iio: accel: kxcjk-1013: Fix kxcjk10013_set_range
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84
85 /*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90 struct shmem_falloc {
91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 pgoff_t start; /* start of range currently being fallocated */
93 pgoff_t next; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
96 };
97
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 SGP_READ, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE, /* don't exceed i_size, may allocate page */
102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
129 mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 return sb->s_fs_info;
135 }
136
137 /*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 return (flags & VM_NORESERVE) ?
146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 if (!(flags & VM_NORESERVE))
152 vm_unacct_memory(VM_ACCT(size));
153 }
154
155 static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157 {
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166 }
167
168 /*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 return (flags & VM_NORESERVE) ?
177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 if (flags & VM_NORESERVE)
183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193
194 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
195 .ra_pages = 0, /* No readahead */
196 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
197 };
198
199 static LIST_HEAD(shmem_swaplist);
200 static DEFINE_MUTEX(shmem_swaplist_mutex);
201
202 static int shmem_reserve_inode(struct super_block *sb)
203 {
204 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205 if (sbinfo->max_inodes) {
206 spin_lock(&sbinfo->stat_lock);
207 if (!sbinfo->free_inodes) {
208 spin_unlock(&sbinfo->stat_lock);
209 return -ENOSPC;
210 }
211 sbinfo->free_inodes--;
212 spin_unlock(&sbinfo->stat_lock);
213 }
214 return 0;
215 }
216
217 static void shmem_free_inode(struct super_block *sb)
218 {
219 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220 if (sbinfo->max_inodes) {
221 spin_lock(&sbinfo->stat_lock);
222 sbinfo->free_inodes++;
223 spin_unlock(&sbinfo->stat_lock);
224 }
225 }
226
227 /**
228 * shmem_recalc_inode - recalculate the block usage of an inode
229 * @inode: inode to recalc
230 *
231 * We have to calculate the free blocks since the mm can drop
232 * undirtied hole pages behind our back.
233 *
234 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236 *
237 * It has to be called with the spinlock held.
238 */
239 static void shmem_recalc_inode(struct inode *inode)
240 {
241 struct shmem_inode_info *info = SHMEM_I(inode);
242 long freed;
243
244 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245 if (freed > 0) {
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 if (sbinfo->max_blocks)
248 percpu_counter_add(&sbinfo->used_blocks, -freed);
249 info->alloced -= freed;
250 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251 shmem_unacct_blocks(info->flags, freed);
252 }
253 }
254
255 /*
256 * Replace item expected in radix tree by a new item, while holding tree lock.
257 */
258 static int shmem_radix_tree_replace(struct address_space *mapping,
259 pgoff_t index, void *expected, void *replacement)
260 {
261 void **pslot;
262 void *item;
263
264 VM_BUG_ON(!expected);
265 VM_BUG_ON(!replacement);
266 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
267 if (!pslot)
268 return -ENOENT;
269 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
270 if (item != expected)
271 return -ENOENT;
272 radix_tree_replace_slot(pslot, replacement);
273 return 0;
274 }
275
276 /*
277 * Sometimes, before we decide whether to proceed or to fail, we must check
278 * that an entry was not already brought back from swap by a racing thread.
279 *
280 * Checking page is not enough: by the time a SwapCache page is locked, it
281 * might be reused, and again be SwapCache, using the same swap as before.
282 */
283 static bool shmem_confirm_swap(struct address_space *mapping,
284 pgoff_t index, swp_entry_t swap)
285 {
286 void *item;
287
288 rcu_read_lock();
289 item = radix_tree_lookup(&mapping->page_tree, index);
290 rcu_read_unlock();
291 return item == swp_to_radix_entry(swap);
292 }
293
294 /*
295 * Like add_to_page_cache_locked, but error if expected item has gone.
296 */
297 static int shmem_add_to_page_cache(struct page *page,
298 struct address_space *mapping,
299 pgoff_t index, void *expected)
300 {
301 int error;
302
303 VM_BUG_ON_PAGE(!PageLocked(page), page);
304 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
305
306 page_cache_get(page);
307 page->mapping = mapping;
308 page->index = index;
309
310 spin_lock_irq(&mapping->tree_lock);
311 if (!expected)
312 error = radix_tree_insert(&mapping->page_tree, index, page);
313 else
314 error = shmem_radix_tree_replace(mapping, index, expected,
315 page);
316 if (!error) {
317 mapping->nrpages++;
318 __inc_zone_page_state(page, NR_FILE_PAGES);
319 __inc_zone_page_state(page, NR_SHMEM);
320 spin_unlock_irq(&mapping->tree_lock);
321 } else {
322 page->mapping = NULL;
323 spin_unlock_irq(&mapping->tree_lock);
324 page_cache_release(page);
325 }
326 return error;
327 }
328
329 /*
330 * Like delete_from_page_cache, but substitutes swap for page.
331 */
332 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333 {
334 struct address_space *mapping = page->mapping;
335 int error;
336
337 spin_lock_irq(&mapping->tree_lock);
338 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339 page->mapping = NULL;
340 mapping->nrpages--;
341 __dec_zone_page_state(page, NR_FILE_PAGES);
342 __dec_zone_page_state(page, NR_SHMEM);
343 spin_unlock_irq(&mapping->tree_lock);
344 page_cache_release(page);
345 BUG_ON(error);
346 }
347
348 /*
349 * Remove swap entry from radix tree, free the swap and its page cache.
350 */
351 static int shmem_free_swap(struct address_space *mapping,
352 pgoff_t index, void *radswap)
353 {
354 void *old;
355
356 spin_lock_irq(&mapping->tree_lock);
357 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
358 spin_unlock_irq(&mapping->tree_lock);
359 if (old != radswap)
360 return -ENOENT;
361 free_swap_and_cache(radix_to_swp_entry(radswap));
362 return 0;
363 }
364
365 /*
366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367 */
368 void shmem_unlock_mapping(struct address_space *mapping)
369 {
370 struct pagevec pvec;
371 pgoff_t indices[PAGEVEC_SIZE];
372 pgoff_t index = 0;
373
374 pagevec_init(&pvec, 0);
375 /*
376 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377 */
378 while (!mapping_unevictable(mapping)) {
379 /*
380 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382 */
383 pvec.nr = find_get_entries(mapping, index,
384 PAGEVEC_SIZE, pvec.pages, indices);
385 if (!pvec.nr)
386 break;
387 index = indices[pvec.nr - 1] + 1;
388 pagevec_remove_exceptionals(&pvec);
389 check_move_unevictable_pages(pvec.pages, pvec.nr);
390 pagevec_release(&pvec);
391 cond_resched();
392 }
393 }
394
395 /*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
398 */
399 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400 bool unfalloc)
401 {
402 struct address_space *mapping = inode->i_mapping;
403 struct shmem_inode_info *info = SHMEM_I(inode);
404 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
405 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
408 struct pagevec pvec;
409 pgoff_t indices[PAGEVEC_SIZE];
410 long nr_swaps_freed = 0;
411 pgoff_t index;
412 int i;
413
414 if (lend == -1)
415 end = -1; /* unsigned, so actually very big */
416
417 pagevec_init(&pvec, 0);
418 index = start;
419 while (index < end) {
420 pvec.nr = find_get_entries(mapping, index,
421 min(end - index, (pgoff_t)PAGEVEC_SIZE),
422 pvec.pages, indices);
423 if (!pvec.nr)
424 break;
425 for (i = 0; i < pagevec_count(&pvec); i++) {
426 struct page *page = pvec.pages[i];
427
428 index = indices[i];
429 if (index >= end)
430 break;
431
432 if (radix_tree_exceptional_entry(page)) {
433 if (unfalloc)
434 continue;
435 nr_swaps_freed += !shmem_free_swap(mapping,
436 index, page);
437 continue;
438 }
439
440 if (!trylock_page(page))
441 continue;
442 if (!unfalloc || !PageUptodate(page)) {
443 if (page->mapping == mapping) {
444 VM_BUG_ON_PAGE(PageWriteback(page), page);
445 truncate_inode_page(mapping, page);
446 }
447 }
448 unlock_page(page);
449 }
450 pagevec_remove_exceptionals(&pvec);
451 pagevec_release(&pvec);
452 cond_resched();
453 index++;
454 }
455
456 if (partial_start) {
457 struct page *page = NULL;
458 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459 if (page) {
460 unsigned int top = PAGE_CACHE_SIZE;
461 if (start > end) {
462 top = partial_end;
463 partial_end = 0;
464 }
465 zero_user_segment(page, partial_start, top);
466 set_page_dirty(page);
467 unlock_page(page);
468 page_cache_release(page);
469 }
470 }
471 if (partial_end) {
472 struct page *page = NULL;
473 shmem_getpage(inode, end, &page, SGP_READ, NULL);
474 if (page) {
475 zero_user_segment(page, 0, partial_end);
476 set_page_dirty(page);
477 unlock_page(page);
478 page_cache_release(page);
479 }
480 }
481 if (start >= end)
482 return;
483
484 index = start;
485 while (index < end) {
486 cond_resched();
487
488 pvec.nr = find_get_entries(mapping, index,
489 min(end - index, (pgoff_t)PAGEVEC_SIZE),
490 pvec.pages, indices);
491 if (!pvec.nr) {
492 /* If all gone or hole-punch or unfalloc, we're done */
493 if (index == start || end != -1)
494 break;
495 /* But if truncating, restart to make sure all gone */
496 index = start;
497 continue;
498 }
499 for (i = 0; i < pagevec_count(&pvec); i++) {
500 struct page *page = pvec.pages[i];
501
502 index = indices[i];
503 if (index >= end)
504 break;
505
506 if (radix_tree_exceptional_entry(page)) {
507 if (unfalloc)
508 continue;
509 if (shmem_free_swap(mapping, index, page)) {
510 /* Swap was replaced by page: retry */
511 index--;
512 break;
513 }
514 nr_swaps_freed++;
515 continue;
516 }
517
518 lock_page(page);
519 if (!unfalloc || !PageUptodate(page)) {
520 if (page->mapping == mapping) {
521 VM_BUG_ON_PAGE(PageWriteback(page), page);
522 truncate_inode_page(mapping, page);
523 } else {
524 /* Page was replaced by swap: retry */
525 unlock_page(page);
526 index--;
527 break;
528 }
529 }
530 unlock_page(page);
531 }
532 pagevec_remove_exceptionals(&pvec);
533 pagevec_release(&pvec);
534 index++;
535 }
536
537 spin_lock(&info->lock);
538 info->swapped -= nr_swaps_freed;
539 shmem_recalc_inode(inode);
540 spin_unlock(&info->lock);
541 }
542
543 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544 {
545 shmem_undo_range(inode, lstart, lend, false);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 EXPORT_SYMBOL_GPL(shmem_truncate_range);
549
550 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
551 {
552 struct inode *inode = dentry->d_inode;
553 struct shmem_inode_info *info = SHMEM_I(inode);
554 int error;
555
556 error = inode_change_ok(inode, attr);
557 if (error)
558 return error;
559
560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 loff_t oldsize = inode->i_size;
562 loff_t newsize = attr->ia_size;
563
564 /* protected by i_mutex */
565 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567 return -EPERM;
568
569 if (newsize != oldsize) {
570 error = shmem_reacct_size(SHMEM_I(inode)->flags,
571 oldsize, newsize);
572 if (error)
573 return error;
574 i_size_write(inode, newsize);
575 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576 }
577 if (newsize < oldsize) {
578 loff_t holebegin = round_up(newsize, PAGE_SIZE);
579 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580 shmem_truncate_range(inode, newsize, (loff_t)-1);
581 /* unmap again to remove racily COWed private pages */
582 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583 }
584 }
585
586 setattr_copy(inode, attr);
587 if (attr->ia_valid & ATTR_MODE)
588 error = posix_acl_chmod(inode, inode->i_mode);
589 return error;
590 }
591
592 static void shmem_evict_inode(struct inode *inode)
593 {
594 struct shmem_inode_info *info = SHMEM_I(inode);
595
596 if (inode->i_mapping->a_ops == &shmem_aops) {
597 shmem_unacct_size(info->flags, inode->i_size);
598 inode->i_size = 0;
599 shmem_truncate_range(inode, 0, (loff_t)-1);
600 if (!list_empty(&info->swaplist)) {
601 mutex_lock(&shmem_swaplist_mutex);
602 list_del_init(&info->swaplist);
603 mutex_unlock(&shmem_swaplist_mutex);
604 }
605 } else
606 kfree(info->symlink);
607
608 simple_xattrs_free(&info->xattrs);
609 WARN_ON(inode->i_blocks);
610 shmem_free_inode(inode->i_sb);
611 clear_inode(inode);
612 }
613
614 /*
615 * If swap found in inode, free it and move page from swapcache to filecache.
616 */
617 static int shmem_unuse_inode(struct shmem_inode_info *info,
618 swp_entry_t swap, struct page **pagep)
619 {
620 struct address_space *mapping = info->vfs_inode.i_mapping;
621 void *radswap;
622 pgoff_t index;
623 gfp_t gfp;
624 int error = 0;
625
626 radswap = swp_to_radix_entry(swap);
627 index = radix_tree_locate_item(&mapping->page_tree, radswap);
628 if (index == -1)
629 return -EAGAIN; /* tell shmem_unuse we found nothing */
630
631 /*
632 * Move _head_ to start search for next from here.
633 * But be careful: shmem_evict_inode checks list_empty without taking
634 * mutex, and there's an instant in list_move_tail when info->swaplist
635 * would appear empty, if it were the only one on shmem_swaplist.
636 */
637 if (shmem_swaplist.next != &info->swaplist)
638 list_move_tail(&shmem_swaplist, &info->swaplist);
639
640 gfp = mapping_gfp_mask(mapping);
641 if (shmem_should_replace_page(*pagep, gfp)) {
642 mutex_unlock(&shmem_swaplist_mutex);
643 error = shmem_replace_page(pagep, gfp, info, index);
644 mutex_lock(&shmem_swaplist_mutex);
645 /*
646 * We needed to drop mutex to make that restrictive page
647 * allocation, but the inode might have been freed while we
648 * dropped it: although a racing shmem_evict_inode() cannot
649 * complete without emptying the radix_tree, our page lock
650 * on this swapcache page is not enough to prevent that -
651 * free_swap_and_cache() of our swap entry will only
652 * trylock_page(), removing swap from radix_tree whatever.
653 *
654 * We must not proceed to shmem_add_to_page_cache() if the
655 * inode has been freed, but of course we cannot rely on
656 * inode or mapping or info to check that. However, we can
657 * safely check if our swap entry is still in use (and here
658 * it can't have got reused for another page): if it's still
659 * in use, then the inode cannot have been freed yet, and we
660 * can safely proceed (if it's no longer in use, that tells
661 * nothing about the inode, but we don't need to unuse swap).
662 */
663 if (!page_swapcount(*pagep))
664 error = -ENOENT;
665 }
666
667 /*
668 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670 * beneath us (pagelock doesn't help until the page is in pagecache).
671 */
672 if (!error)
673 error = shmem_add_to_page_cache(*pagep, mapping, index,
674 radswap);
675 if (error != -ENOMEM) {
676 /*
677 * Truncation and eviction use free_swap_and_cache(), which
678 * only does trylock page: if we raced, best clean up here.
679 */
680 delete_from_swap_cache(*pagep);
681 set_page_dirty(*pagep);
682 if (!error) {
683 spin_lock(&info->lock);
684 info->swapped--;
685 spin_unlock(&info->lock);
686 swap_free(swap);
687 }
688 }
689 return error;
690 }
691
692 /*
693 * Search through swapped inodes to find and replace swap by page.
694 */
695 int shmem_unuse(swp_entry_t swap, struct page *page)
696 {
697 struct list_head *this, *next;
698 struct shmem_inode_info *info;
699 struct mem_cgroup *memcg;
700 int error = 0;
701
702 /*
703 * There's a faint possibility that swap page was replaced before
704 * caller locked it: caller will come back later with the right page.
705 */
706 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
707 goto out;
708
709 /*
710 * Charge page using GFP_KERNEL while we can wait, before taking
711 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712 * Charged back to the user (not to caller) when swap account is used.
713 */
714 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
715 if (error)
716 goto out;
717 /* No radix_tree_preload: swap entry keeps a place for page in tree */
718 error = -EAGAIN;
719
720 mutex_lock(&shmem_swaplist_mutex);
721 list_for_each_safe(this, next, &shmem_swaplist) {
722 info = list_entry(this, struct shmem_inode_info, swaplist);
723 if (info->swapped)
724 error = shmem_unuse_inode(info, swap, &page);
725 else
726 list_del_init(&info->swaplist);
727 cond_resched();
728 if (error != -EAGAIN)
729 break;
730 /* found nothing in this: move on to search the next */
731 }
732 mutex_unlock(&shmem_swaplist_mutex);
733
734 if (error) {
735 if (error != -ENOMEM)
736 error = 0;
737 mem_cgroup_cancel_charge(page, memcg);
738 } else
739 mem_cgroup_commit_charge(page, memcg, true);
740 out:
741 unlock_page(page);
742 page_cache_release(page);
743 return error;
744 }
745
746 /*
747 * Move the page from the page cache to the swap cache.
748 */
749 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750 {
751 struct shmem_inode_info *info;
752 struct address_space *mapping;
753 struct inode *inode;
754 swp_entry_t swap;
755 pgoff_t index;
756
757 BUG_ON(!PageLocked(page));
758 mapping = page->mapping;
759 index = page->index;
760 inode = mapping->host;
761 info = SHMEM_I(inode);
762 if (info->flags & VM_LOCKED)
763 goto redirty;
764 if (!total_swap_pages)
765 goto redirty;
766
767 /*
768 * shmem_backing_dev_info's capabilities prevent regular writeback or
769 * sync from ever calling shmem_writepage; but a stacking filesystem
770 * might use ->writepage of its underlying filesystem, in which case
771 * tmpfs should write out to swap only in response to memory pressure,
772 * and not for the writeback threads or sync.
773 */
774 if (!wbc->for_reclaim) {
775 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
776 goto redirty;
777 }
778
779 /*
780 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781 * value into swapfile.c, the only way we can correctly account for a
782 * fallocated page arriving here is now to initialize it and write it.
783 *
784 * That's okay for a page already fallocated earlier, but if we have
785 * not yet completed the fallocation, then (a) we want to keep track
786 * of this page in case we have to undo it, and (b) it may not be a
787 * good idea to continue anyway, once we're pushing into swap. So
788 * reactivate the page, and let shmem_fallocate() quit when too many.
789 */
790 if (!PageUptodate(page)) {
791 if (inode->i_private) {
792 struct shmem_falloc *shmem_falloc;
793 spin_lock(&inode->i_lock);
794 shmem_falloc = inode->i_private;
795 if (shmem_falloc &&
796 !shmem_falloc->waitq &&
797 index >= shmem_falloc->start &&
798 index < shmem_falloc->next)
799 shmem_falloc->nr_unswapped++;
800 else
801 shmem_falloc = NULL;
802 spin_unlock(&inode->i_lock);
803 if (shmem_falloc)
804 goto redirty;
805 }
806 clear_highpage(page);
807 flush_dcache_page(page);
808 SetPageUptodate(page);
809 }
810
811 swap = get_swap_page();
812 if (!swap.val)
813 goto redirty;
814
815 /*
816 * Add inode to shmem_unuse()'s list of swapped-out inodes,
817 * if it's not already there. Do it now before the page is
818 * moved to swap cache, when its pagelock no longer protects
819 * the inode from eviction. But don't unlock the mutex until
820 * we've incremented swapped, because shmem_unuse_inode() will
821 * prune a !swapped inode from the swaplist under this mutex.
822 */
823 mutex_lock(&shmem_swaplist_mutex);
824 if (list_empty(&info->swaplist))
825 list_add_tail(&info->swaplist, &shmem_swaplist);
826
827 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
828 swap_shmem_alloc(swap);
829 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830
831 spin_lock(&info->lock);
832 info->swapped++;
833 shmem_recalc_inode(inode);
834 spin_unlock(&info->lock);
835
836 mutex_unlock(&shmem_swaplist_mutex);
837 BUG_ON(page_mapped(page));
838 swap_writepage(page, wbc);
839 return 0;
840 }
841
842 mutex_unlock(&shmem_swaplist_mutex);
843 swapcache_free(swap);
844 redirty:
845 set_page_dirty(page);
846 if (wbc->for_reclaim)
847 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
848 unlock_page(page);
849 return 0;
850 }
851
852 #ifdef CONFIG_NUMA
853 #ifdef CONFIG_TMPFS
854 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
855 {
856 char buffer[64];
857
858 if (!mpol || mpol->mode == MPOL_DEFAULT)
859 return; /* show nothing */
860
861 mpol_to_str(buffer, sizeof(buffer), mpol);
862
863 seq_printf(seq, ",mpol=%s", buffer);
864 }
865
866 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867 {
868 struct mempolicy *mpol = NULL;
869 if (sbinfo->mpol) {
870 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
871 mpol = sbinfo->mpol;
872 mpol_get(mpol);
873 spin_unlock(&sbinfo->stat_lock);
874 }
875 return mpol;
876 }
877 #endif /* CONFIG_TMPFS */
878
879 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880 struct shmem_inode_info *info, pgoff_t index)
881 {
882 struct vm_area_struct pvma;
883 struct page *page;
884
885 /* Create a pseudo vma that just contains the policy */
886 pvma.vm_start = 0;
887 /* Bias interleave by inode number to distribute better across nodes */
888 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
889 pvma.vm_ops = NULL;
890 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891
892 page = swapin_readahead(swap, gfp, &pvma, 0);
893
894 /* Drop reference taken by mpol_shared_policy_lookup() */
895 mpol_cond_put(pvma.vm_policy);
896
897 return page;
898 }
899
900 static struct page *shmem_alloc_page(gfp_t gfp,
901 struct shmem_inode_info *info, pgoff_t index)
902 {
903 struct vm_area_struct pvma;
904 struct page *page;
905
906 /* Create a pseudo vma that just contains the policy */
907 pvma.vm_start = 0;
908 /* Bias interleave by inode number to distribute better across nodes */
909 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
910 pvma.vm_ops = NULL;
911 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
912
913 page = alloc_page_vma(gfp, &pvma, 0);
914
915 /* Drop reference taken by mpol_shared_policy_lookup() */
916 mpol_cond_put(pvma.vm_policy);
917
918 return page;
919 }
920 #else /* !CONFIG_NUMA */
921 #ifdef CONFIG_TMPFS
922 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
923 {
924 }
925 #endif /* CONFIG_TMPFS */
926
927 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928 struct shmem_inode_info *info, pgoff_t index)
929 {
930 return swapin_readahead(swap, gfp, NULL, 0);
931 }
932
933 static inline struct page *shmem_alloc_page(gfp_t gfp,
934 struct shmem_inode_info *info, pgoff_t index)
935 {
936 return alloc_page(gfp);
937 }
938 #endif /* CONFIG_NUMA */
939
940 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
941 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942 {
943 return NULL;
944 }
945 #endif
946
947 /*
948 * When a page is moved from swapcache to shmem filecache (either by the
949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950 * shmem_unuse_inode()), it may have been read in earlier from swap, in
951 * ignorance of the mapping it belongs to. If that mapping has special
952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953 * we may need to copy to a suitable page before moving to filecache.
954 *
955 * In a future release, this may well be extended to respect cpuset and
956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957 * but for now it is a simple matter of zone.
958 */
959 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960 {
961 return page_zonenum(page) > gfp_zone(gfp);
962 }
963
964 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965 struct shmem_inode_info *info, pgoff_t index)
966 {
967 struct page *oldpage, *newpage;
968 struct address_space *swap_mapping;
969 pgoff_t swap_index;
970 int error;
971
972 oldpage = *pagep;
973 swap_index = page_private(oldpage);
974 swap_mapping = page_mapping(oldpage);
975
976 /*
977 * We have arrived here because our zones are constrained, so don't
978 * limit chance of success by further cpuset and node constraints.
979 */
980 gfp &= ~GFP_CONSTRAINT_MASK;
981 newpage = shmem_alloc_page(gfp, info, index);
982 if (!newpage)
983 return -ENOMEM;
984
985 page_cache_get(newpage);
986 copy_highpage(newpage, oldpage);
987 flush_dcache_page(newpage);
988
989 __set_page_locked(newpage);
990 SetPageUptodate(newpage);
991 SetPageSwapBacked(newpage);
992 set_page_private(newpage, swap_index);
993 SetPageSwapCache(newpage);
994
995 /*
996 * Our caller will very soon move newpage out of swapcache, but it's
997 * a nice clean interface for us to replace oldpage by newpage there.
998 */
999 spin_lock_irq(&swap_mapping->tree_lock);
1000 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001 newpage);
1002 if (!error) {
1003 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1004 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005 }
1006 spin_unlock_irq(&swap_mapping->tree_lock);
1007
1008 if (unlikely(error)) {
1009 /*
1010 * Is this possible? I think not, now that our callers check
1011 * both PageSwapCache and page_private after getting page lock;
1012 * but be defensive. Reverse old to newpage for clear and free.
1013 */
1014 oldpage = newpage;
1015 } else {
1016 mem_cgroup_migrate(oldpage, newpage, false);
1017 lru_cache_add_anon(newpage);
1018 *pagep = newpage;
1019 }
1020
1021 ClearPageSwapCache(oldpage);
1022 set_page_private(oldpage, 0);
1023
1024 unlock_page(oldpage);
1025 page_cache_release(oldpage);
1026 page_cache_release(oldpage);
1027 return error;
1028 }
1029
1030 /*
1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032 *
1033 * If we allocate a new one we do not mark it dirty. That's up to the
1034 * vm. If we swap it in we mark it dirty since we also free the swap
1035 * entry since a page cannot live in both the swap and page cache
1036 */
1037 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039 {
1040 struct address_space *mapping = inode->i_mapping;
1041 struct shmem_inode_info *info;
1042 struct shmem_sb_info *sbinfo;
1043 struct mem_cgroup *memcg;
1044 struct page *page;
1045 swp_entry_t swap;
1046 int error;
1047 int once = 0;
1048 int alloced = 0;
1049
1050 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051 return -EFBIG;
1052 repeat:
1053 swap.val = 0;
1054 page = find_lock_entry(mapping, index);
1055 if (radix_tree_exceptional_entry(page)) {
1056 swap = radix_to_swp_entry(page);
1057 page = NULL;
1058 }
1059
1060 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062 error = -EINVAL;
1063 goto failed;
1064 }
1065
1066 if (page && sgp == SGP_WRITE)
1067 mark_page_accessed(page);
1068
1069 /* fallocated page? */
1070 if (page && !PageUptodate(page)) {
1071 if (sgp != SGP_READ)
1072 goto clear;
1073 unlock_page(page);
1074 page_cache_release(page);
1075 page = NULL;
1076 }
1077 if (page || (sgp == SGP_READ && !swap.val)) {
1078 *pagep = page;
1079 return 0;
1080 }
1081
1082 /*
1083 * Fast cache lookup did not find it:
1084 * bring it back from swap or allocate.
1085 */
1086 info = SHMEM_I(inode);
1087 sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (swap.val) {
1090 /* Look it up and read it in.. */
1091 page = lookup_swap_cache(swap);
1092 if (!page) {
1093 /* here we actually do the io */
1094 if (fault_type)
1095 *fault_type |= VM_FAULT_MAJOR;
1096 page = shmem_swapin(swap, gfp, info, index);
1097 if (!page) {
1098 error = -ENOMEM;
1099 goto failed;
1100 }
1101 }
1102
1103 /* We have to do this with page locked to prevent races */
1104 lock_page(page);
1105 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106 !shmem_confirm_swap(mapping, index, swap)) {
1107 error = -EEXIST; /* try again */
1108 goto unlock;
1109 }
1110 if (!PageUptodate(page)) {
1111 error = -EIO;
1112 goto failed;
1113 }
1114 wait_on_page_writeback(page);
1115
1116 if (shmem_should_replace_page(page, gfp)) {
1117 error = shmem_replace_page(&page, gfp, info, index);
1118 if (error)
1119 goto failed;
1120 }
1121
1122 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123 if (!error) {
1124 error = shmem_add_to_page_cache(page, mapping, index,
1125 swp_to_radix_entry(swap));
1126 /*
1127 * We already confirmed swap under page lock, and make
1128 * no memory allocation here, so usually no possibility
1129 * of error; but free_swap_and_cache() only trylocks a
1130 * page, so it is just possible that the entry has been
1131 * truncated or holepunched since swap was confirmed.
1132 * shmem_undo_range() will have done some of the
1133 * unaccounting, now delete_from_swap_cache() will do
1134 * the rest (including mem_cgroup_uncharge_swapcache).
1135 * Reset swap.val? No, leave it so "failed" goes back to
1136 * "repeat": reading a hole and writing should succeed.
1137 */
1138 if (error) {
1139 mem_cgroup_cancel_charge(page, memcg);
1140 delete_from_swap_cache(page);
1141 }
1142 }
1143 if (error)
1144 goto failed;
1145
1146 mem_cgroup_commit_charge(page, memcg, true);
1147
1148 spin_lock(&info->lock);
1149 info->swapped--;
1150 shmem_recalc_inode(inode);
1151 spin_unlock(&info->lock);
1152
1153 if (sgp == SGP_WRITE)
1154 mark_page_accessed(page);
1155
1156 delete_from_swap_cache(page);
1157 set_page_dirty(page);
1158 swap_free(swap);
1159
1160 } else {
1161 if (shmem_acct_block(info->flags)) {
1162 error = -ENOSPC;
1163 goto failed;
1164 }
1165 if (sbinfo->max_blocks) {
1166 if (percpu_counter_compare(&sbinfo->used_blocks,
1167 sbinfo->max_blocks) >= 0) {
1168 error = -ENOSPC;
1169 goto unacct;
1170 }
1171 percpu_counter_inc(&sbinfo->used_blocks);
1172 }
1173
1174 page = shmem_alloc_page(gfp, info, index);
1175 if (!page) {
1176 error = -ENOMEM;
1177 goto decused;
1178 }
1179
1180 __SetPageSwapBacked(page);
1181 __set_page_locked(page);
1182 if (sgp == SGP_WRITE)
1183 __SetPageReferenced(page);
1184
1185 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186 if (error)
1187 goto decused;
1188 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189 if (!error) {
1190 error = shmem_add_to_page_cache(page, mapping, index,
1191 NULL);
1192 radix_tree_preload_end();
1193 }
1194 if (error) {
1195 mem_cgroup_cancel_charge(page, memcg);
1196 goto decused;
1197 }
1198 mem_cgroup_commit_charge(page, memcg, false);
1199 lru_cache_add_anon(page);
1200
1201 spin_lock(&info->lock);
1202 info->alloced++;
1203 inode->i_blocks += BLOCKS_PER_PAGE;
1204 shmem_recalc_inode(inode);
1205 spin_unlock(&info->lock);
1206 alloced = true;
1207
1208 /*
1209 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210 */
1211 if (sgp == SGP_FALLOC)
1212 sgp = SGP_WRITE;
1213 clear:
1214 /*
1215 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 * it now, lest undo on failure cancel our earlier guarantee.
1218 */
1219 if (sgp != SGP_WRITE) {
1220 clear_highpage(page);
1221 flush_dcache_page(page);
1222 SetPageUptodate(page);
1223 }
1224 if (sgp == SGP_DIRTY)
1225 set_page_dirty(page);
1226 }
1227
1228 /* Perhaps the file has been truncated since we checked */
1229 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 error = -EINVAL;
1232 if (alloced)
1233 goto trunc;
1234 else
1235 goto failed;
1236 }
1237 *pagep = page;
1238 return 0;
1239
1240 /*
1241 * Error recovery.
1242 */
1243 trunc:
1244 info = SHMEM_I(inode);
1245 ClearPageDirty(page);
1246 delete_from_page_cache(page);
1247 spin_lock(&info->lock);
1248 info->alloced--;
1249 inode->i_blocks -= BLOCKS_PER_PAGE;
1250 spin_unlock(&info->lock);
1251 decused:
1252 sbinfo = SHMEM_SB(inode->i_sb);
1253 if (sbinfo->max_blocks)
1254 percpu_counter_add(&sbinfo->used_blocks, -1);
1255 unacct:
1256 shmem_unacct_blocks(info->flags, 1);
1257 failed:
1258 if (swap.val && error != -EINVAL &&
1259 !shmem_confirm_swap(mapping, index, swap))
1260 error = -EEXIST;
1261 unlock:
1262 if (page) {
1263 unlock_page(page);
1264 page_cache_release(page);
1265 }
1266 if (error == -ENOSPC && !once++) {
1267 info = SHMEM_I(inode);
1268 spin_lock(&info->lock);
1269 shmem_recalc_inode(inode);
1270 spin_unlock(&info->lock);
1271 goto repeat;
1272 }
1273 if (error == -EEXIST) /* from above or from radix_tree_insert */
1274 goto repeat;
1275 return error;
1276 }
1277
1278 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279 {
1280 struct inode *inode = file_inode(vma->vm_file);
1281 int error;
1282 int ret = VM_FAULT_LOCKED;
1283
1284 /*
1285 * Trinity finds that probing a hole which tmpfs is punching can
1286 * prevent the hole-punch from ever completing: which in turn
1287 * locks writers out with its hold on i_mutex. So refrain from
1288 * faulting pages into the hole while it's being punched. Although
1289 * shmem_undo_range() does remove the additions, it may be unable to
1290 * keep up, as each new page needs its own unmap_mapping_range() call,
1291 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292 *
1293 * It does not matter if we sometimes reach this check just before the
1294 * hole-punch begins, so that one fault then races with the punch:
1295 * we just need to make racing faults a rare case.
1296 *
1297 * The implementation below would be much simpler if we just used a
1298 * standard mutex or completion: but we cannot take i_mutex in fault,
1299 * and bloating every shmem inode for this unlikely case would be sad.
1300 */
1301 if (unlikely(inode->i_private)) {
1302 struct shmem_falloc *shmem_falloc;
1303
1304 spin_lock(&inode->i_lock);
1305 shmem_falloc = inode->i_private;
1306 if (shmem_falloc &&
1307 shmem_falloc->waitq &&
1308 vmf->pgoff >= shmem_falloc->start &&
1309 vmf->pgoff < shmem_falloc->next) {
1310 wait_queue_head_t *shmem_falloc_waitq;
1311 DEFINE_WAIT(shmem_fault_wait);
1312
1313 ret = VM_FAULT_NOPAGE;
1314 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316 /* It's polite to up mmap_sem if we can */
1317 up_read(&vma->vm_mm->mmap_sem);
1318 ret = VM_FAULT_RETRY;
1319 }
1320
1321 shmem_falloc_waitq = shmem_falloc->waitq;
1322 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323 TASK_UNINTERRUPTIBLE);
1324 spin_unlock(&inode->i_lock);
1325 schedule();
1326
1327 /*
1328 * shmem_falloc_waitq points into the shmem_fallocate()
1329 * stack of the hole-punching task: shmem_falloc_waitq
1330 * is usually invalid by the time we reach here, but
1331 * finish_wait() does not dereference it in that case;
1332 * though i_lock needed lest racing with wake_up_all().
1333 */
1334 spin_lock(&inode->i_lock);
1335 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336 spin_unlock(&inode->i_lock);
1337 return ret;
1338 }
1339 spin_unlock(&inode->i_lock);
1340 }
1341
1342 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343 if (error)
1344 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345
1346 if (ret & VM_FAULT_MAJOR) {
1347 count_vm_event(PGMAJFAULT);
1348 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349 }
1350 return ret;
1351 }
1352
1353 #ifdef CONFIG_NUMA
1354 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355 {
1356 struct inode *inode = file_inode(vma->vm_file);
1357 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358 }
1359
1360 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361 unsigned long addr)
1362 {
1363 struct inode *inode = file_inode(vma->vm_file);
1364 pgoff_t index;
1365
1366 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368 }
1369 #endif
1370
1371 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372 {
1373 struct inode *inode = file_inode(file);
1374 struct shmem_inode_info *info = SHMEM_I(inode);
1375 int retval = -ENOMEM;
1376
1377 spin_lock(&info->lock);
1378 if (lock && !(info->flags & VM_LOCKED)) {
1379 if (!user_shm_lock(inode->i_size, user))
1380 goto out_nomem;
1381 info->flags |= VM_LOCKED;
1382 mapping_set_unevictable(file->f_mapping);
1383 }
1384 if (!lock && (info->flags & VM_LOCKED) && user) {
1385 user_shm_unlock(inode->i_size, user);
1386 info->flags &= ~VM_LOCKED;
1387 mapping_clear_unevictable(file->f_mapping);
1388 }
1389 retval = 0;
1390
1391 out_nomem:
1392 spin_unlock(&info->lock);
1393 return retval;
1394 }
1395
1396 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397 {
1398 file_accessed(file);
1399 vma->vm_ops = &shmem_vm_ops;
1400 return 0;
1401 }
1402
1403 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404 umode_t mode, dev_t dev, unsigned long flags)
1405 {
1406 struct inode *inode;
1407 struct shmem_inode_info *info;
1408 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409
1410 if (shmem_reserve_inode(sb))
1411 return NULL;
1412
1413 inode = new_inode(sb);
1414 if (inode) {
1415 inode->i_ino = get_next_ino();
1416 inode_init_owner(inode, dir, mode);
1417 inode->i_blocks = 0;
1418 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420 inode->i_generation = get_seconds();
1421 info = SHMEM_I(inode);
1422 memset(info, 0, (char *)inode - (char *)info);
1423 spin_lock_init(&info->lock);
1424 info->seals = F_SEAL_SEAL;
1425 info->flags = flags & VM_NORESERVE;
1426 INIT_LIST_HEAD(&info->swaplist);
1427 simple_xattrs_init(&info->xattrs);
1428 cache_no_acl(inode);
1429
1430 switch (mode & S_IFMT) {
1431 default:
1432 inode->i_op = &shmem_special_inode_operations;
1433 init_special_inode(inode, mode, dev);
1434 break;
1435 case S_IFREG:
1436 inode->i_mapping->a_ops = &shmem_aops;
1437 inode->i_op = &shmem_inode_operations;
1438 inode->i_fop = &shmem_file_operations;
1439 mpol_shared_policy_init(&info->policy,
1440 shmem_get_sbmpol(sbinfo));
1441 break;
1442 case S_IFDIR:
1443 inc_nlink(inode);
1444 /* Some things misbehave if size == 0 on a directory */
1445 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446 inode->i_op = &shmem_dir_inode_operations;
1447 inode->i_fop = &simple_dir_operations;
1448 break;
1449 case S_IFLNK:
1450 /*
1451 * Must not load anything in the rbtree,
1452 * mpol_free_shared_policy will not be called.
1453 */
1454 mpol_shared_policy_init(&info->policy, NULL);
1455 break;
1456 }
1457 } else
1458 shmem_free_inode(sb);
1459 return inode;
1460 }
1461
1462 bool shmem_mapping(struct address_space *mapping)
1463 {
1464 return mapping->backing_dev_info == &shmem_backing_dev_info;
1465 }
1466
1467 #ifdef CONFIG_TMPFS
1468 static const struct inode_operations shmem_symlink_inode_operations;
1469 static const struct inode_operations shmem_short_symlink_operations;
1470
1471 #ifdef CONFIG_TMPFS_XATTR
1472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473 #else
1474 #define shmem_initxattrs NULL
1475 #endif
1476
1477 static int
1478 shmem_write_begin(struct file *file, struct address_space *mapping,
1479 loff_t pos, unsigned len, unsigned flags,
1480 struct page **pagep, void **fsdata)
1481 {
1482 struct inode *inode = mapping->host;
1483 struct shmem_inode_info *info = SHMEM_I(inode);
1484 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485
1486 /* i_mutex is held by caller */
1487 if (unlikely(info->seals)) {
1488 if (info->seals & F_SEAL_WRITE)
1489 return -EPERM;
1490 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491 return -EPERM;
1492 }
1493
1494 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495 }
1496
1497 static int
1498 shmem_write_end(struct file *file, struct address_space *mapping,
1499 loff_t pos, unsigned len, unsigned copied,
1500 struct page *page, void *fsdata)
1501 {
1502 struct inode *inode = mapping->host;
1503
1504 if (pos + copied > inode->i_size)
1505 i_size_write(inode, pos + copied);
1506
1507 if (!PageUptodate(page)) {
1508 if (copied < PAGE_CACHE_SIZE) {
1509 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510 zero_user_segments(page, 0, from,
1511 from + copied, PAGE_CACHE_SIZE);
1512 }
1513 SetPageUptodate(page);
1514 }
1515 set_page_dirty(page);
1516 unlock_page(page);
1517 page_cache_release(page);
1518
1519 return copied;
1520 }
1521
1522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523 {
1524 struct file *file = iocb->ki_filp;
1525 struct inode *inode = file_inode(file);
1526 struct address_space *mapping = inode->i_mapping;
1527 pgoff_t index;
1528 unsigned long offset;
1529 enum sgp_type sgp = SGP_READ;
1530 int error = 0;
1531 ssize_t retval = 0;
1532 loff_t *ppos = &iocb->ki_pos;
1533
1534 /*
1535 * Might this read be for a stacking filesystem? Then when reading
1536 * holes of a sparse file, we actually need to allocate those pages,
1537 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538 */
1539 if (segment_eq(get_fs(), KERNEL_DS))
1540 sgp = SGP_DIRTY;
1541
1542 index = *ppos >> PAGE_CACHE_SHIFT;
1543 offset = *ppos & ~PAGE_CACHE_MASK;
1544
1545 for (;;) {
1546 struct page *page = NULL;
1547 pgoff_t end_index;
1548 unsigned long nr, ret;
1549 loff_t i_size = i_size_read(inode);
1550
1551 end_index = i_size >> PAGE_CACHE_SHIFT;
1552 if (index > end_index)
1553 break;
1554 if (index == end_index) {
1555 nr = i_size & ~PAGE_CACHE_MASK;
1556 if (nr <= offset)
1557 break;
1558 }
1559
1560 error = shmem_getpage(inode, index, &page, sgp, NULL);
1561 if (error) {
1562 if (error == -EINVAL)
1563 error = 0;
1564 break;
1565 }
1566 if (page)
1567 unlock_page(page);
1568
1569 /*
1570 * We must evaluate after, since reads (unlike writes)
1571 * are called without i_mutex protection against truncate
1572 */
1573 nr = PAGE_CACHE_SIZE;
1574 i_size = i_size_read(inode);
1575 end_index = i_size >> PAGE_CACHE_SHIFT;
1576 if (index == end_index) {
1577 nr = i_size & ~PAGE_CACHE_MASK;
1578 if (nr <= offset) {
1579 if (page)
1580 page_cache_release(page);
1581 break;
1582 }
1583 }
1584 nr -= offset;
1585
1586 if (page) {
1587 /*
1588 * If users can be writing to this page using arbitrary
1589 * virtual addresses, take care about potential aliasing
1590 * before reading the page on the kernel side.
1591 */
1592 if (mapping_writably_mapped(mapping))
1593 flush_dcache_page(page);
1594 /*
1595 * Mark the page accessed if we read the beginning.
1596 */
1597 if (!offset)
1598 mark_page_accessed(page);
1599 } else {
1600 page = ZERO_PAGE(0);
1601 page_cache_get(page);
1602 }
1603
1604 /*
1605 * Ok, we have the page, and it's up-to-date, so
1606 * now we can copy it to user space...
1607 */
1608 ret = copy_page_to_iter(page, offset, nr, to);
1609 retval += ret;
1610 offset += ret;
1611 index += offset >> PAGE_CACHE_SHIFT;
1612 offset &= ~PAGE_CACHE_MASK;
1613
1614 page_cache_release(page);
1615 if (!iov_iter_count(to))
1616 break;
1617 if (ret < nr) {
1618 error = -EFAULT;
1619 break;
1620 }
1621 cond_resched();
1622 }
1623
1624 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625 file_accessed(file);
1626 return retval ? retval : error;
1627 }
1628
1629 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630 struct pipe_inode_info *pipe, size_t len,
1631 unsigned int flags)
1632 {
1633 struct address_space *mapping = in->f_mapping;
1634 struct inode *inode = mapping->host;
1635 unsigned int loff, nr_pages, req_pages;
1636 struct page *pages[PIPE_DEF_BUFFERS];
1637 struct partial_page partial[PIPE_DEF_BUFFERS];
1638 struct page *page;
1639 pgoff_t index, end_index;
1640 loff_t isize, left;
1641 int error, page_nr;
1642 struct splice_pipe_desc spd = {
1643 .pages = pages,
1644 .partial = partial,
1645 .nr_pages_max = PIPE_DEF_BUFFERS,
1646 .flags = flags,
1647 .ops = &page_cache_pipe_buf_ops,
1648 .spd_release = spd_release_page,
1649 };
1650
1651 isize = i_size_read(inode);
1652 if (unlikely(*ppos >= isize))
1653 return 0;
1654
1655 left = isize - *ppos;
1656 if (unlikely(left < len))
1657 len = left;
1658
1659 if (splice_grow_spd(pipe, &spd))
1660 return -ENOMEM;
1661
1662 index = *ppos >> PAGE_CACHE_SHIFT;
1663 loff = *ppos & ~PAGE_CACHE_MASK;
1664 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665 nr_pages = min(req_pages, spd.nr_pages_max);
1666
1667 spd.nr_pages = find_get_pages_contig(mapping, index,
1668 nr_pages, spd.pages);
1669 index += spd.nr_pages;
1670 error = 0;
1671
1672 while (spd.nr_pages < nr_pages) {
1673 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674 if (error)
1675 break;
1676 unlock_page(page);
1677 spd.pages[spd.nr_pages++] = page;
1678 index++;
1679 }
1680
1681 index = *ppos >> PAGE_CACHE_SHIFT;
1682 nr_pages = spd.nr_pages;
1683 spd.nr_pages = 0;
1684
1685 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686 unsigned int this_len;
1687
1688 if (!len)
1689 break;
1690
1691 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692 page = spd.pages[page_nr];
1693
1694 if (!PageUptodate(page) || page->mapping != mapping) {
1695 error = shmem_getpage(inode, index, &page,
1696 SGP_CACHE, NULL);
1697 if (error)
1698 break;
1699 unlock_page(page);
1700 page_cache_release(spd.pages[page_nr]);
1701 spd.pages[page_nr] = page;
1702 }
1703
1704 isize = i_size_read(inode);
1705 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706 if (unlikely(!isize || index > end_index))
1707 break;
1708
1709 if (end_index == index) {
1710 unsigned int plen;
1711
1712 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713 if (plen <= loff)
1714 break;
1715
1716 this_len = min(this_len, plen - loff);
1717 len = this_len;
1718 }
1719
1720 spd.partial[page_nr].offset = loff;
1721 spd.partial[page_nr].len = this_len;
1722 len -= this_len;
1723 loff = 0;
1724 spd.nr_pages++;
1725 index++;
1726 }
1727
1728 while (page_nr < nr_pages)
1729 page_cache_release(spd.pages[page_nr++]);
1730
1731 if (spd.nr_pages)
1732 error = splice_to_pipe(pipe, &spd);
1733
1734 splice_shrink_spd(&spd);
1735
1736 if (error > 0) {
1737 *ppos += error;
1738 file_accessed(in);
1739 }
1740 return error;
1741 }
1742
1743 /*
1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745 */
1746 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747 pgoff_t index, pgoff_t end, int whence)
1748 {
1749 struct page *page;
1750 struct pagevec pvec;
1751 pgoff_t indices[PAGEVEC_SIZE];
1752 bool done = false;
1753 int i;
1754
1755 pagevec_init(&pvec, 0);
1756 pvec.nr = 1; /* start small: we may be there already */
1757 while (!done) {
1758 pvec.nr = find_get_entries(mapping, index,
1759 pvec.nr, pvec.pages, indices);
1760 if (!pvec.nr) {
1761 if (whence == SEEK_DATA)
1762 index = end;
1763 break;
1764 }
1765 for (i = 0; i < pvec.nr; i++, index++) {
1766 if (index < indices[i]) {
1767 if (whence == SEEK_HOLE) {
1768 done = true;
1769 break;
1770 }
1771 index = indices[i];
1772 }
1773 page = pvec.pages[i];
1774 if (page && !radix_tree_exceptional_entry(page)) {
1775 if (!PageUptodate(page))
1776 page = NULL;
1777 }
1778 if (index >= end ||
1779 (page && whence == SEEK_DATA) ||
1780 (!page && whence == SEEK_HOLE)) {
1781 done = true;
1782 break;
1783 }
1784 }
1785 pagevec_remove_exceptionals(&pvec);
1786 pagevec_release(&pvec);
1787 pvec.nr = PAGEVEC_SIZE;
1788 cond_resched();
1789 }
1790 return index;
1791 }
1792
1793 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794 {
1795 struct address_space *mapping = file->f_mapping;
1796 struct inode *inode = mapping->host;
1797 pgoff_t start, end;
1798 loff_t new_offset;
1799
1800 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801 return generic_file_llseek_size(file, offset, whence,
1802 MAX_LFS_FILESIZE, i_size_read(inode));
1803 mutex_lock(&inode->i_mutex);
1804 /* We're holding i_mutex so we can access i_size directly */
1805
1806 if (offset < 0)
1807 offset = -EINVAL;
1808 else if (offset >= inode->i_size)
1809 offset = -ENXIO;
1810 else {
1811 start = offset >> PAGE_CACHE_SHIFT;
1812 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814 new_offset <<= PAGE_CACHE_SHIFT;
1815 if (new_offset > offset) {
1816 if (new_offset < inode->i_size)
1817 offset = new_offset;
1818 else if (whence == SEEK_DATA)
1819 offset = -ENXIO;
1820 else
1821 offset = inode->i_size;
1822 }
1823 }
1824
1825 if (offset >= 0)
1826 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827 mutex_unlock(&inode->i_mutex);
1828 return offset;
1829 }
1830
1831 /*
1832 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1833 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1834 */
1835 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1836 #define LAST_SCAN 4 /* about 150ms max */
1837
1838 static void shmem_tag_pins(struct address_space *mapping)
1839 {
1840 struct radix_tree_iter iter;
1841 void **slot;
1842 pgoff_t start;
1843 struct page *page;
1844
1845 lru_add_drain();
1846 start = 0;
1847 rcu_read_lock();
1848
1849 restart:
1850 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1851 page = radix_tree_deref_slot(slot);
1852 if (!page || radix_tree_exception(page)) {
1853 if (radix_tree_deref_retry(page))
1854 goto restart;
1855 } else if (page_count(page) - page_mapcount(page) > 1) {
1856 spin_lock_irq(&mapping->tree_lock);
1857 radix_tree_tag_set(&mapping->page_tree, iter.index,
1858 SHMEM_TAG_PINNED);
1859 spin_unlock_irq(&mapping->tree_lock);
1860 }
1861
1862 if (need_resched()) {
1863 cond_resched_rcu();
1864 start = iter.index + 1;
1865 goto restart;
1866 }
1867 }
1868 rcu_read_unlock();
1869 }
1870
1871 /*
1872 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1873 * via get_user_pages(), drivers might have some pending I/O without any active
1874 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1875 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1876 * them to be dropped.
1877 * The caller must guarantee that no new user will acquire writable references
1878 * to those pages to avoid races.
1879 */
1880 static int shmem_wait_for_pins(struct address_space *mapping)
1881 {
1882 struct radix_tree_iter iter;
1883 void **slot;
1884 pgoff_t start;
1885 struct page *page;
1886 int error, scan;
1887
1888 shmem_tag_pins(mapping);
1889
1890 error = 0;
1891 for (scan = 0; scan <= LAST_SCAN; scan++) {
1892 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1893 break;
1894
1895 if (!scan)
1896 lru_add_drain_all();
1897 else if (schedule_timeout_killable((HZ << scan) / 200))
1898 scan = LAST_SCAN;
1899
1900 start = 0;
1901 rcu_read_lock();
1902 restart:
1903 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1904 start, SHMEM_TAG_PINNED) {
1905
1906 page = radix_tree_deref_slot(slot);
1907 if (radix_tree_exception(page)) {
1908 if (radix_tree_deref_retry(page))
1909 goto restart;
1910
1911 page = NULL;
1912 }
1913
1914 if (page &&
1915 page_count(page) - page_mapcount(page) != 1) {
1916 if (scan < LAST_SCAN)
1917 goto continue_resched;
1918
1919 /*
1920 * On the last scan, we clean up all those tags
1921 * we inserted; but make a note that we still
1922 * found pages pinned.
1923 */
1924 error = -EBUSY;
1925 }
1926
1927 spin_lock_irq(&mapping->tree_lock);
1928 radix_tree_tag_clear(&mapping->page_tree,
1929 iter.index, SHMEM_TAG_PINNED);
1930 spin_unlock_irq(&mapping->tree_lock);
1931 continue_resched:
1932 if (need_resched()) {
1933 cond_resched_rcu();
1934 start = iter.index + 1;
1935 goto restart;
1936 }
1937 }
1938 rcu_read_unlock();
1939 }
1940
1941 return error;
1942 }
1943
1944 #define F_ALL_SEALS (F_SEAL_SEAL | \
1945 F_SEAL_SHRINK | \
1946 F_SEAL_GROW | \
1947 F_SEAL_WRITE)
1948
1949 int shmem_add_seals(struct file *file, unsigned int seals)
1950 {
1951 struct inode *inode = file_inode(file);
1952 struct shmem_inode_info *info = SHMEM_I(inode);
1953 int error;
1954
1955 /*
1956 * SEALING
1957 * Sealing allows multiple parties to share a shmem-file but restrict
1958 * access to a specific subset of file operations. Seals can only be
1959 * added, but never removed. This way, mutually untrusted parties can
1960 * share common memory regions with a well-defined policy. A malicious
1961 * peer can thus never perform unwanted operations on a shared object.
1962 *
1963 * Seals are only supported on special shmem-files and always affect
1964 * the whole underlying inode. Once a seal is set, it may prevent some
1965 * kinds of access to the file. Currently, the following seals are
1966 * defined:
1967 * SEAL_SEAL: Prevent further seals from being set on this file
1968 * SEAL_SHRINK: Prevent the file from shrinking
1969 * SEAL_GROW: Prevent the file from growing
1970 * SEAL_WRITE: Prevent write access to the file
1971 *
1972 * As we don't require any trust relationship between two parties, we
1973 * must prevent seals from being removed. Therefore, sealing a file
1974 * only adds a given set of seals to the file, it never touches
1975 * existing seals. Furthermore, the "setting seals"-operation can be
1976 * sealed itself, which basically prevents any further seal from being
1977 * added.
1978 *
1979 * Semantics of sealing are only defined on volatile files. Only
1980 * anonymous shmem files support sealing. More importantly, seals are
1981 * never written to disk. Therefore, there's no plan to support it on
1982 * other file types.
1983 */
1984
1985 if (file->f_op != &shmem_file_operations)
1986 return -EINVAL;
1987 if (!(file->f_mode & FMODE_WRITE))
1988 return -EPERM;
1989 if (seals & ~(unsigned int)F_ALL_SEALS)
1990 return -EINVAL;
1991
1992 mutex_lock(&inode->i_mutex);
1993
1994 if (info->seals & F_SEAL_SEAL) {
1995 error = -EPERM;
1996 goto unlock;
1997 }
1998
1999 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2000 error = mapping_deny_writable(file->f_mapping);
2001 if (error)
2002 goto unlock;
2003
2004 error = shmem_wait_for_pins(file->f_mapping);
2005 if (error) {
2006 mapping_allow_writable(file->f_mapping);
2007 goto unlock;
2008 }
2009 }
2010
2011 info->seals |= seals;
2012 error = 0;
2013
2014 unlock:
2015 mutex_unlock(&inode->i_mutex);
2016 return error;
2017 }
2018 EXPORT_SYMBOL_GPL(shmem_add_seals);
2019
2020 int shmem_get_seals(struct file *file)
2021 {
2022 if (file->f_op != &shmem_file_operations)
2023 return -EINVAL;
2024
2025 return SHMEM_I(file_inode(file))->seals;
2026 }
2027 EXPORT_SYMBOL_GPL(shmem_get_seals);
2028
2029 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2030 {
2031 long error;
2032
2033 switch (cmd) {
2034 case F_ADD_SEALS:
2035 /* disallow upper 32bit */
2036 if (arg > UINT_MAX)
2037 return -EINVAL;
2038
2039 error = shmem_add_seals(file, arg);
2040 break;
2041 case F_GET_SEALS:
2042 error = shmem_get_seals(file);
2043 break;
2044 default:
2045 error = -EINVAL;
2046 break;
2047 }
2048
2049 return error;
2050 }
2051
2052 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2053 loff_t len)
2054 {
2055 struct inode *inode = file_inode(file);
2056 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2057 struct shmem_inode_info *info = SHMEM_I(inode);
2058 struct shmem_falloc shmem_falloc;
2059 pgoff_t start, index, end;
2060 int error;
2061
2062 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2063 return -EOPNOTSUPP;
2064
2065 mutex_lock(&inode->i_mutex);
2066
2067 if (mode & FALLOC_FL_PUNCH_HOLE) {
2068 struct address_space *mapping = file->f_mapping;
2069 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2070 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2071 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2072
2073 /* protected by i_mutex */
2074 if (info->seals & F_SEAL_WRITE) {
2075 error = -EPERM;
2076 goto out;
2077 }
2078
2079 shmem_falloc.waitq = &shmem_falloc_waitq;
2080 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2081 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2082 spin_lock(&inode->i_lock);
2083 inode->i_private = &shmem_falloc;
2084 spin_unlock(&inode->i_lock);
2085
2086 if ((u64)unmap_end > (u64)unmap_start)
2087 unmap_mapping_range(mapping, unmap_start,
2088 1 + unmap_end - unmap_start, 0);
2089 shmem_truncate_range(inode, offset, offset + len - 1);
2090 /* No need to unmap again: hole-punching leaves COWed pages */
2091
2092 spin_lock(&inode->i_lock);
2093 inode->i_private = NULL;
2094 wake_up_all(&shmem_falloc_waitq);
2095 spin_unlock(&inode->i_lock);
2096 error = 0;
2097 goto out;
2098 }
2099
2100 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2101 error = inode_newsize_ok(inode, offset + len);
2102 if (error)
2103 goto out;
2104
2105 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2106 error = -EPERM;
2107 goto out;
2108 }
2109
2110 start = offset >> PAGE_CACHE_SHIFT;
2111 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2112 /* Try to avoid a swapstorm if len is impossible to satisfy */
2113 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2114 error = -ENOSPC;
2115 goto out;
2116 }
2117
2118 shmem_falloc.waitq = NULL;
2119 shmem_falloc.start = start;
2120 shmem_falloc.next = start;
2121 shmem_falloc.nr_falloced = 0;
2122 shmem_falloc.nr_unswapped = 0;
2123 spin_lock(&inode->i_lock);
2124 inode->i_private = &shmem_falloc;
2125 spin_unlock(&inode->i_lock);
2126
2127 for (index = start; index < end; index++) {
2128 struct page *page;
2129
2130 /*
2131 * Good, the fallocate(2) manpage permits EINTR: we may have
2132 * been interrupted because we are using up too much memory.
2133 */
2134 if (signal_pending(current))
2135 error = -EINTR;
2136 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2137 error = -ENOMEM;
2138 else
2139 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2140 NULL);
2141 if (error) {
2142 /* Remove the !PageUptodate pages we added */
2143 shmem_undo_range(inode,
2144 (loff_t)start << PAGE_CACHE_SHIFT,
2145 (loff_t)index << PAGE_CACHE_SHIFT, true);
2146 goto undone;
2147 }
2148
2149 /*
2150 * Inform shmem_writepage() how far we have reached.
2151 * No need for lock or barrier: we have the page lock.
2152 */
2153 shmem_falloc.next++;
2154 if (!PageUptodate(page))
2155 shmem_falloc.nr_falloced++;
2156
2157 /*
2158 * If !PageUptodate, leave it that way so that freeable pages
2159 * can be recognized if we need to rollback on error later.
2160 * But set_page_dirty so that memory pressure will swap rather
2161 * than free the pages we are allocating (and SGP_CACHE pages
2162 * might still be clean: we now need to mark those dirty too).
2163 */
2164 set_page_dirty(page);
2165 unlock_page(page);
2166 page_cache_release(page);
2167 cond_resched();
2168 }
2169
2170 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2171 i_size_write(inode, offset + len);
2172 inode->i_ctime = CURRENT_TIME;
2173 undone:
2174 spin_lock(&inode->i_lock);
2175 inode->i_private = NULL;
2176 spin_unlock(&inode->i_lock);
2177 out:
2178 mutex_unlock(&inode->i_mutex);
2179 return error;
2180 }
2181
2182 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2183 {
2184 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2185
2186 buf->f_type = TMPFS_MAGIC;
2187 buf->f_bsize = PAGE_CACHE_SIZE;
2188 buf->f_namelen = NAME_MAX;
2189 if (sbinfo->max_blocks) {
2190 buf->f_blocks = sbinfo->max_blocks;
2191 buf->f_bavail =
2192 buf->f_bfree = sbinfo->max_blocks -
2193 percpu_counter_sum(&sbinfo->used_blocks);
2194 }
2195 if (sbinfo->max_inodes) {
2196 buf->f_files = sbinfo->max_inodes;
2197 buf->f_ffree = sbinfo->free_inodes;
2198 }
2199 /* else leave those fields 0 like simple_statfs */
2200 return 0;
2201 }
2202
2203 /*
2204 * File creation. Allocate an inode, and we're done..
2205 */
2206 static int
2207 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2208 {
2209 struct inode *inode;
2210 int error = -ENOSPC;
2211
2212 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2213 if (inode) {
2214 error = simple_acl_create(dir, inode);
2215 if (error)
2216 goto out_iput;
2217 error = security_inode_init_security(inode, dir,
2218 &dentry->d_name,
2219 shmem_initxattrs, NULL);
2220 if (error && error != -EOPNOTSUPP)
2221 goto out_iput;
2222
2223 error = 0;
2224 dir->i_size += BOGO_DIRENT_SIZE;
2225 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2226 d_instantiate(dentry, inode);
2227 dget(dentry); /* Extra count - pin the dentry in core */
2228 }
2229 return error;
2230 out_iput:
2231 iput(inode);
2232 return error;
2233 }
2234
2235 static int
2236 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2237 {
2238 struct inode *inode;
2239 int error = -ENOSPC;
2240
2241 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2242 if (inode) {
2243 error = security_inode_init_security(inode, dir,
2244 NULL,
2245 shmem_initxattrs, NULL);
2246 if (error && error != -EOPNOTSUPP)
2247 goto out_iput;
2248 error = simple_acl_create(dir, inode);
2249 if (error)
2250 goto out_iput;
2251 d_tmpfile(dentry, inode);
2252 }
2253 return error;
2254 out_iput:
2255 iput(inode);
2256 return error;
2257 }
2258
2259 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2260 {
2261 int error;
2262
2263 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2264 return error;
2265 inc_nlink(dir);
2266 return 0;
2267 }
2268
2269 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2270 bool excl)
2271 {
2272 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2273 }
2274
2275 /*
2276 * Link a file..
2277 */
2278 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2279 {
2280 struct inode *inode = old_dentry->d_inode;
2281 int ret;
2282
2283 /*
2284 * No ordinary (disk based) filesystem counts links as inodes;
2285 * but each new link needs a new dentry, pinning lowmem, and
2286 * tmpfs dentries cannot be pruned until they are unlinked.
2287 */
2288 ret = shmem_reserve_inode(inode->i_sb);
2289 if (ret)
2290 goto out;
2291
2292 dir->i_size += BOGO_DIRENT_SIZE;
2293 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2294 inc_nlink(inode);
2295 ihold(inode); /* New dentry reference */
2296 dget(dentry); /* Extra pinning count for the created dentry */
2297 d_instantiate(dentry, inode);
2298 out:
2299 return ret;
2300 }
2301
2302 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2303 {
2304 struct inode *inode = dentry->d_inode;
2305
2306 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2307 shmem_free_inode(inode->i_sb);
2308
2309 dir->i_size -= BOGO_DIRENT_SIZE;
2310 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311 drop_nlink(inode);
2312 dput(dentry); /* Undo the count from "create" - this does all the work */
2313 return 0;
2314 }
2315
2316 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2317 {
2318 if (!simple_empty(dentry))
2319 return -ENOTEMPTY;
2320
2321 drop_nlink(dentry->d_inode);
2322 drop_nlink(dir);
2323 return shmem_unlink(dir, dentry);
2324 }
2325
2326 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2327 {
2328 bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2329 bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2330
2331 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2332 if (old_is_dir) {
2333 drop_nlink(old_dir);
2334 inc_nlink(new_dir);
2335 } else {
2336 drop_nlink(new_dir);
2337 inc_nlink(old_dir);
2338 }
2339 }
2340 old_dir->i_ctime = old_dir->i_mtime =
2341 new_dir->i_ctime = new_dir->i_mtime =
2342 old_dentry->d_inode->i_ctime =
2343 new_dentry->d_inode->i_ctime = CURRENT_TIME;
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * The VFS layer already does all the dentry stuff for rename,
2350 * we just have to decrement the usage count for the target if
2351 * it exists so that the VFS layer correctly free's it when it
2352 * gets overwritten.
2353 */
2354 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2355 {
2356 struct inode *inode = old_dentry->d_inode;
2357 int they_are_dirs = S_ISDIR(inode->i_mode);
2358
2359 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
2360 return -EINVAL;
2361
2362 if (flags & RENAME_EXCHANGE)
2363 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2364
2365 if (!simple_empty(new_dentry))
2366 return -ENOTEMPTY;
2367
2368 if (new_dentry->d_inode) {
2369 (void) shmem_unlink(new_dir, new_dentry);
2370 if (they_are_dirs) {
2371 drop_nlink(new_dentry->d_inode);
2372 drop_nlink(old_dir);
2373 }
2374 } else if (they_are_dirs) {
2375 drop_nlink(old_dir);
2376 inc_nlink(new_dir);
2377 }
2378
2379 old_dir->i_size -= BOGO_DIRENT_SIZE;
2380 new_dir->i_size += BOGO_DIRENT_SIZE;
2381 old_dir->i_ctime = old_dir->i_mtime =
2382 new_dir->i_ctime = new_dir->i_mtime =
2383 inode->i_ctime = CURRENT_TIME;
2384 return 0;
2385 }
2386
2387 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2388 {
2389 int error;
2390 int len;
2391 struct inode *inode;
2392 struct page *page;
2393 char *kaddr;
2394 struct shmem_inode_info *info;
2395
2396 len = strlen(symname) + 1;
2397 if (len > PAGE_CACHE_SIZE)
2398 return -ENAMETOOLONG;
2399
2400 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2401 if (!inode)
2402 return -ENOSPC;
2403
2404 error = security_inode_init_security(inode, dir, &dentry->d_name,
2405 shmem_initxattrs, NULL);
2406 if (error) {
2407 if (error != -EOPNOTSUPP) {
2408 iput(inode);
2409 return error;
2410 }
2411 error = 0;
2412 }
2413
2414 info = SHMEM_I(inode);
2415 inode->i_size = len-1;
2416 if (len <= SHORT_SYMLINK_LEN) {
2417 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2418 if (!info->symlink) {
2419 iput(inode);
2420 return -ENOMEM;
2421 }
2422 inode->i_op = &shmem_short_symlink_operations;
2423 } else {
2424 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2425 if (error) {
2426 iput(inode);
2427 return error;
2428 }
2429 inode->i_mapping->a_ops = &shmem_aops;
2430 inode->i_op = &shmem_symlink_inode_operations;
2431 kaddr = kmap_atomic(page);
2432 memcpy(kaddr, symname, len);
2433 kunmap_atomic(kaddr);
2434 SetPageUptodate(page);
2435 set_page_dirty(page);
2436 unlock_page(page);
2437 page_cache_release(page);
2438 }
2439 dir->i_size += BOGO_DIRENT_SIZE;
2440 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2441 d_instantiate(dentry, inode);
2442 dget(dentry);
2443 return 0;
2444 }
2445
2446 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2447 {
2448 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2449 return NULL;
2450 }
2451
2452 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2453 {
2454 struct page *page = NULL;
2455 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2456 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2457 if (page)
2458 unlock_page(page);
2459 return page;
2460 }
2461
2462 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2463 {
2464 if (!IS_ERR(nd_get_link(nd))) {
2465 struct page *page = cookie;
2466 kunmap(page);
2467 mark_page_accessed(page);
2468 page_cache_release(page);
2469 }
2470 }
2471
2472 #ifdef CONFIG_TMPFS_XATTR
2473 /*
2474 * Superblocks without xattr inode operations may get some security.* xattr
2475 * support from the LSM "for free". As soon as we have any other xattrs
2476 * like ACLs, we also need to implement the security.* handlers at
2477 * filesystem level, though.
2478 */
2479
2480 /*
2481 * Callback for security_inode_init_security() for acquiring xattrs.
2482 */
2483 static int shmem_initxattrs(struct inode *inode,
2484 const struct xattr *xattr_array,
2485 void *fs_info)
2486 {
2487 struct shmem_inode_info *info = SHMEM_I(inode);
2488 const struct xattr *xattr;
2489 struct simple_xattr *new_xattr;
2490 size_t len;
2491
2492 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2493 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2494 if (!new_xattr)
2495 return -ENOMEM;
2496
2497 len = strlen(xattr->name) + 1;
2498 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2499 GFP_KERNEL);
2500 if (!new_xattr->name) {
2501 kfree(new_xattr);
2502 return -ENOMEM;
2503 }
2504
2505 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2506 XATTR_SECURITY_PREFIX_LEN);
2507 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2508 xattr->name, len);
2509
2510 simple_xattr_list_add(&info->xattrs, new_xattr);
2511 }
2512
2513 return 0;
2514 }
2515
2516 static const struct xattr_handler *shmem_xattr_handlers[] = {
2517 #ifdef CONFIG_TMPFS_POSIX_ACL
2518 &posix_acl_access_xattr_handler,
2519 &posix_acl_default_xattr_handler,
2520 #endif
2521 NULL
2522 };
2523
2524 static int shmem_xattr_validate(const char *name)
2525 {
2526 struct { const char *prefix; size_t len; } arr[] = {
2527 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2528 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2529 };
2530 int i;
2531
2532 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2533 size_t preflen = arr[i].len;
2534 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2535 if (!name[preflen])
2536 return -EINVAL;
2537 return 0;
2538 }
2539 }
2540 return -EOPNOTSUPP;
2541 }
2542
2543 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2544 void *buffer, size_t size)
2545 {
2546 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2547 int err;
2548
2549 /*
2550 * If this is a request for a synthetic attribute in the system.*
2551 * namespace use the generic infrastructure to resolve a handler
2552 * for it via sb->s_xattr.
2553 */
2554 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2555 return generic_getxattr(dentry, name, buffer, size);
2556
2557 err = shmem_xattr_validate(name);
2558 if (err)
2559 return err;
2560
2561 return simple_xattr_get(&info->xattrs, name, buffer, size);
2562 }
2563
2564 static int shmem_setxattr(struct dentry *dentry, const char *name,
2565 const void *value, size_t size, int flags)
2566 {
2567 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2568 int err;
2569
2570 /*
2571 * If this is a request for a synthetic attribute in the system.*
2572 * namespace use the generic infrastructure to resolve a handler
2573 * for it via sb->s_xattr.
2574 */
2575 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2576 return generic_setxattr(dentry, name, value, size, flags);
2577
2578 err = shmem_xattr_validate(name);
2579 if (err)
2580 return err;
2581
2582 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2583 }
2584
2585 static int shmem_removexattr(struct dentry *dentry, const char *name)
2586 {
2587 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2588 int err;
2589
2590 /*
2591 * If this is a request for a synthetic attribute in the system.*
2592 * namespace use the generic infrastructure to resolve a handler
2593 * for it via sb->s_xattr.
2594 */
2595 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2596 return generic_removexattr(dentry, name);
2597
2598 err = shmem_xattr_validate(name);
2599 if (err)
2600 return err;
2601
2602 return simple_xattr_remove(&info->xattrs, name);
2603 }
2604
2605 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2606 {
2607 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2608 return simple_xattr_list(&info->xattrs, buffer, size);
2609 }
2610 #endif /* CONFIG_TMPFS_XATTR */
2611
2612 static const struct inode_operations shmem_short_symlink_operations = {
2613 .readlink = generic_readlink,
2614 .follow_link = shmem_follow_short_symlink,
2615 #ifdef CONFIG_TMPFS_XATTR
2616 .setxattr = shmem_setxattr,
2617 .getxattr = shmem_getxattr,
2618 .listxattr = shmem_listxattr,
2619 .removexattr = shmem_removexattr,
2620 #endif
2621 };
2622
2623 static const struct inode_operations shmem_symlink_inode_operations = {
2624 .readlink = generic_readlink,
2625 .follow_link = shmem_follow_link,
2626 .put_link = shmem_put_link,
2627 #ifdef CONFIG_TMPFS_XATTR
2628 .setxattr = shmem_setxattr,
2629 .getxattr = shmem_getxattr,
2630 .listxattr = shmem_listxattr,
2631 .removexattr = shmem_removexattr,
2632 #endif
2633 };
2634
2635 static struct dentry *shmem_get_parent(struct dentry *child)
2636 {
2637 return ERR_PTR(-ESTALE);
2638 }
2639
2640 static int shmem_match(struct inode *ino, void *vfh)
2641 {
2642 __u32 *fh = vfh;
2643 __u64 inum = fh[2];
2644 inum = (inum << 32) | fh[1];
2645 return ino->i_ino == inum && fh[0] == ino->i_generation;
2646 }
2647
2648 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2649 struct fid *fid, int fh_len, int fh_type)
2650 {
2651 struct inode *inode;
2652 struct dentry *dentry = NULL;
2653 u64 inum;
2654
2655 if (fh_len < 3)
2656 return NULL;
2657
2658 inum = fid->raw[2];
2659 inum = (inum << 32) | fid->raw[1];
2660
2661 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2662 shmem_match, fid->raw);
2663 if (inode) {
2664 dentry = d_find_alias(inode);
2665 iput(inode);
2666 }
2667
2668 return dentry;
2669 }
2670
2671 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2672 struct inode *parent)
2673 {
2674 if (*len < 3) {
2675 *len = 3;
2676 return FILEID_INVALID;
2677 }
2678
2679 if (inode_unhashed(inode)) {
2680 /* Unfortunately insert_inode_hash is not idempotent,
2681 * so as we hash inodes here rather than at creation
2682 * time, we need a lock to ensure we only try
2683 * to do it once
2684 */
2685 static DEFINE_SPINLOCK(lock);
2686 spin_lock(&lock);
2687 if (inode_unhashed(inode))
2688 __insert_inode_hash(inode,
2689 inode->i_ino + inode->i_generation);
2690 spin_unlock(&lock);
2691 }
2692
2693 fh[0] = inode->i_generation;
2694 fh[1] = inode->i_ino;
2695 fh[2] = ((__u64)inode->i_ino) >> 32;
2696
2697 *len = 3;
2698 return 1;
2699 }
2700
2701 static const struct export_operations shmem_export_ops = {
2702 .get_parent = shmem_get_parent,
2703 .encode_fh = shmem_encode_fh,
2704 .fh_to_dentry = shmem_fh_to_dentry,
2705 };
2706
2707 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2708 bool remount)
2709 {
2710 char *this_char, *value, *rest;
2711 struct mempolicy *mpol = NULL;
2712 uid_t uid;
2713 gid_t gid;
2714
2715 while (options != NULL) {
2716 this_char = options;
2717 for (;;) {
2718 /*
2719 * NUL-terminate this option: unfortunately,
2720 * mount options form a comma-separated list,
2721 * but mpol's nodelist may also contain commas.
2722 */
2723 options = strchr(options, ',');
2724 if (options == NULL)
2725 break;
2726 options++;
2727 if (!isdigit(*options)) {
2728 options[-1] = '\0';
2729 break;
2730 }
2731 }
2732 if (!*this_char)
2733 continue;
2734 if ((value = strchr(this_char,'=')) != NULL) {
2735 *value++ = 0;
2736 } else {
2737 printk(KERN_ERR
2738 "tmpfs: No value for mount option '%s'\n",
2739 this_char);
2740 goto error;
2741 }
2742
2743 if (!strcmp(this_char,"size")) {
2744 unsigned long long size;
2745 size = memparse(value,&rest);
2746 if (*rest == '%') {
2747 size <<= PAGE_SHIFT;
2748 size *= totalram_pages;
2749 do_div(size, 100);
2750 rest++;
2751 }
2752 if (*rest)
2753 goto bad_val;
2754 sbinfo->max_blocks =
2755 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2756 } else if (!strcmp(this_char,"nr_blocks")) {
2757 sbinfo->max_blocks = memparse(value, &rest);
2758 if (*rest)
2759 goto bad_val;
2760 } else if (!strcmp(this_char,"nr_inodes")) {
2761 sbinfo->max_inodes = memparse(value, &rest);
2762 if (*rest)
2763 goto bad_val;
2764 } else if (!strcmp(this_char,"mode")) {
2765 if (remount)
2766 continue;
2767 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2768 if (*rest)
2769 goto bad_val;
2770 } else if (!strcmp(this_char,"uid")) {
2771 if (remount)
2772 continue;
2773 uid = simple_strtoul(value, &rest, 0);
2774 if (*rest)
2775 goto bad_val;
2776 sbinfo->uid = make_kuid(current_user_ns(), uid);
2777 if (!uid_valid(sbinfo->uid))
2778 goto bad_val;
2779 } else if (!strcmp(this_char,"gid")) {
2780 if (remount)
2781 continue;
2782 gid = simple_strtoul(value, &rest, 0);
2783 if (*rest)
2784 goto bad_val;
2785 sbinfo->gid = make_kgid(current_user_ns(), gid);
2786 if (!gid_valid(sbinfo->gid))
2787 goto bad_val;
2788 } else if (!strcmp(this_char,"mpol")) {
2789 mpol_put(mpol);
2790 mpol = NULL;
2791 if (mpol_parse_str(value, &mpol))
2792 goto bad_val;
2793 } else {
2794 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2795 this_char);
2796 goto error;
2797 }
2798 }
2799 sbinfo->mpol = mpol;
2800 return 0;
2801
2802 bad_val:
2803 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2804 value, this_char);
2805 error:
2806 mpol_put(mpol);
2807 return 1;
2808
2809 }
2810
2811 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2812 {
2813 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2814 struct shmem_sb_info config = *sbinfo;
2815 unsigned long inodes;
2816 int error = -EINVAL;
2817
2818 config.mpol = NULL;
2819 if (shmem_parse_options(data, &config, true))
2820 return error;
2821
2822 spin_lock(&sbinfo->stat_lock);
2823 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2824 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2825 goto out;
2826 if (config.max_inodes < inodes)
2827 goto out;
2828 /*
2829 * Those tests disallow limited->unlimited while any are in use;
2830 * but we must separately disallow unlimited->limited, because
2831 * in that case we have no record of how much is already in use.
2832 */
2833 if (config.max_blocks && !sbinfo->max_blocks)
2834 goto out;
2835 if (config.max_inodes && !sbinfo->max_inodes)
2836 goto out;
2837
2838 error = 0;
2839 sbinfo->max_blocks = config.max_blocks;
2840 sbinfo->max_inodes = config.max_inodes;
2841 sbinfo->free_inodes = config.max_inodes - inodes;
2842
2843 /*
2844 * Preserve previous mempolicy unless mpol remount option was specified.
2845 */
2846 if (config.mpol) {
2847 mpol_put(sbinfo->mpol);
2848 sbinfo->mpol = config.mpol; /* transfers initial ref */
2849 }
2850 out:
2851 spin_unlock(&sbinfo->stat_lock);
2852 return error;
2853 }
2854
2855 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2856 {
2857 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2858
2859 if (sbinfo->max_blocks != shmem_default_max_blocks())
2860 seq_printf(seq, ",size=%luk",
2861 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2862 if (sbinfo->max_inodes != shmem_default_max_inodes())
2863 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2864 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2865 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2866 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2867 seq_printf(seq, ",uid=%u",
2868 from_kuid_munged(&init_user_ns, sbinfo->uid));
2869 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2870 seq_printf(seq, ",gid=%u",
2871 from_kgid_munged(&init_user_ns, sbinfo->gid));
2872 shmem_show_mpol(seq, sbinfo->mpol);
2873 return 0;
2874 }
2875
2876 #define MFD_NAME_PREFIX "memfd:"
2877 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2878 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2879
2880 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2881
2882 SYSCALL_DEFINE2(memfd_create,
2883 const char __user *, uname,
2884 unsigned int, flags)
2885 {
2886 struct shmem_inode_info *info;
2887 struct file *file;
2888 int fd, error;
2889 char *name;
2890 long len;
2891
2892 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2893 return -EINVAL;
2894
2895 /* length includes terminating zero */
2896 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2897 if (len <= 0)
2898 return -EFAULT;
2899 if (len > MFD_NAME_MAX_LEN + 1)
2900 return -EINVAL;
2901
2902 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2903 if (!name)
2904 return -ENOMEM;
2905
2906 strcpy(name, MFD_NAME_PREFIX);
2907 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2908 error = -EFAULT;
2909 goto err_name;
2910 }
2911
2912 /* terminating-zero may have changed after strnlen_user() returned */
2913 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2914 error = -EFAULT;
2915 goto err_name;
2916 }
2917
2918 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2919 if (fd < 0) {
2920 error = fd;
2921 goto err_name;
2922 }
2923
2924 file = shmem_file_setup(name, 0, VM_NORESERVE);
2925 if (IS_ERR(file)) {
2926 error = PTR_ERR(file);
2927 goto err_fd;
2928 }
2929 info = SHMEM_I(file_inode(file));
2930 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2931 file->f_flags |= O_RDWR | O_LARGEFILE;
2932 if (flags & MFD_ALLOW_SEALING)
2933 info->seals &= ~F_SEAL_SEAL;
2934
2935 fd_install(fd, file);
2936 kfree(name);
2937 return fd;
2938
2939 err_fd:
2940 put_unused_fd(fd);
2941 err_name:
2942 kfree(name);
2943 return error;
2944 }
2945
2946 #endif /* CONFIG_TMPFS */
2947
2948 static void shmem_put_super(struct super_block *sb)
2949 {
2950 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2951
2952 percpu_counter_destroy(&sbinfo->used_blocks);
2953 mpol_put(sbinfo->mpol);
2954 kfree(sbinfo);
2955 sb->s_fs_info = NULL;
2956 }
2957
2958 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2959 {
2960 struct inode *inode;
2961 struct shmem_sb_info *sbinfo;
2962 int err = -ENOMEM;
2963
2964 /* Round up to L1_CACHE_BYTES to resist false sharing */
2965 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2966 L1_CACHE_BYTES), GFP_KERNEL);
2967 if (!sbinfo)
2968 return -ENOMEM;
2969
2970 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2971 sbinfo->uid = current_fsuid();
2972 sbinfo->gid = current_fsgid();
2973 sb->s_fs_info = sbinfo;
2974
2975 #ifdef CONFIG_TMPFS
2976 /*
2977 * Per default we only allow half of the physical ram per
2978 * tmpfs instance, limiting inodes to one per page of lowmem;
2979 * but the internal instance is left unlimited.
2980 */
2981 if (!(sb->s_flags & MS_KERNMOUNT)) {
2982 sbinfo->max_blocks = shmem_default_max_blocks();
2983 sbinfo->max_inodes = shmem_default_max_inodes();
2984 if (shmem_parse_options(data, sbinfo, false)) {
2985 err = -EINVAL;
2986 goto failed;
2987 }
2988 } else {
2989 sb->s_flags |= MS_NOUSER;
2990 }
2991 sb->s_export_op = &shmem_export_ops;
2992 sb->s_flags |= MS_NOSEC;
2993 #else
2994 sb->s_flags |= MS_NOUSER;
2995 #endif
2996
2997 spin_lock_init(&sbinfo->stat_lock);
2998 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
2999 goto failed;
3000 sbinfo->free_inodes = sbinfo->max_inodes;
3001
3002 sb->s_maxbytes = MAX_LFS_FILESIZE;
3003 sb->s_blocksize = PAGE_CACHE_SIZE;
3004 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3005 sb->s_magic = TMPFS_MAGIC;
3006 sb->s_op = &shmem_ops;
3007 sb->s_time_gran = 1;
3008 #ifdef CONFIG_TMPFS_XATTR
3009 sb->s_xattr = shmem_xattr_handlers;
3010 #endif
3011 #ifdef CONFIG_TMPFS_POSIX_ACL
3012 sb->s_flags |= MS_POSIXACL;
3013 #endif
3014
3015 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3016 if (!inode)
3017 goto failed;
3018 inode->i_uid = sbinfo->uid;
3019 inode->i_gid = sbinfo->gid;
3020 sb->s_root = d_make_root(inode);
3021 if (!sb->s_root)
3022 goto failed;
3023 return 0;
3024
3025 failed:
3026 shmem_put_super(sb);
3027 return err;
3028 }
3029
3030 static struct kmem_cache *shmem_inode_cachep;
3031
3032 static struct inode *shmem_alloc_inode(struct super_block *sb)
3033 {
3034 struct shmem_inode_info *info;
3035 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3036 if (!info)
3037 return NULL;
3038 return &info->vfs_inode;
3039 }
3040
3041 static void shmem_destroy_callback(struct rcu_head *head)
3042 {
3043 struct inode *inode = container_of(head, struct inode, i_rcu);
3044 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3045 }
3046
3047 static void shmem_destroy_inode(struct inode *inode)
3048 {
3049 if (S_ISREG(inode->i_mode))
3050 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3051 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3052 }
3053
3054 static void shmem_init_inode(void *foo)
3055 {
3056 struct shmem_inode_info *info = foo;
3057 inode_init_once(&info->vfs_inode);
3058 }
3059
3060 static int shmem_init_inodecache(void)
3061 {
3062 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3063 sizeof(struct shmem_inode_info),
3064 0, SLAB_PANIC, shmem_init_inode);
3065 return 0;
3066 }
3067
3068 static void shmem_destroy_inodecache(void)
3069 {
3070 kmem_cache_destroy(shmem_inode_cachep);
3071 }
3072
3073 static const struct address_space_operations shmem_aops = {
3074 .writepage = shmem_writepage,
3075 .set_page_dirty = __set_page_dirty_no_writeback,
3076 #ifdef CONFIG_TMPFS
3077 .write_begin = shmem_write_begin,
3078 .write_end = shmem_write_end,
3079 #endif
3080 #ifdef CONFIG_MIGRATION
3081 .migratepage = migrate_page,
3082 #endif
3083 .error_remove_page = generic_error_remove_page,
3084 };
3085
3086 static const struct file_operations shmem_file_operations = {
3087 .mmap = shmem_mmap,
3088 #ifdef CONFIG_TMPFS
3089 .llseek = shmem_file_llseek,
3090 .read = new_sync_read,
3091 .write = new_sync_write,
3092 .read_iter = shmem_file_read_iter,
3093 .write_iter = generic_file_write_iter,
3094 .fsync = noop_fsync,
3095 .splice_read = shmem_file_splice_read,
3096 .splice_write = iter_file_splice_write,
3097 .fallocate = shmem_fallocate,
3098 #endif
3099 };
3100
3101 static const struct inode_operations shmem_inode_operations = {
3102 .setattr = shmem_setattr,
3103 #ifdef CONFIG_TMPFS_XATTR
3104 .setxattr = shmem_setxattr,
3105 .getxattr = shmem_getxattr,
3106 .listxattr = shmem_listxattr,
3107 .removexattr = shmem_removexattr,
3108 .set_acl = simple_set_acl,
3109 #endif
3110 };
3111
3112 static const struct inode_operations shmem_dir_inode_operations = {
3113 #ifdef CONFIG_TMPFS
3114 .create = shmem_create,
3115 .lookup = simple_lookup,
3116 .link = shmem_link,
3117 .unlink = shmem_unlink,
3118 .symlink = shmem_symlink,
3119 .mkdir = shmem_mkdir,
3120 .rmdir = shmem_rmdir,
3121 .mknod = shmem_mknod,
3122 .rename2 = shmem_rename2,
3123 .tmpfile = shmem_tmpfile,
3124 #endif
3125 #ifdef CONFIG_TMPFS_XATTR
3126 .setxattr = shmem_setxattr,
3127 .getxattr = shmem_getxattr,
3128 .listxattr = shmem_listxattr,
3129 .removexattr = shmem_removexattr,
3130 #endif
3131 #ifdef CONFIG_TMPFS_POSIX_ACL
3132 .setattr = shmem_setattr,
3133 .set_acl = simple_set_acl,
3134 #endif
3135 };
3136
3137 static const struct inode_operations shmem_special_inode_operations = {
3138 #ifdef CONFIG_TMPFS_XATTR
3139 .setxattr = shmem_setxattr,
3140 .getxattr = shmem_getxattr,
3141 .listxattr = shmem_listxattr,
3142 .removexattr = shmem_removexattr,
3143 #endif
3144 #ifdef CONFIG_TMPFS_POSIX_ACL
3145 .setattr = shmem_setattr,
3146 .set_acl = simple_set_acl,
3147 #endif
3148 };
3149
3150 static const struct super_operations shmem_ops = {
3151 .alloc_inode = shmem_alloc_inode,
3152 .destroy_inode = shmem_destroy_inode,
3153 #ifdef CONFIG_TMPFS
3154 .statfs = shmem_statfs,
3155 .remount_fs = shmem_remount_fs,
3156 .show_options = shmem_show_options,
3157 #endif
3158 .evict_inode = shmem_evict_inode,
3159 .drop_inode = generic_delete_inode,
3160 .put_super = shmem_put_super,
3161 };
3162
3163 static const struct vm_operations_struct shmem_vm_ops = {
3164 .fault = shmem_fault,
3165 .map_pages = filemap_map_pages,
3166 #ifdef CONFIG_NUMA
3167 .set_policy = shmem_set_policy,
3168 .get_policy = shmem_get_policy,
3169 #endif
3170 .remap_pages = generic_file_remap_pages,
3171 };
3172
3173 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3174 int flags, const char *dev_name, void *data)
3175 {
3176 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3177 }
3178
3179 static struct file_system_type shmem_fs_type = {
3180 .owner = THIS_MODULE,
3181 .name = "tmpfs",
3182 .mount = shmem_mount,
3183 .kill_sb = kill_litter_super,
3184 .fs_flags = FS_USERNS_MOUNT,
3185 };
3186
3187 int __init shmem_init(void)
3188 {
3189 int error;
3190
3191 /* If rootfs called this, don't re-init */
3192 if (shmem_inode_cachep)
3193 return 0;
3194
3195 error = bdi_init(&shmem_backing_dev_info);
3196 if (error)
3197 goto out4;
3198
3199 error = shmem_init_inodecache();
3200 if (error)
3201 goto out3;
3202
3203 error = register_filesystem(&shmem_fs_type);
3204 if (error) {
3205 printk(KERN_ERR "Could not register tmpfs\n");
3206 goto out2;
3207 }
3208
3209 shm_mnt = kern_mount(&shmem_fs_type);
3210 if (IS_ERR(shm_mnt)) {
3211 error = PTR_ERR(shm_mnt);
3212 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3213 goto out1;
3214 }
3215 return 0;
3216
3217 out1:
3218 unregister_filesystem(&shmem_fs_type);
3219 out2:
3220 shmem_destroy_inodecache();
3221 out3:
3222 bdi_destroy(&shmem_backing_dev_info);
3223 out4:
3224 shm_mnt = ERR_PTR(error);
3225 return error;
3226 }
3227
3228 #else /* !CONFIG_SHMEM */
3229
3230 /*
3231 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3232 *
3233 * This is intended for small system where the benefits of the full
3234 * shmem code (swap-backed and resource-limited) are outweighed by
3235 * their complexity. On systems without swap this code should be
3236 * effectively equivalent, but much lighter weight.
3237 */
3238
3239 static struct file_system_type shmem_fs_type = {
3240 .name = "tmpfs",
3241 .mount = ramfs_mount,
3242 .kill_sb = kill_litter_super,
3243 .fs_flags = FS_USERNS_MOUNT,
3244 };
3245
3246 int __init shmem_init(void)
3247 {
3248 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3249
3250 shm_mnt = kern_mount(&shmem_fs_type);
3251 BUG_ON(IS_ERR(shm_mnt));
3252
3253 return 0;
3254 }
3255
3256 int shmem_unuse(swp_entry_t swap, struct page *page)
3257 {
3258 return 0;
3259 }
3260
3261 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3262 {
3263 return 0;
3264 }
3265
3266 void shmem_unlock_mapping(struct address_space *mapping)
3267 {
3268 }
3269
3270 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3271 {
3272 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3273 }
3274 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3275
3276 #define shmem_vm_ops generic_file_vm_ops
3277 #define shmem_file_operations ramfs_file_operations
3278 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3279 #define shmem_acct_size(flags, size) 0
3280 #define shmem_unacct_size(flags, size) do {} while (0)
3281
3282 #endif /* CONFIG_SHMEM */
3283
3284 /* common code */
3285
3286 static struct dentry_operations anon_ops = {
3287 .d_dname = simple_dname
3288 };
3289
3290 static struct file *__shmem_file_setup(const char *name, loff_t size,
3291 unsigned long flags, unsigned int i_flags)
3292 {
3293 struct file *res;
3294 struct inode *inode;
3295 struct path path;
3296 struct super_block *sb;
3297 struct qstr this;
3298
3299 if (IS_ERR(shm_mnt))
3300 return ERR_CAST(shm_mnt);
3301
3302 if (size < 0 || size > MAX_LFS_FILESIZE)
3303 return ERR_PTR(-EINVAL);
3304
3305 if (shmem_acct_size(flags, size))
3306 return ERR_PTR(-ENOMEM);
3307
3308 res = ERR_PTR(-ENOMEM);
3309 this.name = name;
3310 this.len = strlen(name);
3311 this.hash = 0; /* will go */
3312 sb = shm_mnt->mnt_sb;
3313 path.mnt = mntget(shm_mnt);
3314 path.dentry = d_alloc_pseudo(sb, &this);
3315 if (!path.dentry)
3316 goto put_memory;
3317 d_set_d_op(path.dentry, &anon_ops);
3318
3319 res = ERR_PTR(-ENOSPC);
3320 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3321 if (!inode)
3322 goto put_memory;
3323
3324 inode->i_flags |= i_flags;
3325 d_instantiate(path.dentry, inode);
3326 inode->i_size = size;
3327 clear_nlink(inode); /* It is unlinked */
3328 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3329 if (IS_ERR(res))
3330 goto put_path;
3331
3332 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3333 &shmem_file_operations);
3334 if (IS_ERR(res))
3335 goto put_path;
3336
3337 return res;
3338
3339 put_memory:
3340 shmem_unacct_size(flags, size);
3341 put_path:
3342 path_put(&path);
3343 return res;
3344 }
3345
3346 /**
3347 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3348 * kernel internal. There will be NO LSM permission checks against the
3349 * underlying inode. So users of this interface must do LSM checks at a
3350 * higher layer. The one user is the big_key implementation. LSM checks
3351 * are provided at the key level rather than the inode level.
3352 * @name: name for dentry (to be seen in /proc/<pid>/maps
3353 * @size: size to be set for the file
3354 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3355 */
3356 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3357 {
3358 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3359 }
3360
3361 /**
3362 * shmem_file_setup - get an unlinked file living in tmpfs
3363 * @name: name for dentry (to be seen in /proc/<pid>/maps
3364 * @size: size to be set for the file
3365 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3366 */
3367 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3368 {
3369 return __shmem_file_setup(name, size, flags, 0);
3370 }
3371 EXPORT_SYMBOL_GPL(shmem_file_setup);
3372
3373 /**
3374 * shmem_zero_setup - setup a shared anonymous mapping
3375 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3376 */
3377 int shmem_zero_setup(struct vm_area_struct *vma)
3378 {
3379 struct file *file;
3380 loff_t size = vma->vm_end - vma->vm_start;
3381
3382 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3383 if (IS_ERR(file))
3384 return PTR_ERR(file);
3385
3386 if (vma->vm_file)
3387 fput(vma->vm_file);
3388 vma->vm_file = file;
3389 vma->vm_ops = &shmem_vm_ops;
3390 return 0;
3391 }
3392
3393 /**
3394 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3395 * @mapping: the page's address_space
3396 * @index: the page index
3397 * @gfp: the page allocator flags to use if allocating
3398 *
3399 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3400 * with any new page allocations done using the specified allocation flags.
3401 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3402 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3403 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3404 *
3405 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3406 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3407 */
3408 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3409 pgoff_t index, gfp_t gfp)
3410 {
3411 #ifdef CONFIG_SHMEM
3412 struct inode *inode = mapping->host;
3413 struct page *page;
3414 int error;
3415
3416 BUG_ON(mapping->a_ops != &shmem_aops);
3417 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3418 if (error)
3419 page = ERR_PTR(error);
3420 else
3421 unlock_page(page);
3422 return page;
3423 #else
3424 /*
3425 * The tiny !SHMEM case uses ramfs without swap
3426 */
3427 return read_cache_page_gfp(mapping, index, gfp);
3428 #endif
3429 }
3430 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.102072 seconds and 5 git commands to generate.