unsigned long start_pfn, end_pfn;
6090 int i, nid;
6091
6092 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6093 unsigned long pages = end_pfn - start_pfn;
6094
6095 totalpages += pages;
6096 if (pages)
6097 node_set_state(nid, N_MEMORY);
6098 }
6099 return totalpages;
6100 }
6101
6102 /*
6103 * Find the PFN the Movable zone begins in each node. Kernel memory
6104 * is spread evenly between nodes as long as the nodes have enough
6105 * memory. When they don't, some nodes will have more kernelcore than
6106 * others
6107 */
6108 static void __init find_zone_movable_pfns_for_nodes(void)
6109 {
6110 int i, nid;
6111 unsigned long usable_startpfn;
6112 unsigned long kernelcore_node, kernelcore_remaining;
6113 /* save the state before borrow the nodemask */
6114 nodemask_t saved_node_state = node_states[N_MEMORY];
6115 unsigned long totalpages = early_calculate_totalpages();
6116 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6117 struct memblock_region *r;
6118
6119 /* Need to find movable_zone earlier when movable_node is specified. */
6120 find_usable_zone_for_movable();
6121
6122 /*
6123 * If movable_node is specified, ignore kernelcore and movablecore
6124 * options.
6125 */
6126 if (movable_node_is_enabled()) {
6127 for_each_memblock(memory, r) {
6128 if (!memblock_is_hotpluggable(r))
6129 continue;
6130
6131 nid = r->nid;
6132
6133 usable_startpfn = PFN_DOWN(r->base);
6134 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6135 min(usable_startpfn, zone_movable_pfn[nid]) :
6136 usable_startpfn;
6137 }
6138
6139 goto out2;
6140 }
6141
6142 /*
6143 * If kernelcore=mirror is specified, ignore movablecore option
6144 */
6145 if (mirrored_kernelcore) {
6146 bool mem_below_4gb_not_mirrored = false;
6147
6148 for_each_memblock(memory, r) {
6149 if (memblock_is_mirror(r))
6150 continue;
6151
6152 nid = r->nid;
6153
6154 usable_startpfn = memblock_region_memory_base_pfn(r);
6155
6156 if (usable_startpfn < 0x100000) {
6157 mem_below_4gb_not_mirrored = true;
6158 continue;
6159 }
6160
6161 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6162 min(usable_startpfn, zone_movable_pfn[nid]) :
6163 usable_startpfn;
6164 }
6165
6166 if (mem_below_4gb_not_mirrored)
6167 pr_warn("This configuration results in unmirrored kernel memory.");
6168
6169 goto out2;
6170 }
6171
6172 /*
6173 * If movablecore=nn[KMG] was specified, calculate what size of
6174 * kernelcore that corresponds so that memory usable for
6175 * any allocation type is evenly spread. If both kernelcore
6176 * and movablecore are specified, then the value of kernelcore
6177 * will be used for required_kernelcore if it's greater than
6178 * what movablecore would have allowed.
6179 */
6180 if (required_movablecore) {
6181 unsigned long corepages;
6182
6183 /*
6184 * Round-up so that ZONE_MOVABLE is at least as large as what
6185 * was requested by the user
6186 */
6187 required_movablecore =
6188 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6189 required_movablecore = min(totalpages, required_movablecore);
6190 corepages = totalpages - required_movablecore;
6191
6192 required_kernelcore = max(required_kernelcore, corepages);
6193 }
6194
6195 /*
6196 * If kernelcore was not specified or kernelcore size is larger
6197 * than totalpages, there is no ZONE_MOVABLE.
6198 */
6199 if (!required_kernelcore || required_kernelcore >= totalpages)
6200 goto out;
6201
6202 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6203 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6204
6205 restart:
6206 /* Spread kernelcore memory as evenly as possible throughout nodes */
6207 kernelcore_node = required_kernelcore / usable_nodes;
6208 for_each_node_state(nid, N_MEMORY) {
6209 unsigned long start_pfn, end_pfn;
6210
6211 /*
6212 * Recalculate kernelcore_node if the division per node
6213 * now exceeds what is necessary to satisfy the requested
6214 * amount of memory for the kernel
6215 */
6216 if (required_kernelcore < kernelcore_node)
6217 kernelcore_node = required_kernelcore / usable_nodes;
6218
6219 /*
6220 * As the map is walked, we track how much memory is usable
6221 * by the kernel using kernelcore_remaining. When it is
6222 * 0, the rest of the node is usable by ZONE_MOVABLE
6223 */
6224 kernelcore_remaining = kernelcore_node;
6225
6226 /* Go through each range of PFNs within this node */
6227 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6228 unsigned long size_pages;
6229
6230 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6231 if (start_pfn >= end_pfn)
6232 continue;
6233
6234 /* Account for what is only usable for kernelcore */
6235 if (start_pfn < usable_startpfn) {
6236 unsigned long kernel_pages;
6237 kernel_pages = min(end_pfn, usable_startpfn)
6238 - start_pfn;
6239
6240 kernelcore_remaining -= min(kernel_pages,
6241 kernelcore_remaining);
6242 required_kernelcore -= min(kernel_pages,
6243 required_kernelcore);
6244
6245 /* Continue if range is now fully accounted */
6246 if (end_pfn <= usable_startpfn) {
6247
6248 /*
6249 * Push zone_movable_pfn to the end so
6250 * that if we have to rebalance
6251 * kernelcore across nodes, we will
6252 * not double account here
6253 */
6254 zone_movable_pfn[nid] = end_pfn;
6255 continue;
6256 }
6257 start_pfn = usable_startpfn;
6258 }
6259
6260 /*
6261 * The usable PFN range for ZONE_MOVABLE is from
6262 * start_pfn->end_pfn. Calculate size_pages as the
6263 * number of pages used as kernelcore
6264 */
6265 size_pages = end_pfn - start_pfn;
6266 if (size_pages > kernelcore_remaining)
6267 size_pages = kernelcore_remaining;
6268 zone_movable_pfn[nid] = start_pfn + size_pages;
6269
6270 /*
6271 * Some kernelcore has been met, update counts and
6272 * break if the kernelcore for this node has been
6273 * satisfied
6274 */
6275 required_kernelcore -= min(required_kernelcore,
6276 size_pages);
6277 kernelcore_remaining -= size_pages;
6278 if (!kernelcore_remaining)
6279 break;
6280 }
6281 }
6282
6283 /*
6284 * If there is still required_kernelcore, we do another pass with one
6285 * less node in the count. This will push zone_movable_pfn[nid] further
6286 * along on the nodes that still have memory until kernelcore is
6287 * satisfied
6288 */
6289 usable_nodes--;
6290 if (usable_nodes && required_kernelcore > usable_nodes)
6291 goto restart;
6292
6293 out2:
6294 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6295 for (nid = 0; nid < MAX_NUMNODES; nid++)
6296 zone_movable_pfn[nid] =
6297 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6298
6299 out:
6300 /* restore the node_state */
6301 node_states[N_MEMORY] = saved_node_state;
6302 }
6303
6304 /* Any regular or high memory on that node ? */
6305 static void check_for_memory(pg_data_t *pgdat, int nid)
6306 {
6307 enum zone_type zone_type;
6308
6309 if (N_MEMORY == N_NORMAL_MEMORY)
6310 return;
6311
6312 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6313 struct zone *zone = &pgdat->node_zones[zone_type];
6314 if (populated_zone(zone)) {
6315 node_set_state(nid, N_HIGH_MEMORY);
6316 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6317 zone_type <= ZONE_NORMAL)
6318 node_set_state(nid, N_NORMAL_MEMORY);
6319 break;
6320 }
6321 }
6322 }
6323
6324 /**
6325 * free_area_init_nodes - Initialise all pg_data_t and zone data
6326 * @max_zone_pfn: an array of max PFNs for each zone
6327 *
6328 * This will call free_area_init_node() for each active node in the system.
6329 * Using the page ranges provided by memblock_set_node(), the size of each
6330 * zone in each node and their holes is calculated. If the maximum PFN
6331 * between two adjacent zones match, it is assumed that the zone is empty.
6332 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6333 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6334 * starts where the previous one ended. For example, ZONE_DMA32 starts
6335 * at arch_max_dma_pfn.
6336 */
6337 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6338 {
6339 unsigned long start_pfn, end_pfn;
6340 int i, nid;
6341
6342 /* Record where the zone boundaries are */
6343 memset(arch_zone_lowest_possible_pfn, 0,
6344 sizeof(arch_zone_lowest_possible_pfn));
6345 memset(arch_zone_highest_possible_pfn, 0,
6346 sizeof(arch_zone_highest_possible_pfn));
6347
6348 start_pfn = find_min_pfn_with_active_regions();
6349
6350 for (i = 0; i < MAX_NR_ZONES; i++) {
6351 if (i == ZONE_MOVABLE)
6352 continue;
6353
6354 end_pfn = max(max_zone_pfn[i], start_pfn);
6355 arch_zone_lowest_possible_pfn[i] = start_pfn;
6356 arch_zone_highest_possible_pfn[i] = end_pfn;
6357
6358 start_pfn = end_pfn;
6359 }
6360 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6361 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6362
6363 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6364 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6365 find_zone_movable_pfns_for_nodes();
6366
6367 /* Print out the zone ranges */
6368 pr_info("Zone ranges:\n");
6369 for (i = 0; i < MAX_NR_ZONES; i++) {
6370 if (i == ZONE_MOVABLE)
6371 continue;
6372 pr_info(" %-8s ", zone_names[i]);
6373 if (arch_zone_lowest_possible_pfn[i] ==
6374 arch_zone_highest_possible_pfn[i])
6375 pr_cont("empty\n");
6376 else
6377 pr_cont("[mem %#018Lx-%#018Lx]\n",
6378 (u64)arch_zone_lowest_possible_pfn[i]
6379 << PAGE_SHIFT,
6380 ((u64)arch_zone_highest_possible_pfn[i]
6381 << PAGE_SHIFT) - 1);
6382 }
6383
6384 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6385 pr_info("Movable zone start for each node\n");
6386 for (i = 0; i < MAX_NUMNODES; i++) {
6387 if (zone_movable_pfn[i])
6388 pr_info(" Node %d: %#018Lx\n", i,
6389 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6390 }
6391
6392 /* Print out the early node map */
6393 pr_info("Early memory node ranges\n");
6394 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6395 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6396 (u64)start_pfn << PAGE_SHIFT,
6397 ((u64)end_pfn << PAGE_SHIFT) - 1);
6398
6399 /* Initialise every node */
6400 mminit_verify_pageflags_layout();
6401 setup_nr_node_ids();
6402 for_each_online_node(nid) {
6403 pg_data_t *pgdat = NODE_DATA(nid);
6404 free_area_init_node(nid, NULL,
6405 find_min_pfn_for_node(nid), NULL);
6406
6407 /* Any memory on that node */
6408 if (pgdat->node_present_pages)
6409 node_set_state(nid, N_MEMORY);
6410 check_for_memory(pgdat, nid);
6411 }
6412 }
6413
6414 static int __init cmdline_parse_core(char *p, unsigned long *core)
6415 {
6416 unsigned long long coremem;
6417 if (!p)
6418 return -EINVAL;
6419
6420 coremem = memparse(p, &p);
6421 *core = coremem >> PAGE_SHIFT;
6422
6423 /* Paranoid check that UL is enough for the coremem value */
6424 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6425
6426 return 0;
6427 }
6428
6429 /*
6430 * kernelcore=size sets the amount of memory for use for allocations that
6431 * cannot be reclaimed or migrated.
6432 */
6433 static int __init cmdline_parse_kernelcore(char *p)
6434 {
6435 /* parse kernelcore=mirror */
6436 if (parse_option_str(p, "mirror")) {
6437 mirrored_kernelcore = true;
6438 return 0;
6439 }
6440
6441 return cmdline_parse_core(p, &required_kernelcore);
6442 }
6443
6444 /*
6445 * movablecore=size sets the amount of memory for use for allocations that
6446 * can be reclaimed or migrated.
6447 */
6448 static int __init cmdline_parse_movablecore(char *p)
6449 {
6450 return cmdline_parse_core(p, &required_movablecore);
6451 }
6452
6453 early_param("kernelcore", cmdline_parse_kernelcore);
6454 early_param("movablecore", cmdline_parse_movablecore);
6455
6456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6457
6458 void adjust_managed_page_count(struct page *page, long count)
6459 {
6460 spin_lock(&managed_page_count_lock);
6461 page_zone(page)->managed_pages += count;
6462 totalram_pages += count;
6463 #ifdef CONFIG_HIGHMEM
6464 if (PageHighMem(page))
6465 totalhigh_pages += count;
6466 #endif
6467 spin_unlock(&managed_page_count_lock);
6468 }
6469 EXPORT_SYMBOL(adjust_managed_page_count);
6470
6471 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6472 {
6473 void *pos;
6474 unsigned long pages = 0;
6475
6476 start = (void *)PAGE_ALIGN((unsigned long)start);
6477 end = (void *)((unsigned long)end & PAGE_MASK);
6478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6479 if ((unsigned int)poison <= 0xFF)
6480 memset(pos, poison, PAGE_SIZE);
6481 free_reserved_page(virt_to_page(pos));
6482 }
6483
6484 if (pages && s)
6485 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6486 s, pages << (PAGE_SHIFT - 10), start, end);
6487
6488 return pages;
6489 }
6490 EXPORT_SYMBOL(free_reserved_area);
6491
6492 #ifdef CONFIG_HIGHMEM
6493 void free_highmem_page(struct page *page)
6494 {
6495 __free_reserved_page(page);
6496 totalram_pages++;
6497 page_zone(page)->managed_pages++;
6498 totalhigh_pages++;
6499 }
6500 #endif
6501
6502
6503 void __init mem_init_print_info(const char *str)
6504 {
6505 unsigned long physpages, codesize, datasize, rosize, bss_size;
6506 unsigned long init_code_size, init_data_size;
6507
6508 physpages = get_num_physpages();
6509 codesize = _etext - _stext;
6510 datasize = _edata - _sdata;
6511 rosize = __end_rodata - __start_rodata;
6512 bss_size = __bss_stop - __bss_start;
6513 init_data_size = __init_end - __init_begin;
6514 init_code_size = _einittext - _sinittext;
6515
6516 /*
6517 * Detect special cases and adjust section sizes accordingly:
6518 * 1) .init.* may be embedded into .data sections
6519 * 2) .init.text.* may be out of [__init_begin, __init_end],
6520 * please refer to arch/tile/kernel/vmlinux.lds.S.
6521 * 3) .rodata.* may be embedded into .text or .data sections.
6522 */
6523 #define adj_init_size(start, end, size, pos, adj) \
6524 do { \
6525 if (start <= pos && pos < end && size > adj) \
6526 size -= adj; \
6527 } while (0)
6528
6529 adj_init_size(__init_begin, __init_end, init_data_size,
6530 _sinittext, init_code_size);
6531 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6532 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6533 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6534 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6535
6536 #undef adj_init_size
6537
6538 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6539 #ifdef CONFIG_HIGHMEM
6540 ", %luK highmem"
6541 #endif
6542 "%s%s)\n",
6543 nr_free_pages() << (PAGE_SHIFT - 10),
6544 physpages << (PAGE_SHIFT - 10),
6545 codesize >> 10, datasize >> 10, rosize >> 10,
6546 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6547 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6548 totalcma_pages << (PAGE_SHIFT - 10),
6549 #ifdef CONFIG_HIGHMEM
6550 totalhigh_pages << (PAGE_SHIFT - 10),
6551 #endif
6552 str ? ", " : "", str ? str : "");
6553 }
6554
6555 /**
6556 * set_dma_reserve - set the specified number of pages reserved in the first zone
6557 * @new_dma_reserve: The number of pages to mark reserved
6558 *
6559 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6560 * In the DMA zone, a significant percentage may be consumed by kernel image
6561 * and other unfreeable allocations which can skew the watermarks badly. This
6562 * function may optionally be used to account for unfreeable pages in the
6563 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6564 * smaller per-cpu batchsize.
6565 */
6566 void __init set_dma_reserve(unsigned long new_dma_reserve)
6567 {
6568 dma_reserve = new_dma_reserve;
6569 }
6570
6571 void __init free_area_init(unsigned long *zones_size)
6572 {
6573 free_area_init_node(0, zones_size,
6574 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6575 }
6576
6577 static int page_alloc_cpu_notify(struct notifier_block *self,
6578 unsigned long action, void *hcpu)
6579 {
6580 int cpu = (unsigned long)hcpu;
6581
6582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6583 lru_add_drain_cpu(cpu);
6584 drain_pages(cpu);
6585
6586 /*
6587 * Spill the event counters of the dead processor
6588 * into the current processors event counters.
6589 * This artificially elevates the count of the current
6590 * processor.
6591 */
6592 vm_events_fold_cpu(cpu);
6593
6594 /*
6595 * Zero the differential counters of the dead processor
6596 * so that the vm statistics are consistent.
6597 *
6598 * This is only okay since the processor is dead and cannot
6599 * race with what we are doing.
6600 */
6601 cpu_vm_stats_fold(cpu);
6602 }
6603 return NOTIFY_OK;
6604 }
6605
6606 void __init page_alloc_init(void)
6607 {
6608 hotcpu_notifier(page_alloc_cpu_notify, 0);
6609 }
6610
6611 /*
6612 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6613 * or min_free_kbytes changes.
6614 */
6615 static void calculate_totalreserve_pages(void)
6616 {
6617 struct pglist_data *pgdat;
6618 unsigned long reserve_pages = 0;
6619 enum zone_type i, j;
6620
6621 for_each_online_pgdat(pgdat) {
6622
6623 pgdat->totalreserve_pages = 0;
6624
6625 for (i = 0; i < MAX_NR_ZONES; i++) {
6626 struct zone *zone = pgdat->node_zones + i;
6627 long max = 0;
6628
6629 /* Find valid and maximum lowmem_reserve in the zone */
6630 for (j = i; j < MAX_NR_ZONES; j++) {
6631 if (zone->lowmem_reserve[j] > max)
6632 max = zone->lowmem_reserve[j];
6633 }
6634
6635 /* we treat the high watermark as reserved pages. */
6636 max += high_wmark_pages(zone);
6637
6638 if (max > zone->managed_pages)
6639 max = zone->managed_pages;
6640
6641 pgdat->totalreserve_pages += max;
6642
6643 reserve_pages += max;
6644 }
6645 }
6646 totalreserve_pages = reserve_pages;
6647 }
6648
6649 /*
6650 * setup_per_zone_lowmem_reserve - called whenever
6651 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6652 * has a correct pages reserved value, so an adequate number of
6653 * pages are left in the zone after a successful __alloc_pages().
6654 */
6655 static void setup_per_zone_lowmem_reserve(void)
6656 {
6657 struct pglist_data *pgdat;
6658 enum zone_type j, idx;
6659
6660 for_each_online_pgdat(pgdat) {
6661 for (j = 0; j < MAX_NR_ZONES; j++) {
6662 struct zone *zone = pgdat->node_zones + j;
6663 unsigned long managed_pages = zone->managed_pages;
6664
6665 zone->lowmem_reserve[j] = 0;
6666
6667 idx = j;
6668 while (idx) {
6669 struct zone *lower_zone;
6670
6671 idx--;
6672
6673 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6674 sysctl_lowmem_reserve_ratio[idx] = 1;
6675
6676 lower_zone = pgdat->node_zones + idx;
6677 lower_zone->lowmem_reserve[j] = managed_pages /
6678 sysctl_lowmem_reserve_ratio[idx];
6679 managed_pages += lower_zone->managed_pages;
6680 }
6681 }
6682 }
6683
6684 /* update totalreserve_pages */
6685 calculate_totalreserve_pages();
6686 }
6687
6688 static void __setup_per_zone_wmarks(void)
6689 {
6690 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6691 unsigned long lowmem_pages = 0;
6692 struct zone *zone;
6693 unsigned long flags;
6694
6695 /* Calculate total number of !ZONE_HIGHMEM pages */
6696 for_each_zone(zone) {
6697 if (!is_highmem(zone))
6698 lowmem_pages += zone->managed_pages;
6699 }
6700
6701 for_each_zone(zone) {
6702 u64 tmp;
6703
6704 spin_lock_irqsave(&zone->lock, flags);
6705 tmp = (u64)pages_min * zone->managed_pages;
6706 do_div(tmp, lowmem_pages);
6707 if (is_highmem(zone)) {
6708 /*
6709 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6710 * need highmem pages, so cap pages_min to a small
6711 * value here.
6712 *
6713 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6714 * deltas control asynch page reclaim, and so should
6715 * not be capped for highmem.
6716 */
6717 unsigned long min_pages;
6718
6719 min_pages = zone->managed_pages / 1024;
6720 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6721 zone->watermark[WMARK_MIN] = min_pages;
6722 } else {
6723 /*
6724 * If it's a lowmem zone, reserve a number of pages
6725 * proportionate to the zone's size.
6726 */
6727 zone->watermark[WMARK_MIN] = tmp;
6728 }
6729
6730 /*
6731 * Set the kswapd watermarks distance according to the
6732 * scale factor in proportion to available memory, but
6733 * ensure a minimum size on small systems.
6734 */
6735 tmp = max_t(u64, tmp >> 2,
6736 mult_frac(zone->managed_pages,
6737 watermark_scale_factor, 10000));
6738
6739 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6740 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6741
6742 spin_unlock_irqrestore(&zone->lock, flags);
6743 }
6744
6745 /* update totalreserve_pages */
6746 calculate_totalreserve_pages();
6747 }
6748
6749 /**
6750 * setup_per_zone_wmarks - called when min_free_kbytes changes
6751 * or when memory is hot-{added|removed}
6752 *
6753 * Ensures that the watermark[min,low,high] values for each zone are set
6754 * correctly with respect to min_free_kbytes.
6755 */
6756 void setup_per_zone_wmarks(void)
6757 {
6758 mutex_lock(&zonelists_mutex);
6759 __setup_per_zone_wmarks();
6760 mutex_unlock(&zonelists_mutex);
6761 }
6762
6763 /*
6764 * Initialise min_free_kbytes.
6765 *
6766 * For small machines we want it small (128k min). For large machines
6767 * we want it large (64MB max). But it is not linear, because network
6768 * bandwidth does not increase linearly with machine size. We use
6769 *
6770 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6771 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6772 *
6773 * which yields
6774 *
6775 * 16MB: 512k
6776 * 32MB: 724k
6777 * 64MB: 1024k
6778 * 128MB: 1448k
6779 * 256MB: 2048k
6780 * 512MB: 2896k
6781 * 1024MB: 4096k
6782 * 2048MB: 5792k
6783 * 4096MB: 8192k
6784 * 8192MB: 11584k
6785 * 16384MB: 16384k
6786 */
6787 int __meminit init_per_zone_wmark_min(void)
6788 {
6789 unsigned long lowmem_kbytes;
6790 int new_min_free_kbytes;
6791
6792 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6793 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6794
6795 if (new_min_free_kbytes > user_min_free_kbytes) {
6796 min_free_kbytes = new_min_free_kbytes;
6797 if (min_free_kbytes < 128)
6798 min_free_kbytes = 128;
6799 if (min_free_kbytes > 65536)
6800 min_free_kbytes = 65536;
6801 } else {
6802 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6803 new_min_free_kbytes, user_min_free_kbytes);
6804 }
6805 setup_per_zone_wmarks();
6806 refresh_zone_stat_thresholds();
6807 setup_per_zone_lowmem_reserve();
6808 return 0;
6809 }
6810 core_initcall(init_per_zone_wmark_min)
6811
6812 /*
6813 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6814 * that we can call two helper functions whenever min_free_kbytes
6815 * changes.
6816 */
6817 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6818 void __user *buffer, size_t *length, loff_t *ppos)
6819 {
6820 int rc;
6821
6822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6823 if (rc)
6824 return rc;
6825
6826 if (write) {
6827 user_min_free_kbytes = min_free_kbytes;
6828 setup_per_zone_wmarks();
6829 }
6830 return 0;
6831 }
6832
6833 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6834 void __user *buffer, size_t *length, loff_t *ppos)
6835 {
6836 int rc;
6837
6838 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6839 if (rc)
6840 return rc;
6841
6842 if (write)
6843 setup_per_zone_wmarks();
6844
6845 return 0;
6846 }
6847
6848 #ifdef CONFIG_NUMA
6849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6850 void __user *buffer, size_t *length, loff_t *ppos)
6851 {
6852 struct pglist_data *pgdat;
6853 struct zone *zone;
6854 int rc;
6855
6856 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6857 if (rc)
6858 return rc;
6859
6860 for_each_online_pgdat(pgdat)
6861 pgdat->min_slab_pages = 0;
6862
6863 for_each_zone(zone)
6864 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6865 sysctl_min_unmapped_ratio) / 100;
6866 return 0;
6867 }
6868
6869 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6870 void __user *buffer, size_t *length, loff_t *ppos)
6871 {
6872 struct pglist_data *pgdat;
6873 struct zone *zone;
6874 int rc;
6875
6876 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6877 if (rc)
6878 return rc;
6879
6880 for_each_online_pgdat(pgdat)
6881 pgdat->min_slab_pages = 0;
6882
6883 for_each_zone(zone)
6884 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6885 sysctl_min_slab_ratio) / 100;
6886 return 0;
6887 }
6888 #endif
6889
6890 /*
6891 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6892 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6893 * whenever sysctl_lowmem_reserve_ratio changes.
6894 *
6895 * The reserve ratio obviously has absolutely no relation with the
6896 * minimum watermarks. The lowmem reserve ratio can only make sense
6897 * if in function of the boot time zone sizes.
6898 */
6899 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6900 void __user *buffer, size_t *length, loff_t *ppos)
6901 {
6902 proc_dointvec_minmax(table, write, buffer, length, ppos);
6903 setup_per_zone_lowmem_reserve();
6904 return 0;
6905 }
6906
6907 /*
6908 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6909 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6910 * pagelist can have before it gets flushed back to buddy allocator.
6911 */
6912 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6913 void __user *buffer, size_t *length, loff_t *ppos)
6914 {
6915 struct zone *zone;
6916 int old_percpu_pagelist_fraction;
6917 int ret;
6918
6919 mutex_lock(&pcp_batch_high_lock);
6920 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6921
6922 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6923 if (!write || ret < 0)
6924 goto out;
6925
6926 /* Sanity checking to avoid pcp imbalance */
6927 if (percpu_pagelist_fraction &&
6928 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6929 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6930 ret = -EINVAL;
6931 goto out;
6932 }
6933
6934 /* No change? */
6935 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6936 goto out;
6937
6938 for_each_populated_zone(zone) {
6939 unsigned int cpu;
6940
6941 for_each_possible_cpu(cpu)
6942 pageset_set_high_and_batch(zone,
6943 per_cpu_ptr(zone->pageset, cpu));
6944 }
6945 out:
6946 mutex_unlock(&pcp_batch_high_lock);
6947 return ret;
6948 }
6949
6950 #ifdef CONFIG_NUMA
6951 int hashdist = HASHDIST_DEFAULT;
6952
6953 static int __init set_hashdist(char *str)
6954 {
6955 if (!str)
6956 return 0;
6957 hashdist = simple_strtoul(str, &str, 0);
6958 return 1;
6959 }
6960 __setup("hashdist=", set_hashdist);
6961 #endif
6962
6963 /*
6964 * allocate a large system hash table from bootmem
6965 * - it is assumed that the hash table must contain an exact power-of-2
6966 * quantity of entries
6967 * - limit is the number of hash buckets, not the total allocation size
6968 */
6969 void *__init alloc_large_system_hash(const char *tablename,
6970 unsigned long bucketsize,
6971 unsigned long numentries,
6972 int scale,
6973 int flags,
6974 unsigned int *_hash_shift,
6975 unsigned int *_hash_mask,
6976 unsigned long low_limit,
6977 unsigned long high_limit)
6978 {
6979 unsigned long long max = high_limit;
6980 unsigned long log2qty, size;
6981 void *table = NULL;
6982
6983 /* allow the kernel cmdline to have a say */
6984 if (!numentries) {
6985 /* round applicable memory size up to nearest megabyte */
6986 numentries = nr_kernel_pages;
6987
6988 /* It isn't necessary when PAGE_SIZE >= 1MB */
6989 if (PAGE_SHIFT < 20)
6990 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6991
6992 /* limit to 1 bucket per 2^scale bytes of low memory */
6993 if (scale > PAGE_SHIFT)
6994 numentries >>= (scale - PAGE_SHIFT);
6995 else
6996 numentries <<= (PAGE_SHIFT - scale);
6997
6998 /* Make sure we've got at least a 0-order allocation.. */
6999 if (unlikely(flags & HASH_SMALL)) {
7000 /* Makes no sense without HASH_EARLY */
7001 WARN_ON(!(flags & HASH_EARLY));
7002 if (!(numentries >> *_hash_shift)) {
7003 numentries = 1UL << *_hash_shift;
7004 BUG_ON(!numentries);
7005 }
7006 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7007 numentries = PAGE_SIZE / bucketsize;
7008 }
7009 numentries = roundup_pow_of_two(numentries);
7010
7011 /* limit allocation size to 1/16 total memory by default */
7012 if (max == 0) {
7013 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7014 do_div(max, bucketsize);
7015 }
7016 max = min(max, 0x80000000ULL);
7017
7018 if (numentries < low_limit)
7019 numentries = low_limit;
7020 if (numentries > max)
7021 numentries = max;
7022
7023 log2qty = ilog2(numentries);
7024
7025 do {
7026 size = bucketsize << log2qty;
7027 if (flags & HASH_EARLY)
7028 table = memblock_virt_alloc_nopanic(size, 0);
7029 else if (hashdist)
7030 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7031 else {
7032 /*
7033 * If bucketsize is not a power-of-two, we may free
7034 * some pages at the end of hash table which
7035 * alloc_pages_exact() automatically does
7036 */
7037 if (get_order(size) < MAX_ORDER) {
7038 table = alloc_pages_exact(size, GFP_ATOMIC);
7039 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7040 }
7041 }
7042 } while (!table && size > PAGE_SIZE && --log2qty);
7043
7044 if (!table)
7045 panic("Failed to allocate %s hash table\n", tablename);
7046
7047 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7048 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7049
7050 if (_hash_shift)
7051 *_hash_shift = log2qty;
7052 if (_hash_mask)
7053 *_hash_mask = (1 << log2qty) - 1;
7054
7055 return table;
7056 }
7057
7058 /*
7059 * This function checks whether pageblock includes unmovable pages or not.
7060 * If @count is not zero, it is okay to include less @count unmovable pages
7061 *
7062 * PageLRU check without isolation or lru_lock could race so that
7063 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7064 * expect this function should be exact.
7065 */
7066 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7067 bool skip_hwpoisoned_pages)
7068 {
7069 unsigned long pfn, iter, found;
7070 int mt;
7071
7072 /*
7073 * For avoiding noise data, lru_add_drain_all() should be called
7074 * If ZONE_MOVABLE, the zone never contains unmovable pages
7075 */
7076 if (zone_idx(zone) == ZONE_MOVABLE)
7077 return false;
7078 mt = get_pageblock_migratetype(page);
7079 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7080 return false;
7081
7082 pfn = page_to_pfn(page);
7083 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7084 unsigned long check = pfn + iter;
7085
7086 if (!pfn_valid_within(check))
7087 continue;
7088
7089 page = pfn_to_page(check);
7090
7091 /*
7092 * Hugepages are not in LRU lists, but they're movable.
7093 * We need not scan over tail pages bacause we don't
7094 * handle each tail page individually in migration.
7095 */
7096 if (PageHuge(page)) {
7097 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7098 continue;
7099 }
7100
7101 /*
7102 * We can't use page_count without pin a page
7103 * because another CPU can free compound page.
7104 * This check already skips compound tails of THP
7105 * because their page->_refcount is zero at all time.
7106 */
7107 if (!page_ref_count(page)) {
7108 if (PageBuddy(page))
7109 iter += (1 << page_order(page)) - 1;
7110 continue;
7111 }
7112
7113 /*
7114 * The HWPoisoned page may be not in buddy system, and
7115 * page_count() is not 0.
7116 */
7117 if (skip_hwpoisoned_pages && PageHWPoison(page))
7118 continue;
7119
7120 if (!PageLRU(page))
7121 found++;
7122 /*
7123 * If there are RECLAIMABLE pages, we need to check
7124 * it. But now, memory offline itself doesn't call
7125 * shrink_node_slabs() and it still to be fixed.
7126 */
7127 /*
7128 * If the page is not RAM, page_count()should be 0.
7129 * we don't need more check. This is an _used_ not-movable page.
7130 *
7131 * The problematic thing here is PG_reserved pages. PG_reserved
7132 * is set to both of a memory hole page and a _used_ kernel
7133 * page at boot.
7134 */
7135 if (found > count)
7136 return true;
7137 }
7138 return false;
7139 }
7140
7141 bool is_pageblock_removable_nolock(struct page *page)
7142 {
7143 struct zone *zone;
7144 unsigned long pfn;
7145
7146 /*
7147 * We have to be careful here because we are iterating over memory
7148 * sections which are not zone aware so we might end up outside of
7149 * the zone but still within the section.
7150 * We have to take care about the node as well. If the node is offline
7151 * its NODE_DATA will be NULL - see page_zone.
7152 */
7153 if (!node_online(page_to_nid(page)))
7154 return false;
7155
7156 zone = page_zone(page);
7157 pfn = page_to_pfn(page);
7158 if (!zone_spans_pfn(zone, pfn))
7159 return false;
7160
7161 return !has_unmovable_pages(zone, page, 0, true);
7162 }
7163
7164 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7165
7166 static unsigned long pfn_max_align_down(unsigned long pfn)
7167 {
7168 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7169 pageblock_nr_pages) - 1);
7170 }
7171
7172 static unsigned long pfn_max_align_up(unsigned long pfn)
7173 {
7174 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7175 pageblock_nr_pages));
7176 }
7177
7178 /* [start, end) must belong to a single zone. */
7179 static int __alloc_contig_migrate_range(struct compact_control *cc,
7180 unsigned long start, unsigned long end)
7181 {
7182 /* This function is based on compact_zone() from compaction.c. */
7183 unsigned long nr_reclaimed;
7184 unsigned long pfn = start;
7185 unsigned int tries = 0;
7186 int ret = 0;
7187
7188 migrate_prep();
7189
7190 while (pfn < end || !list_empty(&cc->migratepages)) {
7191 if (fatal_signal_pending(current)) {
7192 ret = -EINTR;
7193 break;
7194 }
7195
7196 if (list_empty(&cc->migratepages)) {
7197 cc->nr_migratepages = 0;
7198 pfn = isolate_migratepages_range(cc, pfn, end);
7199 if (!pfn) {
7200 ret = -EINTR;
7201 break;
7202 }
7203 tries = 0;
7204 } else if (++tries == 5) {
7205 ret = ret < 0 ? ret : -EBUSY;
7206 break;
7207 }
7208
7209 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7210 &cc->migratepages);
7211 cc->nr_migratepages -= nr_reclaimed;
7212
7213 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7214 NULL, 0, cc->mode, MR_CMA);
7215 }
7216 if (ret < 0) {
7217 putback_movable_pages(&cc->migratepages);
7218 return ret;
7219 }
7220 return 0;
7221 }
7222
7223 /**
7224 * alloc_contig_range() -- tries to allocate given range of pages
7225 * @start: start PFN to allocate
7226 * @end: one-past-the-last PFN to allocate
7227 * @migratetype: migratetype of the underlaying pageblocks (either
7228 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7229 * in range must have the same migratetype and it must
7230 * be either of the two.
7231 *
7232 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7233 * aligned, however it's the caller's responsibility to guarantee that
7234 * we are the only thread that changes migrate type of pageblocks the
7235 * pages fall in.
7236 *
7237 * The PFN range must belong to a single zone.
7238 *
7239 * Returns zero on success or negative error code. On success all
7240 * pages which PFN is in [start, end) are allocated for the caller and
7241 * need to be freed with free_contig_range().
7242 */
7243 int alloc_contig_range(unsigned long start, unsigned long end,
7244 unsigned migratetype)
7245 {
7246 unsigned long outer_start, outer_end;
7247 unsigned int order;
7248 int ret = 0;
7249
7250 struct compact_control cc = {
7251 .nr_migratepages = 0,
7252 .order = -1,
7253 .zone = page_zone(pfn_to_page(start)),
7254 .mode = MIGRATE_SYNC,
7255 .ignore_skip_hint = true,
7256 };
7257 INIT_LIST_HEAD(&cc.migratepages);
7258
7259 /*
7260 * What we do here is we mark all pageblocks in range as
7261 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7262 * have different sizes, and due to the way page allocator
7263 * work, we align the range to biggest of the two pages so
7264 * that page allocator won't try to merge buddies from
7265 * different pageblocks and change MIGRATE_ISOLATE to some
7266 * other migration type.
7267 *
7268 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7269 * migrate the pages from an unaligned range (ie. pages that
7270 * we are interested in). This will put all the pages in
7271 * range back to page allocator as MIGRATE_ISOLATE.
7272 *
7273 * When this is done, we take the pages in range from page
7274 * allocator removing them from the buddy system. This way
7275 * page allocator will never consider using them.
7276 *
7277 * This lets us mark the pageblocks back as
7278 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7279 * aligned range but not in the unaligned, original range are
7280 * put back to page allocator so that buddy can use them.
7281 */
7282
7283 ret = start_isolate_page_range(pfn_max_align_down(start),
7284 pfn_max_align_up(end), migratetype,
7285 false);
7286 if (ret)
7287 return ret;
7288
7289 /*
7290 * In case of -EBUSY, we'd like to know which page causes problem.
7291 * So, just fall through. We will check it in test_pages_isolated().
7292 */
7293 ret = __alloc_contig_migrate_range(&cc, start, end);
7294 if (ret && ret != -EBUSY)
7295 goto done;
7296
7297 /*
7298 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7299 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7300 * more, all pages in [start, end) are free in page allocator.
7301 * What we are going to do is to allocate all pages from
7302 * [start, end) (that is remove them from page allocator).
7303 *
7304 * The only problem is that pages at the beginning and at the
7305 * end of interesting range may be not aligned with pages that
7306 * page allocator holds, ie. they can be part of higher order
7307 * pages. Because of this, we reserve the bigger range and
7308 * once this is done free the pages we are not interested in.
7309 *
7310 * We don't have to hold zone->lock here because the pages are
7311 * isolated thus they won't get removed from buddy.
7312 */
7313
7314 lru_add_drain_all();
7315 drain_all_pages(cc.zone);
7316
7317 order = 0;
7318 outer_start = start;
7319 while (!PageBuddy(pfn_to_page(outer_start))) {
7320 if (++order >= MAX_ORDER) {
7321 outer_start = start;
7322 break;
7323 }
7324 outer_start &= ~0UL << order;
7325 }
7326
7327 if (outer_start != start) {
7328 order = page_order(pfn_to_page(outer_start));
7329
7330 /*
7331 * outer_start page could be small order buddy page and
7332 * it doesn't include start page. Adjust outer_start
7333 * in this case to report failed page properly
7334 * on tracepoint in test_pages_isolated()
7335 */
7336 if (outer_start + (1UL << order) <= start)
7337 outer_start = start;
7338 }
7339
7340 /* Make sure the range is really isolated. */
7341 if (test_pages_isolated(outer_start, end, false)) {
7342 pr_info("%s: [%lx, %lx) PFNs busy\n",
7343 __func__, outer_start, end);
7344 ret = -EBUSY;
7345 goto done;
7346 }
7347
7348 /* Grab isolated pages from freelists. */
7349 outer_end = isolate_freepages_range(&cc, outer_start, end);
7350 if (!outer_end) {
7351 ret = -EBUSY;
7352 goto done;
7353 }
7354
7355 /* Free head and tail (if any) */
7356 if (start != outer_start)
7357 free_contig_range(outer_start, start - outer_start);
7358 if (end != outer_end)
7359 free_contig_range(end, outer_end - end);
7360
7361 done:
7362 undo_isolate_page_range(pfn_max_align_down(start),
7363 pfn_max_align_up(end), migratetype);
7364 return ret;
7365 }
7366
7367 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7368 {
7369 unsigned int count = 0;
7370
7371 for (; nr_pages--; pfn++) {
7372 struct page *page = pfn_to_page(pfn);
7373
7374 count += page_count(page) != 1;
7375 __free_page(page);
7376 }
7377 WARN(count != 0, "%d pages are still in use!\n", count);
7378 }
7379 #endif
7380
7381 #ifdef CONFIG_MEMORY_HOTPLUG
7382 /*
7383 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7384 * page high values need to be recalulated.
7385 */
7386 void __meminit zone_pcp_update(struct zone *zone)
7387 {
7388 unsigned cpu;
7389 mutex_lock(&pcp_batch_high_lock);
7390 for_each_possible_cpu(cpu)
7391 pageset_set_high_and_batch(zone,
7392 per_cpu_ptr(zone->pageset, cpu));
7393 mutex_unlock(&pcp_batch_high_lock);
7394 }
7395 #endif
7396
7397 void zone_pcp_reset(struct zone *zone)
7398 {
7399 unsigned long flags;
7400 int cpu;
7401 struct per_cpu_pageset *pset;
7402
7403 /* avoid races with drain_pages() */
7404 local_irq_save(flags);
7405 if (zone->pageset != &boot_pageset) {
7406 for_each_online_cpu(cpu) {
7407 pset = per_cpu_ptr(zone->pageset, cpu);
7408 drain_zonestat(zone, pset);
7409 }
7410 free_percpu(zone->pageset);
7411 zone->pageset = &boot_pageset;
7412 }
7413 local_irq_restore(flags);
7414 }
7415
7416 #ifdef CONFIG_MEMORY_HOTREMOVE
7417 /*
7418 * All pages in the range must be in a single zone and isolated
7419 * before calling this.
7420 */
7421 void
7422 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7423 {
7424 struct page *page;
7425 struct zone *zone;
7426 unsigned int order, i;
7427 unsigned long pfn;
7428 unsigned long flags;
7429 /* find the first valid pfn */
7430 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7431 if (pfn_valid(pfn))
7432 break;
7433 if (pfn == end_pfn)
7434 return;
7435 zone = page_zone(pfn_to_page(pfn));
7436 spin_lock_irqsave(&zone->lock, flags);
7437 pfn = start_pfn;
7438 while (pfn < end_pfn) {
7439 if (!pfn_valid(pfn)) {
7440 pfn++;
7441 continue;
7442 }
7443 page = pfn_to_page(pfn);
7444 /*
7445 * The HWPoisoned page may be not in buddy system, and
7446 * page_count() is not 0.
7447 */
7448 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7449 pfn++;
7450 SetPageReserved(page);
7451 continue;
7452 }
7453
7454 BUG_ON(page_count(page));
7455 BUG_ON(!PageBuddy(page));
7456 order = page_order(page);
7457 #ifdef CONFIG_DEBUG_VM
7458 pr_info("remove from free list %lx %d %lx\n",
7459 pfn, 1 << order, end_pfn);
7460 #endif
7461 list_del(&page->lru);
7462 rmv_page_order(page);
7463 zone->free_area[order].nr_free--;
7464 for (i = 0; i < (1 << order); i++)
7465 SetPageReserved((page+i));
7466 pfn += (1 << order);
7467 }
7468 spin_unlock_irqrestore(&zone->lock, flags);
7469 }
7470 #endif
7471
7472 bool is_free_buddy_page(struct page *page)
7473 {
7474 struct zone *zone = page_zone(page);
7475 unsigned long pfn = page_to_pfn(page);
7476 unsigned long flags;
7477 unsigned int order;
7478
7479 spin_lock_irqsave(&zone->lock, flags);
7480 for (order = 0; order < MAX_ORDER; order++) {
7481 struct page *page_head = page - (pfn & ((1 << order) - 1));
7482
7483 if (PageBuddy(page_head) && page_order(page_head) >= order)
7484 break;
7485 }
7486 spin_unlock_irqrestore(&zone->lock, flags);
7487
7488 return order < MAX_ORDER;
7489 }
This page took 0.180043 seconds and 6 git commands to generate.