Merge branch 'linux-4.8' of git://github.com/skeggsb/linux into drm-next
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 int nid = early_pfn_to_nid(pfn);
290
291 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
292 return true;
293
294 return false;
295 }
296
297 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298 {
299 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 return true;
301
302 return false;
303 }
304
305 /*
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
308 */
309 static inline bool update_defer_init(pg_data_t *pgdat,
310 unsigned long pfn, unsigned long zone_end,
311 unsigned long *nr_initialised)
312 {
313 unsigned long max_initialise;
314
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
317 return true;
318 /*
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
321 */
322 max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 (pgdat->node_spanned_pages >> 8));
324
325 (*nr_initialised)++;
326 if ((*nr_initialised > max_initialise) &&
327 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 pgdat->first_deferred_pfn = pfn;
329 return false;
330 }
331
332 return true;
333 }
334 #else
335 static inline void reset_deferred_meminit(pg_data_t *pgdat)
336 {
337 }
338
339 static inline bool early_page_uninitialised(unsigned long pfn)
340 {
341 return false;
342 }
343
344 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345 {
346 return false;
347 }
348
349 static inline bool update_defer_init(pg_data_t *pgdat,
350 unsigned long pfn, unsigned long zone_end,
351 unsigned long *nr_initialised)
352 {
353 return true;
354 }
355 #endif
356
357 /* Return a pointer to the bitmap storing bits affecting a block of pages */
358 static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 unsigned long pfn)
360 {
361 #ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn)->pageblock_flags;
363 #else
364 return page_zone(page)->pageblock_flags;
365 #endif /* CONFIG_SPARSEMEM */
366 }
367
368 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369 {
370 #ifdef CONFIG_SPARSEMEM
371 pfn &= (PAGES_PER_SECTION-1);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373 #else
374 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376 #endif /* CONFIG_SPARSEMEM */
377 }
378
379 /**
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
385 *
386 * Return: pageblock_bits flags
387 */
388 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long pfn,
390 unsigned long end_bitidx,
391 unsigned long mask)
392 {
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 bitmap = get_pageblock_bitmap(page, pfn);
398 bitidx = pfn_to_bitidx(page, pfn);
399 word_bitidx = bitidx / BITS_PER_LONG;
400 bitidx &= (BITS_PER_LONG-1);
401
402 word = bitmap[word_bitidx];
403 bitidx += end_bitidx;
404 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 }
406
407 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410 {
411 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 }
413
414 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415 {
416 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417 }
418
419 /**
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
426 */
427 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long pfn,
429 unsigned long end_bitidx,
430 unsigned long mask)
431 {
432 unsigned long *bitmap;
433 unsigned long bitidx, word_bitidx;
434 unsigned long old_word, word;
435
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437
438 bitmap = get_pageblock_bitmap(page, pfn);
439 bitidx = pfn_to_bitidx(page, pfn);
440 word_bitidx = bitidx / BITS_PER_LONG;
441 bitidx &= (BITS_PER_LONG-1);
442
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444
445 bitidx += end_bitidx;
446 mask <<= (BITS_PER_LONG - bitidx - 1);
447 flags <<= (BITS_PER_LONG - bitidx - 1);
448
449 word = READ_ONCE(bitmap[word_bitidx]);
450 for (;;) {
451 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 if (word == old_word)
453 break;
454 word = old_word;
455 }
456 }
457
458 void set_pageblock_migratetype(struct page *page, int migratetype)
459 {
460 if (unlikely(page_group_by_mobility_disabled &&
461 migratetype < MIGRATE_PCPTYPES))
462 migratetype = MIGRATE_UNMOVABLE;
463
464 set_pageblock_flags_group(page, (unsigned long)migratetype,
465 PB_migrate, PB_migrate_end);
466 }
467
468 #ifdef CONFIG_DEBUG_VM
469 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
470 {
471 int ret = 0;
472 unsigned seq;
473 unsigned long pfn = page_to_pfn(page);
474 unsigned long sp, start_pfn;
475
476 do {
477 seq = zone_span_seqbegin(zone);
478 start_pfn = zone->zone_start_pfn;
479 sp = zone->spanned_pages;
480 if (!zone_spans_pfn(zone, pfn))
481 ret = 1;
482 } while (zone_span_seqretry(zone, seq));
483
484 if (ret)
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn, zone_to_nid(zone), zone->name,
487 start_pfn, start_pfn + sp);
488
489 return ret;
490 }
491
492 static int page_is_consistent(struct zone *zone, struct page *page)
493 {
494 if (!pfn_valid_within(page_to_pfn(page)))
495 return 0;
496 if (zone != page_zone(page))
497 return 0;
498
499 return 1;
500 }
501 /*
502 * Temporary debugging check for pages not lying within a given zone.
503 */
504 static int bad_range(struct zone *zone, struct page *page)
505 {
506 if (page_outside_zone_boundaries(zone, page))
507 return 1;
508 if (!page_is_consistent(zone, page))
509 return 1;
510
511 return 0;
512 }
513 #else
514 static inline int bad_range(struct zone *zone, struct page *page)
515 {
516 return 0;
517 }
518 #endif
519
520 static void bad_page(struct page *page, const char *reason,
521 unsigned long bad_flags)
522 {
523 static unsigned long resume;
524 static unsigned long nr_shown;
525 static unsigned long nr_unshown;
526
527 /*
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
530 */
531 if (nr_shown == 60) {
532 if (time_before(jiffies, resume)) {
533 nr_unshown++;
534 goto out;
535 }
536 if (nr_unshown) {
537 pr_alert(
538 "BUG: Bad page state: %lu messages suppressed\n",
539 nr_unshown);
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
546
547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
548 current->comm, page_to_pfn(page));
549 __dump_page(page, reason);
550 bad_flags &= page->flags;
551 if (bad_flags)
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags, &bad_flags);
554 dump_page_owner(page);
555
556 print_modules();
557 dump_stack();
558 out:
559 /* Leave bad fields for debug, except PageBuddy could make trouble */
560 page_mapcount_reset(page); /* remove PageBuddy */
561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563
564 /*
565 * Higher-order pages are called "compound pages". They are structured thusly:
566 *
567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
568 *
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
571 *
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
574 *
575 * The first tail page's ->compound_order holds the order of allocation.
576 * This usage means that zero-order pages may not be compound.
577 */
578
579 void free_compound_page(struct page *page)
580 {
581 __free_pages_ok(page, compound_order(page));
582 }
583
584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 int i;
587 int nr_pages = 1 << order;
588
589 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
590 set_compound_order(page, order);
591 __SetPageHead(page);
592 for (i = 1; i < nr_pages; i++) {
593 struct page *p = page + i;
594 set_page_count(p, 0);
595 p->mapping = TAIL_MAPPING;
596 set_compound_head(p, page);
597 }
598 atomic_set(compound_mapcount_ptr(page), -1);
599 }
600
601 #ifdef CONFIG_DEBUG_PAGEALLOC
602 unsigned int _debug_guardpage_minorder;
603 bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
605 EXPORT_SYMBOL(_debug_pagealloc_enabled);
606 bool _debug_guardpage_enabled __read_mostly;
607
608 static int __init early_debug_pagealloc(char *buf)
609 {
610 if (!buf)
611 return -EINVAL;
612 return kstrtobool(buf, &_debug_pagealloc_enabled);
613 }
614 early_param("debug_pagealloc", early_debug_pagealloc);
615
616 static bool need_debug_guardpage(void)
617 {
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
620 return false;
621
622 return true;
623 }
624
625 static void init_debug_guardpage(void)
626 {
627 if (!debug_pagealloc_enabled())
628 return;
629
630 _debug_guardpage_enabled = true;
631 }
632
633 struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636 };
637
638 static int __init debug_guardpage_minorder_setup(char *buf)
639 {
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
643 pr_err("Bad debug_guardpage_minorder value\n");
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
648 return 0;
649 }
650 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651
652 static inline void set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
654 {
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return;
659
660 page_ext = lookup_page_ext(page);
661 if (unlikely(!page_ext))
662 return;
663
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
670 }
671
672 static inline void clear_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
674 {
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return;
679
680 page_ext = lookup_page_ext(page);
681 if (unlikely(!page_ext))
682 return;
683
684 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
686 set_page_private(page, 0);
687 if (!is_migrate_isolate(migratetype))
688 __mod_zone_freepage_state(zone, (1 << order), migratetype);
689 }
690 #else
691 struct page_ext_operations debug_guardpage_ops = { NULL, };
692 static inline void set_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694 static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) {}
696 #endif
697
698 static inline void set_page_order(struct page *page, unsigned int order)
699 {
700 set_page_private(page, order);
701 __SetPageBuddy(page);
702 }
703
704 static inline void rmv_page_order(struct page *page)
705 {
706 __ClearPageBuddy(page);
707 set_page_private(page, 0);
708 }
709
710 /*
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
713 * (a) the buddy is not in a hole &&
714 * (b) the buddy is in the buddy system &&
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
717 *
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
722 *
723 * For recording page's order, we use page_private(page).
724 */
725 static inline int page_is_buddy(struct page *page, struct page *buddy,
726 unsigned int order)
727 {
728 if (!pfn_valid_within(page_to_pfn(buddy)))
729 return 0;
730
731 if (page_is_guard(buddy) && page_order(buddy) == order) {
732 if (page_zone_id(page) != page_zone_id(buddy))
733 return 0;
734
735 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736
737 return 1;
738 }
739
740 if (PageBuddy(buddy) && page_order(buddy) == order) {
741 /*
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
744 * never merge.
745 */
746 if (page_zone_id(page) != page_zone_id(buddy))
747 return 0;
748
749 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750
751 return 1;
752 }
753 return 0;
754 }
755
756 /*
757 * Freeing function for a buddy system allocator.
758 *
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771 * field.
772 * So when we are allocating or freeing one, we can derive the state of the
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
775 * If a block is freed, and its buddy is also free, then this
776 * triggers coalescing into a block of larger size.
777 *
778 * -- nyc
779 */
780
781 static inline void __free_one_page(struct page *page,
782 unsigned long pfn,
783 struct zone *zone, unsigned int order,
784 int migratetype)
785 {
786 unsigned long page_idx;
787 unsigned long combined_idx;
788 unsigned long uninitialized_var(buddy_idx);
789 struct page *buddy;
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
793
794 VM_BUG_ON(!zone_is_initialized(zone));
795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
796
797 VM_BUG_ON(migratetype == -1);
798 if (likely(!is_migrate_isolate(migratetype)))
799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
800
801 page_idx = pfn & ((1 << MAX_ORDER) - 1);
802
803 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
805
806 continue_merging:
807 while (order < max_order - 1) {
808 buddy_idx = __find_buddy_index(page_idx, order);
809 buddy = page + (buddy_idx - page_idx);
810 if (!page_is_buddy(page, buddy, order))
811 goto done_merging;
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy)) {
817 clear_page_guard(zone, buddy, order, migratetype);
818 } else {
819 list_del(&buddy->lru);
820 zone->free_area[order].nr_free--;
821 rmv_page_order(buddy);
822 }
823 combined_idx = buddy_idx & page_idx;
824 page = page + (combined_idx - page_idx);
825 page_idx = combined_idx;
826 order++;
827 }
828 if (max_order < MAX_ORDER) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
833 *
834 * We don't want to hit this code for the more frequent
835 * low-order merging.
836 */
837 if (unlikely(has_isolate_pageblock(zone))) {
838 int buddy_mt;
839
840 buddy_idx = __find_buddy_index(page_idx, order);
841 buddy = page + (buddy_idx - page_idx);
842 buddy_mt = get_pageblock_migratetype(buddy);
843
844 if (migratetype != buddy_mt
845 && (is_migrate_isolate(migratetype) ||
846 is_migrate_isolate(buddy_mt)))
847 goto done_merging;
848 }
849 max_order++;
850 goto continue_merging;
851 }
852
853 done_merging:
854 set_page_order(page, order);
855
856 /*
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
863 */
864 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
865 struct page *higher_page, *higher_buddy;
866 combined_idx = buddy_idx & page_idx;
867 higher_page = page + (combined_idx - page_idx);
868 buddy_idx = __find_buddy_index(combined_idx, order + 1);
869 higher_buddy = higher_page + (buddy_idx - combined_idx);
870 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 list_add_tail(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 goto out;
874 }
875 }
876
877 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878 out:
879 zone->free_area[order].nr_free++;
880 }
881
882 /*
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
886 */
887 static inline bool page_expected_state(struct page *page,
888 unsigned long check_flags)
889 {
890 if (unlikely(atomic_read(&page->_mapcount) != -1))
891 return false;
892
893 if (unlikely((unsigned long)page->mapping |
894 page_ref_count(page) |
895 #ifdef CONFIG_MEMCG
896 (unsigned long)page->mem_cgroup |
897 #endif
898 (page->flags & check_flags)))
899 return false;
900
901 return true;
902 }
903
904 static void free_pages_check_bad(struct page *page)
905 {
906 const char *bad_reason;
907 unsigned long bad_flags;
908
909 bad_reason = NULL;
910 bad_flags = 0;
911
912 if (unlikely(atomic_read(&page->_mapcount) != -1))
913 bad_reason = "nonzero mapcount";
914 if (unlikely(page->mapping != NULL))
915 bad_reason = "non-NULL mapping";
916 if (unlikely(page_ref_count(page) != 0))
917 bad_reason = "nonzero _refcount";
918 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 }
922 #ifdef CONFIG_MEMCG
923 if (unlikely(page->mem_cgroup))
924 bad_reason = "page still charged to cgroup";
925 #endif
926 bad_page(page, bad_reason, bad_flags);
927 }
928
929 static inline int free_pages_check(struct page *page)
930 {
931 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
932 return 0;
933
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page);
936 return 1;
937 }
938
939 static int free_tail_pages_check(struct page *head_page, struct page *page)
940 {
941 int ret = 1;
942
943 /*
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 */
947 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948
949 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 ret = 0;
951 goto out;
952 }
953 switch (page - head_page) {
954 case 1:
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page))) {
957 bad_page(page, "nonzero compound_mapcount", 0);
958 goto out;
959 }
960 break;
961 case 2:
962 /*
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
965 */
966 break;
967 default:
968 if (page->mapping != TAIL_MAPPING) {
969 bad_page(page, "corrupted mapping in tail page", 0);
970 goto out;
971 }
972 break;
973 }
974 if (unlikely(!PageTail(page))) {
975 bad_page(page, "PageTail not set", 0);
976 goto out;
977 }
978 if (unlikely(compound_head(page) != head_page)) {
979 bad_page(page, "compound_head not consistent", 0);
980 goto out;
981 }
982 ret = 0;
983 out:
984 page->mapping = NULL;
985 clear_compound_head(page);
986 return ret;
987 }
988
989 static __always_inline bool free_pages_prepare(struct page *page,
990 unsigned int order, bool check_free)
991 {
992 int bad = 0;
993
994 VM_BUG_ON_PAGE(PageTail(page), page);
995
996 trace_mm_page_free(page, order);
997 kmemcheck_free_shadow(page, order);
998
999 /*
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1002 */
1003 if (unlikely(order)) {
1004 bool compound = PageCompound(page);
1005 int i;
1006
1007 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1008
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
1019 if (PageAnonHead(page))
1020 page->mapping = NULL;
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
1025
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
1032 PAGE_SIZE << order);
1033 debug_check_no_obj_freed(page_address(page),
1034 PAGE_SIZE << order);
1035 }
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
1039 kasan_free_pages(page, order);
1040
1041 return true;
1042 }
1043
1044 #ifdef CONFIG_DEBUG_VM
1045 static inline bool free_pcp_prepare(struct page *page)
1046 {
1047 return free_pages_prepare(page, 0, true);
1048 }
1049
1050 static inline bool bulkfree_pcp_prepare(struct page *page)
1051 {
1052 return false;
1053 }
1054 #else
1055 static bool free_pcp_prepare(struct page *page)
1056 {
1057 return free_pages_prepare(page, 0, false);
1058 }
1059
1060 static bool bulkfree_pcp_prepare(struct page *page)
1061 {
1062 return free_pages_check(page);
1063 }
1064 #endif /* CONFIG_DEBUG_VM */
1065
1066 /*
1067 * Frees a number of pages from the PCP lists
1068 * Assumes all pages on list are in same zone, and of same order.
1069 * count is the number of pages to free.
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
1077 static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1079 {
1080 int migratetype = 0;
1081 int batch_free = 0;
1082 unsigned long nr_scanned;
1083 bool isolated_pageblocks;
1084
1085 spin_lock(&zone->lock);
1086 isolated_pageblocks = has_isolate_pageblock(zone);
1087 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 if (nr_scanned)
1089 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1090
1091 while (count) {
1092 struct page *page;
1093 struct list_head *list;
1094
1095 /*
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
1101 */
1102 do {
1103 batch_free++;
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
1108
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
1111 batch_free = count;
1112
1113 do {
1114 int mt; /* migratetype of the to-be-freed page */
1115
1116 page = list_last_entry(list, struct page, lru);
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
1119
1120 mt = get_pcppage_migratetype(page);
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
1124 if (unlikely(isolated_pageblocks))
1125 mt = get_pageblock_migratetype(page);
1126
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1131 trace_mm_page_pcpu_drain(page, 0, mt);
1132 } while (--count && --batch_free && !list_empty(list));
1133 }
1134 spin_unlock(&zone->lock);
1135 }
1136
1137 static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
1139 unsigned int order,
1140 int migratetype)
1141 {
1142 unsigned long nr_scanned;
1143 spin_lock(&zone->lock);
1144 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 if (nr_scanned)
1146 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1147
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
1151 }
1152 __free_one_page(page, pfn, zone, order, migratetype);
1153 spin_unlock(&zone->lock);
1154 }
1155
1156 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158 {
1159 set_page_links(page, zone, nid, pfn);
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1163
1164 INIT_LIST_HEAD(&page->lru);
1165 #ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169 #endif
1170 }
1171
1172 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174 {
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176 }
1177
1178 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179 static void init_reserved_page(unsigned long pfn)
1180 {
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197 }
1198 #else
1199 static inline void init_reserved_page(unsigned long pfn)
1200 {
1201 }
1202 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
1204 /*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
1210 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1211 {
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
1224 SetPageReserved(page);
1225 }
1226 }
1227 }
1228
1229 static void __free_pages_ok(struct page *page, unsigned int order)
1230 {
1231 unsigned long flags;
1232 int migratetype;
1233 unsigned long pfn = page_to_pfn(page);
1234
1235 if (!free_pages_prepare(page, order, true))
1236 return;
1237
1238 migratetype = get_pfnblock_migratetype(page, pfn);
1239 local_irq_save(flags);
1240 __count_vm_events(PGFREE, 1 << order);
1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
1242 local_irq_restore(flags);
1243 }
1244
1245 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1246 {
1247 unsigned int nr_pages = 1 << order;
1248 struct page *p = page;
1249 unsigned int loop;
1250
1251 prefetchw(p);
1252 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 prefetchw(p + 1);
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
1256 }
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259
1260 page_zone(page)->managed_pages += nr_pages;
1261 set_page_refcounted(page);
1262 __free_pages(page, order);
1263 }
1264
1265 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1267
1268 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269
1270 int __meminit early_pfn_to_nid(unsigned long pfn)
1271 {
1272 static DEFINE_SPINLOCK(early_pfn_lock);
1273 int nid;
1274
1275 spin_lock(&early_pfn_lock);
1276 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1277 if (nid < 0)
1278 nid = first_online_node;
1279 spin_unlock(&early_pfn_lock);
1280
1281 return nid;
1282 }
1283 #endif
1284
1285 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 struct mminit_pfnnid_cache *state)
1288 {
1289 int nid;
1290
1291 nid = __early_pfn_to_nid(pfn, state);
1292 if (nid >= 0 && nid != node)
1293 return false;
1294 return true;
1295 }
1296
1297 /* Only safe to use early in boot when initialisation is single-threaded */
1298 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299 {
1300 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301 }
1302
1303 #else
1304
1305 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306 {
1307 return true;
1308 }
1309 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311 {
1312 return true;
1313 }
1314 #endif
1315
1316
1317 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1318 unsigned int order)
1319 {
1320 if (early_page_uninitialised(pfn))
1321 return;
1322 return __free_pages_boot_core(page, order);
1323 }
1324
1325 /*
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1330 * pageblocks.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 */
1342 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 unsigned long end_pfn, struct zone *zone)
1344 {
1345 struct page *start_page;
1346 struct page *end_page;
1347
1348 /* end_pfn is one past the range we are checking */
1349 end_pfn--;
1350
1351 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 return NULL;
1353
1354 start_page = pfn_to_page(start_pfn);
1355
1356 if (page_zone(start_page) != zone)
1357 return NULL;
1358
1359 end_page = pfn_to_page(end_pfn);
1360
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 return NULL;
1364
1365 return start_page;
1366 }
1367
1368 void set_zone_contiguous(struct zone *zone)
1369 {
1370 unsigned long block_start_pfn = zone->zone_start_pfn;
1371 unsigned long block_end_pfn;
1372
1373 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 for (; block_start_pfn < zone_end_pfn(zone);
1375 block_start_pfn = block_end_pfn,
1376 block_end_pfn += pageblock_nr_pages) {
1377
1378 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379
1380 if (!__pageblock_pfn_to_page(block_start_pfn,
1381 block_end_pfn, zone))
1382 return;
1383 }
1384
1385 /* We confirm that there is no hole */
1386 zone->contiguous = true;
1387 }
1388
1389 void clear_zone_contiguous(struct zone *zone)
1390 {
1391 zone->contiguous = false;
1392 }
1393
1394 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1395 static void __init deferred_free_range(struct page *page,
1396 unsigned long pfn, int nr_pages)
1397 {
1398 int i;
1399
1400 if (!page)
1401 return;
1402
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1407 __free_pages_boot_core(page, MAX_ORDER-1);
1408 return;
1409 }
1410
1411 for (i = 0; i < nr_pages; i++, page++)
1412 __free_pages_boot_core(page, 0);
1413 }
1414
1415 /* Completion tracking for deferred_init_memmap() threads */
1416 static atomic_t pgdat_init_n_undone __initdata;
1417 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419 static inline void __init pgdat_init_report_one_done(void)
1420 {
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423 }
1424
1425 /* Initialise remaining memory on a node */
1426 static int __init deferred_init_memmap(void *data)
1427 {
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1438
1439 if (first_init_pfn == ULONG_MAX) {
1440 pgdat_init_report_one_done();
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
1462 struct page *page = NULL;
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
1475 if (!pfn_valid_within(pfn))
1476 goto free_range;
1477
1478 /*
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1481 */
1482 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
1485 goto free_range;
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 page++;
1497 } else {
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
1510 goto free_range;
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523 free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
1530 }
1531
1532 first_init_pfn = max(end_pfn, first_init_pfn);
1533 }
1534
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537
1538 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1539 jiffies_to_msecs(jiffies - start));
1540
1541 pgdat_init_report_one_done();
1542 return 0;
1543 }
1544 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1545
1546 void __init page_alloc_init_late(void)
1547 {
1548 struct zone *zone;
1549
1550 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1551 int nid;
1552
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1555 for_each_node_state(nid, N_MEMORY) {
1556 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 }
1558
1559 /* Block until all are initialised */
1560 wait_for_completion(&pgdat_init_all_done_comp);
1561
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
1564 #endif
1565
1566 for_each_populated_zone(zone)
1567 set_zone_contiguous(zone);
1568 }
1569
1570 #ifdef CONFIG_CMA
1571 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1572 void __init init_cma_reserved_pageblock(struct page *page)
1573 {
1574 unsigned i = pageblock_nr_pages;
1575 struct page *p = page;
1576
1577 do {
1578 __ClearPageReserved(p);
1579 set_page_count(p, 0);
1580 } while (++p, --i);
1581
1582 set_pageblock_migratetype(page, MIGRATE_CMA);
1583
1584 if (pageblock_order >= MAX_ORDER) {
1585 i = pageblock_nr_pages;
1586 p = page;
1587 do {
1588 set_page_refcounted(p);
1589 __free_pages(p, MAX_ORDER - 1);
1590 p += MAX_ORDER_NR_PAGES;
1591 } while (i -= MAX_ORDER_NR_PAGES);
1592 } else {
1593 set_page_refcounted(page);
1594 __free_pages(page, pageblock_order);
1595 }
1596
1597 adjust_managed_page_count(page, pageblock_nr_pages);
1598 }
1599 #endif
1600
1601 /*
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1612 *
1613 * -- nyc
1614 */
1615 static inline void expand(struct zone *zone, struct page *page,
1616 int low, int high, struct free_area *area,
1617 int migratetype)
1618 {
1619 unsigned long size = 1 << high;
1620
1621 while (high > low) {
1622 area--;
1623 high--;
1624 size >>= 1;
1625 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1626
1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1628 debug_guardpage_enabled() &&
1629 high < debug_guardpage_minorder()) {
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
1636 set_page_guard(zone, &page[size], high, migratetype);
1637 continue;
1638 }
1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1643 }
1644
1645 static void check_new_page_bad(struct page *page)
1646 {
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
1649
1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
1654 if (unlikely(page_ref_count(page) != 0))
1655 bad_reason = "nonzero _count";
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
1662 }
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
1667 #ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670 #endif
1671 bad_page(page, bad_reason, bad_flags);
1672 }
1673
1674 /*
1675 * This page is about to be returned from the page allocator
1676 */
1677 static inline int check_new_page(struct page *page)
1678 {
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
1685 }
1686
1687 static inline bool free_pages_prezeroed(bool poisoned)
1688 {
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691 }
1692
1693 #ifdef CONFIG_DEBUG_VM
1694 static bool check_pcp_refill(struct page *page)
1695 {
1696 return false;
1697 }
1698
1699 static bool check_new_pcp(struct page *page)
1700 {
1701 return check_new_page(page);
1702 }
1703 #else
1704 static bool check_pcp_refill(struct page *page)
1705 {
1706 return check_new_page(page);
1707 }
1708 static bool check_new_pcp(struct page *page)
1709 {
1710 return false;
1711 }
1712 #endif /* CONFIG_DEBUG_VM */
1713
1714 static bool check_new_pages(struct page *page, unsigned int order)
1715 {
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725 }
1726
1727 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1728 unsigned int alloc_flags)
1729 {
1730 int i;
1731 bool poisoned = true;
1732
1733 for (i = 0; i < (1 << order); i++) {
1734 struct page *p = page + i;
1735 if (poisoned)
1736 poisoned &= page_is_poisoned(p);
1737 }
1738
1739 set_page_private(page, 0);
1740 set_page_refcounted(page);
1741
1742 arch_alloc_page(page, order);
1743 kernel_map_pages(page, 1 << order, 1);
1744 kernel_poison_pages(page, 1 << order, 1);
1745 kasan_alloc_pages(page, order);
1746
1747 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1748 for (i = 0; i < (1 << order); i++)
1749 clear_highpage(page + i);
1750
1751 if (order && (gfp_flags & __GFP_COMP))
1752 prep_compound_page(page, order);
1753
1754 set_page_owner(page, order, gfp_flags);
1755
1756 /*
1757 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1758 * allocate the page. The expectation is that the caller is taking
1759 * steps that will free more memory. The caller should avoid the page
1760 * being used for !PFMEMALLOC purposes.
1761 */
1762 if (alloc_flags & ALLOC_NO_WATERMARKS)
1763 set_page_pfmemalloc(page);
1764 else
1765 clear_page_pfmemalloc(page);
1766 }
1767
1768 /*
1769 * Go through the free lists for the given migratetype and remove
1770 * the smallest available page from the freelists
1771 */
1772 static inline
1773 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1774 int migratetype)
1775 {
1776 unsigned int current_order;
1777 struct free_area *area;
1778 struct page *page;
1779
1780 /* Find a page of the appropriate size in the preferred list */
1781 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1782 area = &(zone->free_area[current_order]);
1783 page = list_first_entry_or_null(&area->free_list[migratetype],
1784 struct page, lru);
1785 if (!page)
1786 continue;
1787 list_del(&page->lru);
1788 rmv_page_order(page);
1789 area->nr_free--;
1790 expand(zone, page, order, current_order, area, migratetype);
1791 set_pcppage_migratetype(page, migratetype);
1792 return page;
1793 }
1794
1795 return NULL;
1796 }
1797
1798
1799 /*
1800 * This array describes the order lists are fallen back to when
1801 * the free lists for the desirable migrate type are depleted
1802 */
1803 static int fallbacks[MIGRATE_TYPES][4] = {
1804 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1807 #ifdef CONFIG_CMA
1808 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1809 #endif
1810 #ifdef CONFIG_MEMORY_ISOLATION
1811 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1812 #endif
1813 };
1814
1815 #ifdef CONFIG_CMA
1816 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1817 unsigned int order)
1818 {
1819 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1820 }
1821 #else
1822 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 unsigned int order) { return NULL; }
1824 #endif
1825
1826 /*
1827 * Move the free pages in a range to the free lists of the requested type.
1828 * Note that start_page and end_pages are not aligned on a pageblock
1829 * boundary. If alignment is required, use move_freepages_block()
1830 */
1831 int move_freepages(struct zone *zone,
1832 struct page *start_page, struct page *end_page,
1833 int migratetype)
1834 {
1835 struct page *page;
1836 unsigned int order;
1837 int pages_moved = 0;
1838
1839 #ifndef CONFIG_HOLES_IN_ZONE
1840 /*
1841 * page_zone is not safe to call in this context when
1842 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 * anyway as we check zone boundaries in move_freepages_block().
1844 * Remove at a later date when no bug reports exist related to
1845 * grouping pages by mobility
1846 */
1847 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1848 #endif
1849
1850 for (page = start_page; page <= end_page;) {
1851 /* Make sure we are not inadvertently changing nodes */
1852 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1853
1854 if (!pfn_valid_within(page_to_pfn(page))) {
1855 page++;
1856 continue;
1857 }
1858
1859 if (!PageBuddy(page)) {
1860 page++;
1861 continue;
1862 }
1863
1864 order = page_order(page);
1865 list_move(&page->lru,
1866 &zone->free_area[order].free_list[migratetype]);
1867 page += 1 << order;
1868 pages_moved += 1 << order;
1869 }
1870
1871 return pages_moved;
1872 }
1873
1874 int move_freepages_block(struct zone *zone, struct page *page,
1875 int migratetype)
1876 {
1877 unsigned long start_pfn, end_pfn;
1878 struct page *start_page, *end_page;
1879
1880 start_pfn = page_to_pfn(page);
1881 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1882 start_page = pfn_to_page(start_pfn);
1883 end_page = start_page + pageblock_nr_pages - 1;
1884 end_pfn = start_pfn + pageblock_nr_pages - 1;
1885
1886 /* Do not cross zone boundaries */
1887 if (!zone_spans_pfn(zone, start_pfn))
1888 start_page = page;
1889 if (!zone_spans_pfn(zone, end_pfn))
1890 return 0;
1891
1892 return move_freepages(zone, start_page, end_page, migratetype);
1893 }
1894
1895 static void change_pageblock_range(struct page *pageblock_page,
1896 int start_order, int migratetype)
1897 {
1898 int nr_pageblocks = 1 << (start_order - pageblock_order);
1899
1900 while (nr_pageblocks--) {
1901 set_pageblock_migratetype(pageblock_page, migratetype);
1902 pageblock_page += pageblock_nr_pages;
1903 }
1904 }
1905
1906 /*
1907 * When we are falling back to another migratetype during allocation, try to
1908 * steal extra free pages from the same pageblocks to satisfy further
1909 * allocations, instead of polluting multiple pageblocks.
1910 *
1911 * If we are stealing a relatively large buddy page, it is likely there will
1912 * be more free pages in the pageblock, so try to steal them all. For
1913 * reclaimable and unmovable allocations, we steal regardless of page size,
1914 * as fragmentation caused by those allocations polluting movable pageblocks
1915 * is worse than movable allocations stealing from unmovable and reclaimable
1916 * pageblocks.
1917 */
1918 static bool can_steal_fallback(unsigned int order, int start_mt)
1919 {
1920 /*
1921 * Leaving this order check is intended, although there is
1922 * relaxed order check in next check. The reason is that
1923 * we can actually steal whole pageblock if this condition met,
1924 * but, below check doesn't guarantee it and that is just heuristic
1925 * so could be changed anytime.
1926 */
1927 if (order >= pageblock_order)
1928 return true;
1929
1930 if (order >= pageblock_order / 2 ||
1931 start_mt == MIGRATE_RECLAIMABLE ||
1932 start_mt == MIGRATE_UNMOVABLE ||
1933 page_group_by_mobility_disabled)
1934 return true;
1935
1936 return false;
1937 }
1938
1939 /*
1940 * This function implements actual steal behaviour. If order is large enough,
1941 * we can steal whole pageblock. If not, we first move freepages in this
1942 * pageblock and check whether half of pages are moved or not. If half of
1943 * pages are moved, we can change migratetype of pageblock and permanently
1944 * use it's pages as requested migratetype in the future.
1945 */
1946 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1947 int start_type)
1948 {
1949 unsigned int current_order = page_order(page);
1950 int pages;
1951
1952 /* Take ownership for orders >= pageblock_order */
1953 if (current_order >= pageblock_order) {
1954 change_pageblock_range(page, current_order, start_type);
1955 return;
1956 }
1957
1958 pages = move_freepages_block(zone, page, start_type);
1959
1960 /* Claim the whole block if over half of it is free */
1961 if (pages >= (1 << (pageblock_order-1)) ||
1962 page_group_by_mobility_disabled)
1963 set_pageblock_migratetype(page, start_type);
1964 }
1965
1966 /*
1967 * Check whether there is a suitable fallback freepage with requested order.
1968 * If only_stealable is true, this function returns fallback_mt only if
1969 * we can steal other freepages all together. This would help to reduce
1970 * fragmentation due to mixed migratetype pages in one pageblock.
1971 */
1972 int find_suitable_fallback(struct free_area *area, unsigned int order,
1973 int migratetype, bool only_stealable, bool *can_steal)
1974 {
1975 int i;
1976 int fallback_mt;
1977
1978 if (area->nr_free == 0)
1979 return -1;
1980
1981 *can_steal = false;
1982 for (i = 0;; i++) {
1983 fallback_mt = fallbacks[migratetype][i];
1984 if (fallback_mt == MIGRATE_TYPES)
1985 break;
1986
1987 if (list_empty(&area->free_list[fallback_mt]))
1988 continue;
1989
1990 if (can_steal_fallback(order, migratetype))
1991 *can_steal = true;
1992
1993 if (!only_stealable)
1994 return fallback_mt;
1995
1996 if (*can_steal)
1997 return fallback_mt;
1998 }
1999
2000 return -1;
2001 }
2002
2003 /*
2004 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005 * there are no empty page blocks that contain a page with a suitable order
2006 */
2007 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2008 unsigned int alloc_order)
2009 {
2010 int mt;
2011 unsigned long max_managed, flags;
2012
2013 /*
2014 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 * Check is race-prone but harmless.
2016 */
2017 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2018 if (zone->nr_reserved_highatomic >= max_managed)
2019 return;
2020
2021 spin_lock_irqsave(&zone->lock, flags);
2022
2023 /* Recheck the nr_reserved_highatomic limit under the lock */
2024 if (zone->nr_reserved_highatomic >= max_managed)
2025 goto out_unlock;
2026
2027 /* Yoink! */
2028 mt = get_pageblock_migratetype(page);
2029 if (mt != MIGRATE_HIGHATOMIC &&
2030 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2031 zone->nr_reserved_highatomic += pageblock_nr_pages;
2032 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2033 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 }
2035
2036 out_unlock:
2037 spin_unlock_irqrestore(&zone->lock, flags);
2038 }
2039
2040 /*
2041 * Used when an allocation is about to fail under memory pressure. This
2042 * potentially hurts the reliability of high-order allocations when under
2043 * intense memory pressure but failed atomic allocations should be easier
2044 * to recover from than an OOM.
2045 */
2046 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2047 {
2048 struct zonelist *zonelist = ac->zonelist;
2049 unsigned long flags;
2050 struct zoneref *z;
2051 struct zone *zone;
2052 struct page *page;
2053 int order;
2054
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
2057 /* Preserve at least one pageblock */
2058 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2059 continue;
2060
2061 spin_lock_irqsave(&zone->lock, flags);
2062 for (order = 0; order < MAX_ORDER; order++) {
2063 struct free_area *area = &(zone->free_area[order]);
2064
2065 page = list_first_entry_or_null(
2066 &area->free_list[MIGRATE_HIGHATOMIC],
2067 struct page, lru);
2068 if (!page)
2069 continue;
2070
2071 /*
2072 * It should never happen but changes to locking could
2073 * inadvertently allow a per-cpu drain to add pages
2074 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 * and watch for underflows.
2076 */
2077 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2078 zone->nr_reserved_highatomic);
2079
2080 /*
2081 * Convert to ac->migratetype and avoid the normal
2082 * pageblock stealing heuristics. Minimally, the caller
2083 * is doing the work and needs the pages. More
2084 * importantly, if the block was always converted to
2085 * MIGRATE_UNMOVABLE or another type then the number
2086 * of pageblocks that cannot be completely freed
2087 * may increase.
2088 */
2089 set_pageblock_migratetype(page, ac->migratetype);
2090 move_freepages_block(zone, page, ac->migratetype);
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 return;
2093 }
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 }
2096 }
2097
2098 /* Remove an element from the buddy allocator from the fallback list */
2099 static inline struct page *
2100 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2101 {
2102 struct free_area *area;
2103 unsigned int current_order;
2104 struct page *page;
2105 int fallback_mt;
2106 bool can_steal;
2107
2108 /* Find the largest possible block of pages in the other list */
2109 for (current_order = MAX_ORDER-1;
2110 current_order >= order && current_order <= MAX_ORDER-1;
2111 --current_order) {
2112 area = &(zone->free_area[current_order]);
2113 fallback_mt = find_suitable_fallback(area, current_order,
2114 start_migratetype, false, &can_steal);
2115 if (fallback_mt == -1)
2116 continue;
2117
2118 page = list_first_entry(&area->free_list[fallback_mt],
2119 struct page, lru);
2120 if (can_steal)
2121 steal_suitable_fallback(zone, page, start_migratetype);
2122
2123 /* Remove the page from the freelists */
2124 area->nr_free--;
2125 list_del(&page->lru);
2126 rmv_page_order(page);
2127
2128 expand(zone, page, order, current_order, area,
2129 start_migratetype);
2130 /*
2131 * The pcppage_migratetype may differ from pageblock's
2132 * migratetype depending on the decisions in
2133 * find_suitable_fallback(). This is OK as long as it does not
2134 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 * fallback only via special __rmqueue_cma_fallback() function
2136 */
2137 set_pcppage_migratetype(page, start_migratetype);
2138
2139 trace_mm_page_alloc_extfrag(page, order, current_order,
2140 start_migratetype, fallback_mt);
2141
2142 return page;
2143 }
2144
2145 return NULL;
2146 }
2147
2148 /*
2149 * Do the hard work of removing an element from the buddy allocator.
2150 * Call me with the zone->lock already held.
2151 */
2152 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2153 int migratetype)
2154 {
2155 struct page *page;
2156
2157 page = __rmqueue_smallest(zone, order, migratetype);
2158 if (unlikely(!page)) {
2159 if (migratetype == MIGRATE_MOVABLE)
2160 page = __rmqueue_cma_fallback(zone, order);
2161
2162 if (!page)
2163 page = __rmqueue_fallback(zone, order, migratetype);
2164 }
2165
2166 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2167 return page;
2168 }
2169
2170 /*
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2174 */
2175 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2176 unsigned long count, struct list_head *list,
2177 int migratetype, bool cold)
2178 {
2179 int i;
2180
2181 spin_lock(&zone->lock);
2182 for (i = 0; i < count; ++i) {
2183 struct page *page = __rmqueue(zone, order, migratetype);
2184 if (unlikely(page == NULL))
2185 break;
2186
2187 if (unlikely(check_pcp_refill(page)))
2188 continue;
2189
2190 /*
2191 * Split buddy pages returned by expand() are received here
2192 * in physical page order. The page is added to the callers and
2193 * list and the list head then moves forward. From the callers
2194 * perspective, the linked list is ordered by page number in
2195 * some conditions. This is useful for IO devices that can
2196 * merge IO requests if the physical pages are ordered
2197 * properly.
2198 */
2199 if (likely(!cold))
2200 list_add(&page->lru, list);
2201 else
2202 list_add_tail(&page->lru, list);
2203 list = &page->lru;
2204 if (is_migrate_cma(get_pcppage_migratetype(page)))
2205 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2206 -(1 << order));
2207 }
2208 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2209 spin_unlock(&zone->lock);
2210 return i;
2211 }
2212
2213 #ifdef CONFIG_NUMA
2214 /*
2215 * Called from the vmstat counter updater to drain pagesets of this
2216 * currently executing processor on remote nodes after they have
2217 * expired.
2218 *
2219 * Note that this function must be called with the thread pinned to
2220 * a single processor.
2221 */
2222 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2223 {
2224 unsigned long flags;
2225 int to_drain, batch;
2226
2227 local_irq_save(flags);
2228 batch = READ_ONCE(pcp->batch);
2229 to_drain = min(pcp->count, batch);
2230 if (to_drain > 0) {
2231 free_pcppages_bulk(zone, to_drain, pcp);
2232 pcp->count -= to_drain;
2233 }
2234 local_irq_restore(flags);
2235 }
2236 #endif
2237
2238 /*
2239 * Drain pcplists of the indicated processor and zone.
2240 *
2241 * The processor must either be the current processor and the
2242 * thread pinned to the current processor or a processor that
2243 * is not online.
2244 */
2245 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2246 {
2247 unsigned long flags;
2248 struct per_cpu_pageset *pset;
2249 struct per_cpu_pages *pcp;
2250
2251 local_irq_save(flags);
2252 pset = per_cpu_ptr(zone->pageset, cpu);
2253
2254 pcp = &pset->pcp;
2255 if (pcp->count) {
2256 free_pcppages_bulk(zone, pcp->count, pcp);
2257 pcp->count = 0;
2258 }
2259 local_irq_restore(flags);
2260 }
2261
2262 /*
2263 * Drain pcplists of all zones on the indicated processor.
2264 *
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2267 * is not online.
2268 */
2269 static void drain_pages(unsigned int cpu)
2270 {
2271 struct zone *zone;
2272
2273 for_each_populated_zone(zone) {
2274 drain_pages_zone(cpu, zone);
2275 }
2276 }
2277
2278 /*
2279 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2280 *
2281 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282 * the single zone's pages.
2283 */
2284 void drain_local_pages(struct zone *zone)
2285 {
2286 int cpu = smp_processor_id();
2287
2288 if (zone)
2289 drain_pages_zone(cpu, zone);
2290 else
2291 drain_pages(cpu);
2292 }
2293
2294 /*
2295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2296 *
2297 * When zone parameter is non-NULL, spill just the single zone's pages.
2298 *
2299 * Note that this code is protected against sending an IPI to an offline
2300 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302 * nothing keeps CPUs from showing up after we populated the cpumask and
2303 * before the call to on_each_cpu_mask().
2304 */
2305 void drain_all_pages(struct zone *zone)
2306 {
2307 int cpu;
2308
2309 /*
2310 * Allocate in the BSS so we wont require allocation in
2311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2312 */
2313 static cpumask_t cpus_with_pcps;
2314
2315 /*
2316 * We don't care about racing with CPU hotplug event
2317 * as offline notification will cause the notified
2318 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 * disables preemption as part of its processing
2320 */
2321 for_each_online_cpu(cpu) {
2322 struct per_cpu_pageset *pcp;
2323 struct zone *z;
2324 bool has_pcps = false;
2325
2326 if (zone) {
2327 pcp = per_cpu_ptr(zone->pageset, cpu);
2328 if (pcp->pcp.count)
2329 has_pcps = true;
2330 } else {
2331 for_each_populated_zone(z) {
2332 pcp = per_cpu_ptr(z->pageset, cpu);
2333 if (pcp->pcp.count) {
2334 has_pcps = true;
2335 break;
2336 }
2337 }
2338 }
2339
2340 if (has_pcps)
2341 cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 else
2343 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 }
2345 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2346 zone, 1);
2347 }
2348
2349 #ifdef CONFIG_HIBERNATION
2350
2351 void mark_free_pages(struct zone *zone)
2352 {
2353 unsigned long pfn, max_zone_pfn;
2354 unsigned long flags;
2355 unsigned int order, t;
2356 struct page *page;
2357
2358 if (zone_is_empty(zone))
2359 return;
2360
2361 spin_lock_irqsave(&zone->lock, flags);
2362
2363 max_zone_pfn = zone_end_pfn(zone);
2364 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2365 if (pfn_valid(pfn)) {
2366 page = pfn_to_page(pfn);
2367
2368 if (page_zone(page) != zone)
2369 continue;
2370
2371 if (!swsusp_page_is_forbidden(page))
2372 swsusp_unset_page_free(page);
2373 }
2374
2375 for_each_migratetype_order(order, t) {
2376 list_for_each_entry(page,
2377 &zone->free_area[order].free_list[t], lru) {
2378 unsigned long i;
2379
2380 pfn = page_to_pfn(page);
2381 for (i = 0; i < (1UL << order); i++)
2382 swsusp_set_page_free(pfn_to_page(pfn + i));
2383 }
2384 }
2385 spin_unlock_irqrestore(&zone->lock, flags);
2386 }
2387 #endif /* CONFIG_PM */
2388
2389 /*
2390 * Free a 0-order page
2391 * cold == true ? free a cold page : free a hot page
2392 */
2393 void free_hot_cold_page(struct page *page, bool cold)
2394 {
2395 struct zone *zone = page_zone(page);
2396 struct per_cpu_pages *pcp;
2397 unsigned long flags;
2398 unsigned long pfn = page_to_pfn(page);
2399 int migratetype;
2400
2401 if (!free_pcp_prepare(page))
2402 return;
2403
2404 migratetype = get_pfnblock_migratetype(page, pfn);
2405 set_pcppage_migratetype(page, migratetype);
2406 local_irq_save(flags);
2407 __count_vm_event(PGFREE);
2408
2409 /*
2410 * We only track unmovable, reclaimable and movable on pcp lists.
2411 * Free ISOLATE pages back to the allocator because they are being
2412 * offlined but treat RESERVE as movable pages so we can get those
2413 * areas back if necessary. Otherwise, we may have to free
2414 * excessively into the page allocator
2415 */
2416 if (migratetype >= MIGRATE_PCPTYPES) {
2417 if (unlikely(is_migrate_isolate(migratetype))) {
2418 free_one_page(zone, page, pfn, 0, migratetype);
2419 goto out;
2420 }
2421 migratetype = MIGRATE_MOVABLE;
2422 }
2423
2424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2425 if (!cold)
2426 list_add(&page->lru, &pcp->lists[migratetype]);
2427 else
2428 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2429 pcp->count++;
2430 if (pcp->count >= pcp->high) {
2431 unsigned long batch = READ_ONCE(pcp->batch);
2432 free_pcppages_bulk(zone, batch, pcp);
2433 pcp->count -= batch;
2434 }
2435
2436 out:
2437 local_irq_restore(flags);
2438 }
2439
2440 /*
2441 * Free a list of 0-order pages
2442 */
2443 void free_hot_cold_page_list(struct list_head *list, bool cold)
2444 {
2445 struct page *page, *next;
2446
2447 list_for_each_entry_safe(page, next, list, lru) {
2448 trace_mm_page_free_batched(page, cold);
2449 free_hot_cold_page(page, cold);
2450 }
2451 }
2452
2453 /*
2454 * split_page takes a non-compound higher-order page, and splits it into
2455 * n (1<<order) sub-pages: page[0..n]
2456 * Each sub-page must be freed individually.
2457 *
2458 * Note: this is probably too low level an operation for use in drivers.
2459 * Please consult with lkml before using this in your driver.
2460 */
2461 void split_page(struct page *page, unsigned int order)
2462 {
2463 int i;
2464 gfp_t gfp_mask;
2465
2466 VM_BUG_ON_PAGE(PageCompound(page), page);
2467 VM_BUG_ON_PAGE(!page_count(page), page);
2468
2469 #ifdef CONFIG_KMEMCHECK
2470 /*
2471 * Split shadow pages too, because free(page[0]) would
2472 * otherwise free the whole shadow.
2473 */
2474 if (kmemcheck_page_is_tracked(page))
2475 split_page(virt_to_page(page[0].shadow), order);
2476 #endif
2477
2478 gfp_mask = get_page_owner_gfp(page);
2479 set_page_owner(page, 0, gfp_mask);
2480 for (i = 1; i < (1 << order); i++) {
2481 set_page_refcounted(page + i);
2482 set_page_owner(page + i, 0, gfp_mask);
2483 }
2484 }
2485 EXPORT_SYMBOL_GPL(split_page);
2486
2487 int __isolate_free_page(struct page *page, unsigned int order)
2488 {
2489 unsigned long watermark;
2490 struct zone *zone;
2491 int mt;
2492
2493 BUG_ON(!PageBuddy(page));
2494
2495 zone = page_zone(page);
2496 mt = get_pageblock_migratetype(page);
2497
2498 if (!is_migrate_isolate(mt)) {
2499 /* Obey watermarks as if the page was being allocated */
2500 watermark = low_wmark_pages(zone) + (1 << order);
2501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2502 return 0;
2503
2504 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2505 }
2506
2507 /* Remove page from free list */
2508 list_del(&page->lru);
2509 zone->free_area[order].nr_free--;
2510 rmv_page_order(page);
2511
2512 set_page_owner(page, order, __GFP_MOVABLE);
2513
2514 /* Set the pageblock if the isolated page is at least a pageblock */
2515 if (order >= pageblock_order - 1) {
2516 struct page *endpage = page + (1 << order) - 1;
2517 for (; page < endpage; page += pageblock_nr_pages) {
2518 int mt = get_pageblock_migratetype(page);
2519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2520 set_pageblock_migratetype(page,
2521 MIGRATE_MOVABLE);
2522 }
2523 }
2524
2525
2526 return 1UL << order;
2527 }
2528
2529 /*
2530 * Similar to split_page except the page is already free. As this is only
2531 * being used for migration, the migratetype of the block also changes.
2532 * As this is called with interrupts disabled, the caller is responsible
2533 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2534 * are enabled.
2535 *
2536 * Note: this is probably too low level an operation for use in drivers.
2537 * Please consult with lkml before using this in your driver.
2538 */
2539 int split_free_page(struct page *page)
2540 {
2541 unsigned int order;
2542 int nr_pages;
2543
2544 order = page_order(page);
2545
2546 nr_pages = __isolate_free_page(page, order);
2547 if (!nr_pages)
2548 return 0;
2549
2550 /* Split into individual pages */
2551 set_page_refcounted(page);
2552 split_page(page, order);
2553 return nr_pages;
2554 }
2555
2556 /*
2557 * Update NUMA hit/miss statistics
2558 *
2559 * Must be called with interrupts disabled.
2560 *
2561 * When __GFP_OTHER_NODE is set assume the node of the preferred
2562 * zone is the local node. This is useful for daemons who allocate
2563 * memory on behalf of other processes.
2564 */
2565 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2566 gfp_t flags)
2567 {
2568 #ifdef CONFIG_NUMA
2569 int local_nid = numa_node_id();
2570 enum zone_stat_item local_stat = NUMA_LOCAL;
2571
2572 if (unlikely(flags & __GFP_OTHER_NODE)) {
2573 local_stat = NUMA_OTHER;
2574 local_nid = preferred_zone->node;
2575 }
2576
2577 if (z->node == local_nid) {
2578 __inc_zone_state(z, NUMA_HIT);
2579 __inc_zone_state(z, local_stat);
2580 } else {
2581 __inc_zone_state(z, NUMA_MISS);
2582 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2583 }
2584 #endif
2585 }
2586
2587 /*
2588 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2589 */
2590 static inline
2591 struct page *buffered_rmqueue(struct zone *preferred_zone,
2592 struct zone *zone, unsigned int order,
2593 gfp_t gfp_flags, unsigned int alloc_flags,
2594 int migratetype)
2595 {
2596 unsigned long flags;
2597 struct page *page;
2598 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2599
2600 if (likely(order == 0)) {
2601 struct per_cpu_pages *pcp;
2602 struct list_head *list;
2603
2604 local_irq_save(flags);
2605 do {
2606 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2607 list = &pcp->lists[migratetype];
2608 if (list_empty(list)) {
2609 pcp->count += rmqueue_bulk(zone, 0,
2610 pcp->batch, list,
2611 migratetype, cold);
2612 if (unlikely(list_empty(list)))
2613 goto failed;
2614 }
2615
2616 if (cold)
2617 page = list_last_entry(list, struct page, lru);
2618 else
2619 page = list_first_entry(list, struct page, lru);
2620
2621 __dec_zone_state(zone, NR_ALLOC_BATCH);
2622 list_del(&page->lru);
2623 pcp->count--;
2624
2625 } while (check_new_pcp(page));
2626 } else {
2627 /*
2628 * We most definitely don't want callers attempting to
2629 * allocate greater than order-1 page units with __GFP_NOFAIL.
2630 */
2631 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2632 spin_lock_irqsave(&zone->lock, flags);
2633
2634 do {
2635 page = NULL;
2636 if (alloc_flags & ALLOC_HARDER) {
2637 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2638 if (page)
2639 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2640 }
2641 if (!page)
2642 page = __rmqueue(zone, order, migratetype);
2643 } while (page && check_new_pages(page, order));
2644 spin_unlock(&zone->lock);
2645 if (!page)
2646 goto failed;
2647 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2648 __mod_zone_freepage_state(zone, -(1 << order),
2649 get_pcppage_migratetype(page));
2650 }
2651
2652 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2653 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2654 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2655
2656 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2657 zone_statistics(preferred_zone, zone, gfp_flags);
2658 local_irq_restore(flags);
2659
2660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2661 return page;
2662
2663 failed:
2664 local_irq_restore(flags);
2665 return NULL;
2666 }
2667
2668 #ifdef CONFIG_FAIL_PAGE_ALLOC
2669
2670 static struct {
2671 struct fault_attr attr;
2672
2673 bool ignore_gfp_highmem;
2674 bool ignore_gfp_reclaim;
2675 u32 min_order;
2676 } fail_page_alloc = {
2677 .attr = FAULT_ATTR_INITIALIZER,
2678 .ignore_gfp_reclaim = true,
2679 .ignore_gfp_highmem = true,
2680 .min_order = 1,
2681 };
2682
2683 static int __init setup_fail_page_alloc(char *str)
2684 {
2685 return setup_fault_attr(&fail_page_alloc.attr, str);
2686 }
2687 __setup("fail_page_alloc=", setup_fail_page_alloc);
2688
2689 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2690 {
2691 if (order < fail_page_alloc.min_order)
2692 return false;
2693 if (gfp_mask & __GFP_NOFAIL)
2694 return false;
2695 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2696 return false;
2697 if (fail_page_alloc.ignore_gfp_reclaim &&
2698 (gfp_mask & __GFP_DIRECT_RECLAIM))
2699 return false;
2700
2701 return should_fail(&fail_page_alloc.attr, 1 << order);
2702 }
2703
2704 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2705
2706 static int __init fail_page_alloc_debugfs(void)
2707 {
2708 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2709 struct dentry *dir;
2710
2711 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2712 &fail_page_alloc.attr);
2713 if (IS_ERR(dir))
2714 return PTR_ERR(dir);
2715
2716 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2717 &fail_page_alloc.ignore_gfp_reclaim))
2718 goto fail;
2719 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2720 &fail_page_alloc.ignore_gfp_highmem))
2721 goto fail;
2722 if (!debugfs_create_u32("min-order", mode, dir,
2723 &fail_page_alloc.min_order))
2724 goto fail;
2725
2726 return 0;
2727 fail:
2728 debugfs_remove_recursive(dir);
2729
2730 return -ENOMEM;
2731 }
2732
2733 late_initcall(fail_page_alloc_debugfs);
2734
2735 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2736
2737 #else /* CONFIG_FAIL_PAGE_ALLOC */
2738
2739 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2740 {
2741 return false;
2742 }
2743
2744 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2745
2746 /*
2747 * Return true if free base pages are above 'mark'. For high-order checks it
2748 * will return true of the order-0 watermark is reached and there is at least
2749 * one free page of a suitable size. Checking now avoids taking the zone lock
2750 * to check in the allocation paths if no pages are free.
2751 */
2752 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2753 int classzone_idx, unsigned int alloc_flags,
2754 long free_pages)
2755 {
2756 long min = mark;
2757 int o;
2758 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2759
2760 /* free_pages may go negative - that's OK */
2761 free_pages -= (1 << order) - 1;
2762
2763 if (alloc_flags & ALLOC_HIGH)
2764 min -= min / 2;
2765
2766 /*
2767 * If the caller does not have rights to ALLOC_HARDER then subtract
2768 * the high-atomic reserves. This will over-estimate the size of the
2769 * atomic reserve but it avoids a search.
2770 */
2771 if (likely(!alloc_harder))
2772 free_pages -= z->nr_reserved_highatomic;
2773 else
2774 min -= min / 4;
2775
2776 #ifdef CONFIG_CMA
2777 /* If allocation can't use CMA areas don't use free CMA pages */
2778 if (!(alloc_flags & ALLOC_CMA))
2779 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2780 #endif
2781
2782 /*
2783 * Check watermarks for an order-0 allocation request. If these
2784 * are not met, then a high-order request also cannot go ahead
2785 * even if a suitable page happened to be free.
2786 */
2787 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2788 return false;
2789
2790 /* If this is an order-0 request then the watermark is fine */
2791 if (!order)
2792 return true;
2793
2794 /* For a high-order request, check at least one suitable page is free */
2795 for (o = order; o < MAX_ORDER; o++) {
2796 struct free_area *area = &z->free_area[o];
2797 int mt;
2798
2799 if (!area->nr_free)
2800 continue;
2801
2802 if (alloc_harder)
2803 return true;
2804
2805 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2806 if (!list_empty(&area->free_list[mt]))
2807 return true;
2808 }
2809
2810 #ifdef CONFIG_CMA
2811 if ((alloc_flags & ALLOC_CMA) &&
2812 !list_empty(&area->free_list[MIGRATE_CMA])) {
2813 return true;
2814 }
2815 #endif
2816 }
2817 return false;
2818 }
2819
2820 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2821 int classzone_idx, unsigned int alloc_flags)
2822 {
2823 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2824 zone_page_state(z, NR_FREE_PAGES));
2825 }
2826
2827 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2828 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2829 {
2830 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2831 long cma_pages = 0;
2832
2833 #ifdef CONFIG_CMA
2834 /* If allocation can't use CMA areas don't use free CMA pages */
2835 if (!(alloc_flags & ALLOC_CMA))
2836 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2837 #endif
2838
2839 /*
2840 * Fast check for order-0 only. If this fails then the reserves
2841 * need to be calculated. There is a corner case where the check
2842 * passes but only the high-order atomic reserve are free. If
2843 * the caller is !atomic then it'll uselessly search the free
2844 * list. That corner case is then slower but it is harmless.
2845 */
2846 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2847 return true;
2848
2849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2850 free_pages);
2851 }
2852
2853 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2854 unsigned long mark, int classzone_idx)
2855 {
2856 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2857
2858 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2859 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2860
2861 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2862 free_pages);
2863 }
2864
2865 #ifdef CONFIG_NUMA
2866 static bool zone_local(struct zone *local_zone, struct zone *zone)
2867 {
2868 return local_zone->node == zone->node;
2869 }
2870
2871 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2872 {
2873 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2874 RECLAIM_DISTANCE;
2875 }
2876 #else /* CONFIG_NUMA */
2877 static bool zone_local(struct zone *local_zone, struct zone *zone)
2878 {
2879 return true;
2880 }
2881
2882 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2883 {
2884 return true;
2885 }
2886 #endif /* CONFIG_NUMA */
2887
2888 static void reset_alloc_batches(struct zone *preferred_zone)
2889 {
2890 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2891
2892 do {
2893 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2894 high_wmark_pages(zone) - low_wmark_pages(zone) -
2895 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2896 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2897 } while (zone++ != preferred_zone);
2898 }
2899
2900 /*
2901 * get_page_from_freelist goes through the zonelist trying to allocate
2902 * a page.
2903 */
2904 static struct page *
2905 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2906 const struct alloc_context *ac)
2907 {
2908 struct zoneref *z = ac->preferred_zoneref;
2909 struct zone *zone;
2910 bool fair_skipped = false;
2911 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2912
2913 zonelist_scan:
2914 /*
2915 * Scan zonelist, looking for a zone with enough free.
2916 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2917 */
2918 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2919 ac->nodemask) {
2920 struct page *page;
2921 unsigned long mark;
2922
2923 if (cpusets_enabled() &&
2924 (alloc_flags & ALLOC_CPUSET) &&
2925 !__cpuset_zone_allowed(zone, gfp_mask))
2926 continue;
2927 /*
2928 * Distribute pages in proportion to the individual
2929 * zone size to ensure fair page aging. The zone a
2930 * page was allocated in should have no effect on the
2931 * time the page has in memory before being reclaimed.
2932 */
2933 if (apply_fair) {
2934 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2935 fair_skipped = true;
2936 continue;
2937 }
2938 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2939 if (fair_skipped)
2940 goto reset_fair;
2941 apply_fair = false;
2942 }
2943 }
2944 /*
2945 * When allocating a page cache page for writing, we
2946 * want to get it from a zone that is within its dirty
2947 * limit, such that no single zone holds more than its
2948 * proportional share of globally allowed dirty pages.
2949 * The dirty limits take into account the zone's
2950 * lowmem reserves and high watermark so that kswapd
2951 * should be able to balance it without having to
2952 * write pages from its LRU list.
2953 *
2954 * This may look like it could increase pressure on
2955 * lower zones by failing allocations in higher zones
2956 * before they are full. But the pages that do spill
2957 * over are limited as the lower zones are protected
2958 * by this very same mechanism. It should not become
2959 * a practical burden to them.
2960 *
2961 * XXX: For now, allow allocations to potentially
2962 * exceed the per-zone dirty limit in the slowpath
2963 * (spread_dirty_pages unset) before going into reclaim,
2964 * which is important when on a NUMA setup the allowed
2965 * zones are together not big enough to reach the
2966 * global limit. The proper fix for these situations
2967 * will require awareness of zones in the
2968 * dirty-throttling and the flusher threads.
2969 */
2970 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2971 continue;
2972
2973 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2974 if (!zone_watermark_fast(zone, order, mark,
2975 ac_classzone_idx(ac), alloc_flags)) {
2976 int ret;
2977
2978 /* Checked here to keep the fast path fast */
2979 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2980 if (alloc_flags & ALLOC_NO_WATERMARKS)
2981 goto try_this_zone;
2982
2983 if (zone_reclaim_mode == 0 ||
2984 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2985 continue;
2986
2987 ret = zone_reclaim(zone, gfp_mask, order);
2988 switch (ret) {
2989 case ZONE_RECLAIM_NOSCAN:
2990 /* did not scan */
2991 continue;
2992 case ZONE_RECLAIM_FULL:
2993 /* scanned but unreclaimable */
2994 continue;
2995 default:
2996 /* did we reclaim enough */
2997 if (zone_watermark_ok(zone, order, mark,
2998 ac_classzone_idx(ac), alloc_flags))
2999 goto try_this_zone;
3000
3001 continue;
3002 }
3003 }
3004
3005 try_this_zone:
3006 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3007 gfp_mask, alloc_flags, ac->migratetype);
3008 if (page) {
3009 prep_new_page(page, order, gfp_mask, alloc_flags);
3010
3011 /*
3012 * If this is a high-order atomic allocation then check
3013 * if the pageblock should be reserved for the future
3014 */
3015 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3016 reserve_highatomic_pageblock(page, zone, order);
3017
3018 return page;
3019 }
3020 }
3021
3022 /*
3023 * The first pass makes sure allocations are spread fairly within the
3024 * local node. However, the local node might have free pages left
3025 * after the fairness batches are exhausted, and remote zones haven't
3026 * even been considered yet. Try once more without fairness, and
3027 * include remote zones now, before entering the slowpath and waking
3028 * kswapd: prefer spilling to a remote zone over swapping locally.
3029 */
3030 if (fair_skipped) {
3031 reset_fair:
3032 apply_fair = false;
3033 fair_skipped = false;
3034 reset_alloc_batches(ac->preferred_zoneref->zone);
3035 z = ac->preferred_zoneref;
3036 goto zonelist_scan;
3037 }
3038
3039 return NULL;
3040 }
3041
3042 /*
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3045 */
3046 static inline bool should_suppress_show_mem(void)
3047 {
3048 bool ret = false;
3049
3050 #if NODES_SHIFT > 8
3051 ret = in_interrupt();
3052 #endif
3053 return ret;
3054 }
3055
3056 static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 DEFAULT_RATELIMIT_INTERVAL,
3058 DEFAULT_RATELIMIT_BURST);
3059
3060 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3061 {
3062 unsigned int filter = SHOW_MEM_FILTER_NODES;
3063
3064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 debug_guardpage_minorder() > 0)
3066 return;
3067
3068 /*
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3071 * of allowed nodes.
3072 */
3073 if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 if (test_thread_flag(TIF_MEMDIE) ||
3075 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
3077 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3078 filter &= ~SHOW_MEM_FILTER_NODES;
3079
3080 if (fmt) {
3081 struct va_format vaf;
3082 va_list args;
3083
3084 va_start(args, fmt);
3085
3086 vaf.fmt = fmt;
3087 vaf.va = &args;
3088
3089 pr_warn("%pV", &vaf);
3090
3091 va_end(args);
3092 }
3093
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current->comm, order, gfp_mask, &gfp_mask);
3096 dump_stack();
3097 if (!should_suppress_show_mem())
3098 show_mem(filter);
3099 }
3100
3101 static inline struct page *
3102 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3103 const struct alloc_context *ac, unsigned long *did_some_progress)
3104 {
3105 struct oom_control oc = {
3106 .zonelist = ac->zonelist,
3107 .nodemask = ac->nodemask,
3108 .gfp_mask = gfp_mask,
3109 .order = order,
3110 };
3111 struct page *page;
3112
3113 *did_some_progress = 0;
3114
3115 /*
3116 * Acquire the oom lock. If that fails, somebody else is
3117 * making progress for us.
3118 */
3119 if (!mutex_trylock(&oom_lock)) {
3120 *did_some_progress = 1;
3121 schedule_timeout_uninterruptible(1);
3122 return NULL;
3123 }
3124
3125 /*
3126 * Go through the zonelist yet one more time, keep very high watermark
3127 * here, this is only to catch a parallel oom killing, we must fail if
3128 * we're still under heavy pressure.
3129 */
3130 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3131 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3132 if (page)
3133 goto out;
3134
3135 if (!(gfp_mask & __GFP_NOFAIL)) {
3136 /* Coredumps can quickly deplete all memory reserves */
3137 if (current->flags & PF_DUMPCORE)
3138 goto out;
3139 /* The OOM killer will not help higher order allocs */
3140 if (order > PAGE_ALLOC_COSTLY_ORDER)
3141 goto out;
3142 /* The OOM killer does not needlessly kill tasks for lowmem */
3143 if (ac->high_zoneidx < ZONE_NORMAL)
3144 goto out;
3145 if (pm_suspended_storage())
3146 goto out;
3147 /*
3148 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 * other request to make a forward progress.
3150 * We are in an unfortunate situation where out_of_memory cannot
3151 * do much for this context but let's try it to at least get
3152 * access to memory reserved if the current task is killed (see
3153 * out_of_memory). Once filesystems are ready to handle allocation
3154 * failures more gracefully we should just bail out here.
3155 */
3156
3157 /* The OOM killer may not free memory on a specific node */
3158 if (gfp_mask & __GFP_THISNODE)
3159 goto out;
3160 }
3161 /* Exhausted what can be done so it's blamo time */
3162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3163 *did_some_progress = 1;
3164
3165 if (gfp_mask & __GFP_NOFAIL) {
3166 page = get_page_from_freelist(gfp_mask, order,
3167 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3168 /*
3169 * fallback to ignore cpuset restriction if our nodes
3170 * are depleted
3171 */
3172 if (!page)
3173 page = get_page_from_freelist(gfp_mask, order,
3174 ALLOC_NO_WATERMARKS, ac);
3175 }
3176 }
3177 out:
3178 mutex_unlock(&oom_lock);
3179 return page;
3180 }
3181
3182
3183 /*
3184 * Maximum number of compaction retries wit a progress before OOM
3185 * killer is consider as the only way to move forward.
3186 */
3187 #define MAX_COMPACT_RETRIES 16
3188
3189 #ifdef CONFIG_COMPACTION
3190 /* Try memory compaction for high-order allocations before reclaim */
3191 static struct page *
3192 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3193 unsigned int alloc_flags, const struct alloc_context *ac,
3194 enum migrate_mode mode, enum compact_result *compact_result)
3195 {
3196 struct page *page;
3197 int contended_compaction;
3198
3199 if (!order)
3200 return NULL;
3201
3202 current->flags |= PF_MEMALLOC;
3203 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3204 mode, &contended_compaction);
3205 current->flags &= ~PF_MEMALLOC;
3206
3207 if (*compact_result <= COMPACT_INACTIVE)
3208 return NULL;
3209
3210 /*
3211 * At least in one zone compaction wasn't deferred or skipped, so let's
3212 * count a compaction stall
3213 */
3214 count_vm_event(COMPACTSTALL);
3215
3216 page = get_page_from_freelist(gfp_mask, order,
3217 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3218
3219 if (page) {
3220 struct zone *zone = page_zone(page);
3221
3222 zone->compact_blockskip_flush = false;
3223 compaction_defer_reset(zone, order, true);
3224 count_vm_event(COMPACTSUCCESS);
3225 return page;
3226 }
3227
3228 /*
3229 * It's bad if compaction run occurs and fails. The most likely reason
3230 * is that pages exist, but not enough to satisfy watermarks.
3231 */
3232 count_vm_event(COMPACTFAIL);
3233
3234 /*
3235 * In all zones where compaction was attempted (and not
3236 * deferred or skipped), lock contention has been detected.
3237 * For THP allocation we do not want to disrupt the others
3238 * so we fallback to base pages instead.
3239 */
3240 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3241 *compact_result = COMPACT_CONTENDED;
3242
3243 /*
3244 * If compaction was aborted due to need_resched(), we do not
3245 * want to further increase allocation latency, unless it is
3246 * khugepaged trying to collapse.
3247 */
3248 if (contended_compaction == COMPACT_CONTENDED_SCHED
3249 && !(current->flags & PF_KTHREAD))
3250 *compact_result = COMPACT_CONTENDED;
3251
3252 cond_resched();
3253
3254 return NULL;
3255 }
3256
3257 static inline bool
3258 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3259 enum compact_result compact_result, enum migrate_mode *migrate_mode,
3260 int compaction_retries)
3261 {
3262 int max_retries = MAX_COMPACT_RETRIES;
3263
3264 if (!order)
3265 return false;
3266
3267 /*
3268 * compaction considers all the zone as desperately out of memory
3269 * so it doesn't really make much sense to retry except when the
3270 * failure could be caused by weak migration mode.
3271 */
3272 if (compaction_failed(compact_result)) {
3273 if (*migrate_mode == MIGRATE_ASYNC) {
3274 *migrate_mode = MIGRATE_SYNC_LIGHT;
3275 return true;
3276 }
3277 return false;
3278 }
3279
3280 /*
3281 * make sure the compaction wasn't deferred or didn't bail out early
3282 * due to locks contention before we declare that we should give up.
3283 * But do not retry if the given zonelist is not suitable for
3284 * compaction.
3285 */
3286 if (compaction_withdrawn(compact_result))
3287 return compaction_zonelist_suitable(ac, order, alloc_flags);
3288
3289 /*
3290 * !costly requests are much more important than __GFP_REPEAT
3291 * costly ones because they are de facto nofail and invoke OOM
3292 * killer to move on while costly can fail and users are ready
3293 * to cope with that. 1/4 retries is rather arbitrary but we
3294 * would need much more detailed feedback from compaction to
3295 * make a better decision.
3296 */
3297 if (order > PAGE_ALLOC_COSTLY_ORDER)
3298 max_retries /= 4;
3299 if (compaction_retries <= max_retries)
3300 return true;
3301
3302 return false;
3303 }
3304 #else
3305 static inline struct page *
3306 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3307 unsigned int alloc_flags, const struct alloc_context *ac,
3308 enum migrate_mode mode, enum compact_result *compact_result)
3309 {
3310 *compact_result = COMPACT_SKIPPED;
3311 return NULL;
3312 }
3313
3314 static inline bool
3315 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3316 enum compact_result compact_result,
3317 enum migrate_mode *migrate_mode,
3318 int compaction_retries)
3319 {
3320 struct zone *zone;
3321 struct zoneref *z;
3322
3323 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3324 return false;
3325
3326 /*
3327 * There are setups with compaction disabled which would prefer to loop
3328 * inside the allocator rather than hit the oom killer prematurely.
3329 * Let's give them a good hope and keep retrying while the order-0
3330 * watermarks are OK.
3331 */
3332 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3333 ac->nodemask) {
3334 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3335 ac_classzone_idx(ac), alloc_flags))
3336 return true;
3337 }
3338 return false;
3339 }
3340 #endif /* CONFIG_COMPACTION */
3341
3342 /* Perform direct synchronous page reclaim */
3343 static int
3344 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3345 const struct alloc_context *ac)
3346 {
3347 struct reclaim_state reclaim_state;
3348 int progress;
3349
3350 cond_resched();
3351
3352 /* We now go into synchronous reclaim */
3353 cpuset_memory_pressure_bump();
3354 current->flags |= PF_MEMALLOC;
3355 lockdep_set_current_reclaim_state(gfp_mask);
3356 reclaim_state.reclaimed_slab = 0;
3357 current->reclaim_state = &reclaim_state;
3358
3359 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3360 ac->nodemask);
3361
3362 current->reclaim_state = NULL;
3363 lockdep_clear_current_reclaim_state();
3364 current->flags &= ~PF_MEMALLOC;
3365
3366 cond_resched();
3367
3368 return progress;
3369 }
3370
3371 /* The really slow allocator path where we enter direct reclaim */
3372 static inline struct page *
3373 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3374 unsigned int alloc_flags, const struct alloc_context *ac,
3375 unsigned long *did_some_progress)
3376 {
3377 struct page *page = NULL;
3378 bool drained = false;
3379
3380 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3381 if (unlikely(!(*did_some_progress)))
3382 return NULL;
3383
3384 retry:
3385 page = get_page_from_freelist(gfp_mask, order,
3386 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3387
3388 /*
3389 * If an allocation failed after direct reclaim, it could be because
3390 * pages are pinned on the per-cpu lists or in high alloc reserves.
3391 * Shrink them them and try again
3392 */
3393 if (!page && !drained) {
3394 unreserve_highatomic_pageblock(ac);
3395 drain_all_pages(NULL);
3396 drained = true;
3397 goto retry;
3398 }
3399
3400 return page;
3401 }
3402
3403 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3404 {
3405 struct zoneref *z;
3406 struct zone *zone;
3407
3408 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3409 ac->high_zoneidx, ac->nodemask)
3410 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3411 }
3412
3413 static inline unsigned int
3414 gfp_to_alloc_flags(gfp_t gfp_mask)
3415 {
3416 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3417
3418 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3419 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3420
3421 /*
3422 * The caller may dip into page reserves a bit more if the caller
3423 * cannot run direct reclaim, or if the caller has realtime scheduling
3424 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3425 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3426 */
3427 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3428
3429 if (gfp_mask & __GFP_ATOMIC) {
3430 /*
3431 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3432 * if it can't schedule.
3433 */
3434 if (!(gfp_mask & __GFP_NOMEMALLOC))
3435 alloc_flags |= ALLOC_HARDER;
3436 /*
3437 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3438 * comment for __cpuset_node_allowed().
3439 */
3440 alloc_flags &= ~ALLOC_CPUSET;
3441 } else if (unlikely(rt_task(current)) && !in_interrupt())
3442 alloc_flags |= ALLOC_HARDER;
3443
3444 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3445 if (gfp_mask & __GFP_MEMALLOC)
3446 alloc_flags |= ALLOC_NO_WATERMARKS;
3447 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3448 alloc_flags |= ALLOC_NO_WATERMARKS;
3449 else if (!in_interrupt() &&
3450 ((current->flags & PF_MEMALLOC) ||
3451 unlikely(test_thread_flag(TIF_MEMDIE))))
3452 alloc_flags |= ALLOC_NO_WATERMARKS;
3453 }
3454 #ifdef CONFIG_CMA
3455 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3456 alloc_flags |= ALLOC_CMA;
3457 #endif
3458 return alloc_flags;
3459 }
3460
3461 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3462 {
3463 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3464 }
3465
3466 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3467 {
3468 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3469 }
3470
3471 /*
3472 * Maximum number of reclaim retries without any progress before OOM killer
3473 * is consider as the only way to move forward.
3474 */
3475 #define MAX_RECLAIM_RETRIES 16
3476
3477 /*
3478 * Checks whether it makes sense to retry the reclaim to make a forward progress
3479 * for the given allocation request.
3480 * The reclaim feedback represented by did_some_progress (any progress during
3481 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3482 * any progress in a row) is considered as well as the reclaimable pages on the
3483 * applicable zone list (with a backoff mechanism which is a function of
3484 * no_progress_loops).
3485 *
3486 * Returns true if a retry is viable or false to enter the oom path.
3487 */
3488 static inline bool
3489 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3490 struct alloc_context *ac, int alloc_flags,
3491 bool did_some_progress, int no_progress_loops)
3492 {
3493 struct zone *zone;
3494 struct zoneref *z;
3495
3496 /*
3497 * Make sure we converge to OOM if we cannot make any progress
3498 * several times in the row.
3499 */
3500 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3501 return false;
3502
3503 /*
3504 * Keep reclaiming pages while there is a chance this will lead somewhere.
3505 * If none of the target zones can satisfy our allocation request even
3506 * if all reclaimable pages are considered then we are screwed and have
3507 * to go OOM.
3508 */
3509 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3510 ac->nodemask) {
3511 unsigned long available;
3512 unsigned long reclaimable;
3513
3514 available = reclaimable = zone_reclaimable_pages(zone);
3515 available -= DIV_ROUND_UP(no_progress_loops * available,
3516 MAX_RECLAIM_RETRIES);
3517 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3518
3519 /*
3520 * Would the allocation succeed if we reclaimed the whole
3521 * available?
3522 */
3523 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3524 ac_classzone_idx(ac), alloc_flags, available)) {
3525 /*
3526 * If we didn't make any progress and have a lot of
3527 * dirty + writeback pages then we should wait for
3528 * an IO to complete to slow down the reclaim and
3529 * prevent from pre mature OOM
3530 */
3531 if (!did_some_progress) {
3532 unsigned long writeback;
3533 unsigned long dirty;
3534
3535 writeback = zone_page_state_snapshot(zone,
3536 NR_WRITEBACK);
3537 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3538
3539 if (2*(writeback + dirty) > reclaimable) {
3540 congestion_wait(BLK_RW_ASYNC, HZ/10);
3541 return true;
3542 }
3543 }
3544
3545 /*
3546 * Memory allocation/reclaim might be called from a WQ
3547 * context and the current implementation of the WQ
3548 * concurrency control doesn't recognize that
3549 * a particular WQ is congested if the worker thread is
3550 * looping without ever sleeping. Therefore we have to
3551 * do a short sleep here rather than calling
3552 * cond_resched().
3553 */
3554 if (current->flags & PF_WQ_WORKER)
3555 schedule_timeout_uninterruptible(1);
3556 else
3557 cond_resched();
3558
3559 return true;
3560 }
3561 }
3562
3563 return false;
3564 }
3565
3566 static inline struct page *
3567 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3568 struct alloc_context *ac)
3569 {
3570 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3571 struct page *page = NULL;
3572 unsigned int alloc_flags;
3573 unsigned long did_some_progress;
3574 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3575 enum compact_result compact_result;
3576 int compaction_retries = 0;
3577 int no_progress_loops = 0;
3578
3579 /*
3580 * In the slowpath, we sanity check order to avoid ever trying to
3581 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3582 * be using allocators in order of preference for an area that is
3583 * too large.
3584 */
3585 if (order >= MAX_ORDER) {
3586 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3587 return NULL;
3588 }
3589
3590 /*
3591 * We also sanity check to catch abuse of atomic reserves being used by
3592 * callers that are not in atomic context.
3593 */
3594 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3595 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3596 gfp_mask &= ~__GFP_ATOMIC;
3597
3598 retry:
3599 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3600 wake_all_kswapds(order, ac);
3601
3602 /*
3603 * OK, we're below the kswapd watermark and have kicked background
3604 * reclaim. Now things get more complex, so set up alloc_flags according
3605 * to how we want to proceed.
3606 */
3607 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3608
3609 /*
3610 * Reset the zonelist iterators if memory policies can be ignored.
3611 * These allocations are high priority and system rather than user
3612 * orientated.
3613 */
3614 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3615 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3616 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3617 ac->high_zoneidx, ac->nodemask);
3618 }
3619
3620 /* This is the last chance, in general, before the goto nopage. */
3621 page = get_page_from_freelist(gfp_mask, order,
3622 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3623 if (page)
3624 goto got_pg;
3625
3626 /* Allocate without watermarks if the context allows */
3627 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3628 page = get_page_from_freelist(gfp_mask, order,
3629 ALLOC_NO_WATERMARKS, ac);
3630 if (page)
3631 goto got_pg;
3632 }
3633
3634 /* Caller is not willing to reclaim, we can't balance anything */
3635 if (!can_direct_reclaim) {
3636 /*
3637 * All existing users of the __GFP_NOFAIL are blockable, so warn
3638 * of any new users that actually allow this type of allocation
3639 * to fail.
3640 */
3641 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3642 goto nopage;
3643 }
3644
3645 /* Avoid recursion of direct reclaim */
3646 if (current->flags & PF_MEMALLOC) {
3647 /*
3648 * __GFP_NOFAIL request from this context is rather bizarre
3649 * because we cannot reclaim anything and only can loop waiting
3650 * for somebody to do a work for us.
3651 */
3652 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3653 cond_resched();
3654 goto retry;
3655 }
3656 goto nopage;
3657 }
3658
3659 /* Avoid allocations with no watermarks from looping endlessly */
3660 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3661 goto nopage;
3662
3663 /*
3664 * Try direct compaction. The first pass is asynchronous. Subsequent
3665 * attempts after direct reclaim are synchronous
3666 */
3667 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3668 migration_mode,
3669 &compact_result);
3670 if (page)
3671 goto got_pg;
3672
3673 /* Checks for THP-specific high-order allocations */
3674 if (is_thp_gfp_mask(gfp_mask)) {
3675 /*
3676 * If compaction is deferred for high-order allocations, it is
3677 * because sync compaction recently failed. If this is the case
3678 * and the caller requested a THP allocation, we do not want
3679 * to heavily disrupt the system, so we fail the allocation
3680 * instead of entering direct reclaim.
3681 */
3682 if (compact_result == COMPACT_DEFERRED)
3683 goto nopage;
3684
3685 /*
3686 * Compaction is contended so rather back off than cause
3687 * excessive stalls.
3688 */
3689 if(compact_result == COMPACT_CONTENDED)
3690 goto nopage;
3691 }
3692
3693 if (order && compaction_made_progress(compact_result))
3694 compaction_retries++;
3695
3696 /* Try direct reclaim and then allocating */
3697 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3698 &did_some_progress);
3699 if (page)
3700 goto got_pg;
3701
3702 /* Do not loop if specifically requested */
3703 if (gfp_mask & __GFP_NORETRY)
3704 goto noretry;
3705
3706 /*
3707 * Do not retry costly high order allocations unless they are
3708 * __GFP_REPEAT
3709 */
3710 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3711 goto noretry;
3712
3713 /*
3714 * Costly allocations might have made a progress but this doesn't mean
3715 * their order will become available due to high fragmentation so
3716 * always increment the no progress counter for them
3717 */
3718 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3719 no_progress_loops = 0;
3720 else
3721 no_progress_loops++;
3722
3723 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3724 did_some_progress > 0, no_progress_loops))
3725 goto retry;
3726
3727 /*
3728 * It doesn't make any sense to retry for the compaction if the order-0
3729 * reclaim is not able to make any progress because the current
3730 * implementation of the compaction depends on the sufficient amount
3731 * of free memory (see __compaction_suitable)
3732 */
3733 if (did_some_progress > 0 &&
3734 should_compact_retry(ac, order, alloc_flags,
3735 compact_result, &migration_mode,
3736 compaction_retries))
3737 goto retry;
3738
3739 /* Reclaim has failed us, start killing things */
3740 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3741 if (page)
3742 goto got_pg;
3743
3744 /* Retry as long as the OOM killer is making progress */
3745 if (did_some_progress) {
3746 no_progress_loops = 0;
3747 goto retry;
3748 }
3749
3750 noretry:
3751 /*
3752 * High-order allocations do not necessarily loop after direct reclaim
3753 * and reclaim/compaction depends on compaction being called after
3754 * reclaim so call directly if necessary.
3755 * It can become very expensive to allocate transparent hugepages at
3756 * fault, so use asynchronous memory compaction for THP unless it is
3757 * khugepaged trying to collapse. All other requests should tolerate
3758 * at least light sync migration.
3759 */
3760 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3761 migration_mode = MIGRATE_ASYNC;
3762 else
3763 migration_mode = MIGRATE_SYNC_LIGHT;
3764 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3765 ac, migration_mode,
3766 &compact_result);
3767 if (page)
3768 goto got_pg;
3769 nopage:
3770 warn_alloc_failed(gfp_mask, order, NULL);
3771 got_pg:
3772 return page;
3773 }
3774
3775 /*
3776 * This is the 'heart' of the zoned buddy allocator.
3777 */
3778 struct page *
3779 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3780 struct zonelist *zonelist, nodemask_t *nodemask)
3781 {
3782 struct page *page;
3783 unsigned int cpuset_mems_cookie;
3784 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3785 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3786 struct alloc_context ac = {
3787 .high_zoneidx = gfp_zone(gfp_mask),
3788 .zonelist = zonelist,
3789 .nodemask = nodemask,
3790 .migratetype = gfpflags_to_migratetype(gfp_mask),
3791 };
3792
3793 if (cpusets_enabled()) {
3794 alloc_mask |= __GFP_HARDWALL;
3795 alloc_flags |= ALLOC_CPUSET;
3796 if (!ac.nodemask)
3797 ac.nodemask = &cpuset_current_mems_allowed;
3798 }
3799
3800 gfp_mask &= gfp_allowed_mask;
3801
3802 lockdep_trace_alloc(gfp_mask);
3803
3804 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3805
3806 if (should_fail_alloc_page(gfp_mask, order))
3807 return NULL;
3808
3809 /*
3810 * Check the zones suitable for the gfp_mask contain at least one
3811 * valid zone. It's possible to have an empty zonelist as a result
3812 * of __GFP_THISNODE and a memoryless node
3813 */
3814 if (unlikely(!zonelist->_zonerefs->zone))
3815 return NULL;
3816
3817 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3818 alloc_flags |= ALLOC_CMA;
3819
3820 retry_cpuset:
3821 cpuset_mems_cookie = read_mems_allowed_begin();
3822
3823 /* Dirty zone balancing only done in the fast path */
3824 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3825
3826 /*
3827 * The preferred zone is used for statistics but crucially it is
3828 * also used as the starting point for the zonelist iterator. It
3829 * may get reset for allocations that ignore memory policies.
3830 */
3831 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3832 ac.high_zoneidx, ac.nodemask);
3833 if (!ac.preferred_zoneref) {
3834 page = NULL;
3835 goto no_zone;
3836 }
3837
3838 /* First allocation attempt */
3839 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3840 if (likely(page))
3841 goto out;
3842
3843 /*
3844 * Runtime PM, block IO and its error handling path can deadlock
3845 * because I/O on the device might not complete.
3846 */
3847 alloc_mask = memalloc_noio_flags(gfp_mask);
3848 ac.spread_dirty_pages = false;
3849
3850 /*
3851 * Restore the original nodemask if it was potentially replaced with
3852 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3853 */
3854 if (cpusets_enabled())
3855 ac.nodemask = nodemask;
3856 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3857
3858 no_zone:
3859 /*
3860 * When updating a task's mems_allowed, it is possible to race with
3861 * parallel threads in such a way that an allocation can fail while
3862 * the mask is being updated. If a page allocation is about to fail,
3863 * check if the cpuset changed during allocation and if so, retry.
3864 */
3865 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3866 alloc_mask = gfp_mask;
3867 goto retry_cpuset;
3868 }
3869
3870 out:
3871 if (kmemcheck_enabled && page)
3872 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3873
3874 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3875
3876 return page;
3877 }
3878 EXPORT_SYMBOL(__alloc_pages_nodemask);
3879
3880 /*
3881 * Common helper functions.
3882 */
3883 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3884 {
3885 struct page *page;
3886
3887 /*
3888 * __get_free_pages() returns a 32-bit address, which cannot represent
3889 * a highmem page
3890 */
3891 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3892
3893 page = alloc_pages(gfp_mask, order);
3894 if (!page)
3895 return 0;
3896 return (unsigned long) page_address(page);
3897 }
3898 EXPORT_SYMBOL(__get_free_pages);
3899
3900 unsigned long get_zeroed_page(gfp_t gfp_mask)
3901 {
3902 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3903 }
3904 EXPORT_SYMBOL(get_zeroed_page);
3905
3906 void __free_pages(struct page *page, unsigned int order)
3907 {
3908 if (put_page_testzero(page)) {
3909 if (order == 0)
3910 free_hot_cold_page(page, false);
3911 else
3912 __free_pages_ok(page, order);
3913 }
3914 }
3915
3916 EXPORT_SYMBOL(__free_pages);
3917
3918 void free_pages(unsigned long addr, unsigned int order)
3919 {
3920 if (addr != 0) {
3921 VM_BUG_ON(!virt_addr_valid((void *)addr));
3922 __free_pages(virt_to_page((void *)addr), order);
3923 }
3924 }
3925
3926 EXPORT_SYMBOL(free_pages);
3927
3928 /*
3929 * Page Fragment:
3930 * An arbitrary-length arbitrary-offset area of memory which resides
3931 * within a 0 or higher order page. Multiple fragments within that page
3932 * are individually refcounted, in the page's reference counter.
3933 *
3934 * The page_frag functions below provide a simple allocation framework for
3935 * page fragments. This is used by the network stack and network device
3936 * drivers to provide a backing region of memory for use as either an
3937 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3938 */
3939 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3940 gfp_t gfp_mask)
3941 {
3942 struct page *page = NULL;
3943 gfp_t gfp = gfp_mask;
3944
3945 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3946 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3947 __GFP_NOMEMALLOC;
3948 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3949 PAGE_FRAG_CACHE_MAX_ORDER);
3950 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3951 #endif
3952 if (unlikely(!page))
3953 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3954
3955 nc->va = page ? page_address(page) : NULL;
3956
3957 return page;
3958 }
3959
3960 void *__alloc_page_frag(struct page_frag_cache *nc,
3961 unsigned int fragsz, gfp_t gfp_mask)
3962 {
3963 unsigned int size = PAGE_SIZE;
3964 struct page *page;
3965 int offset;
3966
3967 if (unlikely(!nc->va)) {
3968 refill:
3969 page = __page_frag_refill(nc, gfp_mask);
3970 if (!page)
3971 return NULL;
3972
3973 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3974 /* if size can vary use size else just use PAGE_SIZE */
3975 size = nc->size;
3976 #endif
3977 /* Even if we own the page, we do not use atomic_set().
3978 * This would break get_page_unless_zero() users.
3979 */
3980 page_ref_add(page, size - 1);
3981
3982 /* reset page count bias and offset to start of new frag */
3983 nc->pfmemalloc = page_is_pfmemalloc(page);
3984 nc->pagecnt_bias = size;
3985 nc->offset = size;
3986 }
3987
3988 offset = nc->offset - fragsz;
3989 if (unlikely(offset < 0)) {
3990 page = virt_to_page(nc->va);
3991
3992 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3993 goto refill;
3994
3995 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3996 /* if size can vary use size else just use PAGE_SIZE */
3997 size = nc->size;
3998 #endif
3999 /* OK, page count is 0, we can safely set it */
4000 set_page_count(page, size);
4001
4002 /* reset page count bias and offset to start of new frag */
4003 nc->pagecnt_bias = size;
4004 offset = size - fragsz;
4005 }
4006
4007 nc->pagecnt_bias--;
4008 nc->offset = offset;
4009
4010 return nc->va + offset;
4011 }
4012 EXPORT_SYMBOL(__alloc_page_frag);
4013
4014 /*
4015 * Frees a page fragment allocated out of either a compound or order 0 page.
4016 */
4017 void __free_page_frag(void *addr)
4018 {
4019 struct page *page = virt_to_head_page(addr);
4020
4021 if (unlikely(put_page_testzero(page)))
4022 __free_pages_ok(page, compound_order(page));
4023 }
4024 EXPORT_SYMBOL(__free_page_frag);
4025
4026 /*
4027 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4028 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4029 * equivalent to alloc_pages.
4030 *
4031 * It should be used when the caller would like to use kmalloc, but since the
4032 * allocation is large, it has to fall back to the page allocator.
4033 */
4034 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4035 {
4036 struct page *page;
4037
4038 page = alloc_pages(gfp_mask, order);
4039 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4040 __free_pages(page, order);
4041 page = NULL;
4042 }
4043 return page;
4044 }
4045
4046 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4047 {
4048 struct page *page;
4049
4050 page = alloc_pages_node(nid, gfp_mask, order);
4051 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4052 __free_pages(page, order);
4053 page = NULL;
4054 }
4055 return page;
4056 }
4057
4058 /*
4059 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4060 * alloc_kmem_pages.
4061 */
4062 void __free_kmem_pages(struct page *page, unsigned int order)
4063 {
4064 memcg_kmem_uncharge(page, order);
4065 __free_pages(page, order);
4066 }
4067
4068 void free_kmem_pages(unsigned long addr, unsigned int order)
4069 {
4070 if (addr != 0) {
4071 VM_BUG_ON(!virt_addr_valid((void *)addr));
4072 __free_kmem_pages(virt_to_page((void *)addr), order);
4073 }
4074 }
4075
4076 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4077 size_t size)
4078 {
4079 if (addr) {
4080 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4081 unsigned long used = addr + PAGE_ALIGN(size);
4082
4083 split_page(virt_to_page((void *)addr), order);
4084 while (used < alloc_end) {
4085 free_page(used);
4086 used += PAGE_SIZE;
4087 }
4088 }
4089 return (void *)addr;
4090 }
4091
4092 /**
4093 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4094 * @size: the number of bytes to allocate
4095 * @gfp_mask: GFP flags for the allocation
4096 *
4097 * This function is similar to alloc_pages(), except that it allocates the
4098 * minimum number of pages to satisfy the request. alloc_pages() can only
4099 * allocate memory in power-of-two pages.
4100 *
4101 * This function is also limited by MAX_ORDER.
4102 *
4103 * Memory allocated by this function must be released by free_pages_exact().
4104 */
4105 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4106 {
4107 unsigned int order = get_order(size);
4108 unsigned long addr;
4109
4110 addr = __get_free_pages(gfp_mask, order);
4111 return make_alloc_exact(addr, order, size);
4112 }
4113 EXPORT_SYMBOL(alloc_pages_exact);
4114
4115 /**
4116 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4117 * pages on a node.
4118 * @nid: the preferred node ID where memory should be allocated
4119 * @size: the number of bytes to allocate
4120 * @gfp_mask: GFP flags for the allocation
4121 *
4122 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4123 * back.
4124 */
4125 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4126 {
4127 unsigned int order = get_order(size);
4128 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4129 if (!p)
4130 return NULL;
4131 return make_alloc_exact((unsigned long)page_address(p), order, size);
4132 }
4133
4134 /**
4135 * free_pages_exact - release memory allocated via alloc_pages_exact()
4136 * @virt: the value returned by alloc_pages_exact.
4137 * @size: size of allocation, same value as passed to alloc_pages_exact().
4138 *
4139 * Release the memory allocated by a previous call to alloc_pages_exact.
4140 */
4141 void free_pages_exact(void *virt, size_t size)
4142 {
4143 unsigned long addr = (unsigned long)virt;
4144 unsigned long end = addr + PAGE_ALIGN(size);
4145
4146 while (addr < end) {
4147 free_page(addr);
4148 addr += PAGE_SIZE;
4149 }
4150 }
4151 EXPORT_SYMBOL(free_pages_exact);
4152
4153 /**
4154 * nr_free_zone_pages - count number of pages beyond high watermark
4155 * @offset: The zone index of the highest zone
4156 *
4157 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4158 * high watermark within all zones at or below a given zone index. For each
4159 * zone, the number of pages is calculated as:
4160 * managed_pages - high_pages
4161 */
4162 static unsigned long nr_free_zone_pages(int offset)
4163 {
4164 struct zoneref *z;
4165 struct zone *zone;
4166
4167 /* Just pick one node, since fallback list is circular */
4168 unsigned long sum = 0;
4169
4170 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4171
4172 for_each_zone_zonelist(zone, z, zonelist, offset) {
4173 unsigned long size = zone->managed_pages;
4174 unsigned long high = high_wmark_pages(zone);
4175 if (size > high)
4176 sum += size - high;
4177 }
4178
4179 return sum;
4180 }
4181
4182 /**
4183 * nr_free_buffer_pages - count number of pages beyond high watermark
4184 *
4185 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4186 * watermark within ZONE_DMA and ZONE_NORMAL.
4187 */
4188 unsigned long nr_free_buffer_pages(void)
4189 {
4190 return nr_free_zone_pages(gfp_zone(GFP_USER));
4191 }
4192 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4193
4194 /**
4195 * nr_free_pagecache_pages - count number of pages beyond high watermark
4196 *
4197 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4198 * high watermark within all zones.
4199 */
4200 unsigned long nr_free_pagecache_pages(void)
4201 {
4202 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4203 }
4204
4205 static inline void show_node(struct zone *zone)
4206 {
4207 if (IS_ENABLED(CONFIG_NUMA))
4208 printk("Node %d ", zone_to_nid(zone));
4209 }
4210
4211 long si_mem_available(void)
4212 {
4213 long available;
4214 unsigned long pagecache;
4215 unsigned long wmark_low = 0;
4216 unsigned long pages[NR_LRU_LISTS];
4217 struct zone *zone;
4218 int lru;
4219
4220 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4221 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4222
4223 for_each_zone(zone)
4224 wmark_low += zone->watermark[WMARK_LOW];
4225
4226 /*
4227 * Estimate the amount of memory available for userspace allocations,
4228 * without causing swapping.
4229 */
4230 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4231
4232 /*
4233 * Not all the page cache can be freed, otherwise the system will
4234 * start swapping. Assume at least half of the page cache, or the
4235 * low watermark worth of cache, needs to stay.
4236 */
4237 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4238 pagecache -= min(pagecache / 2, wmark_low);
4239 available += pagecache;
4240
4241 /*
4242 * Part of the reclaimable slab consists of items that are in use,
4243 * and cannot be freed. Cap this estimate at the low watermark.
4244 */
4245 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4246 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4247
4248 if (available < 0)
4249 available = 0;
4250 return available;
4251 }
4252 EXPORT_SYMBOL_GPL(si_mem_available);
4253
4254 void si_meminfo(struct sysinfo *val)
4255 {
4256 val->totalram = totalram_pages;
4257 val->sharedram = global_page_state(NR_SHMEM);
4258 val->freeram = global_page_state(NR_FREE_PAGES);
4259 val->bufferram = nr_blockdev_pages();
4260 val->totalhigh = totalhigh_pages;
4261 val->freehigh = nr_free_highpages();
4262 val->mem_unit = PAGE_SIZE;
4263 }
4264
4265 EXPORT_SYMBOL(si_meminfo);
4266
4267 #ifdef CONFIG_NUMA
4268 void si_meminfo_node(struct sysinfo *val, int nid)
4269 {
4270 int zone_type; /* needs to be signed */
4271 unsigned long managed_pages = 0;
4272 unsigned long managed_highpages = 0;
4273 unsigned long free_highpages = 0;
4274 pg_data_t *pgdat = NODE_DATA(nid);
4275
4276 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4277 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4278 val->totalram = managed_pages;
4279 val->sharedram = node_page_state(nid, NR_SHMEM);
4280 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4281 #ifdef CONFIG_HIGHMEM
4282 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4283 struct zone *zone = &pgdat->node_zones[zone_type];
4284
4285 if (is_highmem(zone)) {
4286 managed_highpages += zone->managed_pages;
4287 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4288 }
4289 }
4290 val->totalhigh = managed_highpages;
4291 val->freehigh = free_highpages;
4292 #else
4293 val->totalhigh = managed_highpages;
4294 val->freehigh = free_highpages;
4295 #endif
4296 val->mem_unit = PAGE_SIZE;
4297 }
4298 #endif
4299
4300 /*
4301 * Determine whether the node should be displayed or not, depending on whether
4302 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4303 */
4304 bool skip_free_areas_node(unsigned int flags, int nid)
4305 {
4306 bool ret = false;
4307 unsigned int cpuset_mems_cookie;
4308
4309 if (!(flags & SHOW_MEM_FILTER_NODES))
4310 goto out;
4311
4312 do {
4313 cpuset_mems_cookie = read_mems_allowed_begin();
4314 ret = !node_isset(nid, cpuset_current_mems_allowed);
4315 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4316 out:
4317 return ret;
4318 }
4319
4320 #define K(x) ((x) << (PAGE_SHIFT-10))
4321
4322 static void show_migration_types(unsigned char type)
4323 {
4324 static const char types[MIGRATE_TYPES] = {
4325 [MIGRATE_UNMOVABLE] = 'U',
4326 [MIGRATE_MOVABLE] = 'M',
4327 [MIGRATE_RECLAIMABLE] = 'E',
4328 [MIGRATE_HIGHATOMIC] = 'H',
4329 #ifdef CONFIG_CMA
4330 [MIGRATE_CMA] = 'C',
4331 #endif
4332 #ifdef CONFIG_MEMORY_ISOLATION
4333 [MIGRATE_ISOLATE] = 'I',
4334 #endif
4335 };
4336 char tmp[MIGRATE_TYPES + 1];
4337 char *p = tmp;
4338 int i;
4339
4340 for (i = 0; i < MIGRATE_TYPES; i++) {
4341 if (type & (1 << i))
4342 *p++ = types[i];
4343 }
4344
4345 *p = '\0';
4346 printk("(%s) ", tmp);
4347 }
4348
4349 /*
4350 * Show free area list (used inside shift_scroll-lock stuff)
4351 * We also calculate the percentage fragmentation. We do this by counting the
4352 * memory on each free list with the exception of the first item on the list.
4353 *
4354 * Bits in @filter:
4355 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4356 * cpuset.
4357 */
4358 void show_free_areas(unsigned int filter)
4359 {
4360 unsigned long free_pcp = 0;
4361 int cpu;
4362 struct zone *zone;
4363
4364 for_each_populated_zone(zone) {
4365 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4366 continue;
4367
4368 for_each_online_cpu(cpu)
4369 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4370 }
4371
4372 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4373 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4374 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4375 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4376 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4377 " free:%lu free_pcp:%lu free_cma:%lu\n",
4378 global_page_state(NR_ACTIVE_ANON),
4379 global_page_state(NR_INACTIVE_ANON),
4380 global_page_state(NR_ISOLATED_ANON),
4381 global_page_state(NR_ACTIVE_FILE),
4382 global_page_state(NR_INACTIVE_FILE),
4383 global_page_state(NR_ISOLATED_FILE),
4384 global_page_state(NR_UNEVICTABLE),
4385 global_page_state(NR_FILE_DIRTY),
4386 global_page_state(NR_WRITEBACK),
4387 global_page_state(NR_UNSTABLE_NFS),
4388 global_page_state(NR_SLAB_RECLAIMABLE),
4389 global_page_state(NR_SLAB_UNRECLAIMABLE),
4390 global_page_state(NR_FILE_MAPPED),
4391 global_page_state(NR_SHMEM),
4392 global_page_state(NR_PAGETABLE),
4393 global_page_state(NR_BOUNCE),
4394 global_page_state(NR_FREE_PAGES),
4395 free_pcp,
4396 global_page_state(NR_FREE_CMA_PAGES));
4397
4398 for_each_populated_zone(zone) {
4399 int i;
4400
4401 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4402 continue;
4403
4404 free_pcp = 0;
4405 for_each_online_cpu(cpu)
4406 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4407
4408 show_node(zone);
4409 printk("%s"
4410 " free:%lukB"
4411 " min:%lukB"
4412 " low:%lukB"
4413 " high:%lukB"
4414 " active_anon:%lukB"
4415 " inactive_anon:%lukB"
4416 " active_file:%lukB"
4417 " inactive_file:%lukB"
4418 " unevictable:%lukB"
4419 " isolated(anon):%lukB"
4420 " isolated(file):%lukB"
4421 " present:%lukB"
4422 " managed:%lukB"
4423 " mlocked:%lukB"
4424 " dirty:%lukB"
4425 " writeback:%lukB"
4426 " mapped:%lukB"
4427 " shmem:%lukB"
4428 " slab_reclaimable:%lukB"
4429 " slab_unreclaimable:%lukB"
4430 " kernel_stack:%lukB"
4431 " pagetables:%lukB"
4432 " unstable:%lukB"
4433 " bounce:%lukB"
4434 " free_pcp:%lukB"
4435 " local_pcp:%ukB"
4436 " free_cma:%lukB"
4437 " writeback_tmp:%lukB"
4438 " pages_scanned:%lu"
4439 " all_unreclaimable? %s"
4440 "\n",
4441 zone->name,
4442 K(zone_page_state(zone, NR_FREE_PAGES)),
4443 K(min_wmark_pages(zone)),
4444 K(low_wmark_pages(zone)),
4445 K(high_wmark_pages(zone)),
4446 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4447 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4448 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4449 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4450 K(zone_page_state(zone, NR_UNEVICTABLE)),
4451 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4452 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4453 K(zone->present_pages),
4454 K(zone->managed_pages),
4455 K(zone_page_state(zone, NR_MLOCK)),
4456 K(zone_page_state(zone, NR_FILE_DIRTY)),
4457 K(zone_page_state(zone, NR_WRITEBACK)),
4458 K(zone_page_state(zone, NR_FILE_MAPPED)),
4459 K(zone_page_state(zone, NR_SHMEM)),
4460 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4461 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4462 zone_page_state(zone, NR_KERNEL_STACK) *
4463 THREAD_SIZE / 1024,
4464 K(zone_page_state(zone, NR_PAGETABLE)),
4465 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4466 K(zone_page_state(zone, NR_BOUNCE)),
4467 K(free_pcp),
4468 K(this_cpu_read(zone->pageset->pcp.count)),
4469 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4470 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4471 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4472 (!zone_reclaimable(zone) ? "yes" : "no")
4473 );
4474 printk("lowmem_reserve[]:");
4475 for (i = 0; i < MAX_NR_ZONES; i++)
4476 printk(" %ld", zone->lowmem_reserve[i]);
4477 printk("\n");
4478 }
4479
4480 for_each_populated_zone(zone) {
4481 unsigned int order;
4482 unsigned long nr[MAX_ORDER], flags, total = 0;
4483 unsigned char types[MAX_ORDER];
4484
4485 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4486 continue;
4487 show_node(zone);
4488 printk("%s: ", zone->name);
4489
4490 spin_lock_irqsave(&zone->lock, flags);
4491 for (order = 0; order < MAX_ORDER; order++) {
4492 struct free_area *area = &zone->free_area[order];
4493 int type;
4494
4495 nr[order] = area->nr_free;
4496 total += nr[order] << order;
4497
4498 types[order] = 0;
4499 for (type = 0; type < MIGRATE_TYPES; type++) {
4500 if (!list_empty(&area->free_list[type]))
4501 types[order] |= 1 << type;
4502 }
4503 }
4504 spin_unlock_irqrestore(&zone->lock, flags);
4505 for (order = 0; order < MAX_ORDER; order++) {
4506 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4507 if (nr[order])
4508 show_migration_types(types[order]);
4509 }
4510 printk("= %lukB\n", K(total));
4511 }
4512
4513 hugetlb_show_meminfo();
4514
4515 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4516
4517 show_swap_cache_info();
4518 }
4519
4520 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4521 {
4522 zoneref->zone = zone;
4523 zoneref->zone_idx = zone_idx(zone);
4524 }
4525
4526 /*
4527 * Builds allocation fallback zone lists.
4528 *
4529 * Add all populated zones of a node to the zonelist.
4530 */
4531 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4532 int nr_zones)
4533 {
4534 struct zone *zone;
4535 enum zone_type zone_type = MAX_NR_ZONES;
4536
4537 do {
4538 zone_type--;
4539 zone = pgdat->node_zones + zone_type;
4540 if (populated_zone(zone)) {
4541 zoneref_set_zone(zone,
4542 &zonelist->_zonerefs[nr_zones++]);
4543 check_highest_zone(zone_type);
4544 }
4545 } while (zone_type);
4546
4547 return nr_zones;
4548 }
4549
4550
4551 /*
4552 * zonelist_order:
4553 * 0 = automatic detection of better ordering.
4554 * 1 = order by ([node] distance, -zonetype)
4555 * 2 = order by (-zonetype, [node] distance)
4556 *
4557 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4558 * the same zonelist. So only NUMA can configure this param.
4559 */
4560 #define ZONELIST_ORDER_DEFAULT 0
4561 #define ZONELIST_ORDER_NODE 1
4562 #define ZONELIST_ORDER_ZONE 2
4563
4564 /* zonelist order in the kernel.
4565 * set_zonelist_order() will set this to NODE or ZONE.
4566 */
4567 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4568 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4569
4570
4571 #ifdef CONFIG_NUMA
4572 /* The value user specified ....changed by config */
4573 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4574 /* string for sysctl */
4575 #define NUMA_ZONELIST_ORDER_LEN 16
4576 char numa_zonelist_order[16] = "default";
4577
4578 /*
4579 * interface for configure zonelist ordering.
4580 * command line option "numa_zonelist_order"
4581 * = "[dD]efault - default, automatic configuration.
4582 * = "[nN]ode - order by node locality, then by zone within node
4583 * = "[zZ]one - order by zone, then by locality within zone
4584 */
4585
4586 static int __parse_numa_zonelist_order(char *s)
4587 {
4588 if (*s == 'd' || *s == 'D') {
4589 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4590 } else if (*s == 'n' || *s == 'N') {
4591 user_zonelist_order = ZONELIST_ORDER_NODE;
4592 } else if (*s == 'z' || *s == 'Z') {
4593 user_zonelist_order = ZONELIST_ORDER_ZONE;
4594 } else {
4595 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4596 return -EINVAL;
4597 }
4598 return 0;
4599 }
4600
4601 static __init int setup_numa_zonelist_order(char *s)
4602 {
4603 int ret;
4604
4605 if (!s)
4606 return 0;
4607
4608 ret = __parse_numa_zonelist_order(s);
4609 if (ret == 0)
4610 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4611
4612 return ret;
4613 }
4614 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4615
4616 /*
4617 * sysctl handler for numa_zonelist_order
4618 */
4619 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4620 void __user *buffer, size_t *length,
4621 loff_t *ppos)
4622 {
4623 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4624 int ret;
4625 static DEFINE_MUTEX(zl_order_mutex);
4626
4627 mutex_lock(&zl_order_mutex);
4628 if (write) {
4629 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4630 ret = -EINVAL;
4631 goto out;
4632 }
4633 strcpy(saved_string, (char *)table->data);
4634 }
4635 ret = proc_dostring(table, write, buffer, length, ppos);
4636 if (ret)
4637 goto out;
4638 if (write) {
4639 int oldval = user_zonelist_order;
4640
4641 ret = __parse_numa_zonelist_order((char *)table->data);
4642 if (ret) {
4643 /*
4644 * bogus value. restore saved string
4645 */
4646 strncpy((char *)table->data, saved_string,
4647 NUMA_ZONELIST_ORDER_LEN);
4648 user_zonelist_order = oldval;
4649 } else if (oldval != user_zonelist_order) {
4650 mutex_lock(&zonelists_mutex);
4651 build_all_zonelists(NULL, NULL);
4652 mutex_unlock(&zonelists_mutex);
4653 }
4654 }
4655 out:
4656 mutex_unlock(&zl_order_mutex);
4657 return ret;
4658 }
4659
4660
4661 #define MAX_NODE_LOAD (nr_online_nodes)
4662 static int node_load[MAX_NUMNODES];
4663
4664 /**
4665 * find_next_best_node - find the next node that should appear in a given node's fallback list
4666 * @node: node whose fallback list we're appending
4667 * @used_node_mask: nodemask_t of already used nodes
4668 *
4669 * We use a number of factors to determine which is the next node that should
4670 * appear on a given node's fallback list. The node should not have appeared
4671 * already in @node's fallback list, and it should be the next closest node
4672 * according to the distance array (which contains arbitrary distance values
4673 * from each node to each node in the system), and should also prefer nodes
4674 * with no CPUs, since presumably they'll have very little allocation pressure
4675 * on them otherwise.
4676 * It returns -1 if no node is found.
4677 */
4678 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4679 {
4680 int n, val;
4681 int min_val = INT_MAX;
4682 int best_node = NUMA_NO_NODE;
4683 const struct cpumask *tmp = cpumask_of_node(0);
4684
4685 /* Use the local node if we haven't already */
4686 if (!node_isset(node, *used_node_mask)) {
4687 node_set(node, *used_node_mask);
4688 return node;
4689 }
4690
4691 for_each_node_state(n, N_MEMORY) {
4692
4693 /* Don't want a node to appear more than once */
4694 if (node_isset(n, *used_node_mask))
4695 continue;
4696
4697 /* Use the distance array to find the distance */
4698 val = node_distance(node, n);
4699
4700 /* Penalize nodes under us ("prefer the next node") */
4701 val += (n < node);
4702
4703 /* Give preference to headless and unused nodes */
4704 tmp = cpumask_of_node(n);
4705 if (!cpumask_empty(tmp))
4706 val += PENALTY_FOR_NODE_WITH_CPUS;
4707
4708 /* Slight preference for less loaded node */
4709 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4710 val += node_load[n];
4711
4712 if (val < min_val) {
4713 min_val = val;
4714 best_node = n;
4715 }
4716 }
4717
4718 if (best_node >= 0)
4719 node_set(best_node, *used_node_mask);
4720
4721 return best_node;
4722 }
4723
4724
4725 /*
4726 * Build zonelists ordered by node and zones within node.
4727 * This results in maximum locality--normal zone overflows into local
4728 * DMA zone, if any--but risks exhausting DMA zone.
4729 */
4730 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4731 {
4732 int j;
4733 struct zonelist *zonelist;
4734
4735 zonelist = &pgdat->node_zonelists[0];
4736 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4737 ;
4738 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4739 zonelist->_zonerefs[j].zone = NULL;
4740 zonelist->_zonerefs[j].zone_idx = 0;
4741 }
4742
4743 /*
4744 * Build gfp_thisnode zonelists
4745 */
4746 static void build_thisnode_zonelists(pg_data_t *pgdat)
4747 {
4748 int j;
4749 struct zonelist *zonelist;
4750
4751 zonelist = &pgdat->node_zonelists[1];
4752 j = build_zonelists_node(pgdat, zonelist, 0);
4753 zonelist->_zonerefs[j].zone = NULL;
4754 zonelist->_zonerefs[j].zone_idx = 0;
4755 }
4756
4757 /*
4758 * Build zonelists ordered by zone and nodes within zones.
4759 * This results in conserving DMA zone[s] until all Normal memory is
4760 * exhausted, but results in overflowing to remote node while memory
4761 * may still exist in local DMA zone.
4762 */
4763 static int node_order[MAX_NUMNODES];
4764
4765 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4766 {
4767 int pos, j, node;
4768 int zone_type; /* needs to be signed */
4769 struct zone *z;
4770 struct zonelist *zonelist;
4771
4772 zonelist = &pgdat->node_zonelists[0];
4773 pos = 0;
4774 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4775 for (j = 0; j < nr_nodes; j++) {
4776 node = node_order[j];
4777 z = &NODE_DATA(node)->node_zones[zone_type];
4778 if (populated_zone(z)) {
4779 zoneref_set_zone(z,
4780 &zonelist->_zonerefs[pos++]);
4781 check_highest_zone(zone_type);
4782 }
4783 }
4784 }
4785 zonelist->_zonerefs[pos].zone = NULL;
4786 zonelist->_zonerefs[pos].zone_idx = 0;
4787 }
4788
4789 #if defined(CONFIG_64BIT)
4790 /*
4791 * Devices that require DMA32/DMA are relatively rare and do not justify a
4792 * penalty to every machine in case the specialised case applies. Default
4793 * to Node-ordering on 64-bit NUMA machines
4794 */
4795 static int default_zonelist_order(void)
4796 {
4797 return ZONELIST_ORDER_NODE;
4798 }
4799 #else
4800 /*
4801 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4802 * by the kernel. If processes running on node 0 deplete the low memory zone
4803 * then reclaim will occur more frequency increasing stalls and potentially
4804 * be easier to OOM if a large percentage of the zone is under writeback or
4805 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4806 * Hence, default to zone ordering on 32-bit.
4807 */
4808 static int default_zonelist_order(void)
4809 {
4810 return ZONELIST_ORDER_ZONE;
4811 }
4812 #endif /* CONFIG_64BIT */
4813
4814 static void set_zonelist_order(void)
4815 {
4816 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4817 current_zonelist_order = default_zonelist_order();
4818 else
4819 current_zonelist_order = user_zonelist_order;
4820 }
4821
4822 static void build_zonelists(pg_data_t *pgdat)
4823 {
4824 int i, node, load;
4825 nodemask_t used_mask;
4826 int local_node, prev_node;
4827 struct zonelist *zonelist;
4828 unsigned int order = current_zonelist_order;
4829
4830 /* initialize zonelists */
4831 for (i = 0; i < MAX_ZONELISTS; i++) {
4832 zonelist = pgdat->node_zonelists + i;
4833 zonelist->_zonerefs[0].zone = NULL;
4834 zonelist->_zonerefs[0].zone_idx = 0;
4835 }
4836
4837 /* NUMA-aware ordering of nodes */
4838 local_node = pgdat->node_id;
4839 load = nr_online_nodes;
4840 prev_node = local_node;
4841 nodes_clear(used_mask);
4842
4843 memset(node_order, 0, sizeof(node_order));
4844 i = 0;
4845
4846 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4847 /*
4848 * We don't want to pressure a particular node.
4849 * So adding penalty to the first node in same
4850 * distance group to make it round-robin.
4851 */
4852 if (node_distance(local_node, node) !=
4853 node_distance(local_node, prev_node))
4854 node_load[node] = load;
4855
4856 prev_node = node;
4857 load--;
4858 if (order == ZONELIST_ORDER_NODE)
4859 build_zonelists_in_node_order(pgdat, node);
4860 else
4861 node_order[i++] = node; /* remember order */
4862 }
4863
4864 if (order == ZONELIST_ORDER_ZONE) {
4865 /* calculate node order -- i.e., DMA last! */
4866 build_zonelists_in_zone_order(pgdat, i);
4867 }
4868
4869 build_thisnode_zonelists(pgdat);
4870 }
4871
4872 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4873 /*
4874 * Return node id of node used for "local" allocations.
4875 * I.e., first node id of first zone in arg node's generic zonelist.
4876 * Used for initializing percpu 'numa_mem', which is used primarily
4877 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4878 */
4879 int local_memory_node(int node)
4880 {
4881 struct zoneref *z;
4882
4883 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4884 gfp_zone(GFP_KERNEL),
4885 NULL);
4886 return z->zone->node;
4887 }
4888 #endif
4889
4890 #else /* CONFIG_NUMA */
4891
4892 static void set_zonelist_order(void)
4893 {
4894 current_zonelist_order = ZONELIST_ORDER_ZONE;
4895 }
4896
4897 static void build_zonelists(pg_data_t *pgdat)
4898 {
4899 int node, local_node;
4900 enum zone_type j;
4901 struct zonelist *zonelist;
4902
4903 local_node = pgdat->node_id;
4904
4905 zonelist = &pgdat->node_zonelists[0];
4906 j = build_zonelists_node(pgdat, zonelist, 0);
4907
4908 /*
4909 * Now we build the zonelist so that it contains the zones
4910 * of all the other nodes.
4911 * We don't want to pressure a particular node, so when
4912 * building the zones for node N, we make sure that the
4913 * zones coming right after the local ones are those from
4914 * node N+1 (modulo N)
4915 */
4916 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4917 if (!node_online(node))
4918 continue;
4919 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4920 }
4921 for (node = 0; node < local_node; node++) {
4922 if (!node_online(node))
4923 continue;
4924 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4925 }
4926
4927 zonelist->_zonerefs[j].zone = NULL;
4928 zonelist->_zonerefs[j].zone_idx = 0;
4929 }
4930
4931 #endif /* CONFIG_NUMA */
4932
4933 /*
4934 * Boot pageset table. One per cpu which is going to be used for all
4935 * zones and all nodes. The parameters will be set in such a way
4936 * that an item put on a list will immediately be handed over to
4937 * the buddy list. This is safe since pageset manipulation is done
4938 * with interrupts disabled.
4939 *
4940 * The boot_pagesets must be kept even after bootup is complete for
4941 * unused processors and/or zones. They do play a role for bootstrapping
4942 * hotplugged processors.
4943 *
4944 * zoneinfo_show() and maybe other functions do
4945 * not check if the processor is online before following the pageset pointer.
4946 * Other parts of the kernel may not check if the zone is available.
4947 */
4948 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4949 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4950 static void setup_zone_pageset(struct zone *zone);
4951
4952 /*
4953 * Global mutex to protect against size modification of zonelists
4954 * as well as to serialize pageset setup for the new populated zone.
4955 */
4956 DEFINE_MUTEX(zonelists_mutex);
4957
4958 /* return values int ....just for stop_machine() */
4959 static int __build_all_zonelists(void *data)
4960 {
4961 int nid;
4962 int cpu;
4963 pg_data_t *self = data;
4964
4965 #ifdef CONFIG_NUMA
4966 memset(node_load, 0, sizeof(node_load));
4967 #endif
4968
4969 if (self && !node_online(self->node_id)) {
4970 build_zonelists(self);
4971 }
4972
4973 for_each_online_node(nid) {
4974 pg_data_t *pgdat = NODE_DATA(nid);
4975
4976 build_zonelists(pgdat);
4977 }
4978
4979 /*
4980 * Initialize the boot_pagesets that are going to be used
4981 * for bootstrapping processors. The real pagesets for
4982 * each zone will be allocated later when the per cpu
4983 * allocator is available.
4984 *
4985 * boot_pagesets are used also for bootstrapping offline
4986 * cpus if the system is already booted because the pagesets
4987 * are needed to initialize allocators on a specific cpu too.
4988 * F.e. the percpu allocator needs the page allocator which
4989 * needs the percpu allocator in order to allocate its pagesets
4990 * (a chicken-egg dilemma).
4991 */
4992 for_each_possible_cpu(cpu) {
4993 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4994
4995 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4996 /*
4997 * We now know the "local memory node" for each node--
4998 * i.e., the node of the first zone in the generic zonelist.
4999 * Set up numa_mem percpu variable for on-line cpus. During
5000 * boot, only the boot cpu should be on-line; we'll init the
5001 * secondary cpus' numa_mem as they come on-line. During
5002 * node/memory hotplug, we'll fixup all on-line cpus.
5003 */
5004 if (cpu_online(cpu))
5005 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5006 #endif
5007 }
5008
5009 return 0;
5010 }
5011
5012 static noinline void __init
5013 build_all_zonelists_init(void)
5014 {
5015 __build_all_zonelists(NULL);
5016 mminit_verify_zonelist();
5017 cpuset_init_current_mems_allowed();
5018 }
5019
5020 /*
5021 * Called with zonelists_mutex held always
5022 * unless system_state == SYSTEM_BOOTING.
5023 *
5024 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5025 * [we're only called with non-NULL zone through __meminit paths] and
5026 * (2) call of __init annotated helper build_all_zonelists_init
5027 * [protected by SYSTEM_BOOTING].
5028 */
5029 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5030 {
5031 set_zonelist_order();
5032
5033 if (system_state == SYSTEM_BOOTING) {
5034 build_all_zonelists_init();
5035 } else {
5036 #ifdef CONFIG_MEMORY_HOTPLUG
5037 if (zone)
5038 setup_zone_pageset(zone);
5039 #endif
5040 /* we have to stop all cpus to guarantee there is no user
5041 of zonelist */
5042 stop_machine(__build_all_zonelists, pgdat, NULL);
5043 /* cpuset refresh routine should be here */
5044 }
5045 vm_total_pages = nr_free_pagecache_pages();
5046 /*
5047 * Disable grouping by mobility if the number of pages in the
5048 * system is too low to allow the mechanism to work. It would be
5049 * more accurate, but expensive to check per-zone. This check is
5050 * made on memory-hotadd so a system can start with mobility
5051 * disabled and enable it later
5052 */
5053 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5054 page_group_by_mobility_disabled = 1;
5055 else
5056 page_group_by_mobility_disabled = 0;
5057
5058 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5059 nr_online_nodes,
5060 zonelist_order_name[current_zonelist_order],
5061 page_group_by_mobility_disabled ? "off" : "on",
5062 vm_total_pages);
5063 #ifdef CONFIG_NUMA
5064 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5065 #endif
5066 }
5067
5068 /*
5069 * Helper functions to size the waitqueue hash table.
5070 * Essentially these want to choose hash table sizes sufficiently
5071 * large so that collisions trying to wait on pages are rare.
5072 * But in fact, the number of active page waitqueues on typical
5073 * systems is ridiculously low, less than 200. So this is even
5074 * conservative, even though it seems large.
5075 *
5076 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5077 * waitqueues, i.e. the size of the waitq table given the number of pages.
5078 */
5079 #define PAGES_PER_WAITQUEUE 256
5080
5081 #ifndef CONFIG_MEMORY_HOTPLUG
5082 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5083 {
5084 unsigned long size = 1;
5085
5086 pages /= PAGES_PER_WAITQUEUE;
5087
5088 while (size < pages)
5089 size <<= 1;
5090
5091 /*
5092 * Once we have dozens or even hundreds of threads sleeping
5093 * on IO we've got bigger problems than wait queue collision.
5094 * Limit the size of the wait table to a reasonable size.
5095 */
5096 size = min(size, 4096UL);
5097
5098 return max(size, 4UL);
5099 }
5100 #else
5101 /*
5102 * A zone's size might be changed by hot-add, so it is not possible to determine
5103 * a suitable size for its wait_table. So we use the maximum size now.
5104 *
5105 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5106 *
5107 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5108 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5109 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5110 *
5111 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5112 * or more by the traditional way. (See above). It equals:
5113 *
5114 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5115 * ia64(16K page size) : = ( 8G + 4M)byte.
5116 * powerpc (64K page size) : = (32G +16M)byte.
5117 */
5118 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5119 {
5120 return 4096UL;
5121 }
5122 #endif
5123
5124 /*
5125 * This is an integer logarithm so that shifts can be used later
5126 * to extract the more random high bits from the multiplicative
5127 * hash function before the remainder is taken.
5128 */
5129 static inline unsigned long wait_table_bits(unsigned long size)
5130 {
5131 return ffz(~size);
5132 }
5133
5134 /*
5135 * Initially all pages are reserved - free ones are freed
5136 * up by free_all_bootmem() once the early boot process is
5137 * done. Non-atomic initialization, single-pass.
5138 */
5139 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5140 unsigned long start_pfn, enum memmap_context context)
5141 {
5142 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5143 unsigned long end_pfn = start_pfn + size;
5144 pg_data_t *pgdat = NODE_DATA(nid);
5145 unsigned long pfn;
5146 unsigned long nr_initialised = 0;
5147 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5148 struct memblock_region *r = NULL, *tmp;
5149 #endif
5150
5151 if (highest_memmap_pfn < end_pfn - 1)
5152 highest_memmap_pfn = end_pfn - 1;
5153
5154 /*
5155 * Honor reservation requested by the driver for this ZONE_DEVICE
5156 * memory
5157 */
5158 if (altmap && start_pfn == altmap->base_pfn)
5159 start_pfn += altmap->reserve;
5160
5161 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5162 /*
5163 * There can be holes in boot-time mem_map[]s handed to this
5164 * function. They do not exist on hotplugged memory.
5165 */
5166 if (context != MEMMAP_EARLY)
5167 goto not_early;
5168
5169 if (!early_pfn_valid(pfn))
5170 continue;
5171 if (!early_pfn_in_nid(pfn, nid))
5172 continue;
5173 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5174 break;
5175
5176 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5177 /*
5178 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5179 * from zone_movable_pfn[nid] to end of each node should be
5180 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5181 */
5182 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5183 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5184 continue;
5185
5186 /*
5187 * Check given memblock attribute by firmware which can affect
5188 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5189 * mirrored, it's an overlapped memmap init. skip it.
5190 */
5191 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5192 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5193 for_each_memblock(memory, tmp)
5194 if (pfn < memblock_region_memory_end_pfn(tmp))
5195 break;
5196 r = tmp;
5197 }
5198 if (pfn >= memblock_region_memory_base_pfn(r) &&
5199 memblock_is_mirror(r)) {
5200 /* already initialized as NORMAL */
5201 pfn = memblock_region_memory_end_pfn(r);
5202 continue;
5203 }
5204 }
5205 #endif
5206
5207 not_early:
5208 /*
5209 * Mark the block movable so that blocks are reserved for
5210 * movable at startup. This will force kernel allocations
5211 * to reserve their blocks rather than leaking throughout
5212 * the address space during boot when many long-lived
5213 * kernel allocations are made.
5214 *
5215 * bitmap is created for zone's valid pfn range. but memmap
5216 * can be created for invalid pages (for alignment)
5217 * check here not to call set_pageblock_migratetype() against
5218 * pfn out of zone.
5219 */
5220 if (!(pfn & (pageblock_nr_pages - 1))) {
5221 struct page *page = pfn_to_page(pfn);
5222
5223 __init_single_page(page, pfn, zone, nid);
5224 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5225 } else {
5226 __init_single_pfn(pfn, zone, nid);
5227 }
5228 }
5229 }
5230
5231 static void __meminit zone_init_free_lists(struct zone *zone)
5232 {
5233 unsigned int order, t;
5234 for_each_migratetype_order(order, t) {
5235 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5236 zone->free_area[order].nr_free = 0;
5237 }
5238 }
5239
5240 #ifndef __HAVE_ARCH_MEMMAP_INIT
5241 #define memmap_init(size, nid, zone, start_pfn) \
5242 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5243 #endif
5244
5245 static int zone_batchsize(struct zone *zone)
5246 {
5247 #ifdef CONFIG_MMU
5248 int batch;
5249
5250 /*
5251 * The per-cpu-pages pools are set to around 1000th of the
5252 * size of the zone. But no more than 1/2 of a meg.
5253 *
5254 * OK, so we don't know how big the cache is. So guess.
5255 */
5256 batch = zone->managed_pages / 1024;
5257 if (batch * PAGE_SIZE > 512 * 1024)
5258 batch = (512 * 1024) / PAGE_SIZE;
5259 batch /= 4; /* We effectively *= 4 below */
5260 if (batch < 1)
5261 batch = 1;
5262
5263 /*
5264 * Clamp the batch to a 2^n - 1 value. Having a power
5265 * of 2 value was found to be more likely to have
5266 * suboptimal cache aliasing properties in some cases.
5267 *
5268 * For example if 2 tasks are alternately allocating
5269 * batches of pages, one task can end up with a lot
5270 * of pages of one half of the possible page colors
5271 * and the other with pages of the other colors.
5272 */
5273 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5274
5275 return batch;
5276
5277 #else
5278 /* The deferral and batching of frees should be suppressed under NOMMU
5279 * conditions.
5280 *
5281 * The problem is that NOMMU needs to be able to allocate large chunks
5282 * of contiguous memory as there's no hardware page translation to
5283 * assemble apparent contiguous memory from discontiguous pages.
5284 *
5285 * Queueing large contiguous runs of pages for batching, however,
5286 * causes the pages to actually be freed in smaller chunks. As there
5287 * can be a significant delay between the individual batches being
5288 * recycled, this leads to the once large chunks of space being
5289 * fragmented and becoming unavailable for high-order allocations.
5290 */
5291 return 0;
5292 #endif
5293 }
5294
5295 /*
5296 * pcp->high and pcp->batch values are related and dependent on one another:
5297 * ->batch must never be higher then ->high.
5298 * The following function updates them in a safe manner without read side
5299 * locking.
5300 *
5301 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5302 * those fields changing asynchronously (acording the the above rule).
5303 *
5304 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5305 * outside of boot time (or some other assurance that no concurrent updaters
5306 * exist).
5307 */
5308 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5309 unsigned long batch)
5310 {
5311 /* start with a fail safe value for batch */
5312 pcp->batch = 1;
5313 smp_wmb();
5314
5315 /* Update high, then batch, in order */
5316 pcp->high = high;
5317 smp_wmb();
5318
5319 pcp->batch = batch;
5320 }
5321
5322 /* a companion to pageset_set_high() */
5323 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5324 {
5325 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5326 }
5327
5328 static void pageset_init(struct per_cpu_pageset *p)
5329 {
5330 struct per_cpu_pages *pcp;
5331 int migratetype;
5332
5333 memset(p, 0, sizeof(*p));
5334
5335 pcp = &p->pcp;
5336 pcp->count = 0;
5337 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5338 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5339 }
5340
5341 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5342 {
5343 pageset_init(p);
5344 pageset_set_batch(p, batch);
5345 }
5346
5347 /*
5348 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5349 * to the value high for the pageset p.
5350 */
5351 static void pageset_set_high(struct per_cpu_pageset *p,
5352 unsigned long high)
5353 {
5354 unsigned long batch = max(1UL, high / 4);
5355 if ((high / 4) > (PAGE_SHIFT * 8))
5356 batch = PAGE_SHIFT * 8;
5357
5358 pageset_update(&p->pcp, high, batch);
5359 }
5360
5361 static void pageset_set_high_and_batch(struct zone *zone,
5362 struct per_cpu_pageset *pcp)
5363 {
5364 if (percpu_pagelist_fraction)
5365 pageset_set_high(pcp,
5366 (zone->managed_pages /
5367 percpu_pagelist_fraction));
5368 else
5369 pageset_set_batch(pcp, zone_batchsize(zone));
5370 }
5371
5372 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5373 {
5374 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5375
5376 pageset_init(pcp);
5377 pageset_set_high_and_batch(zone, pcp);
5378 }
5379
5380 static void __meminit setup_zone_pageset(struct zone *zone)
5381 {
5382 int cpu;
5383 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5384 for_each_possible_cpu(cpu)
5385 zone_pageset_init(zone, cpu);
5386 }
5387
5388 /*
5389 * Allocate per cpu pagesets and initialize them.
5390 * Before this call only boot pagesets were available.
5391 */
5392 void __init setup_per_cpu_pageset(void)
5393 {
5394 struct zone *zone;
5395
5396 for_each_populated_zone(zone)
5397 setup_zone_pageset(zone);
5398 }
5399
5400 static noinline __init_refok
5401 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5402 {
5403 int i;
5404 size_t alloc_size;
5405
5406 /*
5407 * The per-page waitqueue mechanism uses hashed waitqueues
5408 * per zone.
5409 */
5410 zone->wait_table_hash_nr_entries =
5411 wait_table_hash_nr_entries(zone_size_pages);
5412 zone->wait_table_bits =
5413 wait_table_bits(zone->wait_table_hash_nr_entries);
5414 alloc_size = zone->wait_table_hash_nr_entries
5415 * sizeof(wait_queue_head_t);
5416
5417 if (!slab_is_available()) {
5418 zone->wait_table = (wait_queue_head_t *)
5419 memblock_virt_alloc_node_nopanic(
5420 alloc_size, zone->zone_pgdat->node_id);
5421 } else {
5422 /*
5423 * This case means that a zone whose size was 0 gets new memory
5424 * via memory hot-add.
5425 * But it may be the case that a new node was hot-added. In
5426 * this case vmalloc() will not be able to use this new node's
5427 * memory - this wait_table must be initialized to use this new
5428 * node itself as well.
5429 * To use this new node's memory, further consideration will be
5430 * necessary.
5431 */
5432 zone->wait_table = vmalloc(alloc_size);
5433 }
5434 if (!zone->wait_table)
5435 return -ENOMEM;
5436
5437 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5438 init_waitqueue_head(zone->wait_table + i);
5439
5440 return 0;
5441 }
5442
5443 static __meminit void zone_pcp_init(struct zone *zone)
5444 {
5445 /*
5446 * per cpu subsystem is not up at this point. The following code
5447 * relies on the ability of the linker to provide the
5448 * offset of a (static) per cpu variable into the per cpu area.
5449 */
5450 zone->pageset = &boot_pageset;
5451
5452 if (populated_zone(zone))
5453 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5454 zone->name, zone->present_pages,
5455 zone_batchsize(zone));
5456 }
5457
5458 int __meminit init_currently_empty_zone(struct zone *zone,
5459 unsigned long zone_start_pfn,
5460 unsigned long size)
5461 {
5462 struct pglist_data *pgdat = zone->zone_pgdat;
5463 int ret;
5464 ret = zone_wait_table_init(zone, size);
5465 if (ret)
5466 return ret;
5467 pgdat->nr_zones = zone_idx(zone) + 1;
5468
5469 zone->zone_start_pfn = zone_start_pfn;
5470
5471 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5472 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5473 pgdat->node_id,
5474 (unsigned long)zone_idx(zone),
5475 zone_start_pfn, (zone_start_pfn + size));
5476
5477 zone_init_free_lists(zone);
5478
5479 return 0;
5480 }
5481
5482 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5483 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5484
5485 /*
5486 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5487 */
5488 int __meminit __early_pfn_to_nid(unsigned long pfn,
5489 struct mminit_pfnnid_cache *state)
5490 {
5491 unsigned long start_pfn, end_pfn;
5492 int nid;
5493
5494 if (state->last_start <= pfn && pfn < state->last_end)
5495 return state->last_nid;
5496
5497 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5498 if (nid != -1) {
5499 state->last_start = start_pfn;
5500 state->last_end = end_pfn;
5501 state->last_nid = nid;
5502 }
5503
5504 return nid;
5505 }
5506 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5507
5508 /**
5509 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5510 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5511 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5512 *
5513 * If an architecture guarantees that all ranges registered contain no holes
5514 * and may be freed, this this function may be used instead of calling
5515 * memblock_free_early_nid() manually.
5516 */
5517 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5518 {
5519 unsigned long start_pfn, end_pfn;
5520 int i, this_nid;
5521
5522 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5523 start_pfn = min(start_pfn, max_low_pfn);
5524 end_pfn = min(end_pfn, max_low_pfn);
5525
5526 if (start_pfn < end_pfn)
5527 memblock_free_early_nid(PFN_PHYS(start_pfn),
5528 (end_pfn - start_pfn) << PAGE_SHIFT,
5529 this_nid);
5530 }
5531 }
5532
5533 /**
5534 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5535 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5536 *
5537 * If an architecture guarantees that all ranges registered contain no holes and may
5538 * be freed, this function may be used instead of calling memory_present() manually.
5539 */
5540 void __init sparse_memory_present_with_active_regions(int nid)
5541 {
5542 unsigned long start_pfn, end_pfn;
5543 int i, this_nid;
5544
5545 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5546 memory_present(this_nid, start_pfn, end_pfn);
5547 }
5548
5549 /**
5550 * get_pfn_range_for_nid - Return the start and end page frames for a node
5551 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5552 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5553 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5554 *
5555 * It returns the start and end page frame of a node based on information
5556 * provided by memblock_set_node(). If called for a node
5557 * with no available memory, a warning is printed and the start and end
5558 * PFNs will be 0.
5559 */
5560 void __meminit get_pfn_range_for_nid(unsigned int nid,
5561 unsigned long *start_pfn, unsigned long *end_pfn)
5562 {
5563 unsigned long this_start_pfn, this_end_pfn;
5564 int i;
5565
5566 *start_pfn = -1UL;
5567 *end_pfn = 0;
5568
5569 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5570 *start_pfn = min(*start_pfn, this_start_pfn);
5571 *end_pfn = max(*end_pfn, this_end_pfn);
5572 }
5573
5574 if (*start_pfn == -1UL)
5575 *start_pfn = 0;
5576 }
5577
5578 /*
5579 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5580 * assumption is made that zones within a node are ordered in monotonic
5581 * increasing memory addresses so that the "highest" populated zone is used
5582 */
5583 static void __init find_usable_zone_for_movable(void)
5584 {
5585 int zone_index;
5586 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5587 if (zone_index == ZONE_MOVABLE)
5588 continue;
5589
5590 if (arch_zone_highest_possible_pfn[zone_index] >
5591 arch_zone_lowest_possible_pfn[zone_index])
5592 break;
5593 }
5594
5595 VM_BUG_ON(zone_index == -1);
5596 movable_zone = zone_index;
5597 }
5598
5599 /*
5600 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5601 * because it is sized independent of architecture. Unlike the other zones,
5602 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5603 * in each node depending on the size of each node and how evenly kernelcore
5604 * is distributed. This helper function adjusts the zone ranges
5605 * provided by the architecture for a given node by using the end of the
5606 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5607 * zones within a node are in order of monotonic increases memory addresses
5608 */
5609 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5610 unsigned long zone_type,
5611 unsigned long node_start_pfn,
5612 unsigned long node_end_pfn,
5613 unsigned long *zone_start_pfn,
5614 unsigned long *zone_end_pfn)
5615 {
5616 /* Only adjust if ZONE_MOVABLE is on this node */
5617 if (zone_movable_pfn[nid]) {
5618 /* Size ZONE_MOVABLE */
5619 if (zone_type == ZONE_MOVABLE) {
5620 *zone_start_pfn = zone_movable_pfn[nid];
5621 *zone_end_pfn = min(node_end_pfn,
5622 arch_zone_highest_possible_pfn[movable_zone]);
5623
5624 /* Check if this whole range is within ZONE_MOVABLE */
5625 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5626 *zone_start_pfn = *zone_end_pfn;
5627 }
5628 }
5629
5630 /*
5631 * Return the number of pages a zone spans in a node, including holes
5632 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5633 */
5634 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5635 unsigned long zone_type,
5636 unsigned long node_start_pfn,
5637 unsigned long node_end_pfn,
5638 unsigned long *zone_start_pfn,
5639 unsigned long *zone_end_pfn,
5640 unsigned long *ignored)
5641 {
5642 /* When hotadd a new node from cpu_up(), the node should be empty */
5643 if (!node_start_pfn && !node_end_pfn)
5644 return 0;
5645
5646 /* Get the start and end of the zone */
5647 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5648 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5649 adjust_zone_range_for_zone_movable(nid, zone_type,
5650 node_start_pfn, node_end_pfn,
5651 zone_start_pfn, zone_end_pfn);
5652
5653 /* Check that this node has pages within the zone's required range */
5654 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5655 return 0;
5656
5657 /* Move the zone boundaries inside the node if necessary */
5658 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5659 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5660
5661 /* Return the spanned pages */
5662 return *zone_end_pfn - *zone_start_pfn;
5663 }
5664
5665 /*
5666 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5667 * then all holes in the requested range will be accounted for.
5668 */
5669 unsigned long __meminit __absent_pages_in_range(int nid,
5670 unsigned long range_start_pfn,
5671 unsigned long range_end_pfn)
5672 {
5673 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5674 unsigned long start_pfn, end_pfn;
5675 int i;
5676
5677 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5678 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5679 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5680 nr_absent -= end_pfn - start_pfn;
5681 }
5682 return nr_absent;
5683 }
5684
5685 /**
5686 * absent_pages_in_range - Return number of page frames in holes within a range
5687 * @start_pfn: The start PFN to start searching for holes
5688 * @end_pfn: The end PFN to stop searching for holes
5689 *
5690 * It returns the number of pages frames in memory holes within a range.
5691 */
5692 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5693 unsigned long end_pfn)
5694 {
5695 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5696 }
5697
5698 /* Return the number of page frames in holes in a zone on a node */
5699 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5700 unsigned long zone_type,
5701 unsigned long node_start_pfn,
5702 unsigned long node_end_pfn,
5703 unsigned long *ignored)
5704 {
5705 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5706 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5707 unsigned long zone_start_pfn, zone_end_pfn;
5708 unsigned long nr_absent;
5709
5710 /* When hotadd a new node from cpu_up(), the node should be empty */
5711 if (!node_start_pfn && !node_end_pfn)
5712 return 0;
5713
5714 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5715 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5716
5717 adjust_zone_range_for_zone_movable(nid, zone_type,
5718 node_start_pfn, node_end_pfn,
5719 &zone_start_pfn, &zone_end_pfn);
5720 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5721
5722 /*
5723 * ZONE_MOVABLE handling.
5724 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5725 * and vice versa.
5726 */
5727 if (zone_movable_pfn[nid]) {
5728 if (mirrored_kernelcore) {
5729 unsigned long start_pfn, end_pfn;
5730 struct memblock_region *r;
5731
5732 for_each_memblock(memory, r) {
5733 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5734 zone_start_pfn, zone_end_pfn);
5735 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5736 zone_start_pfn, zone_end_pfn);
5737
5738 if (zone_type == ZONE_MOVABLE &&
5739 memblock_is_mirror(r))
5740 nr_absent += end_pfn - start_pfn;
5741
5742 if (zone_type == ZONE_NORMAL &&
5743 !memblock_is_mirror(r))
5744 nr_absent += end_pfn - start_pfn;
5745 }
5746 } else {
5747 if (zone_type == ZONE_NORMAL)
5748 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5749 }
5750 }
5751
5752 return nr_absent;
5753 }
5754
5755 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5756 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5757 unsigned long zone_type,
5758 unsigned long node_start_pfn,
5759 unsigned long node_end_pfn,
5760 unsigned long *zone_start_pfn,
5761 unsigned long *zone_end_pfn,
5762 unsigned long *zones_size)
5763 {
5764 unsigned int zone;
5765
5766 *zone_start_pfn = node_start_pfn;
5767 for (zone = 0; zone < zone_type; zone++)
5768 *zone_start_pfn += zones_size[zone];
5769
5770 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5771
5772 return zones_size[zone_type];
5773 }
5774
5775 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5776 unsigned long zone_type,
5777 unsigned long node_start_pfn,
5778 unsigned long node_end_pfn,
5779 unsigned long *zholes_size)
5780 {
5781 if (!zholes_size)
5782 return 0;
5783
5784 return zholes_size[zone_type];
5785 }
5786
5787 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5788
5789 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5790 unsigned long node_start_pfn,
5791 unsigned long node_end_pfn,
5792 unsigned long *zones_size,
5793 unsigned long *zholes_size)
5794 {
5795 unsigned long realtotalpages = 0, totalpages = 0;
5796 enum zone_type i;
5797
5798 for (i = 0; i < MAX_NR_ZONES; i++) {
5799 struct zone *zone = pgdat->node_zones + i;
5800 unsigned long zone_start_pfn, zone_end_pfn;
5801 unsigned long size, real_size;
5802
5803 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5804 node_start_pfn,
5805 node_end_pfn,
5806 &zone_start_pfn,
5807 &zone_end_pfn,
5808 zones_size);
5809 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5810 node_start_pfn, node_end_pfn,
5811 zholes_size);
5812 if (size)
5813 zone->zone_start_pfn = zone_start_pfn;
5814 else
5815 zone->zone_start_pfn = 0;
5816 zone->spanned_pages = size;
5817 zone->present_pages = real_size;
5818
5819 totalpages += size;
5820 realtotalpages += real_size;
5821 }
5822
5823 pgdat->node_spanned_pages = totalpages;
5824 pgdat->node_present_pages = realtotalpages;
5825 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5826 realtotalpages);
5827 }
5828
5829 #ifndef CONFIG_SPARSEMEM
5830 /*
5831 * Calculate the size of the zone->blockflags rounded to an unsigned long
5832 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5833 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5834 * round what is now in bits to nearest long in bits, then return it in
5835 * bytes.
5836 */
5837 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5838 {
5839 unsigned long usemapsize;
5840
5841 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5842 usemapsize = roundup(zonesize, pageblock_nr_pages);
5843 usemapsize = usemapsize >> pageblock_order;
5844 usemapsize *= NR_PAGEBLOCK_BITS;
5845 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5846
5847 return usemapsize / 8;
5848 }
5849
5850 static void __init setup_usemap(struct pglist_data *pgdat,
5851 struct zone *zone,
5852 unsigned long zone_start_pfn,
5853 unsigned long zonesize)
5854 {
5855 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5856 zone->pageblock_flags = NULL;
5857 if (usemapsize)
5858 zone->pageblock_flags =
5859 memblock_virt_alloc_node_nopanic(usemapsize,
5860 pgdat->node_id);
5861 }
5862 #else
5863 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5864 unsigned long zone_start_pfn, unsigned long zonesize) {}
5865 #endif /* CONFIG_SPARSEMEM */
5866
5867 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5868
5869 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5870 void __paginginit set_pageblock_order(void)
5871 {
5872 unsigned int order;
5873
5874 /* Check that pageblock_nr_pages has not already been setup */
5875 if (pageblock_order)
5876 return;
5877
5878 if (HPAGE_SHIFT > PAGE_SHIFT)
5879 order = HUGETLB_PAGE_ORDER;
5880 else
5881 order = MAX_ORDER - 1;
5882
5883 /*
5884 * Assume the largest contiguous order of interest is a huge page.
5885 * This value may be variable depending on boot parameters on IA64 and
5886 * powerpc.
5887 */
5888 pageblock_order = order;
5889 }
5890 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5891
5892 /*
5893 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5894 * is unused as pageblock_order is set at compile-time. See
5895 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5896 * the kernel config
5897 */
5898 void __paginginit set_pageblock_order(void)
5899 {
5900 }
5901
5902 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5903
5904 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5905 unsigned long present_pages)
5906 {
5907 unsigned long pages = spanned_pages;
5908
5909 /*
5910 * Provide a more accurate estimation if there are holes within
5911 * the zone and SPARSEMEM is in use. If there are holes within the
5912 * zone, each populated memory region may cost us one or two extra
5913 * memmap pages due to alignment because memmap pages for each
5914 * populated regions may not naturally algined on page boundary.
5915 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5916 */
5917 if (spanned_pages > present_pages + (present_pages >> 4) &&
5918 IS_ENABLED(CONFIG_SPARSEMEM))
5919 pages = present_pages;
5920
5921 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5922 }
5923
5924 /*
5925 * Set up the zone data structures:
5926 * - mark all pages reserved
5927 * - mark all memory queues empty
5928 * - clear the memory bitmaps
5929 *
5930 * NOTE: pgdat should get zeroed by caller.
5931 */
5932 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5933 {
5934 enum zone_type j;
5935 int nid = pgdat->node_id;
5936 int ret;
5937
5938 pgdat_resize_init(pgdat);
5939 #ifdef CONFIG_NUMA_BALANCING
5940 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5941 pgdat->numabalancing_migrate_nr_pages = 0;
5942 pgdat->numabalancing_migrate_next_window = jiffies;
5943 #endif
5944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945 spin_lock_init(&pgdat->split_queue_lock);
5946 INIT_LIST_HEAD(&pgdat->split_queue);
5947 pgdat->split_queue_len = 0;
5948 #endif
5949 init_waitqueue_head(&pgdat->kswapd_wait);
5950 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5951 #ifdef CONFIG_COMPACTION
5952 init_waitqueue_head(&pgdat->kcompactd_wait);
5953 #endif
5954 pgdat_page_ext_init(pgdat);
5955
5956 for (j = 0; j < MAX_NR_ZONES; j++) {
5957 struct zone *zone = pgdat->node_zones + j;
5958 unsigned long size, realsize, freesize, memmap_pages;
5959 unsigned long zone_start_pfn = zone->zone_start_pfn;
5960
5961 size = zone->spanned_pages;
5962 realsize = freesize = zone->present_pages;
5963
5964 /*
5965 * Adjust freesize so that it accounts for how much memory
5966 * is used by this zone for memmap. This affects the watermark
5967 * and per-cpu initialisations
5968 */
5969 memmap_pages = calc_memmap_size(size, realsize);
5970 if (!is_highmem_idx(j)) {
5971 if (freesize >= memmap_pages) {
5972 freesize -= memmap_pages;
5973 if (memmap_pages)
5974 printk(KERN_DEBUG
5975 " %s zone: %lu pages used for memmap\n",
5976 zone_names[j], memmap_pages);
5977 } else
5978 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5979 zone_names[j], memmap_pages, freesize);
5980 }
5981
5982 /* Account for reserved pages */
5983 if (j == 0 && freesize > dma_reserve) {
5984 freesize -= dma_reserve;
5985 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5986 zone_names[0], dma_reserve);
5987 }
5988
5989 if (!is_highmem_idx(j))
5990 nr_kernel_pages += freesize;
5991 /* Charge for highmem memmap if there are enough kernel pages */
5992 else if (nr_kernel_pages > memmap_pages * 2)
5993 nr_kernel_pages -= memmap_pages;
5994 nr_all_pages += freesize;
5995
5996 /*
5997 * Set an approximate value for lowmem here, it will be adjusted
5998 * when the bootmem allocator frees pages into the buddy system.
5999 * And all highmem pages will be managed by the buddy system.
6000 */
6001 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6002 #ifdef CONFIG_NUMA
6003 zone->node = nid;
6004 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
6005 / 100;
6006 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
6007 #endif
6008 zone->name = zone_names[j];
6009 spin_lock_init(&zone->lock);
6010 spin_lock_init(&zone->lru_lock);
6011 zone_seqlock_init(zone);
6012 zone->zone_pgdat = pgdat;
6013 zone_pcp_init(zone);
6014
6015 /* For bootup, initialized properly in watermark setup */
6016 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6017
6018 lruvec_init(&zone->lruvec);
6019 if (!size)
6020 continue;
6021
6022 set_pageblock_order();
6023 setup_usemap(pgdat, zone, zone_start_pfn, size);
6024 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6025 BUG_ON(ret);
6026 memmap_init(size, nid, j, zone_start_pfn);
6027 }
6028 }
6029
6030 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6031 {
6032 unsigned long __maybe_unused start = 0;
6033 unsigned long __maybe_unused offset = 0;
6034
6035 /* Skip empty nodes */
6036 if (!pgdat->node_spanned_pages)
6037 return;
6038
6039 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6040 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6041 offset = pgdat->node_start_pfn - start;
6042 /* ia64 gets its own node_mem_map, before this, without bootmem */
6043 if (!pgdat->node_mem_map) {
6044 unsigned long size, end;
6045 struct page *map;
6046
6047 /*
6048 * The zone's endpoints aren't required to be MAX_ORDER
6049 * aligned but the node_mem_map endpoints must be in order
6050 * for the buddy allocator to function correctly.
6051 */
6052 end = pgdat_end_pfn(pgdat);
6053 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6054 size = (end - start) * sizeof(struct page);
6055 map = alloc_remap(pgdat->node_id, size);
6056 if (!map)
6057 map = memblock_virt_alloc_node_nopanic(size,
6058 pgdat->node_id);
6059 pgdat->node_mem_map = map + offset;
6060 }
6061 #ifndef CONFIG_NEED_MULTIPLE_NODES
6062 /*
6063 * With no DISCONTIG, the global mem_map is just set as node 0's
6064 */
6065 if (pgdat == NODE_DATA(0)) {
6066 mem_map = NODE_DATA(0)->node_mem_map;
6067 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6068 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6069 mem_map -= offset;
6070 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6071 }
6072 #endif
6073 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6074 }
6075
6076 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6077 unsigned long node_start_pfn, unsigned long *zholes_size)
6078 {
6079 pg_data_t *pgdat = NODE_DATA(nid);
6080 unsigned long start_pfn = 0;
6081 unsigned long end_pfn = 0;
6082
6083 /* pg_data_t should be reset to zero when it's allocated */
6084 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6085
6086 reset_deferred_meminit(pgdat);
6087 pgdat->node_id = nid;
6088 pgdat->node_start_pfn = node_start_pfn;
6089 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6090 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6091 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6092 (u64)start_pfn << PAGE_SHIFT,
6093 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6094 #else
6095 start_pfn = node_start_pfn;
6096 #endif
6097 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6098 zones_size, zholes_size);
6099
6100 alloc_node_mem_map(pgdat);
6101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6102 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6103 nid, (unsigned long)pgdat,
6104 (unsigned long)pgdat->node_mem_map);
6105 #endif
6106
6107 free_area_init_core(pgdat);
6108 }
6109
6110 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6111
6112 #if MAX_NUMNODES > 1
6113 /*
6114 * Figure out the number of possible node ids.
6115 */
6116 void __init setup_nr_node_ids(void)
6117 {
6118 unsigned int highest;
6119
6120 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6121 nr_node_ids = highest + 1;
6122 }
6123 #endif
6124
6125 /**
6126 * node_map_pfn_alignment - determine the maximum internode alignment
6127 *
6128 * This function should be called after node map is populated and sorted.
6129 * It calculates the maximum power of two alignment which can distinguish
6130 * all the nodes.
6131 *
6132 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6133 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6134 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6135 * shifted, 1GiB is enough and this function will indicate so.
6136 *
6137 * This is used to test whether pfn -> nid mapping of the chosen memory
6138 * model has fine enough granularity to avoid incorrect mapping for the
6139 * populated node map.
6140 *
6141 * Returns the determined alignment in pfn's. 0 if there is no alignment
6142 * requirement (single node).
6143 */
6144 unsigned long __init node_map_pfn_alignment(void)
6145 {
6146 unsigned long accl_mask = 0, last_end = 0;
6147 unsigned long start, end, mask;
6148 int last_nid = -1;
6149 int i, nid;
6150
6151 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6152 if (!start || last_nid < 0 || last_nid == nid) {
6153 last_nid = nid;
6154 last_end = end;
6155 continue;
6156 }
6157
6158 /*
6159 * Start with a mask granular enough to pin-point to the
6160 * start pfn and tick off bits one-by-one until it becomes
6161 * too coarse to separate the current node from the last.
6162 */
6163 mask = ~((1 << __ffs(start)) - 1);
6164 while (mask && last_end <= (start & (mask << 1)))
6165 mask <<= 1;
6166
6167 /* accumulate all internode masks */
6168 accl_mask |= mask;
6169 }
6170
6171 /* convert mask to number of pages */
6172 return ~accl_mask + 1;
6173 }
6174
6175 /* Find the lowest pfn for a node */
6176 static unsigned long __init find_min_pfn_for_node(int nid)
6177 {
6178 unsigned long min_pfn = ULONG_MAX;
6179 unsigned long start_pfn;
6180 int i;
6181
6182 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6183 min_pfn = min(min_pfn, start_pfn);
6184
6185 if (min_pfn == ULONG_MAX) {
6186 pr_warn("Could not find start_pfn for node %d\n", nid);
6187 return 0;
6188 }
6189
6190 return min_pfn;
6191 }
6192
6193 /**
6194 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6195 *
6196 * It returns the minimum PFN based on information provided via
6197 * memblock_set_node().
6198 */
6199 unsigned long __init find_min_pfn_with_active_regions(void)
6200 {
6201 return find_min_pfn_for_node(MAX_NUMNODES);
6202 }
6203
6204 /*
6205 * early_calculate_totalpages()
6206 * Sum pages in active regions for movable zone.
6207 * Populate N_MEMORY for calculating usable_nodes.
6208 */
6209 static unsigned long __init early_calculate_totalpages(void)
6210 {
6211 unsigned long totalpages = 0;
6212 unsigned long start_pfn, end_pfn;
6213 int i, nid;
6214
6215 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6216 unsigned long pages = end_pfn - start_pfn;
6217
6218 totalpages += pages;
6219 if (pages)
6220 node_set_state(nid, N_MEMORY);
6221 }
6222 return totalpages;
6223 }
6224
6225 /*
6226 * Find the PFN the Movable zone begins in each node. Kernel memory
6227 * is spread evenly between nodes as long as the nodes have enough
6228 * memory. When they don't, some nodes will have more kernelcore than
6229 * others
6230 */
6231 static void __init find_zone_movable_pfns_for_nodes(void)
6232 {
6233 int i, nid;
6234 unsigned long usable_startpfn;
6235 unsigned long kernelcore_node, kernelcore_remaining;
6236 /* save the state before borrow the nodemask */
6237 nodemask_t saved_node_state = node_states[N_MEMORY];
6238 unsigned long totalpages = early_calculate_totalpages();
6239 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6240 struct memblock_region *r;
6241
6242 /* Need to find movable_zone earlier when movable_node is specified. */
6243 find_usable_zone_for_movable();
6244
6245 /*
6246 * If movable_node is specified, ignore kernelcore and movablecore
6247 * options.
6248 */
6249 if (movable_node_is_enabled()) {
6250 for_each_memblock(memory, r) {
6251 if (!memblock_is_hotpluggable(r))
6252 continue;
6253
6254 nid = r->nid;
6255
6256 usable_startpfn = PFN_DOWN(r->base);
6257 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6258 min(usable_startpfn, zone_movable_pfn[nid]) :
6259 usable_startpfn;
6260 }
6261
6262 goto out2;
6263 }
6264
6265 /*
6266 * If kernelcore=mirror is specified, ignore movablecore option
6267 */
6268 if (mirrored_kernelcore) {
6269 bool mem_below_4gb_not_mirrored = false;
6270
6271 for_each_memblock(memory, r) {
6272 if (memblock_is_mirror(r))
6273 continue;
6274
6275 nid = r->nid;
6276
6277 usable_startpfn = memblock_region_memory_base_pfn(r);
6278
6279 if (usable_startpfn < 0x100000) {
6280 mem_below_4gb_not_mirrored = true;
6281 continue;
6282 }
6283
6284 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6285 min(usable_startpfn, zone_movable_pfn[nid]) :
6286 usable_startpfn;
6287 }
6288
6289 if (mem_below_4gb_not_mirrored)
6290 pr_warn("This configuration results in unmirrored kernel memory.");
6291
6292 goto out2;
6293 }
6294
6295 /*
6296 * If movablecore=nn[KMG] was specified, calculate what size of
6297 * kernelcore that corresponds so that memory usable for
6298 * any allocation type is evenly spread. If both kernelcore
6299 * and movablecore are specified, then the value of kernelcore
6300 * will be used for required_kernelcore if it's greater than
6301 * what movablecore would have allowed.
6302 */
6303 if (required_movablecore) {
6304 unsigned long corepages;
6305
6306 /*
6307 * Round-up so that ZONE_MOVABLE is at least as large as what
6308 * was requested by the user
6309 */
6310 required_movablecore =
6311 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6312 required_movablecore = min(totalpages, required_movablecore);
6313 corepages = totalpages - required_movablecore;
6314
6315 required_kernelcore = max(required_kernelcore, corepages);
6316 }
6317
6318 /*
6319 * If kernelcore was not specified or kernelcore size is larger
6320 * than totalpages, there is no ZONE_MOVABLE.
6321 */
6322 if (!required_kernelcore || required_kernelcore >= totalpages)
6323 goto out;
6324
6325 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6326 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6327
6328 restart:
6329 /* Spread kernelcore memory as evenly as possible throughout nodes */
6330 kernelcore_node = required_kernelcore / usable_nodes;
6331 for_each_node_state(nid, N_MEMORY) {
6332 unsigned long start_pfn, end_pfn;
6333
6334 /*
6335 * Recalculate kernelcore_node if the division per node
6336 * now exceeds what is necessary to satisfy the requested
6337 * amount of memory for the kernel
6338 */
6339 if (required_kernelcore < kernelcore_node)
6340 kernelcore_node = required_kernelcore / usable_nodes;
6341
6342 /*
6343 * As the map is walked, we track how much memory is usable
6344 * by the kernel using kernelcore_remaining. When it is
6345 * 0, the rest of the node is usable by ZONE_MOVABLE
6346 */
6347 kernelcore_remaining = kernelcore_node;
6348
6349 /* Go through each range of PFNs within this node */
6350 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6351 unsigned long size_pages;
6352
6353 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6354 if (start_pfn >= end_pfn)
6355 continue;
6356
6357 /* Account for what is only usable for kernelcore */
6358 if (start_pfn < usable_startpfn) {
6359 unsigned long kernel_pages;
6360 kernel_pages = min(end_pfn, usable_startpfn)
6361 - start_pfn;
6362
6363 kernelcore_remaining -= min(kernel_pages,
6364 kernelcore_remaining);
6365 required_kernelcore -= min(kernel_pages,
6366 required_kernelcore);
6367
6368 /* Continue if range is now fully accounted */
6369 if (end_pfn <= usable_startpfn) {
6370
6371 /*
6372 * Push zone_movable_pfn to the end so
6373 * that if we have to rebalance
6374 * kernelcore across nodes, we will
6375 * not double account here
6376 */
6377 zone_movable_pfn[nid] = end_pfn;
6378 continue;
6379 }
6380 start_pfn = usable_startpfn;
6381 }
6382
6383 /*
6384 * The usable PFN range for ZONE_MOVABLE is from
6385 * start_pfn->end_pfn. Calculate size_pages as the
6386 * number of pages used as kernelcore
6387 */
6388 size_pages = end_pfn - start_pfn;
6389 if (size_pages > kernelcore_remaining)
6390 size_pages = kernelcore_remaining;
6391 zone_movable_pfn[nid] = start_pfn + size_pages;
6392
6393 /*
6394 * Some kernelcore has been met, update counts and
6395 * break if the kernelcore for this node has been
6396 * satisfied
6397 */
6398 required_kernelcore -= min(required_kernelcore,
6399 size_pages);
6400 kernelcore_remaining -= size_pages;
6401 if (!kernelcore_remaining)
6402 break;
6403 }
6404 }
6405
6406 /*
6407 * If there is still required_kernelcore, we do another pass with one
6408 * less node in the count. This will push zone_movable_pfn[nid] further
6409 * along on the nodes that still have memory until kernelcore is
6410 * satisfied
6411 */
6412 usable_nodes--;
6413 if (usable_nodes && required_kernelcore > usable_nodes)
6414 goto restart;
6415
6416 out2:
6417 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6418 for (nid = 0; nid < MAX_NUMNODES; nid++)
6419 zone_movable_pfn[nid] =
6420 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6421
6422 out:
6423 /* restore the node_state */
6424 node_states[N_MEMORY] = saved_node_state;
6425 }
6426
6427 /* Any regular or high memory on that node ? */
6428 static void check_for_memory(pg_data_t *pgdat, int nid)
6429 {
6430 enum zone_type zone_type;
6431
6432 if (N_MEMORY == N_NORMAL_MEMORY)
6433 return;
6434
6435 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6436 struct zone *zone = &pgdat->node_zones[zone_type];
6437 if (populated_zone(zone)) {
6438 node_set_state(nid, N_HIGH_MEMORY);
6439 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6440 zone_type <= ZONE_NORMAL)
6441 node_set_state(nid, N_NORMAL_MEMORY);
6442 break;
6443 }
6444 }
6445 }
6446
6447 /**
6448 * free_area_init_nodes - Initialise all pg_data_t and zone data
6449 * @max_zone_pfn: an array of max PFNs for each zone
6450 *
6451 * This will call free_area_init_node() for each active node in the system.
6452 * Using the page ranges provided by memblock_set_node(), the size of each
6453 * zone in each node and their holes is calculated. If the maximum PFN
6454 * between two adjacent zones match, it is assumed that the zone is empty.
6455 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6456 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6457 * starts where the previous one ended. For example, ZONE_DMA32 starts
6458 * at arch_max_dma_pfn.
6459 */
6460 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6461 {
6462 unsigned long start_pfn, end_pfn;
6463 int i, nid;
6464
6465 /* Record where the zone boundaries are */
6466 memset(arch_zone_lowest_possible_pfn, 0,
6467 sizeof(arch_zone_lowest_possible_pfn));
6468 memset(arch_zone_highest_possible_pfn, 0,
6469 sizeof(arch_zone_highest_possible_pfn));
6470 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6471 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6472 for (i = 1; i < MAX_NR_ZONES; i++) {
6473 if (i == ZONE_MOVABLE)
6474 continue;
6475 arch_zone_lowest_possible_pfn[i] =
6476 arch_zone_highest_possible_pfn[i-1];
6477 arch_zone_highest_possible_pfn[i] =
6478 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6479 }
6480 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6481 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6482
6483 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6484 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6485 find_zone_movable_pfns_for_nodes();
6486
6487 /* Print out the zone ranges */
6488 pr_info("Zone ranges:\n");
6489 for (i = 0; i < MAX_NR_ZONES; i++) {
6490 if (i == ZONE_MOVABLE)
6491 continue;
6492 pr_info(" %-8s ", zone_names[i]);
6493 if (arch_zone_lowest_possible_pfn[i] ==
6494 arch_zone_highest_possible_pfn[i])
6495 pr_cont("empty\n");
6496 else
6497 pr_cont("[mem %#018Lx-%#018Lx]\n",
6498 (u64)arch_zone_lowest_possible_pfn[i]
6499 << PAGE_SHIFT,
6500 ((u64)arch_zone_highest_possible_pfn[i]
6501 << PAGE_SHIFT) - 1);
6502 }
6503
6504 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6505 pr_info("Movable zone start for each node\n");
6506 for (i = 0; i < MAX_NUMNODES; i++) {
6507 if (zone_movable_pfn[i])
6508 pr_info(" Node %d: %#018Lx\n", i,
6509 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6510 }
6511
6512 /* Print out the early node map */
6513 pr_info("Early memory node ranges\n");
6514 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6515 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6516 (u64)start_pfn << PAGE_SHIFT,
6517 ((u64)end_pfn << PAGE_SHIFT) - 1);
6518
6519 /* Initialise every node */
6520 mminit_verify_pageflags_layout();
6521 setup_nr_node_ids();
6522 for_each_online_node(nid) {
6523 pg_data_t *pgdat = NODE_DATA(nid);
6524 free_area_init_node(nid, NULL,
6525 find_min_pfn_for_node(nid), NULL);
6526
6527 /* Any memory on that node */
6528 if (pgdat->node_present_pages)
6529 node_set_state(nid, N_MEMORY);
6530 check_for_memory(pgdat, nid);
6531 }
6532 }
6533
6534 static int __init cmdline_parse_core(char *p, unsigned long *core)
6535 {
6536 unsigned long long coremem;
6537 if (!p)
6538 return -EINVAL;
6539
6540 coremem = memparse(p, &p);
6541 *core = coremem >> PAGE_SHIFT;
6542
6543 /* Paranoid check that UL is enough for the coremem value */
6544 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6545
6546 return 0;
6547 }
6548
6549 /*
6550 * kernelcore=size sets the amount of memory for use for allocations that
6551 * cannot be reclaimed or migrated.
6552 */
6553 static int __init cmdline_parse_kernelcore(char *p)
6554 {
6555 /* parse kernelcore=mirror */
6556 if (parse_option_str(p, "mirror")) {
6557 mirrored_kernelcore = true;
6558 return 0;
6559 }
6560
6561 return cmdline_parse_core(p, &required_kernelcore);
6562 }
6563
6564 /*
6565 * movablecore=size sets the amount of memory for use for allocations that
6566 * can be reclaimed or migrated.
6567 */
6568 static int __init cmdline_parse_movablecore(char *p)
6569 {
6570 return cmdline_parse_core(p, &required_movablecore);
6571 }
6572
6573 early_param("kernelcore", cmdline_parse_kernelcore);
6574 early_param("movablecore", cmdline_parse_movablecore);
6575
6576 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6577
6578 void adjust_managed_page_count(struct page *page, long count)
6579 {
6580 spin_lock(&managed_page_count_lock);
6581 page_zone(page)->managed_pages += count;
6582 totalram_pages += count;
6583 #ifdef CONFIG_HIGHMEM
6584 if (PageHighMem(page))
6585 totalhigh_pages += count;
6586 #endif
6587 spin_unlock(&managed_page_count_lock);
6588 }
6589 EXPORT_SYMBOL(adjust_managed_page_count);
6590
6591 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6592 {
6593 void *pos;
6594 unsigned long pages = 0;
6595
6596 start = (void *)PAGE_ALIGN((unsigned long)start);
6597 end = (void *)((unsigned long)end & PAGE_MASK);
6598 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6599 if ((unsigned int)poison <= 0xFF)
6600 memset(pos, poison, PAGE_SIZE);
6601 free_reserved_page(virt_to_page(pos));
6602 }
6603
6604 if (pages && s)
6605 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6606 s, pages << (PAGE_SHIFT - 10), start, end);
6607
6608 return pages;
6609 }
6610 EXPORT_SYMBOL(free_reserved_area);
6611
6612 #ifdef CONFIG_HIGHMEM
6613 void free_highmem_page(struct page *page)
6614 {
6615 __free_reserved_page(page);
6616 totalram_pages++;
6617 page_zone(page)->managed_pages++;
6618 totalhigh_pages++;
6619 }
6620 #endif
6621
6622
6623 void __init mem_init_print_info(const char *str)
6624 {
6625 unsigned long physpages, codesize, datasize, rosize, bss_size;
6626 unsigned long init_code_size, init_data_size;
6627
6628 physpages = get_num_physpages();
6629 codesize = _etext - _stext;
6630 datasize = _edata - _sdata;
6631 rosize = __end_rodata - __start_rodata;
6632 bss_size = __bss_stop - __bss_start;
6633 init_data_size = __init_end - __init_begin;
6634 init_code_size = _einittext - _sinittext;
6635
6636 /*
6637 * Detect special cases and adjust section sizes accordingly:
6638 * 1) .init.* may be embedded into .data sections
6639 * 2) .init.text.* may be out of [__init_begin, __init_end],
6640 * please refer to arch/tile/kernel/vmlinux.lds.S.
6641 * 3) .rodata.* may be embedded into .text or .data sections.
6642 */
6643 #define adj_init_size(start, end, size, pos, adj) \
6644 do { \
6645 if (start <= pos && pos < end && size > adj) \
6646 size -= adj; \
6647 } while (0)
6648
6649 adj_init_size(__init_begin, __init_end, init_data_size,
6650 _sinittext, init_code_size);
6651 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6652 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6653 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6654 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6655
6656 #undef adj_init_size
6657
6658 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6659 #ifdef CONFIG_HIGHMEM
6660 ", %luK highmem"
6661 #endif
6662 "%s%s)\n",
6663 nr_free_pages() << (PAGE_SHIFT - 10),
6664 physpages << (PAGE_SHIFT - 10),
6665 codesize >> 10, datasize >> 10, rosize >> 10,
6666 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6667 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6668 totalcma_pages << (PAGE_SHIFT - 10),
6669 #ifdef CONFIG_HIGHMEM
6670 totalhigh_pages << (PAGE_SHIFT - 10),
6671 #endif
6672 str ? ", " : "", str ? str : "");
6673 }
6674
6675 /**
6676 * set_dma_reserve - set the specified number of pages reserved in the first zone
6677 * @new_dma_reserve: The number of pages to mark reserved
6678 *
6679 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6680 * In the DMA zone, a significant percentage may be consumed by kernel image
6681 * and other unfreeable allocations which can skew the watermarks badly. This
6682 * function may optionally be used to account for unfreeable pages in the
6683 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6684 * smaller per-cpu batchsize.
6685 */
6686 void __init set_dma_reserve(unsigned long new_dma_reserve)
6687 {
6688 dma_reserve = new_dma_reserve;
6689 }
6690
6691 void __init free_area_init(unsigned long *zones_size)
6692 {
6693 free_area_init_node(0, zones_size,
6694 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6695 }
6696
6697 static int page_alloc_cpu_notify(struct notifier_block *self,
6698 unsigned long action, void *hcpu)
6699 {
6700 int cpu = (unsigned long)hcpu;
6701
6702 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6703 lru_add_drain_cpu(cpu);
6704 drain_pages(cpu);
6705
6706 /*
6707 * Spill the event counters of the dead processor
6708 * into the current processors event counters.
6709 * This artificially elevates the count of the current
6710 * processor.
6711 */
6712 vm_events_fold_cpu(cpu);
6713
6714 /*
6715 * Zero the differential counters of the dead processor
6716 * so that the vm statistics are consistent.
6717 *
6718 * This is only okay since the processor is dead and cannot
6719 * race with what we are doing.
6720 */
6721 cpu_vm_stats_fold(cpu);
6722 }
6723 return NOTIFY_OK;
6724 }
6725
6726 void __init page_alloc_init(void)
6727 {
6728 hotcpu_notifier(page_alloc_cpu_notify, 0);
6729 }
6730
6731 /*
6732 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6733 * or min_free_kbytes changes.
6734 */
6735 static void calculate_totalreserve_pages(void)
6736 {
6737 struct pglist_data *pgdat;
6738 unsigned long reserve_pages = 0;
6739 enum zone_type i, j;
6740
6741 for_each_online_pgdat(pgdat) {
6742 for (i = 0; i < MAX_NR_ZONES; i++) {
6743 struct zone *zone = pgdat->node_zones + i;
6744 long max = 0;
6745
6746 /* Find valid and maximum lowmem_reserve in the zone */
6747 for (j = i; j < MAX_NR_ZONES; j++) {
6748 if (zone->lowmem_reserve[j] > max)
6749 max = zone->lowmem_reserve[j];
6750 }
6751
6752 /* we treat the high watermark as reserved pages. */
6753 max += high_wmark_pages(zone);
6754
6755 if (max > zone->managed_pages)
6756 max = zone->managed_pages;
6757
6758 zone->totalreserve_pages = max;
6759
6760 reserve_pages += max;
6761 }
6762 }
6763 totalreserve_pages = reserve_pages;
6764 }
6765
6766 /*
6767 * setup_per_zone_lowmem_reserve - called whenever
6768 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6769 * has a correct pages reserved value, so an adequate number of
6770 * pages are left in the zone after a successful __alloc_pages().
6771 */
6772 static void setup_per_zone_lowmem_reserve(void)
6773 {
6774 struct pglist_data *pgdat;
6775 enum zone_type j, idx;
6776
6777 for_each_online_pgdat(pgdat) {
6778 for (j = 0; j < MAX_NR_ZONES; j++) {
6779 struct zone *zone = pgdat->node_zones + j;
6780 unsigned long managed_pages = zone->managed_pages;
6781
6782 zone->lowmem_reserve[j] = 0;
6783
6784 idx = j;
6785 while (idx) {
6786 struct zone *lower_zone;
6787
6788 idx--;
6789
6790 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6791 sysctl_lowmem_reserve_ratio[idx] = 1;
6792
6793 lower_zone = pgdat->node_zones + idx;
6794 lower_zone->lowmem_reserve[j] = managed_pages /
6795 sysctl_lowmem_reserve_ratio[idx];
6796 managed_pages += lower_zone->managed_pages;
6797 }
6798 }
6799 }
6800
6801 /* update totalreserve_pages */
6802 calculate_totalreserve_pages();
6803 }
6804
6805 static void __setup_per_zone_wmarks(void)
6806 {
6807 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6808 unsigned long lowmem_pages = 0;
6809 struct zone *zone;
6810 unsigned long flags;
6811
6812 /* Calculate total number of !ZONE_HIGHMEM pages */
6813 for_each_zone(zone) {
6814 if (!is_highmem(zone))
6815 lowmem_pages += zone->managed_pages;
6816 }
6817
6818 for_each_zone(zone) {
6819 u64 tmp;
6820
6821 spin_lock_irqsave(&zone->lock, flags);
6822 tmp = (u64)pages_min * zone->managed_pages;
6823 do_div(tmp, lowmem_pages);
6824 if (is_highmem(zone)) {
6825 /*
6826 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6827 * need highmem pages, so cap pages_min to a small
6828 * value here.
6829 *
6830 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6831 * deltas control asynch page reclaim, and so should
6832 * not be capped for highmem.
6833 */
6834 unsigned long min_pages;
6835
6836 min_pages = zone->managed_pages / 1024;
6837 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6838 zone->watermark[WMARK_MIN] = min_pages;
6839 } else {
6840 /*
6841 * If it's a lowmem zone, reserve a number of pages
6842 * proportionate to the zone's size.
6843 */
6844 zone->watermark[WMARK_MIN] = tmp;
6845 }
6846
6847 /*
6848 * Set the kswapd watermarks distance according to the
6849 * scale factor in proportion to available memory, but
6850 * ensure a minimum size on small systems.
6851 */
6852 tmp = max_t(u64, tmp >> 2,
6853 mult_frac(zone->managed_pages,
6854 watermark_scale_factor, 10000));
6855
6856 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6857 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6858
6859 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6860 high_wmark_pages(zone) - low_wmark_pages(zone) -
6861 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6862
6863 spin_unlock_irqrestore(&zone->lock, flags);
6864 }
6865
6866 /* update totalreserve_pages */
6867 calculate_totalreserve_pages();
6868 }
6869
6870 /**
6871 * setup_per_zone_wmarks - called when min_free_kbytes changes
6872 * or when memory is hot-{added|removed}
6873 *
6874 * Ensures that the watermark[min,low,high] values for each zone are set
6875 * correctly with respect to min_free_kbytes.
6876 */
6877 void setup_per_zone_wmarks(void)
6878 {
6879 mutex_lock(&zonelists_mutex);
6880 __setup_per_zone_wmarks();
6881 mutex_unlock(&zonelists_mutex);
6882 }
6883
6884 /*
6885 * Initialise min_free_kbytes.
6886 *
6887 * For small machines we want it small (128k min). For large machines
6888 * we want it large (64MB max). But it is not linear, because network
6889 * bandwidth does not increase linearly with machine size. We use
6890 *
6891 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6892 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6893 *
6894 * which yields
6895 *
6896 * 16MB: 512k
6897 * 32MB: 724k
6898 * 64MB: 1024k
6899 * 128MB: 1448k
6900 * 256MB: 2048k
6901 * 512MB: 2896k
6902 * 1024MB: 4096k
6903 * 2048MB: 5792k
6904 * 4096MB: 8192k
6905 * 8192MB: 11584k
6906 * 16384MB: 16384k
6907 */
6908 int __meminit init_per_zone_wmark_min(void)
6909 {
6910 unsigned long lowmem_kbytes;
6911 int new_min_free_kbytes;
6912
6913 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6914 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6915
6916 if (new_min_free_kbytes > user_min_free_kbytes) {
6917 min_free_kbytes = new_min_free_kbytes;
6918 if (min_free_kbytes < 128)
6919 min_free_kbytes = 128;
6920 if (min_free_kbytes > 65536)
6921 min_free_kbytes = 65536;
6922 } else {
6923 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6924 new_min_free_kbytes, user_min_free_kbytes);
6925 }
6926 setup_per_zone_wmarks();
6927 refresh_zone_stat_thresholds();
6928 setup_per_zone_lowmem_reserve();
6929 return 0;
6930 }
6931 core_initcall(init_per_zone_wmark_min)
6932
6933 /*
6934 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6935 * that we can call two helper functions whenever min_free_kbytes
6936 * changes.
6937 */
6938 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6939 void __user *buffer, size_t *length, loff_t *ppos)
6940 {
6941 int rc;
6942
6943 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6944 if (rc)
6945 return rc;
6946
6947 if (write) {
6948 user_min_free_kbytes = min_free_kbytes;
6949 setup_per_zone_wmarks();
6950 }
6951 return 0;
6952 }
6953
6954 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6955 void __user *buffer, size_t *length, loff_t *ppos)
6956 {
6957 int rc;
6958
6959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6960 if (rc)
6961 return rc;
6962
6963 if (write)
6964 setup_per_zone_wmarks();
6965
6966 return 0;
6967 }
6968
6969 #ifdef CONFIG_NUMA
6970 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6971 void __user *buffer, size_t *length, loff_t *ppos)
6972 {
6973 struct zone *zone;
6974 int rc;
6975
6976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6977 if (rc)
6978 return rc;
6979
6980 for_each_zone(zone)
6981 zone->min_unmapped_pages = (zone->managed_pages *
6982 sysctl_min_unmapped_ratio) / 100;
6983 return 0;
6984 }
6985
6986 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6987 void __user *buffer, size_t *length, loff_t *ppos)
6988 {
6989 struct zone *zone;
6990 int rc;
6991
6992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6993 if (rc)
6994 return rc;
6995
6996 for_each_zone(zone)
6997 zone->min_slab_pages = (zone->managed_pages *
6998 sysctl_min_slab_ratio) / 100;
6999 return 0;
7000 }
7001 #endif
7002
7003 /*
7004 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7005 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7006 * whenever sysctl_lowmem_reserve_ratio changes.
7007 *
7008 * The reserve ratio obviously has absolutely no relation with the
7009 * minimum watermarks. The lowmem reserve ratio can only make sense
7010 * if in function of the boot time zone sizes.
7011 */
7012 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7013 void __user *buffer, size_t *length, loff_t *ppos)
7014 {
7015 proc_dointvec_minmax(table, write, buffer, length, ppos);
7016 setup_per_zone_lowmem_reserve();
7017 return 0;
7018 }
7019
7020 /*
7021 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7022 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7023 * pagelist can have before it gets flushed back to buddy allocator.
7024 */
7025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7026 void __user *buffer, size_t *length, loff_t *ppos)
7027 {
7028 struct zone *zone;
7029 int old_percpu_pagelist_fraction;
7030 int ret;
7031
7032 mutex_lock(&pcp_batch_high_lock);
7033 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7034
7035 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7036 if (!write || ret < 0)
7037 goto out;
7038
7039 /* Sanity checking to avoid pcp imbalance */
7040 if (percpu_pagelist_fraction &&
7041 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7042 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7043 ret = -EINVAL;
7044 goto out;
7045 }
7046
7047 /* No change? */
7048 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7049 goto out;
7050
7051 for_each_populated_zone(zone) {
7052 unsigned int cpu;
7053
7054 for_each_possible_cpu(cpu)
7055 pageset_set_high_and_batch(zone,
7056 per_cpu_ptr(zone->pageset, cpu));
7057 }
7058 out:
7059 mutex_unlock(&pcp_batch_high_lock);
7060 return ret;
7061 }
7062
7063 #ifdef CONFIG_NUMA
7064 int hashdist = HASHDIST_DEFAULT;
7065
7066 static int __init set_hashdist(char *str)
7067 {
7068 if (!str)
7069 return 0;
7070 hashdist = simple_strtoul(str, &str, 0);
7071 return 1;
7072 }
7073 __setup("hashdist=", set_hashdist);
7074 #endif
7075
7076 /*
7077 * allocate a large system hash table from bootmem
7078 * - it is assumed that the hash table must contain an exact power-of-2
7079 * quantity of entries
7080 * - limit is the number of hash buckets, not the total allocation size
7081 */
7082 void *__init alloc_large_system_hash(const char *tablename,
7083 unsigned long bucketsize,
7084 unsigned long numentries,
7085 int scale,
7086 int flags,
7087 unsigned int *_hash_shift,
7088 unsigned int *_hash_mask,
7089 unsigned long low_limit,
7090 unsigned long high_limit)
7091 {
7092 unsigned long long max = high_limit;
7093 unsigned long log2qty, size;
7094 void *table = NULL;
7095
7096 /* allow the kernel cmdline to have a say */
7097 if (!numentries) {
7098 /* round applicable memory size up to nearest megabyte */
7099 numentries = nr_kernel_pages;
7100
7101 /* It isn't necessary when PAGE_SIZE >= 1MB */
7102 if (PAGE_SHIFT < 20)
7103 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7104
7105 /* limit to 1 bucket per 2^scale bytes of low memory */
7106 if (scale > PAGE_SHIFT)
7107 numentries >>= (scale - PAGE_SHIFT);
7108 else
7109 numentries <<= (PAGE_SHIFT - scale);
7110
7111 /* Make sure we've got at least a 0-order allocation.. */
7112 if (unlikely(flags & HASH_SMALL)) {
7113 /* Makes no sense without HASH_EARLY */
7114 WARN_ON(!(flags & HASH_EARLY));
7115 if (!(numentries >> *_hash_shift)) {
7116 numentries = 1UL << *_hash_shift;
7117 BUG_ON(!numentries);
7118 }
7119 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7120 numentries = PAGE_SIZE / bucketsize;
7121 }
7122 numentries = roundup_pow_of_two(numentries);
7123
7124 /* limit allocation size to 1/16 total memory by default */
7125 if (max == 0) {
7126 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7127 do_div(max, bucketsize);
7128 }
7129 max = min(max, 0x80000000ULL);
7130
7131 if (numentries < low_limit)
7132 numentries = low_limit;
7133 if (numentries > max)
7134 numentries = max;
7135
7136 log2qty = ilog2(numentries);
7137
7138 do {
7139 size = bucketsize << log2qty;
7140 if (flags & HASH_EARLY)
7141 table = memblock_virt_alloc_nopanic(size, 0);
7142 else if (hashdist)
7143 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7144 else {
7145 /*
7146 * If bucketsize is not a power-of-two, we may free
7147 * some pages at the end of hash table which
7148 * alloc_pages_exact() automatically does
7149 */
7150 if (get_order(size) < MAX_ORDER) {
7151 table = alloc_pages_exact(size, GFP_ATOMIC);
7152 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7153 }
7154 }
7155 } while (!table && size > PAGE_SIZE && --log2qty);
7156
7157 if (!table)
7158 panic("Failed to allocate %s hash table\n", tablename);
7159
7160 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7161 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7162
7163 if (_hash_shift)
7164 *_hash_shift = log2qty;
7165 if (_hash_mask)
7166 *_hash_mask = (1 << log2qty) - 1;
7167
7168 return table;
7169 }
7170
7171 /*
7172 * This function checks whether pageblock includes unmovable pages or not.
7173 * If @count is not zero, it is okay to include less @count unmovable pages
7174 *
7175 * PageLRU check without isolation or lru_lock could race so that
7176 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7177 * expect this function should be exact.
7178 */
7179 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7180 bool skip_hwpoisoned_pages)
7181 {
7182 unsigned long pfn, iter, found;
7183 int mt;
7184
7185 /*
7186 * For avoiding noise data, lru_add_drain_all() should be called
7187 * If ZONE_MOVABLE, the zone never contains unmovable pages
7188 */
7189 if (zone_idx(zone) == ZONE_MOVABLE)
7190 return false;
7191 mt = get_pageblock_migratetype(page);
7192 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7193 return false;
7194
7195 pfn = page_to_pfn(page);
7196 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7197 unsigned long check = pfn + iter;
7198
7199 if (!pfn_valid_within(check))
7200 continue;
7201
7202 page = pfn_to_page(check);
7203
7204 /*
7205 * Hugepages are not in LRU lists, but they're movable.
7206 * We need not scan over tail pages bacause we don't
7207 * handle each tail page individually in migration.
7208 */
7209 if (PageHuge(page)) {
7210 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7211 continue;
7212 }
7213
7214 /*
7215 * We can't use page_count without pin a page
7216 * because another CPU can free compound page.
7217 * This check already skips compound tails of THP
7218 * because their page->_refcount is zero at all time.
7219 */
7220 if (!page_ref_count(page)) {
7221 if (PageBuddy(page))
7222 iter += (1 << page_order(page)) - 1;
7223 continue;
7224 }
7225
7226 /*
7227 * The HWPoisoned page may be not in buddy system, and
7228 * page_count() is not 0.
7229 */
7230 if (skip_hwpoisoned_pages && PageHWPoison(page))
7231 continue;
7232
7233 if (!PageLRU(page))
7234 found++;
7235 /*
7236 * If there are RECLAIMABLE pages, we need to check
7237 * it. But now, memory offline itself doesn't call
7238 * shrink_node_slabs() and it still to be fixed.
7239 */
7240 /*
7241 * If the page is not RAM, page_count()should be 0.
7242 * we don't need more check. This is an _used_ not-movable page.
7243 *
7244 * The problematic thing here is PG_reserved pages. PG_reserved
7245 * is set to both of a memory hole page and a _used_ kernel
7246 * page at boot.
7247 */
7248 if (found > count)
7249 return true;
7250 }
7251 return false;
7252 }
7253
7254 bool is_pageblock_removable_nolock(struct page *page)
7255 {
7256 struct zone *zone;
7257 unsigned long pfn;
7258
7259 /*
7260 * We have to be careful here because we are iterating over memory
7261 * sections which are not zone aware so we might end up outside of
7262 * the zone but still within the section.
7263 * We have to take care about the node as well. If the node is offline
7264 * its NODE_DATA will be NULL - see page_zone.
7265 */
7266 if (!node_online(page_to_nid(page)))
7267 return false;
7268
7269 zone = page_zone(page);
7270 pfn = page_to_pfn(page);
7271 if (!zone_spans_pfn(zone, pfn))
7272 return false;
7273
7274 return !has_unmovable_pages(zone, page, 0, true);
7275 }
7276
7277 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7278
7279 static unsigned long pfn_max_align_down(unsigned long pfn)
7280 {
7281 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7282 pageblock_nr_pages) - 1);
7283 }
7284
7285 static unsigned long pfn_max_align_up(unsigned long pfn)
7286 {
7287 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7288 pageblock_nr_pages));
7289 }
7290
7291 /* [start, end) must belong to a single zone. */
7292 static int __alloc_contig_migrate_range(struct compact_control *cc,
7293 unsigned long start, unsigned long end)
7294 {
7295 /* This function is based on compact_zone() from compaction.c. */
7296 unsigned long nr_reclaimed;
7297 unsigned long pfn = start;
7298 unsigned int tries = 0;
7299 int ret = 0;
7300
7301 migrate_prep();
7302
7303 while (pfn < end || !list_empty(&cc->migratepages)) {
7304 if (fatal_signal_pending(current)) {
7305 ret = -EINTR;
7306 break;
7307 }
7308
7309 if (list_empty(&cc->migratepages)) {
7310 cc->nr_migratepages = 0;
7311 pfn = isolate_migratepages_range(cc, pfn, end);
7312 if (!pfn) {
7313 ret = -EINTR;
7314 break;
7315 }
7316 tries = 0;
7317 } else if (++tries == 5) {
7318 ret = ret < 0 ? ret : -EBUSY;
7319 break;
7320 }
7321
7322 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7323 &cc->migratepages);
7324 cc->nr_migratepages -= nr_reclaimed;
7325
7326 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7327 NULL, 0, cc->mode, MR_CMA);
7328 }
7329 if (ret < 0) {
7330 putback_movable_pages(&cc->migratepages);
7331 return ret;
7332 }
7333 return 0;
7334 }
7335
7336 /**
7337 * alloc_contig_range() -- tries to allocate given range of pages
7338 * @start: start PFN to allocate
7339 * @end: one-past-the-last PFN to allocate
7340 * @migratetype: migratetype of the underlaying pageblocks (either
7341 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7342 * in range must have the same migratetype and it must
7343 * be either of the two.
7344 *
7345 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7346 * aligned, however it's the caller's responsibility to guarantee that
7347 * we are the only thread that changes migrate type of pageblocks the
7348 * pages fall in.
7349 *
7350 * The PFN range must belong to a single zone.
7351 *
7352 * Returns zero on success or negative error code. On success all
7353 * pages which PFN is in [start, end) are allocated for the caller and
7354 * need to be freed with free_contig_range().
7355 */
7356 int alloc_contig_range(unsigned long start, unsigned long end,
7357 unsigned migratetype)
7358 {
7359 unsigned long outer_start, outer_end;
7360 unsigned int order;
7361 int ret = 0;
7362
7363 struct compact_control cc = {
7364 .nr_migratepages = 0,
7365 .order = -1,
7366 .zone = page_zone(pfn_to_page(start)),
7367 .mode = MIGRATE_SYNC,
7368 .ignore_skip_hint = true,
7369 };
7370 INIT_LIST_HEAD(&cc.migratepages);
7371
7372 /*
7373 * What we do here is we mark all pageblocks in range as
7374 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7375 * have different sizes, and due to the way page allocator
7376 * work, we align the range to biggest of the two pages so
7377 * that page allocator won't try to merge buddies from
7378 * different pageblocks and change MIGRATE_ISOLATE to some
7379 * other migration type.
7380 *
7381 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7382 * migrate the pages from an unaligned range (ie. pages that
7383 * we are interested in). This will put all the pages in
7384 * range back to page allocator as MIGRATE_ISOLATE.
7385 *
7386 * When this is done, we take the pages in range from page
7387 * allocator removing them from the buddy system. This way
7388 * page allocator will never consider using them.
7389 *
7390 * This lets us mark the pageblocks back as
7391 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7392 * aligned range but not in the unaligned, original range are
7393 * put back to page allocator so that buddy can use them.
7394 */
7395
7396 ret = start_isolate_page_range(pfn_max_align_down(start),
7397 pfn_max_align_up(end), migratetype,
7398 false);
7399 if (ret)
7400 return ret;
7401
7402 /*
7403 * In case of -EBUSY, we'd like to know which page causes problem.
7404 * So, just fall through. We will check it in test_pages_isolated().
7405 */
7406 ret = __alloc_contig_migrate_range(&cc, start, end);
7407 if (ret && ret != -EBUSY)
7408 goto done;
7409
7410 /*
7411 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7412 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7413 * more, all pages in [start, end) are free in page allocator.
7414 * What we are going to do is to allocate all pages from
7415 * [start, end) (that is remove them from page allocator).
7416 *
7417 * The only problem is that pages at the beginning and at the
7418 * end of interesting range may be not aligned with pages that
7419 * page allocator holds, ie. they can be part of higher order
7420 * pages. Because of this, we reserve the bigger range and
7421 * once this is done free the pages we are not interested in.
7422 *
7423 * We don't have to hold zone->lock here because the pages are
7424 * isolated thus they won't get removed from buddy.
7425 */
7426
7427 lru_add_drain_all();
7428 drain_all_pages(cc.zone);
7429
7430 order = 0;
7431 outer_start = start;
7432 while (!PageBuddy(pfn_to_page(outer_start))) {
7433 if (++order >= MAX_ORDER) {
7434 outer_start = start;
7435 break;
7436 }
7437 outer_start &= ~0UL << order;
7438 }
7439
7440 if (outer_start != start) {
7441 order = page_order(pfn_to_page(outer_start));
7442
7443 /*
7444 * outer_start page could be small order buddy page and
7445 * it doesn't include start page. Adjust outer_start
7446 * in this case to report failed page properly
7447 * on tracepoint in test_pages_isolated()
7448 */
7449 if (outer_start + (1UL << order) <= start)
7450 outer_start = start;
7451 }
7452
7453 /* Make sure the range is really isolated. */
7454 if (test_pages_isolated(outer_start, end, false)) {
7455 pr_info("%s: [%lx, %lx) PFNs busy\n",
7456 __func__, outer_start, end);
7457 ret = -EBUSY;
7458 goto done;
7459 }
7460
7461 /* Grab isolated pages from freelists. */
7462 outer_end = isolate_freepages_range(&cc, outer_start, end);
7463 if (!outer_end) {
7464 ret = -EBUSY;
7465 goto done;
7466 }
7467
7468 /* Free head and tail (if any) */
7469 if (start != outer_start)
7470 free_contig_range(outer_start, start - outer_start);
7471 if (end != outer_end)
7472 free_contig_range(end, outer_end - end);
7473
7474 done:
7475 undo_isolate_page_range(pfn_max_align_down(start),
7476 pfn_max_align_up(end), migratetype);
7477 return ret;
7478 }
7479
7480 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7481 {
7482 unsigned int count = 0;
7483
7484 for (; nr_pages--; pfn++) {
7485 struct page *page = pfn_to_page(pfn);
7486
7487 count += page_count(page) != 1;
7488 __free_page(page);
7489 }
7490 WARN(count != 0, "%d pages are still in use!\n", count);
7491 }
7492 #endif
7493
7494 #ifdef CONFIG_MEMORY_HOTPLUG
7495 /*
7496 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7497 * page high values need to be recalulated.
7498 */
7499 void __meminit zone_pcp_update(struct zone *zone)
7500 {
7501 unsigned cpu;
7502 mutex_lock(&pcp_batch_high_lock);
7503 for_each_possible_cpu(cpu)
7504 pageset_set_high_and_batch(zone,
7505 per_cpu_ptr(zone->pageset, cpu));
7506 mutex_unlock(&pcp_batch_high_lock);
7507 }
7508 #endif
7509
7510 void zone_pcp_reset(struct zone *zone)
7511 {
7512 unsigned long flags;
7513 int cpu;
7514 struct per_cpu_pageset *pset;
7515
7516 /* avoid races with drain_pages() */
7517 local_irq_save(flags);
7518 if (zone->pageset != &boot_pageset) {
7519 for_each_online_cpu(cpu) {
7520 pset = per_cpu_ptr(zone->pageset, cpu);
7521 drain_zonestat(zone, pset);
7522 }
7523 free_percpu(zone->pageset);
7524 zone->pageset = &boot_pageset;
7525 }
7526 local_irq_restore(flags);
7527 }
7528
7529 #ifdef CONFIG_MEMORY_HOTREMOVE
7530 /*
7531 * All pages in the range must be in a single zone and isolated
7532 * before calling this.
7533 */
7534 void
7535 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7536 {
7537 struct page *page;
7538 struct zone *zone;
7539 unsigned int order, i;
7540 unsigned long pfn;
7541 unsigned long flags;
7542 /* find the first valid pfn */
7543 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7544 if (pfn_valid(pfn))
7545 break;
7546 if (pfn == end_pfn)
7547 return;
7548 zone = page_zone(pfn_to_page(pfn));
7549 spin_lock_irqsave(&zone->lock, flags);
7550 pfn = start_pfn;
7551 while (pfn < end_pfn) {
7552 if (!pfn_valid(pfn)) {
7553 pfn++;
7554 continue;
7555 }
7556 page = pfn_to_page(pfn);
7557 /*
7558 * The HWPoisoned page may be not in buddy system, and
7559 * page_count() is not 0.
7560 */
7561 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7562 pfn++;
7563 SetPageReserved(page);
7564 continue;
7565 }
7566
7567 BUG_ON(page_count(page));
7568 BUG_ON(!PageBuddy(page));
7569 order = page_order(page);
7570 #ifdef CONFIG_DEBUG_VM
7571 pr_info("remove from free list %lx %d %lx\n",
7572 pfn, 1 << order, end_pfn);
7573 #endif
7574 list_del(&page->lru);
7575 rmv_page_order(page);
7576 zone->free_area[order].nr_free--;
7577 for (i = 0; i < (1 << order); i++)
7578 SetPageReserved((page+i));
7579 pfn += (1 << order);
7580 }
7581 spin_unlock_irqrestore(&zone->lock, flags);
7582 }
7583 #endif
7584
7585 bool is_free_buddy_page(struct page *page)
7586 {
7587 struct zone *zone = page_zone(page);
7588 unsigned long pfn = page_to_pfn(page);
7589 unsigned long flags;
7590 unsigned int order;
7591
7592 spin_lock_irqsave(&zone->lock, flags);
7593 for (order = 0; order < MAX_ORDER; order++) {
7594 struct page *page_head = page - (pfn & ((1 << order) - 1));
7595
7596 if (PageBuddy(page_head) && page_order(page_head) >= order)
7597 break;
7598 }
7599 spin_unlock_irqrestore(&zone->lock, flags);
7600
7601 return order < MAX_ORDER;
7602 }
This page took 0.192237 seconds and 6 git commands to generate.