x86, fpu: Extend the use of static_cpu_has_safe
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106 return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130 return sb->s_fs_info;
131 }
132
133 /*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141 return (flags & VM_NORESERVE) ?
142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147 if (!(flags & VM_NORESERVE))
148 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159 return (flags & VM_NORESERVE) ?
160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165 if (flags & VM_NORESERVE)
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
178 .ra_pages = 0, /* No readahead */
179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 }
209
210 /**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
232 info->alloced -= freed;
233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 shmem_unacct_blocks(info->flags, freed);
235 }
236 }
237
238 /*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243 {
244 void **pslot;
245 void *item;
246
247 VM_BUG_ON(!expected);
248 VM_BUG_ON(!replacement);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (!pslot)
251 return -ENOENT;
252 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 radix_tree_replace_slot(pslot, replacement);
256 return 0;
257 }
258
259 /*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268 {
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280 static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283 {
284 int error;
285
286 VM_BUG_ON_PAGE(!PageLocked(page), page);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
308 }
309 return error;
310 }
311
312 /*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329 }
330
331 /*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334 static int shmem_free_swap(struct address_space *mapping,
335 pgoff_t index, void *radswap)
336 {
337 void *old;
338
339 spin_lock_irq(&mapping->tree_lock);
340 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341 spin_unlock_irq(&mapping->tree_lock);
342 if (old != radswap)
343 return -ENOENT;
344 free_swap_and_cache(radix_to_swp_entry(radswap));
345 return 0;
346 }
347
348 /*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351 void shmem_unlock_mapping(struct address_space *mapping)
352 {
353 struct pagevec pvec;
354 pgoff_t indices[PAGEVEC_SIZE];
355 pgoff_t index = 0;
356
357 pagevec_init(&pvec, 0);
358 /*
359 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360 */
361 while (!mapping_unevictable(mapping)) {
362 /*
363 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365 */
366 pvec.nr = find_get_entries(mapping, index,
367 PAGEVEC_SIZE, pvec.pages, indices);
368 if (!pvec.nr)
369 break;
370 index = indices[pvec.nr - 1] + 1;
371 pagevec_remove_exceptionals(&pvec);
372 check_move_unevictable_pages(pvec.pages, pvec.nr);
373 pagevec_release(&pvec);
374 cond_resched();
375 }
376 }
377
378 /*
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381 */
382 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383 bool unfalloc)
384 {
385 struct address_space *mapping = inode->i_mapping;
386 struct shmem_inode_info *info = SHMEM_I(inode);
387 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391 struct pagevec pvec;
392 pgoff_t indices[PAGEVEC_SIZE];
393 long nr_swaps_freed = 0;
394 pgoff_t index;
395 int i;
396
397 if (lend == -1)
398 end = -1; /* unsigned, so actually very big */
399
400 pagevec_init(&pvec, 0);
401 index = start;
402 while (index < end) {
403 pvec.nr = find_get_entries(mapping, index,
404 min(end - index, (pgoff_t)PAGEVEC_SIZE),
405 pvec.pages, indices);
406 if (!pvec.nr)
407 break;
408 mem_cgroup_uncharge_start();
409 for (i = 0; i < pagevec_count(&pvec); i++) {
410 struct page *page = pvec.pages[i];
411
412 index = indices[i];
413 if (index >= end)
414 break;
415
416 if (radix_tree_exceptional_entry(page)) {
417 if (unfalloc)
418 continue;
419 nr_swaps_freed += !shmem_free_swap(mapping,
420 index, page);
421 continue;
422 }
423
424 if (!trylock_page(page))
425 continue;
426 if (!unfalloc || !PageUptodate(page)) {
427 if (page->mapping == mapping) {
428 VM_BUG_ON_PAGE(PageWriteback(page), page);
429 truncate_inode_page(mapping, page);
430 }
431 }
432 unlock_page(page);
433 }
434 pagevec_remove_exceptionals(&pvec);
435 pagevec_release(&pvec);
436 mem_cgroup_uncharge_end();
437 cond_resched();
438 index++;
439 }
440
441 if (partial_start) {
442 struct page *page = NULL;
443 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444 if (page) {
445 unsigned int top = PAGE_CACHE_SIZE;
446 if (start > end) {
447 top = partial_end;
448 partial_end = 0;
449 }
450 zero_user_segment(page, partial_start, top);
451 set_page_dirty(page);
452 unlock_page(page);
453 page_cache_release(page);
454 }
455 }
456 if (partial_end) {
457 struct page *page = NULL;
458 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459 if (page) {
460 zero_user_segment(page, 0, partial_end);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (start >= end)
467 return;
468
469 index = start;
470 for ( ; ; ) {
471 cond_resched();
472
473 pvec.nr = find_get_entries(mapping, index,
474 min(end - index, (pgoff_t)PAGEVEC_SIZE),
475 pvec.pages, indices);
476 if (!pvec.nr) {
477 if (index == start || unfalloc)
478 break;
479 index = start;
480 continue;
481 }
482 if ((index == start || unfalloc) && indices[0] >= end) {
483 pagevec_remove_exceptionals(&pvec);
484 pagevec_release(&pvec);
485 break;
486 }
487 mem_cgroup_uncharge_start();
488 for (i = 0; i < pagevec_count(&pvec); i++) {
489 struct page *page = pvec.pages[i];
490
491 index = indices[i];
492 if (index >= end)
493 break;
494
495 if (radix_tree_exceptional_entry(page)) {
496 if (unfalloc)
497 continue;
498 nr_swaps_freed += !shmem_free_swap(mapping,
499 index, page);
500 continue;
501 }
502
503 lock_page(page);
504 if (!unfalloc || !PageUptodate(page)) {
505 if (page->mapping == mapping) {
506 VM_BUG_ON_PAGE(PageWriteback(page), page);
507 truncate_inode_page(mapping, page);
508 }
509 }
510 unlock_page(page);
511 }
512 pagevec_remove_exceptionals(&pvec);
513 pagevec_release(&pvec);
514 mem_cgroup_uncharge_end();
515 index++;
516 }
517
518 spin_lock(&info->lock);
519 info->swapped -= nr_swaps_freed;
520 shmem_recalc_inode(inode);
521 spin_unlock(&info->lock);
522 }
523
524 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525 {
526 shmem_undo_range(inode, lstart, lend, false);
527 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528 }
529 EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532 {
533 struct inode *inode = dentry->d_inode;
534 int error;
535
536 error = inode_change_ok(inode, attr);
537 if (error)
538 return error;
539
540 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541 loff_t oldsize = inode->i_size;
542 loff_t newsize = attr->ia_size;
543
544 if (newsize != oldsize) {
545 i_size_write(inode, newsize);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 if (newsize < oldsize) {
549 loff_t holebegin = round_up(newsize, PAGE_SIZE);
550 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551 shmem_truncate_range(inode, newsize, (loff_t)-1);
552 /* unmap again to remove racily COWed private pages */
553 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554 }
555 }
556
557 setattr_copy(inode, attr);
558 if (attr->ia_valid & ATTR_MODE)
559 error = posix_acl_chmod(inode, inode->i_mode);
560 return error;
561 }
562
563 static void shmem_evict_inode(struct inode *inode)
564 {
565 struct shmem_inode_info *info = SHMEM_I(inode);
566
567 if (inode->i_mapping->a_ops == &shmem_aops) {
568 shmem_unacct_size(info->flags, inode->i_size);
569 inode->i_size = 0;
570 shmem_truncate_range(inode, 0, (loff_t)-1);
571 if (!list_empty(&info->swaplist)) {
572 mutex_lock(&shmem_swaplist_mutex);
573 list_del_init(&info->swaplist);
574 mutex_unlock(&shmem_swaplist_mutex);
575 }
576 } else
577 kfree(info->symlink);
578
579 simple_xattrs_free(&info->xattrs);
580 WARN_ON(inode->i_blocks);
581 shmem_free_inode(inode->i_sb);
582 clear_inode(inode);
583 }
584
585 /*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
588 static int shmem_unuse_inode(struct shmem_inode_info *info,
589 swp_entry_t swap, struct page **pagep)
590 {
591 struct address_space *mapping = info->vfs_inode.i_mapping;
592 void *radswap;
593 pgoff_t index;
594 gfp_t gfp;
595 int error = 0;
596
597 radswap = swp_to_radix_entry(swap);
598 index = radix_tree_locate_item(&mapping->page_tree, radswap);
599 if (index == -1)
600 return 0;
601
602 /*
603 * Move _head_ to start search for next from here.
604 * But be careful: shmem_evict_inode checks list_empty without taking
605 * mutex, and there's an instant in list_move_tail when info->swaplist
606 * would appear empty, if it were the only one on shmem_swaplist.
607 */
608 if (shmem_swaplist.next != &info->swaplist)
609 list_move_tail(&shmem_swaplist, &info->swaplist);
610
611 gfp = mapping_gfp_mask(mapping);
612 if (shmem_should_replace_page(*pagep, gfp)) {
613 mutex_unlock(&shmem_swaplist_mutex);
614 error = shmem_replace_page(pagep, gfp, info, index);
615 mutex_lock(&shmem_swaplist_mutex);
616 /*
617 * We needed to drop mutex to make that restrictive page
618 * allocation, but the inode might have been freed while we
619 * dropped it: although a racing shmem_evict_inode() cannot
620 * complete without emptying the radix_tree, our page lock
621 * on this swapcache page is not enough to prevent that -
622 * free_swap_and_cache() of our swap entry will only
623 * trylock_page(), removing swap from radix_tree whatever.
624 *
625 * We must not proceed to shmem_add_to_page_cache() if the
626 * inode has been freed, but of course we cannot rely on
627 * inode or mapping or info to check that. However, we can
628 * safely check if our swap entry is still in use (and here
629 * it can't have got reused for another page): if it's still
630 * in use, then the inode cannot have been freed yet, and we
631 * can safely proceed (if it's no longer in use, that tells
632 * nothing about the inode, but we don't need to unuse swap).
633 */
634 if (!page_swapcount(*pagep))
635 error = -ENOENT;
636 }
637
638 /*
639 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641 * beneath us (pagelock doesn't help until the page is in pagecache).
642 */
643 if (!error)
644 error = shmem_add_to_page_cache(*pagep, mapping, index,
645 GFP_NOWAIT, radswap);
646 if (error != -ENOMEM) {
647 /*
648 * Truncation and eviction use free_swap_and_cache(), which
649 * only does trylock page: if we raced, best clean up here.
650 */
651 delete_from_swap_cache(*pagep);
652 set_page_dirty(*pagep);
653 if (!error) {
654 spin_lock(&info->lock);
655 info->swapped--;
656 spin_unlock(&info->lock);
657 swap_free(swap);
658 }
659 error = 1; /* not an error, but entry was found */
660 }
661 return error;
662 }
663
664 /*
665 * Search through swapped inodes to find and replace swap by page.
666 */
667 int shmem_unuse(swp_entry_t swap, struct page *page)
668 {
669 struct list_head *this, *next;
670 struct shmem_inode_info *info;
671 int found = 0;
672 int error = 0;
673
674 /*
675 * There's a faint possibility that swap page was replaced before
676 * caller locked it: caller will come back later with the right page.
677 */
678 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679 goto out;
680
681 /*
682 * Charge page using GFP_KERNEL while we can wait, before taking
683 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684 * Charged back to the user (not to caller) when swap account is used.
685 */
686 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687 if (error)
688 goto out;
689 /* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691 mutex_lock(&shmem_swaplist_mutex);
692 list_for_each_safe(this, next, &shmem_swaplist) {
693 info = list_entry(this, struct shmem_inode_info, swaplist);
694 if (info->swapped)
695 found = shmem_unuse_inode(info, swap, &page);
696 else
697 list_del_init(&info->swaplist);
698 cond_resched();
699 if (found)
700 break;
701 }
702 mutex_unlock(&shmem_swaplist_mutex);
703
704 if (found < 0)
705 error = found;
706 out:
707 unlock_page(page);
708 page_cache_release(page);
709 return error;
710 }
711
712 /*
713 * Move the page from the page cache to the swap cache.
714 */
715 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716 {
717 struct shmem_inode_info *info;
718 struct address_space *mapping;
719 struct inode *inode;
720 swp_entry_t swap;
721 pgoff_t index;
722
723 BUG_ON(!PageLocked(page));
724 mapping = page->mapping;
725 index = page->index;
726 inode = mapping->host;
727 info = SHMEM_I(inode);
728 if (info->flags & VM_LOCKED)
729 goto redirty;
730 if (!total_swap_pages)
731 goto redirty;
732
733 /*
734 * shmem_backing_dev_info's capabilities prevent regular writeback or
735 * sync from ever calling shmem_writepage; but a stacking filesystem
736 * might use ->writepage of its underlying filesystem, in which case
737 * tmpfs should write out to swap only in response to memory pressure,
738 * and not for the writeback threads or sync.
739 */
740 if (!wbc->for_reclaim) {
741 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
742 goto redirty;
743 }
744
745 /*
746 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747 * value into swapfile.c, the only way we can correctly account for a
748 * fallocated page arriving here is now to initialize it and write it.
749 *
750 * That's okay for a page already fallocated earlier, but if we have
751 * not yet completed the fallocation, then (a) we want to keep track
752 * of this page in case we have to undo it, and (b) it may not be a
753 * good idea to continue anyway, once we're pushing into swap. So
754 * reactivate the page, and let shmem_fallocate() quit when too many.
755 */
756 if (!PageUptodate(page)) {
757 if (inode->i_private) {
758 struct shmem_falloc *shmem_falloc;
759 spin_lock(&inode->i_lock);
760 shmem_falloc = inode->i_private;
761 if (shmem_falloc &&
762 index >= shmem_falloc->start &&
763 index < shmem_falloc->next)
764 shmem_falloc->nr_unswapped++;
765 else
766 shmem_falloc = NULL;
767 spin_unlock(&inode->i_lock);
768 if (shmem_falloc)
769 goto redirty;
770 }
771 clear_highpage(page);
772 flush_dcache_page(page);
773 SetPageUptodate(page);
774 }
775
776 swap = get_swap_page();
777 if (!swap.val)
778 goto redirty;
779
780 /*
781 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782 * if it's not already there. Do it now before the page is
783 * moved to swap cache, when its pagelock no longer protects
784 * the inode from eviction. But don't unlock the mutex until
785 * we've incremented swapped, because shmem_unuse_inode() will
786 * prune a !swapped inode from the swaplist under this mutex.
787 */
788 mutex_lock(&shmem_swaplist_mutex);
789 if (list_empty(&info->swaplist))
790 list_add_tail(&info->swaplist, &shmem_swaplist);
791
792 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793 swap_shmem_alloc(swap);
794 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796 spin_lock(&info->lock);
797 info->swapped++;
798 shmem_recalc_inode(inode);
799 spin_unlock(&info->lock);
800
801 mutex_unlock(&shmem_swaplist_mutex);
802 BUG_ON(page_mapped(page));
803 swap_writepage(page, wbc);
804 return 0;
805 }
806
807 mutex_unlock(&shmem_swaplist_mutex);
808 swapcache_free(swap, NULL);
809 redirty:
810 set_page_dirty(page);
811 if (wbc->for_reclaim)
812 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
813 unlock_page(page);
814 return 0;
815 }
816
817 #ifdef CONFIG_NUMA
818 #ifdef CONFIG_TMPFS
819 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820 {
821 char buffer[64];
822
823 if (!mpol || mpol->mode == MPOL_DEFAULT)
824 return; /* show nothing */
825
826 mpol_to_str(buffer, sizeof(buffer), mpol);
827
828 seq_printf(seq, ",mpol=%s", buffer);
829 }
830
831 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832 {
833 struct mempolicy *mpol = NULL;
834 if (sbinfo->mpol) {
835 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
836 mpol = sbinfo->mpol;
837 mpol_get(mpol);
838 spin_unlock(&sbinfo->stat_lock);
839 }
840 return mpol;
841 }
842 #endif /* CONFIG_TMPFS */
843
844 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
846 {
847 struct vm_area_struct pvma;
848 struct page *page;
849
850 /* Create a pseudo vma that just contains the policy */
851 pvma.vm_start = 0;
852 /* Bias interleave by inode number to distribute better across nodes */
853 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854 pvma.vm_ops = NULL;
855 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857 page = swapin_readahead(swap, gfp, &pvma, 0);
858
859 /* Drop reference taken by mpol_shared_policy_lookup() */
860 mpol_cond_put(pvma.vm_policy);
861
862 return page;
863 }
864
865 static struct page *shmem_alloc_page(gfp_t gfp,
866 struct shmem_inode_info *info, pgoff_t index)
867 {
868 struct vm_area_struct pvma;
869 struct page *page;
870
871 /* Create a pseudo vma that just contains the policy */
872 pvma.vm_start = 0;
873 /* Bias interleave by inode number to distribute better across nodes */
874 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875 pvma.vm_ops = NULL;
876 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878 page = alloc_page_vma(gfp, &pvma, 0);
879
880 /* Drop reference taken by mpol_shared_policy_lookup() */
881 mpol_cond_put(pvma.vm_policy);
882
883 return page;
884 }
885 #else /* !CONFIG_NUMA */
886 #ifdef CONFIG_TMPFS
887 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 }
890 #endif /* CONFIG_TMPFS */
891
892 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893 struct shmem_inode_info *info, pgoff_t index)
894 {
895 return swapin_readahead(swap, gfp, NULL, 0);
896 }
897
898 static inline struct page *shmem_alloc_page(gfp_t gfp,
899 struct shmem_inode_info *info, pgoff_t index)
900 {
901 return alloc_page(gfp);
902 }
903 #endif /* CONFIG_NUMA */
904
905 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908 return NULL;
909 }
910 #endif
911
912 /*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to. If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925 {
926 return page_zonenum(page) > gfp_zone(gfp);
927 }
928
929 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931 {
932 struct page *oldpage, *newpage;
933 struct address_space *swap_mapping;
934 pgoff_t swap_index;
935 int error;
936
937 oldpage = *pagep;
938 swap_index = page_private(oldpage);
939 swap_mapping = page_mapping(oldpage);
940
941 /*
942 * We have arrived here because our zones are constrained, so don't
943 * limit chance of success by further cpuset and node constraints.
944 */
945 gfp &= ~GFP_CONSTRAINT_MASK;
946 newpage = shmem_alloc_page(gfp, info, index);
947 if (!newpage)
948 return -ENOMEM;
949
950 page_cache_get(newpage);
951 copy_highpage(newpage, oldpage);
952 flush_dcache_page(newpage);
953
954 __set_page_locked(newpage);
955 SetPageUptodate(newpage);
956 SetPageSwapBacked(newpage);
957 set_page_private(newpage, swap_index);
958 SetPageSwapCache(newpage);
959
960 /*
961 * Our caller will very soon move newpage out of swapcache, but it's
962 * a nice clean interface for us to replace oldpage by newpage there.
963 */
964 spin_lock_irq(&swap_mapping->tree_lock);
965 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966 newpage);
967 if (!error) {
968 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970 }
971 spin_unlock_irq(&swap_mapping->tree_lock);
972
973 if (unlikely(error)) {
974 /*
975 * Is this possible? I think not, now that our callers check
976 * both PageSwapCache and page_private after getting page lock;
977 * but be defensive. Reverse old to newpage for clear and free.
978 */
979 oldpage = newpage;
980 } else {
981 mem_cgroup_replace_page_cache(oldpage, newpage);
982 lru_cache_add_anon(newpage);
983 *pagep = newpage;
984 }
985
986 ClearPageSwapCache(oldpage);
987 set_page_private(oldpage, 0);
988
989 unlock_page(oldpage);
990 page_cache_release(oldpage);
991 page_cache_release(oldpage);
992 return error;
993 }
994
995 /*
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004 {
1005 struct address_space *mapping = inode->i_mapping;
1006 struct shmem_inode_info *info;
1007 struct shmem_sb_info *sbinfo;
1008 struct page *page;
1009 swp_entry_t swap;
1010 int error;
1011 int once = 0;
1012 int alloced = 0;
1013
1014 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015 return -EFBIG;
1016 repeat:
1017 swap.val = 0;
1018 page = find_lock_entry(mapping, index);
1019 if (radix_tree_exceptional_entry(page)) {
1020 swap = radix_to_swp_entry(page);
1021 page = NULL;
1022 }
1023
1024 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026 error = -EINVAL;
1027 goto failed;
1028 }
1029
1030 /* fallocated page? */
1031 if (page && !PageUptodate(page)) {
1032 if (sgp != SGP_READ)
1033 goto clear;
1034 unlock_page(page);
1035 page_cache_release(page);
1036 page = NULL;
1037 }
1038 if (page || (sgp == SGP_READ && !swap.val)) {
1039 *pagep = page;
1040 return 0;
1041 }
1042
1043 /*
1044 * Fast cache lookup did not find it:
1045 * bring it back from swap or allocate.
1046 */
1047 info = SHMEM_I(inode);
1048 sbinfo = SHMEM_SB(inode->i_sb);
1049
1050 if (swap.val) {
1051 /* Look it up and read it in.. */
1052 page = lookup_swap_cache(swap);
1053 if (!page) {
1054 /* here we actually do the io */
1055 if (fault_type)
1056 *fault_type |= VM_FAULT_MAJOR;
1057 page = shmem_swapin(swap, gfp, info, index);
1058 if (!page) {
1059 error = -ENOMEM;
1060 goto failed;
1061 }
1062 }
1063
1064 /* We have to do this with page locked to prevent races */
1065 lock_page(page);
1066 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067 !shmem_confirm_swap(mapping, index, swap)) {
1068 error = -EEXIST; /* try again */
1069 goto unlock;
1070 }
1071 if (!PageUptodate(page)) {
1072 error = -EIO;
1073 goto failed;
1074 }
1075 wait_on_page_writeback(page);
1076
1077 if (shmem_should_replace_page(page, gfp)) {
1078 error = shmem_replace_page(&page, gfp, info, index);
1079 if (error)
1080 goto failed;
1081 }
1082
1083 error = mem_cgroup_charge_file(page, current->mm,
1084 gfp & GFP_RECLAIM_MASK);
1085 if (!error) {
1086 error = shmem_add_to_page_cache(page, mapping, index,
1087 gfp, swp_to_radix_entry(swap));
1088 /*
1089 * We already confirmed swap under page lock, and make
1090 * no memory allocation here, so usually no possibility
1091 * of error; but free_swap_and_cache() only trylocks a
1092 * page, so it is just possible that the entry has been
1093 * truncated or holepunched since swap was confirmed.
1094 * shmem_undo_range() will have done some of the
1095 * unaccounting, now delete_from_swap_cache() will do
1096 * the rest (including mem_cgroup_uncharge_swapcache).
1097 * Reset swap.val? No, leave it so "failed" goes back to
1098 * "repeat": reading a hole and writing should succeed.
1099 */
1100 if (error)
1101 delete_from_swap_cache(page);
1102 }
1103 if (error)
1104 goto failed;
1105
1106 spin_lock(&info->lock);
1107 info->swapped--;
1108 shmem_recalc_inode(inode);
1109 spin_unlock(&info->lock);
1110
1111 delete_from_swap_cache(page);
1112 set_page_dirty(page);
1113 swap_free(swap);
1114
1115 } else {
1116 if (shmem_acct_block(info->flags)) {
1117 error = -ENOSPC;
1118 goto failed;
1119 }
1120 if (sbinfo->max_blocks) {
1121 if (percpu_counter_compare(&sbinfo->used_blocks,
1122 sbinfo->max_blocks) >= 0) {
1123 error = -ENOSPC;
1124 goto unacct;
1125 }
1126 percpu_counter_inc(&sbinfo->used_blocks);
1127 }
1128
1129 page = shmem_alloc_page(gfp, info, index);
1130 if (!page) {
1131 error = -ENOMEM;
1132 goto decused;
1133 }
1134
1135 SetPageSwapBacked(page);
1136 __set_page_locked(page);
1137 error = mem_cgroup_charge_file(page, current->mm,
1138 gfp & GFP_RECLAIM_MASK);
1139 if (error)
1140 goto decused;
1141 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142 if (!error) {
1143 error = shmem_add_to_page_cache(page, mapping, index,
1144 gfp, NULL);
1145 radix_tree_preload_end();
1146 }
1147 if (error) {
1148 mem_cgroup_uncharge_cache_page(page);
1149 goto decused;
1150 }
1151 lru_cache_add_anon(page);
1152
1153 spin_lock(&info->lock);
1154 info->alloced++;
1155 inode->i_blocks += BLOCKS_PER_PAGE;
1156 shmem_recalc_inode(inode);
1157 spin_unlock(&info->lock);
1158 alloced = true;
1159
1160 /*
1161 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162 */
1163 if (sgp == SGP_FALLOC)
1164 sgp = SGP_WRITE;
1165 clear:
1166 /*
1167 * Let SGP_WRITE caller clear ends if write does not fill page;
1168 * but SGP_FALLOC on a page fallocated earlier must initialize
1169 * it now, lest undo on failure cancel our earlier guarantee.
1170 */
1171 if (sgp != SGP_WRITE) {
1172 clear_highpage(page);
1173 flush_dcache_page(page);
1174 SetPageUptodate(page);
1175 }
1176 if (sgp == SGP_DIRTY)
1177 set_page_dirty(page);
1178 }
1179
1180 /* Perhaps the file has been truncated since we checked */
1181 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183 error = -EINVAL;
1184 if (alloced)
1185 goto trunc;
1186 else
1187 goto failed;
1188 }
1189 *pagep = page;
1190 return 0;
1191
1192 /*
1193 * Error recovery.
1194 */
1195 trunc:
1196 info = SHMEM_I(inode);
1197 ClearPageDirty(page);
1198 delete_from_page_cache(page);
1199 spin_lock(&info->lock);
1200 info->alloced--;
1201 inode->i_blocks -= BLOCKS_PER_PAGE;
1202 spin_unlock(&info->lock);
1203 decused:
1204 sbinfo = SHMEM_SB(inode->i_sb);
1205 if (sbinfo->max_blocks)
1206 percpu_counter_add(&sbinfo->used_blocks, -1);
1207 unacct:
1208 shmem_unacct_blocks(info->flags, 1);
1209 failed:
1210 if (swap.val && error != -EINVAL &&
1211 !shmem_confirm_swap(mapping, index, swap))
1212 error = -EEXIST;
1213 unlock:
1214 if (page) {
1215 unlock_page(page);
1216 page_cache_release(page);
1217 }
1218 if (error == -ENOSPC && !once++) {
1219 info = SHMEM_I(inode);
1220 spin_lock(&info->lock);
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 goto repeat;
1224 }
1225 if (error == -EEXIST) /* from above or from radix_tree_insert */
1226 goto repeat;
1227 return error;
1228 }
1229
1230 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231 {
1232 struct inode *inode = file_inode(vma->vm_file);
1233 int error;
1234 int ret = VM_FAULT_LOCKED;
1235
1236 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237 if (error)
1238 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240 if (ret & VM_FAULT_MAJOR) {
1241 count_vm_event(PGMAJFAULT);
1242 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243 }
1244 return ret;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249 {
1250 struct inode *inode = file_inode(vma->vm_file);
1251 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252 }
1253
1254 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255 unsigned long addr)
1256 {
1257 struct inode *inode = file_inode(vma->vm_file);
1258 pgoff_t index;
1259
1260 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262 }
1263 #endif
1264
1265 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266 {
1267 struct inode *inode = file_inode(file);
1268 struct shmem_inode_info *info = SHMEM_I(inode);
1269 int retval = -ENOMEM;
1270
1271 spin_lock(&info->lock);
1272 if (lock && !(info->flags & VM_LOCKED)) {
1273 if (!user_shm_lock(inode->i_size, user))
1274 goto out_nomem;
1275 info->flags |= VM_LOCKED;
1276 mapping_set_unevictable(file->f_mapping);
1277 }
1278 if (!lock && (info->flags & VM_LOCKED) && user) {
1279 user_shm_unlock(inode->i_size, user);
1280 info->flags &= ~VM_LOCKED;
1281 mapping_clear_unevictable(file->f_mapping);
1282 }
1283 retval = 0;
1284
1285 out_nomem:
1286 spin_unlock(&info->lock);
1287 return retval;
1288 }
1289
1290 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291 {
1292 file_accessed(file);
1293 vma->vm_ops = &shmem_vm_ops;
1294 return 0;
1295 }
1296
1297 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298 umode_t mode, dev_t dev, unsigned long flags)
1299 {
1300 struct inode *inode;
1301 struct shmem_inode_info *info;
1302 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304 if (shmem_reserve_inode(sb))
1305 return NULL;
1306
1307 inode = new_inode(sb);
1308 if (inode) {
1309 inode->i_ino = get_next_ino();
1310 inode_init_owner(inode, dir, mode);
1311 inode->i_blocks = 0;
1312 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314 inode->i_generation = get_seconds();
1315 info = SHMEM_I(inode);
1316 memset(info, 0, (char *)inode - (char *)info);
1317 spin_lock_init(&info->lock);
1318 info->flags = flags & VM_NORESERVE;
1319 INIT_LIST_HEAD(&info->swaplist);
1320 simple_xattrs_init(&info->xattrs);
1321 cache_no_acl(inode);
1322
1323 switch (mode & S_IFMT) {
1324 default:
1325 inode->i_op = &shmem_special_inode_operations;
1326 init_special_inode(inode, mode, dev);
1327 break;
1328 case S_IFREG:
1329 inode->i_mapping->a_ops = &shmem_aops;
1330 inode->i_op = &shmem_inode_operations;
1331 inode->i_fop = &shmem_file_operations;
1332 mpol_shared_policy_init(&info->policy,
1333 shmem_get_sbmpol(sbinfo));
1334 break;
1335 case S_IFDIR:
1336 inc_nlink(inode);
1337 /* Some things misbehave if size == 0 on a directory */
1338 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339 inode->i_op = &shmem_dir_inode_operations;
1340 inode->i_fop = &simple_dir_operations;
1341 break;
1342 case S_IFLNK:
1343 /*
1344 * Must not load anything in the rbtree,
1345 * mpol_free_shared_policy will not be called.
1346 */
1347 mpol_shared_policy_init(&info->policy, NULL);
1348 break;
1349 }
1350 } else
1351 shmem_free_inode(sb);
1352 return inode;
1353 }
1354
1355 bool shmem_mapping(struct address_space *mapping)
1356 {
1357 return mapping->backing_dev_info == &shmem_backing_dev_info;
1358 }
1359
1360 #ifdef CONFIG_TMPFS
1361 static const struct inode_operations shmem_symlink_inode_operations;
1362 static const struct inode_operations shmem_short_symlink_operations;
1363
1364 #ifdef CONFIG_TMPFS_XATTR
1365 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366 #else
1367 #define shmem_initxattrs NULL
1368 #endif
1369
1370 static int
1371 shmem_write_begin(struct file *file, struct address_space *mapping,
1372 loff_t pos, unsigned len, unsigned flags,
1373 struct page **pagep, void **fsdata)
1374 {
1375 struct inode *inode = mapping->host;
1376 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378 }
1379
1380 static int
1381 shmem_write_end(struct file *file, struct address_space *mapping,
1382 loff_t pos, unsigned len, unsigned copied,
1383 struct page *page, void *fsdata)
1384 {
1385 struct inode *inode = mapping->host;
1386
1387 if (pos + copied > inode->i_size)
1388 i_size_write(inode, pos + copied);
1389
1390 if (!PageUptodate(page)) {
1391 if (copied < PAGE_CACHE_SIZE) {
1392 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393 zero_user_segments(page, 0, from,
1394 from + copied, PAGE_CACHE_SIZE);
1395 }
1396 SetPageUptodate(page);
1397 }
1398 set_page_dirty(page);
1399 unlock_page(page);
1400 page_cache_release(page);
1401
1402 return copied;
1403 }
1404
1405 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1406 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1407 {
1408 struct file *file = iocb->ki_filp;
1409 struct inode *inode = file_inode(file);
1410 struct address_space *mapping = inode->i_mapping;
1411 pgoff_t index;
1412 unsigned long offset;
1413 enum sgp_type sgp = SGP_READ;
1414 int error = 0;
1415 ssize_t retval;
1416 size_t count;
1417 loff_t *ppos = &iocb->ki_pos;
1418 struct iov_iter iter;
1419
1420 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421 if (retval)
1422 return retval;
1423 iov_iter_init(&iter, iov, nr_segs, count, 0);
1424
1425 /*
1426 * Might this read be for a stacking filesystem? Then when reading
1427 * holes of a sparse file, we actually need to allocate those pages,
1428 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1429 */
1430 if (segment_eq(get_fs(), KERNEL_DS))
1431 sgp = SGP_DIRTY;
1432
1433 index = *ppos >> PAGE_CACHE_SHIFT;
1434 offset = *ppos & ~PAGE_CACHE_MASK;
1435
1436 for (;;) {
1437 struct page *page = NULL;
1438 pgoff_t end_index;
1439 unsigned long nr, ret;
1440 loff_t i_size = i_size_read(inode);
1441
1442 end_index = i_size >> PAGE_CACHE_SHIFT;
1443 if (index > end_index)
1444 break;
1445 if (index == end_index) {
1446 nr = i_size & ~PAGE_CACHE_MASK;
1447 if (nr <= offset)
1448 break;
1449 }
1450
1451 error = shmem_getpage(inode, index, &page, sgp, NULL);
1452 if (error) {
1453 if (error == -EINVAL)
1454 error = 0;
1455 break;
1456 }
1457 if (page)
1458 unlock_page(page);
1459
1460 /*
1461 * We must evaluate after, since reads (unlike writes)
1462 * are called without i_mutex protection against truncate
1463 */
1464 nr = PAGE_CACHE_SIZE;
1465 i_size = i_size_read(inode);
1466 end_index = i_size >> PAGE_CACHE_SHIFT;
1467 if (index == end_index) {
1468 nr = i_size & ~PAGE_CACHE_MASK;
1469 if (nr <= offset) {
1470 if (page)
1471 page_cache_release(page);
1472 break;
1473 }
1474 }
1475 nr -= offset;
1476
1477 if (page) {
1478 /*
1479 * If users can be writing to this page using arbitrary
1480 * virtual addresses, take care about potential aliasing
1481 * before reading the page on the kernel side.
1482 */
1483 if (mapping_writably_mapped(mapping))
1484 flush_dcache_page(page);
1485 /*
1486 * Mark the page accessed if we read the beginning.
1487 */
1488 if (!offset)
1489 mark_page_accessed(page);
1490 } else {
1491 page = ZERO_PAGE(0);
1492 page_cache_get(page);
1493 }
1494
1495 /*
1496 * Ok, we have the page, and it's up-to-date, so
1497 * now we can copy it to user space...
1498 */
1499 ret = copy_page_to_iter(page, offset, nr, &iter);
1500 retval += ret;
1501 offset += ret;
1502 index += offset >> PAGE_CACHE_SHIFT;
1503 offset &= ~PAGE_CACHE_MASK;
1504
1505 page_cache_release(page);
1506 if (!iov_iter_count(&iter))
1507 break;
1508 if (ret < nr) {
1509 error = -EFAULT;
1510 break;
1511 }
1512 cond_resched();
1513 }
1514
1515 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1516 file_accessed(file);
1517 return retval ? retval : error;
1518 }
1519
1520 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1521 struct pipe_inode_info *pipe, size_t len,
1522 unsigned int flags)
1523 {
1524 struct address_space *mapping = in->f_mapping;
1525 struct inode *inode = mapping->host;
1526 unsigned int loff, nr_pages, req_pages;
1527 struct page *pages[PIPE_DEF_BUFFERS];
1528 struct partial_page partial[PIPE_DEF_BUFFERS];
1529 struct page *page;
1530 pgoff_t index, end_index;
1531 loff_t isize, left;
1532 int error, page_nr;
1533 struct splice_pipe_desc spd = {
1534 .pages = pages,
1535 .partial = partial,
1536 .nr_pages_max = PIPE_DEF_BUFFERS,
1537 .flags = flags,
1538 .ops = &page_cache_pipe_buf_ops,
1539 .spd_release = spd_release_page,
1540 };
1541
1542 isize = i_size_read(inode);
1543 if (unlikely(*ppos >= isize))
1544 return 0;
1545
1546 left = isize - *ppos;
1547 if (unlikely(left < len))
1548 len = left;
1549
1550 if (splice_grow_spd(pipe, &spd))
1551 return -ENOMEM;
1552
1553 index = *ppos >> PAGE_CACHE_SHIFT;
1554 loff = *ppos & ~PAGE_CACHE_MASK;
1555 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1556 nr_pages = min(req_pages, spd.nr_pages_max);
1557
1558 spd.nr_pages = find_get_pages_contig(mapping, index,
1559 nr_pages, spd.pages);
1560 index += spd.nr_pages;
1561 error = 0;
1562
1563 while (spd.nr_pages < nr_pages) {
1564 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1565 if (error)
1566 break;
1567 unlock_page(page);
1568 spd.pages[spd.nr_pages++] = page;
1569 index++;
1570 }
1571
1572 index = *ppos >> PAGE_CACHE_SHIFT;
1573 nr_pages = spd.nr_pages;
1574 spd.nr_pages = 0;
1575
1576 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1577 unsigned int this_len;
1578
1579 if (!len)
1580 break;
1581
1582 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1583 page = spd.pages[page_nr];
1584
1585 if (!PageUptodate(page) || page->mapping != mapping) {
1586 error = shmem_getpage(inode, index, &page,
1587 SGP_CACHE, NULL);
1588 if (error)
1589 break;
1590 unlock_page(page);
1591 page_cache_release(spd.pages[page_nr]);
1592 spd.pages[page_nr] = page;
1593 }
1594
1595 isize = i_size_read(inode);
1596 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1597 if (unlikely(!isize || index > end_index))
1598 break;
1599
1600 if (end_index == index) {
1601 unsigned int plen;
1602
1603 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1604 if (plen <= loff)
1605 break;
1606
1607 this_len = min(this_len, plen - loff);
1608 len = this_len;
1609 }
1610
1611 spd.partial[page_nr].offset = loff;
1612 spd.partial[page_nr].len = this_len;
1613 len -= this_len;
1614 loff = 0;
1615 spd.nr_pages++;
1616 index++;
1617 }
1618
1619 while (page_nr < nr_pages)
1620 page_cache_release(spd.pages[page_nr++]);
1621
1622 if (spd.nr_pages)
1623 error = splice_to_pipe(pipe, &spd);
1624
1625 splice_shrink_spd(&spd);
1626
1627 if (error > 0) {
1628 *ppos += error;
1629 file_accessed(in);
1630 }
1631 return error;
1632 }
1633
1634 /*
1635 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1636 */
1637 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1638 pgoff_t index, pgoff_t end, int whence)
1639 {
1640 struct page *page;
1641 struct pagevec pvec;
1642 pgoff_t indices[PAGEVEC_SIZE];
1643 bool done = false;
1644 int i;
1645
1646 pagevec_init(&pvec, 0);
1647 pvec.nr = 1; /* start small: we may be there already */
1648 while (!done) {
1649 pvec.nr = find_get_entries(mapping, index,
1650 pvec.nr, pvec.pages, indices);
1651 if (!pvec.nr) {
1652 if (whence == SEEK_DATA)
1653 index = end;
1654 break;
1655 }
1656 for (i = 0; i < pvec.nr; i++, index++) {
1657 if (index < indices[i]) {
1658 if (whence == SEEK_HOLE) {
1659 done = true;
1660 break;
1661 }
1662 index = indices[i];
1663 }
1664 page = pvec.pages[i];
1665 if (page && !radix_tree_exceptional_entry(page)) {
1666 if (!PageUptodate(page))
1667 page = NULL;
1668 }
1669 if (index >= end ||
1670 (page && whence == SEEK_DATA) ||
1671 (!page && whence == SEEK_HOLE)) {
1672 done = true;
1673 break;
1674 }
1675 }
1676 pagevec_remove_exceptionals(&pvec);
1677 pagevec_release(&pvec);
1678 pvec.nr = PAGEVEC_SIZE;
1679 cond_resched();
1680 }
1681 return index;
1682 }
1683
1684 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1685 {
1686 struct address_space *mapping = file->f_mapping;
1687 struct inode *inode = mapping->host;
1688 pgoff_t start, end;
1689 loff_t new_offset;
1690
1691 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1692 return generic_file_llseek_size(file, offset, whence,
1693 MAX_LFS_FILESIZE, i_size_read(inode));
1694 mutex_lock(&inode->i_mutex);
1695 /* We're holding i_mutex so we can access i_size directly */
1696
1697 if (offset < 0)
1698 offset = -EINVAL;
1699 else if (offset >= inode->i_size)
1700 offset = -ENXIO;
1701 else {
1702 start = offset >> PAGE_CACHE_SHIFT;
1703 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1704 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1705 new_offset <<= PAGE_CACHE_SHIFT;
1706 if (new_offset > offset) {
1707 if (new_offset < inode->i_size)
1708 offset = new_offset;
1709 else if (whence == SEEK_DATA)
1710 offset = -ENXIO;
1711 else
1712 offset = inode->i_size;
1713 }
1714 }
1715
1716 if (offset >= 0)
1717 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1718 mutex_unlock(&inode->i_mutex);
1719 return offset;
1720 }
1721
1722 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1723 loff_t len)
1724 {
1725 struct inode *inode = file_inode(file);
1726 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1727 struct shmem_falloc shmem_falloc;
1728 pgoff_t start, index, end;
1729 int error;
1730
1731 mutex_lock(&inode->i_mutex);
1732
1733 if (mode & FALLOC_FL_PUNCH_HOLE) {
1734 struct address_space *mapping = file->f_mapping;
1735 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1736 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1737
1738 if ((u64)unmap_end > (u64)unmap_start)
1739 unmap_mapping_range(mapping, unmap_start,
1740 1 + unmap_end - unmap_start, 0);
1741 shmem_truncate_range(inode, offset, offset + len - 1);
1742 /* No need to unmap again: hole-punching leaves COWed pages */
1743 error = 0;
1744 goto out;
1745 }
1746
1747 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1748 error = inode_newsize_ok(inode, offset + len);
1749 if (error)
1750 goto out;
1751
1752 start = offset >> PAGE_CACHE_SHIFT;
1753 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1754 /* Try to avoid a swapstorm if len is impossible to satisfy */
1755 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1756 error = -ENOSPC;
1757 goto out;
1758 }
1759
1760 shmem_falloc.start = start;
1761 shmem_falloc.next = start;
1762 shmem_falloc.nr_falloced = 0;
1763 shmem_falloc.nr_unswapped = 0;
1764 spin_lock(&inode->i_lock);
1765 inode->i_private = &shmem_falloc;
1766 spin_unlock(&inode->i_lock);
1767
1768 for (index = start; index < end; index++) {
1769 struct page *page;
1770
1771 /*
1772 * Good, the fallocate(2) manpage permits EINTR: we may have
1773 * been interrupted because we are using up too much memory.
1774 */
1775 if (signal_pending(current))
1776 error = -EINTR;
1777 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1778 error = -ENOMEM;
1779 else
1780 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1781 NULL);
1782 if (error) {
1783 /* Remove the !PageUptodate pages we added */
1784 shmem_undo_range(inode,
1785 (loff_t)start << PAGE_CACHE_SHIFT,
1786 (loff_t)index << PAGE_CACHE_SHIFT, true);
1787 goto undone;
1788 }
1789
1790 /*
1791 * Inform shmem_writepage() how far we have reached.
1792 * No need for lock or barrier: we have the page lock.
1793 */
1794 shmem_falloc.next++;
1795 if (!PageUptodate(page))
1796 shmem_falloc.nr_falloced++;
1797
1798 /*
1799 * If !PageUptodate, leave it that way so that freeable pages
1800 * can be recognized if we need to rollback on error later.
1801 * But set_page_dirty so that memory pressure will swap rather
1802 * than free the pages we are allocating (and SGP_CACHE pages
1803 * might still be clean: we now need to mark those dirty too).
1804 */
1805 set_page_dirty(page);
1806 unlock_page(page);
1807 page_cache_release(page);
1808 cond_resched();
1809 }
1810
1811 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1812 i_size_write(inode, offset + len);
1813 inode->i_ctime = CURRENT_TIME;
1814 undone:
1815 spin_lock(&inode->i_lock);
1816 inode->i_private = NULL;
1817 spin_unlock(&inode->i_lock);
1818 out:
1819 mutex_unlock(&inode->i_mutex);
1820 return error;
1821 }
1822
1823 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1824 {
1825 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1826
1827 buf->f_type = TMPFS_MAGIC;
1828 buf->f_bsize = PAGE_CACHE_SIZE;
1829 buf->f_namelen = NAME_MAX;
1830 if (sbinfo->max_blocks) {
1831 buf->f_blocks = sbinfo->max_blocks;
1832 buf->f_bavail =
1833 buf->f_bfree = sbinfo->max_blocks -
1834 percpu_counter_sum(&sbinfo->used_blocks);
1835 }
1836 if (sbinfo->max_inodes) {
1837 buf->f_files = sbinfo->max_inodes;
1838 buf->f_ffree = sbinfo->free_inodes;
1839 }
1840 /* else leave those fields 0 like simple_statfs */
1841 return 0;
1842 }
1843
1844 /*
1845 * File creation. Allocate an inode, and we're done..
1846 */
1847 static int
1848 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1849 {
1850 struct inode *inode;
1851 int error = -ENOSPC;
1852
1853 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1854 if (inode) {
1855 error = simple_acl_create(dir, inode);
1856 if (error)
1857 goto out_iput;
1858 error = security_inode_init_security(inode, dir,
1859 &dentry->d_name,
1860 shmem_initxattrs, NULL);
1861 if (error && error != -EOPNOTSUPP)
1862 goto out_iput;
1863
1864 error = 0;
1865 dir->i_size += BOGO_DIRENT_SIZE;
1866 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1867 d_instantiate(dentry, inode);
1868 dget(dentry); /* Extra count - pin the dentry in core */
1869 }
1870 return error;
1871 out_iput:
1872 iput(inode);
1873 return error;
1874 }
1875
1876 static int
1877 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1878 {
1879 struct inode *inode;
1880 int error = -ENOSPC;
1881
1882 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1883 if (inode) {
1884 error = security_inode_init_security(inode, dir,
1885 NULL,
1886 shmem_initxattrs, NULL);
1887 if (error && error != -EOPNOTSUPP)
1888 goto out_iput;
1889 error = simple_acl_create(dir, inode);
1890 if (error)
1891 goto out_iput;
1892 d_tmpfile(dentry, inode);
1893 }
1894 return error;
1895 out_iput:
1896 iput(inode);
1897 return error;
1898 }
1899
1900 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1901 {
1902 int error;
1903
1904 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1905 return error;
1906 inc_nlink(dir);
1907 return 0;
1908 }
1909
1910 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1911 bool excl)
1912 {
1913 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1914 }
1915
1916 /*
1917 * Link a file..
1918 */
1919 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1920 {
1921 struct inode *inode = old_dentry->d_inode;
1922 int ret;
1923
1924 /*
1925 * No ordinary (disk based) filesystem counts links as inodes;
1926 * but each new link needs a new dentry, pinning lowmem, and
1927 * tmpfs dentries cannot be pruned until they are unlinked.
1928 */
1929 ret = shmem_reserve_inode(inode->i_sb);
1930 if (ret)
1931 goto out;
1932
1933 dir->i_size += BOGO_DIRENT_SIZE;
1934 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1935 inc_nlink(inode);
1936 ihold(inode); /* New dentry reference */
1937 dget(dentry); /* Extra pinning count for the created dentry */
1938 d_instantiate(dentry, inode);
1939 out:
1940 return ret;
1941 }
1942
1943 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1944 {
1945 struct inode *inode = dentry->d_inode;
1946
1947 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1948 shmem_free_inode(inode->i_sb);
1949
1950 dir->i_size -= BOGO_DIRENT_SIZE;
1951 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1952 drop_nlink(inode);
1953 dput(dentry); /* Undo the count from "create" - this does all the work */
1954 return 0;
1955 }
1956
1957 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1958 {
1959 if (!simple_empty(dentry))
1960 return -ENOTEMPTY;
1961
1962 drop_nlink(dentry->d_inode);
1963 drop_nlink(dir);
1964 return shmem_unlink(dir, dentry);
1965 }
1966
1967 /*
1968 * The VFS layer already does all the dentry stuff for rename,
1969 * we just have to decrement the usage count for the target if
1970 * it exists so that the VFS layer correctly free's it when it
1971 * gets overwritten.
1972 */
1973 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1974 {
1975 struct inode *inode = old_dentry->d_inode;
1976 int they_are_dirs = S_ISDIR(inode->i_mode);
1977
1978 if (!simple_empty(new_dentry))
1979 return -ENOTEMPTY;
1980
1981 if (new_dentry->d_inode) {
1982 (void) shmem_unlink(new_dir, new_dentry);
1983 if (they_are_dirs)
1984 drop_nlink(old_dir);
1985 } else if (they_are_dirs) {
1986 drop_nlink(old_dir);
1987 inc_nlink(new_dir);
1988 }
1989
1990 old_dir->i_size -= BOGO_DIRENT_SIZE;
1991 new_dir->i_size += BOGO_DIRENT_SIZE;
1992 old_dir->i_ctime = old_dir->i_mtime =
1993 new_dir->i_ctime = new_dir->i_mtime =
1994 inode->i_ctime = CURRENT_TIME;
1995 return 0;
1996 }
1997
1998 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1999 {
2000 int error;
2001 int len;
2002 struct inode *inode;
2003 struct page *page;
2004 char *kaddr;
2005 struct shmem_inode_info *info;
2006
2007 len = strlen(symname) + 1;
2008 if (len > PAGE_CACHE_SIZE)
2009 return -ENAMETOOLONG;
2010
2011 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2012 if (!inode)
2013 return -ENOSPC;
2014
2015 error = security_inode_init_security(inode, dir, &dentry->d_name,
2016 shmem_initxattrs, NULL);
2017 if (error) {
2018 if (error != -EOPNOTSUPP) {
2019 iput(inode);
2020 return error;
2021 }
2022 error = 0;
2023 }
2024
2025 info = SHMEM_I(inode);
2026 inode->i_size = len-1;
2027 if (len <= SHORT_SYMLINK_LEN) {
2028 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2029 if (!info->symlink) {
2030 iput(inode);
2031 return -ENOMEM;
2032 }
2033 inode->i_op = &shmem_short_symlink_operations;
2034 } else {
2035 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2036 if (error) {
2037 iput(inode);
2038 return error;
2039 }
2040 inode->i_mapping->a_ops = &shmem_aops;
2041 inode->i_op = &shmem_symlink_inode_operations;
2042 kaddr = kmap_atomic(page);
2043 memcpy(kaddr, symname, len);
2044 kunmap_atomic(kaddr);
2045 SetPageUptodate(page);
2046 set_page_dirty(page);
2047 unlock_page(page);
2048 page_cache_release(page);
2049 }
2050 dir->i_size += BOGO_DIRENT_SIZE;
2051 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2052 d_instantiate(dentry, inode);
2053 dget(dentry);
2054 return 0;
2055 }
2056
2057 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2058 {
2059 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2060 return NULL;
2061 }
2062
2063 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2064 {
2065 struct page *page = NULL;
2066 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2067 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2068 if (page)
2069 unlock_page(page);
2070 return page;
2071 }
2072
2073 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2074 {
2075 if (!IS_ERR(nd_get_link(nd))) {
2076 struct page *page = cookie;
2077 kunmap(page);
2078 mark_page_accessed(page);
2079 page_cache_release(page);
2080 }
2081 }
2082
2083 #ifdef CONFIG_TMPFS_XATTR
2084 /*
2085 * Superblocks without xattr inode operations may get some security.* xattr
2086 * support from the LSM "for free". As soon as we have any other xattrs
2087 * like ACLs, we also need to implement the security.* handlers at
2088 * filesystem level, though.
2089 */
2090
2091 /*
2092 * Callback for security_inode_init_security() for acquiring xattrs.
2093 */
2094 static int shmem_initxattrs(struct inode *inode,
2095 const struct xattr *xattr_array,
2096 void *fs_info)
2097 {
2098 struct shmem_inode_info *info = SHMEM_I(inode);
2099 const struct xattr *xattr;
2100 struct simple_xattr *new_xattr;
2101 size_t len;
2102
2103 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2104 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2105 if (!new_xattr)
2106 return -ENOMEM;
2107
2108 len = strlen(xattr->name) + 1;
2109 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2110 GFP_KERNEL);
2111 if (!new_xattr->name) {
2112 kfree(new_xattr);
2113 return -ENOMEM;
2114 }
2115
2116 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2117 XATTR_SECURITY_PREFIX_LEN);
2118 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2119 xattr->name, len);
2120
2121 simple_xattr_list_add(&info->xattrs, new_xattr);
2122 }
2123
2124 return 0;
2125 }
2126
2127 static const struct xattr_handler *shmem_xattr_handlers[] = {
2128 #ifdef CONFIG_TMPFS_POSIX_ACL
2129 &posix_acl_access_xattr_handler,
2130 &posix_acl_default_xattr_handler,
2131 #endif
2132 NULL
2133 };
2134
2135 static int shmem_xattr_validate(const char *name)
2136 {
2137 struct { const char *prefix; size_t len; } arr[] = {
2138 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2139 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2140 };
2141 int i;
2142
2143 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2144 size_t preflen = arr[i].len;
2145 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2146 if (!name[preflen])
2147 return -EINVAL;
2148 return 0;
2149 }
2150 }
2151 return -EOPNOTSUPP;
2152 }
2153
2154 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2155 void *buffer, size_t size)
2156 {
2157 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2158 int err;
2159
2160 /*
2161 * If this is a request for a synthetic attribute in the system.*
2162 * namespace use the generic infrastructure to resolve a handler
2163 * for it via sb->s_xattr.
2164 */
2165 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2166 return generic_getxattr(dentry, name, buffer, size);
2167
2168 err = shmem_xattr_validate(name);
2169 if (err)
2170 return err;
2171
2172 return simple_xattr_get(&info->xattrs, name, buffer, size);
2173 }
2174
2175 static int shmem_setxattr(struct dentry *dentry, const char *name,
2176 const void *value, size_t size, int flags)
2177 {
2178 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2179 int err;
2180
2181 /*
2182 * If this is a request for a synthetic attribute in the system.*
2183 * namespace use the generic infrastructure to resolve a handler
2184 * for it via sb->s_xattr.
2185 */
2186 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2187 return generic_setxattr(dentry, name, value, size, flags);
2188
2189 err = shmem_xattr_validate(name);
2190 if (err)
2191 return err;
2192
2193 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2194 }
2195
2196 static int shmem_removexattr(struct dentry *dentry, const char *name)
2197 {
2198 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2199 int err;
2200
2201 /*
2202 * If this is a request for a synthetic attribute in the system.*
2203 * namespace use the generic infrastructure to resolve a handler
2204 * for it via sb->s_xattr.
2205 */
2206 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2207 return generic_removexattr(dentry, name);
2208
2209 err = shmem_xattr_validate(name);
2210 if (err)
2211 return err;
2212
2213 return simple_xattr_remove(&info->xattrs, name);
2214 }
2215
2216 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2217 {
2218 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2219 return simple_xattr_list(&info->xattrs, buffer, size);
2220 }
2221 #endif /* CONFIG_TMPFS_XATTR */
2222
2223 static const struct inode_operations shmem_short_symlink_operations = {
2224 .readlink = generic_readlink,
2225 .follow_link = shmem_follow_short_symlink,
2226 #ifdef CONFIG_TMPFS_XATTR
2227 .setxattr = shmem_setxattr,
2228 .getxattr = shmem_getxattr,
2229 .listxattr = shmem_listxattr,
2230 .removexattr = shmem_removexattr,
2231 #endif
2232 };
2233
2234 static const struct inode_operations shmem_symlink_inode_operations = {
2235 .readlink = generic_readlink,
2236 .follow_link = shmem_follow_link,
2237 .put_link = shmem_put_link,
2238 #ifdef CONFIG_TMPFS_XATTR
2239 .setxattr = shmem_setxattr,
2240 .getxattr = shmem_getxattr,
2241 .listxattr = shmem_listxattr,
2242 .removexattr = shmem_removexattr,
2243 #endif
2244 };
2245
2246 static struct dentry *shmem_get_parent(struct dentry *child)
2247 {
2248 return ERR_PTR(-ESTALE);
2249 }
2250
2251 static int shmem_match(struct inode *ino, void *vfh)
2252 {
2253 __u32 *fh = vfh;
2254 __u64 inum = fh[2];
2255 inum = (inum << 32) | fh[1];
2256 return ino->i_ino == inum && fh[0] == ino->i_generation;
2257 }
2258
2259 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2260 struct fid *fid, int fh_len, int fh_type)
2261 {
2262 struct inode *inode;
2263 struct dentry *dentry = NULL;
2264 u64 inum;
2265
2266 if (fh_len < 3)
2267 return NULL;
2268
2269 inum = fid->raw[2];
2270 inum = (inum << 32) | fid->raw[1];
2271
2272 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2273 shmem_match, fid->raw);
2274 if (inode) {
2275 dentry = d_find_alias(inode);
2276 iput(inode);
2277 }
2278
2279 return dentry;
2280 }
2281
2282 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2283 struct inode *parent)
2284 {
2285 if (*len < 3) {
2286 *len = 3;
2287 return FILEID_INVALID;
2288 }
2289
2290 if (inode_unhashed(inode)) {
2291 /* Unfortunately insert_inode_hash is not idempotent,
2292 * so as we hash inodes here rather than at creation
2293 * time, we need a lock to ensure we only try
2294 * to do it once
2295 */
2296 static DEFINE_SPINLOCK(lock);
2297 spin_lock(&lock);
2298 if (inode_unhashed(inode))
2299 __insert_inode_hash(inode,
2300 inode->i_ino + inode->i_generation);
2301 spin_unlock(&lock);
2302 }
2303
2304 fh[0] = inode->i_generation;
2305 fh[1] = inode->i_ino;
2306 fh[2] = ((__u64)inode->i_ino) >> 32;
2307
2308 *len = 3;
2309 return 1;
2310 }
2311
2312 static const struct export_operations shmem_export_ops = {
2313 .get_parent = shmem_get_parent,
2314 .encode_fh = shmem_encode_fh,
2315 .fh_to_dentry = shmem_fh_to_dentry,
2316 };
2317
2318 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2319 bool remount)
2320 {
2321 char *this_char, *value, *rest;
2322 struct mempolicy *mpol = NULL;
2323 uid_t uid;
2324 gid_t gid;
2325
2326 while (options != NULL) {
2327 this_char = options;
2328 for (;;) {
2329 /*
2330 * NUL-terminate this option: unfortunately,
2331 * mount options form a comma-separated list,
2332 * but mpol's nodelist may also contain commas.
2333 */
2334 options = strchr(options, ',');
2335 if (options == NULL)
2336 break;
2337 options++;
2338 if (!isdigit(*options)) {
2339 options[-1] = '\0';
2340 break;
2341 }
2342 }
2343 if (!*this_char)
2344 continue;
2345 if ((value = strchr(this_char,'=')) != NULL) {
2346 *value++ = 0;
2347 } else {
2348 printk(KERN_ERR
2349 "tmpfs: No value for mount option '%s'\n",
2350 this_char);
2351 goto error;
2352 }
2353
2354 if (!strcmp(this_char,"size")) {
2355 unsigned long long size;
2356 size = memparse(value,&rest);
2357 if (*rest == '%') {
2358 size <<= PAGE_SHIFT;
2359 size *= totalram_pages;
2360 do_div(size, 100);
2361 rest++;
2362 }
2363 if (*rest)
2364 goto bad_val;
2365 sbinfo->max_blocks =
2366 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2367 } else if (!strcmp(this_char,"nr_blocks")) {
2368 sbinfo->max_blocks = memparse(value, &rest);
2369 if (*rest)
2370 goto bad_val;
2371 } else if (!strcmp(this_char,"nr_inodes")) {
2372 sbinfo->max_inodes = memparse(value, &rest);
2373 if (*rest)
2374 goto bad_val;
2375 } else if (!strcmp(this_char,"mode")) {
2376 if (remount)
2377 continue;
2378 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2379 if (*rest)
2380 goto bad_val;
2381 } else if (!strcmp(this_char,"uid")) {
2382 if (remount)
2383 continue;
2384 uid = simple_strtoul(value, &rest, 0);
2385 if (*rest)
2386 goto bad_val;
2387 sbinfo->uid = make_kuid(current_user_ns(), uid);
2388 if (!uid_valid(sbinfo->uid))
2389 goto bad_val;
2390 } else if (!strcmp(this_char,"gid")) {
2391 if (remount)
2392 continue;
2393 gid = simple_strtoul(value, &rest, 0);
2394 if (*rest)
2395 goto bad_val;
2396 sbinfo->gid = make_kgid(current_user_ns(), gid);
2397 if (!gid_valid(sbinfo->gid))
2398 goto bad_val;
2399 } else if (!strcmp(this_char,"mpol")) {
2400 mpol_put(mpol);
2401 mpol = NULL;
2402 if (mpol_parse_str(value, &mpol))
2403 goto bad_val;
2404 } else {
2405 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2406 this_char);
2407 goto error;
2408 }
2409 }
2410 sbinfo->mpol = mpol;
2411 return 0;
2412
2413 bad_val:
2414 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2415 value, this_char);
2416 error:
2417 mpol_put(mpol);
2418 return 1;
2419
2420 }
2421
2422 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2423 {
2424 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2425 struct shmem_sb_info config = *sbinfo;
2426 unsigned long inodes;
2427 int error = -EINVAL;
2428
2429 config.mpol = NULL;
2430 if (shmem_parse_options(data, &config, true))
2431 return error;
2432
2433 spin_lock(&sbinfo->stat_lock);
2434 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2435 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2436 goto out;
2437 if (config.max_inodes < inodes)
2438 goto out;
2439 /*
2440 * Those tests disallow limited->unlimited while any are in use;
2441 * but we must separately disallow unlimited->limited, because
2442 * in that case we have no record of how much is already in use.
2443 */
2444 if (config.max_blocks && !sbinfo->max_blocks)
2445 goto out;
2446 if (config.max_inodes && !sbinfo->max_inodes)
2447 goto out;
2448
2449 error = 0;
2450 sbinfo->max_blocks = config.max_blocks;
2451 sbinfo->max_inodes = config.max_inodes;
2452 sbinfo->free_inodes = config.max_inodes - inodes;
2453
2454 /*
2455 * Preserve previous mempolicy unless mpol remount option was specified.
2456 */
2457 if (config.mpol) {
2458 mpol_put(sbinfo->mpol);
2459 sbinfo->mpol = config.mpol; /* transfers initial ref */
2460 }
2461 out:
2462 spin_unlock(&sbinfo->stat_lock);
2463 return error;
2464 }
2465
2466 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2467 {
2468 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2469
2470 if (sbinfo->max_blocks != shmem_default_max_blocks())
2471 seq_printf(seq, ",size=%luk",
2472 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2473 if (sbinfo->max_inodes != shmem_default_max_inodes())
2474 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2475 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2476 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2477 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2478 seq_printf(seq, ",uid=%u",
2479 from_kuid_munged(&init_user_ns, sbinfo->uid));
2480 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2481 seq_printf(seq, ",gid=%u",
2482 from_kgid_munged(&init_user_ns, sbinfo->gid));
2483 shmem_show_mpol(seq, sbinfo->mpol);
2484 return 0;
2485 }
2486 #endif /* CONFIG_TMPFS */
2487
2488 static void shmem_put_super(struct super_block *sb)
2489 {
2490 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2491
2492 percpu_counter_destroy(&sbinfo->used_blocks);
2493 mpol_put(sbinfo->mpol);
2494 kfree(sbinfo);
2495 sb->s_fs_info = NULL;
2496 }
2497
2498 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2499 {
2500 struct inode *inode;
2501 struct shmem_sb_info *sbinfo;
2502 int err = -ENOMEM;
2503
2504 /* Round up to L1_CACHE_BYTES to resist false sharing */
2505 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2506 L1_CACHE_BYTES), GFP_KERNEL);
2507 if (!sbinfo)
2508 return -ENOMEM;
2509
2510 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2511 sbinfo->uid = current_fsuid();
2512 sbinfo->gid = current_fsgid();
2513 sb->s_fs_info = sbinfo;
2514
2515 #ifdef CONFIG_TMPFS
2516 /*
2517 * Per default we only allow half of the physical ram per
2518 * tmpfs instance, limiting inodes to one per page of lowmem;
2519 * but the internal instance is left unlimited.
2520 */
2521 if (!(sb->s_flags & MS_KERNMOUNT)) {
2522 sbinfo->max_blocks = shmem_default_max_blocks();
2523 sbinfo->max_inodes = shmem_default_max_inodes();
2524 if (shmem_parse_options(data, sbinfo, false)) {
2525 err = -EINVAL;
2526 goto failed;
2527 }
2528 } else {
2529 sb->s_flags |= MS_NOUSER;
2530 }
2531 sb->s_export_op = &shmem_export_ops;
2532 sb->s_flags |= MS_NOSEC;
2533 #else
2534 sb->s_flags |= MS_NOUSER;
2535 #endif
2536
2537 spin_lock_init(&sbinfo->stat_lock);
2538 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2539 goto failed;
2540 sbinfo->free_inodes = sbinfo->max_inodes;
2541
2542 sb->s_maxbytes = MAX_LFS_FILESIZE;
2543 sb->s_blocksize = PAGE_CACHE_SIZE;
2544 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2545 sb->s_magic = TMPFS_MAGIC;
2546 sb->s_op = &shmem_ops;
2547 sb->s_time_gran = 1;
2548 #ifdef CONFIG_TMPFS_XATTR
2549 sb->s_xattr = shmem_xattr_handlers;
2550 #endif
2551 #ifdef CONFIG_TMPFS_POSIX_ACL
2552 sb->s_flags |= MS_POSIXACL;
2553 #endif
2554
2555 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2556 if (!inode)
2557 goto failed;
2558 inode->i_uid = sbinfo->uid;
2559 inode->i_gid = sbinfo->gid;
2560 sb->s_root = d_make_root(inode);
2561 if (!sb->s_root)
2562 goto failed;
2563 return 0;
2564
2565 failed:
2566 shmem_put_super(sb);
2567 return err;
2568 }
2569
2570 static struct kmem_cache *shmem_inode_cachep;
2571
2572 static struct inode *shmem_alloc_inode(struct super_block *sb)
2573 {
2574 struct shmem_inode_info *info;
2575 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2576 if (!info)
2577 return NULL;
2578 return &info->vfs_inode;
2579 }
2580
2581 static void shmem_destroy_callback(struct rcu_head *head)
2582 {
2583 struct inode *inode = container_of(head, struct inode, i_rcu);
2584 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2585 }
2586
2587 static void shmem_destroy_inode(struct inode *inode)
2588 {
2589 if (S_ISREG(inode->i_mode))
2590 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2591 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2592 }
2593
2594 static void shmem_init_inode(void *foo)
2595 {
2596 struct shmem_inode_info *info = foo;
2597 inode_init_once(&info->vfs_inode);
2598 }
2599
2600 static int shmem_init_inodecache(void)
2601 {
2602 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2603 sizeof(struct shmem_inode_info),
2604 0, SLAB_PANIC, shmem_init_inode);
2605 return 0;
2606 }
2607
2608 static void shmem_destroy_inodecache(void)
2609 {
2610 kmem_cache_destroy(shmem_inode_cachep);
2611 }
2612
2613 static const struct address_space_operations shmem_aops = {
2614 .writepage = shmem_writepage,
2615 .set_page_dirty = __set_page_dirty_no_writeback,
2616 #ifdef CONFIG_TMPFS
2617 .write_begin = shmem_write_begin,
2618 .write_end = shmem_write_end,
2619 #endif
2620 .migratepage = migrate_page,
2621 .error_remove_page = generic_error_remove_page,
2622 };
2623
2624 static const struct file_operations shmem_file_operations = {
2625 .mmap = shmem_mmap,
2626 #ifdef CONFIG_TMPFS
2627 .llseek = shmem_file_llseek,
2628 .read = do_sync_read,
2629 .write = do_sync_write,
2630 .aio_read = shmem_file_aio_read,
2631 .aio_write = generic_file_aio_write,
2632 .fsync = noop_fsync,
2633 .splice_read = shmem_file_splice_read,
2634 .splice_write = generic_file_splice_write,
2635 .fallocate = shmem_fallocate,
2636 #endif
2637 };
2638
2639 static const struct inode_operations shmem_inode_operations = {
2640 .setattr = shmem_setattr,
2641 #ifdef CONFIG_TMPFS_XATTR
2642 .setxattr = shmem_setxattr,
2643 .getxattr = shmem_getxattr,
2644 .listxattr = shmem_listxattr,
2645 .removexattr = shmem_removexattr,
2646 .set_acl = simple_set_acl,
2647 #endif
2648 };
2649
2650 static const struct inode_operations shmem_dir_inode_operations = {
2651 #ifdef CONFIG_TMPFS
2652 .create = shmem_create,
2653 .lookup = simple_lookup,
2654 .link = shmem_link,
2655 .unlink = shmem_unlink,
2656 .symlink = shmem_symlink,
2657 .mkdir = shmem_mkdir,
2658 .rmdir = shmem_rmdir,
2659 .mknod = shmem_mknod,
2660 .rename = shmem_rename,
2661 .tmpfile = shmem_tmpfile,
2662 #endif
2663 #ifdef CONFIG_TMPFS_XATTR
2664 .setxattr = shmem_setxattr,
2665 .getxattr = shmem_getxattr,
2666 .listxattr = shmem_listxattr,
2667 .removexattr = shmem_removexattr,
2668 #endif
2669 #ifdef CONFIG_TMPFS_POSIX_ACL
2670 .setattr = shmem_setattr,
2671 .set_acl = simple_set_acl,
2672 #endif
2673 };
2674
2675 static const struct inode_operations shmem_special_inode_operations = {
2676 #ifdef CONFIG_TMPFS_XATTR
2677 .setxattr = shmem_setxattr,
2678 .getxattr = shmem_getxattr,
2679 .listxattr = shmem_listxattr,
2680 .removexattr = shmem_removexattr,
2681 #endif
2682 #ifdef CONFIG_TMPFS_POSIX_ACL
2683 .setattr = shmem_setattr,
2684 .set_acl = simple_set_acl,
2685 #endif
2686 };
2687
2688 static const struct super_operations shmem_ops = {
2689 .alloc_inode = shmem_alloc_inode,
2690 .destroy_inode = shmem_destroy_inode,
2691 #ifdef CONFIG_TMPFS
2692 .statfs = shmem_statfs,
2693 .remount_fs = shmem_remount_fs,
2694 .show_options = shmem_show_options,
2695 #endif
2696 .evict_inode = shmem_evict_inode,
2697 .drop_inode = generic_delete_inode,
2698 .put_super = shmem_put_super,
2699 };
2700
2701 static const struct vm_operations_struct shmem_vm_ops = {
2702 .fault = shmem_fault,
2703 .map_pages = filemap_map_pages,
2704 #ifdef CONFIG_NUMA
2705 .set_policy = shmem_set_policy,
2706 .get_policy = shmem_get_policy,
2707 #endif
2708 .remap_pages = generic_file_remap_pages,
2709 };
2710
2711 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2712 int flags, const char *dev_name, void *data)
2713 {
2714 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2715 }
2716
2717 static struct file_system_type shmem_fs_type = {
2718 .owner = THIS_MODULE,
2719 .name = "tmpfs",
2720 .mount = shmem_mount,
2721 .kill_sb = kill_litter_super,
2722 .fs_flags = FS_USERNS_MOUNT,
2723 };
2724
2725 int __init shmem_init(void)
2726 {
2727 int error;
2728
2729 /* If rootfs called this, don't re-init */
2730 if (shmem_inode_cachep)
2731 return 0;
2732
2733 error = bdi_init(&shmem_backing_dev_info);
2734 if (error)
2735 goto out4;
2736
2737 error = shmem_init_inodecache();
2738 if (error)
2739 goto out3;
2740
2741 error = register_filesystem(&shmem_fs_type);
2742 if (error) {
2743 printk(KERN_ERR "Could not register tmpfs\n");
2744 goto out2;
2745 }
2746
2747 shm_mnt = kern_mount(&shmem_fs_type);
2748 if (IS_ERR(shm_mnt)) {
2749 error = PTR_ERR(shm_mnt);
2750 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2751 goto out1;
2752 }
2753 return 0;
2754
2755 out1:
2756 unregister_filesystem(&shmem_fs_type);
2757 out2:
2758 shmem_destroy_inodecache();
2759 out3:
2760 bdi_destroy(&shmem_backing_dev_info);
2761 out4:
2762 shm_mnt = ERR_PTR(error);
2763 return error;
2764 }
2765
2766 #else /* !CONFIG_SHMEM */
2767
2768 /*
2769 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2770 *
2771 * This is intended for small system where the benefits of the full
2772 * shmem code (swap-backed and resource-limited) are outweighed by
2773 * their complexity. On systems without swap this code should be
2774 * effectively equivalent, but much lighter weight.
2775 */
2776
2777 static struct file_system_type shmem_fs_type = {
2778 .name = "tmpfs",
2779 .mount = ramfs_mount,
2780 .kill_sb = kill_litter_super,
2781 .fs_flags = FS_USERNS_MOUNT,
2782 };
2783
2784 int __init shmem_init(void)
2785 {
2786 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2787
2788 shm_mnt = kern_mount(&shmem_fs_type);
2789 BUG_ON(IS_ERR(shm_mnt));
2790
2791 return 0;
2792 }
2793
2794 int shmem_unuse(swp_entry_t swap, struct page *page)
2795 {
2796 return 0;
2797 }
2798
2799 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2800 {
2801 return 0;
2802 }
2803
2804 void shmem_unlock_mapping(struct address_space *mapping)
2805 {
2806 }
2807
2808 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2809 {
2810 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2811 }
2812 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2813
2814 #define shmem_vm_ops generic_file_vm_ops
2815 #define shmem_file_operations ramfs_file_operations
2816 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2817 #define shmem_acct_size(flags, size) 0
2818 #define shmem_unacct_size(flags, size) do {} while (0)
2819
2820 #endif /* CONFIG_SHMEM */
2821
2822 /* common code */
2823
2824 static struct dentry_operations anon_ops = {
2825 .d_dname = simple_dname
2826 };
2827
2828 static struct file *__shmem_file_setup(const char *name, loff_t size,
2829 unsigned long flags, unsigned int i_flags)
2830 {
2831 struct file *res;
2832 struct inode *inode;
2833 struct path path;
2834 struct super_block *sb;
2835 struct qstr this;
2836
2837 if (IS_ERR(shm_mnt))
2838 return ERR_CAST(shm_mnt);
2839
2840 if (size < 0 || size > MAX_LFS_FILESIZE)
2841 return ERR_PTR(-EINVAL);
2842
2843 if (shmem_acct_size(flags, size))
2844 return ERR_PTR(-ENOMEM);
2845
2846 res = ERR_PTR(-ENOMEM);
2847 this.name = name;
2848 this.len = strlen(name);
2849 this.hash = 0; /* will go */
2850 sb = shm_mnt->mnt_sb;
2851 path.dentry = d_alloc_pseudo(sb, &this);
2852 if (!path.dentry)
2853 goto put_memory;
2854 d_set_d_op(path.dentry, &anon_ops);
2855 path.mnt = mntget(shm_mnt);
2856
2857 res = ERR_PTR(-ENOSPC);
2858 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2859 if (!inode)
2860 goto put_dentry;
2861
2862 inode->i_flags |= i_flags;
2863 d_instantiate(path.dentry, inode);
2864 inode->i_size = size;
2865 clear_nlink(inode); /* It is unlinked */
2866 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2867 if (IS_ERR(res))
2868 goto put_dentry;
2869
2870 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2871 &shmem_file_operations);
2872 if (IS_ERR(res))
2873 goto put_dentry;
2874
2875 return res;
2876
2877 put_dentry:
2878 path_put(&path);
2879 put_memory:
2880 shmem_unacct_size(flags, size);
2881 return res;
2882 }
2883
2884 /**
2885 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2886 * kernel internal. There will be NO LSM permission checks against the
2887 * underlying inode. So users of this interface must do LSM checks at a
2888 * higher layer. The one user is the big_key implementation. LSM checks
2889 * are provided at the key level rather than the inode level.
2890 * @name: name for dentry (to be seen in /proc/<pid>/maps
2891 * @size: size to be set for the file
2892 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2893 */
2894 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2895 {
2896 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2897 }
2898
2899 /**
2900 * shmem_file_setup - get an unlinked file living in tmpfs
2901 * @name: name for dentry (to be seen in /proc/<pid>/maps
2902 * @size: size to be set for the file
2903 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2904 */
2905 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2906 {
2907 return __shmem_file_setup(name, size, flags, 0);
2908 }
2909 EXPORT_SYMBOL_GPL(shmem_file_setup);
2910
2911 /**
2912 * shmem_zero_setup - setup a shared anonymous mapping
2913 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2914 */
2915 int shmem_zero_setup(struct vm_area_struct *vma)
2916 {
2917 struct file *file;
2918 loff_t size = vma->vm_end - vma->vm_start;
2919
2920 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2921 if (IS_ERR(file))
2922 return PTR_ERR(file);
2923
2924 if (vma->vm_file)
2925 fput(vma->vm_file);
2926 vma->vm_file = file;
2927 vma->vm_ops = &shmem_vm_ops;
2928 return 0;
2929 }
2930
2931 /**
2932 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2933 * @mapping: the page's address_space
2934 * @index: the page index
2935 * @gfp: the page allocator flags to use if allocating
2936 *
2937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2938 * with any new page allocations done using the specified allocation flags.
2939 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2940 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2942 *
2943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2945 */
2946 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2947 pgoff_t index, gfp_t gfp)
2948 {
2949 #ifdef CONFIG_SHMEM
2950 struct inode *inode = mapping->host;
2951 struct page *page;
2952 int error;
2953
2954 BUG_ON(mapping->a_ops != &shmem_aops);
2955 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2956 if (error)
2957 page = ERR_PTR(error);
2958 else
2959 unlock_page(page);
2960 return page;
2961 #else
2962 /*
2963 * The tiny !SHMEM case uses ramfs without swap
2964 */
2965 return read_cache_page_gfp(mapping, index, gfp);
2966 #endif
2967 }
2968 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.088778 seconds and 5 git commands to generate.