Merge tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
64
65 #include <asm/tlbflush.h>
66
67 #include <trace/events/tlb.h>
68
69 #include "internal.h"
70
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
73
74 static inline struct anon_vma *anon_vma_alloc(void)
75 {
76 struct anon_vma *anon_vma;
77
78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 if (anon_vma) {
80 atomic_set(&anon_vma->refcount, 1);
81 anon_vma->degree = 1; /* Reference for first vma */
82 anon_vma->parent = anon_vma;
83 /*
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
86 */
87 anon_vma->root = anon_vma;
88 }
89
90 return anon_vma;
91 }
92
93 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 {
95 VM_BUG_ON(atomic_read(&anon_vma->refcount));
96
97 /*
98 * Synchronize against page_lock_anon_vma_read() such that
99 * we can safely hold the lock without the anon_vma getting
100 * freed.
101 *
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 *
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
108 * LOCK MB
109 * atomic_read() rwsem_is_locked()
110 *
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
113 */
114 might_sleep();
115 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 anon_vma_lock_write(anon_vma);
117 anon_vma_unlock_write(anon_vma);
118 }
119
120 kmem_cache_free(anon_vma_cachep, anon_vma);
121 }
122
123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 {
125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
126 }
127
128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 {
130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131 }
132
133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 struct anon_vma_chain *avc,
135 struct anon_vma *anon_vma)
136 {
137 avc->vma = vma;
138 avc->anon_vma = anon_vma;
139 list_add(&avc->same_vma, &vma->anon_vma_chain);
140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
141 }
142
143 /**
144 * anon_vma_prepare - attach an anon_vma to a memory region
145 * @vma: the memory region in question
146 *
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
150 *
151 * The common case will be that we already have one, but if
152 * not we either need to find an adjacent mapping that we
153 * can re-use the anon_vma from (very common when the only
154 * reason for splitting a vma has been mprotect()), or we
155 * allocate a new one.
156 *
157 * Anon-vma allocations are very subtle, because we may have
158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
159 * and that may actually touch the spinlock even in the newly
160 * allocated vma (it depends on RCU to make sure that the
161 * anon_vma isn't actually destroyed).
162 *
163 * As a result, we need to do proper anon_vma locking even
164 * for the new allocation. At the same time, we do not want
165 * to do any locking for the common case of already having
166 * an anon_vma.
167 *
168 * This must be called with the mmap_sem held for reading.
169 */
170 int anon_vma_prepare(struct vm_area_struct *vma)
171 {
172 struct anon_vma *anon_vma = vma->anon_vma;
173 struct anon_vma_chain *avc;
174
175 might_sleep();
176 if (unlikely(!anon_vma)) {
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *allocated;
179
180 avc = anon_vma_chain_alloc(GFP_KERNEL);
181 if (!avc)
182 goto out_enomem;
183
184 anon_vma = find_mergeable_anon_vma(vma);
185 allocated = NULL;
186 if (!anon_vma) {
187 anon_vma = anon_vma_alloc();
188 if (unlikely(!anon_vma))
189 goto out_enomem_free_avc;
190 allocated = anon_vma;
191 }
192
193 anon_vma_lock_write(anon_vma);
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm->page_table_lock);
196 if (likely(!vma->anon_vma)) {
197 vma->anon_vma = anon_vma;
198 anon_vma_chain_link(vma, avc, anon_vma);
199 /* vma reference or self-parent link for new root */
200 anon_vma->degree++;
201 allocated = NULL;
202 avc = NULL;
203 }
204 spin_unlock(&mm->page_table_lock);
205 anon_vma_unlock_write(anon_vma);
206
207 if (unlikely(allocated))
208 put_anon_vma(allocated);
209 if (unlikely(avc))
210 anon_vma_chain_free(avc);
211 }
212 return 0;
213
214 out_enomem_free_avc:
215 anon_vma_chain_free(avc);
216 out_enomem:
217 return -ENOMEM;
218 }
219
220 /*
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223 * have the same vma.
224 *
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
227 */
228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229 {
230 struct anon_vma *new_root = anon_vma->root;
231 if (new_root != root) {
232 if (WARN_ON_ONCE(root))
233 up_write(&root->rwsem);
234 root = new_root;
235 down_write(&root->rwsem);
236 }
237 return root;
238 }
239
240 static inline void unlock_anon_vma_root(struct anon_vma *root)
241 {
242 if (root)
243 up_write(&root->rwsem);
244 }
245
246 /*
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
249 *
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
256 * page is mapped.
257 */
258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259 {
260 struct anon_vma_chain *avc, *pavc;
261 struct anon_vma *root = NULL;
262
263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 struct anon_vma *anon_vma;
265
266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 if (unlikely(!avc)) {
268 unlock_anon_vma_root(root);
269 root = NULL;
270 avc = anon_vma_chain_alloc(GFP_KERNEL);
271 if (!avc)
272 goto enomem_failure;
273 }
274 anon_vma = pavc->anon_vma;
275 root = lock_anon_vma_root(root, anon_vma);
276 anon_vma_chain_link(dst, avc, anon_vma);
277
278 /*
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
281 *
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
285 */
286 if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 anon_vma->degree < 2)
288 dst->anon_vma = anon_vma;
289 }
290 if (dst->anon_vma)
291 dst->anon_vma->degree++;
292 unlock_anon_vma_root(root);
293 return 0;
294
295 enomem_failure:
296 /*
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
301 */
302 dst->anon_vma = NULL;
303 unlink_anon_vmas(dst);
304 return -ENOMEM;
305 }
306
307 /*
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
311 */
312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313 {
314 struct anon_vma_chain *avc;
315 struct anon_vma *anon_vma;
316 int error;
317
318 /* Don't bother if the parent process has no anon_vma here. */
319 if (!pvma->anon_vma)
320 return 0;
321
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma->anon_vma = NULL;
324
325 /*
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
328 */
329 error = anon_vma_clone(vma, pvma);
330 if (error)
331 return error;
332
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
336
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
341 avc = anon_vma_chain_alloc(GFP_KERNEL);
342 if (!avc)
343 goto out_error_free_anon_vma;
344
345 /*
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
348 */
349 anon_vma->root = pvma->anon_vma->root;
350 anon_vma->parent = pvma->anon_vma;
351 /*
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
355 */
356 get_anon_vma(anon_vma->root);
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
359 anon_vma_lock_write(anon_vma);
360 anon_vma_chain_link(vma, avc, anon_vma);
361 anon_vma->parent->degree++;
362 anon_vma_unlock_write(anon_vma);
363
364 return 0;
365
366 out_error_free_anon_vma:
367 put_anon_vma(anon_vma);
368 out_error:
369 unlink_anon_vmas(vma);
370 return -ENOMEM;
371 }
372
373 void unlink_anon_vmas(struct vm_area_struct *vma)
374 {
375 struct anon_vma_chain *avc, *next;
376 struct anon_vma *root = NULL;
377
378 /*
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 */
382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 struct anon_vma *anon_vma = avc->anon_vma;
384
385 root = lock_anon_vma_root(root, anon_vma);
386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
387
388 /*
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
391 */
392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 anon_vma->parent->degree--;
394 continue;
395 }
396
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
399 }
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
402 unlock_anon_vma_root(root);
403
404 /*
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 * needing to write-acquire the anon_vma->root->rwsem.
408 */
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
411
412 BUG_ON(anon_vma->degree);
413 put_anon_vma(anon_vma);
414
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
417 }
418 }
419
420 static void anon_vma_ctor(void *data)
421 {
422 struct anon_vma *anon_vma = data;
423
424 init_rwsem(&anon_vma->rwsem);
425 atomic_set(&anon_vma->refcount, 0);
426 anon_vma->rb_root = RB_ROOT;
427 }
428
429 void __init anon_vma_init(void)
430 {
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 anon_vma_ctor);
434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 SLAB_PANIC|SLAB_ACCOUNT);
436 }
437
438 /*
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440 *
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
444 *
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
447 *
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452 *
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
456 *
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
460 */
461 struct anon_vma *page_get_anon_vma(struct page *page)
462 {
463 struct anon_vma *anon_vma = NULL;
464 unsigned long anon_mapping;
465
466 rcu_read_lock();
467 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 goto out;
470 if (!page_mapped(page))
471 goto out;
472
473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
478
479 /*
480 * If this page is still mapped, then its anon_vma cannot have been
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
485 */
486 if (!page_mapped(page)) {
487 rcu_read_unlock();
488 put_anon_vma(anon_vma);
489 return NULL;
490 }
491 out:
492 rcu_read_unlock();
493
494 return anon_vma;
495 }
496
497 /*
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
499 *
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
503 */
504 struct anon_vma *page_lock_anon_vma_read(struct page *page)
505 {
506 struct anon_vma *anon_vma = NULL;
507 struct anon_vma *root_anon_vma;
508 unsigned long anon_mapping;
509
510 rcu_read_lock();
511 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!page_mapped(page))
515 goto out;
516
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 root_anon_vma = READ_ONCE(anon_vma->root);
519 if (down_read_trylock(&root_anon_vma->rwsem)) {
520 /*
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
523 * not go away, see anon_vma_free().
524 */
525 if (!page_mapped(page)) {
526 up_read(&root_anon_vma->rwsem);
527 anon_vma = NULL;
528 }
529 goto out;
530 }
531
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 anon_vma = NULL;
535 goto out;
536 }
537
538 if (!page_mapped(page)) {
539 rcu_read_unlock();
540 put_anon_vma(anon_vma);
541 return NULL;
542 }
543
544 /* we pinned the anon_vma, its safe to sleep */
545 rcu_read_unlock();
546 anon_vma_lock_read(anon_vma);
547
548 if (atomic_dec_and_test(&anon_vma->refcount)) {
549 /*
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
552 * we'll deadlock on the anon_vma_lock_write() recursion.
553 */
554 anon_vma_unlock_read(anon_vma);
555 __put_anon_vma(anon_vma);
556 anon_vma = NULL;
557 }
558
559 return anon_vma;
560
561 out:
562 rcu_read_unlock();
563 return anon_vma;
564 }
565
566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567 {
568 anon_vma_unlock_read(anon_vma);
569 }
570
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572 static void percpu_flush_tlb_batch_pages(void *data)
573 {
574 /*
575 * All TLB entries are flushed on the assumption that it is
576 * cheaper to flush all TLBs and let them be refilled than
577 * flushing individual PFNs. Note that we do not track mm's
578 * to flush as that might simply be multiple full TLB flushes
579 * for no gain.
580 */
581 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
582 flush_tlb_local();
583 }
584
585 /*
586 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
587 * important if a PTE was dirty when it was unmapped that it's flushed
588 * before any IO is initiated on the page to prevent lost writes. Similarly,
589 * it must be flushed before freeing to prevent data leakage.
590 */
591 void try_to_unmap_flush(void)
592 {
593 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
594 int cpu;
595
596 if (!tlb_ubc->flush_required)
597 return;
598
599 cpu = get_cpu();
600
601 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
602
603 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
604 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
605
606 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
607 smp_call_function_many(&tlb_ubc->cpumask,
608 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
609 }
610 cpumask_clear(&tlb_ubc->cpumask);
611 tlb_ubc->flush_required = false;
612 tlb_ubc->writable = false;
613 put_cpu();
614 }
615
616 /* Flush iff there are potentially writable TLB entries that can race with IO */
617 void try_to_unmap_flush_dirty(void)
618 {
619 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
620
621 if (tlb_ubc->writable)
622 try_to_unmap_flush();
623 }
624
625 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
626 struct page *page, bool writable)
627 {
628 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
629
630 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
631 tlb_ubc->flush_required = true;
632
633 /*
634 * If the PTE was dirty then it's best to assume it's writable. The
635 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
636 * before the page is queued for IO.
637 */
638 if (writable)
639 tlb_ubc->writable = true;
640 }
641
642 /*
643 * Returns true if the TLB flush should be deferred to the end of a batch of
644 * unmap operations to reduce IPIs.
645 */
646 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
647 {
648 bool should_defer = false;
649
650 if (!(flags & TTU_BATCH_FLUSH))
651 return false;
652
653 /* If remote CPUs need to be flushed then defer batch the flush */
654 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
655 should_defer = true;
656 put_cpu();
657
658 return should_defer;
659 }
660 #else
661 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
662 struct page *page, bool writable)
663 {
664 }
665
666 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
667 {
668 return false;
669 }
670 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
671
672 /*
673 * At what user virtual address is page expected in vma?
674 * Caller should check the page is actually part of the vma.
675 */
676 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
677 {
678 unsigned long address;
679 if (PageAnon(page)) {
680 struct anon_vma *page__anon_vma = page_anon_vma(page);
681 /*
682 * Note: swapoff's unuse_vma() is more efficient with this
683 * check, and needs it to match anon_vma when KSM is active.
684 */
685 if (!vma->anon_vma || !page__anon_vma ||
686 vma->anon_vma->root != page__anon_vma->root)
687 return -EFAULT;
688 } else if (page->mapping) {
689 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
690 return -EFAULT;
691 } else
692 return -EFAULT;
693 address = __vma_address(page, vma);
694 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
695 return -EFAULT;
696 return address;
697 }
698
699 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
700 {
701 pgd_t *pgd;
702 pud_t *pud;
703 pmd_t *pmd = NULL;
704 pmd_t pmde;
705
706 pgd = pgd_offset(mm, address);
707 if (!pgd_present(*pgd))
708 goto out;
709
710 pud = pud_offset(pgd, address);
711 if (!pud_present(*pud))
712 goto out;
713
714 pmd = pmd_offset(pud, address);
715 /*
716 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
717 * without holding anon_vma lock for write. So when looking for a
718 * genuine pmde (in which to find pte), test present and !THP together.
719 */
720 pmde = *pmd;
721 barrier();
722 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
723 pmd = NULL;
724 out:
725 return pmd;
726 }
727
728 /*
729 * Check that @page is mapped at @address into @mm.
730 *
731 * If @sync is false, page_check_address may perform a racy check to avoid
732 * the page table lock when the pte is not present (helpful when reclaiming
733 * highly shared pages).
734 *
735 * On success returns with pte mapped and locked.
736 */
737 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
738 unsigned long address, spinlock_t **ptlp, int sync)
739 {
740 pmd_t *pmd;
741 pte_t *pte;
742 spinlock_t *ptl;
743
744 if (unlikely(PageHuge(page))) {
745 /* when pud is not present, pte will be NULL */
746 pte = huge_pte_offset(mm, address);
747 if (!pte)
748 return NULL;
749
750 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
751 goto check;
752 }
753
754 pmd = mm_find_pmd(mm, address);
755 if (!pmd)
756 return NULL;
757
758 pte = pte_offset_map(pmd, address);
759 /* Make a quick check before getting the lock */
760 if (!sync && !pte_present(*pte)) {
761 pte_unmap(pte);
762 return NULL;
763 }
764
765 ptl = pte_lockptr(mm, pmd);
766 check:
767 spin_lock(ptl);
768 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
769 *ptlp = ptl;
770 return pte;
771 }
772 pte_unmap_unlock(pte, ptl);
773 return NULL;
774 }
775
776 /**
777 * page_mapped_in_vma - check whether a page is really mapped in a VMA
778 * @page: the page to test
779 * @vma: the VMA to test
780 *
781 * Returns 1 if the page is mapped into the page tables of the VMA, 0
782 * if the page is not mapped into the page tables of this VMA. Only
783 * valid for normal file or anonymous VMAs.
784 */
785 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
786 {
787 unsigned long address;
788 pte_t *pte;
789 spinlock_t *ptl;
790
791 address = __vma_address(page, vma);
792 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
793 return 0;
794 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
795 if (!pte) /* the page is not in this mm */
796 return 0;
797 pte_unmap_unlock(pte, ptl);
798
799 return 1;
800 }
801
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803 /*
804 * Check that @page is mapped at @address into @mm. In contrast to
805 * page_check_address(), this function can handle transparent huge pages.
806 *
807 * On success returns true with pte mapped and locked. For PMD-mapped
808 * transparent huge pages *@ptep is set to NULL.
809 */
810 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
811 unsigned long address, pmd_t **pmdp,
812 pte_t **ptep, spinlock_t **ptlp)
813 {
814 pgd_t *pgd;
815 pud_t *pud;
816 pmd_t *pmd;
817 pte_t *pte;
818 spinlock_t *ptl;
819
820 if (unlikely(PageHuge(page))) {
821 /* when pud is not present, pte will be NULL */
822 pte = huge_pte_offset(mm, address);
823 if (!pte)
824 return false;
825
826 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
827 pmd = NULL;
828 goto check_pte;
829 }
830
831 pgd = pgd_offset(mm, address);
832 if (!pgd_present(*pgd))
833 return false;
834 pud = pud_offset(pgd, address);
835 if (!pud_present(*pud))
836 return false;
837 pmd = pmd_offset(pud, address);
838
839 if (pmd_trans_huge(*pmd)) {
840 ptl = pmd_lock(mm, pmd);
841 if (!pmd_present(*pmd))
842 goto unlock_pmd;
843 if (unlikely(!pmd_trans_huge(*pmd))) {
844 spin_unlock(ptl);
845 goto map_pte;
846 }
847
848 if (pmd_page(*pmd) != page)
849 goto unlock_pmd;
850
851 pte = NULL;
852 goto found;
853 unlock_pmd:
854 spin_unlock(ptl);
855 return false;
856 } else {
857 pmd_t pmde = *pmd;
858
859 barrier();
860 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
861 return false;
862 }
863 map_pte:
864 pte = pte_offset_map(pmd, address);
865 if (!pte_present(*pte)) {
866 pte_unmap(pte);
867 return false;
868 }
869
870 ptl = pte_lockptr(mm, pmd);
871 check_pte:
872 spin_lock(ptl);
873
874 if (!pte_present(*pte)) {
875 pte_unmap_unlock(pte, ptl);
876 return false;
877 }
878
879 /* THP can be referenced by any subpage */
880 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
881 pte_unmap_unlock(pte, ptl);
882 return false;
883 }
884 found:
885 *ptep = pte;
886 *pmdp = pmd;
887 *ptlp = ptl;
888 return true;
889 }
890 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
891
892 struct page_referenced_arg {
893 int mapcount;
894 int referenced;
895 unsigned long vm_flags;
896 struct mem_cgroup *memcg;
897 };
898 /*
899 * arg: page_referenced_arg will be passed
900 */
901 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
902 unsigned long address, void *arg)
903 {
904 struct mm_struct *mm = vma->vm_mm;
905 struct page_referenced_arg *pra = arg;
906 pmd_t *pmd;
907 pte_t *pte;
908 spinlock_t *ptl;
909 int referenced = 0;
910
911 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
912 return SWAP_AGAIN;
913
914 if (vma->vm_flags & VM_LOCKED) {
915 if (pte)
916 pte_unmap(pte);
917 spin_unlock(ptl);
918 pra->vm_flags |= VM_LOCKED;
919 return SWAP_FAIL; /* To break the loop */
920 }
921
922 if (pte) {
923 if (ptep_clear_flush_young_notify(vma, address, pte)) {
924 /*
925 * Don't treat a reference through a sequentially read
926 * mapping as such. If the page has been used in
927 * another mapping, we will catch it; if this other
928 * mapping is already gone, the unmap path will have
929 * set PG_referenced or activated the page.
930 */
931 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
932 referenced++;
933 }
934 pte_unmap(pte);
935 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
936 if (pmdp_clear_flush_young_notify(vma, address, pmd))
937 referenced++;
938 } else {
939 /* unexpected pmd-mapped page? */
940 WARN_ON_ONCE(1);
941 }
942 spin_unlock(ptl);
943
944 if (referenced)
945 clear_page_idle(page);
946 if (test_and_clear_page_young(page))
947 referenced++;
948
949 if (referenced) {
950 pra->referenced++;
951 pra->vm_flags |= vma->vm_flags;
952 }
953
954 pra->mapcount--;
955 if (!pra->mapcount)
956 return SWAP_SUCCESS; /* To break the loop */
957
958 return SWAP_AGAIN;
959 }
960
961 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
962 {
963 struct page_referenced_arg *pra = arg;
964 struct mem_cgroup *memcg = pra->memcg;
965
966 if (!mm_match_cgroup(vma->vm_mm, memcg))
967 return true;
968
969 return false;
970 }
971
972 /**
973 * page_referenced - test if the page was referenced
974 * @page: the page to test
975 * @is_locked: caller holds lock on the page
976 * @memcg: target memory cgroup
977 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
978 *
979 * Quick test_and_clear_referenced for all mappings to a page,
980 * returns the number of ptes which referenced the page.
981 */
982 int page_referenced(struct page *page,
983 int is_locked,
984 struct mem_cgroup *memcg,
985 unsigned long *vm_flags)
986 {
987 int ret;
988 int we_locked = 0;
989 struct page_referenced_arg pra = {
990 .mapcount = total_mapcount(page),
991 .memcg = memcg,
992 };
993 struct rmap_walk_control rwc = {
994 .rmap_one = page_referenced_one,
995 .arg = (void *)&pra,
996 .anon_lock = page_lock_anon_vma_read,
997 };
998
999 *vm_flags = 0;
1000 if (!page_mapped(page))
1001 return 0;
1002
1003 if (!page_rmapping(page))
1004 return 0;
1005
1006 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1007 we_locked = trylock_page(page);
1008 if (!we_locked)
1009 return 1;
1010 }
1011
1012 /*
1013 * If we are reclaiming on behalf of a cgroup, skip
1014 * counting on behalf of references from different
1015 * cgroups
1016 */
1017 if (memcg) {
1018 rwc.invalid_vma = invalid_page_referenced_vma;
1019 }
1020
1021 ret = rmap_walk(page, &rwc);
1022 *vm_flags = pra.vm_flags;
1023
1024 if (we_locked)
1025 unlock_page(page);
1026
1027 return pra.referenced;
1028 }
1029
1030 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1031 unsigned long address, void *arg)
1032 {
1033 struct mm_struct *mm = vma->vm_mm;
1034 pte_t *pte;
1035 spinlock_t *ptl;
1036 int ret = 0;
1037 int *cleaned = arg;
1038
1039 pte = page_check_address(page, mm, address, &ptl, 1);
1040 if (!pte)
1041 goto out;
1042
1043 if (pte_dirty(*pte) || pte_write(*pte)) {
1044 pte_t entry;
1045
1046 flush_cache_page(vma, address, pte_pfn(*pte));
1047 entry = ptep_clear_flush(vma, address, pte);
1048 entry = pte_wrprotect(entry);
1049 entry = pte_mkclean(entry);
1050 set_pte_at(mm, address, pte, entry);
1051 ret = 1;
1052 }
1053
1054 pte_unmap_unlock(pte, ptl);
1055
1056 if (ret) {
1057 mmu_notifier_invalidate_page(mm, address);
1058 (*cleaned)++;
1059 }
1060 out:
1061 return SWAP_AGAIN;
1062 }
1063
1064 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1065 {
1066 if (vma->vm_flags & VM_SHARED)
1067 return false;
1068
1069 return true;
1070 }
1071
1072 int page_mkclean(struct page *page)
1073 {
1074 int cleaned = 0;
1075 struct address_space *mapping;
1076 struct rmap_walk_control rwc = {
1077 .arg = (void *)&cleaned,
1078 .rmap_one = page_mkclean_one,
1079 .invalid_vma = invalid_mkclean_vma,
1080 };
1081
1082 BUG_ON(!PageLocked(page));
1083
1084 if (!page_mapped(page))
1085 return 0;
1086
1087 mapping = page_mapping(page);
1088 if (!mapping)
1089 return 0;
1090
1091 rmap_walk(page, &rwc);
1092
1093 return cleaned;
1094 }
1095 EXPORT_SYMBOL_GPL(page_mkclean);
1096
1097 /**
1098 * page_move_anon_rmap - move a page to our anon_vma
1099 * @page: the page to move to our anon_vma
1100 * @vma: the vma the page belongs to
1101 * @address: the user virtual address mapped
1102 *
1103 * When a page belongs exclusively to one process after a COW event,
1104 * that page can be moved into the anon_vma that belongs to just that
1105 * process, so the rmap code will not search the parent or sibling
1106 * processes.
1107 */
1108 void page_move_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1110 {
1111 struct anon_vma *anon_vma = vma->anon_vma;
1112
1113 VM_BUG_ON_PAGE(!PageLocked(page), page);
1114 VM_BUG_ON_VMA(!anon_vma, vma);
1115 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1116
1117 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1118 /*
1119 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1120 * simultaneously, so a concurrent reader (eg page_referenced()'s
1121 * PageAnon()) will not see one without the other.
1122 */
1123 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1124 }
1125
1126 /**
1127 * __page_set_anon_rmap - set up new anonymous rmap
1128 * @page: Page to add to rmap
1129 * @vma: VM area to add page to.
1130 * @address: User virtual address of the mapping
1131 * @exclusive: the page is exclusively owned by the current process
1132 */
1133 static void __page_set_anon_rmap(struct page *page,
1134 struct vm_area_struct *vma, unsigned long address, int exclusive)
1135 {
1136 struct anon_vma *anon_vma = vma->anon_vma;
1137
1138 BUG_ON(!anon_vma);
1139
1140 if (PageAnon(page))
1141 return;
1142
1143 /*
1144 * If the page isn't exclusively mapped into this vma,
1145 * we must use the _oldest_ possible anon_vma for the
1146 * page mapping!
1147 */
1148 if (!exclusive)
1149 anon_vma = anon_vma->root;
1150
1151 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1152 page->mapping = (struct address_space *) anon_vma;
1153 page->index = linear_page_index(vma, address);
1154 }
1155
1156 /**
1157 * __page_check_anon_rmap - sanity check anonymous rmap addition
1158 * @page: the page to add the mapping to
1159 * @vma: the vm area in which the mapping is added
1160 * @address: the user virtual address mapped
1161 */
1162 static void __page_check_anon_rmap(struct page *page,
1163 struct vm_area_struct *vma, unsigned long address)
1164 {
1165 #ifdef CONFIG_DEBUG_VM
1166 /*
1167 * The page's anon-rmap details (mapping and index) are guaranteed to
1168 * be set up correctly at this point.
1169 *
1170 * We have exclusion against page_add_anon_rmap because the caller
1171 * always holds the page locked, except if called from page_dup_rmap,
1172 * in which case the page is already known to be setup.
1173 *
1174 * We have exclusion against page_add_new_anon_rmap because those pages
1175 * are initially only visible via the pagetables, and the pte is locked
1176 * over the call to page_add_new_anon_rmap.
1177 */
1178 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1179 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1180 #endif
1181 }
1182
1183 /**
1184 * page_add_anon_rmap - add pte mapping to an anonymous page
1185 * @page: the page to add the mapping to
1186 * @vma: the vm area in which the mapping is added
1187 * @address: the user virtual address mapped
1188 * @compound: charge the page as compound or small page
1189 *
1190 * The caller needs to hold the pte lock, and the page must be locked in
1191 * the anon_vma case: to serialize mapping,index checking after setting,
1192 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1193 * (but PageKsm is never downgraded to PageAnon).
1194 */
1195 void page_add_anon_rmap(struct page *page,
1196 struct vm_area_struct *vma, unsigned long address, bool compound)
1197 {
1198 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1199 }
1200
1201 /*
1202 * Special version of the above for do_swap_page, which often runs
1203 * into pages that are exclusively owned by the current process.
1204 * Everybody else should continue to use page_add_anon_rmap above.
1205 */
1206 void do_page_add_anon_rmap(struct page *page,
1207 struct vm_area_struct *vma, unsigned long address, int flags)
1208 {
1209 bool compound = flags & RMAP_COMPOUND;
1210 bool first;
1211
1212 if (compound) {
1213 atomic_t *mapcount;
1214 VM_BUG_ON_PAGE(!PageLocked(page), page);
1215 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1216 mapcount = compound_mapcount_ptr(page);
1217 first = atomic_inc_and_test(mapcount);
1218 } else {
1219 first = atomic_inc_and_test(&page->_mapcount);
1220 }
1221
1222 if (first) {
1223 int nr = compound ? hpage_nr_pages(page) : 1;
1224 /*
1225 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1226 * these counters are not modified in interrupt context, and
1227 * pte lock(a spinlock) is held, which implies preemption
1228 * disabled.
1229 */
1230 if (compound) {
1231 __inc_zone_page_state(page,
1232 NR_ANON_TRANSPARENT_HUGEPAGES);
1233 }
1234 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1235 }
1236 if (unlikely(PageKsm(page)))
1237 return;
1238
1239 VM_BUG_ON_PAGE(!PageLocked(page), page);
1240
1241 /* address might be in next vma when migration races vma_adjust */
1242 if (first)
1243 __page_set_anon_rmap(page, vma, address,
1244 flags & RMAP_EXCLUSIVE);
1245 else
1246 __page_check_anon_rmap(page, vma, address);
1247 }
1248
1249 /**
1250 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1251 * @page: the page to add the mapping to
1252 * @vma: the vm area in which the mapping is added
1253 * @address: the user virtual address mapped
1254 * @compound: charge the page as compound or small page
1255 *
1256 * Same as page_add_anon_rmap but must only be called on *new* pages.
1257 * This means the inc-and-test can be bypassed.
1258 * Page does not have to be locked.
1259 */
1260 void page_add_new_anon_rmap(struct page *page,
1261 struct vm_area_struct *vma, unsigned long address, bool compound)
1262 {
1263 int nr = compound ? hpage_nr_pages(page) : 1;
1264
1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1266 SetPageSwapBacked(page);
1267 if (compound) {
1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1269 /* increment count (starts at -1) */
1270 atomic_set(compound_mapcount_ptr(page), 0);
1271 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1272 } else {
1273 /* Anon THP always mapped first with PMD */
1274 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1275 /* increment count (starts at -1) */
1276 atomic_set(&page->_mapcount, 0);
1277 }
1278 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1279 __page_set_anon_rmap(page, vma, address, 1);
1280 }
1281
1282 /**
1283 * page_add_file_rmap - add pte mapping to a file page
1284 * @page: the page to add the mapping to
1285 *
1286 * The caller needs to hold the pte lock.
1287 */
1288 void page_add_file_rmap(struct page *page)
1289 {
1290 lock_page_memcg(page);
1291 if (atomic_inc_and_test(&page->_mapcount)) {
1292 __inc_zone_page_state(page, NR_FILE_MAPPED);
1293 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1294 }
1295 unlock_page_memcg(page);
1296 }
1297
1298 static void page_remove_file_rmap(struct page *page)
1299 {
1300 lock_page_memcg(page);
1301
1302 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1303 if (unlikely(PageHuge(page))) {
1304 /* hugetlb pages are always mapped with pmds */
1305 atomic_dec(compound_mapcount_ptr(page));
1306 goto out;
1307 }
1308
1309 /* page still mapped by someone else? */
1310 if (!atomic_add_negative(-1, &page->_mapcount))
1311 goto out;
1312
1313 /*
1314 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1315 * these counters are not modified in interrupt context, and
1316 * pte lock(a spinlock) is held, which implies preemption disabled.
1317 */
1318 __dec_zone_page_state(page, NR_FILE_MAPPED);
1319 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1320
1321 if (unlikely(PageMlocked(page)))
1322 clear_page_mlock(page);
1323 out:
1324 unlock_page_memcg(page);
1325 }
1326
1327 static void page_remove_anon_compound_rmap(struct page *page)
1328 {
1329 int i, nr;
1330
1331 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1332 return;
1333
1334 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1335 if (unlikely(PageHuge(page)))
1336 return;
1337
1338 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1339 return;
1340
1341 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1342
1343 if (TestClearPageDoubleMap(page)) {
1344 /*
1345 * Subpages can be mapped with PTEs too. Check how many of
1346 * themi are still mapped.
1347 */
1348 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1349 if (atomic_add_negative(-1, &page[i]._mapcount))
1350 nr++;
1351 }
1352 } else {
1353 nr = HPAGE_PMD_NR;
1354 }
1355
1356 if (unlikely(PageMlocked(page)))
1357 clear_page_mlock(page);
1358
1359 if (nr) {
1360 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1361 deferred_split_huge_page(page);
1362 }
1363 }
1364
1365 /**
1366 * page_remove_rmap - take down pte mapping from a page
1367 * @page: page to remove mapping from
1368 * @compound: uncharge the page as compound or small page
1369 *
1370 * The caller needs to hold the pte lock.
1371 */
1372 void page_remove_rmap(struct page *page, bool compound)
1373 {
1374 if (!PageAnon(page)) {
1375 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1376 page_remove_file_rmap(page);
1377 return;
1378 }
1379
1380 if (compound)
1381 return page_remove_anon_compound_rmap(page);
1382
1383 /* page still mapped by someone else? */
1384 if (!atomic_add_negative(-1, &page->_mapcount))
1385 return;
1386
1387 /*
1388 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1389 * these counters are not modified in interrupt context, and
1390 * pte lock(a spinlock) is held, which implies preemption disabled.
1391 */
1392 __dec_zone_page_state(page, NR_ANON_PAGES);
1393
1394 if (unlikely(PageMlocked(page)))
1395 clear_page_mlock(page);
1396
1397 if (PageTransCompound(page))
1398 deferred_split_huge_page(compound_head(page));
1399
1400 /*
1401 * It would be tidy to reset the PageAnon mapping here,
1402 * but that might overwrite a racing page_add_anon_rmap
1403 * which increments mapcount after us but sets mapping
1404 * before us: so leave the reset to free_hot_cold_page,
1405 * and remember that it's only reliable while mapped.
1406 * Leaving it set also helps swapoff to reinstate ptes
1407 * faster for those pages still in swapcache.
1408 */
1409 }
1410
1411 struct rmap_private {
1412 enum ttu_flags flags;
1413 int lazyfreed;
1414 };
1415
1416 /*
1417 * @arg: enum ttu_flags will be passed to this argument
1418 */
1419 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1420 unsigned long address, void *arg)
1421 {
1422 struct mm_struct *mm = vma->vm_mm;
1423 pte_t *pte;
1424 pte_t pteval;
1425 spinlock_t *ptl;
1426 int ret = SWAP_AGAIN;
1427 struct rmap_private *rp = arg;
1428 enum ttu_flags flags = rp->flags;
1429
1430 /* munlock has nothing to gain from examining un-locked vmas */
1431 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1432 goto out;
1433
1434 if (flags & TTU_SPLIT_HUGE_PMD) {
1435 split_huge_pmd_address(vma, address,
1436 flags & TTU_MIGRATION, page);
1437 /* check if we have anything to do after split */
1438 if (page_mapcount(page) == 0)
1439 goto out;
1440 }
1441
1442 pte = page_check_address(page, mm, address, &ptl, 0);
1443 if (!pte)
1444 goto out;
1445
1446 /*
1447 * If the page is mlock()d, we cannot swap it out.
1448 * If it's recently referenced (perhaps page_referenced
1449 * skipped over this mm) then we should reactivate it.
1450 */
1451 if (!(flags & TTU_IGNORE_MLOCK)) {
1452 if (vma->vm_flags & VM_LOCKED) {
1453 /* Holding pte lock, we do *not* need mmap_sem here */
1454 mlock_vma_page(page);
1455 ret = SWAP_MLOCK;
1456 goto out_unmap;
1457 }
1458 if (flags & TTU_MUNLOCK)
1459 goto out_unmap;
1460 }
1461 if (!(flags & TTU_IGNORE_ACCESS)) {
1462 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1463 ret = SWAP_FAIL;
1464 goto out_unmap;
1465 }
1466 }
1467
1468 /* Nuke the page table entry. */
1469 flush_cache_page(vma, address, page_to_pfn(page));
1470 if (should_defer_flush(mm, flags)) {
1471 /*
1472 * We clear the PTE but do not flush so potentially a remote
1473 * CPU could still be writing to the page. If the entry was
1474 * previously clean then the architecture must guarantee that
1475 * a clear->dirty transition on a cached TLB entry is written
1476 * through and traps if the PTE is unmapped.
1477 */
1478 pteval = ptep_get_and_clear(mm, address, pte);
1479
1480 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1481 } else {
1482 pteval = ptep_clear_flush(vma, address, pte);
1483 }
1484
1485 /* Move the dirty bit to the physical page now the pte is gone. */
1486 if (pte_dirty(pteval))
1487 set_page_dirty(page);
1488
1489 /* Update high watermark before we lower rss */
1490 update_hiwater_rss(mm);
1491
1492 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1493 if (PageHuge(page)) {
1494 hugetlb_count_sub(1 << compound_order(page), mm);
1495 } else {
1496 dec_mm_counter(mm, mm_counter(page));
1497 }
1498 set_pte_at(mm, address, pte,
1499 swp_entry_to_pte(make_hwpoison_entry(page)));
1500 } else if (pte_unused(pteval)) {
1501 /*
1502 * The guest indicated that the page content is of no
1503 * interest anymore. Simply discard the pte, vmscan
1504 * will take care of the rest.
1505 */
1506 dec_mm_counter(mm, mm_counter(page));
1507 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1508 swp_entry_t entry;
1509 pte_t swp_pte;
1510 /*
1511 * Store the pfn of the page in a special migration
1512 * pte. do_swap_page() will wait until the migration
1513 * pte is removed and then restart fault handling.
1514 */
1515 entry = make_migration_entry(page, pte_write(pteval));
1516 swp_pte = swp_entry_to_pte(entry);
1517 if (pte_soft_dirty(pteval))
1518 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1519 set_pte_at(mm, address, pte, swp_pte);
1520 } else if (PageAnon(page)) {
1521 swp_entry_t entry = { .val = page_private(page) };
1522 pte_t swp_pte;
1523 /*
1524 * Store the swap location in the pte.
1525 * See handle_pte_fault() ...
1526 */
1527 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1528
1529 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1530 /* It's a freeable page by MADV_FREE */
1531 dec_mm_counter(mm, MM_ANONPAGES);
1532 rp->lazyfreed++;
1533 goto discard;
1534 }
1535
1536 if (swap_duplicate(entry) < 0) {
1537 set_pte_at(mm, address, pte, pteval);
1538 ret = SWAP_FAIL;
1539 goto out_unmap;
1540 }
1541 if (list_empty(&mm->mmlist)) {
1542 spin_lock(&mmlist_lock);
1543 if (list_empty(&mm->mmlist))
1544 list_add(&mm->mmlist, &init_mm.mmlist);
1545 spin_unlock(&mmlist_lock);
1546 }
1547 dec_mm_counter(mm, MM_ANONPAGES);
1548 inc_mm_counter(mm, MM_SWAPENTS);
1549 swp_pte = swp_entry_to_pte(entry);
1550 if (pte_soft_dirty(pteval))
1551 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1552 set_pte_at(mm, address, pte, swp_pte);
1553 } else
1554 dec_mm_counter(mm, mm_counter_file(page));
1555
1556 discard:
1557 page_remove_rmap(page, PageHuge(page));
1558 page_cache_release(page);
1559
1560 out_unmap:
1561 pte_unmap_unlock(pte, ptl);
1562 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1563 mmu_notifier_invalidate_page(mm, address);
1564 out:
1565 return ret;
1566 }
1567
1568 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1569 {
1570 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1571
1572 if (!maybe_stack)
1573 return false;
1574
1575 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1576 VM_STACK_INCOMPLETE_SETUP)
1577 return true;
1578
1579 return false;
1580 }
1581
1582 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1583 {
1584 return is_vma_temporary_stack(vma);
1585 }
1586
1587 static int page_mapcount_is_zero(struct page *page)
1588 {
1589 return !page_mapcount(page);
1590 }
1591
1592 /**
1593 * try_to_unmap - try to remove all page table mappings to a page
1594 * @page: the page to get unmapped
1595 * @flags: action and flags
1596 *
1597 * Tries to remove all the page table entries which are mapping this
1598 * page, used in the pageout path. Caller must hold the page lock.
1599 * Return values are:
1600 *
1601 * SWAP_SUCCESS - we succeeded in removing all mappings
1602 * SWAP_AGAIN - we missed a mapping, try again later
1603 * SWAP_FAIL - the page is unswappable
1604 * SWAP_MLOCK - page is mlocked.
1605 */
1606 int try_to_unmap(struct page *page, enum ttu_flags flags)
1607 {
1608 int ret;
1609 struct rmap_private rp = {
1610 .flags = flags,
1611 .lazyfreed = 0,
1612 };
1613
1614 struct rmap_walk_control rwc = {
1615 .rmap_one = try_to_unmap_one,
1616 .arg = &rp,
1617 .done = page_mapcount_is_zero,
1618 .anon_lock = page_lock_anon_vma_read,
1619 };
1620
1621 /*
1622 * During exec, a temporary VMA is setup and later moved.
1623 * The VMA is moved under the anon_vma lock but not the
1624 * page tables leading to a race where migration cannot
1625 * find the migration ptes. Rather than increasing the
1626 * locking requirements of exec(), migration skips
1627 * temporary VMAs until after exec() completes.
1628 */
1629 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1630 rwc.invalid_vma = invalid_migration_vma;
1631
1632 if (flags & TTU_RMAP_LOCKED)
1633 ret = rmap_walk_locked(page, &rwc);
1634 else
1635 ret = rmap_walk(page, &rwc);
1636
1637 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1638 ret = SWAP_SUCCESS;
1639 if (rp.lazyfreed && !PageDirty(page))
1640 ret = SWAP_LZFREE;
1641 }
1642 return ret;
1643 }
1644
1645 static int page_not_mapped(struct page *page)
1646 {
1647 return !page_mapped(page);
1648 };
1649
1650 /**
1651 * try_to_munlock - try to munlock a page
1652 * @page: the page to be munlocked
1653 *
1654 * Called from munlock code. Checks all of the VMAs mapping the page
1655 * to make sure nobody else has this page mlocked. The page will be
1656 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1657 *
1658 * Return values are:
1659 *
1660 * SWAP_AGAIN - no vma is holding page mlocked, or,
1661 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1662 * SWAP_FAIL - page cannot be located at present
1663 * SWAP_MLOCK - page is now mlocked.
1664 */
1665 int try_to_munlock(struct page *page)
1666 {
1667 int ret;
1668 struct rmap_private rp = {
1669 .flags = TTU_MUNLOCK,
1670 .lazyfreed = 0,
1671 };
1672
1673 struct rmap_walk_control rwc = {
1674 .rmap_one = try_to_unmap_one,
1675 .arg = &rp,
1676 .done = page_not_mapped,
1677 .anon_lock = page_lock_anon_vma_read,
1678
1679 };
1680
1681 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1682
1683 ret = rmap_walk(page, &rwc);
1684 return ret;
1685 }
1686
1687 void __put_anon_vma(struct anon_vma *anon_vma)
1688 {
1689 struct anon_vma *root = anon_vma->root;
1690
1691 anon_vma_free(anon_vma);
1692 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1693 anon_vma_free(root);
1694 }
1695
1696 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1697 struct rmap_walk_control *rwc)
1698 {
1699 struct anon_vma *anon_vma;
1700
1701 if (rwc->anon_lock)
1702 return rwc->anon_lock(page);
1703
1704 /*
1705 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1706 * because that depends on page_mapped(); but not all its usages
1707 * are holding mmap_sem. Users without mmap_sem are required to
1708 * take a reference count to prevent the anon_vma disappearing
1709 */
1710 anon_vma = page_anon_vma(page);
1711 if (!anon_vma)
1712 return NULL;
1713
1714 anon_vma_lock_read(anon_vma);
1715 return anon_vma;
1716 }
1717
1718 /*
1719 * rmap_walk_anon - do something to anonymous page using the object-based
1720 * rmap method
1721 * @page: the page to be handled
1722 * @rwc: control variable according to each walk type
1723 *
1724 * Find all the mappings of a page using the mapping pointer and the vma chains
1725 * contained in the anon_vma struct it points to.
1726 *
1727 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1728 * where the page was found will be held for write. So, we won't recheck
1729 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1730 * LOCKED.
1731 */
1732 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1733 bool locked)
1734 {
1735 struct anon_vma *anon_vma;
1736 pgoff_t pgoff;
1737 struct anon_vma_chain *avc;
1738 int ret = SWAP_AGAIN;
1739
1740 if (locked) {
1741 anon_vma = page_anon_vma(page);
1742 /* anon_vma disappear under us? */
1743 VM_BUG_ON_PAGE(!anon_vma, page);
1744 } else {
1745 anon_vma = rmap_walk_anon_lock(page, rwc);
1746 }
1747 if (!anon_vma)
1748 return ret;
1749
1750 pgoff = page_to_pgoff(page);
1751 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1752 struct vm_area_struct *vma = avc->vma;
1753 unsigned long address = vma_address(page, vma);
1754
1755 cond_resched();
1756
1757 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1758 continue;
1759
1760 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1761 if (ret != SWAP_AGAIN)
1762 break;
1763 if (rwc->done && rwc->done(page))
1764 break;
1765 }
1766
1767 if (!locked)
1768 anon_vma_unlock_read(anon_vma);
1769 return ret;
1770 }
1771
1772 /*
1773 * rmap_walk_file - do something to file page using the object-based rmap method
1774 * @page: the page to be handled
1775 * @rwc: control variable according to each walk type
1776 *
1777 * Find all the mappings of a page using the mapping pointer and the vma chains
1778 * contained in the address_space struct it points to.
1779 *
1780 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1781 * where the page was found will be held for write. So, we won't recheck
1782 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1783 * LOCKED.
1784 */
1785 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1786 bool locked)
1787 {
1788 struct address_space *mapping = page_mapping(page);
1789 pgoff_t pgoff;
1790 struct vm_area_struct *vma;
1791 int ret = SWAP_AGAIN;
1792
1793 /*
1794 * The page lock not only makes sure that page->mapping cannot
1795 * suddenly be NULLified by truncation, it makes sure that the
1796 * structure at mapping cannot be freed and reused yet,
1797 * so we can safely take mapping->i_mmap_rwsem.
1798 */
1799 VM_BUG_ON_PAGE(!PageLocked(page), page);
1800
1801 if (!mapping)
1802 return ret;
1803
1804 pgoff = page_to_pgoff(page);
1805 if (!locked)
1806 i_mmap_lock_read(mapping);
1807 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1808 unsigned long address = vma_address(page, vma);
1809
1810 cond_resched();
1811
1812 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1813 continue;
1814
1815 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1816 if (ret != SWAP_AGAIN)
1817 goto done;
1818 if (rwc->done && rwc->done(page))
1819 goto done;
1820 }
1821
1822 done:
1823 if (!locked)
1824 i_mmap_unlock_read(mapping);
1825 return ret;
1826 }
1827
1828 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1829 {
1830 if (unlikely(PageKsm(page)))
1831 return rmap_walk_ksm(page, rwc);
1832 else if (PageAnon(page))
1833 return rmap_walk_anon(page, rwc, false);
1834 else
1835 return rmap_walk_file(page, rwc, false);
1836 }
1837
1838 /* Like rmap_walk, but caller holds relevant rmap lock */
1839 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1840 {
1841 /* no ksm support for now */
1842 VM_BUG_ON_PAGE(PageKsm(page), page);
1843 if (PageAnon(page))
1844 return rmap_walk_anon(page, rwc, true);
1845 else
1846 return rmap_walk_file(page, rwc, true);
1847 }
1848
1849 #ifdef CONFIG_HUGETLB_PAGE
1850 /*
1851 * The following three functions are for anonymous (private mapped) hugepages.
1852 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1853 * and no lru code, because we handle hugepages differently from common pages.
1854 */
1855 static void __hugepage_set_anon_rmap(struct page *page,
1856 struct vm_area_struct *vma, unsigned long address, int exclusive)
1857 {
1858 struct anon_vma *anon_vma = vma->anon_vma;
1859
1860 BUG_ON(!anon_vma);
1861
1862 if (PageAnon(page))
1863 return;
1864 if (!exclusive)
1865 anon_vma = anon_vma->root;
1866
1867 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1868 page->mapping = (struct address_space *) anon_vma;
1869 page->index = linear_page_index(vma, address);
1870 }
1871
1872 void hugepage_add_anon_rmap(struct page *page,
1873 struct vm_area_struct *vma, unsigned long address)
1874 {
1875 struct anon_vma *anon_vma = vma->anon_vma;
1876 int first;
1877
1878 BUG_ON(!PageLocked(page));
1879 BUG_ON(!anon_vma);
1880 /* address might be in next vma when migration races vma_adjust */
1881 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1882 if (first)
1883 __hugepage_set_anon_rmap(page, vma, address, 0);
1884 }
1885
1886 void hugepage_add_new_anon_rmap(struct page *page,
1887 struct vm_area_struct *vma, unsigned long address)
1888 {
1889 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1890 atomic_set(compound_mapcount_ptr(page), 0);
1891 __hugepage_set_anon_rmap(page, vma, address, 1);
1892 }
1893 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.083293 seconds and 5 git commands to generate.