mmc: sdhci: clean up command error handling
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
80 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
81 #define PCPU_EMPTY_POP_PAGES_LOW 2
82 #define PCPU_EMPTY_POP_PAGES_HIGH 4
83
84 #ifdef CONFIG_SMP
85 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
86 #ifndef __addr_to_pcpu_ptr
87 #define __addr_to_pcpu_ptr(addr) \
88 (void __percpu *)((unsigned long)(addr) - \
89 (unsigned long)pcpu_base_addr + \
90 (unsigned long)__per_cpu_start)
91 #endif
92 #ifndef __pcpu_ptr_to_addr
93 #define __pcpu_ptr_to_addr(ptr) \
94 (void __force *)((unsigned long)(ptr) + \
95 (unsigned long)pcpu_base_addr - \
96 (unsigned long)__per_cpu_start)
97 #endif
98 #else /* CONFIG_SMP */
99 /* on UP, it's always identity mapped */
100 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
101 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
102 #endif /* CONFIG_SMP */
103
104 struct pcpu_chunk {
105 struct list_head list; /* linked to pcpu_slot lists */
106 int free_size; /* free bytes in the chunk */
107 int contig_hint; /* max contiguous size hint */
108 void *base_addr; /* base address of this chunk */
109
110 int map_used; /* # of map entries used before the sentry */
111 int map_alloc; /* # of map entries allocated */
112 int *map; /* allocation map */
113 struct work_struct map_extend_work;/* async ->map[] extension */
114
115 void *data; /* chunk data */
116 int first_free; /* no free below this */
117 bool immutable; /* no [de]population allowed */
118 int nr_populated; /* # of populated pages */
119 unsigned long populated[]; /* populated bitmap */
120 };
121
122 static int pcpu_unit_pages __read_mostly;
123 static int pcpu_unit_size __read_mostly;
124 static int pcpu_nr_units __read_mostly;
125 static int pcpu_atom_size __read_mostly;
126 static int pcpu_nr_slots __read_mostly;
127 static size_t pcpu_chunk_struct_size __read_mostly;
128
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __read_mostly;
131 static unsigned int pcpu_high_unit_cpu __read_mostly;
132
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __read_mostly;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136
137 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
139
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __read_mostly;
142 static const unsigned long *pcpu_group_offsets __read_mostly;
143 static const size_t *pcpu_group_sizes __read_mostly;
144
145 /*
146 * The first chunk which always exists. Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
149 */
150 static struct pcpu_chunk *pcpu_first_chunk;
151
152 /*
153 * Optional reserved chunk. This chunk reserves part of the first
154 * chunk and serves it for reserved allocations. The amount of
155 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
156 * area doesn't exist, the following variables contain NULL and 0
157 * respectively.
158 */
159 static struct pcpu_chunk *pcpu_reserved_chunk;
160 static int pcpu_reserved_chunk_limit;
161
162 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
163 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
164
165 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166
167 /*
168 * The number of empty populated pages, protected by pcpu_lock. The
169 * reserved chunk doesn't contribute to the count.
170 */
171 static int pcpu_nr_empty_pop_pages;
172
173 /*
174 * Balance work is used to populate or destroy chunks asynchronously. We
175 * try to keep the number of populated free pages between
176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
177 * empty chunk.
178 */
179 static void pcpu_balance_workfn(struct work_struct *work);
180 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
181 static bool pcpu_async_enabled __read_mostly;
182 static bool pcpu_atomic_alloc_failed;
183
184 static void pcpu_schedule_balance_work(void)
185 {
186 if (pcpu_async_enabled)
187 schedule_work(&pcpu_balance_work);
188 }
189
190 static bool pcpu_addr_in_first_chunk(void *addr)
191 {
192 void *first_start = pcpu_first_chunk->base_addr;
193
194 return addr >= first_start && addr < first_start + pcpu_unit_size;
195 }
196
197 static bool pcpu_addr_in_reserved_chunk(void *addr)
198 {
199 void *first_start = pcpu_first_chunk->base_addr;
200
201 return addr >= first_start &&
202 addr < first_start + pcpu_reserved_chunk_limit;
203 }
204
205 static int __pcpu_size_to_slot(int size)
206 {
207 int highbit = fls(size); /* size is in bytes */
208 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
209 }
210
211 static int pcpu_size_to_slot(int size)
212 {
213 if (size == pcpu_unit_size)
214 return pcpu_nr_slots - 1;
215 return __pcpu_size_to_slot(size);
216 }
217
218 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
219 {
220 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
221 return 0;
222
223 return pcpu_size_to_slot(chunk->free_size);
224 }
225
226 /* set the pointer to a chunk in a page struct */
227 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
228 {
229 page->index = (unsigned long)pcpu;
230 }
231
232 /* obtain pointer to a chunk from a page struct */
233 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
234 {
235 return (struct pcpu_chunk *)page->index;
236 }
237
238 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
239 {
240 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
241 }
242
243 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
244 unsigned int cpu, int page_idx)
245 {
246 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
247 (page_idx << PAGE_SHIFT);
248 }
249
250 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
251 int *rs, int *re, int end)
252 {
253 *rs = find_next_zero_bit(chunk->populated, end, *rs);
254 *re = find_next_bit(chunk->populated, end, *rs + 1);
255 }
256
257 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
258 int *rs, int *re, int end)
259 {
260 *rs = find_next_bit(chunk->populated, end, *rs);
261 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
262 }
263
264 /*
265 * (Un)populated page region iterators. Iterate over (un)populated
266 * page regions between @start and @end in @chunk. @rs and @re should
267 * be integer variables and will be set to start and end page index of
268 * the current region.
269 */
270 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
272 (rs) < (re); \
273 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
274
275 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
276 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
277 (rs) < (re); \
278 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
279
280 /**
281 * pcpu_mem_zalloc - allocate memory
282 * @size: bytes to allocate
283 *
284 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
285 * kzalloc() is used; otherwise, vzalloc() is used. The returned
286 * memory is always zeroed.
287 *
288 * CONTEXT:
289 * Does GFP_KERNEL allocation.
290 *
291 * RETURNS:
292 * Pointer to the allocated area on success, NULL on failure.
293 */
294 static void *pcpu_mem_zalloc(size_t size)
295 {
296 if (WARN_ON_ONCE(!slab_is_available()))
297 return NULL;
298
299 if (size <= PAGE_SIZE)
300 return kzalloc(size, GFP_KERNEL);
301 else
302 return vzalloc(size);
303 }
304
305 /**
306 * pcpu_mem_free - free memory
307 * @ptr: memory to free
308 *
309 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
310 */
311 static void pcpu_mem_free(void *ptr)
312 {
313 kvfree(ptr);
314 }
315
316 /**
317 * pcpu_count_occupied_pages - count the number of pages an area occupies
318 * @chunk: chunk of interest
319 * @i: index of the area in question
320 *
321 * Count the number of pages chunk's @i'th area occupies. When the area's
322 * start and/or end address isn't aligned to page boundary, the straddled
323 * page is included in the count iff the rest of the page is free.
324 */
325 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
326 {
327 int off = chunk->map[i] & ~1;
328 int end = chunk->map[i + 1] & ~1;
329
330 if (!PAGE_ALIGNED(off) && i > 0) {
331 int prev = chunk->map[i - 1];
332
333 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
334 off = round_down(off, PAGE_SIZE);
335 }
336
337 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
338 int next = chunk->map[i + 1];
339 int nend = chunk->map[i + 2] & ~1;
340
341 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
342 end = round_up(end, PAGE_SIZE);
343 }
344
345 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
346 }
347
348 /**
349 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
350 * @chunk: chunk of interest
351 * @oslot: the previous slot it was on
352 *
353 * This function is called after an allocation or free changed @chunk.
354 * New slot according to the changed state is determined and @chunk is
355 * moved to the slot. Note that the reserved chunk is never put on
356 * chunk slots.
357 *
358 * CONTEXT:
359 * pcpu_lock.
360 */
361 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
362 {
363 int nslot = pcpu_chunk_slot(chunk);
364
365 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
366 if (oslot < nslot)
367 list_move(&chunk->list, &pcpu_slot[nslot]);
368 else
369 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
370 }
371 }
372
373 /**
374 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
375 * @chunk: chunk of interest
376 * @is_atomic: the allocation context
377 *
378 * Determine whether area map of @chunk needs to be extended. If
379 * @is_atomic, only the amount necessary for a new allocation is
380 * considered; however, async extension is scheduled if the left amount is
381 * low. If !@is_atomic, it aims for more empty space. Combined, this
382 * ensures that the map is likely to have enough available space to
383 * accomodate atomic allocations which can't extend maps directly.
384 *
385 * CONTEXT:
386 * pcpu_lock.
387 *
388 * RETURNS:
389 * New target map allocation length if extension is necessary, 0
390 * otherwise.
391 */
392 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
393 {
394 int margin, new_alloc;
395
396 if (is_atomic) {
397 margin = 3;
398
399 if (chunk->map_alloc <
400 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
401 pcpu_async_enabled)
402 schedule_work(&chunk->map_extend_work);
403 } else {
404 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
405 }
406
407 if (chunk->map_alloc >= chunk->map_used + margin)
408 return 0;
409
410 new_alloc = PCPU_DFL_MAP_ALLOC;
411 while (new_alloc < chunk->map_used + margin)
412 new_alloc *= 2;
413
414 return new_alloc;
415 }
416
417 /**
418 * pcpu_extend_area_map - extend area map of a chunk
419 * @chunk: chunk of interest
420 * @new_alloc: new target allocation length of the area map
421 *
422 * Extend area map of @chunk to have @new_alloc entries.
423 *
424 * CONTEXT:
425 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
426 *
427 * RETURNS:
428 * 0 on success, -errno on failure.
429 */
430 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
431 {
432 int *old = NULL, *new = NULL;
433 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
434 unsigned long flags;
435
436 new = pcpu_mem_zalloc(new_size);
437 if (!new)
438 return -ENOMEM;
439
440 /* acquire pcpu_lock and switch to new area map */
441 spin_lock_irqsave(&pcpu_lock, flags);
442
443 if (new_alloc <= chunk->map_alloc)
444 goto out_unlock;
445
446 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
447 old = chunk->map;
448
449 memcpy(new, old, old_size);
450
451 chunk->map_alloc = new_alloc;
452 chunk->map = new;
453 new = NULL;
454
455 out_unlock:
456 spin_unlock_irqrestore(&pcpu_lock, flags);
457
458 /*
459 * pcpu_mem_free() might end up calling vfree() which uses
460 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
461 */
462 pcpu_mem_free(old);
463 pcpu_mem_free(new);
464
465 return 0;
466 }
467
468 static void pcpu_map_extend_workfn(struct work_struct *work)
469 {
470 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
471 map_extend_work);
472 int new_alloc;
473
474 spin_lock_irq(&pcpu_lock);
475 new_alloc = pcpu_need_to_extend(chunk, false);
476 spin_unlock_irq(&pcpu_lock);
477
478 if (new_alloc)
479 pcpu_extend_area_map(chunk, new_alloc);
480 }
481
482 /**
483 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
484 * @chunk: chunk the candidate area belongs to
485 * @off: the offset to the start of the candidate area
486 * @this_size: the size of the candidate area
487 * @size: the size of the target allocation
488 * @align: the alignment of the target allocation
489 * @pop_only: only allocate from already populated region
490 *
491 * We're trying to allocate @size bytes aligned at @align. @chunk's area
492 * at @off sized @this_size is a candidate. This function determines
493 * whether the target allocation fits in the candidate area and returns the
494 * number of bytes to pad after @off. If the target area doesn't fit, -1
495 * is returned.
496 *
497 * If @pop_only is %true, this function only considers the already
498 * populated part of the candidate area.
499 */
500 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
501 int size, int align, bool pop_only)
502 {
503 int cand_off = off;
504
505 while (true) {
506 int head = ALIGN(cand_off, align) - off;
507 int page_start, page_end, rs, re;
508
509 if (this_size < head + size)
510 return -1;
511
512 if (!pop_only)
513 return head;
514
515 /*
516 * If the first unpopulated page is beyond the end of the
517 * allocation, the whole allocation is populated;
518 * otherwise, retry from the end of the unpopulated area.
519 */
520 page_start = PFN_DOWN(head + off);
521 page_end = PFN_UP(head + off + size);
522
523 rs = page_start;
524 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
525 if (rs >= page_end)
526 return head;
527 cand_off = re * PAGE_SIZE;
528 }
529 }
530
531 /**
532 * pcpu_alloc_area - allocate area from a pcpu_chunk
533 * @chunk: chunk of interest
534 * @size: wanted size in bytes
535 * @align: wanted align
536 * @pop_only: allocate only from the populated area
537 * @occ_pages_p: out param for the number of pages the area occupies
538 *
539 * Try to allocate @size bytes area aligned at @align from @chunk.
540 * Note that this function only allocates the offset. It doesn't
541 * populate or map the area.
542 *
543 * @chunk->map must have at least two free slots.
544 *
545 * CONTEXT:
546 * pcpu_lock.
547 *
548 * RETURNS:
549 * Allocated offset in @chunk on success, -1 if no matching area is
550 * found.
551 */
552 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
553 bool pop_only, int *occ_pages_p)
554 {
555 int oslot = pcpu_chunk_slot(chunk);
556 int max_contig = 0;
557 int i, off;
558 bool seen_free = false;
559 int *p;
560
561 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
562 int head, tail;
563 int this_size;
564
565 off = *p;
566 if (off & 1)
567 continue;
568
569 this_size = (p[1] & ~1) - off;
570
571 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
572 pop_only);
573 if (head < 0) {
574 if (!seen_free) {
575 chunk->first_free = i;
576 seen_free = true;
577 }
578 max_contig = max(this_size, max_contig);
579 continue;
580 }
581
582 /*
583 * If head is small or the previous block is free,
584 * merge'em. Note that 'small' is defined as smaller
585 * than sizeof(int), which is very small but isn't too
586 * uncommon for percpu allocations.
587 */
588 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
589 *p = off += head;
590 if (p[-1] & 1)
591 chunk->free_size -= head;
592 else
593 max_contig = max(*p - p[-1], max_contig);
594 this_size -= head;
595 head = 0;
596 }
597
598 /* if tail is small, just keep it around */
599 tail = this_size - head - size;
600 if (tail < sizeof(int)) {
601 tail = 0;
602 size = this_size - head;
603 }
604
605 /* split if warranted */
606 if (head || tail) {
607 int nr_extra = !!head + !!tail;
608
609 /* insert new subblocks */
610 memmove(p + nr_extra + 1, p + 1,
611 sizeof(chunk->map[0]) * (chunk->map_used - i));
612 chunk->map_used += nr_extra;
613
614 if (head) {
615 if (!seen_free) {
616 chunk->first_free = i;
617 seen_free = true;
618 }
619 *++p = off += head;
620 ++i;
621 max_contig = max(head, max_contig);
622 }
623 if (tail) {
624 p[1] = off + size;
625 max_contig = max(tail, max_contig);
626 }
627 }
628
629 if (!seen_free)
630 chunk->first_free = i + 1;
631
632 /* update hint and mark allocated */
633 if (i + 1 == chunk->map_used)
634 chunk->contig_hint = max_contig; /* fully scanned */
635 else
636 chunk->contig_hint = max(chunk->contig_hint,
637 max_contig);
638
639 chunk->free_size -= size;
640 *p |= 1;
641
642 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
643 pcpu_chunk_relocate(chunk, oslot);
644 return off;
645 }
646
647 chunk->contig_hint = max_contig; /* fully scanned */
648 pcpu_chunk_relocate(chunk, oslot);
649
650 /* tell the upper layer that this chunk has no matching area */
651 return -1;
652 }
653
654 /**
655 * pcpu_free_area - free area to a pcpu_chunk
656 * @chunk: chunk of interest
657 * @freeme: offset of area to free
658 * @occ_pages_p: out param for the number of pages the area occupies
659 *
660 * Free area starting from @freeme to @chunk. Note that this function
661 * only modifies the allocation map. It doesn't depopulate or unmap
662 * the area.
663 *
664 * CONTEXT:
665 * pcpu_lock.
666 */
667 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
668 int *occ_pages_p)
669 {
670 int oslot = pcpu_chunk_slot(chunk);
671 int off = 0;
672 unsigned i, j;
673 int to_free = 0;
674 int *p;
675
676 freeme |= 1; /* we are searching for <given offset, in use> pair */
677
678 i = 0;
679 j = chunk->map_used;
680 while (i != j) {
681 unsigned k = (i + j) / 2;
682 off = chunk->map[k];
683 if (off < freeme)
684 i = k + 1;
685 else if (off > freeme)
686 j = k;
687 else
688 i = j = k;
689 }
690 BUG_ON(off != freeme);
691
692 if (i < chunk->first_free)
693 chunk->first_free = i;
694
695 p = chunk->map + i;
696 *p = off &= ~1;
697 chunk->free_size += (p[1] & ~1) - off;
698
699 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
700
701 /* merge with next? */
702 if (!(p[1] & 1))
703 to_free++;
704 /* merge with previous? */
705 if (i > 0 && !(p[-1] & 1)) {
706 to_free++;
707 i--;
708 p--;
709 }
710 if (to_free) {
711 chunk->map_used -= to_free;
712 memmove(p + 1, p + 1 + to_free,
713 (chunk->map_used - i) * sizeof(chunk->map[0]));
714 }
715
716 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
717 pcpu_chunk_relocate(chunk, oslot);
718 }
719
720 static struct pcpu_chunk *pcpu_alloc_chunk(void)
721 {
722 struct pcpu_chunk *chunk;
723
724 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
725 if (!chunk)
726 return NULL;
727
728 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
729 sizeof(chunk->map[0]));
730 if (!chunk->map) {
731 pcpu_mem_free(chunk);
732 return NULL;
733 }
734
735 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
736 chunk->map[0] = 0;
737 chunk->map[1] = pcpu_unit_size | 1;
738 chunk->map_used = 1;
739
740 INIT_LIST_HEAD(&chunk->list);
741 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
742 chunk->free_size = pcpu_unit_size;
743 chunk->contig_hint = pcpu_unit_size;
744
745 return chunk;
746 }
747
748 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
749 {
750 if (!chunk)
751 return;
752 pcpu_mem_free(chunk->map);
753 pcpu_mem_free(chunk);
754 }
755
756 /**
757 * pcpu_chunk_populated - post-population bookkeeping
758 * @chunk: pcpu_chunk which got populated
759 * @page_start: the start page
760 * @page_end: the end page
761 *
762 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
763 * the bookkeeping information accordingly. Must be called after each
764 * successful population.
765 */
766 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
767 int page_start, int page_end)
768 {
769 int nr = page_end - page_start;
770
771 lockdep_assert_held(&pcpu_lock);
772
773 bitmap_set(chunk->populated, page_start, nr);
774 chunk->nr_populated += nr;
775 pcpu_nr_empty_pop_pages += nr;
776 }
777
778 /**
779 * pcpu_chunk_depopulated - post-depopulation bookkeeping
780 * @chunk: pcpu_chunk which got depopulated
781 * @page_start: the start page
782 * @page_end: the end page
783 *
784 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
785 * Update the bookkeeping information accordingly. Must be called after
786 * each successful depopulation.
787 */
788 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
789 int page_start, int page_end)
790 {
791 int nr = page_end - page_start;
792
793 lockdep_assert_held(&pcpu_lock);
794
795 bitmap_clear(chunk->populated, page_start, nr);
796 chunk->nr_populated -= nr;
797 pcpu_nr_empty_pop_pages -= nr;
798 }
799
800 /*
801 * Chunk management implementation.
802 *
803 * To allow different implementations, chunk alloc/free and
804 * [de]population are implemented in a separate file which is pulled
805 * into this file and compiled together. The following functions
806 * should be implemented.
807 *
808 * pcpu_populate_chunk - populate the specified range of a chunk
809 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
810 * pcpu_create_chunk - create a new chunk
811 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
812 * pcpu_addr_to_page - translate address to physical address
813 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
814 */
815 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
816 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
817 static struct pcpu_chunk *pcpu_create_chunk(void);
818 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
819 static struct page *pcpu_addr_to_page(void *addr);
820 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
821
822 #ifdef CONFIG_NEED_PER_CPU_KM
823 #include "percpu-km.c"
824 #else
825 #include "percpu-vm.c"
826 #endif
827
828 /**
829 * pcpu_chunk_addr_search - determine chunk containing specified address
830 * @addr: address for which the chunk needs to be determined.
831 *
832 * RETURNS:
833 * The address of the found chunk.
834 */
835 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
836 {
837 /* is it in the first chunk? */
838 if (pcpu_addr_in_first_chunk(addr)) {
839 /* is it in the reserved area? */
840 if (pcpu_addr_in_reserved_chunk(addr))
841 return pcpu_reserved_chunk;
842 return pcpu_first_chunk;
843 }
844
845 /*
846 * The address is relative to unit0 which might be unused and
847 * thus unmapped. Offset the address to the unit space of the
848 * current processor before looking it up in the vmalloc
849 * space. Note that any possible cpu id can be used here, so
850 * there's no need to worry about preemption or cpu hotplug.
851 */
852 addr += pcpu_unit_offsets[raw_smp_processor_id()];
853 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
854 }
855
856 /**
857 * pcpu_alloc - the percpu allocator
858 * @size: size of area to allocate in bytes
859 * @align: alignment of area (max PAGE_SIZE)
860 * @reserved: allocate from the reserved chunk if available
861 * @gfp: allocation flags
862 *
863 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
864 * contain %GFP_KERNEL, the allocation is atomic.
865 *
866 * RETURNS:
867 * Percpu pointer to the allocated area on success, NULL on failure.
868 */
869 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
870 gfp_t gfp)
871 {
872 static int warn_limit = 10;
873 struct pcpu_chunk *chunk;
874 const char *err;
875 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
876 int occ_pages = 0;
877 int slot, off, new_alloc, cpu, ret;
878 unsigned long flags;
879 void __percpu *ptr;
880
881 /*
882 * We want the lowest bit of offset available for in-use/free
883 * indicator, so force >= 16bit alignment and make size even.
884 */
885 if (unlikely(align < 2))
886 align = 2;
887
888 size = ALIGN(size, 2);
889
890 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
891 WARN(true, "illegal size (%zu) or align (%zu) for "
892 "percpu allocation\n", size, align);
893 return NULL;
894 }
895
896 spin_lock_irqsave(&pcpu_lock, flags);
897
898 /* serve reserved allocations from the reserved chunk if available */
899 if (reserved && pcpu_reserved_chunk) {
900 chunk = pcpu_reserved_chunk;
901
902 if (size > chunk->contig_hint) {
903 err = "alloc from reserved chunk failed";
904 goto fail_unlock;
905 }
906
907 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
908 spin_unlock_irqrestore(&pcpu_lock, flags);
909 if (is_atomic ||
910 pcpu_extend_area_map(chunk, new_alloc) < 0) {
911 err = "failed to extend area map of reserved chunk";
912 goto fail;
913 }
914 spin_lock_irqsave(&pcpu_lock, flags);
915 }
916
917 off = pcpu_alloc_area(chunk, size, align, is_atomic,
918 &occ_pages);
919 if (off >= 0)
920 goto area_found;
921
922 err = "alloc from reserved chunk failed";
923 goto fail_unlock;
924 }
925
926 restart:
927 /* search through normal chunks */
928 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
929 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
930 if (size > chunk->contig_hint)
931 continue;
932
933 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
934 if (new_alloc) {
935 if (is_atomic)
936 continue;
937 spin_unlock_irqrestore(&pcpu_lock, flags);
938 if (pcpu_extend_area_map(chunk,
939 new_alloc) < 0) {
940 err = "failed to extend area map";
941 goto fail;
942 }
943 spin_lock_irqsave(&pcpu_lock, flags);
944 /*
945 * pcpu_lock has been dropped, need to
946 * restart cpu_slot list walking.
947 */
948 goto restart;
949 }
950
951 off = pcpu_alloc_area(chunk, size, align, is_atomic,
952 &occ_pages);
953 if (off >= 0)
954 goto area_found;
955 }
956 }
957
958 spin_unlock_irqrestore(&pcpu_lock, flags);
959
960 /*
961 * No space left. Create a new chunk. We don't want multiple
962 * tasks to create chunks simultaneously. Serialize and create iff
963 * there's still no empty chunk after grabbing the mutex.
964 */
965 if (is_atomic)
966 goto fail;
967
968 mutex_lock(&pcpu_alloc_mutex);
969
970 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
971 chunk = pcpu_create_chunk();
972 if (!chunk) {
973 mutex_unlock(&pcpu_alloc_mutex);
974 err = "failed to allocate new chunk";
975 goto fail;
976 }
977
978 spin_lock_irqsave(&pcpu_lock, flags);
979 pcpu_chunk_relocate(chunk, -1);
980 } else {
981 spin_lock_irqsave(&pcpu_lock, flags);
982 }
983
984 mutex_unlock(&pcpu_alloc_mutex);
985 goto restart;
986
987 area_found:
988 spin_unlock_irqrestore(&pcpu_lock, flags);
989
990 /* populate if not all pages are already there */
991 if (!is_atomic) {
992 int page_start, page_end, rs, re;
993
994 mutex_lock(&pcpu_alloc_mutex);
995
996 page_start = PFN_DOWN(off);
997 page_end = PFN_UP(off + size);
998
999 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1000 WARN_ON(chunk->immutable);
1001
1002 ret = pcpu_populate_chunk(chunk, rs, re);
1003
1004 spin_lock_irqsave(&pcpu_lock, flags);
1005 if (ret) {
1006 mutex_unlock(&pcpu_alloc_mutex);
1007 pcpu_free_area(chunk, off, &occ_pages);
1008 err = "failed to populate";
1009 goto fail_unlock;
1010 }
1011 pcpu_chunk_populated(chunk, rs, re);
1012 spin_unlock_irqrestore(&pcpu_lock, flags);
1013 }
1014
1015 mutex_unlock(&pcpu_alloc_mutex);
1016 }
1017
1018 if (chunk != pcpu_reserved_chunk)
1019 pcpu_nr_empty_pop_pages -= occ_pages;
1020
1021 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1022 pcpu_schedule_balance_work();
1023
1024 /* clear the areas and return address relative to base address */
1025 for_each_possible_cpu(cpu)
1026 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1027
1028 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1029 kmemleak_alloc_percpu(ptr, size, gfp);
1030 return ptr;
1031
1032 fail_unlock:
1033 spin_unlock_irqrestore(&pcpu_lock, flags);
1034 fail:
1035 if (!is_atomic && warn_limit) {
1036 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1037 size, align, is_atomic, err);
1038 dump_stack();
1039 if (!--warn_limit)
1040 pr_info("PERCPU: limit reached, disable warning\n");
1041 }
1042 if (is_atomic) {
1043 /* see the flag handling in pcpu_blance_workfn() */
1044 pcpu_atomic_alloc_failed = true;
1045 pcpu_schedule_balance_work();
1046 }
1047 return NULL;
1048 }
1049
1050 /**
1051 * __alloc_percpu_gfp - allocate dynamic percpu area
1052 * @size: size of area to allocate in bytes
1053 * @align: alignment of area (max PAGE_SIZE)
1054 * @gfp: allocation flags
1055 *
1056 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1057 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1058 * be called from any context but is a lot more likely to fail.
1059 *
1060 * RETURNS:
1061 * Percpu pointer to the allocated area on success, NULL on failure.
1062 */
1063 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1064 {
1065 return pcpu_alloc(size, align, false, gfp);
1066 }
1067 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1068
1069 /**
1070 * __alloc_percpu - allocate dynamic percpu area
1071 * @size: size of area to allocate in bytes
1072 * @align: alignment of area (max PAGE_SIZE)
1073 *
1074 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1075 */
1076 void __percpu *__alloc_percpu(size_t size, size_t align)
1077 {
1078 return pcpu_alloc(size, align, false, GFP_KERNEL);
1079 }
1080 EXPORT_SYMBOL_GPL(__alloc_percpu);
1081
1082 /**
1083 * __alloc_reserved_percpu - allocate reserved percpu area
1084 * @size: size of area to allocate in bytes
1085 * @align: alignment of area (max PAGE_SIZE)
1086 *
1087 * Allocate zero-filled percpu area of @size bytes aligned at @align
1088 * from reserved percpu area if arch has set it up; otherwise,
1089 * allocation is served from the same dynamic area. Might sleep.
1090 * Might trigger writeouts.
1091 *
1092 * CONTEXT:
1093 * Does GFP_KERNEL allocation.
1094 *
1095 * RETURNS:
1096 * Percpu pointer to the allocated area on success, NULL on failure.
1097 */
1098 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1099 {
1100 return pcpu_alloc(size, align, true, GFP_KERNEL);
1101 }
1102
1103 /**
1104 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1105 * @work: unused
1106 *
1107 * Reclaim all fully free chunks except for the first one.
1108 */
1109 static void pcpu_balance_workfn(struct work_struct *work)
1110 {
1111 LIST_HEAD(to_free);
1112 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1113 struct pcpu_chunk *chunk, *next;
1114 int slot, nr_to_pop, ret;
1115
1116 /*
1117 * There's no reason to keep around multiple unused chunks and VM
1118 * areas can be scarce. Destroy all free chunks except for one.
1119 */
1120 mutex_lock(&pcpu_alloc_mutex);
1121 spin_lock_irq(&pcpu_lock);
1122
1123 list_for_each_entry_safe(chunk, next, free_head, list) {
1124 WARN_ON(chunk->immutable);
1125
1126 /* spare the first one */
1127 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1128 continue;
1129
1130 list_move(&chunk->list, &to_free);
1131 }
1132
1133 spin_unlock_irq(&pcpu_lock);
1134
1135 list_for_each_entry_safe(chunk, next, &to_free, list) {
1136 int rs, re;
1137
1138 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1139 pcpu_depopulate_chunk(chunk, rs, re);
1140 spin_lock_irq(&pcpu_lock);
1141 pcpu_chunk_depopulated(chunk, rs, re);
1142 spin_unlock_irq(&pcpu_lock);
1143 }
1144 pcpu_destroy_chunk(chunk);
1145 }
1146
1147 /*
1148 * Ensure there are certain number of free populated pages for
1149 * atomic allocs. Fill up from the most packed so that atomic
1150 * allocs don't increase fragmentation. If atomic allocation
1151 * failed previously, always populate the maximum amount. This
1152 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1153 * failing indefinitely; however, large atomic allocs are not
1154 * something we support properly and can be highly unreliable and
1155 * inefficient.
1156 */
1157 retry_pop:
1158 if (pcpu_atomic_alloc_failed) {
1159 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1160 /* best effort anyway, don't worry about synchronization */
1161 pcpu_atomic_alloc_failed = false;
1162 } else {
1163 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1164 pcpu_nr_empty_pop_pages,
1165 0, PCPU_EMPTY_POP_PAGES_HIGH);
1166 }
1167
1168 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1169 int nr_unpop = 0, rs, re;
1170
1171 if (!nr_to_pop)
1172 break;
1173
1174 spin_lock_irq(&pcpu_lock);
1175 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1176 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1177 if (nr_unpop)
1178 break;
1179 }
1180 spin_unlock_irq(&pcpu_lock);
1181
1182 if (!nr_unpop)
1183 continue;
1184
1185 /* @chunk can't go away while pcpu_alloc_mutex is held */
1186 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1187 int nr = min(re - rs, nr_to_pop);
1188
1189 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1190 if (!ret) {
1191 nr_to_pop -= nr;
1192 spin_lock_irq(&pcpu_lock);
1193 pcpu_chunk_populated(chunk, rs, rs + nr);
1194 spin_unlock_irq(&pcpu_lock);
1195 } else {
1196 nr_to_pop = 0;
1197 }
1198
1199 if (!nr_to_pop)
1200 break;
1201 }
1202 }
1203
1204 if (nr_to_pop) {
1205 /* ran out of chunks to populate, create a new one and retry */
1206 chunk = pcpu_create_chunk();
1207 if (chunk) {
1208 spin_lock_irq(&pcpu_lock);
1209 pcpu_chunk_relocate(chunk, -1);
1210 spin_unlock_irq(&pcpu_lock);
1211 goto retry_pop;
1212 }
1213 }
1214
1215 mutex_unlock(&pcpu_alloc_mutex);
1216 }
1217
1218 /**
1219 * free_percpu - free percpu area
1220 * @ptr: pointer to area to free
1221 *
1222 * Free percpu area @ptr.
1223 *
1224 * CONTEXT:
1225 * Can be called from atomic context.
1226 */
1227 void free_percpu(void __percpu *ptr)
1228 {
1229 void *addr;
1230 struct pcpu_chunk *chunk;
1231 unsigned long flags;
1232 int off, occ_pages;
1233
1234 if (!ptr)
1235 return;
1236
1237 kmemleak_free_percpu(ptr);
1238
1239 addr = __pcpu_ptr_to_addr(ptr);
1240
1241 spin_lock_irqsave(&pcpu_lock, flags);
1242
1243 chunk = pcpu_chunk_addr_search(addr);
1244 off = addr - chunk->base_addr;
1245
1246 pcpu_free_area(chunk, off, &occ_pages);
1247
1248 if (chunk != pcpu_reserved_chunk)
1249 pcpu_nr_empty_pop_pages += occ_pages;
1250
1251 /* if there are more than one fully free chunks, wake up grim reaper */
1252 if (chunk->free_size == pcpu_unit_size) {
1253 struct pcpu_chunk *pos;
1254
1255 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1256 if (pos != chunk) {
1257 pcpu_schedule_balance_work();
1258 break;
1259 }
1260 }
1261
1262 spin_unlock_irqrestore(&pcpu_lock, flags);
1263 }
1264 EXPORT_SYMBOL_GPL(free_percpu);
1265
1266 /**
1267 * is_kernel_percpu_address - test whether address is from static percpu area
1268 * @addr: address to test
1269 *
1270 * Test whether @addr belongs to in-kernel static percpu area. Module
1271 * static percpu areas are not considered. For those, use
1272 * is_module_percpu_address().
1273 *
1274 * RETURNS:
1275 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1276 */
1277 bool is_kernel_percpu_address(unsigned long addr)
1278 {
1279 #ifdef CONFIG_SMP
1280 const size_t static_size = __per_cpu_end - __per_cpu_start;
1281 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1282 unsigned int cpu;
1283
1284 for_each_possible_cpu(cpu) {
1285 void *start = per_cpu_ptr(base, cpu);
1286
1287 if ((void *)addr >= start && (void *)addr < start + static_size)
1288 return true;
1289 }
1290 #endif
1291 /* on UP, can't distinguish from other static vars, always false */
1292 return false;
1293 }
1294
1295 /**
1296 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1297 * @addr: the address to be converted to physical address
1298 *
1299 * Given @addr which is dereferenceable address obtained via one of
1300 * percpu access macros, this function translates it into its physical
1301 * address. The caller is responsible for ensuring @addr stays valid
1302 * until this function finishes.
1303 *
1304 * percpu allocator has special setup for the first chunk, which currently
1305 * supports either embedding in linear address space or vmalloc mapping,
1306 * and, from the second one, the backing allocator (currently either vm or
1307 * km) provides translation.
1308 *
1309 * The addr can be translated simply without checking if it falls into the
1310 * first chunk. But the current code reflects better how percpu allocator
1311 * actually works, and the verification can discover both bugs in percpu
1312 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1313 * code.
1314 *
1315 * RETURNS:
1316 * The physical address for @addr.
1317 */
1318 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1319 {
1320 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1321 bool in_first_chunk = false;
1322 unsigned long first_low, first_high;
1323 unsigned int cpu;
1324
1325 /*
1326 * The following test on unit_low/high isn't strictly
1327 * necessary but will speed up lookups of addresses which
1328 * aren't in the first chunk.
1329 */
1330 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1331 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1332 pcpu_unit_pages);
1333 if ((unsigned long)addr >= first_low &&
1334 (unsigned long)addr < first_high) {
1335 for_each_possible_cpu(cpu) {
1336 void *start = per_cpu_ptr(base, cpu);
1337
1338 if (addr >= start && addr < start + pcpu_unit_size) {
1339 in_first_chunk = true;
1340 break;
1341 }
1342 }
1343 }
1344
1345 if (in_first_chunk) {
1346 if (!is_vmalloc_addr(addr))
1347 return __pa(addr);
1348 else
1349 return page_to_phys(vmalloc_to_page(addr)) +
1350 offset_in_page(addr);
1351 } else
1352 return page_to_phys(pcpu_addr_to_page(addr)) +
1353 offset_in_page(addr);
1354 }
1355
1356 /**
1357 * pcpu_alloc_alloc_info - allocate percpu allocation info
1358 * @nr_groups: the number of groups
1359 * @nr_units: the number of units
1360 *
1361 * Allocate ai which is large enough for @nr_groups groups containing
1362 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1363 * cpu_map array which is long enough for @nr_units and filled with
1364 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1365 * pointer of other groups.
1366 *
1367 * RETURNS:
1368 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1369 * failure.
1370 */
1371 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1372 int nr_units)
1373 {
1374 struct pcpu_alloc_info *ai;
1375 size_t base_size, ai_size;
1376 void *ptr;
1377 int unit;
1378
1379 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1380 __alignof__(ai->groups[0].cpu_map[0]));
1381 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1382
1383 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1384 if (!ptr)
1385 return NULL;
1386 ai = ptr;
1387 ptr += base_size;
1388
1389 ai->groups[0].cpu_map = ptr;
1390
1391 for (unit = 0; unit < nr_units; unit++)
1392 ai->groups[0].cpu_map[unit] = NR_CPUS;
1393
1394 ai->nr_groups = nr_groups;
1395 ai->__ai_size = PFN_ALIGN(ai_size);
1396
1397 return ai;
1398 }
1399
1400 /**
1401 * pcpu_free_alloc_info - free percpu allocation info
1402 * @ai: pcpu_alloc_info to free
1403 *
1404 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1405 */
1406 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1407 {
1408 memblock_free_early(__pa(ai), ai->__ai_size);
1409 }
1410
1411 /**
1412 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1413 * @lvl: loglevel
1414 * @ai: allocation info to dump
1415 *
1416 * Print out information about @ai using loglevel @lvl.
1417 */
1418 static void pcpu_dump_alloc_info(const char *lvl,
1419 const struct pcpu_alloc_info *ai)
1420 {
1421 int group_width = 1, cpu_width = 1, width;
1422 char empty_str[] = "--------";
1423 int alloc = 0, alloc_end = 0;
1424 int group, v;
1425 int upa, apl; /* units per alloc, allocs per line */
1426
1427 v = ai->nr_groups;
1428 while (v /= 10)
1429 group_width++;
1430
1431 v = num_possible_cpus();
1432 while (v /= 10)
1433 cpu_width++;
1434 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1435
1436 upa = ai->alloc_size / ai->unit_size;
1437 width = upa * (cpu_width + 1) + group_width + 3;
1438 apl = rounddown_pow_of_two(max(60 / width, 1));
1439
1440 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1441 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1442 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1443
1444 for (group = 0; group < ai->nr_groups; group++) {
1445 const struct pcpu_group_info *gi = &ai->groups[group];
1446 int unit = 0, unit_end = 0;
1447
1448 BUG_ON(gi->nr_units % upa);
1449 for (alloc_end += gi->nr_units / upa;
1450 alloc < alloc_end; alloc++) {
1451 if (!(alloc % apl)) {
1452 printk(KERN_CONT "\n");
1453 printk("%spcpu-alloc: ", lvl);
1454 }
1455 printk(KERN_CONT "[%0*d] ", group_width, group);
1456
1457 for (unit_end += upa; unit < unit_end; unit++)
1458 if (gi->cpu_map[unit] != NR_CPUS)
1459 printk(KERN_CONT "%0*d ", cpu_width,
1460 gi->cpu_map[unit]);
1461 else
1462 printk(KERN_CONT "%s ", empty_str);
1463 }
1464 }
1465 printk(KERN_CONT "\n");
1466 }
1467
1468 /**
1469 * pcpu_setup_first_chunk - initialize the first percpu chunk
1470 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1471 * @base_addr: mapped address
1472 *
1473 * Initialize the first percpu chunk which contains the kernel static
1474 * perpcu area. This function is to be called from arch percpu area
1475 * setup path.
1476 *
1477 * @ai contains all information necessary to initialize the first
1478 * chunk and prime the dynamic percpu allocator.
1479 *
1480 * @ai->static_size is the size of static percpu area.
1481 *
1482 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1483 * reserve after the static area in the first chunk. This reserves
1484 * the first chunk such that it's available only through reserved
1485 * percpu allocation. This is primarily used to serve module percpu
1486 * static areas on architectures where the addressing model has
1487 * limited offset range for symbol relocations to guarantee module
1488 * percpu symbols fall inside the relocatable range.
1489 *
1490 * @ai->dyn_size determines the number of bytes available for dynamic
1491 * allocation in the first chunk. The area between @ai->static_size +
1492 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1493 *
1494 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1495 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1496 * @ai->dyn_size.
1497 *
1498 * @ai->atom_size is the allocation atom size and used as alignment
1499 * for vm areas.
1500 *
1501 * @ai->alloc_size is the allocation size and always multiple of
1502 * @ai->atom_size. This is larger than @ai->atom_size if
1503 * @ai->unit_size is larger than @ai->atom_size.
1504 *
1505 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1506 * percpu areas. Units which should be colocated are put into the
1507 * same group. Dynamic VM areas will be allocated according to these
1508 * groupings. If @ai->nr_groups is zero, a single group containing
1509 * all units is assumed.
1510 *
1511 * The caller should have mapped the first chunk at @base_addr and
1512 * copied static data to each unit.
1513 *
1514 * If the first chunk ends up with both reserved and dynamic areas, it
1515 * is served by two chunks - one to serve the core static and reserved
1516 * areas and the other for the dynamic area. They share the same vm
1517 * and page map but uses different area allocation map to stay away
1518 * from each other. The latter chunk is circulated in the chunk slots
1519 * and available for dynamic allocation like any other chunks.
1520 *
1521 * RETURNS:
1522 * 0 on success, -errno on failure.
1523 */
1524 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1525 void *base_addr)
1526 {
1527 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1528 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1529 size_t dyn_size = ai->dyn_size;
1530 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1531 struct pcpu_chunk *schunk, *dchunk = NULL;
1532 unsigned long *group_offsets;
1533 size_t *group_sizes;
1534 unsigned long *unit_off;
1535 unsigned int cpu;
1536 int *unit_map;
1537 int group, unit, i;
1538
1539 #define PCPU_SETUP_BUG_ON(cond) do { \
1540 if (unlikely(cond)) { \
1541 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1542 pr_emerg("PERCPU: cpu_possible_mask=%*pb\n", \
1543 cpumask_pr_args(cpu_possible_mask)); \
1544 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1545 BUG(); \
1546 } \
1547 } while (0)
1548
1549 /* sanity checks */
1550 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1551 #ifdef CONFIG_SMP
1552 PCPU_SETUP_BUG_ON(!ai->static_size);
1553 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1554 #endif
1555 PCPU_SETUP_BUG_ON(!base_addr);
1556 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1557 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1558 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1559 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1560 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1561 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1562
1563 /* process group information and build config tables accordingly */
1564 group_offsets = memblock_virt_alloc(ai->nr_groups *
1565 sizeof(group_offsets[0]), 0);
1566 group_sizes = memblock_virt_alloc(ai->nr_groups *
1567 sizeof(group_sizes[0]), 0);
1568 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1569 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1570
1571 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1572 unit_map[cpu] = UINT_MAX;
1573
1574 pcpu_low_unit_cpu = NR_CPUS;
1575 pcpu_high_unit_cpu = NR_CPUS;
1576
1577 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1578 const struct pcpu_group_info *gi = &ai->groups[group];
1579
1580 group_offsets[group] = gi->base_offset;
1581 group_sizes[group] = gi->nr_units * ai->unit_size;
1582
1583 for (i = 0; i < gi->nr_units; i++) {
1584 cpu = gi->cpu_map[i];
1585 if (cpu == NR_CPUS)
1586 continue;
1587
1588 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1589 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1590 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1591
1592 unit_map[cpu] = unit + i;
1593 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1594
1595 /* determine low/high unit_cpu */
1596 if (pcpu_low_unit_cpu == NR_CPUS ||
1597 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1598 pcpu_low_unit_cpu = cpu;
1599 if (pcpu_high_unit_cpu == NR_CPUS ||
1600 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1601 pcpu_high_unit_cpu = cpu;
1602 }
1603 }
1604 pcpu_nr_units = unit;
1605
1606 for_each_possible_cpu(cpu)
1607 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1608
1609 /* we're done parsing the input, undefine BUG macro and dump config */
1610 #undef PCPU_SETUP_BUG_ON
1611 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1612
1613 pcpu_nr_groups = ai->nr_groups;
1614 pcpu_group_offsets = group_offsets;
1615 pcpu_group_sizes = group_sizes;
1616 pcpu_unit_map = unit_map;
1617 pcpu_unit_offsets = unit_off;
1618
1619 /* determine basic parameters */
1620 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1621 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1622 pcpu_atom_size = ai->atom_size;
1623 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1624 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1625
1626 /*
1627 * Allocate chunk slots. The additional last slot is for
1628 * empty chunks.
1629 */
1630 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1631 pcpu_slot = memblock_virt_alloc(
1632 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1633 for (i = 0; i < pcpu_nr_slots; i++)
1634 INIT_LIST_HEAD(&pcpu_slot[i]);
1635
1636 /*
1637 * Initialize static chunk. If reserved_size is zero, the
1638 * static chunk covers static area + dynamic allocation area
1639 * in the first chunk. If reserved_size is not zero, it
1640 * covers static area + reserved area (mostly used for module
1641 * static percpu allocation).
1642 */
1643 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1644 INIT_LIST_HEAD(&schunk->list);
1645 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1646 schunk->base_addr = base_addr;
1647 schunk->map = smap;
1648 schunk->map_alloc = ARRAY_SIZE(smap);
1649 schunk->immutable = true;
1650 bitmap_fill(schunk->populated, pcpu_unit_pages);
1651 schunk->nr_populated = pcpu_unit_pages;
1652
1653 if (ai->reserved_size) {
1654 schunk->free_size = ai->reserved_size;
1655 pcpu_reserved_chunk = schunk;
1656 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1657 } else {
1658 schunk->free_size = dyn_size;
1659 dyn_size = 0; /* dynamic area covered */
1660 }
1661 schunk->contig_hint = schunk->free_size;
1662
1663 schunk->map[0] = 1;
1664 schunk->map[1] = ai->static_size;
1665 schunk->map_used = 1;
1666 if (schunk->free_size)
1667 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1668 schunk->map[schunk->map_used] |= 1;
1669
1670 /* init dynamic chunk if necessary */
1671 if (dyn_size) {
1672 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1673 INIT_LIST_HEAD(&dchunk->list);
1674 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1675 dchunk->base_addr = base_addr;
1676 dchunk->map = dmap;
1677 dchunk->map_alloc = ARRAY_SIZE(dmap);
1678 dchunk->immutable = true;
1679 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1680 dchunk->nr_populated = pcpu_unit_pages;
1681
1682 dchunk->contig_hint = dchunk->free_size = dyn_size;
1683 dchunk->map[0] = 1;
1684 dchunk->map[1] = pcpu_reserved_chunk_limit;
1685 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1686 dchunk->map_used = 2;
1687 }
1688
1689 /* link the first chunk in */
1690 pcpu_first_chunk = dchunk ?: schunk;
1691 pcpu_nr_empty_pop_pages +=
1692 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1693 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1694
1695 /* we're done */
1696 pcpu_base_addr = base_addr;
1697 return 0;
1698 }
1699
1700 #ifdef CONFIG_SMP
1701
1702 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1703 [PCPU_FC_AUTO] = "auto",
1704 [PCPU_FC_EMBED] = "embed",
1705 [PCPU_FC_PAGE] = "page",
1706 };
1707
1708 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1709
1710 static int __init percpu_alloc_setup(char *str)
1711 {
1712 if (!str)
1713 return -EINVAL;
1714
1715 if (0)
1716 /* nada */;
1717 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1718 else if (!strcmp(str, "embed"))
1719 pcpu_chosen_fc = PCPU_FC_EMBED;
1720 #endif
1721 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1722 else if (!strcmp(str, "page"))
1723 pcpu_chosen_fc = PCPU_FC_PAGE;
1724 #endif
1725 else
1726 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1727
1728 return 0;
1729 }
1730 early_param("percpu_alloc", percpu_alloc_setup);
1731
1732 /*
1733 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1734 * Build it if needed by the arch config or the generic setup is going
1735 * to be used.
1736 */
1737 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1738 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1739 #define BUILD_EMBED_FIRST_CHUNK
1740 #endif
1741
1742 /* build pcpu_page_first_chunk() iff needed by the arch config */
1743 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1744 #define BUILD_PAGE_FIRST_CHUNK
1745 #endif
1746
1747 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1748 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1749 /**
1750 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1751 * @reserved_size: the size of reserved percpu area in bytes
1752 * @dyn_size: minimum free size for dynamic allocation in bytes
1753 * @atom_size: allocation atom size
1754 * @cpu_distance_fn: callback to determine distance between cpus, optional
1755 *
1756 * This function determines grouping of units, their mappings to cpus
1757 * and other parameters considering needed percpu size, allocation
1758 * atom size and distances between CPUs.
1759 *
1760 * Groups are always multiples of atom size and CPUs which are of
1761 * LOCAL_DISTANCE both ways are grouped together and share space for
1762 * units in the same group. The returned configuration is guaranteed
1763 * to have CPUs on different nodes on different groups and >=75% usage
1764 * of allocated virtual address space.
1765 *
1766 * RETURNS:
1767 * On success, pointer to the new allocation_info is returned. On
1768 * failure, ERR_PTR value is returned.
1769 */
1770 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1771 size_t reserved_size, size_t dyn_size,
1772 size_t atom_size,
1773 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1774 {
1775 static int group_map[NR_CPUS] __initdata;
1776 static int group_cnt[NR_CPUS] __initdata;
1777 const size_t static_size = __per_cpu_end - __per_cpu_start;
1778 int nr_groups = 1, nr_units = 0;
1779 size_t size_sum, min_unit_size, alloc_size;
1780 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1781 int last_allocs, group, unit;
1782 unsigned int cpu, tcpu;
1783 struct pcpu_alloc_info *ai;
1784 unsigned int *cpu_map;
1785
1786 /* this function may be called multiple times */
1787 memset(group_map, 0, sizeof(group_map));
1788 memset(group_cnt, 0, sizeof(group_cnt));
1789
1790 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1791 size_sum = PFN_ALIGN(static_size + reserved_size +
1792 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1793 dyn_size = size_sum - static_size - reserved_size;
1794
1795 /*
1796 * Determine min_unit_size, alloc_size and max_upa such that
1797 * alloc_size is multiple of atom_size and is the smallest
1798 * which can accommodate 4k aligned segments which are equal to
1799 * or larger than min_unit_size.
1800 */
1801 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1802
1803 alloc_size = roundup(min_unit_size, atom_size);
1804 upa = alloc_size / min_unit_size;
1805 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1806 upa--;
1807 max_upa = upa;
1808
1809 /* group cpus according to their proximity */
1810 for_each_possible_cpu(cpu) {
1811 group = 0;
1812 next_group:
1813 for_each_possible_cpu(tcpu) {
1814 if (cpu == tcpu)
1815 break;
1816 if (group_map[tcpu] == group && cpu_distance_fn &&
1817 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1818 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1819 group++;
1820 nr_groups = max(nr_groups, group + 1);
1821 goto next_group;
1822 }
1823 }
1824 group_map[cpu] = group;
1825 group_cnt[group]++;
1826 }
1827
1828 /*
1829 * Expand unit size until address space usage goes over 75%
1830 * and then as much as possible without using more address
1831 * space.
1832 */
1833 last_allocs = INT_MAX;
1834 for (upa = max_upa; upa; upa--) {
1835 int allocs = 0, wasted = 0;
1836
1837 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1838 continue;
1839
1840 for (group = 0; group < nr_groups; group++) {
1841 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1842 allocs += this_allocs;
1843 wasted += this_allocs * upa - group_cnt[group];
1844 }
1845
1846 /*
1847 * Don't accept if wastage is over 1/3. The
1848 * greater-than comparison ensures upa==1 always
1849 * passes the following check.
1850 */
1851 if (wasted > num_possible_cpus() / 3)
1852 continue;
1853
1854 /* and then don't consume more memory */
1855 if (allocs > last_allocs)
1856 break;
1857 last_allocs = allocs;
1858 best_upa = upa;
1859 }
1860 upa = best_upa;
1861
1862 /* allocate and fill alloc_info */
1863 for (group = 0; group < nr_groups; group++)
1864 nr_units += roundup(group_cnt[group], upa);
1865
1866 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1867 if (!ai)
1868 return ERR_PTR(-ENOMEM);
1869 cpu_map = ai->groups[0].cpu_map;
1870
1871 for (group = 0; group < nr_groups; group++) {
1872 ai->groups[group].cpu_map = cpu_map;
1873 cpu_map += roundup(group_cnt[group], upa);
1874 }
1875
1876 ai->static_size = static_size;
1877 ai->reserved_size = reserved_size;
1878 ai->dyn_size = dyn_size;
1879 ai->unit_size = alloc_size / upa;
1880 ai->atom_size = atom_size;
1881 ai->alloc_size = alloc_size;
1882
1883 for (group = 0, unit = 0; group_cnt[group]; group++) {
1884 struct pcpu_group_info *gi = &ai->groups[group];
1885
1886 /*
1887 * Initialize base_offset as if all groups are located
1888 * back-to-back. The caller should update this to
1889 * reflect actual allocation.
1890 */
1891 gi->base_offset = unit * ai->unit_size;
1892
1893 for_each_possible_cpu(cpu)
1894 if (group_map[cpu] == group)
1895 gi->cpu_map[gi->nr_units++] = cpu;
1896 gi->nr_units = roundup(gi->nr_units, upa);
1897 unit += gi->nr_units;
1898 }
1899 BUG_ON(unit != nr_units);
1900
1901 return ai;
1902 }
1903 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1904
1905 #if defined(BUILD_EMBED_FIRST_CHUNK)
1906 /**
1907 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1908 * @reserved_size: the size of reserved percpu area in bytes
1909 * @dyn_size: minimum free size for dynamic allocation in bytes
1910 * @atom_size: allocation atom size
1911 * @cpu_distance_fn: callback to determine distance between cpus, optional
1912 * @alloc_fn: function to allocate percpu page
1913 * @free_fn: function to free percpu page
1914 *
1915 * This is a helper to ease setting up embedded first percpu chunk and
1916 * can be called where pcpu_setup_first_chunk() is expected.
1917 *
1918 * If this function is used to setup the first chunk, it is allocated
1919 * by calling @alloc_fn and used as-is without being mapped into
1920 * vmalloc area. Allocations are always whole multiples of @atom_size
1921 * aligned to @atom_size.
1922 *
1923 * This enables the first chunk to piggy back on the linear physical
1924 * mapping which often uses larger page size. Please note that this
1925 * can result in very sparse cpu->unit mapping on NUMA machines thus
1926 * requiring large vmalloc address space. Don't use this allocator if
1927 * vmalloc space is not orders of magnitude larger than distances
1928 * between node memory addresses (ie. 32bit NUMA machines).
1929 *
1930 * @dyn_size specifies the minimum dynamic area size.
1931 *
1932 * If the needed size is smaller than the minimum or specified unit
1933 * size, the leftover is returned using @free_fn.
1934 *
1935 * RETURNS:
1936 * 0 on success, -errno on failure.
1937 */
1938 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1939 size_t atom_size,
1940 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1941 pcpu_fc_alloc_fn_t alloc_fn,
1942 pcpu_fc_free_fn_t free_fn)
1943 {
1944 void *base = (void *)ULONG_MAX;
1945 void **areas = NULL;
1946 struct pcpu_alloc_info *ai;
1947 size_t size_sum, areas_size, max_distance;
1948 int group, i, rc;
1949
1950 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1951 cpu_distance_fn);
1952 if (IS_ERR(ai))
1953 return PTR_ERR(ai);
1954
1955 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1956 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1957
1958 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1959 if (!areas) {
1960 rc = -ENOMEM;
1961 goto out_free;
1962 }
1963
1964 /* allocate, copy and determine base address */
1965 for (group = 0; group < ai->nr_groups; group++) {
1966 struct pcpu_group_info *gi = &ai->groups[group];
1967 unsigned int cpu = NR_CPUS;
1968 void *ptr;
1969
1970 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1971 cpu = gi->cpu_map[i];
1972 BUG_ON(cpu == NR_CPUS);
1973
1974 /* allocate space for the whole group */
1975 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1976 if (!ptr) {
1977 rc = -ENOMEM;
1978 goto out_free_areas;
1979 }
1980 /* kmemleak tracks the percpu allocations separately */
1981 kmemleak_free(ptr);
1982 areas[group] = ptr;
1983
1984 base = min(ptr, base);
1985 }
1986
1987 /*
1988 * Copy data and free unused parts. This should happen after all
1989 * allocations are complete; otherwise, we may end up with
1990 * overlapping groups.
1991 */
1992 for (group = 0; group < ai->nr_groups; group++) {
1993 struct pcpu_group_info *gi = &ai->groups[group];
1994 void *ptr = areas[group];
1995
1996 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1997 if (gi->cpu_map[i] == NR_CPUS) {
1998 /* unused unit, free whole */
1999 free_fn(ptr, ai->unit_size);
2000 continue;
2001 }
2002 /* copy and return the unused part */
2003 memcpy(ptr, __per_cpu_load, ai->static_size);
2004 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2005 }
2006 }
2007
2008 /* base address is now known, determine group base offsets */
2009 max_distance = 0;
2010 for (group = 0; group < ai->nr_groups; group++) {
2011 ai->groups[group].base_offset = areas[group] - base;
2012 max_distance = max_t(size_t, max_distance,
2013 ai->groups[group].base_offset);
2014 }
2015 max_distance += ai->unit_size;
2016
2017 /* warn if maximum distance is further than 75% of vmalloc space */
2018 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2019 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2020 "space 0x%lx\n", max_distance,
2021 VMALLOC_TOTAL);
2022 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2023 /* and fail if we have fallback */
2024 rc = -EINVAL;
2025 goto out_free;
2026 #endif
2027 }
2028
2029 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2030 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2031 ai->dyn_size, ai->unit_size);
2032
2033 rc = pcpu_setup_first_chunk(ai, base);
2034 goto out_free;
2035
2036 out_free_areas:
2037 for (group = 0; group < ai->nr_groups; group++)
2038 if (areas[group])
2039 free_fn(areas[group],
2040 ai->groups[group].nr_units * ai->unit_size);
2041 out_free:
2042 pcpu_free_alloc_info(ai);
2043 if (areas)
2044 memblock_free_early(__pa(areas), areas_size);
2045 return rc;
2046 }
2047 #endif /* BUILD_EMBED_FIRST_CHUNK */
2048
2049 #ifdef BUILD_PAGE_FIRST_CHUNK
2050 /**
2051 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2052 * @reserved_size: the size of reserved percpu area in bytes
2053 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2054 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2055 * @populate_pte_fn: function to populate pte
2056 *
2057 * This is a helper to ease setting up page-remapped first percpu
2058 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2059 *
2060 * This is the basic allocator. Static percpu area is allocated
2061 * page-by-page into vmalloc area.
2062 *
2063 * RETURNS:
2064 * 0 on success, -errno on failure.
2065 */
2066 int __init pcpu_page_first_chunk(size_t reserved_size,
2067 pcpu_fc_alloc_fn_t alloc_fn,
2068 pcpu_fc_free_fn_t free_fn,
2069 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2070 {
2071 static struct vm_struct vm;
2072 struct pcpu_alloc_info *ai;
2073 char psize_str[16];
2074 int unit_pages;
2075 size_t pages_size;
2076 struct page **pages;
2077 int unit, i, j, rc;
2078
2079 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2080
2081 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2082 if (IS_ERR(ai))
2083 return PTR_ERR(ai);
2084 BUG_ON(ai->nr_groups != 1);
2085 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2086
2087 unit_pages = ai->unit_size >> PAGE_SHIFT;
2088
2089 /* unaligned allocations can't be freed, round up to page size */
2090 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2091 sizeof(pages[0]));
2092 pages = memblock_virt_alloc(pages_size, 0);
2093
2094 /* allocate pages */
2095 j = 0;
2096 for (unit = 0; unit < num_possible_cpus(); unit++)
2097 for (i = 0; i < unit_pages; i++) {
2098 unsigned int cpu = ai->groups[0].cpu_map[unit];
2099 void *ptr;
2100
2101 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2102 if (!ptr) {
2103 pr_warning("PERCPU: failed to allocate %s page "
2104 "for cpu%u\n", psize_str, cpu);
2105 goto enomem;
2106 }
2107 /* kmemleak tracks the percpu allocations separately */
2108 kmemleak_free(ptr);
2109 pages[j++] = virt_to_page(ptr);
2110 }
2111
2112 /* allocate vm area, map the pages and copy static data */
2113 vm.flags = VM_ALLOC;
2114 vm.size = num_possible_cpus() * ai->unit_size;
2115 vm_area_register_early(&vm, PAGE_SIZE);
2116
2117 for (unit = 0; unit < num_possible_cpus(); unit++) {
2118 unsigned long unit_addr =
2119 (unsigned long)vm.addr + unit * ai->unit_size;
2120
2121 for (i = 0; i < unit_pages; i++)
2122 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2123
2124 /* pte already populated, the following shouldn't fail */
2125 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2126 unit_pages);
2127 if (rc < 0)
2128 panic("failed to map percpu area, err=%d\n", rc);
2129
2130 /*
2131 * FIXME: Archs with virtual cache should flush local
2132 * cache for the linear mapping here - something
2133 * equivalent to flush_cache_vmap() on the local cpu.
2134 * flush_cache_vmap() can't be used as most supporting
2135 * data structures are not set up yet.
2136 */
2137
2138 /* copy static data */
2139 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2140 }
2141
2142 /* we're ready, commit */
2143 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2144 unit_pages, psize_str, vm.addr, ai->static_size,
2145 ai->reserved_size, ai->dyn_size);
2146
2147 rc = pcpu_setup_first_chunk(ai, vm.addr);
2148 goto out_free_ar;
2149
2150 enomem:
2151 while (--j >= 0)
2152 free_fn(page_address(pages[j]), PAGE_SIZE);
2153 rc = -ENOMEM;
2154 out_free_ar:
2155 memblock_free_early(__pa(pages), pages_size);
2156 pcpu_free_alloc_info(ai);
2157 return rc;
2158 }
2159 #endif /* BUILD_PAGE_FIRST_CHUNK */
2160
2161 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2162 /*
2163 * Generic SMP percpu area setup.
2164 *
2165 * The embedding helper is used because its behavior closely resembles
2166 * the original non-dynamic generic percpu area setup. This is
2167 * important because many archs have addressing restrictions and might
2168 * fail if the percpu area is located far away from the previous
2169 * location. As an added bonus, in non-NUMA cases, embedding is
2170 * generally a good idea TLB-wise because percpu area can piggy back
2171 * on the physical linear memory mapping which uses large page
2172 * mappings on applicable archs.
2173 */
2174 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2175 EXPORT_SYMBOL(__per_cpu_offset);
2176
2177 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2178 size_t align)
2179 {
2180 return memblock_virt_alloc_from_nopanic(
2181 size, align, __pa(MAX_DMA_ADDRESS));
2182 }
2183
2184 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2185 {
2186 memblock_free_early(__pa(ptr), size);
2187 }
2188
2189 void __init setup_per_cpu_areas(void)
2190 {
2191 unsigned long delta;
2192 unsigned int cpu;
2193 int rc;
2194
2195 /*
2196 * Always reserve area for module percpu variables. That's
2197 * what the legacy allocator did.
2198 */
2199 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2200 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2201 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2202 if (rc < 0)
2203 panic("Failed to initialize percpu areas.");
2204
2205 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2206 for_each_possible_cpu(cpu)
2207 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2208 }
2209 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2210
2211 #else /* CONFIG_SMP */
2212
2213 /*
2214 * UP percpu area setup.
2215 *
2216 * UP always uses km-based percpu allocator with identity mapping.
2217 * Static percpu variables are indistinguishable from the usual static
2218 * variables and don't require any special preparation.
2219 */
2220 void __init setup_per_cpu_areas(void)
2221 {
2222 const size_t unit_size =
2223 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2224 PERCPU_DYNAMIC_RESERVE));
2225 struct pcpu_alloc_info *ai;
2226 void *fc;
2227
2228 ai = pcpu_alloc_alloc_info(1, 1);
2229 fc = memblock_virt_alloc_from_nopanic(unit_size,
2230 PAGE_SIZE,
2231 __pa(MAX_DMA_ADDRESS));
2232 if (!ai || !fc)
2233 panic("Failed to allocate memory for percpu areas.");
2234 /* kmemleak tracks the percpu allocations separately */
2235 kmemleak_free(fc);
2236
2237 ai->dyn_size = unit_size;
2238 ai->unit_size = unit_size;
2239 ai->atom_size = unit_size;
2240 ai->alloc_size = unit_size;
2241 ai->groups[0].nr_units = 1;
2242 ai->groups[0].cpu_map[0] = 0;
2243
2244 if (pcpu_setup_first_chunk(ai, fc) < 0)
2245 panic("Failed to initialize percpu areas.");
2246 }
2247
2248 #endif /* CONFIG_SMP */
2249
2250 /*
2251 * First and reserved chunks are initialized with temporary allocation
2252 * map in initdata so that they can be used before slab is online.
2253 * This function is called after slab is brought up and replaces those
2254 * with properly allocated maps.
2255 */
2256 void __init percpu_init_late(void)
2257 {
2258 struct pcpu_chunk *target_chunks[] =
2259 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2260 struct pcpu_chunk *chunk;
2261 unsigned long flags;
2262 int i;
2263
2264 for (i = 0; (chunk = target_chunks[i]); i++) {
2265 int *map;
2266 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2267
2268 BUILD_BUG_ON(size > PAGE_SIZE);
2269
2270 map = pcpu_mem_zalloc(size);
2271 BUG_ON(!map);
2272
2273 spin_lock_irqsave(&pcpu_lock, flags);
2274 memcpy(map, chunk->map, size);
2275 chunk->map = map;
2276 spin_unlock_irqrestore(&pcpu_lock, flags);
2277 }
2278 }
2279
2280 /*
2281 * Percpu allocator is initialized early during boot when neither slab or
2282 * workqueue is available. Plug async management until everything is up
2283 * and running.
2284 */
2285 static int __init percpu_enable_async(void)
2286 {
2287 pcpu_async_enabled = true;
2288 return 0;
2289 }
2290 subsys_initcall(percpu_enable_async);
This page took 0.080255 seconds and 5 git commands to generate.