mm: rmap use pte lock not mmap_sem to set PageMlocked
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
41 *
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
43 * ->tasklist_lock
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 #include <linux/page_idle.h>
63
64 #include <asm/tlbflush.h>
65
66 #include <trace/events/tlb.h>
67
68 #include "internal.h"
69
70 static struct kmem_cache *anon_vma_cachep;
71 static struct kmem_cache *anon_vma_chain_cachep;
72
73 static inline struct anon_vma *anon_vma_alloc(void)
74 {
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
90 }
91
92 static inline void anon_vma_free(struct anon_vma *anon_vma)
93 {
94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
95
96 /*
97 * Synchronize against page_lock_anon_vma_read() such that
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
104 *
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
107 * LOCK MB
108 * atomic_read() rwsem_is_locked()
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
113 might_sleep();
114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115 anon_vma_lock_write(anon_vma);
116 anon_vma_unlock_write(anon_vma);
117 }
118
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120 }
121
122 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
123 {
124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
125 }
126
127 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
128 {
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130 }
131
132 static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135 {
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
140 }
141
142 /**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
169 int anon_vma_prepare(struct vm_area_struct *vma)
170 {
171 struct anon_vma *anon_vma = vma->anon_vma;
172 struct anon_vma_chain *avc;
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *allocated;
178
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
191
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
205
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
210 }
211 return 0;
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
217 }
218
219 /*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228 {
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 up_write(&root->rwsem);
233 root = new_root;
234 down_write(&root->rwsem);
235 }
236 return root;
237 }
238
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
240 {
241 if (root)
242 up_write(&root->rwsem);
243 }
244
245 /*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258 {
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
261
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
264
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
288 }
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
293
294 enomem_failure:
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
304 }
305
306 /*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312 {
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
315 int error;
316
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
331
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
340 avc = anon_vma_chain_alloc(GFP_KERNEL);
341 if (!avc)
342 goto out_error_free_anon_vma;
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
349 anon_vma->parent = pvma->anon_vma;
350 /*
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
354 */
355 get_anon_vma(anon_vma->root);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
358 anon_vma_lock_write(anon_vma);
359 anon_vma_chain_link(vma, avc, anon_vma);
360 anon_vma->parent->degree++;
361 anon_vma_unlock_write(anon_vma);
362
363 return 0;
364
365 out_error_free_anon_vma:
366 put_anon_vma(anon_vma);
367 out_error:
368 unlink_anon_vmas(vma);
369 return -ENOMEM;
370 }
371
372 void unlink_anon_vmas(struct vm_area_struct *vma)
373 {
374 struct anon_vma_chain *avc, *next;
375 struct anon_vma *root = NULL;
376
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
393 continue;
394 }
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
411 BUG_ON(anon_vma->degree);
412 put_anon_vma(anon_vma);
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417 }
418
419 static void anon_vma_ctor(void *data)
420 {
421 struct anon_vma *anon_vma = data;
422
423 init_rwsem(&anon_vma->rwsem);
424 atomic_set(&anon_vma->refcount, 0);
425 anon_vma->rb_root = RB_ROOT;
426 }
427
428 void __init anon_vma_init(void)
429 {
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
432 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
433 }
434
435 /*
436 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
437 *
438 * Since there is no serialization what so ever against page_remove_rmap()
439 * the best this function can do is return a locked anon_vma that might
440 * have been relevant to this page.
441 *
442 * The page might have been remapped to a different anon_vma or the anon_vma
443 * returned may already be freed (and even reused).
444 *
445 * In case it was remapped to a different anon_vma, the new anon_vma will be a
446 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
447 * ensure that any anon_vma obtained from the page will still be valid for as
448 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
449 *
450 * All users of this function must be very careful when walking the anon_vma
451 * chain and verify that the page in question is indeed mapped in it
452 * [ something equivalent to page_mapped_in_vma() ].
453 *
454 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
455 * that the anon_vma pointer from page->mapping is valid if there is a
456 * mapcount, we can dereference the anon_vma after observing those.
457 */
458 struct anon_vma *page_get_anon_vma(struct page *page)
459 {
460 struct anon_vma *anon_vma = NULL;
461 unsigned long anon_mapping;
462
463 rcu_read_lock();
464 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
465 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
466 goto out;
467 if (!page_mapped(page))
468 goto out;
469
470 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
471 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
472 anon_vma = NULL;
473 goto out;
474 }
475
476 /*
477 * If this page is still mapped, then its anon_vma cannot have been
478 * freed. But if it has been unmapped, we have no security against the
479 * anon_vma structure being freed and reused (for another anon_vma:
480 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
481 * above cannot corrupt).
482 */
483 if (!page_mapped(page)) {
484 rcu_read_unlock();
485 put_anon_vma(anon_vma);
486 return NULL;
487 }
488 out:
489 rcu_read_unlock();
490
491 return anon_vma;
492 }
493
494 /*
495 * Similar to page_get_anon_vma() except it locks the anon_vma.
496 *
497 * Its a little more complex as it tries to keep the fast path to a single
498 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
499 * reference like with page_get_anon_vma() and then block on the mutex.
500 */
501 struct anon_vma *page_lock_anon_vma_read(struct page *page)
502 {
503 struct anon_vma *anon_vma = NULL;
504 struct anon_vma *root_anon_vma;
505 unsigned long anon_mapping;
506
507 rcu_read_lock();
508 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
509 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
510 goto out;
511 if (!page_mapped(page))
512 goto out;
513
514 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
515 root_anon_vma = READ_ONCE(anon_vma->root);
516 if (down_read_trylock(&root_anon_vma->rwsem)) {
517 /*
518 * If the page is still mapped, then this anon_vma is still
519 * its anon_vma, and holding the mutex ensures that it will
520 * not go away, see anon_vma_free().
521 */
522 if (!page_mapped(page)) {
523 up_read(&root_anon_vma->rwsem);
524 anon_vma = NULL;
525 }
526 goto out;
527 }
528
529 /* trylock failed, we got to sleep */
530 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
531 anon_vma = NULL;
532 goto out;
533 }
534
535 if (!page_mapped(page)) {
536 rcu_read_unlock();
537 put_anon_vma(anon_vma);
538 return NULL;
539 }
540
541 /* we pinned the anon_vma, its safe to sleep */
542 rcu_read_unlock();
543 anon_vma_lock_read(anon_vma);
544
545 if (atomic_dec_and_test(&anon_vma->refcount)) {
546 /*
547 * Oops, we held the last refcount, release the lock
548 * and bail -- can't simply use put_anon_vma() because
549 * we'll deadlock on the anon_vma_lock_write() recursion.
550 */
551 anon_vma_unlock_read(anon_vma);
552 __put_anon_vma(anon_vma);
553 anon_vma = NULL;
554 }
555
556 return anon_vma;
557
558 out:
559 rcu_read_unlock();
560 return anon_vma;
561 }
562
563 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
564 {
565 anon_vma_unlock_read(anon_vma);
566 }
567
568 /*
569 * At what user virtual address is page expected in @vma?
570 */
571 static inline unsigned long
572 __vma_address(struct page *page, struct vm_area_struct *vma)
573 {
574 pgoff_t pgoff = page_to_pgoff(page);
575 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
576 }
577
578 inline unsigned long
579 vma_address(struct page *page, struct vm_area_struct *vma)
580 {
581 unsigned long address = __vma_address(page, vma);
582
583 /* page should be within @vma mapping range */
584 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
585
586 return address;
587 }
588
589 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
590 static void percpu_flush_tlb_batch_pages(void *data)
591 {
592 /*
593 * All TLB entries are flushed on the assumption that it is
594 * cheaper to flush all TLBs and let them be refilled than
595 * flushing individual PFNs. Note that we do not track mm's
596 * to flush as that might simply be multiple full TLB flushes
597 * for no gain.
598 */
599 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
600 flush_tlb_local();
601 }
602
603 /*
604 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
605 * important if a PTE was dirty when it was unmapped that it's flushed
606 * before any IO is initiated on the page to prevent lost writes. Similarly,
607 * it must be flushed before freeing to prevent data leakage.
608 */
609 void try_to_unmap_flush(void)
610 {
611 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
612 int cpu;
613
614 if (!tlb_ubc->flush_required)
615 return;
616
617 cpu = get_cpu();
618
619 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
620
621 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
622 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
623
624 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
625 smp_call_function_many(&tlb_ubc->cpumask,
626 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
627 }
628 cpumask_clear(&tlb_ubc->cpumask);
629 tlb_ubc->flush_required = false;
630 tlb_ubc->writable = false;
631 put_cpu();
632 }
633
634 /* Flush iff there are potentially writable TLB entries that can race with IO */
635 void try_to_unmap_flush_dirty(void)
636 {
637 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
638
639 if (tlb_ubc->writable)
640 try_to_unmap_flush();
641 }
642
643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
644 struct page *page, bool writable)
645 {
646 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647
648 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
649 tlb_ubc->flush_required = true;
650
651 /*
652 * If the PTE was dirty then it's best to assume it's writable. The
653 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
654 * before the page is queued for IO.
655 */
656 if (writable)
657 tlb_ubc->writable = true;
658 }
659
660 /*
661 * Returns true if the TLB flush should be deferred to the end of a batch of
662 * unmap operations to reduce IPIs.
663 */
664 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
665 {
666 bool should_defer = false;
667
668 if (!(flags & TTU_BATCH_FLUSH))
669 return false;
670
671 /* If remote CPUs need to be flushed then defer batch the flush */
672 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
673 should_defer = true;
674 put_cpu();
675
676 return should_defer;
677 }
678 #else
679 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
680 struct page *page, bool writable)
681 {
682 }
683
684 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
685 {
686 return false;
687 }
688 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
689
690 /*
691 * At what user virtual address is page expected in vma?
692 * Caller should check the page is actually part of the vma.
693 */
694 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
695 {
696 unsigned long address;
697 if (PageAnon(page)) {
698 struct anon_vma *page__anon_vma = page_anon_vma(page);
699 /*
700 * Note: swapoff's unuse_vma() is more efficient with this
701 * check, and needs it to match anon_vma when KSM is active.
702 */
703 if (!vma->anon_vma || !page__anon_vma ||
704 vma->anon_vma->root != page__anon_vma->root)
705 return -EFAULT;
706 } else if (page->mapping) {
707 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
708 return -EFAULT;
709 } else
710 return -EFAULT;
711 address = __vma_address(page, vma);
712 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
713 return -EFAULT;
714 return address;
715 }
716
717 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
718 {
719 pgd_t *pgd;
720 pud_t *pud;
721 pmd_t *pmd = NULL;
722 pmd_t pmde;
723
724 pgd = pgd_offset(mm, address);
725 if (!pgd_present(*pgd))
726 goto out;
727
728 pud = pud_offset(pgd, address);
729 if (!pud_present(*pud))
730 goto out;
731
732 pmd = pmd_offset(pud, address);
733 /*
734 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
735 * without holding anon_vma lock for write. So when looking for a
736 * genuine pmde (in which to find pte), test present and !THP together.
737 */
738 pmde = *pmd;
739 barrier();
740 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
741 pmd = NULL;
742 out:
743 return pmd;
744 }
745
746 /*
747 * Check that @page is mapped at @address into @mm.
748 *
749 * If @sync is false, page_check_address may perform a racy check to avoid
750 * the page table lock when the pte is not present (helpful when reclaiming
751 * highly shared pages).
752 *
753 * On success returns with pte mapped and locked.
754 */
755 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
756 unsigned long address, spinlock_t **ptlp, int sync)
757 {
758 pmd_t *pmd;
759 pte_t *pte;
760 spinlock_t *ptl;
761
762 if (unlikely(PageHuge(page))) {
763 /* when pud is not present, pte will be NULL */
764 pte = huge_pte_offset(mm, address);
765 if (!pte)
766 return NULL;
767
768 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
769 goto check;
770 }
771
772 pmd = mm_find_pmd(mm, address);
773 if (!pmd)
774 return NULL;
775
776 pte = pte_offset_map(pmd, address);
777 /* Make a quick check before getting the lock */
778 if (!sync && !pte_present(*pte)) {
779 pte_unmap(pte);
780 return NULL;
781 }
782
783 ptl = pte_lockptr(mm, pmd);
784 check:
785 spin_lock(ptl);
786 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
787 *ptlp = ptl;
788 return pte;
789 }
790 pte_unmap_unlock(pte, ptl);
791 return NULL;
792 }
793
794 /**
795 * page_mapped_in_vma - check whether a page is really mapped in a VMA
796 * @page: the page to test
797 * @vma: the VMA to test
798 *
799 * Returns 1 if the page is mapped into the page tables of the VMA, 0
800 * if the page is not mapped into the page tables of this VMA. Only
801 * valid for normal file or anonymous VMAs.
802 */
803 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
804 {
805 unsigned long address;
806 pte_t *pte;
807 spinlock_t *ptl;
808
809 address = __vma_address(page, vma);
810 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
811 return 0;
812 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
813 if (!pte) /* the page is not in this mm */
814 return 0;
815 pte_unmap_unlock(pte, ptl);
816
817 return 1;
818 }
819
820 struct page_referenced_arg {
821 int mapcount;
822 int referenced;
823 unsigned long vm_flags;
824 struct mem_cgroup *memcg;
825 };
826 /*
827 * arg: page_referenced_arg will be passed
828 */
829 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
830 unsigned long address, void *arg)
831 {
832 struct mm_struct *mm = vma->vm_mm;
833 spinlock_t *ptl;
834 int referenced = 0;
835 struct page_referenced_arg *pra = arg;
836
837 if (unlikely(PageTransHuge(page))) {
838 pmd_t *pmd;
839
840 /*
841 * rmap might return false positives; we must filter
842 * these out using page_check_address_pmd().
843 */
844 pmd = page_check_address_pmd(page, mm, address,
845 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
846 if (!pmd)
847 return SWAP_AGAIN;
848
849 if (vma->vm_flags & VM_LOCKED) {
850 spin_unlock(ptl);
851 pra->vm_flags |= VM_LOCKED;
852 return SWAP_FAIL; /* To break the loop */
853 }
854
855 /* go ahead even if the pmd is pmd_trans_splitting() */
856 if (pmdp_clear_flush_young_notify(vma, address, pmd))
857 referenced++;
858 spin_unlock(ptl);
859 } else {
860 pte_t *pte;
861
862 /*
863 * rmap might return false positives; we must filter
864 * these out using page_check_address().
865 */
866 pte = page_check_address(page, mm, address, &ptl, 0);
867 if (!pte)
868 return SWAP_AGAIN;
869
870 if (vma->vm_flags & VM_LOCKED) {
871 pte_unmap_unlock(pte, ptl);
872 pra->vm_flags |= VM_LOCKED;
873 return SWAP_FAIL; /* To break the loop */
874 }
875
876 if (ptep_clear_flush_young_notify(vma, address, pte)) {
877 /*
878 * Don't treat a reference through a sequentially read
879 * mapping as such. If the page has been used in
880 * another mapping, we will catch it; if this other
881 * mapping is already gone, the unmap path will have
882 * set PG_referenced or activated the page.
883 */
884 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
885 referenced++;
886 }
887 pte_unmap_unlock(pte, ptl);
888 }
889
890 if (referenced)
891 clear_page_idle(page);
892 if (test_and_clear_page_young(page))
893 referenced++;
894
895 if (referenced) {
896 pra->referenced++;
897 pra->vm_flags |= vma->vm_flags;
898 }
899
900 pra->mapcount--;
901 if (!pra->mapcount)
902 return SWAP_SUCCESS; /* To break the loop */
903
904 return SWAP_AGAIN;
905 }
906
907 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
908 {
909 struct page_referenced_arg *pra = arg;
910 struct mem_cgroup *memcg = pra->memcg;
911
912 if (!mm_match_cgroup(vma->vm_mm, memcg))
913 return true;
914
915 return false;
916 }
917
918 /**
919 * page_referenced - test if the page was referenced
920 * @page: the page to test
921 * @is_locked: caller holds lock on the page
922 * @memcg: target memory cgroup
923 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
924 *
925 * Quick test_and_clear_referenced for all mappings to a page,
926 * returns the number of ptes which referenced the page.
927 */
928 int page_referenced(struct page *page,
929 int is_locked,
930 struct mem_cgroup *memcg,
931 unsigned long *vm_flags)
932 {
933 int ret;
934 int we_locked = 0;
935 struct page_referenced_arg pra = {
936 .mapcount = page_mapcount(page),
937 .memcg = memcg,
938 };
939 struct rmap_walk_control rwc = {
940 .rmap_one = page_referenced_one,
941 .arg = (void *)&pra,
942 .anon_lock = page_lock_anon_vma_read,
943 };
944
945 *vm_flags = 0;
946 if (!page_mapped(page))
947 return 0;
948
949 if (!page_rmapping(page))
950 return 0;
951
952 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
953 we_locked = trylock_page(page);
954 if (!we_locked)
955 return 1;
956 }
957
958 /*
959 * If we are reclaiming on behalf of a cgroup, skip
960 * counting on behalf of references from different
961 * cgroups
962 */
963 if (memcg) {
964 rwc.invalid_vma = invalid_page_referenced_vma;
965 }
966
967 ret = rmap_walk(page, &rwc);
968 *vm_flags = pra.vm_flags;
969
970 if (we_locked)
971 unlock_page(page);
972
973 return pra.referenced;
974 }
975
976 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
977 unsigned long address, void *arg)
978 {
979 struct mm_struct *mm = vma->vm_mm;
980 pte_t *pte;
981 spinlock_t *ptl;
982 int ret = 0;
983 int *cleaned = arg;
984
985 pte = page_check_address(page, mm, address, &ptl, 1);
986 if (!pte)
987 goto out;
988
989 if (pte_dirty(*pte) || pte_write(*pte)) {
990 pte_t entry;
991
992 flush_cache_page(vma, address, pte_pfn(*pte));
993 entry = ptep_clear_flush(vma, address, pte);
994 entry = pte_wrprotect(entry);
995 entry = pte_mkclean(entry);
996 set_pte_at(mm, address, pte, entry);
997 ret = 1;
998 }
999
1000 pte_unmap_unlock(pte, ptl);
1001
1002 if (ret) {
1003 mmu_notifier_invalidate_page(mm, address);
1004 (*cleaned)++;
1005 }
1006 out:
1007 return SWAP_AGAIN;
1008 }
1009
1010 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1011 {
1012 if (vma->vm_flags & VM_SHARED)
1013 return false;
1014
1015 return true;
1016 }
1017
1018 int page_mkclean(struct page *page)
1019 {
1020 int cleaned = 0;
1021 struct address_space *mapping;
1022 struct rmap_walk_control rwc = {
1023 .arg = (void *)&cleaned,
1024 .rmap_one = page_mkclean_one,
1025 .invalid_vma = invalid_mkclean_vma,
1026 };
1027
1028 BUG_ON(!PageLocked(page));
1029
1030 if (!page_mapped(page))
1031 return 0;
1032
1033 mapping = page_mapping(page);
1034 if (!mapping)
1035 return 0;
1036
1037 rmap_walk(page, &rwc);
1038
1039 return cleaned;
1040 }
1041 EXPORT_SYMBOL_GPL(page_mkclean);
1042
1043 /**
1044 * page_move_anon_rmap - move a page to our anon_vma
1045 * @page: the page to move to our anon_vma
1046 * @vma: the vma the page belongs to
1047 * @address: the user virtual address mapped
1048 *
1049 * When a page belongs exclusively to one process after a COW event,
1050 * that page can be moved into the anon_vma that belongs to just that
1051 * process, so the rmap code will not search the parent or sibling
1052 * processes.
1053 */
1054 void page_move_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address)
1056 {
1057 struct anon_vma *anon_vma = vma->anon_vma;
1058
1059 VM_BUG_ON_PAGE(!PageLocked(page), page);
1060 VM_BUG_ON_VMA(!anon_vma, vma);
1061 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1062
1063 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1064 /*
1065 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1066 * simultaneously, so a concurrent reader (eg page_referenced()'s
1067 * PageAnon()) will not see one without the other.
1068 */
1069 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1070 }
1071
1072 /**
1073 * __page_set_anon_rmap - set up new anonymous rmap
1074 * @page: Page to add to rmap
1075 * @vma: VM area to add page to.
1076 * @address: User virtual address of the mapping
1077 * @exclusive: the page is exclusively owned by the current process
1078 */
1079 static void __page_set_anon_rmap(struct page *page,
1080 struct vm_area_struct *vma, unsigned long address, int exclusive)
1081 {
1082 struct anon_vma *anon_vma = vma->anon_vma;
1083
1084 BUG_ON(!anon_vma);
1085
1086 if (PageAnon(page))
1087 return;
1088
1089 /*
1090 * If the page isn't exclusively mapped into this vma,
1091 * we must use the _oldest_ possible anon_vma for the
1092 * page mapping!
1093 */
1094 if (!exclusive)
1095 anon_vma = anon_vma->root;
1096
1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098 page->mapping = (struct address_space *) anon_vma;
1099 page->index = linear_page_index(vma, address);
1100 }
1101
1102 /**
1103 * __page_check_anon_rmap - sanity check anonymous rmap addition
1104 * @page: the page to add the mapping to
1105 * @vma: the vm area in which the mapping is added
1106 * @address: the user virtual address mapped
1107 */
1108 static void __page_check_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1110 {
1111 #ifdef CONFIG_DEBUG_VM
1112 /*
1113 * The page's anon-rmap details (mapping and index) are guaranteed to
1114 * be set up correctly at this point.
1115 *
1116 * We have exclusion against page_add_anon_rmap because the caller
1117 * always holds the page locked, except if called from page_dup_rmap,
1118 * in which case the page is already known to be setup.
1119 *
1120 * We have exclusion against page_add_new_anon_rmap because those pages
1121 * are initially only visible via the pagetables, and the pte is locked
1122 * over the call to page_add_new_anon_rmap.
1123 */
1124 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1125 BUG_ON(page->index != linear_page_index(vma, address));
1126 #endif
1127 }
1128
1129 /**
1130 * page_add_anon_rmap - add pte mapping to an anonymous page
1131 * @page: the page to add the mapping to
1132 * @vma: the vm area in which the mapping is added
1133 * @address: the user virtual address mapped
1134 *
1135 * The caller needs to hold the pte lock, and the page must be locked in
1136 * the anon_vma case: to serialize mapping,index checking after setting,
1137 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1138 * (but PageKsm is never downgraded to PageAnon).
1139 */
1140 void page_add_anon_rmap(struct page *page,
1141 struct vm_area_struct *vma, unsigned long address)
1142 {
1143 do_page_add_anon_rmap(page, vma, address, 0);
1144 }
1145
1146 /*
1147 * Special version of the above for do_swap_page, which often runs
1148 * into pages that are exclusively owned by the current process.
1149 * Everybody else should continue to use page_add_anon_rmap above.
1150 */
1151 void do_page_add_anon_rmap(struct page *page,
1152 struct vm_area_struct *vma, unsigned long address, int exclusive)
1153 {
1154 int first = atomic_inc_and_test(&page->_mapcount);
1155 if (first) {
1156 /*
1157 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1158 * these counters are not modified in interrupt context, and
1159 * pte lock(a spinlock) is held, which implies preemption
1160 * disabled.
1161 */
1162 if (PageTransHuge(page))
1163 __inc_zone_page_state(page,
1164 NR_ANON_TRANSPARENT_HUGEPAGES);
1165 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1166 hpage_nr_pages(page));
1167 }
1168 if (unlikely(PageKsm(page)))
1169 return;
1170
1171 VM_BUG_ON_PAGE(!PageLocked(page), page);
1172 /* address might be in next vma when migration races vma_adjust */
1173 if (first)
1174 __page_set_anon_rmap(page, vma, address, exclusive);
1175 else
1176 __page_check_anon_rmap(page, vma, address);
1177 }
1178
1179 /**
1180 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1181 * @page: the page to add the mapping to
1182 * @vma: the vm area in which the mapping is added
1183 * @address: the user virtual address mapped
1184 *
1185 * Same as page_add_anon_rmap but must only be called on *new* pages.
1186 * This means the inc-and-test can be bypassed.
1187 * Page does not have to be locked.
1188 */
1189 void page_add_new_anon_rmap(struct page *page,
1190 struct vm_area_struct *vma, unsigned long address)
1191 {
1192 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1193 SetPageSwapBacked(page);
1194 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1195 if (PageTransHuge(page))
1196 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1197 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1198 hpage_nr_pages(page));
1199 __page_set_anon_rmap(page, vma, address, 1);
1200 }
1201
1202 /**
1203 * page_add_file_rmap - add pte mapping to a file page
1204 * @page: the page to add the mapping to
1205 *
1206 * The caller needs to hold the pte lock.
1207 */
1208 void page_add_file_rmap(struct page *page)
1209 {
1210 struct mem_cgroup *memcg;
1211
1212 memcg = mem_cgroup_begin_page_stat(page);
1213 if (atomic_inc_and_test(&page->_mapcount)) {
1214 __inc_zone_page_state(page, NR_FILE_MAPPED);
1215 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1216 }
1217 mem_cgroup_end_page_stat(memcg);
1218 }
1219
1220 static void page_remove_file_rmap(struct page *page)
1221 {
1222 struct mem_cgroup *memcg;
1223
1224 memcg = mem_cgroup_begin_page_stat(page);
1225
1226 /* page still mapped by someone else? */
1227 if (!atomic_add_negative(-1, &page->_mapcount))
1228 goto out;
1229
1230 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1231 if (unlikely(PageHuge(page)))
1232 goto out;
1233
1234 /*
1235 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1236 * these counters are not modified in interrupt context, and
1237 * pte lock(a spinlock) is held, which implies preemption disabled.
1238 */
1239 __dec_zone_page_state(page, NR_FILE_MAPPED);
1240 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1241
1242 if (unlikely(PageMlocked(page)))
1243 clear_page_mlock(page);
1244 out:
1245 mem_cgroup_end_page_stat(memcg);
1246 }
1247
1248 /**
1249 * page_remove_rmap - take down pte mapping from a page
1250 * @page: page to remove mapping from
1251 *
1252 * The caller needs to hold the pte lock.
1253 */
1254 void page_remove_rmap(struct page *page)
1255 {
1256 if (!PageAnon(page)) {
1257 page_remove_file_rmap(page);
1258 return;
1259 }
1260
1261 /* page still mapped by someone else? */
1262 if (!atomic_add_negative(-1, &page->_mapcount))
1263 return;
1264
1265 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1266 if (unlikely(PageHuge(page)))
1267 return;
1268
1269 /*
1270 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1271 * these counters are not modified in interrupt context, and
1272 * pte lock(a spinlock) is held, which implies preemption disabled.
1273 */
1274 if (PageTransHuge(page))
1275 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1276
1277 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1278 -hpage_nr_pages(page));
1279
1280 if (unlikely(PageMlocked(page)))
1281 clear_page_mlock(page);
1282
1283 /*
1284 * It would be tidy to reset the PageAnon mapping here,
1285 * but that might overwrite a racing page_add_anon_rmap
1286 * which increments mapcount after us but sets mapping
1287 * before us: so leave the reset to free_hot_cold_page,
1288 * and remember that it's only reliable while mapped.
1289 * Leaving it set also helps swapoff to reinstate ptes
1290 * faster for those pages still in swapcache.
1291 */
1292 }
1293
1294 /*
1295 * @arg: enum ttu_flags will be passed to this argument
1296 */
1297 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1298 unsigned long address, void *arg)
1299 {
1300 struct mm_struct *mm = vma->vm_mm;
1301 pte_t *pte;
1302 pte_t pteval;
1303 spinlock_t *ptl;
1304 int ret = SWAP_AGAIN;
1305 enum ttu_flags flags = (enum ttu_flags)arg;
1306
1307 /* munlock has nothing to gain from examining un-locked vmas */
1308 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309 goto out;
1310
1311 pte = page_check_address(page, mm, address, &ptl, 0);
1312 if (!pte)
1313 goto out;
1314
1315 /*
1316 * If the page is mlock()d, we cannot swap it out.
1317 * If it's recently referenced (perhaps page_referenced
1318 * skipped over this mm) then we should reactivate it.
1319 */
1320 if (!(flags & TTU_IGNORE_MLOCK)) {
1321 if (vma->vm_flags & VM_LOCKED) {
1322 /* Holding pte lock, we do *not* need mmap_sem here */
1323 mlock_vma_page(page);
1324 ret = SWAP_MLOCK;
1325 goto out_unmap;
1326 }
1327 if (flags & TTU_MUNLOCK)
1328 goto out_unmap;
1329 }
1330 if (!(flags & TTU_IGNORE_ACCESS)) {
1331 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1332 ret = SWAP_FAIL;
1333 goto out_unmap;
1334 }
1335 }
1336
1337 /* Nuke the page table entry. */
1338 flush_cache_page(vma, address, page_to_pfn(page));
1339 if (should_defer_flush(mm, flags)) {
1340 /*
1341 * We clear the PTE but do not flush so potentially a remote
1342 * CPU could still be writing to the page. If the entry was
1343 * previously clean then the architecture must guarantee that
1344 * a clear->dirty transition on a cached TLB entry is written
1345 * through and traps if the PTE is unmapped.
1346 */
1347 pteval = ptep_get_and_clear(mm, address, pte);
1348
1349 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1350 } else {
1351 pteval = ptep_clear_flush(vma, address, pte);
1352 }
1353
1354 /* Move the dirty bit to the physical page now the pte is gone. */
1355 if (pte_dirty(pteval))
1356 set_page_dirty(page);
1357
1358 /* Update high watermark before we lower rss */
1359 update_hiwater_rss(mm);
1360
1361 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1362 if (PageHuge(page)) {
1363 hugetlb_count_sub(1 << compound_order(page), mm);
1364 } else {
1365 if (PageAnon(page))
1366 dec_mm_counter(mm, MM_ANONPAGES);
1367 else
1368 dec_mm_counter(mm, MM_FILEPAGES);
1369 }
1370 set_pte_at(mm, address, pte,
1371 swp_entry_to_pte(make_hwpoison_entry(page)));
1372 } else if (pte_unused(pteval)) {
1373 /*
1374 * The guest indicated that the page content is of no
1375 * interest anymore. Simply discard the pte, vmscan
1376 * will take care of the rest.
1377 */
1378 if (PageAnon(page))
1379 dec_mm_counter(mm, MM_ANONPAGES);
1380 else
1381 dec_mm_counter(mm, MM_FILEPAGES);
1382 } else if (PageAnon(page)) {
1383 swp_entry_t entry = { .val = page_private(page) };
1384 pte_t swp_pte;
1385
1386 if (PageSwapCache(page)) {
1387 /*
1388 * Store the swap location in the pte.
1389 * See handle_pte_fault() ...
1390 */
1391 if (swap_duplicate(entry) < 0) {
1392 set_pte_at(mm, address, pte, pteval);
1393 ret = SWAP_FAIL;
1394 goto out_unmap;
1395 }
1396 if (list_empty(&mm->mmlist)) {
1397 spin_lock(&mmlist_lock);
1398 if (list_empty(&mm->mmlist))
1399 list_add(&mm->mmlist, &init_mm.mmlist);
1400 spin_unlock(&mmlist_lock);
1401 }
1402 dec_mm_counter(mm, MM_ANONPAGES);
1403 inc_mm_counter(mm, MM_SWAPENTS);
1404 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1405 /*
1406 * Store the pfn of the page in a special migration
1407 * pte. do_swap_page() will wait until the migration
1408 * pte is removed and then restart fault handling.
1409 */
1410 BUG_ON(!(flags & TTU_MIGRATION));
1411 entry = make_migration_entry(page, pte_write(pteval));
1412 }
1413 swp_pte = swp_entry_to_pte(entry);
1414 if (pte_soft_dirty(pteval))
1415 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1416 set_pte_at(mm, address, pte, swp_pte);
1417 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1418 (flags & TTU_MIGRATION)) {
1419 /* Establish migration entry for a file page */
1420 swp_entry_t entry;
1421 entry = make_migration_entry(page, pte_write(pteval));
1422 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1423 } else
1424 dec_mm_counter(mm, MM_FILEPAGES);
1425
1426 page_remove_rmap(page);
1427 page_cache_release(page);
1428
1429 out_unmap:
1430 pte_unmap_unlock(pte, ptl);
1431 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1432 mmu_notifier_invalidate_page(mm, address);
1433 out:
1434 return ret;
1435 }
1436
1437 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1438 {
1439 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1440
1441 if (!maybe_stack)
1442 return false;
1443
1444 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1445 VM_STACK_INCOMPLETE_SETUP)
1446 return true;
1447
1448 return false;
1449 }
1450
1451 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1452 {
1453 return is_vma_temporary_stack(vma);
1454 }
1455
1456 static int page_not_mapped(struct page *page)
1457 {
1458 return !page_mapped(page);
1459 };
1460
1461 /**
1462 * try_to_unmap - try to remove all page table mappings to a page
1463 * @page: the page to get unmapped
1464 * @flags: action and flags
1465 *
1466 * Tries to remove all the page table entries which are mapping this
1467 * page, used in the pageout path. Caller must hold the page lock.
1468 * Return values are:
1469 *
1470 * SWAP_SUCCESS - we succeeded in removing all mappings
1471 * SWAP_AGAIN - we missed a mapping, try again later
1472 * SWAP_FAIL - the page is unswappable
1473 * SWAP_MLOCK - page is mlocked.
1474 */
1475 int try_to_unmap(struct page *page, enum ttu_flags flags)
1476 {
1477 int ret;
1478 struct rmap_walk_control rwc = {
1479 .rmap_one = try_to_unmap_one,
1480 .arg = (void *)flags,
1481 .done = page_not_mapped,
1482 .anon_lock = page_lock_anon_vma_read,
1483 };
1484
1485 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1486
1487 /*
1488 * During exec, a temporary VMA is setup and later moved.
1489 * The VMA is moved under the anon_vma lock but not the
1490 * page tables leading to a race where migration cannot
1491 * find the migration ptes. Rather than increasing the
1492 * locking requirements of exec(), migration skips
1493 * temporary VMAs until after exec() completes.
1494 */
1495 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1496 rwc.invalid_vma = invalid_migration_vma;
1497
1498 ret = rmap_walk(page, &rwc);
1499
1500 if (ret != SWAP_MLOCK && !page_mapped(page))
1501 ret = SWAP_SUCCESS;
1502 return ret;
1503 }
1504
1505 /**
1506 * try_to_munlock - try to munlock a page
1507 * @page: the page to be munlocked
1508 *
1509 * Called from munlock code. Checks all of the VMAs mapping the page
1510 * to make sure nobody else has this page mlocked. The page will be
1511 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1512 *
1513 * Return values are:
1514 *
1515 * SWAP_AGAIN - no vma is holding page mlocked, or,
1516 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1517 * SWAP_FAIL - page cannot be located at present
1518 * SWAP_MLOCK - page is now mlocked.
1519 */
1520 int try_to_munlock(struct page *page)
1521 {
1522 int ret;
1523 struct rmap_walk_control rwc = {
1524 .rmap_one = try_to_unmap_one,
1525 .arg = (void *)TTU_MUNLOCK,
1526 .done = page_not_mapped,
1527 .anon_lock = page_lock_anon_vma_read,
1528
1529 };
1530
1531 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1532
1533 ret = rmap_walk(page, &rwc);
1534 return ret;
1535 }
1536
1537 void __put_anon_vma(struct anon_vma *anon_vma)
1538 {
1539 struct anon_vma *root = anon_vma->root;
1540
1541 anon_vma_free(anon_vma);
1542 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1543 anon_vma_free(root);
1544 }
1545
1546 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1547 struct rmap_walk_control *rwc)
1548 {
1549 struct anon_vma *anon_vma;
1550
1551 if (rwc->anon_lock)
1552 return rwc->anon_lock(page);
1553
1554 /*
1555 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1556 * because that depends on page_mapped(); but not all its usages
1557 * are holding mmap_sem. Users without mmap_sem are required to
1558 * take a reference count to prevent the anon_vma disappearing
1559 */
1560 anon_vma = page_anon_vma(page);
1561 if (!anon_vma)
1562 return NULL;
1563
1564 anon_vma_lock_read(anon_vma);
1565 return anon_vma;
1566 }
1567
1568 /*
1569 * rmap_walk_anon - do something to anonymous page using the object-based
1570 * rmap method
1571 * @page: the page to be handled
1572 * @rwc: control variable according to each walk type
1573 *
1574 * Find all the mappings of a page using the mapping pointer and the vma chains
1575 * contained in the anon_vma struct it points to.
1576 *
1577 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1578 * where the page was found will be held for write. So, we won't recheck
1579 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1580 * LOCKED.
1581 */
1582 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1583 {
1584 struct anon_vma *anon_vma;
1585 pgoff_t pgoff;
1586 struct anon_vma_chain *avc;
1587 int ret = SWAP_AGAIN;
1588
1589 anon_vma = rmap_walk_anon_lock(page, rwc);
1590 if (!anon_vma)
1591 return ret;
1592
1593 pgoff = page_to_pgoff(page);
1594 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1595 struct vm_area_struct *vma = avc->vma;
1596 unsigned long address = vma_address(page, vma);
1597
1598 cond_resched();
1599
1600 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1601 continue;
1602
1603 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1604 if (ret != SWAP_AGAIN)
1605 break;
1606 if (rwc->done && rwc->done(page))
1607 break;
1608 }
1609 anon_vma_unlock_read(anon_vma);
1610 return ret;
1611 }
1612
1613 /*
1614 * rmap_walk_file - do something to file page using the object-based rmap method
1615 * @page: the page to be handled
1616 * @rwc: control variable according to each walk type
1617 *
1618 * Find all the mappings of a page using the mapping pointer and the vma chains
1619 * contained in the address_space struct it points to.
1620 *
1621 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1622 * where the page was found will be held for write. So, we won't recheck
1623 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1624 * LOCKED.
1625 */
1626 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1627 {
1628 struct address_space *mapping = page->mapping;
1629 pgoff_t pgoff;
1630 struct vm_area_struct *vma;
1631 int ret = SWAP_AGAIN;
1632
1633 /*
1634 * The page lock not only makes sure that page->mapping cannot
1635 * suddenly be NULLified by truncation, it makes sure that the
1636 * structure at mapping cannot be freed and reused yet,
1637 * so we can safely take mapping->i_mmap_rwsem.
1638 */
1639 VM_BUG_ON_PAGE(!PageLocked(page), page);
1640
1641 if (!mapping)
1642 return ret;
1643
1644 pgoff = page_to_pgoff(page);
1645 i_mmap_lock_read(mapping);
1646 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1647 unsigned long address = vma_address(page, vma);
1648
1649 cond_resched();
1650
1651 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1652 continue;
1653
1654 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1655 if (ret != SWAP_AGAIN)
1656 goto done;
1657 if (rwc->done && rwc->done(page))
1658 goto done;
1659 }
1660
1661 done:
1662 i_mmap_unlock_read(mapping);
1663 return ret;
1664 }
1665
1666 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1667 {
1668 if (unlikely(PageKsm(page)))
1669 return rmap_walk_ksm(page, rwc);
1670 else if (PageAnon(page))
1671 return rmap_walk_anon(page, rwc);
1672 else
1673 return rmap_walk_file(page, rwc);
1674 }
1675
1676 #ifdef CONFIG_HUGETLB_PAGE
1677 /*
1678 * The following three functions are for anonymous (private mapped) hugepages.
1679 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1680 * and no lru code, because we handle hugepages differently from common pages.
1681 */
1682 static void __hugepage_set_anon_rmap(struct page *page,
1683 struct vm_area_struct *vma, unsigned long address, int exclusive)
1684 {
1685 struct anon_vma *anon_vma = vma->anon_vma;
1686
1687 BUG_ON(!anon_vma);
1688
1689 if (PageAnon(page))
1690 return;
1691 if (!exclusive)
1692 anon_vma = anon_vma->root;
1693
1694 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1695 page->mapping = (struct address_space *) anon_vma;
1696 page->index = linear_page_index(vma, address);
1697 }
1698
1699 void hugepage_add_anon_rmap(struct page *page,
1700 struct vm_area_struct *vma, unsigned long address)
1701 {
1702 struct anon_vma *anon_vma = vma->anon_vma;
1703 int first;
1704
1705 BUG_ON(!PageLocked(page));
1706 BUG_ON(!anon_vma);
1707 /* address might be in next vma when migration races vma_adjust */
1708 first = atomic_inc_and_test(&page->_mapcount);
1709 if (first)
1710 __hugepage_set_anon_rmap(page, vma, address, 0);
1711 }
1712
1713 void hugepage_add_new_anon_rmap(struct page *page,
1714 struct vm_area_struct *vma, unsigned long address)
1715 {
1716 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1717 atomic_set(&page->_mapcount, 0);
1718 __hugepage_set_anon_rmap(page, vma, address, 1);
1719 }
1720 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.085588 seconds and 5 git commands to generate.