mm/compaction: enhance compaction finish condition
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84
85 /*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90 struct shmem_falloc {
91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 pgoff_t start; /* start of range currently being fallocated */
93 pgoff_t next; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
96 };
97
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 SGP_READ, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE, /* don't exceed i_size, may allocate page */
102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
129 mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 return sb->s_fs_info;
135 }
136
137 /*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 return (flags & VM_NORESERVE) ?
146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 if (!(flags & VM_NORESERVE))
152 vm_unacct_memory(VM_ACCT(size));
153 }
154
155 static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157 {
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166 }
167
168 /*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 return (flags & VM_NORESERVE) ?
177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 if (flags & VM_NORESERVE)
183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_MUTEX(shmem_swaplist_mutex);
196
197 static int shmem_reserve_inode(struct super_block *sb)
198 {
199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200 if (sbinfo->max_inodes) {
201 spin_lock(&sbinfo->stat_lock);
202 if (!sbinfo->free_inodes) {
203 spin_unlock(&sbinfo->stat_lock);
204 return -ENOSPC;
205 }
206 sbinfo->free_inodes--;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 return 0;
210 }
211
212 static void shmem_free_inode(struct super_block *sb)
213 {
214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 if (sbinfo->max_inodes) {
216 spin_lock(&sbinfo->stat_lock);
217 sbinfo->free_inodes++;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 }
221
222 /**
223 * shmem_recalc_inode - recalculate the block usage of an inode
224 * @inode: inode to recalc
225 *
226 * We have to calculate the free blocks since the mm can drop
227 * undirtied hole pages behind our back.
228 *
229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 *
232 * It has to be called with the spinlock held.
233 */
234 static void shmem_recalc_inode(struct inode *inode)
235 {
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 long freed;
238
239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240 if (freed > 0) {
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_add(&sbinfo->used_blocks, -freed);
244 info->alloced -= freed;
245 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246 shmem_unacct_blocks(info->flags, freed);
247 }
248 }
249
250 /*
251 * Replace item expected in radix tree by a new item, while holding tree lock.
252 */
253 static int shmem_radix_tree_replace(struct address_space *mapping,
254 pgoff_t index, void *expected, void *replacement)
255 {
256 void **pslot;
257 void *item;
258
259 VM_BUG_ON(!expected);
260 VM_BUG_ON(!replacement);
261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262 if (!pslot)
263 return -ENOENT;
264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265 if (item != expected)
266 return -ENOENT;
267 radix_tree_replace_slot(pslot, replacement);
268 return 0;
269 }
270
271 /*
272 * Sometimes, before we decide whether to proceed or to fail, we must check
273 * that an entry was not already brought back from swap by a racing thread.
274 *
275 * Checking page is not enough: by the time a SwapCache page is locked, it
276 * might be reused, and again be SwapCache, using the same swap as before.
277 */
278 static bool shmem_confirm_swap(struct address_space *mapping,
279 pgoff_t index, swp_entry_t swap)
280 {
281 void *item;
282
283 rcu_read_lock();
284 item = radix_tree_lookup(&mapping->page_tree, index);
285 rcu_read_unlock();
286 return item == swp_to_radix_entry(swap);
287 }
288
289 /*
290 * Like add_to_page_cache_locked, but error if expected item has gone.
291 */
292 static int shmem_add_to_page_cache(struct page *page,
293 struct address_space *mapping,
294 pgoff_t index, void *expected)
295 {
296 int error;
297
298 VM_BUG_ON_PAGE(!PageLocked(page), page);
299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300
301 page_cache_get(page);
302 page->mapping = mapping;
303 page->index = index;
304
305 spin_lock_irq(&mapping->tree_lock);
306 if (!expected)
307 error = radix_tree_insert(&mapping->page_tree, index, page);
308 else
309 error = shmem_radix_tree_replace(mapping, index, expected,
310 page);
311 if (!error) {
312 mapping->nrpages++;
313 __inc_zone_page_state(page, NR_FILE_PAGES);
314 __inc_zone_page_state(page, NR_SHMEM);
315 spin_unlock_irq(&mapping->tree_lock);
316 } else {
317 page->mapping = NULL;
318 spin_unlock_irq(&mapping->tree_lock);
319 page_cache_release(page);
320 }
321 return error;
322 }
323
324 /*
325 * Like delete_from_page_cache, but substitutes swap for page.
326 */
327 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328 {
329 struct address_space *mapping = page->mapping;
330 int error;
331
332 spin_lock_irq(&mapping->tree_lock);
333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334 page->mapping = NULL;
335 mapping->nrpages--;
336 __dec_zone_page_state(page, NR_FILE_PAGES);
337 __dec_zone_page_state(page, NR_SHMEM);
338 spin_unlock_irq(&mapping->tree_lock);
339 page_cache_release(page);
340 BUG_ON(error);
341 }
342
343 /*
344 * Remove swap entry from radix tree, free the swap and its page cache.
345 */
346 static int shmem_free_swap(struct address_space *mapping,
347 pgoff_t index, void *radswap)
348 {
349 void *old;
350
351 spin_lock_irq(&mapping->tree_lock);
352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353 spin_unlock_irq(&mapping->tree_lock);
354 if (old != radswap)
355 return -ENOENT;
356 free_swap_and_cache(radix_to_swp_entry(radswap));
357 return 0;
358 }
359
360 /*
361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362 */
363 void shmem_unlock_mapping(struct address_space *mapping)
364 {
365 struct pagevec pvec;
366 pgoff_t indices[PAGEVEC_SIZE];
367 pgoff_t index = 0;
368
369 pagevec_init(&pvec, 0);
370 /*
371 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372 */
373 while (!mapping_unevictable(mapping)) {
374 /*
375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377 */
378 pvec.nr = find_get_entries(mapping, index,
379 PAGEVEC_SIZE, pvec.pages, indices);
380 if (!pvec.nr)
381 break;
382 index = indices[pvec.nr - 1] + 1;
383 pagevec_remove_exceptionals(&pvec);
384 check_move_unevictable_pages(pvec.pages, pvec.nr);
385 pagevec_release(&pvec);
386 cond_resched();
387 }
388 }
389
390 /*
391 * Remove range of pages and swap entries from radix tree, and free them.
392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393 */
394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395 bool unfalloc)
396 {
397 struct address_space *mapping = inode->i_mapping;
398 struct shmem_inode_info *info = SHMEM_I(inode);
399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403 struct pagevec pvec;
404 pgoff_t indices[PAGEVEC_SIZE];
405 long nr_swaps_freed = 0;
406 pgoff_t index;
407 int i;
408
409 if (lend == -1)
410 end = -1; /* unsigned, so actually very big */
411
412 pagevec_init(&pvec, 0);
413 index = start;
414 while (index < end) {
415 pvec.nr = find_get_entries(mapping, index,
416 min(end - index, (pgoff_t)PAGEVEC_SIZE),
417 pvec.pages, indices);
418 if (!pvec.nr)
419 break;
420 for (i = 0; i < pagevec_count(&pvec); i++) {
421 struct page *page = pvec.pages[i];
422
423 index = indices[i];
424 if (index >= end)
425 break;
426
427 if (radix_tree_exceptional_entry(page)) {
428 if (unfalloc)
429 continue;
430 nr_swaps_freed += !shmem_free_swap(mapping,
431 index, page);
432 continue;
433 }
434
435 if (!trylock_page(page))
436 continue;
437 if (!unfalloc || !PageUptodate(page)) {
438 if (page->mapping == mapping) {
439 VM_BUG_ON_PAGE(PageWriteback(page), page);
440 truncate_inode_page(mapping, page);
441 }
442 }
443 unlock_page(page);
444 }
445 pagevec_remove_exceptionals(&pvec);
446 pagevec_release(&pvec);
447 cond_resched();
448 index++;
449 }
450
451 if (partial_start) {
452 struct page *page = NULL;
453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454 if (page) {
455 unsigned int top = PAGE_CACHE_SIZE;
456 if (start > end) {
457 top = partial_end;
458 partial_end = 0;
459 }
460 zero_user_segment(page, partial_start, top);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (partial_end) {
467 struct page *page = NULL;
468 shmem_getpage(inode, end, &page, SGP_READ, NULL);
469 if (page) {
470 zero_user_segment(page, 0, partial_end);
471 set_page_dirty(page);
472 unlock_page(page);
473 page_cache_release(page);
474 }
475 }
476 if (start >= end)
477 return;
478
479 index = start;
480 while (index < end) {
481 cond_resched();
482
483 pvec.nr = find_get_entries(mapping, index,
484 min(end - index, (pgoff_t)PAGEVEC_SIZE),
485 pvec.pages, indices);
486 if (!pvec.nr) {
487 /* If all gone or hole-punch or unfalloc, we're done */
488 if (index == start || end != -1)
489 break;
490 /* But if truncating, restart to make sure all gone */
491 index = start;
492 continue;
493 }
494 for (i = 0; i < pagevec_count(&pvec); i++) {
495 struct page *page = pvec.pages[i];
496
497 index = indices[i];
498 if (index >= end)
499 break;
500
501 if (radix_tree_exceptional_entry(page)) {
502 if (unfalloc)
503 continue;
504 if (shmem_free_swap(mapping, index, page)) {
505 /* Swap was replaced by page: retry */
506 index--;
507 break;
508 }
509 nr_swaps_freed++;
510 continue;
511 }
512
513 lock_page(page);
514 if (!unfalloc || !PageUptodate(page)) {
515 if (page->mapping == mapping) {
516 VM_BUG_ON_PAGE(PageWriteback(page), page);
517 truncate_inode_page(mapping, page);
518 } else {
519 /* Page was replaced by swap: retry */
520 unlock_page(page);
521 index--;
522 break;
523 }
524 }
525 unlock_page(page);
526 }
527 pagevec_remove_exceptionals(&pvec);
528 pagevec_release(&pvec);
529 index++;
530 }
531
532 spin_lock(&info->lock);
533 info->swapped -= nr_swaps_freed;
534 shmem_recalc_inode(inode);
535 spin_unlock(&info->lock);
536 }
537
538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539 {
540 shmem_undo_range(inode, lstart, lend, false);
541 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542 }
543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
544
545 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
546 {
547 struct inode *inode = dentry->d_inode;
548 struct shmem_inode_info *info = SHMEM_I(inode);
549 int error;
550
551 error = inode_change_ok(inode, attr);
552 if (error)
553 return error;
554
555 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
556 loff_t oldsize = inode->i_size;
557 loff_t newsize = attr->ia_size;
558
559 /* protected by i_mutex */
560 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
561 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
562 return -EPERM;
563
564 if (newsize != oldsize) {
565 error = shmem_reacct_size(SHMEM_I(inode)->flags,
566 oldsize, newsize);
567 if (error)
568 return error;
569 i_size_write(inode, newsize);
570 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571 }
572 if (newsize < oldsize) {
573 loff_t holebegin = round_up(newsize, PAGE_SIZE);
574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575 shmem_truncate_range(inode, newsize, (loff_t)-1);
576 /* unmap again to remove racily COWed private pages */
577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578 }
579 }
580
581 setattr_copy(inode, attr);
582 if (attr->ia_valid & ATTR_MODE)
583 error = posix_acl_chmod(inode, inode->i_mode);
584 return error;
585 }
586
587 static void shmem_evict_inode(struct inode *inode)
588 {
589 struct shmem_inode_info *info = SHMEM_I(inode);
590
591 if (inode->i_mapping->a_ops == &shmem_aops) {
592 shmem_unacct_size(info->flags, inode->i_size);
593 inode->i_size = 0;
594 shmem_truncate_range(inode, 0, (loff_t)-1);
595 if (!list_empty(&info->swaplist)) {
596 mutex_lock(&shmem_swaplist_mutex);
597 list_del_init(&info->swaplist);
598 mutex_unlock(&shmem_swaplist_mutex);
599 }
600 } else
601 kfree(info->symlink);
602
603 simple_xattrs_free(&info->xattrs);
604 WARN_ON(inode->i_blocks);
605 shmem_free_inode(inode->i_sb);
606 clear_inode(inode);
607 }
608
609 /*
610 * If swap found in inode, free it and move page from swapcache to filecache.
611 */
612 static int shmem_unuse_inode(struct shmem_inode_info *info,
613 swp_entry_t swap, struct page **pagep)
614 {
615 struct address_space *mapping = info->vfs_inode.i_mapping;
616 void *radswap;
617 pgoff_t index;
618 gfp_t gfp;
619 int error = 0;
620
621 radswap = swp_to_radix_entry(swap);
622 index = radix_tree_locate_item(&mapping->page_tree, radswap);
623 if (index == -1)
624 return -EAGAIN; /* tell shmem_unuse we found nothing */
625
626 /*
627 * Move _head_ to start search for next from here.
628 * But be careful: shmem_evict_inode checks list_empty without taking
629 * mutex, and there's an instant in list_move_tail when info->swaplist
630 * would appear empty, if it were the only one on shmem_swaplist.
631 */
632 if (shmem_swaplist.next != &info->swaplist)
633 list_move_tail(&shmem_swaplist, &info->swaplist);
634
635 gfp = mapping_gfp_mask(mapping);
636 if (shmem_should_replace_page(*pagep, gfp)) {
637 mutex_unlock(&shmem_swaplist_mutex);
638 error = shmem_replace_page(pagep, gfp, info, index);
639 mutex_lock(&shmem_swaplist_mutex);
640 /*
641 * We needed to drop mutex to make that restrictive page
642 * allocation, but the inode might have been freed while we
643 * dropped it: although a racing shmem_evict_inode() cannot
644 * complete without emptying the radix_tree, our page lock
645 * on this swapcache page is not enough to prevent that -
646 * free_swap_and_cache() of our swap entry will only
647 * trylock_page(), removing swap from radix_tree whatever.
648 *
649 * We must not proceed to shmem_add_to_page_cache() if the
650 * inode has been freed, but of course we cannot rely on
651 * inode or mapping or info to check that. However, we can
652 * safely check if our swap entry is still in use (and here
653 * it can't have got reused for another page): if it's still
654 * in use, then the inode cannot have been freed yet, and we
655 * can safely proceed (if it's no longer in use, that tells
656 * nothing about the inode, but we don't need to unuse swap).
657 */
658 if (!page_swapcount(*pagep))
659 error = -ENOENT;
660 }
661
662 /*
663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 * beneath us (pagelock doesn't help until the page is in pagecache).
666 */
667 if (!error)
668 error = shmem_add_to_page_cache(*pagep, mapping, index,
669 radswap);
670 if (error != -ENOMEM) {
671 /*
672 * Truncation and eviction use free_swap_and_cache(), which
673 * only does trylock page: if we raced, best clean up here.
674 */
675 delete_from_swap_cache(*pagep);
676 set_page_dirty(*pagep);
677 if (!error) {
678 spin_lock(&info->lock);
679 info->swapped--;
680 spin_unlock(&info->lock);
681 swap_free(swap);
682 }
683 }
684 return error;
685 }
686
687 /*
688 * Search through swapped inodes to find and replace swap by page.
689 */
690 int shmem_unuse(swp_entry_t swap, struct page *page)
691 {
692 struct list_head *this, *next;
693 struct shmem_inode_info *info;
694 struct mem_cgroup *memcg;
695 int error = 0;
696
697 /*
698 * There's a faint possibility that swap page was replaced before
699 * caller locked it: caller will come back later with the right page.
700 */
701 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
702 goto out;
703
704 /*
705 * Charge page using GFP_KERNEL while we can wait, before taking
706 * the shmem_swaplist_mutex which might hold up shmem_writepage().
707 * Charged back to the user (not to caller) when swap account is used.
708 */
709 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
710 if (error)
711 goto out;
712 /* No radix_tree_preload: swap entry keeps a place for page in tree */
713 error = -EAGAIN;
714
715 mutex_lock(&shmem_swaplist_mutex);
716 list_for_each_safe(this, next, &shmem_swaplist) {
717 info = list_entry(this, struct shmem_inode_info, swaplist);
718 if (info->swapped)
719 error = shmem_unuse_inode(info, swap, &page);
720 else
721 list_del_init(&info->swaplist);
722 cond_resched();
723 if (error != -EAGAIN)
724 break;
725 /* found nothing in this: move on to search the next */
726 }
727 mutex_unlock(&shmem_swaplist_mutex);
728
729 if (error) {
730 if (error != -ENOMEM)
731 error = 0;
732 mem_cgroup_cancel_charge(page, memcg);
733 } else
734 mem_cgroup_commit_charge(page, memcg, true);
735 out:
736 unlock_page(page);
737 page_cache_release(page);
738 return error;
739 }
740
741 /*
742 * Move the page from the page cache to the swap cache.
743 */
744 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
745 {
746 struct shmem_inode_info *info;
747 struct address_space *mapping;
748 struct inode *inode;
749 swp_entry_t swap;
750 pgoff_t index;
751
752 BUG_ON(!PageLocked(page));
753 mapping = page->mapping;
754 index = page->index;
755 inode = mapping->host;
756 info = SHMEM_I(inode);
757 if (info->flags & VM_LOCKED)
758 goto redirty;
759 if (!total_swap_pages)
760 goto redirty;
761
762 /*
763 * Our capabilities prevent regular writeback or sync from ever calling
764 * shmem_writepage; but a stacking filesystem might use ->writepage of
765 * its underlying filesystem, in which case tmpfs should write out to
766 * swap only in response to memory pressure, and not for the writeback
767 * threads or sync.
768 */
769 if (!wbc->for_reclaim) {
770 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
771 goto redirty;
772 }
773
774 /*
775 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776 * value into swapfile.c, the only way we can correctly account for a
777 * fallocated page arriving here is now to initialize it and write it.
778 *
779 * That's okay for a page already fallocated earlier, but if we have
780 * not yet completed the fallocation, then (a) we want to keep track
781 * of this page in case we have to undo it, and (b) it may not be a
782 * good idea to continue anyway, once we're pushing into swap. So
783 * reactivate the page, and let shmem_fallocate() quit when too many.
784 */
785 if (!PageUptodate(page)) {
786 if (inode->i_private) {
787 struct shmem_falloc *shmem_falloc;
788 spin_lock(&inode->i_lock);
789 shmem_falloc = inode->i_private;
790 if (shmem_falloc &&
791 !shmem_falloc->waitq &&
792 index >= shmem_falloc->start &&
793 index < shmem_falloc->next)
794 shmem_falloc->nr_unswapped++;
795 else
796 shmem_falloc = NULL;
797 spin_unlock(&inode->i_lock);
798 if (shmem_falloc)
799 goto redirty;
800 }
801 clear_highpage(page);
802 flush_dcache_page(page);
803 SetPageUptodate(page);
804 }
805
806 swap = get_swap_page();
807 if (!swap.val)
808 goto redirty;
809
810 /*
811 * Add inode to shmem_unuse()'s list of swapped-out inodes,
812 * if it's not already there. Do it now before the page is
813 * moved to swap cache, when its pagelock no longer protects
814 * the inode from eviction. But don't unlock the mutex until
815 * we've incremented swapped, because shmem_unuse_inode() will
816 * prune a !swapped inode from the swaplist under this mutex.
817 */
818 mutex_lock(&shmem_swaplist_mutex);
819 if (list_empty(&info->swaplist))
820 list_add_tail(&info->swaplist, &shmem_swaplist);
821
822 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
823 swap_shmem_alloc(swap);
824 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
825
826 spin_lock(&info->lock);
827 info->swapped++;
828 shmem_recalc_inode(inode);
829 spin_unlock(&info->lock);
830
831 mutex_unlock(&shmem_swaplist_mutex);
832 BUG_ON(page_mapped(page));
833 swap_writepage(page, wbc);
834 return 0;
835 }
836
837 mutex_unlock(&shmem_swaplist_mutex);
838 swapcache_free(swap);
839 redirty:
840 set_page_dirty(page);
841 if (wbc->for_reclaim)
842 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
843 unlock_page(page);
844 return 0;
845 }
846
847 #ifdef CONFIG_NUMA
848 #ifdef CONFIG_TMPFS
849 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
850 {
851 char buffer[64];
852
853 if (!mpol || mpol->mode == MPOL_DEFAULT)
854 return; /* show nothing */
855
856 mpol_to_str(buffer, sizeof(buffer), mpol);
857
858 seq_printf(seq, ",mpol=%s", buffer);
859 }
860
861 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
862 {
863 struct mempolicy *mpol = NULL;
864 if (sbinfo->mpol) {
865 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
866 mpol = sbinfo->mpol;
867 mpol_get(mpol);
868 spin_unlock(&sbinfo->stat_lock);
869 }
870 return mpol;
871 }
872 #endif /* CONFIG_TMPFS */
873
874 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
875 struct shmem_inode_info *info, pgoff_t index)
876 {
877 struct vm_area_struct pvma;
878 struct page *page;
879
880 /* Create a pseudo vma that just contains the policy */
881 pvma.vm_start = 0;
882 /* Bias interleave by inode number to distribute better across nodes */
883 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
884 pvma.vm_ops = NULL;
885 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886
887 page = swapin_readahead(swap, gfp, &pvma, 0);
888
889 /* Drop reference taken by mpol_shared_policy_lookup() */
890 mpol_cond_put(pvma.vm_policy);
891
892 return page;
893 }
894
895 static struct page *shmem_alloc_page(gfp_t gfp,
896 struct shmem_inode_info *info, pgoff_t index)
897 {
898 struct vm_area_struct pvma;
899 struct page *page;
900
901 /* Create a pseudo vma that just contains the policy */
902 pvma.vm_start = 0;
903 /* Bias interleave by inode number to distribute better across nodes */
904 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
905 pvma.vm_ops = NULL;
906 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
907
908 page = alloc_page_vma(gfp, &pvma, 0);
909
910 /* Drop reference taken by mpol_shared_policy_lookup() */
911 mpol_cond_put(pvma.vm_policy);
912
913 return page;
914 }
915 #else /* !CONFIG_NUMA */
916 #ifdef CONFIG_TMPFS
917 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
918 {
919 }
920 #endif /* CONFIG_TMPFS */
921
922 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
923 struct shmem_inode_info *info, pgoff_t index)
924 {
925 return swapin_readahead(swap, gfp, NULL, 0);
926 }
927
928 static inline struct page *shmem_alloc_page(gfp_t gfp,
929 struct shmem_inode_info *info, pgoff_t index)
930 {
931 return alloc_page(gfp);
932 }
933 #endif /* CONFIG_NUMA */
934
935 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
937 {
938 return NULL;
939 }
940 #endif
941
942 /*
943 * When a page is moved from swapcache to shmem filecache (either by the
944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945 * shmem_unuse_inode()), it may have been read in earlier from swap, in
946 * ignorance of the mapping it belongs to. If that mapping has special
947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948 * we may need to copy to a suitable page before moving to filecache.
949 *
950 * In a future release, this may well be extended to respect cpuset and
951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952 * but for now it is a simple matter of zone.
953 */
954 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
955 {
956 return page_zonenum(page) > gfp_zone(gfp);
957 }
958
959 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
960 struct shmem_inode_info *info, pgoff_t index)
961 {
962 struct page *oldpage, *newpage;
963 struct address_space *swap_mapping;
964 pgoff_t swap_index;
965 int error;
966
967 oldpage = *pagep;
968 swap_index = page_private(oldpage);
969 swap_mapping = page_mapping(oldpage);
970
971 /*
972 * We have arrived here because our zones are constrained, so don't
973 * limit chance of success by further cpuset and node constraints.
974 */
975 gfp &= ~GFP_CONSTRAINT_MASK;
976 newpage = shmem_alloc_page(gfp, info, index);
977 if (!newpage)
978 return -ENOMEM;
979
980 page_cache_get(newpage);
981 copy_highpage(newpage, oldpage);
982 flush_dcache_page(newpage);
983
984 __set_page_locked(newpage);
985 SetPageUptodate(newpage);
986 SetPageSwapBacked(newpage);
987 set_page_private(newpage, swap_index);
988 SetPageSwapCache(newpage);
989
990 /*
991 * Our caller will very soon move newpage out of swapcache, but it's
992 * a nice clean interface for us to replace oldpage by newpage there.
993 */
994 spin_lock_irq(&swap_mapping->tree_lock);
995 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
996 newpage);
997 if (!error) {
998 __inc_zone_page_state(newpage, NR_FILE_PAGES);
999 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1000 }
1001 spin_unlock_irq(&swap_mapping->tree_lock);
1002
1003 if (unlikely(error)) {
1004 /*
1005 * Is this possible? I think not, now that our callers check
1006 * both PageSwapCache and page_private after getting page lock;
1007 * but be defensive. Reverse old to newpage for clear and free.
1008 */
1009 oldpage = newpage;
1010 } else {
1011 mem_cgroup_migrate(oldpage, newpage, true);
1012 lru_cache_add_anon(newpage);
1013 *pagep = newpage;
1014 }
1015
1016 ClearPageSwapCache(oldpage);
1017 set_page_private(oldpage, 0);
1018
1019 unlock_page(oldpage);
1020 page_cache_release(oldpage);
1021 page_cache_release(oldpage);
1022 return error;
1023 }
1024
1025 /*
1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1027 *
1028 * If we allocate a new one we do not mark it dirty. That's up to the
1029 * vm. If we swap it in we mark it dirty since we also free the swap
1030 * entry since a page cannot live in both the swap and page cache
1031 */
1032 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1033 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1034 {
1035 struct address_space *mapping = inode->i_mapping;
1036 struct shmem_inode_info *info;
1037 struct shmem_sb_info *sbinfo;
1038 struct mem_cgroup *memcg;
1039 struct page *page;
1040 swp_entry_t swap;
1041 int error;
1042 int once = 0;
1043 int alloced = 0;
1044
1045 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1046 return -EFBIG;
1047 repeat:
1048 swap.val = 0;
1049 page = find_lock_entry(mapping, index);
1050 if (radix_tree_exceptional_entry(page)) {
1051 swap = radix_to_swp_entry(page);
1052 page = NULL;
1053 }
1054
1055 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1056 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1057 error = -EINVAL;
1058 goto failed;
1059 }
1060
1061 if (page && sgp == SGP_WRITE)
1062 mark_page_accessed(page);
1063
1064 /* fallocated page? */
1065 if (page && !PageUptodate(page)) {
1066 if (sgp != SGP_READ)
1067 goto clear;
1068 unlock_page(page);
1069 page_cache_release(page);
1070 page = NULL;
1071 }
1072 if (page || (sgp == SGP_READ && !swap.val)) {
1073 *pagep = page;
1074 return 0;
1075 }
1076
1077 /*
1078 * Fast cache lookup did not find it:
1079 * bring it back from swap or allocate.
1080 */
1081 info = SHMEM_I(inode);
1082 sbinfo = SHMEM_SB(inode->i_sb);
1083
1084 if (swap.val) {
1085 /* Look it up and read it in.. */
1086 page = lookup_swap_cache(swap);
1087 if (!page) {
1088 /* here we actually do the io */
1089 if (fault_type)
1090 *fault_type |= VM_FAULT_MAJOR;
1091 page = shmem_swapin(swap, gfp, info, index);
1092 if (!page) {
1093 error = -ENOMEM;
1094 goto failed;
1095 }
1096 }
1097
1098 /* We have to do this with page locked to prevent races */
1099 lock_page(page);
1100 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1101 !shmem_confirm_swap(mapping, index, swap)) {
1102 error = -EEXIST; /* try again */
1103 goto unlock;
1104 }
1105 if (!PageUptodate(page)) {
1106 error = -EIO;
1107 goto failed;
1108 }
1109 wait_on_page_writeback(page);
1110
1111 if (shmem_should_replace_page(page, gfp)) {
1112 error = shmem_replace_page(&page, gfp, info, index);
1113 if (error)
1114 goto failed;
1115 }
1116
1117 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1118 if (!error) {
1119 error = shmem_add_to_page_cache(page, mapping, index,
1120 swp_to_radix_entry(swap));
1121 /*
1122 * We already confirmed swap under page lock, and make
1123 * no memory allocation here, so usually no possibility
1124 * of error; but free_swap_and_cache() only trylocks a
1125 * page, so it is just possible that the entry has been
1126 * truncated or holepunched since swap was confirmed.
1127 * shmem_undo_range() will have done some of the
1128 * unaccounting, now delete_from_swap_cache() will do
1129 * the rest.
1130 * Reset swap.val? No, leave it so "failed" goes back to
1131 * "repeat": reading a hole and writing should succeed.
1132 */
1133 if (error) {
1134 mem_cgroup_cancel_charge(page, memcg);
1135 delete_from_swap_cache(page);
1136 }
1137 }
1138 if (error)
1139 goto failed;
1140
1141 mem_cgroup_commit_charge(page, memcg, true);
1142
1143 spin_lock(&info->lock);
1144 info->swapped--;
1145 shmem_recalc_inode(inode);
1146 spin_unlock(&info->lock);
1147
1148 if (sgp == SGP_WRITE)
1149 mark_page_accessed(page);
1150
1151 delete_from_swap_cache(page);
1152 set_page_dirty(page);
1153 swap_free(swap);
1154
1155 } else {
1156 if (shmem_acct_block(info->flags)) {
1157 error = -ENOSPC;
1158 goto failed;
1159 }
1160 if (sbinfo->max_blocks) {
1161 if (percpu_counter_compare(&sbinfo->used_blocks,
1162 sbinfo->max_blocks) >= 0) {
1163 error = -ENOSPC;
1164 goto unacct;
1165 }
1166 percpu_counter_inc(&sbinfo->used_blocks);
1167 }
1168
1169 page = shmem_alloc_page(gfp, info, index);
1170 if (!page) {
1171 error = -ENOMEM;
1172 goto decused;
1173 }
1174
1175 __SetPageSwapBacked(page);
1176 __set_page_locked(page);
1177 if (sgp == SGP_WRITE)
1178 __SetPageReferenced(page);
1179
1180 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1181 if (error)
1182 goto decused;
1183 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1184 if (!error) {
1185 error = shmem_add_to_page_cache(page, mapping, index,
1186 NULL);
1187 radix_tree_preload_end();
1188 }
1189 if (error) {
1190 mem_cgroup_cancel_charge(page, memcg);
1191 goto decused;
1192 }
1193 mem_cgroup_commit_charge(page, memcg, false);
1194 lru_cache_add_anon(page);
1195
1196 spin_lock(&info->lock);
1197 info->alloced++;
1198 inode->i_blocks += BLOCKS_PER_PAGE;
1199 shmem_recalc_inode(inode);
1200 spin_unlock(&info->lock);
1201 alloced = true;
1202
1203 /*
1204 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1205 */
1206 if (sgp == SGP_FALLOC)
1207 sgp = SGP_WRITE;
1208 clear:
1209 /*
1210 * Let SGP_WRITE caller clear ends if write does not fill page;
1211 * but SGP_FALLOC on a page fallocated earlier must initialize
1212 * it now, lest undo on failure cancel our earlier guarantee.
1213 */
1214 if (sgp != SGP_WRITE) {
1215 clear_highpage(page);
1216 flush_dcache_page(page);
1217 SetPageUptodate(page);
1218 }
1219 if (sgp == SGP_DIRTY)
1220 set_page_dirty(page);
1221 }
1222
1223 /* Perhaps the file has been truncated since we checked */
1224 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1225 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1226 error = -EINVAL;
1227 if (alloced)
1228 goto trunc;
1229 else
1230 goto failed;
1231 }
1232 *pagep = page;
1233 return 0;
1234
1235 /*
1236 * Error recovery.
1237 */
1238 trunc:
1239 info = SHMEM_I(inode);
1240 ClearPageDirty(page);
1241 delete_from_page_cache(page);
1242 spin_lock(&info->lock);
1243 info->alloced--;
1244 inode->i_blocks -= BLOCKS_PER_PAGE;
1245 spin_unlock(&info->lock);
1246 decused:
1247 sbinfo = SHMEM_SB(inode->i_sb);
1248 if (sbinfo->max_blocks)
1249 percpu_counter_add(&sbinfo->used_blocks, -1);
1250 unacct:
1251 shmem_unacct_blocks(info->flags, 1);
1252 failed:
1253 if (swap.val && error != -EINVAL &&
1254 !shmem_confirm_swap(mapping, index, swap))
1255 error = -EEXIST;
1256 unlock:
1257 if (page) {
1258 unlock_page(page);
1259 page_cache_release(page);
1260 }
1261 if (error == -ENOSPC && !once++) {
1262 info = SHMEM_I(inode);
1263 spin_lock(&info->lock);
1264 shmem_recalc_inode(inode);
1265 spin_unlock(&info->lock);
1266 goto repeat;
1267 }
1268 if (error == -EEXIST) /* from above or from radix_tree_insert */
1269 goto repeat;
1270 return error;
1271 }
1272
1273 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1274 {
1275 struct inode *inode = file_inode(vma->vm_file);
1276 int error;
1277 int ret = VM_FAULT_LOCKED;
1278
1279 /*
1280 * Trinity finds that probing a hole which tmpfs is punching can
1281 * prevent the hole-punch from ever completing: which in turn
1282 * locks writers out with its hold on i_mutex. So refrain from
1283 * faulting pages into the hole while it's being punched. Although
1284 * shmem_undo_range() does remove the additions, it may be unable to
1285 * keep up, as each new page needs its own unmap_mapping_range() call,
1286 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1287 *
1288 * It does not matter if we sometimes reach this check just before the
1289 * hole-punch begins, so that one fault then races with the punch:
1290 * we just need to make racing faults a rare case.
1291 *
1292 * The implementation below would be much simpler if we just used a
1293 * standard mutex or completion: but we cannot take i_mutex in fault,
1294 * and bloating every shmem inode for this unlikely case would be sad.
1295 */
1296 if (unlikely(inode->i_private)) {
1297 struct shmem_falloc *shmem_falloc;
1298
1299 spin_lock(&inode->i_lock);
1300 shmem_falloc = inode->i_private;
1301 if (shmem_falloc &&
1302 shmem_falloc->waitq &&
1303 vmf->pgoff >= shmem_falloc->start &&
1304 vmf->pgoff < shmem_falloc->next) {
1305 wait_queue_head_t *shmem_falloc_waitq;
1306 DEFINE_WAIT(shmem_fault_wait);
1307
1308 ret = VM_FAULT_NOPAGE;
1309 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1310 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1311 /* It's polite to up mmap_sem if we can */
1312 up_read(&vma->vm_mm->mmap_sem);
1313 ret = VM_FAULT_RETRY;
1314 }
1315
1316 shmem_falloc_waitq = shmem_falloc->waitq;
1317 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1318 TASK_UNINTERRUPTIBLE);
1319 spin_unlock(&inode->i_lock);
1320 schedule();
1321
1322 /*
1323 * shmem_falloc_waitq points into the shmem_fallocate()
1324 * stack of the hole-punching task: shmem_falloc_waitq
1325 * is usually invalid by the time we reach here, but
1326 * finish_wait() does not dereference it in that case;
1327 * though i_lock needed lest racing with wake_up_all().
1328 */
1329 spin_lock(&inode->i_lock);
1330 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1331 spin_unlock(&inode->i_lock);
1332 return ret;
1333 }
1334 spin_unlock(&inode->i_lock);
1335 }
1336
1337 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1338 if (error)
1339 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1340
1341 if (ret & VM_FAULT_MAJOR) {
1342 count_vm_event(PGMAJFAULT);
1343 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1344 }
1345 return ret;
1346 }
1347
1348 #ifdef CONFIG_NUMA
1349 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1350 {
1351 struct inode *inode = file_inode(vma->vm_file);
1352 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1353 }
1354
1355 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1356 unsigned long addr)
1357 {
1358 struct inode *inode = file_inode(vma->vm_file);
1359 pgoff_t index;
1360
1361 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1362 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1363 }
1364 #endif
1365
1366 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1367 {
1368 struct inode *inode = file_inode(file);
1369 struct shmem_inode_info *info = SHMEM_I(inode);
1370 int retval = -ENOMEM;
1371
1372 spin_lock(&info->lock);
1373 if (lock && !(info->flags & VM_LOCKED)) {
1374 if (!user_shm_lock(inode->i_size, user))
1375 goto out_nomem;
1376 info->flags |= VM_LOCKED;
1377 mapping_set_unevictable(file->f_mapping);
1378 }
1379 if (!lock && (info->flags & VM_LOCKED) && user) {
1380 user_shm_unlock(inode->i_size, user);
1381 info->flags &= ~VM_LOCKED;
1382 mapping_clear_unevictable(file->f_mapping);
1383 }
1384 retval = 0;
1385
1386 out_nomem:
1387 spin_unlock(&info->lock);
1388 return retval;
1389 }
1390
1391 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1392 {
1393 file_accessed(file);
1394 vma->vm_ops = &shmem_vm_ops;
1395 return 0;
1396 }
1397
1398 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1399 umode_t mode, dev_t dev, unsigned long flags)
1400 {
1401 struct inode *inode;
1402 struct shmem_inode_info *info;
1403 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1404
1405 if (shmem_reserve_inode(sb))
1406 return NULL;
1407
1408 inode = new_inode(sb);
1409 if (inode) {
1410 inode->i_ino = get_next_ino();
1411 inode_init_owner(inode, dir, mode);
1412 inode->i_blocks = 0;
1413 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1414 inode->i_generation = get_seconds();
1415 info = SHMEM_I(inode);
1416 memset(info, 0, (char *)inode - (char *)info);
1417 spin_lock_init(&info->lock);
1418 info->seals = F_SEAL_SEAL;
1419 info->flags = flags & VM_NORESERVE;
1420 INIT_LIST_HEAD(&info->swaplist);
1421 simple_xattrs_init(&info->xattrs);
1422 cache_no_acl(inode);
1423
1424 switch (mode & S_IFMT) {
1425 default:
1426 inode->i_op = &shmem_special_inode_operations;
1427 init_special_inode(inode, mode, dev);
1428 break;
1429 case S_IFREG:
1430 inode->i_mapping->a_ops = &shmem_aops;
1431 inode->i_op = &shmem_inode_operations;
1432 inode->i_fop = &shmem_file_operations;
1433 mpol_shared_policy_init(&info->policy,
1434 shmem_get_sbmpol(sbinfo));
1435 break;
1436 case S_IFDIR:
1437 inc_nlink(inode);
1438 /* Some things misbehave if size == 0 on a directory */
1439 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440 inode->i_op = &shmem_dir_inode_operations;
1441 inode->i_fop = &simple_dir_operations;
1442 break;
1443 case S_IFLNK:
1444 /*
1445 * Must not load anything in the rbtree,
1446 * mpol_free_shared_policy will not be called.
1447 */
1448 mpol_shared_policy_init(&info->policy, NULL);
1449 break;
1450 }
1451 } else
1452 shmem_free_inode(sb);
1453 return inode;
1454 }
1455
1456 bool shmem_mapping(struct address_space *mapping)
1457 {
1458 if (!mapping->host)
1459 return false;
1460
1461 return mapping->host->i_sb->s_op == &shmem_ops;
1462 }
1463
1464 #ifdef CONFIG_TMPFS
1465 static const struct inode_operations shmem_symlink_inode_operations;
1466 static const struct inode_operations shmem_short_symlink_operations;
1467
1468 #ifdef CONFIG_TMPFS_XATTR
1469 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1470 #else
1471 #define shmem_initxattrs NULL
1472 #endif
1473
1474 static int
1475 shmem_write_begin(struct file *file, struct address_space *mapping,
1476 loff_t pos, unsigned len, unsigned flags,
1477 struct page **pagep, void **fsdata)
1478 {
1479 struct inode *inode = mapping->host;
1480 struct shmem_inode_info *info = SHMEM_I(inode);
1481 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1482
1483 /* i_mutex is held by caller */
1484 if (unlikely(info->seals)) {
1485 if (info->seals & F_SEAL_WRITE)
1486 return -EPERM;
1487 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1488 return -EPERM;
1489 }
1490
1491 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1492 }
1493
1494 static int
1495 shmem_write_end(struct file *file, struct address_space *mapping,
1496 loff_t pos, unsigned len, unsigned copied,
1497 struct page *page, void *fsdata)
1498 {
1499 struct inode *inode = mapping->host;
1500
1501 if (pos + copied > inode->i_size)
1502 i_size_write(inode, pos + copied);
1503
1504 if (!PageUptodate(page)) {
1505 if (copied < PAGE_CACHE_SIZE) {
1506 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1507 zero_user_segments(page, 0, from,
1508 from + copied, PAGE_CACHE_SIZE);
1509 }
1510 SetPageUptodate(page);
1511 }
1512 set_page_dirty(page);
1513 unlock_page(page);
1514 page_cache_release(page);
1515
1516 return copied;
1517 }
1518
1519 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1520 {
1521 struct file *file = iocb->ki_filp;
1522 struct inode *inode = file_inode(file);
1523 struct address_space *mapping = inode->i_mapping;
1524 pgoff_t index;
1525 unsigned long offset;
1526 enum sgp_type sgp = SGP_READ;
1527 int error = 0;
1528 ssize_t retval = 0;
1529 loff_t *ppos = &iocb->ki_pos;
1530
1531 /*
1532 * Might this read be for a stacking filesystem? Then when reading
1533 * holes of a sparse file, we actually need to allocate those pages,
1534 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1535 */
1536 if (!iter_is_iovec(to))
1537 sgp = SGP_DIRTY;
1538
1539 index = *ppos >> PAGE_CACHE_SHIFT;
1540 offset = *ppos & ~PAGE_CACHE_MASK;
1541
1542 for (;;) {
1543 struct page *page = NULL;
1544 pgoff_t end_index;
1545 unsigned long nr, ret;
1546 loff_t i_size = i_size_read(inode);
1547
1548 end_index = i_size >> PAGE_CACHE_SHIFT;
1549 if (index > end_index)
1550 break;
1551 if (index == end_index) {
1552 nr = i_size & ~PAGE_CACHE_MASK;
1553 if (nr <= offset)
1554 break;
1555 }
1556
1557 error = shmem_getpage(inode, index, &page, sgp, NULL);
1558 if (error) {
1559 if (error == -EINVAL)
1560 error = 0;
1561 break;
1562 }
1563 if (page)
1564 unlock_page(page);
1565
1566 /*
1567 * We must evaluate after, since reads (unlike writes)
1568 * are called without i_mutex protection against truncate
1569 */
1570 nr = PAGE_CACHE_SIZE;
1571 i_size = i_size_read(inode);
1572 end_index = i_size >> PAGE_CACHE_SHIFT;
1573 if (index == end_index) {
1574 nr = i_size & ~PAGE_CACHE_MASK;
1575 if (nr <= offset) {
1576 if (page)
1577 page_cache_release(page);
1578 break;
1579 }
1580 }
1581 nr -= offset;
1582
1583 if (page) {
1584 /*
1585 * If users can be writing to this page using arbitrary
1586 * virtual addresses, take care about potential aliasing
1587 * before reading the page on the kernel side.
1588 */
1589 if (mapping_writably_mapped(mapping))
1590 flush_dcache_page(page);
1591 /*
1592 * Mark the page accessed if we read the beginning.
1593 */
1594 if (!offset)
1595 mark_page_accessed(page);
1596 } else {
1597 page = ZERO_PAGE(0);
1598 page_cache_get(page);
1599 }
1600
1601 /*
1602 * Ok, we have the page, and it's up-to-date, so
1603 * now we can copy it to user space...
1604 */
1605 ret = copy_page_to_iter(page, offset, nr, to);
1606 retval += ret;
1607 offset += ret;
1608 index += offset >> PAGE_CACHE_SHIFT;
1609 offset &= ~PAGE_CACHE_MASK;
1610
1611 page_cache_release(page);
1612 if (!iov_iter_count(to))
1613 break;
1614 if (ret < nr) {
1615 error = -EFAULT;
1616 break;
1617 }
1618 cond_resched();
1619 }
1620
1621 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1622 file_accessed(file);
1623 return retval ? retval : error;
1624 }
1625
1626 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1627 struct pipe_inode_info *pipe, size_t len,
1628 unsigned int flags)
1629 {
1630 struct address_space *mapping = in->f_mapping;
1631 struct inode *inode = mapping->host;
1632 unsigned int loff, nr_pages, req_pages;
1633 struct page *pages[PIPE_DEF_BUFFERS];
1634 struct partial_page partial[PIPE_DEF_BUFFERS];
1635 struct page *page;
1636 pgoff_t index, end_index;
1637 loff_t isize, left;
1638 int error, page_nr;
1639 struct splice_pipe_desc spd = {
1640 .pages = pages,
1641 .partial = partial,
1642 .nr_pages_max = PIPE_DEF_BUFFERS,
1643 .flags = flags,
1644 .ops = &page_cache_pipe_buf_ops,
1645 .spd_release = spd_release_page,
1646 };
1647
1648 isize = i_size_read(inode);
1649 if (unlikely(*ppos >= isize))
1650 return 0;
1651
1652 left = isize - *ppos;
1653 if (unlikely(left < len))
1654 len = left;
1655
1656 if (splice_grow_spd(pipe, &spd))
1657 return -ENOMEM;
1658
1659 index = *ppos >> PAGE_CACHE_SHIFT;
1660 loff = *ppos & ~PAGE_CACHE_MASK;
1661 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1662 nr_pages = min(req_pages, spd.nr_pages_max);
1663
1664 spd.nr_pages = find_get_pages_contig(mapping, index,
1665 nr_pages, spd.pages);
1666 index += spd.nr_pages;
1667 error = 0;
1668
1669 while (spd.nr_pages < nr_pages) {
1670 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1671 if (error)
1672 break;
1673 unlock_page(page);
1674 spd.pages[spd.nr_pages++] = page;
1675 index++;
1676 }
1677
1678 index = *ppos >> PAGE_CACHE_SHIFT;
1679 nr_pages = spd.nr_pages;
1680 spd.nr_pages = 0;
1681
1682 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1683 unsigned int this_len;
1684
1685 if (!len)
1686 break;
1687
1688 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1689 page = spd.pages[page_nr];
1690
1691 if (!PageUptodate(page) || page->mapping != mapping) {
1692 error = shmem_getpage(inode, index, &page,
1693 SGP_CACHE, NULL);
1694 if (error)
1695 break;
1696 unlock_page(page);
1697 page_cache_release(spd.pages[page_nr]);
1698 spd.pages[page_nr] = page;
1699 }
1700
1701 isize = i_size_read(inode);
1702 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1703 if (unlikely(!isize || index > end_index))
1704 break;
1705
1706 if (end_index == index) {
1707 unsigned int plen;
1708
1709 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710 if (plen <= loff)
1711 break;
1712
1713 this_len = min(this_len, plen - loff);
1714 len = this_len;
1715 }
1716
1717 spd.partial[page_nr].offset = loff;
1718 spd.partial[page_nr].len = this_len;
1719 len -= this_len;
1720 loff = 0;
1721 spd.nr_pages++;
1722 index++;
1723 }
1724
1725 while (page_nr < nr_pages)
1726 page_cache_release(spd.pages[page_nr++]);
1727
1728 if (spd.nr_pages)
1729 error = splice_to_pipe(pipe, &spd);
1730
1731 splice_shrink_spd(&spd);
1732
1733 if (error > 0) {
1734 *ppos += error;
1735 file_accessed(in);
1736 }
1737 return error;
1738 }
1739
1740 /*
1741 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1742 */
1743 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1744 pgoff_t index, pgoff_t end, int whence)
1745 {
1746 struct page *page;
1747 struct pagevec pvec;
1748 pgoff_t indices[PAGEVEC_SIZE];
1749 bool done = false;
1750 int i;
1751
1752 pagevec_init(&pvec, 0);
1753 pvec.nr = 1; /* start small: we may be there already */
1754 while (!done) {
1755 pvec.nr = find_get_entries(mapping, index,
1756 pvec.nr, pvec.pages, indices);
1757 if (!pvec.nr) {
1758 if (whence == SEEK_DATA)
1759 index = end;
1760 break;
1761 }
1762 for (i = 0; i < pvec.nr; i++, index++) {
1763 if (index < indices[i]) {
1764 if (whence == SEEK_HOLE) {
1765 done = true;
1766 break;
1767 }
1768 index = indices[i];
1769 }
1770 page = pvec.pages[i];
1771 if (page && !radix_tree_exceptional_entry(page)) {
1772 if (!PageUptodate(page))
1773 page = NULL;
1774 }
1775 if (index >= end ||
1776 (page && whence == SEEK_DATA) ||
1777 (!page && whence == SEEK_HOLE)) {
1778 done = true;
1779 break;
1780 }
1781 }
1782 pagevec_remove_exceptionals(&pvec);
1783 pagevec_release(&pvec);
1784 pvec.nr = PAGEVEC_SIZE;
1785 cond_resched();
1786 }
1787 return index;
1788 }
1789
1790 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1791 {
1792 struct address_space *mapping = file->f_mapping;
1793 struct inode *inode = mapping->host;
1794 pgoff_t start, end;
1795 loff_t new_offset;
1796
1797 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1798 return generic_file_llseek_size(file, offset, whence,
1799 MAX_LFS_FILESIZE, i_size_read(inode));
1800 mutex_lock(&inode->i_mutex);
1801 /* We're holding i_mutex so we can access i_size directly */
1802
1803 if (offset < 0)
1804 offset = -EINVAL;
1805 else if (offset >= inode->i_size)
1806 offset = -ENXIO;
1807 else {
1808 start = offset >> PAGE_CACHE_SHIFT;
1809 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1810 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1811 new_offset <<= PAGE_CACHE_SHIFT;
1812 if (new_offset > offset) {
1813 if (new_offset < inode->i_size)
1814 offset = new_offset;
1815 else if (whence == SEEK_DATA)
1816 offset = -ENXIO;
1817 else
1818 offset = inode->i_size;
1819 }
1820 }
1821
1822 if (offset >= 0)
1823 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1824 mutex_unlock(&inode->i_mutex);
1825 return offset;
1826 }
1827
1828 /*
1829 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1830 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1831 */
1832 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1833 #define LAST_SCAN 4 /* about 150ms max */
1834
1835 static void shmem_tag_pins(struct address_space *mapping)
1836 {
1837 struct radix_tree_iter iter;
1838 void **slot;
1839 pgoff_t start;
1840 struct page *page;
1841
1842 lru_add_drain();
1843 start = 0;
1844 rcu_read_lock();
1845
1846 restart:
1847 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1848 page = radix_tree_deref_slot(slot);
1849 if (!page || radix_tree_exception(page)) {
1850 if (radix_tree_deref_retry(page))
1851 goto restart;
1852 } else if (page_count(page) - page_mapcount(page) > 1) {
1853 spin_lock_irq(&mapping->tree_lock);
1854 radix_tree_tag_set(&mapping->page_tree, iter.index,
1855 SHMEM_TAG_PINNED);
1856 spin_unlock_irq(&mapping->tree_lock);
1857 }
1858
1859 if (need_resched()) {
1860 cond_resched_rcu();
1861 start = iter.index + 1;
1862 goto restart;
1863 }
1864 }
1865 rcu_read_unlock();
1866 }
1867
1868 /*
1869 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1870 * via get_user_pages(), drivers might have some pending I/O without any active
1871 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1872 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1873 * them to be dropped.
1874 * The caller must guarantee that no new user will acquire writable references
1875 * to those pages to avoid races.
1876 */
1877 static int shmem_wait_for_pins(struct address_space *mapping)
1878 {
1879 struct radix_tree_iter iter;
1880 void **slot;
1881 pgoff_t start;
1882 struct page *page;
1883 int error, scan;
1884
1885 shmem_tag_pins(mapping);
1886
1887 error = 0;
1888 for (scan = 0; scan <= LAST_SCAN; scan++) {
1889 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1890 break;
1891
1892 if (!scan)
1893 lru_add_drain_all();
1894 else if (schedule_timeout_killable((HZ << scan) / 200))
1895 scan = LAST_SCAN;
1896
1897 start = 0;
1898 rcu_read_lock();
1899 restart:
1900 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1901 start, SHMEM_TAG_PINNED) {
1902
1903 page = radix_tree_deref_slot(slot);
1904 if (radix_tree_exception(page)) {
1905 if (radix_tree_deref_retry(page))
1906 goto restart;
1907
1908 page = NULL;
1909 }
1910
1911 if (page &&
1912 page_count(page) - page_mapcount(page) != 1) {
1913 if (scan < LAST_SCAN)
1914 goto continue_resched;
1915
1916 /*
1917 * On the last scan, we clean up all those tags
1918 * we inserted; but make a note that we still
1919 * found pages pinned.
1920 */
1921 error = -EBUSY;
1922 }
1923
1924 spin_lock_irq(&mapping->tree_lock);
1925 radix_tree_tag_clear(&mapping->page_tree,
1926 iter.index, SHMEM_TAG_PINNED);
1927 spin_unlock_irq(&mapping->tree_lock);
1928 continue_resched:
1929 if (need_resched()) {
1930 cond_resched_rcu();
1931 start = iter.index + 1;
1932 goto restart;
1933 }
1934 }
1935 rcu_read_unlock();
1936 }
1937
1938 return error;
1939 }
1940
1941 #define F_ALL_SEALS (F_SEAL_SEAL | \
1942 F_SEAL_SHRINK | \
1943 F_SEAL_GROW | \
1944 F_SEAL_WRITE)
1945
1946 int shmem_add_seals(struct file *file, unsigned int seals)
1947 {
1948 struct inode *inode = file_inode(file);
1949 struct shmem_inode_info *info = SHMEM_I(inode);
1950 int error;
1951
1952 /*
1953 * SEALING
1954 * Sealing allows multiple parties to share a shmem-file but restrict
1955 * access to a specific subset of file operations. Seals can only be
1956 * added, but never removed. This way, mutually untrusted parties can
1957 * share common memory regions with a well-defined policy. A malicious
1958 * peer can thus never perform unwanted operations on a shared object.
1959 *
1960 * Seals are only supported on special shmem-files and always affect
1961 * the whole underlying inode. Once a seal is set, it may prevent some
1962 * kinds of access to the file. Currently, the following seals are
1963 * defined:
1964 * SEAL_SEAL: Prevent further seals from being set on this file
1965 * SEAL_SHRINK: Prevent the file from shrinking
1966 * SEAL_GROW: Prevent the file from growing
1967 * SEAL_WRITE: Prevent write access to the file
1968 *
1969 * As we don't require any trust relationship between two parties, we
1970 * must prevent seals from being removed. Therefore, sealing a file
1971 * only adds a given set of seals to the file, it never touches
1972 * existing seals. Furthermore, the "setting seals"-operation can be
1973 * sealed itself, which basically prevents any further seal from being
1974 * added.
1975 *
1976 * Semantics of sealing are only defined on volatile files. Only
1977 * anonymous shmem files support sealing. More importantly, seals are
1978 * never written to disk. Therefore, there's no plan to support it on
1979 * other file types.
1980 */
1981
1982 if (file->f_op != &shmem_file_operations)
1983 return -EINVAL;
1984 if (!(file->f_mode & FMODE_WRITE))
1985 return -EPERM;
1986 if (seals & ~(unsigned int)F_ALL_SEALS)
1987 return -EINVAL;
1988
1989 mutex_lock(&inode->i_mutex);
1990
1991 if (info->seals & F_SEAL_SEAL) {
1992 error = -EPERM;
1993 goto unlock;
1994 }
1995
1996 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
1997 error = mapping_deny_writable(file->f_mapping);
1998 if (error)
1999 goto unlock;
2000
2001 error = shmem_wait_for_pins(file->f_mapping);
2002 if (error) {
2003 mapping_allow_writable(file->f_mapping);
2004 goto unlock;
2005 }
2006 }
2007
2008 info->seals |= seals;
2009 error = 0;
2010
2011 unlock:
2012 mutex_unlock(&inode->i_mutex);
2013 return error;
2014 }
2015 EXPORT_SYMBOL_GPL(shmem_add_seals);
2016
2017 int shmem_get_seals(struct file *file)
2018 {
2019 if (file->f_op != &shmem_file_operations)
2020 return -EINVAL;
2021
2022 return SHMEM_I(file_inode(file))->seals;
2023 }
2024 EXPORT_SYMBOL_GPL(shmem_get_seals);
2025
2026 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2027 {
2028 long error;
2029
2030 switch (cmd) {
2031 case F_ADD_SEALS:
2032 /* disallow upper 32bit */
2033 if (arg > UINT_MAX)
2034 return -EINVAL;
2035
2036 error = shmem_add_seals(file, arg);
2037 break;
2038 case F_GET_SEALS:
2039 error = shmem_get_seals(file);
2040 break;
2041 default:
2042 error = -EINVAL;
2043 break;
2044 }
2045
2046 return error;
2047 }
2048
2049 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2050 loff_t len)
2051 {
2052 struct inode *inode = file_inode(file);
2053 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2054 struct shmem_inode_info *info = SHMEM_I(inode);
2055 struct shmem_falloc shmem_falloc;
2056 pgoff_t start, index, end;
2057 int error;
2058
2059 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2060 return -EOPNOTSUPP;
2061
2062 mutex_lock(&inode->i_mutex);
2063
2064 if (mode & FALLOC_FL_PUNCH_HOLE) {
2065 struct address_space *mapping = file->f_mapping;
2066 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2067 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2068 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2069
2070 /* protected by i_mutex */
2071 if (info->seals & F_SEAL_WRITE) {
2072 error = -EPERM;
2073 goto out;
2074 }
2075
2076 shmem_falloc.waitq = &shmem_falloc_waitq;
2077 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2078 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2079 spin_lock(&inode->i_lock);
2080 inode->i_private = &shmem_falloc;
2081 spin_unlock(&inode->i_lock);
2082
2083 if ((u64)unmap_end > (u64)unmap_start)
2084 unmap_mapping_range(mapping, unmap_start,
2085 1 + unmap_end - unmap_start, 0);
2086 shmem_truncate_range(inode, offset, offset + len - 1);
2087 /* No need to unmap again: hole-punching leaves COWed pages */
2088
2089 spin_lock(&inode->i_lock);
2090 inode->i_private = NULL;
2091 wake_up_all(&shmem_falloc_waitq);
2092 spin_unlock(&inode->i_lock);
2093 error = 0;
2094 goto out;
2095 }
2096
2097 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2098 error = inode_newsize_ok(inode, offset + len);
2099 if (error)
2100 goto out;
2101
2102 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2103 error = -EPERM;
2104 goto out;
2105 }
2106
2107 start = offset >> PAGE_CACHE_SHIFT;
2108 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2109 /* Try to avoid a swapstorm if len is impossible to satisfy */
2110 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2111 error = -ENOSPC;
2112 goto out;
2113 }
2114
2115 shmem_falloc.waitq = NULL;
2116 shmem_falloc.start = start;
2117 shmem_falloc.next = start;
2118 shmem_falloc.nr_falloced = 0;
2119 shmem_falloc.nr_unswapped = 0;
2120 spin_lock(&inode->i_lock);
2121 inode->i_private = &shmem_falloc;
2122 spin_unlock(&inode->i_lock);
2123
2124 for (index = start; index < end; index++) {
2125 struct page *page;
2126
2127 /*
2128 * Good, the fallocate(2) manpage permits EINTR: we may have
2129 * been interrupted because we are using up too much memory.
2130 */
2131 if (signal_pending(current))
2132 error = -EINTR;
2133 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2134 error = -ENOMEM;
2135 else
2136 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2137 NULL);
2138 if (error) {
2139 /* Remove the !PageUptodate pages we added */
2140 shmem_undo_range(inode,
2141 (loff_t)start << PAGE_CACHE_SHIFT,
2142 (loff_t)index << PAGE_CACHE_SHIFT, true);
2143 goto undone;
2144 }
2145
2146 /*
2147 * Inform shmem_writepage() how far we have reached.
2148 * No need for lock or barrier: we have the page lock.
2149 */
2150 shmem_falloc.next++;
2151 if (!PageUptodate(page))
2152 shmem_falloc.nr_falloced++;
2153
2154 /*
2155 * If !PageUptodate, leave it that way so that freeable pages
2156 * can be recognized if we need to rollback on error later.
2157 * But set_page_dirty so that memory pressure will swap rather
2158 * than free the pages we are allocating (and SGP_CACHE pages
2159 * might still be clean: we now need to mark those dirty too).
2160 */
2161 set_page_dirty(page);
2162 unlock_page(page);
2163 page_cache_release(page);
2164 cond_resched();
2165 }
2166
2167 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2168 i_size_write(inode, offset + len);
2169 inode->i_ctime = CURRENT_TIME;
2170 undone:
2171 spin_lock(&inode->i_lock);
2172 inode->i_private = NULL;
2173 spin_unlock(&inode->i_lock);
2174 out:
2175 mutex_unlock(&inode->i_mutex);
2176 return error;
2177 }
2178
2179 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2180 {
2181 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2182
2183 buf->f_type = TMPFS_MAGIC;
2184 buf->f_bsize = PAGE_CACHE_SIZE;
2185 buf->f_namelen = NAME_MAX;
2186 if (sbinfo->max_blocks) {
2187 buf->f_blocks = sbinfo->max_blocks;
2188 buf->f_bavail =
2189 buf->f_bfree = sbinfo->max_blocks -
2190 percpu_counter_sum(&sbinfo->used_blocks);
2191 }
2192 if (sbinfo->max_inodes) {
2193 buf->f_files = sbinfo->max_inodes;
2194 buf->f_ffree = sbinfo->free_inodes;
2195 }
2196 /* else leave those fields 0 like simple_statfs */
2197 return 0;
2198 }
2199
2200 /*
2201 * File creation. Allocate an inode, and we're done..
2202 */
2203 static int
2204 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2205 {
2206 struct inode *inode;
2207 int error = -ENOSPC;
2208
2209 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2210 if (inode) {
2211 error = simple_acl_create(dir, inode);
2212 if (error)
2213 goto out_iput;
2214 error = security_inode_init_security(inode, dir,
2215 &dentry->d_name,
2216 shmem_initxattrs, NULL);
2217 if (error && error != -EOPNOTSUPP)
2218 goto out_iput;
2219
2220 error = 0;
2221 dir->i_size += BOGO_DIRENT_SIZE;
2222 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2223 d_instantiate(dentry, inode);
2224 dget(dentry); /* Extra count - pin the dentry in core */
2225 }
2226 return error;
2227 out_iput:
2228 iput(inode);
2229 return error;
2230 }
2231
2232 static int
2233 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2234 {
2235 struct inode *inode;
2236 int error = -ENOSPC;
2237
2238 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2239 if (inode) {
2240 error = security_inode_init_security(inode, dir,
2241 NULL,
2242 shmem_initxattrs, NULL);
2243 if (error && error != -EOPNOTSUPP)
2244 goto out_iput;
2245 error = simple_acl_create(dir, inode);
2246 if (error)
2247 goto out_iput;
2248 d_tmpfile(dentry, inode);
2249 }
2250 return error;
2251 out_iput:
2252 iput(inode);
2253 return error;
2254 }
2255
2256 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2257 {
2258 int error;
2259
2260 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2261 return error;
2262 inc_nlink(dir);
2263 return 0;
2264 }
2265
2266 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2267 bool excl)
2268 {
2269 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2270 }
2271
2272 /*
2273 * Link a file..
2274 */
2275 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2276 {
2277 struct inode *inode = old_dentry->d_inode;
2278 int ret;
2279
2280 /*
2281 * No ordinary (disk based) filesystem counts links as inodes;
2282 * but each new link needs a new dentry, pinning lowmem, and
2283 * tmpfs dentries cannot be pruned until they are unlinked.
2284 */
2285 ret = shmem_reserve_inode(inode->i_sb);
2286 if (ret)
2287 goto out;
2288
2289 dir->i_size += BOGO_DIRENT_SIZE;
2290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2291 inc_nlink(inode);
2292 ihold(inode); /* New dentry reference */
2293 dget(dentry); /* Extra pinning count for the created dentry */
2294 d_instantiate(dentry, inode);
2295 out:
2296 return ret;
2297 }
2298
2299 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2300 {
2301 struct inode *inode = dentry->d_inode;
2302
2303 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2304 shmem_free_inode(inode->i_sb);
2305
2306 dir->i_size -= BOGO_DIRENT_SIZE;
2307 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2308 drop_nlink(inode);
2309 dput(dentry); /* Undo the count from "create" - this does all the work */
2310 return 0;
2311 }
2312
2313 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2314 {
2315 if (!simple_empty(dentry))
2316 return -ENOTEMPTY;
2317
2318 drop_nlink(dentry->d_inode);
2319 drop_nlink(dir);
2320 return shmem_unlink(dir, dentry);
2321 }
2322
2323 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2324 {
2325 bool old_is_dir = d_is_dir(old_dentry);
2326 bool new_is_dir = d_is_dir(new_dentry);
2327
2328 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2329 if (old_is_dir) {
2330 drop_nlink(old_dir);
2331 inc_nlink(new_dir);
2332 } else {
2333 drop_nlink(new_dir);
2334 inc_nlink(old_dir);
2335 }
2336 }
2337 old_dir->i_ctime = old_dir->i_mtime =
2338 new_dir->i_ctime = new_dir->i_mtime =
2339 old_dentry->d_inode->i_ctime =
2340 new_dentry->d_inode->i_ctime = CURRENT_TIME;
2341
2342 return 0;
2343 }
2344
2345 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2346 {
2347 struct dentry *whiteout;
2348 int error;
2349
2350 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2351 if (!whiteout)
2352 return -ENOMEM;
2353
2354 error = shmem_mknod(old_dir, whiteout,
2355 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2356 dput(whiteout);
2357 if (error)
2358 return error;
2359
2360 /*
2361 * Cheat and hash the whiteout while the old dentry is still in
2362 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2363 *
2364 * d_lookup() will consistently find one of them at this point,
2365 * not sure which one, but that isn't even important.
2366 */
2367 d_rehash(whiteout);
2368 return 0;
2369 }
2370
2371 /*
2372 * The VFS layer already does all the dentry stuff for rename,
2373 * we just have to decrement the usage count for the target if
2374 * it exists so that the VFS layer correctly free's it when it
2375 * gets overwritten.
2376 */
2377 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2378 {
2379 struct inode *inode = old_dentry->d_inode;
2380 int they_are_dirs = S_ISDIR(inode->i_mode);
2381
2382 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2383 return -EINVAL;
2384
2385 if (flags & RENAME_EXCHANGE)
2386 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2387
2388 if (!simple_empty(new_dentry))
2389 return -ENOTEMPTY;
2390
2391 if (flags & RENAME_WHITEOUT) {
2392 int error;
2393
2394 error = shmem_whiteout(old_dir, old_dentry);
2395 if (error)
2396 return error;
2397 }
2398
2399 if (new_dentry->d_inode) {
2400 (void) shmem_unlink(new_dir, new_dentry);
2401 if (they_are_dirs) {
2402 drop_nlink(new_dentry->d_inode);
2403 drop_nlink(old_dir);
2404 }
2405 } else if (they_are_dirs) {
2406 drop_nlink(old_dir);
2407 inc_nlink(new_dir);
2408 }
2409
2410 old_dir->i_size -= BOGO_DIRENT_SIZE;
2411 new_dir->i_size += BOGO_DIRENT_SIZE;
2412 old_dir->i_ctime = old_dir->i_mtime =
2413 new_dir->i_ctime = new_dir->i_mtime =
2414 inode->i_ctime = CURRENT_TIME;
2415 return 0;
2416 }
2417
2418 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2419 {
2420 int error;
2421 int len;
2422 struct inode *inode;
2423 struct page *page;
2424 char *kaddr;
2425 struct shmem_inode_info *info;
2426
2427 len = strlen(symname) + 1;
2428 if (len > PAGE_CACHE_SIZE)
2429 return -ENAMETOOLONG;
2430
2431 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2432 if (!inode)
2433 return -ENOSPC;
2434
2435 error = security_inode_init_security(inode, dir, &dentry->d_name,
2436 shmem_initxattrs, NULL);
2437 if (error) {
2438 if (error != -EOPNOTSUPP) {
2439 iput(inode);
2440 return error;
2441 }
2442 error = 0;
2443 }
2444
2445 info = SHMEM_I(inode);
2446 inode->i_size = len-1;
2447 if (len <= SHORT_SYMLINK_LEN) {
2448 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2449 if (!info->symlink) {
2450 iput(inode);
2451 return -ENOMEM;
2452 }
2453 inode->i_op = &shmem_short_symlink_operations;
2454 } else {
2455 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2456 if (error) {
2457 iput(inode);
2458 return error;
2459 }
2460 inode->i_mapping->a_ops = &shmem_aops;
2461 inode->i_op = &shmem_symlink_inode_operations;
2462 kaddr = kmap_atomic(page);
2463 memcpy(kaddr, symname, len);
2464 kunmap_atomic(kaddr);
2465 SetPageUptodate(page);
2466 set_page_dirty(page);
2467 unlock_page(page);
2468 page_cache_release(page);
2469 }
2470 dir->i_size += BOGO_DIRENT_SIZE;
2471 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2472 d_instantiate(dentry, inode);
2473 dget(dentry);
2474 return 0;
2475 }
2476
2477 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2478 {
2479 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2480 return NULL;
2481 }
2482
2483 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2484 {
2485 struct page *page = NULL;
2486 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2487 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2488 if (page)
2489 unlock_page(page);
2490 return page;
2491 }
2492
2493 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2494 {
2495 if (!IS_ERR(nd_get_link(nd))) {
2496 struct page *page = cookie;
2497 kunmap(page);
2498 mark_page_accessed(page);
2499 page_cache_release(page);
2500 }
2501 }
2502
2503 #ifdef CONFIG_TMPFS_XATTR
2504 /*
2505 * Superblocks without xattr inode operations may get some security.* xattr
2506 * support from the LSM "for free". As soon as we have any other xattrs
2507 * like ACLs, we also need to implement the security.* handlers at
2508 * filesystem level, though.
2509 */
2510
2511 /*
2512 * Callback for security_inode_init_security() for acquiring xattrs.
2513 */
2514 static int shmem_initxattrs(struct inode *inode,
2515 const struct xattr *xattr_array,
2516 void *fs_info)
2517 {
2518 struct shmem_inode_info *info = SHMEM_I(inode);
2519 const struct xattr *xattr;
2520 struct simple_xattr *new_xattr;
2521 size_t len;
2522
2523 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2524 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2525 if (!new_xattr)
2526 return -ENOMEM;
2527
2528 len = strlen(xattr->name) + 1;
2529 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2530 GFP_KERNEL);
2531 if (!new_xattr->name) {
2532 kfree(new_xattr);
2533 return -ENOMEM;
2534 }
2535
2536 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2537 XATTR_SECURITY_PREFIX_LEN);
2538 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2539 xattr->name, len);
2540
2541 simple_xattr_list_add(&info->xattrs, new_xattr);
2542 }
2543
2544 return 0;
2545 }
2546
2547 static const struct xattr_handler *shmem_xattr_handlers[] = {
2548 #ifdef CONFIG_TMPFS_POSIX_ACL
2549 &posix_acl_access_xattr_handler,
2550 &posix_acl_default_xattr_handler,
2551 #endif
2552 NULL
2553 };
2554
2555 static int shmem_xattr_validate(const char *name)
2556 {
2557 struct { const char *prefix; size_t len; } arr[] = {
2558 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2559 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2560 };
2561 int i;
2562
2563 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2564 size_t preflen = arr[i].len;
2565 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2566 if (!name[preflen])
2567 return -EINVAL;
2568 return 0;
2569 }
2570 }
2571 return -EOPNOTSUPP;
2572 }
2573
2574 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2575 void *buffer, size_t size)
2576 {
2577 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2578 int err;
2579
2580 /*
2581 * If this is a request for a synthetic attribute in the system.*
2582 * namespace use the generic infrastructure to resolve a handler
2583 * for it via sb->s_xattr.
2584 */
2585 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2586 return generic_getxattr(dentry, name, buffer, size);
2587
2588 err = shmem_xattr_validate(name);
2589 if (err)
2590 return err;
2591
2592 return simple_xattr_get(&info->xattrs, name, buffer, size);
2593 }
2594
2595 static int shmem_setxattr(struct dentry *dentry, const char *name,
2596 const void *value, size_t size, int flags)
2597 {
2598 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2599 int err;
2600
2601 /*
2602 * If this is a request for a synthetic attribute in the system.*
2603 * namespace use the generic infrastructure to resolve a handler
2604 * for it via sb->s_xattr.
2605 */
2606 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2607 return generic_setxattr(dentry, name, value, size, flags);
2608
2609 err = shmem_xattr_validate(name);
2610 if (err)
2611 return err;
2612
2613 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2614 }
2615
2616 static int shmem_removexattr(struct dentry *dentry, const char *name)
2617 {
2618 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2619 int err;
2620
2621 /*
2622 * If this is a request for a synthetic attribute in the system.*
2623 * namespace use the generic infrastructure to resolve a handler
2624 * for it via sb->s_xattr.
2625 */
2626 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2627 return generic_removexattr(dentry, name);
2628
2629 err = shmem_xattr_validate(name);
2630 if (err)
2631 return err;
2632
2633 return simple_xattr_remove(&info->xattrs, name);
2634 }
2635
2636 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2637 {
2638 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2639 return simple_xattr_list(&info->xattrs, buffer, size);
2640 }
2641 #endif /* CONFIG_TMPFS_XATTR */
2642
2643 static const struct inode_operations shmem_short_symlink_operations = {
2644 .readlink = generic_readlink,
2645 .follow_link = shmem_follow_short_symlink,
2646 #ifdef CONFIG_TMPFS_XATTR
2647 .setxattr = shmem_setxattr,
2648 .getxattr = shmem_getxattr,
2649 .listxattr = shmem_listxattr,
2650 .removexattr = shmem_removexattr,
2651 #endif
2652 };
2653
2654 static const struct inode_operations shmem_symlink_inode_operations = {
2655 .readlink = generic_readlink,
2656 .follow_link = shmem_follow_link,
2657 .put_link = shmem_put_link,
2658 #ifdef CONFIG_TMPFS_XATTR
2659 .setxattr = shmem_setxattr,
2660 .getxattr = shmem_getxattr,
2661 .listxattr = shmem_listxattr,
2662 .removexattr = shmem_removexattr,
2663 #endif
2664 };
2665
2666 static struct dentry *shmem_get_parent(struct dentry *child)
2667 {
2668 return ERR_PTR(-ESTALE);
2669 }
2670
2671 static int shmem_match(struct inode *ino, void *vfh)
2672 {
2673 __u32 *fh = vfh;
2674 __u64 inum = fh[2];
2675 inum = (inum << 32) | fh[1];
2676 return ino->i_ino == inum && fh[0] == ino->i_generation;
2677 }
2678
2679 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2680 struct fid *fid, int fh_len, int fh_type)
2681 {
2682 struct inode *inode;
2683 struct dentry *dentry = NULL;
2684 u64 inum;
2685
2686 if (fh_len < 3)
2687 return NULL;
2688
2689 inum = fid->raw[2];
2690 inum = (inum << 32) | fid->raw[1];
2691
2692 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2693 shmem_match, fid->raw);
2694 if (inode) {
2695 dentry = d_find_alias(inode);
2696 iput(inode);
2697 }
2698
2699 return dentry;
2700 }
2701
2702 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2703 struct inode *parent)
2704 {
2705 if (*len < 3) {
2706 *len = 3;
2707 return FILEID_INVALID;
2708 }
2709
2710 if (inode_unhashed(inode)) {
2711 /* Unfortunately insert_inode_hash is not idempotent,
2712 * so as we hash inodes here rather than at creation
2713 * time, we need a lock to ensure we only try
2714 * to do it once
2715 */
2716 static DEFINE_SPINLOCK(lock);
2717 spin_lock(&lock);
2718 if (inode_unhashed(inode))
2719 __insert_inode_hash(inode,
2720 inode->i_ino + inode->i_generation);
2721 spin_unlock(&lock);
2722 }
2723
2724 fh[0] = inode->i_generation;
2725 fh[1] = inode->i_ino;
2726 fh[2] = ((__u64)inode->i_ino) >> 32;
2727
2728 *len = 3;
2729 return 1;
2730 }
2731
2732 static const struct export_operations shmem_export_ops = {
2733 .get_parent = shmem_get_parent,
2734 .encode_fh = shmem_encode_fh,
2735 .fh_to_dentry = shmem_fh_to_dentry,
2736 };
2737
2738 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2739 bool remount)
2740 {
2741 char *this_char, *value, *rest;
2742 struct mempolicy *mpol = NULL;
2743 uid_t uid;
2744 gid_t gid;
2745
2746 while (options != NULL) {
2747 this_char = options;
2748 for (;;) {
2749 /*
2750 * NUL-terminate this option: unfortunately,
2751 * mount options form a comma-separated list,
2752 * but mpol's nodelist may also contain commas.
2753 */
2754 options = strchr(options, ',');
2755 if (options == NULL)
2756 break;
2757 options++;
2758 if (!isdigit(*options)) {
2759 options[-1] = '\0';
2760 break;
2761 }
2762 }
2763 if (!*this_char)
2764 continue;
2765 if ((value = strchr(this_char,'=')) != NULL) {
2766 *value++ = 0;
2767 } else {
2768 printk(KERN_ERR
2769 "tmpfs: No value for mount option '%s'\n",
2770 this_char);
2771 goto error;
2772 }
2773
2774 if (!strcmp(this_char,"size")) {
2775 unsigned long long size;
2776 size = memparse(value,&rest);
2777 if (*rest == '%') {
2778 size <<= PAGE_SHIFT;
2779 size *= totalram_pages;
2780 do_div(size, 100);
2781 rest++;
2782 }
2783 if (*rest)
2784 goto bad_val;
2785 sbinfo->max_blocks =
2786 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2787 } else if (!strcmp(this_char,"nr_blocks")) {
2788 sbinfo->max_blocks = memparse(value, &rest);
2789 if (*rest)
2790 goto bad_val;
2791 } else if (!strcmp(this_char,"nr_inodes")) {
2792 sbinfo->max_inodes = memparse(value, &rest);
2793 if (*rest)
2794 goto bad_val;
2795 } else if (!strcmp(this_char,"mode")) {
2796 if (remount)
2797 continue;
2798 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2799 if (*rest)
2800 goto bad_val;
2801 } else if (!strcmp(this_char,"uid")) {
2802 if (remount)
2803 continue;
2804 uid = simple_strtoul(value, &rest, 0);
2805 if (*rest)
2806 goto bad_val;
2807 sbinfo->uid = make_kuid(current_user_ns(), uid);
2808 if (!uid_valid(sbinfo->uid))
2809 goto bad_val;
2810 } else if (!strcmp(this_char,"gid")) {
2811 if (remount)
2812 continue;
2813 gid = simple_strtoul(value, &rest, 0);
2814 if (*rest)
2815 goto bad_val;
2816 sbinfo->gid = make_kgid(current_user_ns(), gid);
2817 if (!gid_valid(sbinfo->gid))
2818 goto bad_val;
2819 } else if (!strcmp(this_char,"mpol")) {
2820 mpol_put(mpol);
2821 mpol = NULL;
2822 if (mpol_parse_str(value, &mpol))
2823 goto bad_val;
2824 } else {
2825 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2826 this_char);
2827 goto error;
2828 }
2829 }
2830 sbinfo->mpol = mpol;
2831 return 0;
2832
2833 bad_val:
2834 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2835 value, this_char);
2836 error:
2837 mpol_put(mpol);
2838 return 1;
2839
2840 }
2841
2842 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2843 {
2844 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2845 struct shmem_sb_info config = *sbinfo;
2846 unsigned long inodes;
2847 int error = -EINVAL;
2848
2849 config.mpol = NULL;
2850 if (shmem_parse_options(data, &config, true))
2851 return error;
2852
2853 spin_lock(&sbinfo->stat_lock);
2854 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2855 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2856 goto out;
2857 if (config.max_inodes < inodes)
2858 goto out;
2859 /*
2860 * Those tests disallow limited->unlimited while any are in use;
2861 * but we must separately disallow unlimited->limited, because
2862 * in that case we have no record of how much is already in use.
2863 */
2864 if (config.max_blocks && !sbinfo->max_blocks)
2865 goto out;
2866 if (config.max_inodes && !sbinfo->max_inodes)
2867 goto out;
2868
2869 error = 0;
2870 sbinfo->max_blocks = config.max_blocks;
2871 sbinfo->max_inodes = config.max_inodes;
2872 sbinfo->free_inodes = config.max_inodes - inodes;
2873
2874 /*
2875 * Preserve previous mempolicy unless mpol remount option was specified.
2876 */
2877 if (config.mpol) {
2878 mpol_put(sbinfo->mpol);
2879 sbinfo->mpol = config.mpol; /* transfers initial ref */
2880 }
2881 out:
2882 spin_unlock(&sbinfo->stat_lock);
2883 return error;
2884 }
2885
2886 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2887 {
2888 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2889
2890 if (sbinfo->max_blocks != shmem_default_max_blocks())
2891 seq_printf(seq, ",size=%luk",
2892 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2893 if (sbinfo->max_inodes != shmem_default_max_inodes())
2894 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2895 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2896 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2897 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2898 seq_printf(seq, ",uid=%u",
2899 from_kuid_munged(&init_user_ns, sbinfo->uid));
2900 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2901 seq_printf(seq, ",gid=%u",
2902 from_kgid_munged(&init_user_ns, sbinfo->gid));
2903 shmem_show_mpol(seq, sbinfo->mpol);
2904 return 0;
2905 }
2906
2907 #define MFD_NAME_PREFIX "memfd:"
2908 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2909 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2910
2911 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2912
2913 SYSCALL_DEFINE2(memfd_create,
2914 const char __user *, uname,
2915 unsigned int, flags)
2916 {
2917 struct shmem_inode_info *info;
2918 struct file *file;
2919 int fd, error;
2920 char *name;
2921 long len;
2922
2923 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2924 return -EINVAL;
2925
2926 /* length includes terminating zero */
2927 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2928 if (len <= 0)
2929 return -EFAULT;
2930 if (len > MFD_NAME_MAX_LEN + 1)
2931 return -EINVAL;
2932
2933 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2934 if (!name)
2935 return -ENOMEM;
2936
2937 strcpy(name, MFD_NAME_PREFIX);
2938 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2939 error = -EFAULT;
2940 goto err_name;
2941 }
2942
2943 /* terminating-zero may have changed after strnlen_user() returned */
2944 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2945 error = -EFAULT;
2946 goto err_name;
2947 }
2948
2949 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2950 if (fd < 0) {
2951 error = fd;
2952 goto err_name;
2953 }
2954
2955 file = shmem_file_setup(name, 0, VM_NORESERVE);
2956 if (IS_ERR(file)) {
2957 error = PTR_ERR(file);
2958 goto err_fd;
2959 }
2960 info = SHMEM_I(file_inode(file));
2961 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2962 file->f_flags |= O_RDWR | O_LARGEFILE;
2963 if (flags & MFD_ALLOW_SEALING)
2964 info->seals &= ~F_SEAL_SEAL;
2965
2966 fd_install(fd, file);
2967 kfree(name);
2968 return fd;
2969
2970 err_fd:
2971 put_unused_fd(fd);
2972 err_name:
2973 kfree(name);
2974 return error;
2975 }
2976
2977 #endif /* CONFIG_TMPFS */
2978
2979 static void shmem_put_super(struct super_block *sb)
2980 {
2981 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2982
2983 percpu_counter_destroy(&sbinfo->used_blocks);
2984 mpol_put(sbinfo->mpol);
2985 kfree(sbinfo);
2986 sb->s_fs_info = NULL;
2987 }
2988
2989 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2990 {
2991 struct inode *inode;
2992 struct shmem_sb_info *sbinfo;
2993 int err = -ENOMEM;
2994
2995 /* Round up to L1_CACHE_BYTES to resist false sharing */
2996 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2997 L1_CACHE_BYTES), GFP_KERNEL);
2998 if (!sbinfo)
2999 return -ENOMEM;
3000
3001 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3002 sbinfo->uid = current_fsuid();
3003 sbinfo->gid = current_fsgid();
3004 sb->s_fs_info = sbinfo;
3005
3006 #ifdef CONFIG_TMPFS
3007 /*
3008 * Per default we only allow half of the physical ram per
3009 * tmpfs instance, limiting inodes to one per page of lowmem;
3010 * but the internal instance is left unlimited.
3011 */
3012 if (!(sb->s_flags & MS_KERNMOUNT)) {
3013 sbinfo->max_blocks = shmem_default_max_blocks();
3014 sbinfo->max_inodes = shmem_default_max_inodes();
3015 if (shmem_parse_options(data, sbinfo, false)) {
3016 err = -EINVAL;
3017 goto failed;
3018 }
3019 } else {
3020 sb->s_flags |= MS_NOUSER;
3021 }
3022 sb->s_export_op = &shmem_export_ops;
3023 sb->s_flags |= MS_NOSEC;
3024 #else
3025 sb->s_flags |= MS_NOUSER;
3026 #endif
3027
3028 spin_lock_init(&sbinfo->stat_lock);
3029 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3030 goto failed;
3031 sbinfo->free_inodes = sbinfo->max_inodes;
3032
3033 sb->s_maxbytes = MAX_LFS_FILESIZE;
3034 sb->s_blocksize = PAGE_CACHE_SIZE;
3035 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3036 sb->s_magic = TMPFS_MAGIC;
3037 sb->s_op = &shmem_ops;
3038 sb->s_time_gran = 1;
3039 #ifdef CONFIG_TMPFS_XATTR
3040 sb->s_xattr = shmem_xattr_handlers;
3041 #endif
3042 #ifdef CONFIG_TMPFS_POSIX_ACL
3043 sb->s_flags |= MS_POSIXACL;
3044 #endif
3045
3046 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3047 if (!inode)
3048 goto failed;
3049 inode->i_uid = sbinfo->uid;
3050 inode->i_gid = sbinfo->gid;
3051 sb->s_root = d_make_root(inode);
3052 if (!sb->s_root)
3053 goto failed;
3054 return 0;
3055
3056 failed:
3057 shmem_put_super(sb);
3058 return err;
3059 }
3060
3061 static struct kmem_cache *shmem_inode_cachep;
3062
3063 static struct inode *shmem_alloc_inode(struct super_block *sb)
3064 {
3065 struct shmem_inode_info *info;
3066 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3067 if (!info)
3068 return NULL;
3069 return &info->vfs_inode;
3070 }
3071
3072 static void shmem_destroy_callback(struct rcu_head *head)
3073 {
3074 struct inode *inode = container_of(head, struct inode, i_rcu);
3075 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3076 }
3077
3078 static void shmem_destroy_inode(struct inode *inode)
3079 {
3080 if (S_ISREG(inode->i_mode))
3081 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3082 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3083 }
3084
3085 static void shmem_init_inode(void *foo)
3086 {
3087 struct shmem_inode_info *info = foo;
3088 inode_init_once(&info->vfs_inode);
3089 }
3090
3091 static int shmem_init_inodecache(void)
3092 {
3093 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3094 sizeof(struct shmem_inode_info),
3095 0, SLAB_PANIC, shmem_init_inode);
3096 return 0;
3097 }
3098
3099 static void shmem_destroy_inodecache(void)
3100 {
3101 kmem_cache_destroy(shmem_inode_cachep);
3102 }
3103
3104 static const struct address_space_operations shmem_aops = {
3105 .writepage = shmem_writepage,
3106 .set_page_dirty = __set_page_dirty_no_writeback,
3107 #ifdef CONFIG_TMPFS
3108 .write_begin = shmem_write_begin,
3109 .write_end = shmem_write_end,
3110 #endif
3111 #ifdef CONFIG_MIGRATION
3112 .migratepage = migrate_page,
3113 #endif
3114 .error_remove_page = generic_error_remove_page,
3115 };
3116
3117 static const struct file_operations shmem_file_operations = {
3118 .mmap = shmem_mmap,
3119 #ifdef CONFIG_TMPFS
3120 .llseek = shmem_file_llseek,
3121 .read = new_sync_read,
3122 .write = new_sync_write,
3123 .read_iter = shmem_file_read_iter,
3124 .write_iter = generic_file_write_iter,
3125 .fsync = noop_fsync,
3126 .splice_read = shmem_file_splice_read,
3127 .splice_write = iter_file_splice_write,
3128 .fallocate = shmem_fallocate,
3129 #endif
3130 };
3131
3132 static const struct inode_operations shmem_inode_operations = {
3133 .setattr = shmem_setattr,
3134 #ifdef CONFIG_TMPFS_XATTR
3135 .setxattr = shmem_setxattr,
3136 .getxattr = shmem_getxattr,
3137 .listxattr = shmem_listxattr,
3138 .removexattr = shmem_removexattr,
3139 .set_acl = simple_set_acl,
3140 #endif
3141 };
3142
3143 static const struct inode_operations shmem_dir_inode_operations = {
3144 #ifdef CONFIG_TMPFS
3145 .create = shmem_create,
3146 .lookup = simple_lookup,
3147 .link = shmem_link,
3148 .unlink = shmem_unlink,
3149 .symlink = shmem_symlink,
3150 .mkdir = shmem_mkdir,
3151 .rmdir = shmem_rmdir,
3152 .mknod = shmem_mknod,
3153 .rename2 = shmem_rename2,
3154 .tmpfile = shmem_tmpfile,
3155 #endif
3156 #ifdef CONFIG_TMPFS_XATTR
3157 .setxattr = shmem_setxattr,
3158 .getxattr = shmem_getxattr,
3159 .listxattr = shmem_listxattr,
3160 .removexattr = shmem_removexattr,
3161 #endif
3162 #ifdef CONFIG_TMPFS_POSIX_ACL
3163 .setattr = shmem_setattr,
3164 .set_acl = simple_set_acl,
3165 #endif
3166 };
3167
3168 static const struct inode_operations shmem_special_inode_operations = {
3169 #ifdef CONFIG_TMPFS_XATTR
3170 .setxattr = shmem_setxattr,
3171 .getxattr = shmem_getxattr,
3172 .listxattr = shmem_listxattr,
3173 .removexattr = shmem_removexattr,
3174 #endif
3175 #ifdef CONFIG_TMPFS_POSIX_ACL
3176 .setattr = shmem_setattr,
3177 .set_acl = simple_set_acl,
3178 #endif
3179 };
3180
3181 static const struct super_operations shmem_ops = {
3182 .alloc_inode = shmem_alloc_inode,
3183 .destroy_inode = shmem_destroy_inode,
3184 #ifdef CONFIG_TMPFS
3185 .statfs = shmem_statfs,
3186 .remount_fs = shmem_remount_fs,
3187 .show_options = shmem_show_options,
3188 #endif
3189 .evict_inode = shmem_evict_inode,
3190 .drop_inode = generic_delete_inode,
3191 .put_super = shmem_put_super,
3192 };
3193
3194 static const struct vm_operations_struct shmem_vm_ops = {
3195 .fault = shmem_fault,
3196 .map_pages = filemap_map_pages,
3197 #ifdef CONFIG_NUMA
3198 .set_policy = shmem_set_policy,
3199 .get_policy = shmem_get_policy,
3200 #endif
3201 };
3202
3203 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3204 int flags, const char *dev_name, void *data)
3205 {
3206 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3207 }
3208
3209 static struct file_system_type shmem_fs_type = {
3210 .owner = THIS_MODULE,
3211 .name = "tmpfs",
3212 .mount = shmem_mount,
3213 .kill_sb = kill_litter_super,
3214 .fs_flags = FS_USERNS_MOUNT,
3215 };
3216
3217 int __init shmem_init(void)
3218 {
3219 int error;
3220
3221 /* If rootfs called this, don't re-init */
3222 if (shmem_inode_cachep)
3223 return 0;
3224
3225 error = shmem_init_inodecache();
3226 if (error)
3227 goto out3;
3228
3229 error = register_filesystem(&shmem_fs_type);
3230 if (error) {
3231 printk(KERN_ERR "Could not register tmpfs\n");
3232 goto out2;
3233 }
3234
3235 shm_mnt = kern_mount(&shmem_fs_type);
3236 if (IS_ERR(shm_mnt)) {
3237 error = PTR_ERR(shm_mnt);
3238 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3239 goto out1;
3240 }
3241 return 0;
3242
3243 out1:
3244 unregister_filesystem(&shmem_fs_type);
3245 out2:
3246 shmem_destroy_inodecache();
3247 out3:
3248 shm_mnt = ERR_PTR(error);
3249 return error;
3250 }
3251
3252 #else /* !CONFIG_SHMEM */
3253
3254 /*
3255 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3256 *
3257 * This is intended for small system where the benefits of the full
3258 * shmem code (swap-backed and resource-limited) are outweighed by
3259 * their complexity. On systems without swap this code should be
3260 * effectively equivalent, but much lighter weight.
3261 */
3262
3263 static struct file_system_type shmem_fs_type = {
3264 .name = "tmpfs",
3265 .mount = ramfs_mount,
3266 .kill_sb = kill_litter_super,
3267 .fs_flags = FS_USERNS_MOUNT,
3268 };
3269
3270 int __init shmem_init(void)
3271 {
3272 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3273
3274 shm_mnt = kern_mount(&shmem_fs_type);
3275 BUG_ON(IS_ERR(shm_mnt));
3276
3277 return 0;
3278 }
3279
3280 int shmem_unuse(swp_entry_t swap, struct page *page)
3281 {
3282 return 0;
3283 }
3284
3285 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3286 {
3287 return 0;
3288 }
3289
3290 void shmem_unlock_mapping(struct address_space *mapping)
3291 {
3292 }
3293
3294 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3295 {
3296 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3297 }
3298 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3299
3300 #define shmem_vm_ops generic_file_vm_ops
3301 #define shmem_file_operations ramfs_file_operations
3302 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3303 #define shmem_acct_size(flags, size) 0
3304 #define shmem_unacct_size(flags, size) do {} while (0)
3305
3306 #endif /* CONFIG_SHMEM */
3307
3308 /* common code */
3309
3310 static struct dentry_operations anon_ops = {
3311 .d_dname = simple_dname
3312 };
3313
3314 static struct file *__shmem_file_setup(const char *name, loff_t size,
3315 unsigned long flags, unsigned int i_flags)
3316 {
3317 struct file *res;
3318 struct inode *inode;
3319 struct path path;
3320 struct super_block *sb;
3321 struct qstr this;
3322
3323 if (IS_ERR(shm_mnt))
3324 return ERR_CAST(shm_mnt);
3325
3326 if (size < 0 || size > MAX_LFS_FILESIZE)
3327 return ERR_PTR(-EINVAL);
3328
3329 if (shmem_acct_size(flags, size))
3330 return ERR_PTR(-ENOMEM);
3331
3332 res = ERR_PTR(-ENOMEM);
3333 this.name = name;
3334 this.len = strlen(name);
3335 this.hash = 0; /* will go */
3336 sb = shm_mnt->mnt_sb;
3337 path.mnt = mntget(shm_mnt);
3338 path.dentry = d_alloc_pseudo(sb, &this);
3339 if (!path.dentry)
3340 goto put_memory;
3341 d_set_d_op(path.dentry, &anon_ops);
3342
3343 res = ERR_PTR(-ENOSPC);
3344 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3345 if (!inode)
3346 goto put_memory;
3347
3348 inode->i_flags |= i_flags;
3349 d_instantiate(path.dentry, inode);
3350 inode->i_size = size;
3351 clear_nlink(inode); /* It is unlinked */
3352 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3353 if (IS_ERR(res))
3354 goto put_path;
3355
3356 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3357 &shmem_file_operations);
3358 if (IS_ERR(res))
3359 goto put_path;
3360
3361 return res;
3362
3363 put_memory:
3364 shmem_unacct_size(flags, size);
3365 put_path:
3366 path_put(&path);
3367 return res;
3368 }
3369
3370 /**
3371 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3372 * kernel internal. There will be NO LSM permission checks against the
3373 * underlying inode. So users of this interface must do LSM checks at a
3374 * higher layer. The one user is the big_key implementation. LSM checks
3375 * are provided at the key level rather than the inode level.
3376 * @name: name for dentry (to be seen in /proc/<pid>/maps
3377 * @size: size to be set for the file
3378 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3379 */
3380 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3381 {
3382 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3383 }
3384
3385 /**
3386 * shmem_file_setup - get an unlinked file living in tmpfs
3387 * @name: name for dentry (to be seen in /proc/<pid>/maps
3388 * @size: size to be set for the file
3389 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3390 */
3391 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3392 {
3393 return __shmem_file_setup(name, size, flags, 0);
3394 }
3395 EXPORT_SYMBOL_GPL(shmem_file_setup);
3396
3397 /**
3398 * shmem_zero_setup - setup a shared anonymous mapping
3399 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3400 */
3401 int shmem_zero_setup(struct vm_area_struct *vma)
3402 {
3403 struct file *file;
3404 loff_t size = vma->vm_end - vma->vm_start;
3405
3406 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3407 if (IS_ERR(file))
3408 return PTR_ERR(file);
3409
3410 if (vma->vm_file)
3411 fput(vma->vm_file);
3412 vma->vm_file = file;
3413 vma->vm_ops = &shmem_vm_ops;
3414 return 0;
3415 }
3416
3417 /**
3418 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3419 * @mapping: the page's address_space
3420 * @index: the page index
3421 * @gfp: the page allocator flags to use if allocating
3422 *
3423 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3424 * with any new page allocations done using the specified allocation flags.
3425 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3426 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3427 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3428 *
3429 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3430 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3431 */
3432 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3433 pgoff_t index, gfp_t gfp)
3434 {
3435 #ifdef CONFIG_SHMEM
3436 struct inode *inode = mapping->host;
3437 struct page *page;
3438 int error;
3439
3440 BUG_ON(mapping->a_ops != &shmem_aops);
3441 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3442 if (error)
3443 page = ERR_PTR(error);
3444 else
3445 unlock_page(page);
3446 return page;
3447 #else
3448 /*
3449 * The tiny !SHMEM case uses ramfs without swap
3450 */
3451 return read_cache_page_gfp(mapping, index, gfp);
3452 #endif
3453 }
3454 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.099609 seconds and 5 git commands to generate.