ACPI / util: cast data to u64 before shifting to fix sign extension
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
371 {
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
375 unsigned long swapped = 0;
376
377 rcu_read_lock();
378
379 restart:
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
382 break;
383
384 page = radix_tree_deref_slot(slot);
385
386 /*
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
389 * restarts.
390 */
391 if (radix_tree_deref_retry(page))
392 goto restart;
393
394 if (radix_tree_exceptional_entry(page))
395 swapped++;
396
397 if (need_resched()) {
398 cond_resched_rcu();
399 start = iter.index + 1;
400 goto restart;
401 }
402 }
403
404 rcu_read_unlock();
405
406 return swapped << PAGE_SHIFT;
407 }
408
409 /*
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
412 *
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
415 */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418 struct inode *inode = file_inode(vma->vm_file);
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 struct address_space *mapping = inode->i_mapping;
421 unsigned long swapped;
422
423 /* Be careful as we don't hold info->lock */
424 swapped = READ_ONCE(info->swapped);
425
426 /*
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
429 * already track.
430 */
431 if (!swapped)
432 return 0;
433
434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 return swapped << PAGE_SHIFT;
436
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping,
439 linear_page_index(vma, vma->vm_start),
440 linear_page_index(vma, vma->vm_end));
441 }
442
443 /*
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445 */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448 struct pagevec pvec;
449 pgoff_t indices[PAGEVEC_SIZE];
450 pgoff_t index = 0;
451
452 pagevec_init(&pvec, 0);
453 /*
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455 */
456 while (!mapping_unevictable(mapping)) {
457 /*
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460 */
461 pvec.nr = find_get_entries(mapping, index,
462 PAGEVEC_SIZE, pvec.pages, indices);
463 if (!pvec.nr)
464 break;
465 index = indices[pvec.nr - 1] + 1;
466 pagevec_remove_exceptionals(&pvec);
467 check_move_unevictable_pages(pvec.pages, pvec.nr);
468 pagevec_release(&pvec);
469 cond_resched();
470 }
471 }
472
473 /*
474 * Remove range of pages and swap entries from radix tree, and free them.
475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476 */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478 bool unfalloc)
479 {
480 struct address_space *mapping = inode->i_mapping;
481 struct shmem_inode_info *info = SHMEM_I(inode);
482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486 struct pagevec pvec;
487 pgoff_t indices[PAGEVEC_SIZE];
488 long nr_swaps_freed = 0;
489 pgoff_t index;
490 int i;
491
492 if (lend == -1)
493 end = -1; /* unsigned, so actually very big */
494
495 pagevec_init(&pvec, 0);
496 index = start;
497 while (index < end) {
498 pvec.nr = find_get_entries(mapping, index,
499 min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 pvec.pages, indices);
501 if (!pvec.nr)
502 break;
503 for (i = 0; i < pagevec_count(&pvec); i++) {
504 struct page *page = pvec.pages[i];
505
506 index = indices[i];
507 if (index >= end)
508 break;
509
510 if (radix_tree_exceptional_entry(page)) {
511 if (unfalloc)
512 continue;
513 nr_swaps_freed += !shmem_free_swap(mapping,
514 index, page);
515 continue;
516 }
517
518 if (!trylock_page(page))
519 continue;
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
522 VM_BUG_ON_PAGE(PageWriteback(page), page);
523 truncate_inode_page(mapping, page);
524 }
525 }
526 unlock_page(page);
527 }
528 pagevec_remove_exceptionals(&pvec);
529 pagevec_release(&pvec);
530 cond_resched();
531 index++;
532 }
533
534 if (partial_start) {
535 struct page *page = NULL;
536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537 if (page) {
538 unsigned int top = PAGE_CACHE_SIZE;
539 if (start > end) {
540 top = partial_end;
541 partial_end = 0;
542 }
543 zero_user_segment(page, partial_start, top);
544 set_page_dirty(page);
545 unlock_page(page);
546 page_cache_release(page);
547 }
548 }
549 if (partial_end) {
550 struct page *page = NULL;
551 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552 if (page) {
553 zero_user_segment(page, 0, partial_end);
554 set_page_dirty(page);
555 unlock_page(page);
556 page_cache_release(page);
557 }
558 }
559 if (start >= end)
560 return;
561
562 index = start;
563 while (index < end) {
564 cond_resched();
565
566 pvec.nr = find_get_entries(mapping, index,
567 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568 pvec.pages, indices);
569 if (!pvec.nr) {
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index == start || end != -1)
572 break;
573 /* But if truncating, restart to make sure all gone */
574 index = start;
575 continue;
576 }
577 for (i = 0; i < pagevec_count(&pvec); i++) {
578 struct page *page = pvec.pages[i];
579
580 index = indices[i];
581 if (index >= end)
582 break;
583
584 if (radix_tree_exceptional_entry(page)) {
585 if (unfalloc)
586 continue;
587 if (shmem_free_swap(mapping, index, page)) {
588 /* Swap was replaced by page: retry */
589 index--;
590 break;
591 }
592 nr_swaps_freed++;
593 continue;
594 }
595
596 lock_page(page);
597 if (!unfalloc || !PageUptodate(page)) {
598 if (page->mapping == mapping) {
599 VM_BUG_ON_PAGE(PageWriteback(page), page);
600 truncate_inode_page(mapping, page);
601 } else {
602 /* Page was replaced by swap: retry */
603 unlock_page(page);
604 index--;
605 break;
606 }
607 }
608 unlock_page(page);
609 }
610 pagevec_remove_exceptionals(&pvec);
611 pagevec_release(&pvec);
612 index++;
613 }
614
615 spin_lock(&info->lock);
616 info->swapped -= nr_swaps_freed;
617 shmem_recalc_inode(inode);
618 spin_unlock(&info->lock);
619 }
620
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623 shmem_undo_range(inode, lstart, lend, false);
624 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629 struct kstat *stat)
630 {
631 struct inode *inode = dentry->d_inode;
632 struct shmem_inode_info *info = SHMEM_I(inode);
633
634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 spin_lock(&info->lock);
636 shmem_recalc_inode(inode);
637 spin_unlock(&info->lock);
638 }
639 generic_fillattr(inode, stat);
640 return 0;
641 }
642
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645 struct inode *inode = d_inode(dentry);
646 struct shmem_inode_info *info = SHMEM_I(inode);
647 int error;
648
649 error = inode_change_ok(inode, attr);
650 if (error)
651 return error;
652
653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 loff_t oldsize = inode->i_size;
655 loff_t newsize = attr->ia_size;
656
657 /* protected by i_mutex */
658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660 return -EPERM;
661
662 if (newsize != oldsize) {
663 error = shmem_reacct_size(SHMEM_I(inode)->flags,
664 oldsize, newsize);
665 if (error)
666 return error;
667 i_size_write(inode, newsize);
668 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669 }
670 if (newsize <= oldsize) {
671 loff_t holebegin = round_up(newsize, PAGE_SIZE);
672 if (oldsize > holebegin)
673 unmap_mapping_range(inode->i_mapping,
674 holebegin, 0, 1);
675 if (info->alloced)
676 shmem_truncate_range(inode,
677 newsize, (loff_t)-1);
678 /* unmap again to remove racily COWed private pages */
679 if (oldsize > holebegin)
680 unmap_mapping_range(inode->i_mapping,
681 holebegin, 0, 1);
682 }
683 }
684
685 setattr_copy(inode, attr);
686 if (attr->ia_valid & ATTR_MODE)
687 error = posix_acl_chmod(inode, inode->i_mode);
688 return error;
689 }
690
691 static void shmem_evict_inode(struct inode *inode)
692 {
693 struct shmem_inode_info *info = SHMEM_I(inode);
694
695 if (inode->i_mapping->a_ops == &shmem_aops) {
696 shmem_unacct_size(info->flags, inode->i_size);
697 inode->i_size = 0;
698 shmem_truncate_range(inode, 0, (loff_t)-1);
699 if (!list_empty(&info->swaplist)) {
700 mutex_lock(&shmem_swaplist_mutex);
701 list_del_init(&info->swaplist);
702 mutex_unlock(&shmem_swaplist_mutex);
703 }
704 }
705
706 simple_xattrs_free(&info->xattrs);
707 WARN_ON(inode->i_blocks);
708 shmem_free_inode(inode->i_sb);
709 clear_inode(inode);
710 }
711
712 /*
713 * If swap found in inode, free it and move page from swapcache to filecache.
714 */
715 static int shmem_unuse_inode(struct shmem_inode_info *info,
716 swp_entry_t swap, struct page **pagep)
717 {
718 struct address_space *mapping = info->vfs_inode.i_mapping;
719 void *radswap;
720 pgoff_t index;
721 gfp_t gfp;
722 int error = 0;
723
724 radswap = swp_to_radix_entry(swap);
725 index = radix_tree_locate_item(&mapping->page_tree, radswap);
726 if (index == -1)
727 return -EAGAIN; /* tell shmem_unuse we found nothing */
728
729 /*
730 * Move _head_ to start search for next from here.
731 * But be careful: shmem_evict_inode checks list_empty without taking
732 * mutex, and there's an instant in list_move_tail when info->swaplist
733 * would appear empty, if it were the only one on shmem_swaplist.
734 */
735 if (shmem_swaplist.next != &info->swaplist)
736 list_move_tail(&shmem_swaplist, &info->swaplist);
737
738 gfp = mapping_gfp_mask(mapping);
739 if (shmem_should_replace_page(*pagep, gfp)) {
740 mutex_unlock(&shmem_swaplist_mutex);
741 error = shmem_replace_page(pagep, gfp, info, index);
742 mutex_lock(&shmem_swaplist_mutex);
743 /*
744 * We needed to drop mutex to make that restrictive page
745 * allocation, but the inode might have been freed while we
746 * dropped it: although a racing shmem_evict_inode() cannot
747 * complete without emptying the radix_tree, our page lock
748 * on this swapcache page is not enough to prevent that -
749 * free_swap_and_cache() of our swap entry will only
750 * trylock_page(), removing swap from radix_tree whatever.
751 *
752 * We must not proceed to shmem_add_to_page_cache() if the
753 * inode has been freed, but of course we cannot rely on
754 * inode or mapping or info to check that. However, we can
755 * safely check if our swap entry is still in use (and here
756 * it can't have got reused for another page): if it's still
757 * in use, then the inode cannot have been freed yet, and we
758 * can safely proceed (if it's no longer in use, that tells
759 * nothing about the inode, but we don't need to unuse swap).
760 */
761 if (!page_swapcount(*pagep))
762 error = -ENOENT;
763 }
764
765 /*
766 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
767 * but also to hold up shmem_evict_inode(): so inode cannot be freed
768 * beneath us (pagelock doesn't help until the page is in pagecache).
769 */
770 if (!error)
771 error = shmem_add_to_page_cache(*pagep, mapping, index,
772 radswap);
773 if (error != -ENOMEM) {
774 /*
775 * Truncation and eviction use free_swap_and_cache(), which
776 * only does trylock page: if we raced, best clean up here.
777 */
778 delete_from_swap_cache(*pagep);
779 set_page_dirty(*pagep);
780 if (!error) {
781 spin_lock(&info->lock);
782 info->swapped--;
783 spin_unlock(&info->lock);
784 swap_free(swap);
785 }
786 }
787 return error;
788 }
789
790 /*
791 * Search through swapped inodes to find and replace swap by page.
792 */
793 int shmem_unuse(swp_entry_t swap, struct page *page)
794 {
795 struct list_head *this, *next;
796 struct shmem_inode_info *info;
797 struct mem_cgroup *memcg;
798 int error = 0;
799
800 /*
801 * There's a faint possibility that swap page was replaced before
802 * caller locked it: caller will come back later with the right page.
803 */
804 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
805 goto out;
806
807 /*
808 * Charge page using GFP_KERNEL while we can wait, before taking
809 * the shmem_swaplist_mutex which might hold up shmem_writepage().
810 * Charged back to the user (not to caller) when swap account is used.
811 */
812 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
813 false);
814 if (error)
815 goto out;
816 /* No radix_tree_preload: swap entry keeps a place for page in tree */
817 error = -EAGAIN;
818
819 mutex_lock(&shmem_swaplist_mutex);
820 list_for_each_safe(this, next, &shmem_swaplist) {
821 info = list_entry(this, struct shmem_inode_info, swaplist);
822 if (info->swapped)
823 error = shmem_unuse_inode(info, swap, &page);
824 else
825 list_del_init(&info->swaplist);
826 cond_resched();
827 if (error != -EAGAIN)
828 break;
829 /* found nothing in this: move on to search the next */
830 }
831 mutex_unlock(&shmem_swaplist_mutex);
832
833 if (error) {
834 if (error != -ENOMEM)
835 error = 0;
836 mem_cgroup_cancel_charge(page, memcg, false);
837 } else
838 mem_cgroup_commit_charge(page, memcg, true, false);
839 out:
840 unlock_page(page);
841 page_cache_release(page);
842 return error;
843 }
844
845 /*
846 * Move the page from the page cache to the swap cache.
847 */
848 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
849 {
850 struct shmem_inode_info *info;
851 struct address_space *mapping;
852 struct inode *inode;
853 swp_entry_t swap;
854 pgoff_t index;
855
856 BUG_ON(!PageLocked(page));
857 mapping = page->mapping;
858 index = page->index;
859 inode = mapping->host;
860 info = SHMEM_I(inode);
861 if (info->flags & VM_LOCKED)
862 goto redirty;
863 if (!total_swap_pages)
864 goto redirty;
865
866 /*
867 * Our capabilities prevent regular writeback or sync from ever calling
868 * shmem_writepage; but a stacking filesystem might use ->writepage of
869 * its underlying filesystem, in which case tmpfs should write out to
870 * swap only in response to memory pressure, and not for the writeback
871 * threads or sync.
872 */
873 if (!wbc->for_reclaim) {
874 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
875 goto redirty;
876 }
877
878 /*
879 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880 * value into swapfile.c, the only way we can correctly account for a
881 * fallocated page arriving here is now to initialize it and write it.
882 *
883 * That's okay for a page already fallocated earlier, but if we have
884 * not yet completed the fallocation, then (a) we want to keep track
885 * of this page in case we have to undo it, and (b) it may not be a
886 * good idea to continue anyway, once we're pushing into swap. So
887 * reactivate the page, and let shmem_fallocate() quit when too many.
888 */
889 if (!PageUptodate(page)) {
890 if (inode->i_private) {
891 struct shmem_falloc *shmem_falloc;
892 spin_lock(&inode->i_lock);
893 shmem_falloc = inode->i_private;
894 if (shmem_falloc &&
895 !shmem_falloc->waitq &&
896 index >= shmem_falloc->start &&
897 index < shmem_falloc->next)
898 shmem_falloc->nr_unswapped++;
899 else
900 shmem_falloc = NULL;
901 spin_unlock(&inode->i_lock);
902 if (shmem_falloc)
903 goto redirty;
904 }
905 clear_highpage(page);
906 flush_dcache_page(page);
907 SetPageUptodate(page);
908 }
909
910 swap = get_swap_page();
911 if (!swap.val)
912 goto redirty;
913
914 if (mem_cgroup_try_charge_swap(page, swap))
915 goto free_swap;
916
917 /*
918 * Add inode to shmem_unuse()'s list of swapped-out inodes,
919 * if it's not already there. Do it now before the page is
920 * moved to swap cache, when its pagelock no longer protects
921 * the inode from eviction. But don't unlock the mutex until
922 * we've incremented swapped, because shmem_unuse_inode() will
923 * prune a !swapped inode from the swaplist under this mutex.
924 */
925 mutex_lock(&shmem_swaplist_mutex);
926 if (list_empty(&info->swaplist))
927 list_add_tail(&info->swaplist, &shmem_swaplist);
928
929 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
930 spin_lock(&info->lock);
931 shmem_recalc_inode(inode);
932 info->swapped++;
933 spin_unlock(&info->lock);
934
935 swap_shmem_alloc(swap);
936 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
937
938 mutex_unlock(&shmem_swaplist_mutex);
939 BUG_ON(page_mapped(page));
940 swap_writepage(page, wbc);
941 return 0;
942 }
943
944 mutex_unlock(&shmem_swaplist_mutex);
945 free_swap:
946 swapcache_free(swap);
947 redirty:
948 set_page_dirty(page);
949 if (wbc->for_reclaim)
950 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
951 unlock_page(page);
952 return 0;
953 }
954
955 #ifdef CONFIG_NUMA
956 #ifdef CONFIG_TMPFS
957 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
958 {
959 char buffer[64];
960
961 if (!mpol || mpol->mode == MPOL_DEFAULT)
962 return; /* show nothing */
963
964 mpol_to_str(buffer, sizeof(buffer), mpol);
965
966 seq_printf(seq, ",mpol=%s", buffer);
967 }
968
969 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
970 {
971 struct mempolicy *mpol = NULL;
972 if (sbinfo->mpol) {
973 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
974 mpol = sbinfo->mpol;
975 mpol_get(mpol);
976 spin_unlock(&sbinfo->stat_lock);
977 }
978 return mpol;
979 }
980 #endif /* CONFIG_TMPFS */
981
982 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
983 struct shmem_inode_info *info, pgoff_t index)
984 {
985 struct vm_area_struct pvma;
986 struct page *page;
987
988 /* Create a pseudo vma that just contains the policy */
989 pvma.vm_start = 0;
990 /* Bias interleave by inode number to distribute better across nodes */
991 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
992 pvma.vm_ops = NULL;
993 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
994
995 page = swapin_readahead(swap, gfp, &pvma, 0);
996
997 /* Drop reference taken by mpol_shared_policy_lookup() */
998 mpol_cond_put(pvma.vm_policy);
999
1000 return page;
1001 }
1002
1003 static struct page *shmem_alloc_page(gfp_t gfp,
1004 struct shmem_inode_info *info, pgoff_t index)
1005 {
1006 struct vm_area_struct pvma;
1007 struct page *page;
1008
1009 /* Create a pseudo vma that just contains the policy */
1010 pvma.vm_start = 0;
1011 /* Bias interleave by inode number to distribute better across nodes */
1012 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1013 pvma.vm_ops = NULL;
1014 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1015
1016 page = alloc_page_vma(gfp, &pvma, 0);
1017
1018 /* Drop reference taken by mpol_shared_policy_lookup() */
1019 mpol_cond_put(pvma.vm_policy);
1020
1021 return page;
1022 }
1023 #else /* !CONFIG_NUMA */
1024 #ifdef CONFIG_TMPFS
1025 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1026 {
1027 }
1028 #endif /* CONFIG_TMPFS */
1029
1030 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1031 struct shmem_inode_info *info, pgoff_t index)
1032 {
1033 return swapin_readahead(swap, gfp, NULL, 0);
1034 }
1035
1036 static inline struct page *shmem_alloc_page(gfp_t gfp,
1037 struct shmem_inode_info *info, pgoff_t index)
1038 {
1039 return alloc_page(gfp);
1040 }
1041 #endif /* CONFIG_NUMA */
1042
1043 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1044 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1045 {
1046 return NULL;
1047 }
1048 #endif
1049
1050 /*
1051 * When a page is moved from swapcache to shmem filecache (either by the
1052 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1053 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1054 * ignorance of the mapping it belongs to. If that mapping has special
1055 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1056 * we may need to copy to a suitable page before moving to filecache.
1057 *
1058 * In a future release, this may well be extended to respect cpuset and
1059 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1060 * but for now it is a simple matter of zone.
1061 */
1062 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1063 {
1064 return page_zonenum(page) > gfp_zone(gfp);
1065 }
1066
1067 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1068 struct shmem_inode_info *info, pgoff_t index)
1069 {
1070 struct page *oldpage, *newpage;
1071 struct address_space *swap_mapping;
1072 pgoff_t swap_index;
1073 int error;
1074
1075 oldpage = *pagep;
1076 swap_index = page_private(oldpage);
1077 swap_mapping = page_mapping(oldpage);
1078
1079 /*
1080 * We have arrived here because our zones are constrained, so don't
1081 * limit chance of success by further cpuset and node constraints.
1082 */
1083 gfp &= ~GFP_CONSTRAINT_MASK;
1084 newpage = shmem_alloc_page(gfp, info, index);
1085 if (!newpage)
1086 return -ENOMEM;
1087
1088 page_cache_get(newpage);
1089 copy_highpage(newpage, oldpage);
1090 flush_dcache_page(newpage);
1091
1092 __SetPageLocked(newpage);
1093 SetPageUptodate(newpage);
1094 SetPageSwapBacked(newpage);
1095 set_page_private(newpage, swap_index);
1096 SetPageSwapCache(newpage);
1097
1098 /*
1099 * Our caller will very soon move newpage out of swapcache, but it's
1100 * a nice clean interface for us to replace oldpage by newpage there.
1101 */
1102 spin_lock_irq(&swap_mapping->tree_lock);
1103 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1104 newpage);
1105 if (!error) {
1106 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1107 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1108 }
1109 spin_unlock_irq(&swap_mapping->tree_lock);
1110
1111 if (unlikely(error)) {
1112 /*
1113 * Is this possible? I think not, now that our callers check
1114 * both PageSwapCache and page_private after getting page lock;
1115 * but be defensive. Reverse old to newpage for clear and free.
1116 */
1117 oldpage = newpage;
1118 } else {
1119 mem_cgroup_replace_page(oldpage, newpage);
1120 lru_cache_add_anon(newpage);
1121 *pagep = newpage;
1122 }
1123
1124 ClearPageSwapCache(oldpage);
1125 set_page_private(oldpage, 0);
1126
1127 unlock_page(oldpage);
1128 page_cache_release(oldpage);
1129 page_cache_release(oldpage);
1130 return error;
1131 }
1132
1133 /*
1134 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1135 *
1136 * If we allocate a new one we do not mark it dirty. That's up to the
1137 * vm. If we swap it in we mark it dirty since we also free the swap
1138 * entry since a page cannot live in both the swap and page cache
1139 */
1140 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1141 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1142 {
1143 struct address_space *mapping = inode->i_mapping;
1144 struct shmem_inode_info *info;
1145 struct shmem_sb_info *sbinfo;
1146 struct mem_cgroup *memcg;
1147 struct page *page;
1148 swp_entry_t swap;
1149 int error;
1150 int once = 0;
1151 int alloced = 0;
1152
1153 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1154 return -EFBIG;
1155 repeat:
1156 swap.val = 0;
1157 page = find_lock_entry(mapping, index);
1158 if (radix_tree_exceptional_entry(page)) {
1159 swap = radix_to_swp_entry(page);
1160 page = NULL;
1161 }
1162
1163 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1164 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1165 error = -EINVAL;
1166 goto unlock;
1167 }
1168
1169 if (page && sgp == SGP_WRITE)
1170 mark_page_accessed(page);
1171
1172 /* fallocated page? */
1173 if (page && !PageUptodate(page)) {
1174 if (sgp != SGP_READ)
1175 goto clear;
1176 unlock_page(page);
1177 page_cache_release(page);
1178 page = NULL;
1179 }
1180 if (page || (sgp == SGP_READ && !swap.val)) {
1181 *pagep = page;
1182 return 0;
1183 }
1184
1185 /*
1186 * Fast cache lookup did not find it:
1187 * bring it back from swap or allocate.
1188 */
1189 info = SHMEM_I(inode);
1190 sbinfo = SHMEM_SB(inode->i_sb);
1191
1192 if (swap.val) {
1193 /* Look it up and read it in.. */
1194 page = lookup_swap_cache(swap);
1195 if (!page) {
1196 /* here we actually do the io */
1197 if (fault_type)
1198 *fault_type |= VM_FAULT_MAJOR;
1199 page = shmem_swapin(swap, gfp, info, index);
1200 if (!page) {
1201 error = -ENOMEM;
1202 goto failed;
1203 }
1204 }
1205
1206 /* We have to do this with page locked to prevent races */
1207 lock_page(page);
1208 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1209 !shmem_confirm_swap(mapping, index, swap)) {
1210 error = -EEXIST; /* try again */
1211 goto unlock;
1212 }
1213 if (!PageUptodate(page)) {
1214 error = -EIO;
1215 goto failed;
1216 }
1217 wait_on_page_writeback(page);
1218
1219 if (shmem_should_replace_page(page, gfp)) {
1220 error = shmem_replace_page(&page, gfp, info, index);
1221 if (error)
1222 goto failed;
1223 }
1224
1225 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1226 false);
1227 if (!error) {
1228 error = shmem_add_to_page_cache(page, mapping, index,
1229 swp_to_radix_entry(swap));
1230 /*
1231 * We already confirmed swap under page lock, and make
1232 * no memory allocation here, so usually no possibility
1233 * of error; but free_swap_and_cache() only trylocks a
1234 * page, so it is just possible that the entry has been
1235 * truncated or holepunched since swap was confirmed.
1236 * shmem_undo_range() will have done some of the
1237 * unaccounting, now delete_from_swap_cache() will do
1238 * the rest.
1239 * Reset swap.val? No, leave it so "failed" goes back to
1240 * "repeat": reading a hole and writing should succeed.
1241 */
1242 if (error) {
1243 mem_cgroup_cancel_charge(page, memcg, false);
1244 delete_from_swap_cache(page);
1245 }
1246 }
1247 if (error)
1248 goto failed;
1249
1250 mem_cgroup_commit_charge(page, memcg, true, false);
1251
1252 spin_lock(&info->lock);
1253 info->swapped--;
1254 shmem_recalc_inode(inode);
1255 spin_unlock(&info->lock);
1256
1257 if (sgp == SGP_WRITE)
1258 mark_page_accessed(page);
1259
1260 delete_from_swap_cache(page);
1261 set_page_dirty(page);
1262 swap_free(swap);
1263
1264 } else {
1265 if (shmem_acct_block(info->flags)) {
1266 error = -ENOSPC;
1267 goto failed;
1268 }
1269 if (sbinfo->max_blocks) {
1270 if (percpu_counter_compare(&sbinfo->used_blocks,
1271 sbinfo->max_blocks) >= 0) {
1272 error = -ENOSPC;
1273 goto unacct;
1274 }
1275 percpu_counter_inc(&sbinfo->used_blocks);
1276 }
1277
1278 page = shmem_alloc_page(gfp, info, index);
1279 if (!page) {
1280 error = -ENOMEM;
1281 goto decused;
1282 }
1283
1284 __SetPageSwapBacked(page);
1285 __SetPageLocked(page);
1286 if (sgp == SGP_WRITE)
1287 __SetPageReferenced(page);
1288
1289 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1290 false);
1291 if (error)
1292 goto decused;
1293 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1294 if (!error) {
1295 error = shmem_add_to_page_cache(page, mapping, index,
1296 NULL);
1297 radix_tree_preload_end();
1298 }
1299 if (error) {
1300 mem_cgroup_cancel_charge(page, memcg, false);
1301 goto decused;
1302 }
1303 mem_cgroup_commit_charge(page, memcg, false, false);
1304 lru_cache_add_anon(page);
1305
1306 spin_lock(&info->lock);
1307 info->alloced++;
1308 inode->i_blocks += BLOCKS_PER_PAGE;
1309 shmem_recalc_inode(inode);
1310 spin_unlock(&info->lock);
1311 alloced = true;
1312
1313 /*
1314 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1315 */
1316 if (sgp == SGP_FALLOC)
1317 sgp = SGP_WRITE;
1318 clear:
1319 /*
1320 * Let SGP_WRITE caller clear ends if write does not fill page;
1321 * but SGP_FALLOC on a page fallocated earlier must initialize
1322 * it now, lest undo on failure cancel our earlier guarantee.
1323 */
1324 if (sgp != SGP_WRITE) {
1325 clear_highpage(page);
1326 flush_dcache_page(page);
1327 SetPageUptodate(page);
1328 }
1329 if (sgp == SGP_DIRTY)
1330 set_page_dirty(page);
1331 }
1332
1333 /* Perhaps the file has been truncated since we checked */
1334 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1335 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1336 if (alloced) {
1337 ClearPageDirty(page);
1338 delete_from_page_cache(page);
1339 spin_lock(&info->lock);
1340 shmem_recalc_inode(inode);
1341 spin_unlock(&info->lock);
1342 }
1343 error = -EINVAL;
1344 goto unlock;
1345 }
1346 *pagep = page;
1347 return 0;
1348
1349 /*
1350 * Error recovery.
1351 */
1352 decused:
1353 if (sbinfo->max_blocks)
1354 percpu_counter_add(&sbinfo->used_blocks, -1);
1355 unacct:
1356 shmem_unacct_blocks(info->flags, 1);
1357 failed:
1358 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1359 error = -EEXIST;
1360 unlock:
1361 if (page) {
1362 unlock_page(page);
1363 page_cache_release(page);
1364 }
1365 if (error == -ENOSPC && !once++) {
1366 info = SHMEM_I(inode);
1367 spin_lock(&info->lock);
1368 shmem_recalc_inode(inode);
1369 spin_unlock(&info->lock);
1370 goto repeat;
1371 }
1372 if (error == -EEXIST) /* from above or from radix_tree_insert */
1373 goto repeat;
1374 return error;
1375 }
1376
1377 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1378 {
1379 struct inode *inode = file_inode(vma->vm_file);
1380 int error;
1381 int ret = VM_FAULT_LOCKED;
1382
1383 /*
1384 * Trinity finds that probing a hole which tmpfs is punching can
1385 * prevent the hole-punch from ever completing: which in turn
1386 * locks writers out with its hold on i_mutex. So refrain from
1387 * faulting pages into the hole while it's being punched. Although
1388 * shmem_undo_range() does remove the additions, it may be unable to
1389 * keep up, as each new page needs its own unmap_mapping_range() call,
1390 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1391 *
1392 * It does not matter if we sometimes reach this check just before the
1393 * hole-punch begins, so that one fault then races with the punch:
1394 * we just need to make racing faults a rare case.
1395 *
1396 * The implementation below would be much simpler if we just used a
1397 * standard mutex or completion: but we cannot take i_mutex in fault,
1398 * and bloating every shmem inode for this unlikely case would be sad.
1399 */
1400 if (unlikely(inode->i_private)) {
1401 struct shmem_falloc *shmem_falloc;
1402
1403 spin_lock(&inode->i_lock);
1404 shmem_falloc = inode->i_private;
1405 if (shmem_falloc &&
1406 shmem_falloc->waitq &&
1407 vmf->pgoff >= shmem_falloc->start &&
1408 vmf->pgoff < shmem_falloc->next) {
1409 wait_queue_head_t *shmem_falloc_waitq;
1410 DEFINE_WAIT(shmem_fault_wait);
1411
1412 ret = VM_FAULT_NOPAGE;
1413 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1414 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1415 /* It's polite to up mmap_sem if we can */
1416 up_read(&vma->vm_mm->mmap_sem);
1417 ret = VM_FAULT_RETRY;
1418 }
1419
1420 shmem_falloc_waitq = shmem_falloc->waitq;
1421 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1422 TASK_UNINTERRUPTIBLE);
1423 spin_unlock(&inode->i_lock);
1424 schedule();
1425
1426 /*
1427 * shmem_falloc_waitq points into the shmem_fallocate()
1428 * stack of the hole-punching task: shmem_falloc_waitq
1429 * is usually invalid by the time we reach here, but
1430 * finish_wait() does not dereference it in that case;
1431 * though i_lock needed lest racing with wake_up_all().
1432 */
1433 spin_lock(&inode->i_lock);
1434 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1435 spin_unlock(&inode->i_lock);
1436 return ret;
1437 }
1438 spin_unlock(&inode->i_lock);
1439 }
1440
1441 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1442 if (error)
1443 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1444
1445 if (ret & VM_FAULT_MAJOR) {
1446 count_vm_event(PGMAJFAULT);
1447 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1448 }
1449 return ret;
1450 }
1451
1452 #ifdef CONFIG_NUMA
1453 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1454 {
1455 struct inode *inode = file_inode(vma->vm_file);
1456 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1457 }
1458
1459 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1460 unsigned long addr)
1461 {
1462 struct inode *inode = file_inode(vma->vm_file);
1463 pgoff_t index;
1464
1465 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1467 }
1468 #endif
1469
1470 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471 {
1472 struct inode *inode = file_inode(file);
1473 struct shmem_inode_info *info = SHMEM_I(inode);
1474 int retval = -ENOMEM;
1475
1476 spin_lock(&info->lock);
1477 if (lock && !(info->flags & VM_LOCKED)) {
1478 if (!user_shm_lock(inode->i_size, user))
1479 goto out_nomem;
1480 info->flags |= VM_LOCKED;
1481 mapping_set_unevictable(file->f_mapping);
1482 }
1483 if (!lock && (info->flags & VM_LOCKED) && user) {
1484 user_shm_unlock(inode->i_size, user);
1485 info->flags &= ~VM_LOCKED;
1486 mapping_clear_unevictable(file->f_mapping);
1487 }
1488 retval = 0;
1489
1490 out_nomem:
1491 spin_unlock(&info->lock);
1492 return retval;
1493 }
1494
1495 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1496 {
1497 file_accessed(file);
1498 vma->vm_ops = &shmem_vm_ops;
1499 return 0;
1500 }
1501
1502 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1503 umode_t mode, dev_t dev, unsigned long flags)
1504 {
1505 struct inode *inode;
1506 struct shmem_inode_info *info;
1507 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1508
1509 if (shmem_reserve_inode(sb))
1510 return NULL;
1511
1512 inode = new_inode(sb);
1513 if (inode) {
1514 inode->i_ino = get_next_ino();
1515 inode_init_owner(inode, dir, mode);
1516 inode->i_blocks = 0;
1517 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1518 inode->i_generation = get_seconds();
1519 info = SHMEM_I(inode);
1520 memset(info, 0, (char *)inode - (char *)info);
1521 spin_lock_init(&info->lock);
1522 info->seals = F_SEAL_SEAL;
1523 info->flags = flags & VM_NORESERVE;
1524 INIT_LIST_HEAD(&info->swaplist);
1525 simple_xattrs_init(&info->xattrs);
1526 cache_no_acl(inode);
1527
1528 switch (mode & S_IFMT) {
1529 default:
1530 inode->i_op = &shmem_special_inode_operations;
1531 init_special_inode(inode, mode, dev);
1532 break;
1533 case S_IFREG:
1534 inode->i_mapping->a_ops = &shmem_aops;
1535 inode->i_op = &shmem_inode_operations;
1536 inode->i_fop = &shmem_file_operations;
1537 mpol_shared_policy_init(&info->policy,
1538 shmem_get_sbmpol(sbinfo));
1539 break;
1540 case S_IFDIR:
1541 inc_nlink(inode);
1542 /* Some things misbehave if size == 0 on a directory */
1543 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1544 inode->i_op = &shmem_dir_inode_operations;
1545 inode->i_fop = &simple_dir_operations;
1546 break;
1547 case S_IFLNK:
1548 /*
1549 * Must not load anything in the rbtree,
1550 * mpol_free_shared_policy will not be called.
1551 */
1552 mpol_shared_policy_init(&info->policy, NULL);
1553 break;
1554 }
1555 } else
1556 shmem_free_inode(sb);
1557 return inode;
1558 }
1559
1560 bool shmem_mapping(struct address_space *mapping)
1561 {
1562 if (!mapping->host)
1563 return false;
1564
1565 return mapping->host->i_sb->s_op == &shmem_ops;
1566 }
1567
1568 #ifdef CONFIG_TMPFS
1569 static const struct inode_operations shmem_symlink_inode_operations;
1570 static const struct inode_operations shmem_short_symlink_operations;
1571
1572 #ifdef CONFIG_TMPFS_XATTR
1573 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1574 #else
1575 #define shmem_initxattrs NULL
1576 #endif
1577
1578 static int
1579 shmem_write_begin(struct file *file, struct address_space *mapping,
1580 loff_t pos, unsigned len, unsigned flags,
1581 struct page **pagep, void **fsdata)
1582 {
1583 struct inode *inode = mapping->host;
1584 struct shmem_inode_info *info = SHMEM_I(inode);
1585 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1586
1587 /* i_mutex is held by caller */
1588 if (unlikely(info->seals)) {
1589 if (info->seals & F_SEAL_WRITE)
1590 return -EPERM;
1591 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1592 return -EPERM;
1593 }
1594
1595 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1596 }
1597
1598 static int
1599 shmem_write_end(struct file *file, struct address_space *mapping,
1600 loff_t pos, unsigned len, unsigned copied,
1601 struct page *page, void *fsdata)
1602 {
1603 struct inode *inode = mapping->host;
1604
1605 if (pos + copied > inode->i_size)
1606 i_size_write(inode, pos + copied);
1607
1608 if (!PageUptodate(page)) {
1609 if (copied < PAGE_CACHE_SIZE) {
1610 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1611 zero_user_segments(page, 0, from,
1612 from + copied, PAGE_CACHE_SIZE);
1613 }
1614 SetPageUptodate(page);
1615 }
1616 set_page_dirty(page);
1617 unlock_page(page);
1618 page_cache_release(page);
1619
1620 return copied;
1621 }
1622
1623 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1624 {
1625 struct file *file = iocb->ki_filp;
1626 struct inode *inode = file_inode(file);
1627 struct address_space *mapping = inode->i_mapping;
1628 pgoff_t index;
1629 unsigned long offset;
1630 enum sgp_type sgp = SGP_READ;
1631 int error = 0;
1632 ssize_t retval = 0;
1633 loff_t *ppos = &iocb->ki_pos;
1634
1635 /*
1636 * Might this read be for a stacking filesystem? Then when reading
1637 * holes of a sparse file, we actually need to allocate those pages,
1638 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1639 */
1640 if (!iter_is_iovec(to))
1641 sgp = SGP_DIRTY;
1642
1643 index = *ppos >> PAGE_CACHE_SHIFT;
1644 offset = *ppos & ~PAGE_CACHE_MASK;
1645
1646 for (;;) {
1647 struct page *page = NULL;
1648 pgoff_t end_index;
1649 unsigned long nr, ret;
1650 loff_t i_size = i_size_read(inode);
1651
1652 end_index = i_size >> PAGE_CACHE_SHIFT;
1653 if (index > end_index)
1654 break;
1655 if (index == end_index) {
1656 nr = i_size & ~PAGE_CACHE_MASK;
1657 if (nr <= offset)
1658 break;
1659 }
1660
1661 error = shmem_getpage(inode, index, &page, sgp, NULL);
1662 if (error) {
1663 if (error == -EINVAL)
1664 error = 0;
1665 break;
1666 }
1667 if (page)
1668 unlock_page(page);
1669
1670 /*
1671 * We must evaluate after, since reads (unlike writes)
1672 * are called without i_mutex protection against truncate
1673 */
1674 nr = PAGE_CACHE_SIZE;
1675 i_size = i_size_read(inode);
1676 end_index = i_size >> PAGE_CACHE_SHIFT;
1677 if (index == end_index) {
1678 nr = i_size & ~PAGE_CACHE_MASK;
1679 if (nr <= offset) {
1680 if (page)
1681 page_cache_release(page);
1682 break;
1683 }
1684 }
1685 nr -= offset;
1686
1687 if (page) {
1688 /*
1689 * If users can be writing to this page using arbitrary
1690 * virtual addresses, take care about potential aliasing
1691 * before reading the page on the kernel side.
1692 */
1693 if (mapping_writably_mapped(mapping))
1694 flush_dcache_page(page);
1695 /*
1696 * Mark the page accessed if we read the beginning.
1697 */
1698 if (!offset)
1699 mark_page_accessed(page);
1700 } else {
1701 page = ZERO_PAGE(0);
1702 page_cache_get(page);
1703 }
1704
1705 /*
1706 * Ok, we have the page, and it's up-to-date, so
1707 * now we can copy it to user space...
1708 */
1709 ret = copy_page_to_iter(page, offset, nr, to);
1710 retval += ret;
1711 offset += ret;
1712 index += offset >> PAGE_CACHE_SHIFT;
1713 offset &= ~PAGE_CACHE_MASK;
1714
1715 page_cache_release(page);
1716 if (!iov_iter_count(to))
1717 break;
1718 if (ret < nr) {
1719 error = -EFAULT;
1720 break;
1721 }
1722 cond_resched();
1723 }
1724
1725 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1726 file_accessed(file);
1727 return retval ? retval : error;
1728 }
1729
1730 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1731 struct pipe_inode_info *pipe, size_t len,
1732 unsigned int flags)
1733 {
1734 struct address_space *mapping = in->f_mapping;
1735 struct inode *inode = mapping->host;
1736 unsigned int loff, nr_pages, req_pages;
1737 struct page *pages[PIPE_DEF_BUFFERS];
1738 struct partial_page partial[PIPE_DEF_BUFFERS];
1739 struct page *page;
1740 pgoff_t index, end_index;
1741 loff_t isize, left;
1742 int error, page_nr;
1743 struct splice_pipe_desc spd = {
1744 .pages = pages,
1745 .partial = partial,
1746 .nr_pages_max = PIPE_DEF_BUFFERS,
1747 .flags = flags,
1748 .ops = &page_cache_pipe_buf_ops,
1749 .spd_release = spd_release_page,
1750 };
1751
1752 isize = i_size_read(inode);
1753 if (unlikely(*ppos >= isize))
1754 return 0;
1755
1756 left = isize - *ppos;
1757 if (unlikely(left < len))
1758 len = left;
1759
1760 if (splice_grow_spd(pipe, &spd))
1761 return -ENOMEM;
1762
1763 index = *ppos >> PAGE_CACHE_SHIFT;
1764 loff = *ppos & ~PAGE_CACHE_MASK;
1765 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1766 nr_pages = min(req_pages, spd.nr_pages_max);
1767
1768 spd.nr_pages = find_get_pages_contig(mapping, index,
1769 nr_pages, spd.pages);
1770 index += spd.nr_pages;
1771 error = 0;
1772
1773 while (spd.nr_pages < nr_pages) {
1774 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1775 if (error)
1776 break;
1777 unlock_page(page);
1778 spd.pages[spd.nr_pages++] = page;
1779 index++;
1780 }
1781
1782 index = *ppos >> PAGE_CACHE_SHIFT;
1783 nr_pages = spd.nr_pages;
1784 spd.nr_pages = 0;
1785
1786 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1787 unsigned int this_len;
1788
1789 if (!len)
1790 break;
1791
1792 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1793 page = spd.pages[page_nr];
1794
1795 if (!PageUptodate(page) || page->mapping != mapping) {
1796 error = shmem_getpage(inode, index, &page,
1797 SGP_CACHE, NULL);
1798 if (error)
1799 break;
1800 unlock_page(page);
1801 page_cache_release(spd.pages[page_nr]);
1802 spd.pages[page_nr] = page;
1803 }
1804
1805 isize = i_size_read(inode);
1806 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1807 if (unlikely(!isize || index > end_index))
1808 break;
1809
1810 if (end_index == index) {
1811 unsigned int plen;
1812
1813 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1814 if (plen <= loff)
1815 break;
1816
1817 this_len = min(this_len, plen - loff);
1818 len = this_len;
1819 }
1820
1821 spd.partial[page_nr].offset = loff;
1822 spd.partial[page_nr].len = this_len;
1823 len -= this_len;
1824 loff = 0;
1825 spd.nr_pages++;
1826 index++;
1827 }
1828
1829 while (page_nr < nr_pages)
1830 page_cache_release(spd.pages[page_nr++]);
1831
1832 if (spd.nr_pages)
1833 error = splice_to_pipe(pipe, &spd);
1834
1835 splice_shrink_spd(&spd);
1836
1837 if (error > 0) {
1838 *ppos += error;
1839 file_accessed(in);
1840 }
1841 return error;
1842 }
1843
1844 /*
1845 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1846 */
1847 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1848 pgoff_t index, pgoff_t end, int whence)
1849 {
1850 struct page *page;
1851 struct pagevec pvec;
1852 pgoff_t indices[PAGEVEC_SIZE];
1853 bool done = false;
1854 int i;
1855
1856 pagevec_init(&pvec, 0);
1857 pvec.nr = 1; /* start small: we may be there already */
1858 while (!done) {
1859 pvec.nr = find_get_entries(mapping, index,
1860 pvec.nr, pvec.pages, indices);
1861 if (!pvec.nr) {
1862 if (whence == SEEK_DATA)
1863 index = end;
1864 break;
1865 }
1866 for (i = 0; i < pvec.nr; i++, index++) {
1867 if (index < indices[i]) {
1868 if (whence == SEEK_HOLE) {
1869 done = true;
1870 break;
1871 }
1872 index = indices[i];
1873 }
1874 page = pvec.pages[i];
1875 if (page && !radix_tree_exceptional_entry(page)) {
1876 if (!PageUptodate(page))
1877 page = NULL;
1878 }
1879 if (index >= end ||
1880 (page && whence == SEEK_DATA) ||
1881 (!page && whence == SEEK_HOLE)) {
1882 done = true;
1883 break;
1884 }
1885 }
1886 pagevec_remove_exceptionals(&pvec);
1887 pagevec_release(&pvec);
1888 pvec.nr = PAGEVEC_SIZE;
1889 cond_resched();
1890 }
1891 return index;
1892 }
1893
1894 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1895 {
1896 struct address_space *mapping = file->f_mapping;
1897 struct inode *inode = mapping->host;
1898 pgoff_t start, end;
1899 loff_t new_offset;
1900
1901 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1902 return generic_file_llseek_size(file, offset, whence,
1903 MAX_LFS_FILESIZE, i_size_read(inode));
1904 inode_lock(inode);
1905 /* We're holding i_mutex so we can access i_size directly */
1906
1907 if (offset < 0)
1908 offset = -EINVAL;
1909 else if (offset >= inode->i_size)
1910 offset = -ENXIO;
1911 else {
1912 start = offset >> PAGE_CACHE_SHIFT;
1913 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1914 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1915 new_offset <<= PAGE_CACHE_SHIFT;
1916 if (new_offset > offset) {
1917 if (new_offset < inode->i_size)
1918 offset = new_offset;
1919 else if (whence == SEEK_DATA)
1920 offset = -ENXIO;
1921 else
1922 offset = inode->i_size;
1923 }
1924 }
1925
1926 if (offset >= 0)
1927 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1928 inode_unlock(inode);
1929 return offset;
1930 }
1931
1932 /*
1933 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1934 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1935 */
1936 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1937 #define LAST_SCAN 4 /* about 150ms max */
1938
1939 static void shmem_tag_pins(struct address_space *mapping)
1940 {
1941 struct radix_tree_iter iter;
1942 void **slot;
1943 pgoff_t start;
1944 struct page *page;
1945
1946 lru_add_drain();
1947 start = 0;
1948 rcu_read_lock();
1949
1950 restart:
1951 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1952 page = radix_tree_deref_slot(slot);
1953 if (!page || radix_tree_exception(page)) {
1954 if (radix_tree_deref_retry(page))
1955 goto restart;
1956 } else if (page_count(page) - page_mapcount(page) > 1) {
1957 spin_lock_irq(&mapping->tree_lock);
1958 radix_tree_tag_set(&mapping->page_tree, iter.index,
1959 SHMEM_TAG_PINNED);
1960 spin_unlock_irq(&mapping->tree_lock);
1961 }
1962
1963 if (need_resched()) {
1964 cond_resched_rcu();
1965 start = iter.index + 1;
1966 goto restart;
1967 }
1968 }
1969 rcu_read_unlock();
1970 }
1971
1972 /*
1973 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1974 * via get_user_pages(), drivers might have some pending I/O without any active
1975 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1976 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1977 * them to be dropped.
1978 * The caller must guarantee that no new user will acquire writable references
1979 * to those pages to avoid races.
1980 */
1981 static int shmem_wait_for_pins(struct address_space *mapping)
1982 {
1983 struct radix_tree_iter iter;
1984 void **slot;
1985 pgoff_t start;
1986 struct page *page;
1987 int error, scan;
1988
1989 shmem_tag_pins(mapping);
1990
1991 error = 0;
1992 for (scan = 0; scan <= LAST_SCAN; scan++) {
1993 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1994 break;
1995
1996 if (!scan)
1997 lru_add_drain_all();
1998 else if (schedule_timeout_killable((HZ << scan) / 200))
1999 scan = LAST_SCAN;
2000
2001 start = 0;
2002 rcu_read_lock();
2003 restart:
2004 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2005 start, SHMEM_TAG_PINNED) {
2006
2007 page = radix_tree_deref_slot(slot);
2008 if (radix_tree_exception(page)) {
2009 if (radix_tree_deref_retry(page))
2010 goto restart;
2011
2012 page = NULL;
2013 }
2014
2015 if (page &&
2016 page_count(page) - page_mapcount(page) != 1) {
2017 if (scan < LAST_SCAN)
2018 goto continue_resched;
2019
2020 /*
2021 * On the last scan, we clean up all those tags
2022 * we inserted; but make a note that we still
2023 * found pages pinned.
2024 */
2025 error = -EBUSY;
2026 }
2027
2028 spin_lock_irq(&mapping->tree_lock);
2029 radix_tree_tag_clear(&mapping->page_tree,
2030 iter.index, SHMEM_TAG_PINNED);
2031 spin_unlock_irq(&mapping->tree_lock);
2032 continue_resched:
2033 if (need_resched()) {
2034 cond_resched_rcu();
2035 start = iter.index + 1;
2036 goto restart;
2037 }
2038 }
2039 rcu_read_unlock();
2040 }
2041
2042 return error;
2043 }
2044
2045 #define F_ALL_SEALS (F_SEAL_SEAL | \
2046 F_SEAL_SHRINK | \
2047 F_SEAL_GROW | \
2048 F_SEAL_WRITE)
2049
2050 int shmem_add_seals(struct file *file, unsigned int seals)
2051 {
2052 struct inode *inode = file_inode(file);
2053 struct shmem_inode_info *info = SHMEM_I(inode);
2054 int error;
2055
2056 /*
2057 * SEALING
2058 * Sealing allows multiple parties to share a shmem-file but restrict
2059 * access to a specific subset of file operations. Seals can only be
2060 * added, but never removed. This way, mutually untrusted parties can
2061 * share common memory regions with a well-defined policy. A malicious
2062 * peer can thus never perform unwanted operations on a shared object.
2063 *
2064 * Seals are only supported on special shmem-files and always affect
2065 * the whole underlying inode. Once a seal is set, it may prevent some
2066 * kinds of access to the file. Currently, the following seals are
2067 * defined:
2068 * SEAL_SEAL: Prevent further seals from being set on this file
2069 * SEAL_SHRINK: Prevent the file from shrinking
2070 * SEAL_GROW: Prevent the file from growing
2071 * SEAL_WRITE: Prevent write access to the file
2072 *
2073 * As we don't require any trust relationship between two parties, we
2074 * must prevent seals from being removed. Therefore, sealing a file
2075 * only adds a given set of seals to the file, it never touches
2076 * existing seals. Furthermore, the "setting seals"-operation can be
2077 * sealed itself, which basically prevents any further seal from being
2078 * added.
2079 *
2080 * Semantics of sealing are only defined on volatile files. Only
2081 * anonymous shmem files support sealing. More importantly, seals are
2082 * never written to disk. Therefore, there's no plan to support it on
2083 * other file types.
2084 */
2085
2086 if (file->f_op != &shmem_file_operations)
2087 return -EINVAL;
2088 if (!(file->f_mode & FMODE_WRITE))
2089 return -EPERM;
2090 if (seals & ~(unsigned int)F_ALL_SEALS)
2091 return -EINVAL;
2092
2093 inode_lock(inode);
2094
2095 if (info->seals & F_SEAL_SEAL) {
2096 error = -EPERM;
2097 goto unlock;
2098 }
2099
2100 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2101 error = mapping_deny_writable(file->f_mapping);
2102 if (error)
2103 goto unlock;
2104
2105 error = shmem_wait_for_pins(file->f_mapping);
2106 if (error) {
2107 mapping_allow_writable(file->f_mapping);
2108 goto unlock;
2109 }
2110 }
2111
2112 info->seals |= seals;
2113 error = 0;
2114
2115 unlock:
2116 inode_unlock(inode);
2117 return error;
2118 }
2119 EXPORT_SYMBOL_GPL(shmem_add_seals);
2120
2121 int shmem_get_seals(struct file *file)
2122 {
2123 if (file->f_op != &shmem_file_operations)
2124 return -EINVAL;
2125
2126 return SHMEM_I(file_inode(file))->seals;
2127 }
2128 EXPORT_SYMBOL_GPL(shmem_get_seals);
2129
2130 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2131 {
2132 long error;
2133
2134 switch (cmd) {
2135 case F_ADD_SEALS:
2136 /* disallow upper 32bit */
2137 if (arg > UINT_MAX)
2138 return -EINVAL;
2139
2140 error = shmem_add_seals(file, arg);
2141 break;
2142 case F_GET_SEALS:
2143 error = shmem_get_seals(file);
2144 break;
2145 default:
2146 error = -EINVAL;
2147 break;
2148 }
2149
2150 return error;
2151 }
2152
2153 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2154 loff_t len)
2155 {
2156 struct inode *inode = file_inode(file);
2157 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2158 struct shmem_inode_info *info = SHMEM_I(inode);
2159 struct shmem_falloc shmem_falloc;
2160 pgoff_t start, index, end;
2161 int error;
2162
2163 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2164 return -EOPNOTSUPP;
2165
2166 inode_lock(inode);
2167
2168 if (mode & FALLOC_FL_PUNCH_HOLE) {
2169 struct address_space *mapping = file->f_mapping;
2170 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2171 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2172 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2173
2174 /* protected by i_mutex */
2175 if (info->seals & F_SEAL_WRITE) {
2176 error = -EPERM;
2177 goto out;
2178 }
2179
2180 shmem_falloc.waitq = &shmem_falloc_waitq;
2181 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2182 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2183 spin_lock(&inode->i_lock);
2184 inode->i_private = &shmem_falloc;
2185 spin_unlock(&inode->i_lock);
2186
2187 if ((u64)unmap_end > (u64)unmap_start)
2188 unmap_mapping_range(mapping, unmap_start,
2189 1 + unmap_end - unmap_start, 0);
2190 shmem_truncate_range(inode, offset, offset + len - 1);
2191 /* No need to unmap again: hole-punching leaves COWed pages */
2192
2193 spin_lock(&inode->i_lock);
2194 inode->i_private = NULL;
2195 wake_up_all(&shmem_falloc_waitq);
2196 spin_unlock(&inode->i_lock);
2197 error = 0;
2198 goto out;
2199 }
2200
2201 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2202 error = inode_newsize_ok(inode, offset + len);
2203 if (error)
2204 goto out;
2205
2206 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2207 error = -EPERM;
2208 goto out;
2209 }
2210
2211 start = offset >> PAGE_CACHE_SHIFT;
2212 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2213 /* Try to avoid a swapstorm if len is impossible to satisfy */
2214 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2215 error = -ENOSPC;
2216 goto out;
2217 }
2218
2219 shmem_falloc.waitq = NULL;
2220 shmem_falloc.start = start;
2221 shmem_falloc.next = start;
2222 shmem_falloc.nr_falloced = 0;
2223 shmem_falloc.nr_unswapped = 0;
2224 spin_lock(&inode->i_lock);
2225 inode->i_private = &shmem_falloc;
2226 spin_unlock(&inode->i_lock);
2227
2228 for (index = start; index < end; index++) {
2229 struct page *page;
2230
2231 /*
2232 * Good, the fallocate(2) manpage permits EINTR: we may have
2233 * been interrupted because we are using up too much memory.
2234 */
2235 if (signal_pending(current))
2236 error = -EINTR;
2237 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2238 error = -ENOMEM;
2239 else
2240 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2241 NULL);
2242 if (error) {
2243 /* Remove the !PageUptodate pages we added */
2244 shmem_undo_range(inode,
2245 (loff_t)start << PAGE_CACHE_SHIFT,
2246 (loff_t)index << PAGE_CACHE_SHIFT, true);
2247 goto undone;
2248 }
2249
2250 /*
2251 * Inform shmem_writepage() how far we have reached.
2252 * No need for lock or barrier: we have the page lock.
2253 */
2254 shmem_falloc.next++;
2255 if (!PageUptodate(page))
2256 shmem_falloc.nr_falloced++;
2257
2258 /*
2259 * If !PageUptodate, leave it that way so that freeable pages
2260 * can be recognized if we need to rollback on error later.
2261 * But set_page_dirty so that memory pressure will swap rather
2262 * than free the pages we are allocating (and SGP_CACHE pages
2263 * might still be clean: we now need to mark those dirty too).
2264 */
2265 set_page_dirty(page);
2266 unlock_page(page);
2267 page_cache_release(page);
2268 cond_resched();
2269 }
2270
2271 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2272 i_size_write(inode, offset + len);
2273 inode->i_ctime = CURRENT_TIME;
2274 undone:
2275 spin_lock(&inode->i_lock);
2276 inode->i_private = NULL;
2277 spin_unlock(&inode->i_lock);
2278 out:
2279 inode_unlock(inode);
2280 return error;
2281 }
2282
2283 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2284 {
2285 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2286
2287 buf->f_type = TMPFS_MAGIC;
2288 buf->f_bsize = PAGE_CACHE_SIZE;
2289 buf->f_namelen = NAME_MAX;
2290 if (sbinfo->max_blocks) {
2291 buf->f_blocks = sbinfo->max_blocks;
2292 buf->f_bavail =
2293 buf->f_bfree = sbinfo->max_blocks -
2294 percpu_counter_sum(&sbinfo->used_blocks);
2295 }
2296 if (sbinfo->max_inodes) {
2297 buf->f_files = sbinfo->max_inodes;
2298 buf->f_ffree = sbinfo->free_inodes;
2299 }
2300 /* else leave those fields 0 like simple_statfs */
2301 return 0;
2302 }
2303
2304 /*
2305 * File creation. Allocate an inode, and we're done..
2306 */
2307 static int
2308 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2309 {
2310 struct inode *inode;
2311 int error = -ENOSPC;
2312
2313 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2314 if (inode) {
2315 error = simple_acl_create(dir, inode);
2316 if (error)
2317 goto out_iput;
2318 error = security_inode_init_security(inode, dir,
2319 &dentry->d_name,
2320 shmem_initxattrs, NULL);
2321 if (error && error != -EOPNOTSUPP)
2322 goto out_iput;
2323
2324 error = 0;
2325 dir->i_size += BOGO_DIRENT_SIZE;
2326 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2327 d_instantiate(dentry, inode);
2328 dget(dentry); /* Extra count - pin the dentry in core */
2329 }
2330 return error;
2331 out_iput:
2332 iput(inode);
2333 return error;
2334 }
2335
2336 static int
2337 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2338 {
2339 struct inode *inode;
2340 int error = -ENOSPC;
2341
2342 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2343 if (inode) {
2344 error = security_inode_init_security(inode, dir,
2345 NULL,
2346 shmem_initxattrs, NULL);
2347 if (error && error != -EOPNOTSUPP)
2348 goto out_iput;
2349 error = simple_acl_create(dir, inode);
2350 if (error)
2351 goto out_iput;
2352 d_tmpfile(dentry, inode);
2353 }
2354 return error;
2355 out_iput:
2356 iput(inode);
2357 return error;
2358 }
2359
2360 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2361 {
2362 int error;
2363
2364 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2365 return error;
2366 inc_nlink(dir);
2367 return 0;
2368 }
2369
2370 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2371 bool excl)
2372 {
2373 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2374 }
2375
2376 /*
2377 * Link a file..
2378 */
2379 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2380 {
2381 struct inode *inode = d_inode(old_dentry);
2382 int ret;
2383
2384 /*
2385 * No ordinary (disk based) filesystem counts links as inodes;
2386 * but each new link needs a new dentry, pinning lowmem, and
2387 * tmpfs dentries cannot be pruned until they are unlinked.
2388 */
2389 ret = shmem_reserve_inode(inode->i_sb);
2390 if (ret)
2391 goto out;
2392
2393 dir->i_size += BOGO_DIRENT_SIZE;
2394 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2395 inc_nlink(inode);
2396 ihold(inode); /* New dentry reference */
2397 dget(dentry); /* Extra pinning count for the created dentry */
2398 d_instantiate(dentry, inode);
2399 out:
2400 return ret;
2401 }
2402
2403 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2404 {
2405 struct inode *inode = d_inode(dentry);
2406
2407 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2408 shmem_free_inode(inode->i_sb);
2409
2410 dir->i_size -= BOGO_DIRENT_SIZE;
2411 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2412 drop_nlink(inode);
2413 dput(dentry); /* Undo the count from "create" - this does all the work */
2414 return 0;
2415 }
2416
2417 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2418 {
2419 if (!simple_empty(dentry))
2420 return -ENOTEMPTY;
2421
2422 drop_nlink(d_inode(dentry));
2423 drop_nlink(dir);
2424 return shmem_unlink(dir, dentry);
2425 }
2426
2427 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2428 {
2429 bool old_is_dir = d_is_dir(old_dentry);
2430 bool new_is_dir = d_is_dir(new_dentry);
2431
2432 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2433 if (old_is_dir) {
2434 drop_nlink(old_dir);
2435 inc_nlink(new_dir);
2436 } else {
2437 drop_nlink(new_dir);
2438 inc_nlink(old_dir);
2439 }
2440 }
2441 old_dir->i_ctime = old_dir->i_mtime =
2442 new_dir->i_ctime = new_dir->i_mtime =
2443 d_inode(old_dentry)->i_ctime =
2444 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2445
2446 return 0;
2447 }
2448
2449 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2450 {
2451 struct dentry *whiteout;
2452 int error;
2453
2454 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2455 if (!whiteout)
2456 return -ENOMEM;
2457
2458 error = shmem_mknod(old_dir, whiteout,
2459 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2460 dput(whiteout);
2461 if (error)
2462 return error;
2463
2464 /*
2465 * Cheat and hash the whiteout while the old dentry is still in
2466 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2467 *
2468 * d_lookup() will consistently find one of them at this point,
2469 * not sure which one, but that isn't even important.
2470 */
2471 d_rehash(whiteout);
2472 return 0;
2473 }
2474
2475 /*
2476 * The VFS layer already does all the dentry stuff for rename,
2477 * we just have to decrement the usage count for the target if
2478 * it exists so that the VFS layer correctly free's it when it
2479 * gets overwritten.
2480 */
2481 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2482 {
2483 struct inode *inode = d_inode(old_dentry);
2484 int they_are_dirs = S_ISDIR(inode->i_mode);
2485
2486 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2487 return -EINVAL;
2488
2489 if (flags & RENAME_EXCHANGE)
2490 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2491
2492 if (!simple_empty(new_dentry))
2493 return -ENOTEMPTY;
2494
2495 if (flags & RENAME_WHITEOUT) {
2496 int error;
2497
2498 error = shmem_whiteout(old_dir, old_dentry);
2499 if (error)
2500 return error;
2501 }
2502
2503 if (d_really_is_positive(new_dentry)) {
2504 (void) shmem_unlink(new_dir, new_dentry);
2505 if (they_are_dirs) {
2506 drop_nlink(d_inode(new_dentry));
2507 drop_nlink(old_dir);
2508 }
2509 } else if (they_are_dirs) {
2510 drop_nlink(old_dir);
2511 inc_nlink(new_dir);
2512 }
2513
2514 old_dir->i_size -= BOGO_DIRENT_SIZE;
2515 new_dir->i_size += BOGO_DIRENT_SIZE;
2516 old_dir->i_ctime = old_dir->i_mtime =
2517 new_dir->i_ctime = new_dir->i_mtime =
2518 inode->i_ctime = CURRENT_TIME;
2519 return 0;
2520 }
2521
2522 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2523 {
2524 int error;
2525 int len;
2526 struct inode *inode;
2527 struct page *page;
2528 struct shmem_inode_info *info;
2529
2530 len = strlen(symname) + 1;
2531 if (len > PAGE_CACHE_SIZE)
2532 return -ENAMETOOLONG;
2533
2534 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2535 if (!inode)
2536 return -ENOSPC;
2537
2538 error = security_inode_init_security(inode, dir, &dentry->d_name,
2539 shmem_initxattrs, NULL);
2540 if (error) {
2541 if (error != -EOPNOTSUPP) {
2542 iput(inode);
2543 return error;
2544 }
2545 error = 0;
2546 }
2547
2548 info = SHMEM_I(inode);
2549 inode->i_size = len-1;
2550 if (len <= SHORT_SYMLINK_LEN) {
2551 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2552 if (!inode->i_link) {
2553 iput(inode);
2554 return -ENOMEM;
2555 }
2556 inode->i_op = &shmem_short_symlink_operations;
2557 } else {
2558 inode_nohighmem(inode);
2559 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2560 if (error) {
2561 iput(inode);
2562 return error;
2563 }
2564 inode->i_mapping->a_ops = &shmem_aops;
2565 inode->i_op = &shmem_symlink_inode_operations;
2566 memcpy(page_address(page), symname, len);
2567 SetPageUptodate(page);
2568 set_page_dirty(page);
2569 unlock_page(page);
2570 page_cache_release(page);
2571 }
2572 dir->i_size += BOGO_DIRENT_SIZE;
2573 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2574 d_instantiate(dentry, inode);
2575 dget(dentry);
2576 return 0;
2577 }
2578
2579 static void shmem_put_link(void *arg)
2580 {
2581 mark_page_accessed(arg);
2582 put_page(arg);
2583 }
2584
2585 static const char *shmem_get_link(struct dentry *dentry,
2586 struct inode *inode,
2587 struct delayed_call *done)
2588 {
2589 struct page *page = NULL;
2590 int error;
2591 if (!dentry) {
2592 page = find_get_page(inode->i_mapping, 0);
2593 if (!page)
2594 return ERR_PTR(-ECHILD);
2595 if (!PageUptodate(page)) {
2596 put_page(page);
2597 return ERR_PTR(-ECHILD);
2598 }
2599 } else {
2600 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2601 if (error)
2602 return ERR_PTR(error);
2603 unlock_page(page);
2604 }
2605 set_delayed_call(done, shmem_put_link, page);
2606 return page_address(page);
2607 }
2608
2609 #ifdef CONFIG_TMPFS_XATTR
2610 /*
2611 * Superblocks without xattr inode operations may get some security.* xattr
2612 * support from the LSM "for free". As soon as we have any other xattrs
2613 * like ACLs, we also need to implement the security.* handlers at
2614 * filesystem level, though.
2615 */
2616
2617 /*
2618 * Callback for security_inode_init_security() for acquiring xattrs.
2619 */
2620 static int shmem_initxattrs(struct inode *inode,
2621 const struct xattr *xattr_array,
2622 void *fs_info)
2623 {
2624 struct shmem_inode_info *info = SHMEM_I(inode);
2625 const struct xattr *xattr;
2626 struct simple_xattr *new_xattr;
2627 size_t len;
2628
2629 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2630 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2631 if (!new_xattr)
2632 return -ENOMEM;
2633
2634 len = strlen(xattr->name) + 1;
2635 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2636 GFP_KERNEL);
2637 if (!new_xattr->name) {
2638 kfree(new_xattr);
2639 return -ENOMEM;
2640 }
2641
2642 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2643 XATTR_SECURITY_PREFIX_LEN);
2644 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2645 xattr->name, len);
2646
2647 simple_xattr_list_add(&info->xattrs, new_xattr);
2648 }
2649
2650 return 0;
2651 }
2652
2653 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2654 struct dentry *dentry, const char *name,
2655 void *buffer, size_t size)
2656 {
2657 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2658
2659 name = xattr_full_name(handler, name);
2660 return simple_xattr_get(&info->xattrs, name, buffer, size);
2661 }
2662
2663 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2664 struct dentry *dentry, const char *name,
2665 const void *value, size_t size, int flags)
2666 {
2667 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2668
2669 name = xattr_full_name(handler, name);
2670 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2671 }
2672
2673 static const struct xattr_handler shmem_security_xattr_handler = {
2674 .prefix = XATTR_SECURITY_PREFIX,
2675 .get = shmem_xattr_handler_get,
2676 .set = shmem_xattr_handler_set,
2677 };
2678
2679 static const struct xattr_handler shmem_trusted_xattr_handler = {
2680 .prefix = XATTR_TRUSTED_PREFIX,
2681 .get = shmem_xattr_handler_get,
2682 .set = shmem_xattr_handler_set,
2683 };
2684
2685 static const struct xattr_handler *shmem_xattr_handlers[] = {
2686 #ifdef CONFIG_TMPFS_POSIX_ACL
2687 &posix_acl_access_xattr_handler,
2688 &posix_acl_default_xattr_handler,
2689 #endif
2690 &shmem_security_xattr_handler,
2691 &shmem_trusted_xattr_handler,
2692 NULL
2693 };
2694
2695 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2696 {
2697 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2698 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2699 }
2700 #endif /* CONFIG_TMPFS_XATTR */
2701
2702 static const struct inode_operations shmem_short_symlink_operations = {
2703 .readlink = generic_readlink,
2704 .get_link = simple_get_link,
2705 #ifdef CONFIG_TMPFS_XATTR
2706 .setxattr = generic_setxattr,
2707 .getxattr = generic_getxattr,
2708 .listxattr = shmem_listxattr,
2709 .removexattr = generic_removexattr,
2710 #endif
2711 };
2712
2713 static const struct inode_operations shmem_symlink_inode_operations = {
2714 .readlink = generic_readlink,
2715 .get_link = shmem_get_link,
2716 #ifdef CONFIG_TMPFS_XATTR
2717 .setxattr = generic_setxattr,
2718 .getxattr = generic_getxattr,
2719 .listxattr = shmem_listxattr,
2720 .removexattr = generic_removexattr,
2721 #endif
2722 };
2723
2724 static struct dentry *shmem_get_parent(struct dentry *child)
2725 {
2726 return ERR_PTR(-ESTALE);
2727 }
2728
2729 static int shmem_match(struct inode *ino, void *vfh)
2730 {
2731 __u32 *fh = vfh;
2732 __u64 inum = fh[2];
2733 inum = (inum << 32) | fh[1];
2734 return ino->i_ino == inum && fh[0] == ino->i_generation;
2735 }
2736
2737 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2738 struct fid *fid, int fh_len, int fh_type)
2739 {
2740 struct inode *inode;
2741 struct dentry *dentry = NULL;
2742 u64 inum;
2743
2744 if (fh_len < 3)
2745 return NULL;
2746
2747 inum = fid->raw[2];
2748 inum = (inum << 32) | fid->raw[1];
2749
2750 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2751 shmem_match, fid->raw);
2752 if (inode) {
2753 dentry = d_find_alias(inode);
2754 iput(inode);
2755 }
2756
2757 return dentry;
2758 }
2759
2760 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2761 struct inode *parent)
2762 {
2763 if (*len < 3) {
2764 *len = 3;
2765 return FILEID_INVALID;
2766 }
2767
2768 if (inode_unhashed(inode)) {
2769 /* Unfortunately insert_inode_hash is not idempotent,
2770 * so as we hash inodes here rather than at creation
2771 * time, we need a lock to ensure we only try
2772 * to do it once
2773 */
2774 static DEFINE_SPINLOCK(lock);
2775 spin_lock(&lock);
2776 if (inode_unhashed(inode))
2777 __insert_inode_hash(inode,
2778 inode->i_ino + inode->i_generation);
2779 spin_unlock(&lock);
2780 }
2781
2782 fh[0] = inode->i_generation;
2783 fh[1] = inode->i_ino;
2784 fh[2] = ((__u64)inode->i_ino) >> 32;
2785
2786 *len = 3;
2787 return 1;
2788 }
2789
2790 static const struct export_operations shmem_export_ops = {
2791 .get_parent = shmem_get_parent,
2792 .encode_fh = shmem_encode_fh,
2793 .fh_to_dentry = shmem_fh_to_dentry,
2794 };
2795
2796 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2797 bool remount)
2798 {
2799 char *this_char, *value, *rest;
2800 struct mempolicy *mpol = NULL;
2801 uid_t uid;
2802 gid_t gid;
2803
2804 while (options != NULL) {
2805 this_char = options;
2806 for (;;) {
2807 /*
2808 * NUL-terminate this option: unfortunately,
2809 * mount options form a comma-separated list,
2810 * but mpol's nodelist may also contain commas.
2811 */
2812 options = strchr(options, ',');
2813 if (options == NULL)
2814 break;
2815 options++;
2816 if (!isdigit(*options)) {
2817 options[-1] = '\0';
2818 break;
2819 }
2820 }
2821 if (!*this_char)
2822 continue;
2823 if ((value = strchr(this_char,'=')) != NULL) {
2824 *value++ = 0;
2825 } else {
2826 printk(KERN_ERR
2827 "tmpfs: No value for mount option '%s'\n",
2828 this_char);
2829 goto error;
2830 }
2831
2832 if (!strcmp(this_char,"size")) {
2833 unsigned long long size;
2834 size = memparse(value,&rest);
2835 if (*rest == '%') {
2836 size <<= PAGE_SHIFT;
2837 size *= totalram_pages;
2838 do_div(size, 100);
2839 rest++;
2840 }
2841 if (*rest)
2842 goto bad_val;
2843 sbinfo->max_blocks =
2844 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2845 } else if (!strcmp(this_char,"nr_blocks")) {
2846 sbinfo->max_blocks = memparse(value, &rest);
2847 if (*rest)
2848 goto bad_val;
2849 } else if (!strcmp(this_char,"nr_inodes")) {
2850 sbinfo->max_inodes = memparse(value, &rest);
2851 if (*rest)
2852 goto bad_val;
2853 } else if (!strcmp(this_char,"mode")) {
2854 if (remount)
2855 continue;
2856 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2857 if (*rest)
2858 goto bad_val;
2859 } else if (!strcmp(this_char,"uid")) {
2860 if (remount)
2861 continue;
2862 uid = simple_strtoul(value, &rest, 0);
2863 if (*rest)
2864 goto bad_val;
2865 sbinfo->uid = make_kuid(current_user_ns(), uid);
2866 if (!uid_valid(sbinfo->uid))
2867 goto bad_val;
2868 } else if (!strcmp(this_char,"gid")) {
2869 if (remount)
2870 continue;
2871 gid = simple_strtoul(value, &rest, 0);
2872 if (*rest)
2873 goto bad_val;
2874 sbinfo->gid = make_kgid(current_user_ns(), gid);
2875 if (!gid_valid(sbinfo->gid))
2876 goto bad_val;
2877 } else if (!strcmp(this_char,"mpol")) {
2878 mpol_put(mpol);
2879 mpol = NULL;
2880 if (mpol_parse_str(value, &mpol))
2881 goto bad_val;
2882 } else {
2883 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2884 this_char);
2885 goto error;
2886 }
2887 }
2888 sbinfo->mpol = mpol;
2889 return 0;
2890
2891 bad_val:
2892 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2893 value, this_char);
2894 error:
2895 mpol_put(mpol);
2896 return 1;
2897
2898 }
2899
2900 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2901 {
2902 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2903 struct shmem_sb_info config = *sbinfo;
2904 unsigned long inodes;
2905 int error = -EINVAL;
2906
2907 config.mpol = NULL;
2908 if (shmem_parse_options(data, &config, true))
2909 return error;
2910
2911 spin_lock(&sbinfo->stat_lock);
2912 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2913 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2914 goto out;
2915 if (config.max_inodes < inodes)
2916 goto out;
2917 /*
2918 * Those tests disallow limited->unlimited while any are in use;
2919 * but we must separately disallow unlimited->limited, because
2920 * in that case we have no record of how much is already in use.
2921 */
2922 if (config.max_blocks && !sbinfo->max_blocks)
2923 goto out;
2924 if (config.max_inodes && !sbinfo->max_inodes)
2925 goto out;
2926
2927 error = 0;
2928 sbinfo->max_blocks = config.max_blocks;
2929 sbinfo->max_inodes = config.max_inodes;
2930 sbinfo->free_inodes = config.max_inodes - inodes;
2931
2932 /*
2933 * Preserve previous mempolicy unless mpol remount option was specified.
2934 */
2935 if (config.mpol) {
2936 mpol_put(sbinfo->mpol);
2937 sbinfo->mpol = config.mpol; /* transfers initial ref */
2938 }
2939 out:
2940 spin_unlock(&sbinfo->stat_lock);
2941 return error;
2942 }
2943
2944 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2945 {
2946 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2947
2948 if (sbinfo->max_blocks != shmem_default_max_blocks())
2949 seq_printf(seq, ",size=%luk",
2950 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2951 if (sbinfo->max_inodes != shmem_default_max_inodes())
2952 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2953 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2954 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2955 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2956 seq_printf(seq, ",uid=%u",
2957 from_kuid_munged(&init_user_ns, sbinfo->uid));
2958 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2959 seq_printf(seq, ",gid=%u",
2960 from_kgid_munged(&init_user_ns, sbinfo->gid));
2961 shmem_show_mpol(seq, sbinfo->mpol);
2962 return 0;
2963 }
2964
2965 #define MFD_NAME_PREFIX "memfd:"
2966 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2967 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2968
2969 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2970
2971 SYSCALL_DEFINE2(memfd_create,
2972 const char __user *, uname,
2973 unsigned int, flags)
2974 {
2975 struct shmem_inode_info *info;
2976 struct file *file;
2977 int fd, error;
2978 char *name;
2979 long len;
2980
2981 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2982 return -EINVAL;
2983
2984 /* length includes terminating zero */
2985 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2986 if (len <= 0)
2987 return -EFAULT;
2988 if (len > MFD_NAME_MAX_LEN + 1)
2989 return -EINVAL;
2990
2991 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2992 if (!name)
2993 return -ENOMEM;
2994
2995 strcpy(name, MFD_NAME_PREFIX);
2996 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2997 error = -EFAULT;
2998 goto err_name;
2999 }
3000
3001 /* terminating-zero may have changed after strnlen_user() returned */
3002 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3003 error = -EFAULT;
3004 goto err_name;
3005 }
3006
3007 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3008 if (fd < 0) {
3009 error = fd;
3010 goto err_name;
3011 }
3012
3013 file = shmem_file_setup(name, 0, VM_NORESERVE);
3014 if (IS_ERR(file)) {
3015 error = PTR_ERR(file);
3016 goto err_fd;
3017 }
3018 info = SHMEM_I(file_inode(file));
3019 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3020 file->f_flags |= O_RDWR | O_LARGEFILE;
3021 if (flags & MFD_ALLOW_SEALING)
3022 info->seals &= ~F_SEAL_SEAL;
3023
3024 fd_install(fd, file);
3025 kfree(name);
3026 return fd;
3027
3028 err_fd:
3029 put_unused_fd(fd);
3030 err_name:
3031 kfree(name);
3032 return error;
3033 }
3034
3035 #endif /* CONFIG_TMPFS */
3036
3037 static void shmem_put_super(struct super_block *sb)
3038 {
3039 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3040
3041 percpu_counter_destroy(&sbinfo->used_blocks);
3042 mpol_put(sbinfo->mpol);
3043 kfree(sbinfo);
3044 sb->s_fs_info = NULL;
3045 }
3046
3047 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3048 {
3049 struct inode *inode;
3050 struct shmem_sb_info *sbinfo;
3051 int err = -ENOMEM;
3052
3053 /* Round up to L1_CACHE_BYTES to resist false sharing */
3054 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3055 L1_CACHE_BYTES), GFP_KERNEL);
3056 if (!sbinfo)
3057 return -ENOMEM;
3058
3059 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3060 sbinfo->uid = current_fsuid();
3061 sbinfo->gid = current_fsgid();
3062 sb->s_fs_info = sbinfo;
3063
3064 #ifdef CONFIG_TMPFS
3065 /*
3066 * Per default we only allow half of the physical ram per
3067 * tmpfs instance, limiting inodes to one per page of lowmem;
3068 * but the internal instance is left unlimited.
3069 */
3070 if (!(sb->s_flags & MS_KERNMOUNT)) {
3071 sbinfo->max_blocks = shmem_default_max_blocks();
3072 sbinfo->max_inodes = shmem_default_max_inodes();
3073 if (shmem_parse_options(data, sbinfo, false)) {
3074 err = -EINVAL;
3075 goto failed;
3076 }
3077 } else {
3078 sb->s_flags |= MS_NOUSER;
3079 }
3080 sb->s_export_op = &shmem_export_ops;
3081 sb->s_flags |= MS_NOSEC;
3082 #else
3083 sb->s_flags |= MS_NOUSER;
3084 #endif
3085
3086 spin_lock_init(&sbinfo->stat_lock);
3087 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3088 goto failed;
3089 sbinfo->free_inodes = sbinfo->max_inodes;
3090
3091 sb->s_maxbytes = MAX_LFS_FILESIZE;
3092 sb->s_blocksize = PAGE_CACHE_SIZE;
3093 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3094 sb->s_magic = TMPFS_MAGIC;
3095 sb->s_op = &shmem_ops;
3096 sb->s_time_gran = 1;
3097 #ifdef CONFIG_TMPFS_XATTR
3098 sb->s_xattr = shmem_xattr_handlers;
3099 #endif
3100 #ifdef CONFIG_TMPFS_POSIX_ACL
3101 sb->s_flags |= MS_POSIXACL;
3102 #endif
3103
3104 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3105 if (!inode)
3106 goto failed;
3107 inode->i_uid = sbinfo->uid;
3108 inode->i_gid = sbinfo->gid;
3109 sb->s_root = d_make_root(inode);
3110 if (!sb->s_root)
3111 goto failed;
3112 return 0;
3113
3114 failed:
3115 shmem_put_super(sb);
3116 return err;
3117 }
3118
3119 static struct kmem_cache *shmem_inode_cachep;
3120
3121 static struct inode *shmem_alloc_inode(struct super_block *sb)
3122 {
3123 struct shmem_inode_info *info;
3124 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3125 if (!info)
3126 return NULL;
3127 return &info->vfs_inode;
3128 }
3129
3130 static void shmem_destroy_callback(struct rcu_head *head)
3131 {
3132 struct inode *inode = container_of(head, struct inode, i_rcu);
3133 kfree(inode->i_link);
3134 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3135 }
3136
3137 static void shmem_destroy_inode(struct inode *inode)
3138 {
3139 if (S_ISREG(inode->i_mode))
3140 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3141 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3142 }
3143
3144 static void shmem_init_inode(void *foo)
3145 {
3146 struct shmem_inode_info *info = foo;
3147 inode_init_once(&info->vfs_inode);
3148 }
3149
3150 static int shmem_init_inodecache(void)
3151 {
3152 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3153 sizeof(struct shmem_inode_info),
3154 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3155 return 0;
3156 }
3157
3158 static void shmem_destroy_inodecache(void)
3159 {
3160 kmem_cache_destroy(shmem_inode_cachep);
3161 }
3162
3163 static const struct address_space_operations shmem_aops = {
3164 .writepage = shmem_writepage,
3165 .set_page_dirty = __set_page_dirty_no_writeback,
3166 #ifdef CONFIG_TMPFS
3167 .write_begin = shmem_write_begin,
3168 .write_end = shmem_write_end,
3169 #endif
3170 #ifdef CONFIG_MIGRATION
3171 .migratepage = migrate_page,
3172 #endif
3173 .error_remove_page = generic_error_remove_page,
3174 };
3175
3176 static const struct file_operations shmem_file_operations = {
3177 .mmap = shmem_mmap,
3178 #ifdef CONFIG_TMPFS
3179 .llseek = shmem_file_llseek,
3180 .read_iter = shmem_file_read_iter,
3181 .write_iter = generic_file_write_iter,
3182 .fsync = noop_fsync,
3183 .splice_read = shmem_file_splice_read,
3184 .splice_write = iter_file_splice_write,
3185 .fallocate = shmem_fallocate,
3186 #endif
3187 };
3188
3189 static const struct inode_operations shmem_inode_operations = {
3190 .getattr = shmem_getattr,
3191 .setattr = shmem_setattr,
3192 #ifdef CONFIG_TMPFS_XATTR
3193 .setxattr = generic_setxattr,
3194 .getxattr = generic_getxattr,
3195 .listxattr = shmem_listxattr,
3196 .removexattr = generic_removexattr,
3197 .set_acl = simple_set_acl,
3198 #endif
3199 };
3200
3201 static const struct inode_operations shmem_dir_inode_operations = {
3202 #ifdef CONFIG_TMPFS
3203 .create = shmem_create,
3204 .lookup = simple_lookup,
3205 .link = shmem_link,
3206 .unlink = shmem_unlink,
3207 .symlink = shmem_symlink,
3208 .mkdir = shmem_mkdir,
3209 .rmdir = shmem_rmdir,
3210 .mknod = shmem_mknod,
3211 .rename2 = shmem_rename2,
3212 .tmpfile = shmem_tmpfile,
3213 #endif
3214 #ifdef CONFIG_TMPFS_XATTR
3215 .setxattr = generic_setxattr,
3216 .getxattr = generic_getxattr,
3217 .listxattr = shmem_listxattr,
3218 .removexattr = generic_removexattr,
3219 #endif
3220 #ifdef CONFIG_TMPFS_POSIX_ACL
3221 .setattr = shmem_setattr,
3222 .set_acl = simple_set_acl,
3223 #endif
3224 };
3225
3226 static const struct inode_operations shmem_special_inode_operations = {
3227 #ifdef CONFIG_TMPFS_XATTR
3228 .setxattr = generic_setxattr,
3229 .getxattr = generic_getxattr,
3230 .listxattr = shmem_listxattr,
3231 .removexattr = generic_removexattr,
3232 #endif
3233 #ifdef CONFIG_TMPFS_POSIX_ACL
3234 .setattr = shmem_setattr,
3235 .set_acl = simple_set_acl,
3236 #endif
3237 };
3238
3239 static const struct super_operations shmem_ops = {
3240 .alloc_inode = shmem_alloc_inode,
3241 .destroy_inode = shmem_destroy_inode,
3242 #ifdef CONFIG_TMPFS
3243 .statfs = shmem_statfs,
3244 .remount_fs = shmem_remount_fs,
3245 .show_options = shmem_show_options,
3246 #endif
3247 .evict_inode = shmem_evict_inode,
3248 .drop_inode = generic_delete_inode,
3249 .put_super = shmem_put_super,
3250 };
3251
3252 static const struct vm_operations_struct shmem_vm_ops = {
3253 .fault = shmem_fault,
3254 .map_pages = filemap_map_pages,
3255 #ifdef CONFIG_NUMA
3256 .set_policy = shmem_set_policy,
3257 .get_policy = shmem_get_policy,
3258 #endif
3259 };
3260
3261 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3262 int flags, const char *dev_name, void *data)
3263 {
3264 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3265 }
3266
3267 static struct file_system_type shmem_fs_type = {
3268 .owner = THIS_MODULE,
3269 .name = "tmpfs",
3270 .mount = shmem_mount,
3271 .kill_sb = kill_litter_super,
3272 .fs_flags = FS_USERNS_MOUNT,
3273 };
3274
3275 int __init shmem_init(void)
3276 {
3277 int error;
3278
3279 /* If rootfs called this, don't re-init */
3280 if (shmem_inode_cachep)
3281 return 0;
3282
3283 error = shmem_init_inodecache();
3284 if (error)
3285 goto out3;
3286
3287 error = register_filesystem(&shmem_fs_type);
3288 if (error) {
3289 printk(KERN_ERR "Could not register tmpfs\n");
3290 goto out2;
3291 }
3292
3293 shm_mnt = kern_mount(&shmem_fs_type);
3294 if (IS_ERR(shm_mnt)) {
3295 error = PTR_ERR(shm_mnt);
3296 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3297 goto out1;
3298 }
3299 return 0;
3300
3301 out1:
3302 unregister_filesystem(&shmem_fs_type);
3303 out2:
3304 shmem_destroy_inodecache();
3305 out3:
3306 shm_mnt = ERR_PTR(error);
3307 return error;
3308 }
3309
3310 #else /* !CONFIG_SHMEM */
3311
3312 /*
3313 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3314 *
3315 * This is intended for small system where the benefits of the full
3316 * shmem code (swap-backed and resource-limited) are outweighed by
3317 * their complexity. On systems without swap this code should be
3318 * effectively equivalent, but much lighter weight.
3319 */
3320
3321 static struct file_system_type shmem_fs_type = {
3322 .name = "tmpfs",
3323 .mount = ramfs_mount,
3324 .kill_sb = kill_litter_super,
3325 .fs_flags = FS_USERNS_MOUNT,
3326 };
3327
3328 int __init shmem_init(void)
3329 {
3330 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3331
3332 shm_mnt = kern_mount(&shmem_fs_type);
3333 BUG_ON(IS_ERR(shm_mnt));
3334
3335 return 0;
3336 }
3337
3338 int shmem_unuse(swp_entry_t swap, struct page *page)
3339 {
3340 return 0;
3341 }
3342
3343 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3344 {
3345 return 0;
3346 }
3347
3348 void shmem_unlock_mapping(struct address_space *mapping)
3349 {
3350 }
3351
3352 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3353 {
3354 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3355 }
3356 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3357
3358 #define shmem_vm_ops generic_file_vm_ops
3359 #define shmem_file_operations ramfs_file_operations
3360 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3361 #define shmem_acct_size(flags, size) 0
3362 #define shmem_unacct_size(flags, size) do {} while (0)
3363
3364 #endif /* CONFIG_SHMEM */
3365
3366 /* common code */
3367
3368 static struct dentry_operations anon_ops = {
3369 .d_dname = simple_dname
3370 };
3371
3372 static struct file *__shmem_file_setup(const char *name, loff_t size,
3373 unsigned long flags, unsigned int i_flags)
3374 {
3375 struct file *res;
3376 struct inode *inode;
3377 struct path path;
3378 struct super_block *sb;
3379 struct qstr this;
3380
3381 if (IS_ERR(shm_mnt))
3382 return ERR_CAST(shm_mnt);
3383
3384 if (size < 0 || size > MAX_LFS_FILESIZE)
3385 return ERR_PTR(-EINVAL);
3386
3387 if (shmem_acct_size(flags, size))
3388 return ERR_PTR(-ENOMEM);
3389
3390 res = ERR_PTR(-ENOMEM);
3391 this.name = name;
3392 this.len = strlen(name);
3393 this.hash = 0; /* will go */
3394 sb = shm_mnt->mnt_sb;
3395 path.mnt = mntget(shm_mnt);
3396 path.dentry = d_alloc_pseudo(sb, &this);
3397 if (!path.dentry)
3398 goto put_memory;
3399 d_set_d_op(path.dentry, &anon_ops);
3400
3401 res = ERR_PTR(-ENOSPC);
3402 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3403 if (!inode)
3404 goto put_memory;
3405
3406 inode->i_flags |= i_flags;
3407 d_instantiate(path.dentry, inode);
3408 inode->i_size = size;
3409 clear_nlink(inode); /* It is unlinked */
3410 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3411 if (IS_ERR(res))
3412 goto put_path;
3413
3414 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3415 &shmem_file_operations);
3416 if (IS_ERR(res))
3417 goto put_path;
3418
3419 return res;
3420
3421 put_memory:
3422 shmem_unacct_size(flags, size);
3423 put_path:
3424 path_put(&path);
3425 return res;
3426 }
3427
3428 /**
3429 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3430 * kernel internal. There will be NO LSM permission checks against the
3431 * underlying inode. So users of this interface must do LSM checks at a
3432 * higher layer. The users are the big_key and shm implementations. LSM
3433 * checks are provided at the key or shm level rather than the inode.
3434 * @name: name for dentry (to be seen in /proc/<pid>/maps
3435 * @size: size to be set for the file
3436 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3437 */
3438 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3439 {
3440 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3441 }
3442
3443 /**
3444 * shmem_file_setup - get an unlinked file living in tmpfs
3445 * @name: name for dentry (to be seen in /proc/<pid>/maps
3446 * @size: size to be set for the file
3447 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3448 */
3449 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3450 {
3451 return __shmem_file_setup(name, size, flags, 0);
3452 }
3453 EXPORT_SYMBOL_GPL(shmem_file_setup);
3454
3455 /**
3456 * shmem_zero_setup - setup a shared anonymous mapping
3457 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3458 */
3459 int shmem_zero_setup(struct vm_area_struct *vma)
3460 {
3461 struct file *file;
3462 loff_t size = vma->vm_end - vma->vm_start;
3463
3464 /*
3465 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3466 * between XFS directory reading and selinux: since this file is only
3467 * accessible to the user through its mapping, use S_PRIVATE flag to
3468 * bypass file security, in the same way as shmem_kernel_file_setup().
3469 */
3470 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3471 if (IS_ERR(file))
3472 return PTR_ERR(file);
3473
3474 if (vma->vm_file)
3475 fput(vma->vm_file);
3476 vma->vm_file = file;
3477 vma->vm_ops = &shmem_vm_ops;
3478 return 0;
3479 }
3480
3481 /**
3482 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3483 * @mapping: the page's address_space
3484 * @index: the page index
3485 * @gfp: the page allocator flags to use if allocating
3486 *
3487 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3488 * with any new page allocations done using the specified allocation flags.
3489 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3490 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3491 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3492 *
3493 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3494 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3495 */
3496 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3497 pgoff_t index, gfp_t gfp)
3498 {
3499 #ifdef CONFIG_SHMEM
3500 struct inode *inode = mapping->host;
3501 struct page *page;
3502 int error;
3503
3504 BUG_ON(mapping->a_ops != &shmem_aops);
3505 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3506 if (error)
3507 page = ERR_PTR(error);
3508 else
3509 unlock_page(page);
3510 return page;
3511 #else
3512 /*
3513 * The tiny !SHMEM case uses ramfs without swap
3514 */
3515 return read_cache_page_gfp(mapping, index, gfp);
3516 #endif
3517 }
3518 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.115564 seconds and 5 git commands to generate.