mm, CMA: clean-up CMA allocation error path
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238 * Need this for bootstrapping a per node allocator.
239 */
240 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_AC MAX_NUMNODES
244 #define SIZE_NODE (2 * MAX_NUMNODES)
245
246 static int drain_freelist(struct kmem_cache *cache,
247 struct kmem_cache_node *n, int tofree);
248 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 int node, struct list_head *list);
250 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252 static void cache_reap(struct work_struct *unused);
253
254 static int slab_early_init = 1;
255
256 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
258
259 static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 {
261 INIT_LIST_HEAD(&parent->slabs_full);
262 INIT_LIST_HEAD(&parent->slabs_partial);
263 INIT_LIST_HEAD(&parent->slabs_free);
264 parent->shared = NULL;
265 parent->alien = NULL;
266 parent->colour_next = 0;
267 spin_lock_init(&parent->list_lock);
268 parent->free_objects = 0;
269 parent->free_touched = 0;
270 }
271
272 #define MAKE_LIST(cachep, listp, slab, nodeid) \
273 do { \
274 INIT_LIST_HEAD(listp); \
275 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 } while (0)
277
278 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
279 do { \
280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 } while (0)
284
285 #define CFLGS_OFF_SLAB (0x80000000UL)
286 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
287
288 #define BATCHREFILL_LIMIT 16
289 /*
290 * Optimization question: fewer reaps means less probability for unnessary
291 * cpucache drain/refill cycles.
292 *
293 * OTOH the cpuarrays can contain lots of objects,
294 * which could lock up otherwise freeable slabs.
295 */
296 #define REAPTIMEOUT_AC (2*HZ)
297 #define REAPTIMEOUT_NODE (4*HZ)
298
299 #if STATS
300 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
301 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
302 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
303 #define STATS_INC_GROWN(x) ((x)->grown++)
304 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
305 #define STATS_SET_HIGH(x) \
306 do { \
307 if ((x)->num_active > (x)->high_mark) \
308 (x)->high_mark = (x)->num_active; \
309 } while (0)
310 #define STATS_INC_ERR(x) ((x)->errors++)
311 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
312 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
313 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
314 #define STATS_SET_FREEABLE(x, i) \
315 do { \
316 if ((x)->max_freeable < i) \
317 (x)->max_freeable = i; \
318 } while (0)
319 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
320 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
321 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
322 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
323 #else
324 #define STATS_INC_ACTIVE(x) do { } while (0)
325 #define STATS_DEC_ACTIVE(x) do { } while (0)
326 #define STATS_INC_ALLOCED(x) do { } while (0)
327 #define STATS_INC_GROWN(x) do { } while (0)
328 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
329 #define STATS_SET_HIGH(x) do { } while (0)
330 #define STATS_INC_ERR(x) do { } while (0)
331 #define STATS_INC_NODEALLOCS(x) do { } while (0)
332 #define STATS_INC_NODEFREES(x) do { } while (0)
333 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
334 #define STATS_SET_FREEABLE(x, i) do { } while (0)
335 #define STATS_INC_ALLOCHIT(x) do { } while (0)
336 #define STATS_INC_ALLOCMISS(x) do { } while (0)
337 #define STATS_INC_FREEHIT(x) do { } while (0)
338 #define STATS_INC_FREEMISS(x) do { } while (0)
339 #endif
340
341 #if DEBUG
342
343 /*
344 * memory layout of objects:
345 * 0 : objp
346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347 * the end of an object is aligned with the end of the real
348 * allocation. Catches writes behind the end of the allocation.
349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350 * redzone word.
351 * cachep->obj_offset: The real object.
352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353 * cachep->size - 1* BYTES_PER_WORD: last caller address
354 * [BYTES_PER_WORD long]
355 */
356 static int obj_offset(struct kmem_cache *cachep)
357 {
358 return cachep->obj_offset;
359 }
360
361 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362 {
363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 return (unsigned long long*) (objp + obj_offset(cachep) -
365 sizeof(unsigned long long));
366 }
367
368 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369 {
370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 if (cachep->flags & SLAB_STORE_USER)
372 return (unsigned long long *)(objp + cachep->size -
373 sizeof(unsigned long long) -
374 REDZONE_ALIGN);
375 return (unsigned long long *) (objp + cachep->size -
376 sizeof(unsigned long long));
377 }
378
379 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380 {
381 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 return (void **)(objp + cachep->size - BYTES_PER_WORD);
383 }
384
385 #else
386
387 #define obj_offset(x) 0
388 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
390 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
391
392 #endif
393
394 #define OBJECT_FREE (0)
395 #define OBJECT_ACTIVE (1)
396
397 #ifdef CONFIG_DEBUG_SLAB_LEAK
398
399 static void set_obj_status(struct page *page, int idx, int val)
400 {
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407 status[idx] = val;
408 }
409
410 static inline unsigned int get_obj_status(struct page *page, int idx)
411 {
412 int freelist_size;
413 char *status;
414 struct kmem_cache *cachep = page->slab_cache;
415
416 freelist_size = cachep->num * sizeof(freelist_idx_t);
417 status = (char *)page->freelist + freelist_size;
418
419 return status[idx];
420 }
421
422 #else
423 static inline void set_obj_status(struct page *page, int idx, int val) {}
424
425 #endif
426
427 /*
428 * Do not go above this order unless 0 objects fit into the slab or
429 * overridden on the command line.
430 */
431 #define SLAB_MAX_ORDER_HI 1
432 #define SLAB_MAX_ORDER_LO 0
433 static int slab_max_order = SLAB_MAX_ORDER_LO;
434 static bool slab_max_order_set __initdata;
435
436 static inline struct kmem_cache *virt_to_cache(const void *obj)
437 {
438 struct page *page = virt_to_head_page(obj);
439 return page->slab_cache;
440 }
441
442 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 unsigned int idx)
444 {
445 return page->s_mem + cache->size * idx;
446 }
447
448 /*
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct page *page, void *obj)
456 {
457 u32 offset = (obj - page->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 }
460
461 static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
471 };
472
473 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
474
475 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
476 {
477 return cachep->array[smp_processor_id()];
478 }
479
480 static size_t calculate_freelist_size(int nr_objs, size_t align)
481 {
482 size_t freelist_size;
483
484 freelist_size = nr_objs * sizeof(freelist_idx_t);
485 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
486 freelist_size += nr_objs * sizeof(char);
487
488 if (align)
489 freelist_size = ALIGN(freelist_size, align);
490
491 return freelist_size;
492 }
493
494 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
495 size_t idx_size, size_t align)
496 {
497 int nr_objs;
498 size_t remained_size;
499 size_t freelist_size;
500 int extra_space = 0;
501
502 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
503 extra_space = sizeof(char);
504 /*
505 * Ignore padding for the initial guess. The padding
506 * is at most @align-1 bytes, and @buffer_size is at
507 * least @align. In the worst case, this result will
508 * be one greater than the number of objects that fit
509 * into the memory allocation when taking the padding
510 * into account.
511 */
512 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
513
514 /*
515 * This calculated number will be either the right
516 * amount, or one greater than what we want.
517 */
518 remained_size = slab_size - nr_objs * buffer_size;
519 freelist_size = calculate_freelist_size(nr_objs, align);
520 if (remained_size < freelist_size)
521 nr_objs--;
522
523 return nr_objs;
524 }
525
526 /*
527 * Calculate the number of objects and left-over bytes for a given buffer size.
528 */
529 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
530 size_t align, int flags, size_t *left_over,
531 unsigned int *num)
532 {
533 int nr_objs;
534 size_t mgmt_size;
535 size_t slab_size = PAGE_SIZE << gfporder;
536
537 /*
538 * The slab management structure can be either off the slab or
539 * on it. For the latter case, the memory allocated for a
540 * slab is used for:
541 *
542 * - One unsigned int for each object
543 * - Padding to respect alignment of @align
544 * - @buffer_size bytes for each object
545 *
546 * If the slab management structure is off the slab, then the
547 * alignment will already be calculated into the size. Because
548 * the slabs are all pages aligned, the objects will be at the
549 * correct alignment when allocated.
550 */
551 if (flags & CFLGS_OFF_SLAB) {
552 mgmt_size = 0;
553 nr_objs = slab_size / buffer_size;
554
555 } else {
556 nr_objs = calculate_nr_objs(slab_size, buffer_size,
557 sizeof(freelist_idx_t), align);
558 mgmt_size = calculate_freelist_size(nr_objs, align);
559 }
560 *num = nr_objs;
561 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
562 }
563
564 #if DEBUG
565 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
566
567 static void __slab_error(const char *function, struct kmem_cache *cachep,
568 char *msg)
569 {
570 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
571 function, cachep->name, msg);
572 dump_stack();
573 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
574 }
575 #endif
576
577 /*
578 * By default on NUMA we use alien caches to stage the freeing of
579 * objects allocated from other nodes. This causes massive memory
580 * inefficiencies when using fake NUMA setup to split memory into a
581 * large number of small nodes, so it can be disabled on the command
582 * line
583 */
584
585 static int use_alien_caches __read_mostly = 1;
586 static int __init noaliencache_setup(char *s)
587 {
588 use_alien_caches = 0;
589 return 1;
590 }
591 __setup("noaliencache", noaliencache_setup);
592
593 static int __init slab_max_order_setup(char *str)
594 {
595 get_option(&str, &slab_max_order);
596 slab_max_order = slab_max_order < 0 ? 0 :
597 min(slab_max_order, MAX_ORDER - 1);
598 slab_max_order_set = true;
599
600 return 1;
601 }
602 __setup("slab_max_order=", slab_max_order_setup);
603
604 #ifdef CONFIG_NUMA
605 /*
606 * Special reaping functions for NUMA systems called from cache_reap().
607 * These take care of doing round robin flushing of alien caches (containing
608 * objects freed on different nodes from which they were allocated) and the
609 * flushing of remote pcps by calling drain_node_pages.
610 */
611 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
612
613 static void init_reap_node(int cpu)
614 {
615 int node;
616
617 node = next_node(cpu_to_mem(cpu), node_online_map);
618 if (node == MAX_NUMNODES)
619 node = first_node(node_online_map);
620
621 per_cpu(slab_reap_node, cpu) = node;
622 }
623
624 static void next_reap_node(void)
625 {
626 int node = __this_cpu_read(slab_reap_node);
627
628 node = next_node(node, node_online_map);
629 if (unlikely(node >= MAX_NUMNODES))
630 node = first_node(node_online_map);
631 __this_cpu_write(slab_reap_node, node);
632 }
633
634 #else
635 #define init_reap_node(cpu) do { } while (0)
636 #define next_reap_node(void) do { } while (0)
637 #endif
638
639 /*
640 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
641 * via the workqueue/eventd.
642 * Add the CPU number into the expiration time to minimize the possibility of
643 * the CPUs getting into lockstep and contending for the global cache chain
644 * lock.
645 */
646 static void start_cpu_timer(int cpu)
647 {
648 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
649
650 /*
651 * When this gets called from do_initcalls via cpucache_init(),
652 * init_workqueues() has already run, so keventd will be setup
653 * at that time.
654 */
655 if (keventd_up() && reap_work->work.func == NULL) {
656 init_reap_node(cpu);
657 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
658 schedule_delayed_work_on(cpu, reap_work,
659 __round_jiffies_relative(HZ, cpu));
660 }
661 }
662
663 static void init_arraycache(struct array_cache *ac, int limit, int batch)
664 {
665 /*
666 * The array_cache structures contain pointers to free object.
667 * However, when such objects are allocated or transferred to another
668 * cache the pointers are not cleared and they could be counted as
669 * valid references during a kmemleak scan. Therefore, kmemleak must
670 * not scan such objects.
671 */
672 kmemleak_no_scan(ac);
673 if (ac) {
674 ac->avail = 0;
675 ac->limit = limit;
676 ac->batchcount = batch;
677 ac->touched = 0;
678 }
679 }
680
681 static struct array_cache *alloc_arraycache(int node, int entries,
682 int batchcount, gfp_t gfp)
683 {
684 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
685 struct array_cache *ac = NULL;
686
687 ac = kmalloc_node(memsize, gfp, node);
688 init_arraycache(ac, entries, batchcount);
689 return ac;
690 }
691
692 static inline bool is_slab_pfmemalloc(struct page *page)
693 {
694 return PageSlabPfmemalloc(page);
695 }
696
697 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
698 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
699 struct array_cache *ac)
700 {
701 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
702 struct page *page;
703 unsigned long flags;
704
705 if (!pfmemalloc_active)
706 return;
707
708 spin_lock_irqsave(&n->list_lock, flags);
709 list_for_each_entry(page, &n->slabs_full, lru)
710 if (is_slab_pfmemalloc(page))
711 goto out;
712
713 list_for_each_entry(page, &n->slabs_partial, lru)
714 if (is_slab_pfmemalloc(page))
715 goto out;
716
717 list_for_each_entry(page, &n->slabs_free, lru)
718 if (is_slab_pfmemalloc(page))
719 goto out;
720
721 pfmemalloc_active = false;
722 out:
723 spin_unlock_irqrestore(&n->list_lock, flags);
724 }
725
726 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
727 gfp_t flags, bool force_refill)
728 {
729 int i;
730 void *objp = ac->entry[--ac->avail];
731
732 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
733 if (unlikely(is_obj_pfmemalloc(objp))) {
734 struct kmem_cache_node *n;
735
736 if (gfp_pfmemalloc_allowed(flags)) {
737 clear_obj_pfmemalloc(&objp);
738 return objp;
739 }
740
741 /* The caller cannot use PFMEMALLOC objects, find another one */
742 for (i = 0; i < ac->avail; i++) {
743 /* If a !PFMEMALLOC object is found, swap them */
744 if (!is_obj_pfmemalloc(ac->entry[i])) {
745 objp = ac->entry[i];
746 ac->entry[i] = ac->entry[ac->avail];
747 ac->entry[ac->avail] = objp;
748 return objp;
749 }
750 }
751
752 /*
753 * If there are empty slabs on the slabs_free list and we are
754 * being forced to refill the cache, mark this one !pfmemalloc.
755 */
756 n = get_node(cachep, numa_mem_id());
757 if (!list_empty(&n->slabs_free) && force_refill) {
758 struct page *page = virt_to_head_page(objp);
759 ClearPageSlabPfmemalloc(page);
760 clear_obj_pfmemalloc(&objp);
761 recheck_pfmemalloc_active(cachep, ac);
762 return objp;
763 }
764
765 /* No !PFMEMALLOC objects available */
766 ac->avail++;
767 objp = NULL;
768 }
769
770 return objp;
771 }
772
773 static inline void *ac_get_obj(struct kmem_cache *cachep,
774 struct array_cache *ac, gfp_t flags, bool force_refill)
775 {
776 void *objp;
777
778 if (unlikely(sk_memalloc_socks()))
779 objp = __ac_get_obj(cachep, ac, flags, force_refill);
780 else
781 objp = ac->entry[--ac->avail];
782
783 return objp;
784 }
785
786 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
787 void *objp)
788 {
789 if (unlikely(pfmemalloc_active)) {
790 /* Some pfmemalloc slabs exist, check if this is one */
791 struct page *page = virt_to_head_page(objp);
792 if (PageSlabPfmemalloc(page))
793 set_obj_pfmemalloc(&objp);
794 }
795
796 return objp;
797 }
798
799 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
800 void *objp)
801 {
802 if (unlikely(sk_memalloc_socks()))
803 objp = __ac_put_obj(cachep, ac, objp);
804
805 ac->entry[ac->avail++] = objp;
806 }
807
808 /*
809 * Transfer objects in one arraycache to another.
810 * Locking must be handled by the caller.
811 *
812 * Return the number of entries transferred.
813 */
814 static int transfer_objects(struct array_cache *to,
815 struct array_cache *from, unsigned int max)
816 {
817 /* Figure out how many entries to transfer */
818 int nr = min3(from->avail, max, to->limit - to->avail);
819
820 if (!nr)
821 return 0;
822
823 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
824 sizeof(void *) *nr);
825
826 from->avail -= nr;
827 to->avail += nr;
828 return nr;
829 }
830
831 #ifndef CONFIG_NUMA
832
833 #define drain_alien_cache(cachep, alien) do { } while (0)
834 #define reap_alien(cachep, n) do { } while (0)
835
836 static inline struct alien_cache **alloc_alien_cache(int node,
837 int limit, gfp_t gfp)
838 {
839 return NULL;
840 }
841
842 static inline void free_alien_cache(struct alien_cache **ac_ptr)
843 {
844 }
845
846 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
847 {
848 return 0;
849 }
850
851 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
852 gfp_t flags)
853 {
854 return NULL;
855 }
856
857 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
858 gfp_t flags, int nodeid)
859 {
860 return NULL;
861 }
862
863 #else /* CONFIG_NUMA */
864
865 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
866 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
867
868 static struct alien_cache *__alloc_alien_cache(int node, int entries,
869 int batch, gfp_t gfp)
870 {
871 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
872 struct alien_cache *alc = NULL;
873
874 alc = kmalloc_node(memsize, gfp, node);
875 init_arraycache(&alc->ac, entries, batch);
876 spin_lock_init(&alc->lock);
877 return alc;
878 }
879
880 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
881 {
882 struct alien_cache **alc_ptr;
883 size_t memsize = sizeof(void *) * nr_node_ids;
884 int i;
885
886 if (limit > 1)
887 limit = 12;
888 alc_ptr = kzalloc_node(memsize, gfp, node);
889 if (!alc_ptr)
890 return NULL;
891
892 for_each_node(i) {
893 if (i == node || !node_online(i))
894 continue;
895 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
896 if (!alc_ptr[i]) {
897 for (i--; i >= 0; i--)
898 kfree(alc_ptr[i]);
899 kfree(alc_ptr);
900 return NULL;
901 }
902 }
903 return alc_ptr;
904 }
905
906 static void free_alien_cache(struct alien_cache **alc_ptr)
907 {
908 int i;
909
910 if (!alc_ptr)
911 return;
912 for_each_node(i)
913 kfree(alc_ptr[i]);
914 kfree(alc_ptr);
915 }
916
917 static void __drain_alien_cache(struct kmem_cache *cachep,
918 struct array_cache *ac, int node,
919 struct list_head *list)
920 {
921 struct kmem_cache_node *n = get_node(cachep, node);
922
923 if (ac->avail) {
924 spin_lock(&n->list_lock);
925 /*
926 * Stuff objects into the remote nodes shared array first.
927 * That way we could avoid the overhead of putting the objects
928 * into the free lists and getting them back later.
929 */
930 if (n->shared)
931 transfer_objects(n->shared, ac, ac->limit);
932
933 free_block(cachep, ac->entry, ac->avail, node, list);
934 ac->avail = 0;
935 spin_unlock(&n->list_lock);
936 }
937 }
938
939 /*
940 * Called from cache_reap() to regularly drain alien caches round robin.
941 */
942 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
943 {
944 int node = __this_cpu_read(slab_reap_node);
945
946 if (n->alien) {
947 struct alien_cache *alc = n->alien[node];
948 struct array_cache *ac;
949
950 if (alc) {
951 ac = &alc->ac;
952 if (ac->avail && spin_trylock_irq(&alc->lock)) {
953 LIST_HEAD(list);
954
955 __drain_alien_cache(cachep, ac, node, &list);
956 spin_unlock_irq(&alc->lock);
957 slabs_destroy(cachep, &list);
958 }
959 }
960 }
961 }
962
963 static void drain_alien_cache(struct kmem_cache *cachep,
964 struct alien_cache **alien)
965 {
966 int i = 0;
967 struct alien_cache *alc;
968 struct array_cache *ac;
969 unsigned long flags;
970
971 for_each_online_node(i) {
972 alc = alien[i];
973 if (alc) {
974 LIST_HEAD(list);
975
976 ac = &alc->ac;
977 spin_lock_irqsave(&alc->lock, flags);
978 __drain_alien_cache(cachep, ac, i, &list);
979 spin_unlock_irqrestore(&alc->lock, flags);
980 slabs_destroy(cachep, &list);
981 }
982 }
983 }
984
985 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
986 {
987 int nodeid = page_to_nid(virt_to_page(objp));
988 struct kmem_cache_node *n;
989 struct alien_cache *alien = NULL;
990 struct array_cache *ac;
991 int node;
992 LIST_HEAD(list);
993
994 node = numa_mem_id();
995
996 /*
997 * Make sure we are not freeing a object from another node to the array
998 * cache on this cpu.
999 */
1000 if (likely(nodeid == node))
1001 return 0;
1002
1003 n = get_node(cachep, node);
1004 STATS_INC_NODEFREES(cachep);
1005 if (n->alien && n->alien[nodeid]) {
1006 alien = n->alien[nodeid];
1007 ac = &alien->ac;
1008 spin_lock(&alien->lock);
1009 if (unlikely(ac->avail == ac->limit)) {
1010 STATS_INC_ACOVERFLOW(cachep);
1011 __drain_alien_cache(cachep, ac, nodeid, &list);
1012 }
1013 ac_put_obj(cachep, ac, objp);
1014 spin_unlock(&alien->lock);
1015 slabs_destroy(cachep, &list);
1016 } else {
1017 n = get_node(cachep, nodeid);
1018 spin_lock(&n->list_lock);
1019 free_block(cachep, &objp, 1, nodeid, &list);
1020 spin_unlock(&n->list_lock);
1021 slabs_destroy(cachep, &list);
1022 }
1023 return 1;
1024 }
1025 #endif
1026
1027 /*
1028 * Allocates and initializes node for a node on each slab cache, used for
1029 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1030 * will be allocated off-node since memory is not yet online for the new node.
1031 * When hotplugging memory or a cpu, existing node are not replaced if
1032 * already in use.
1033 *
1034 * Must hold slab_mutex.
1035 */
1036 static int init_cache_node_node(int node)
1037 {
1038 struct kmem_cache *cachep;
1039 struct kmem_cache_node *n;
1040 const size_t memsize = sizeof(struct kmem_cache_node);
1041
1042 list_for_each_entry(cachep, &slab_caches, list) {
1043 /*
1044 * Set up the kmem_cache_node for cpu before we can
1045 * begin anything. Make sure some other cpu on this
1046 * node has not already allocated this
1047 */
1048 n = get_node(cachep, node);
1049 if (!n) {
1050 n = kmalloc_node(memsize, GFP_KERNEL, node);
1051 if (!n)
1052 return -ENOMEM;
1053 kmem_cache_node_init(n);
1054 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1055 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1056
1057 /*
1058 * The kmem_cache_nodes don't come and go as CPUs
1059 * come and go. slab_mutex is sufficient
1060 * protection here.
1061 */
1062 cachep->node[node] = n;
1063 }
1064
1065 spin_lock_irq(&n->list_lock);
1066 n->free_limit =
1067 (1 + nr_cpus_node(node)) *
1068 cachep->batchcount + cachep->num;
1069 spin_unlock_irq(&n->list_lock);
1070 }
1071 return 0;
1072 }
1073
1074 static inline int slabs_tofree(struct kmem_cache *cachep,
1075 struct kmem_cache_node *n)
1076 {
1077 return (n->free_objects + cachep->num - 1) / cachep->num;
1078 }
1079
1080 static void cpuup_canceled(long cpu)
1081 {
1082 struct kmem_cache *cachep;
1083 struct kmem_cache_node *n = NULL;
1084 int node = cpu_to_mem(cpu);
1085 const struct cpumask *mask = cpumask_of_node(node);
1086
1087 list_for_each_entry(cachep, &slab_caches, list) {
1088 struct array_cache *nc;
1089 struct array_cache *shared;
1090 struct alien_cache **alien;
1091 LIST_HEAD(list);
1092
1093 /* cpu is dead; no one can alloc from it. */
1094 nc = cachep->array[cpu];
1095 cachep->array[cpu] = NULL;
1096 n = get_node(cachep, node);
1097
1098 if (!n)
1099 goto free_array_cache;
1100
1101 spin_lock_irq(&n->list_lock);
1102
1103 /* Free limit for this kmem_cache_node */
1104 n->free_limit -= cachep->batchcount;
1105 if (nc)
1106 free_block(cachep, nc->entry, nc->avail, node, &list);
1107
1108 if (!cpumask_empty(mask)) {
1109 spin_unlock_irq(&n->list_lock);
1110 goto free_array_cache;
1111 }
1112
1113 shared = n->shared;
1114 if (shared) {
1115 free_block(cachep, shared->entry,
1116 shared->avail, node, &list);
1117 n->shared = NULL;
1118 }
1119
1120 alien = n->alien;
1121 n->alien = NULL;
1122
1123 spin_unlock_irq(&n->list_lock);
1124
1125 kfree(shared);
1126 if (alien) {
1127 drain_alien_cache(cachep, alien);
1128 free_alien_cache(alien);
1129 }
1130 free_array_cache:
1131 slabs_destroy(cachep, &list);
1132 kfree(nc);
1133 }
1134 /*
1135 * In the previous loop, all the objects were freed to
1136 * the respective cache's slabs, now we can go ahead and
1137 * shrink each nodelist to its limit.
1138 */
1139 list_for_each_entry(cachep, &slab_caches, list) {
1140 n = get_node(cachep, node);
1141 if (!n)
1142 continue;
1143 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1144 }
1145 }
1146
1147 static int cpuup_prepare(long cpu)
1148 {
1149 struct kmem_cache *cachep;
1150 struct kmem_cache_node *n = NULL;
1151 int node = cpu_to_mem(cpu);
1152 int err;
1153
1154 /*
1155 * We need to do this right in the beginning since
1156 * alloc_arraycache's are going to use this list.
1157 * kmalloc_node allows us to add the slab to the right
1158 * kmem_cache_node and not this cpu's kmem_cache_node
1159 */
1160 err = init_cache_node_node(node);
1161 if (err < 0)
1162 goto bad;
1163
1164 /*
1165 * Now we can go ahead with allocating the shared arrays and
1166 * array caches
1167 */
1168 list_for_each_entry(cachep, &slab_caches, list) {
1169 struct array_cache *nc;
1170 struct array_cache *shared = NULL;
1171 struct alien_cache **alien = NULL;
1172
1173 nc = alloc_arraycache(node, cachep->limit,
1174 cachep->batchcount, GFP_KERNEL);
1175 if (!nc)
1176 goto bad;
1177 if (cachep->shared) {
1178 shared = alloc_arraycache(node,
1179 cachep->shared * cachep->batchcount,
1180 0xbaadf00d, GFP_KERNEL);
1181 if (!shared) {
1182 kfree(nc);
1183 goto bad;
1184 }
1185 }
1186 if (use_alien_caches) {
1187 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1188 if (!alien) {
1189 kfree(shared);
1190 kfree(nc);
1191 goto bad;
1192 }
1193 }
1194 cachep->array[cpu] = nc;
1195 n = get_node(cachep, node);
1196 BUG_ON(!n);
1197
1198 spin_lock_irq(&n->list_lock);
1199 if (!n->shared) {
1200 /*
1201 * We are serialised from CPU_DEAD or
1202 * CPU_UP_CANCELLED by the cpucontrol lock
1203 */
1204 n->shared = shared;
1205 shared = NULL;
1206 }
1207 #ifdef CONFIG_NUMA
1208 if (!n->alien) {
1209 n->alien = alien;
1210 alien = NULL;
1211 }
1212 #endif
1213 spin_unlock_irq(&n->list_lock);
1214 kfree(shared);
1215 free_alien_cache(alien);
1216 }
1217
1218 return 0;
1219 bad:
1220 cpuup_canceled(cpu);
1221 return -ENOMEM;
1222 }
1223
1224 static int cpuup_callback(struct notifier_block *nfb,
1225 unsigned long action, void *hcpu)
1226 {
1227 long cpu = (long)hcpu;
1228 int err = 0;
1229
1230 switch (action) {
1231 case CPU_UP_PREPARE:
1232 case CPU_UP_PREPARE_FROZEN:
1233 mutex_lock(&slab_mutex);
1234 err = cpuup_prepare(cpu);
1235 mutex_unlock(&slab_mutex);
1236 break;
1237 case CPU_ONLINE:
1238 case CPU_ONLINE_FROZEN:
1239 start_cpu_timer(cpu);
1240 break;
1241 #ifdef CONFIG_HOTPLUG_CPU
1242 case CPU_DOWN_PREPARE:
1243 case CPU_DOWN_PREPARE_FROZEN:
1244 /*
1245 * Shutdown cache reaper. Note that the slab_mutex is
1246 * held so that if cache_reap() is invoked it cannot do
1247 * anything expensive but will only modify reap_work
1248 * and reschedule the timer.
1249 */
1250 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1251 /* Now the cache_reaper is guaranteed to be not running. */
1252 per_cpu(slab_reap_work, cpu).work.func = NULL;
1253 break;
1254 case CPU_DOWN_FAILED:
1255 case CPU_DOWN_FAILED_FROZEN:
1256 start_cpu_timer(cpu);
1257 break;
1258 case CPU_DEAD:
1259 case CPU_DEAD_FROZEN:
1260 /*
1261 * Even if all the cpus of a node are down, we don't free the
1262 * kmem_cache_node of any cache. This to avoid a race between
1263 * cpu_down, and a kmalloc allocation from another cpu for
1264 * memory from the node of the cpu going down. The node
1265 * structure is usually allocated from kmem_cache_create() and
1266 * gets destroyed at kmem_cache_destroy().
1267 */
1268 /* fall through */
1269 #endif
1270 case CPU_UP_CANCELED:
1271 case CPU_UP_CANCELED_FROZEN:
1272 mutex_lock(&slab_mutex);
1273 cpuup_canceled(cpu);
1274 mutex_unlock(&slab_mutex);
1275 break;
1276 }
1277 return notifier_from_errno(err);
1278 }
1279
1280 static struct notifier_block cpucache_notifier = {
1281 &cpuup_callback, NULL, 0
1282 };
1283
1284 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1285 /*
1286 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1287 * Returns -EBUSY if all objects cannot be drained so that the node is not
1288 * removed.
1289 *
1290 * Must hold slab_mutex.
1291 */
1292 static int __meminit drain_cache_node_node(int node)
1293 {
1294 struct kmem_cache *cachep;
1295 int ret = 0;
1296
1297 list_for_each_entry(cachep, &slab_caches, list) {
1298 struct kmem_cache_node *n;
1299
1300 n = get_node(cachep, node);
1301 if (!n)
1302 continue;
1303
1304 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1305
1306 if (!list_empty(&n->slabs_full) ||
1307 !list_empty(&n->slabs_partial)) {
1308 ret = -EBUSY;
1309 break;
1310 }
1311 }
1312 return ret;
1313 }
1314
1315 static int __meminit slab_memory_callback(struct notifier_block *self,
1316 unsigned long action, void *arg)
1317 {
1318 struct memory_notify *mnb = arg;
1319 int ret = 0;
1320 int nid;
1321
1322 nid = mnb->status_change_nid;
1323 if (nid < 0)
1324 goto out;
1325
1326 switch (action) {
1327 case MEM_GOING_ONLINE:
1328 mutex_lock(&slab_mutex);
1329 ret = init_cache_node_node(nid);
1330 mutex_unlock(&slab_mutex);
1331 break;
1332 case MEM_GOING_OFFLINE:
1333 mutex_lock(&slab_mutex);
1334 ret = drain_cache_node_node(nid);
1335 mutex_unlock(&slab_mutex);
1336 break;
1337 case MEM_ONLINE:
1338 case MEM_OFFLINE:
1339 case MEM_CANCEL_ONLINE:
1340 case MEM_CANCEL_OFFLINE:
1341 break;
1342 }
1343 out:
1344 return notifier_from_errno(ret);
1345 }
1346 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1347
1348 /*
1349 * swap the static kmem_cache_node with kmalloced memory
1350 */
1351 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1352 int nodeid)
1353 {
1354 struct kmem_cache_node *ptr;
1355
1356 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1357 BUG_ON(!ptr);
1358
1359 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1360 /*
1361 * Do not assume that spinlocks can be initialized via memcpy:
1362 */
1363 spin_lock_init(&ptr->list_lock);
1364
1365 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1366 cachep->node[nodeid] = ptr;
1367 }
1368
1369 /*
1370 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1371 * size of kmem_cache_node.
1372 */
1373 static void __init set_up_node(struct kmem_cache *cachep, int index)
1374 {
1375 int node;
1376
1377 for_each_online_node(node) {
1378 cachep->node[node] = &init_kmem_cache_node[index + node];
1379 cachep->node[node]->next_reap = jiffies +
1380 REAPTIMEOUT_NODE +
1381 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1382 }
1383 }
1384
1385 /*
1386 * The memory after the last cpu cache pointer is used for the
1387 * the node pointer.
1388 */
1389 static void setup_node_pointer(struct kmem_cache *cachep)
1390 {
1391 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1392 }
1393
1394 /*
1395 * Initialisation. Called after the page allocator have been initialised and
1396 * before smp_init().
1397 */
1398 void __init kmem_cache_init(void)
1399 {
1400 int i;
1401
1402 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1403 sizeof(struct rcu_head));
1404 kmem_cache = &kmem_cache_boot;
1405 setup_node_pointer(kmem_cache);
1406
1407 if (num_possible_nodes() == 1)
1408 use_alien_caches = 0;
1409
1410 for (i = 0; i < NUM_INIT_LISTS; i++)
1411 kmem_cache_node_init(&init_kmem_cache_node[i]);
1412
1413 set_up_node(kmem_cache, CACHE_CACHE);
1414
1415 /*
1416 * Fragmentation resistance on low memory - only use bigger
1417 * page orders on machines with more than 32MB of memory if
1418 * not overridden on the command line.
1419 */
1420 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1421 slab_max_order = SLAB_MAX_ORDER_HI;
1422
1423 /* Bootstrap is tricky, because several objects are allocated
1424 * from caches that do not exist yet:
1425 * 1) initialize the kmem_cache cache: it contains the struct
1426 * kmem_cache structures of all caches, except kmem_cache itself:
1427 * kmem_cache is statically allocated.
1428 * Initially an __init data area is used for the head array and the
1429 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1430 * array at the end of the bootstrap.
1431 * 2) Create the first kmalloc cache.
1432 * The struct kmem_cache for the new cache is allocated normally.
1433 * An __init data area is used for the head array.
1434 * 3) Create the remaining kmalloc caches, with minimally sized
1435 * head arrays.
1436 * 4) Replace the __init data head arrays for kmem_cache and the first
1437 * kmalloc cache with kmalloc allocated arrays.
1438 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1439 * the other cache's with kmalloc allocated memory.
1440 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 */
1442
1443 /* 1) create the kmem_cache */
1444
1445 /*
1446 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1447 */
1448 create_boot_cache(kmem_cache, "kmem_cache",
1449 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1450 nr_node_ids * sizeof(struct kmem_cache_node *),
1451 SLAB_HWCACHE_ALIGN);
1452 list_add(&kmem_cache->list, &slab_caches);
1453
1454 /* 2+3) create the kmalloc caches */
1455
1456 /*
1457 * Initialize the caches that provide memory for the array cache and the
1458 * kmem_cache_node structures first. Without this, further allocations will
1459 * bug.
1460 */
1461
1462 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1463 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1464
1465 if (INDEX_AC != INDEX_NODE)
1466 kmalloc_caches[INDEX_NODE] =
1467 create_kmalloc_cache("kmalloc-node",
1468 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1469
1470 slab_early_init = 0;
1471
1472 /* 4) Replace the bootstrap head arrays */
1473 {
1474 struct array_cache *ptr;
1475
1476 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1477
1478 memcpy(ptr, cpu_cache_get(kmem_cache),
1479 sizeof(struct arraycache_init));
1480
1481 kmem_cache->array[smp_processor_id()] = ptr;
1482
1483 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1484
1485 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1486 != &initarray_generic.cache);
1487 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1488 sizeof(struct arraycache_init));
1489
1490 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1491 }
1492 /* 5) Replace the bootstrap kmem_cache_node */
1493 {
1494 int nid;
1495
1496 for_each_online_node(nid) {
1497 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1498
1499 init_list(kmalloc_caches[INDEX_AC],
1500 &init_kmem_cache_node[SIZE_AC + nid], nid);
1501
1502 if (INDEX_AC != INDEX_NODE) {
1503 init_list(kmalloc_caches[INDEX_NODE],
1504 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1505 }
1506 }
1507 }
1508
1509 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1510 }
1511
1512 void __init kmem_cache_init_late(void)
1513 {
1514 struct kmem_cache *cachep;
1515
1516 slab_state = UP;
1517
1518 /* 6) resize the head arrays to their final sizes */
1519 mutex_lock(&slab_mutex);
1520 list_for_each_entry(cachep, &slab_caches, list)
1521 if (enable_cpucache(cachep, GFP_NOWAIT))
1522 BUG();
1523 mutex_unlock(&slab_mutex);
1524
1525 /* Done! */
1526 slab_state = FULL;
1527
1528 /*
1529 * Register a cpu startup notifier callback that initializes
1530 * cpu_cache_get for all new cpus
1531 */
1532 register_cpu_notifier(&cpucache_notifier);
1533
1534 #ifdef CONFIG_NUMA
1535 /*
1536 * Register a memory hotplug callback that initializes and frees
1537 * node.
1538 */
1539 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1540 #endif
1541
1542 /*
1543 * The reap timers are started later, with a module init call: That part
1544 * of the kernel is not yet operational.
1545 */
1546 }
1547
1548 static int __init cpucache_init(void)
1549 {
1550 int cpu;
1551
1552 /*
1553 * Register the timers that return unneeded pages to the page allocator
1554 */
1555 for_each_online_cpu(cpu)
1556 start_cpu_timer(cpu);
1557
1558 /* Done! */
1559 slab_state = FULL;
1560 return 0;
1561 }
1562 __initcall(cpucache_init);
1563
1564 static noinline void
1565 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1566 {
1567 #if DEBUG
1568 struct kmem_cache_node *n;
1569 struct page *page;
1570 unsigned long flags;
1571 int node;
1572 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1573 DEFAULT_RATELIMIT_BURST);
1574
1575 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1576 return;
1577
1578 printk(KERN_WARNING
1579 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1580 nodeid, gfpflags);
1581 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1582 cachep->name, cachep->size, cachep->gfporder);
1583
1584 for_each_kmem_cache_node(cachep, node, n) {
1585 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1586 unsigned long active_slabs = 0, num_slabs = 0;
1587
1588 spin_lock_irqsave(&n->list_lock, flags);
1589 list_for_each_entry(page, &n->slabs_full, lru) {
1590 active_objs += cachep->num;
1591 active_slabs++;
1592 }
1593 list_for_each_entry(page, &n->slabs_partial, lru) {
1594 active_objs += page->active;
1595 active_slabs++;
1596 }
1597 list_for_each_entry(page, &n->slabs_free, lru)
1598 num_slabs++;
1599
1600 free_objects += n->free_objects;
1601 spin_unlock_irqrestore(&n->list_lock, flags);
1602
1603 num_slabs += active_slabs;
1604 num_objs = num_slabs * cachep->num;
1605 printk(KERN_WARNING
1606 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1607 node, active_slabs, num_slabs, active_objs, num_objs,
1608 free_objects);
1609 }
1610 #endif
1611 }
1612
1613 /*
1614 * Interface to system's page allocator. No need to hold the
1615 * kmem_cache_node ->list_lock.
1616 *
1617 * If we requested dmaable memory, we will get it. Even if we
1618 * did not request dmaable memory, we might get it, but that
1619 * would be relatively rare and ignorable.
1620 */
1621 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1622 int nodeid)
1623 {
1624 struct page *page;
1625 int nr_pages;
1626
1627 flags |= cachep->allocflags;
1628 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1629 flags |= __GFP_RECLAIMABLE;
1630
1631 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1632 return NULL;
1633
1634 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1635 if (!page) {
1636 memcg_uncharge_slab(cachep, cachep->gfporder);
1637 slab_out_of_memory(cachep, flags, nodeid);
1638 return NULL;
1639 }
1640
1641 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1642 if (unlikely(page->pfmemalloc))
1643 pfmemalloc_active = true;
1644
1645 nr_pages = (1 << cachep->gfporder);
1646 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647 add_zone_page_state(page_zone(page),
1648 NR_SLAB_RECLAIMABLE, nr_pages);
1649 else
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_UNRECLAIMABLE, nr_pages);
1652 __SetPageSlab(page);
1653 if (page->pfmemalloc)
1654 SetPageSlabPfmemalloc(page);
1655
1656 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1657 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1658
1659 if (cachep->ctor)
1660 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1661 else
1662 kmemcheck_mark_unallocated_pages(page, nr_pages);
1663 }
1664
1665 return page;
1666 }
1667
1668 /*
1669 * Interface to system's page release.
1670 */
1671 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1672 {
1673 const unsigned long nr_freed = (1 << cachep->gfporder);
1674
1675 kmemcheck_free_shadow(page, cachep->gfporder);
1676
1677 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1678 sub_zone_page_state(page_zone(page),
1679 NR_SLAB_RECLAIMABLE, nr_freed);
1680 else
1681 sub_zone_page_state(page_zone(page),
1682 NR_SLAB_UNRECLAIMABLE, nr_freed);
1683
1684 BUG_ON(!PageSlab(page));
1685 __ClearPageSlabPfmemalloc(page);
1686 __ClearPageSlab(page);
1687 page_mapcount_reset(page);
1688 page->mapping = NULL;
1689
1690 if (current->reclaim_state)
1691 current->reclaim_state->reclaimed_slab += nr_freed;
1692 __free_pages(page, cachep->gfporder);
1693 memcg_uncharge_slab(cachep, cachep->gfporder);
1694 }
1695
1696 static void kmem_rcu_free(struct rcu_head *head)
1697 {
1698 struct kmem_cache *cachep;
1699 struct page *page;
1700
1701 page = container_of(head, struct page, rcu_head);
1702 cachep = page->slab_cache;
1703
1704 kmem_freepages(cachep, page);
1705 }
1706
1707 #if DEBUG
1708
1709 #ifdef CONFIG_DEBUG_PAGEALLOC
1710 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1711 unsigned long caller)
1712 {
1713 int size = cachep->object_size;
1714
1715 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1716
1717 if (size < 5 * sizeof(unsigned long))
1718 return;
1719
1720 *addr++ = 0x12345678;
1721 *addr++ = caller;
1722 *addr++ = smp_processor_id();
1723 size -= 3 * sizeof(unsigned long);
1724 {
1725 unsigned long *sptr = &caller;
1726 unsigned long svalue;
1727
1728 while (!kstack_end(sptr)) {
1729 svalue = *sptr++;
1730 if (kernel_text_address(svalue)) {
1731 *addr++ = svalue;
1732 size -= sizeof(unsigned long);
1733 if (size <= sizeof(unsigned long))
1734 break;
1735 }
1736 }
1737
1738 }
1739 *addr++ = 0x87654321;
1740 }
1741 #endif
1742
1743 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1744 {
1745 int size = cachep->object_size;
1746 addr = &((char *)addr)[obj_offset(cachep)];
1747
1748 memset(addr, val, size);
1749 *(unsigned char *)(addr + size - 1) = POISON_END;
1750 }
1751
1752 static void dump_line(char *data, int offset, int limit)
1753 {
1754 int i;
1755 unsigned char error = 0;
1756 int bad_count = 0;
1757
1758 printk(KERN_ERR "%03x: ", offset);
1759 for (i = 0; i < limit; i++) {
1760 if (data[offset + i] != POISON_FREE) {
1761 error = data[offset + i];
1762 bad_count++;
1763 }
1764 }
1765 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1766 &data[offset], limit, 1);
1767
1768 if (bad_count == 1) {
1769 error ^= POISON_FREE;
1770 if (!(error & (error - 1))) {
1771 printk(KERN_ERR "Single bit error detected. Probably "
1772 "bad RAM.\n");
1773 #ifdef CONFIG_X86
1774 printk(KERN_ERR "Run memtest86+ or a similar memory "
1775 "test tool.\n");
1776 #else
1777 printk(KERN_ERR "Run a memory test tool.\n");
1778 #endif
1779 }
1780 }
1781 }
1782 #endif
1783
1784 #if DEBUG
1785
1786 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1787 {
1788 int i, size;
1789 char *realobj;
1790
1791 if (cachep->flags & SLAB_RED_ZONE) {
1792 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1793 *dbg_redzone1(cachep, objp),
1794 *dbg_redzone2(cachep, objp));
1795 }
1796
1797 if (cachep->flags & SLAB_STORE_USER) {
1798 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1799 *dbg_userword(cachep, objp),
1800 *dbg_userword(cachep, objp));
1801 }
1802 realobj = (char *)objp + obj_offset(cachep);
1803 size = cachep->object_size;
1804 for (i = 0; i < size && lines; i += 16, lines--) {
1805 int limit;
1806 limit = 16;
1807 if (i + limit > size)
1808 limit = size - i;
1809 dump_line(realobj, i, limit);
1810 }
1811 }
1812
1813 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1814 {
1815 char *realobj;
1816 int size, i;
1817 int lines = 0;
1818
1819 realobj = (char *)objp + obj_offset(cachep);
1820 size = cachep->object_size;
1821
1822 for (i = 0; i < size; i++) {
1823 char exp = POISON_FREE;
1824 if (i == size - 1)
1825 exp = POISON_END;
1826 if (realobj[i] != exp) {
1827 int limit;
1828 /* Mismatch ! */
1829 /* Print header */
1830 if (lines == 0) {
1831 printk(KERN_ERR
1832 "Slab corruption (%s): %s start=%p, len=%d\n",
1833 print_tainted(), cachep->name, realobj, size);
1834 print_objinfo(cachep, objp, 0);
1835 }
1836 /* Hexdump the affected line */
1837 i = (i / 16) * 16;
1838 limit = 16;
1839 if (i + limit > size)
1840 limit = size - i;
1841 dump_line(realobj, i, limit);
1842 i += 16;
1843 lines++;
1844 /* Limit to 5 lines */
1845 if (lines > 5)
1846 break;
1847 }
1848 }
1849 if (lines != 0) {
1850 /* Print some data about the neighboring objects, if they
1851 * exist:
1852 */
1853 struct page *page = virt_to_head_page(objp);
1854 unsigned int objnr;
1855
1856 objnr = obj_to_index(cachep, page, objp);
1857 if (objnr) {
1858 objp = index_to_obj(cachep, page, objnr - 1);
1859 realobj = (char *)objp + obj_offset(cachep);
1860 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1861 realobj, size);
1862 print_objinfo(cachep, objp, 2);
1863 }
1864 if (objnr + 1 < cachep->num) {
1865 objp = index_to_obj(cachep, page, objnr + 1);
1866 realobj = (char *)objp + obj_offset(cachep);
1867 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1868 realobj, size);
1869 print_objinfo(cachep, objp, 2);
1870 }
1871 }
1872 }
1873 #endif
1874
1875 #if DEBUG
1876 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1877 struct page *page)
1878 {
1879 int i;
1880 for (i = 0; i < cachep->num; i++) {
1881 void *objp = index_to_obj(cachep, page, i);
1882
1883 if (cachep->flags & SLAB_POISON) {
1884 #ifdef CONFIG_DEBUG_PAGEALLOC
1885 if (cachep->size % PAGE_SIZE == 0 &&
1886 OFF_SLAB(cachep))
1887 kernel_map_pages(virt_to_page(objp),
1888 cachep->size / PAGE_SIZE, 1);
1889 else
1890 check_poison_obj(cachep, objp);
1891 #else
1892 check_poison_obj(cachep, objp);
1893 #endif
1894 }
1895 if (cachep->flags & SLAB_RED_ZONE) {
1896 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "start of a freed object "
1898 "was overwritten");
1899 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1900 slab_error(cachep, "end of a freed object "
1901 "was overwritten");
1902 }
1903 }
1904 }
1905 #else
1906 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1907 struct page *page)
1908 {
1909 }
1910 #endif
1911
1912 /**
1913 * slab_destroy - destroy and release all objects in a slab
1914 * @cachep: cache pointer being destroyed
1915 * @page: page pointer being destroyed
1916 *
1917 * Destroy all the objs in a slab page, and release the mem back to the system.
1918 * Before calling the slab page must have been unlinked from the cache. The
1919 * kmem_cache_node ->list_lock is not held/needed.
1920 */
1921 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1922 {
1923 void *freelist;
1924
1925 freelist = page->freelist;
1926 slab_destroy_debugcheck(cachep, page);
1927 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1928 struct rcu_head *head;
1929
1930 /*
1931 * RCU free overloads the RCU head over the LRU.
1932 * slab_page has been overloeaded over the LRU,
1933 * however it is not used from now on so that
1934 * we can use it safely.
1935 */
1936 head = (void *)&page->rcu_head;
1937 call_rcu(head, kmem_rcu_free);
1938
1939 } else {
1940 kmem_freepages(cachep, page);
1941 }
1942
1943 /*
1944 * From now on, we don't use freelist
1945 * although actual page can be freed in rcu context
1946 */
1947 if (OFF_SLAB(cachep))
1948 kmem_cache_free(cachep->freelist_cache, freelist);
1949 }
1950
1951 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1952 {
1953 struct page *page, *n;
1954
1955 list_for_each_entry_safe(page, n, list, lru) {
1956 list_del(&page->lru);
1957 slab_destroy(cachep, page);
1958 }
1959 }
1960
1961 /**
1962 * calculate_slab_order - calculate size (page order) of slabs
1963 * @cachep: pointer to the cache that is being created
1964 * @size: size of objects to be created in this cache.
1965 * @align: required alignment for the objects.
1966 * @flags: slab allocation flags
1967 *
1968 * Also calculates the number of objects per slab.
1969 *
1970 * This could be made much more intelligent. For now, try to avoid using
1971 * high order pages for slabs. When the gfp() functions are more friendly
1972 * towards high-order requests, this should be changed.
1973 */
1974 static size_t calculate_slab_order(struct kmem_cache *cachep,
1975 size_t size, size_t align, unsigned long flags)
1976 {
1977 unsigned long offslab_limit;
1978 size_t left_over = 0;
1979 int gfporder;
1980
1981 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1982 unsigned int num;
1983 size_t remainder;
1984
1985 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1986 if (!num)
1987 continue;
1988
1989 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1990 if (num > SLAB_OBJ_MAX_NUM)
1991 break;
1992
1993 if (flags & CFLGS_OFF_SLAB) {
1994 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1995 /*
1996 * Max number of objs-per-slab for caches which
1997 * use off-slab slabs. Needed to avoid a possible
1998 * looping condition in cache_grow().
1999 */
2000 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2001 freelist_size_per_obj += sizeof(char);
2002 offslab_limit = size;
2003 offslab_limit /= freelist_size_per_obj;
2004
2005 if (num > offslab_limit)
2006 break;
2007 }
2008
2009 /* Found something acceptable - save it away */
2010 cachep->num = num;
2011 cachep->gfporder = gfporder;
2012 left_over = remainder;
2013
2014 /*
2015 * A VFS-reclaimable slab tends to have most allocations
2016 * as GFP_NOFS and we really don't want to have to be allocating
2017 * higher-order pages when we are unable to shrink dcache.
2018 */
2019 if (flags & SLAB_RECLAIM_ACCOUNT)
2020 break;
2021
2022 /*
2023 * Large number of objects is good, but very large slabs are
2024 * currently bad for the gfp()s.
2025 */
2026 if (gfporder >= slab_max_order)
2027 break;
2028
2029 /*
2030 * Acceptable internal fragmentation?
2031 */
2032 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2033 break;
2034 }
2035 return left_over;
2036 }
2037
2038 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2039 {
2040 if (slab_state >= FULL)
2041 return enable_cpucache(cachep, gfp);
2042
2043 if (slab_state == DOWN) {
2044 /*
2045 * Note: Creation of first cache (kmem_cache).
2046 * The setup_node is taken care
2047 * of by the caller of __kmem_cache_create
2048 */
2049 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2050 slab_state = PARTIAL;
2051 } else if (slab_state == PARTIAL) {
2052 /*
2053 * Note: the second kmem_cache_create must create the cache
2054 * that's used by kmalloc(24), otherwise the creation of
2055 * further caches will BUG().
2056 */
2057 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2058
2059 /*
2060 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2061 * the second cache, then we need to set up all its node/,
2062 * otherwise the creation of further caches will BUG().
2063 */
2064 set_up_node(cachep, SIZE_AC);
2065 if (INDEX_AC == INDEX_NODE)
2066 slab_state = PARTIAL_NODE;
2067 else
2068 slab_state = PARTIAL_ARRAYCACHE;
2069 } else {
2070 /* Remaining boot caches */
2071 cachep->array[smp_processor_id()] =
2072 kmalloc(sizeof(struct arraycache_init), gfp);
2073
2074 if (slab_state == PARTIAL_ARRAYCACHE) {
2075 set_up_node(cachep, SIZE_NODE);
2076 slab_state = PARTIAL_NODE;
2077 } else {
2078 int node;
2079 for_each_online_node(node) {
2080 cachep->node[node] =
2081 kmalloc_node(sizeof(struct kmem_cache_node),
2082 gfp, node);
2083 BUG_ON(!cachep->node[node]);
2084 kmem_cache_node_init(cachep->node[node]);
2085 }
2086 }
2087 }
2088 cachep->node[numa_mem_id()]->next_reap =
2089 jiffies + REAPTIMEOUT_NODE +
2090 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2091
2092 cpu_cache_get(cachep)->avail = 0;
2093 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2094 cpu_cache_get(cachep)->batchcount = 1;
2095 cpu_cache_get(cachep)->touched = 0;
2096 cachep->batchcount = 1;
2097 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2098 return 0;
2099 }
2100
2101 /**
2102 * __kmem_cache_create - Create a cache.
2103 * @cachep: cache management descriptor
2104 * @flags: SLAB flags
2105 *
2106 * Returns a ptr to the cache on success, NULL on failure.
2107 * Cannot be called within a int, but can be interrupted.
2108 * The @ctor is run when new pages are allocated by the cache.
2109 *
2110 * The flags are
2111 *
2112 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2113 * to catch references to uninitialised memory.
2114 *
2115 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2116 * for buffer overruns.
2117 *
2118 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2119 * cacheline. This can be beneficial if you're counting cycles as closely
2120 * as davem.
2121 */
2122 int
2123 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2124 {
2125 size_t left_over, freelist_size, ralign;
2126 gfp_t gfp;
2127 int err;
2128 size_t size = cachep->size;
2129
2130 #if DEBUG
2131 #if FORCED_DEBUG
2132 /*
2133 * Enable redzoning and last user accounting, except for caches with
2134 * large objects, if the increased size would increase the object size
2135 * above the next power of two: caches with object sizes just above a
2136 * power of two have a significant amount of internal fragmentation.
2137 */
2138 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2139 2 * sizeof(unsigned long long)))
2140 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2141 if (!(flags & SLAB_DESTROY_BY_RCU))
2142 flags |= SLAB_POISON;
2143 #endif
2144 if (flags & SLAB_DESTROY_BY_RCU)
2145 BUG_ON(flags & SLAB_POISON);
2146 #endif
2147
2148 /*
2149 * Check that size is in terms of words. This is needed to avoid
2150 * unaligned accesses for some archs when redzoning is used, and makes
2151 * sure any on-slab bufctl's are also correctly aligned.
2152 */
2153 if (size & (BYTES_PER_WORD - 1)) {
2154 size += (BYTES_PER_WORD - 1);
2155 size &= ~(BYTES_PER_WORD - 1);
2156 }
2157
2158 /*
2159 * Redzoning and user store require word alignment or possibly larger.
2160 * Note this will be overridden by architecture or caller mandated
2161 * alignment if either is greater than BYTES_PER_WORD.
2162 */
2163 if (flags & SLAB_STORE_USER)
2164 ralign = BYTES_PER_WORD;
2165
2166 if (flags & SLAB_RED_ZONE) {
2167 ralign = REDZONE_ALIGN;
2168 /* If redzoning, ensure that the second redzone is suitably
2169 * aligned, by adjusting the object size accordingly. */
2170 size += REDZONE_ALIGN - 1;
2171 size &= ~(REDZONE_ALIGN - 1);
2172 }
2173
2174 /* 3) caller mandated alignment */
2175 if (ralign < cachep->align) {
2176 ralign = cachep->align;
2177 }
2178 /* disable debug if necessary */
2179 if (ralign > __alignof__(unsigned long long))
2180 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2181 /*
2182 * 4) Store it.
2183 */
2184 cachep->align = ralign;
2185
2186 if (slab_is_available())
2187 gfp = GFP_KERNEL;
2188 else
2189 gfp = GFP_NOWAIT;
2190
2191 setup_node_pointer(cachep);
2192 #if DEBUG
2193
2194 /*
2195 * Both debugging options require word-alignment which is calculated
2196 * into align above.
2197 */
2198 if (flags & SLAB_RED_ZONE) {
2199 /* add space for red zone words */
2200 cachep->obj_offset += sizeof(unsigned long long);
2201 size += 2 * sizeof(unsigned long long);
2202 }
2203 if (flags & SLAB_STORE_USER) {
2204 /* user store requires one word storage behind the end of
2205 * the real object. But if the second red zone needs to be
2206 * aligned to 64 bits, we must allow that much space.
2207 */
2208 if (flags & SLAB_RED_ZONE)
2209 size += REDZONE_ALIGN;
2210 else
2211 size += BYTES_PER_WORD;
2212 }
2213 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2214 if (size >= kmalloc_size(INDEX_NODE + 1)
2215 && cachep->object_size > cache_line_size()
2216 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2217 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2218 size = PAGE_SIZE;
2219 }
2220 #endif
2221 #endif
2222
2223 /*
2224 * Determine if the slab management is 'on' or 'off' slab.
2225 * (bootstrapping cannot cope with offslab caches so don't do
2226 * it too early on. Always use on-slab management when
2227 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2228 */
2229 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2230 !(flags & SLAB_NOLEAKTRACE))
2231 /*
2232 * Size is large, assume best to place the slab management obj
2233 * off-slab (should allow better packing of objs).
2234 */
2235 flags |= CFLGS_OFF_SLAB;
2236
2237 size = ALIGN(size, cachep->align);
2238 /*
2239 * We should restrict the number of objects in a slab to implement
2240 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2241 */
2242 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2243 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2244
2245 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2246
2247 if (!cachep->num)
2248 return -E2BIG;
2249
2250 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2251
2252 /*
2253 * If the slab has been placed off-slab, and we have enough space then
2254 * move it on-slab. This is at the expense of any extra colouring.
2255 */
2256 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2257 flags &= ~CFLGS_OFF_SLAB;
2258 left_over -= freelist_size;
2259 }
2260
2261 if (flags & CFLGS_OFF_SLAB) {
2262 /* really off slab. No need for manual alignment */
2263 freelist_size = calculate_freelist_size(cachep->num, 0);
2264
2265 #ifdef CONFIG_PAGE_POISONING
2266 /* If we're going to use the generic kernel_map_pages()
2267 * poisoning, then it's going to smash the contents of
2268 * the redzone and userword anyhow, so switch them off.
2269 */
2270 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2271 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2272 #endif
2273 }
2274
2275 cachep->colour_off = cache_line_size();
2276 /* Offset must be a multiple of the alignment. */
2277 if (cachep->colour_off < cachep->align)
2278 cachep->colour_off = cachep->align;
2279 cachep->colour = left_over / cachep->colour_off;
2280 cachep->freelist_size = freelist_size;
2281 cachep->flags = flags;
2282 cachep->allocflags = __GFP_COMP;
2283 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2284 cachep->allocflags |= GFP_DMA;
2285 cachep->size = size;
2286 cachep->reciprocal_buffer_size = reciprocal_value(size);
2287
2288 if (flags & CFLGS_OFF_SLAB) {
2289 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2290 /*
2291 * This is a possibility for one of the kmalloc_{dma,}_caches.
2292 * But since we go off slab only for object size greater than
2293 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2294 * in ascending order,this should not happen at all.
2295 * But leave a BUG_ON for some lucky dude.
2296 */
2297 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2298 }
2299
2300 err = setup_cpu_cache(cachep, gfp);
2301 if (err) {
2302 __kmem_cache_shutdown(cachep);
2303 return err;
2304 }
2305
2306 return 0;
2307 }
2308
2309 #if DEBUG
2310 static void check_irq_off(void)
2311 {
2312 BUG_ON(!irqs_disabled());
2313 }
2314
2315 static void check_irq_on(void)
2316 {
2317 BUG_ON(irqs_disabled());
2318 }
2319
2320 static void check_spinlock_acquired(struct kmem_cache *cachep)
2321 {
2322 #ifdef CONFIG_SMP
2323 check_irq_off();
2324 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2325 #endif
2326 }
2327
2328 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2329 {
2330 #ifdef CONFIG_SMP
2331 check_irq_off();
2332 assert_spin_locked(&get_node(cachep, node)->list_lock);
2333 #endif
2334 }
2335
2336 #else
2337 #define check_irq_off() do { } while(0)
2338 #define check_irq_on() do { } while(0)
2339 #define check_spinlock_acquired(x) do { } while(0)
2340 #define check_spinlock_acquired_node(x, y) do { } while(0)
2341 #endif
2342
2343 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2344 struct array_cache *ac,
2345 int force, int node);
2346
2347 static void do_drain(void *arg)
2348 {
2349 struct kmem_cache *cachep = arg;
2350 struct array_cache *ac;
2351 int node = numa_mem_id();
2352 struct kmem_cache_node *n;
2353 LIST_HEAD(list);
2354
2355 check_irq_off();
2356 ac = cpu_cache_get(cachep);
2357 n = get_node(cachep, node);
2358 spin_lock(&n->list_lock);
2359 free_block(cachep, ac->entry, ac->avail, node, &list);
2360 spin_unlock(&n->list_lock);
2361 slabs_destroy(cachep, &list);
2362 ac->avail = 0;
2363 }
2364
2365 static void drain_cpu_caches(struct kmem_cache *cachep)
2366 {
2367 struct kmem_cache_node *n;
2368 int node;
2369
2370 on_each_cpu(do_drain, cachep, 1);
2371 check_irq_on();
2372 for_each_kmem_cache_node(cachep, node, n)
2373 if (n->alien)
2374 drain_alien_cache(cachep, n->alien);
2375
2376 for_each_kmem_cache_node(cachep, node, n)
2377 drain_array(cachep, n, n->shared, 1, node);
2378 }
2379
2380 /*
2381 * Remove slabs from the list of free slabs.
2382 * Specify the number of slabs to drain in tofree.
2383 *
2384 * Returns the actual number of slabs released.
2385 */
2386 static int drain_freelist(struct kmem_cache *cache,
2387 struct kmem_cache_node *n, int tofree)
2388 {
2389 struct list_head *p;
2390 int nr_freed;
2391 struct page *page;
2392
2393 nr_freed = 0;
2394 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2395
2396 spin_lock_irq(&n->list_lock);
2397 p = n->slabs_free.prev;
2398 if (p == &n->slabs_free) {
2399 spin_unlock_irq(&n->list_lock);
2400 goto out;
2401 }
2402
2403 page = list_entry(p, struct page, lru);
2404 #if DEBUG
2405 BUG_ON(page->active);
2406 #endif
2407 list_del(&page->lru);
2408 /*
2409 * Safe to drop the lock. The slab is no longer linked
2410 * to the cache.
2411 */
2412 n->free_objects -= cache->num;
2413 spin_unlock_irq(&n->list_lock);
2414 slab_destroy(cache, page);
2415 nr_freed++;
2416 }
2417 out:
2418 return nr_freed;
2419 }
2420
2421 int __kmem_cache_shrink(struct kmem_cache *cachep)
2422 {
2423 int ret = 0;
2424 int node;
2425 struct kmem_cache_node *n;
2426
2427 drain_cpu_caches(cachep);
2428
2429 check_irq_on();
2430 for_each_kmem_cache_node(cachep, node, n) {
2431 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2432
2433 ret += !list_empty(&n->slabs_full) ||
2434 !list_empty(&n->slabs_partial);
2435 }
2436 return (ret ? 1 : 0);
2437 }
2438
2439 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2440 {
2441 int i;
2442 struct kmem_cache_node *n;
2443 int rc = __kmem_cache_shrink(cachep);
2444
2445 if (rc)
2446 return rc;
2447
2448 for_each_online_cpu(i)
2449 kfree(cachep->array[i]);
2450
2451 /* NUMA: free the node structures */
2452 for_each_kmem_cache_node(cachep, i, n) {
2453 kfree(n->shared);
2454 free_alien_cache(n->alien);
2455 kfree(n);
2456 cachep->node[i] = NULL;
2457 }
2458 return 0;
2459 }
2460
2461 /*
2462 * Get the memory for a slab management obj.
2463 *
2464 * For a slab cache when the slab descriptor is off-slab, the
2465 * slab descriptor can't come from the same cache which is being created,
2466 * Because if it is the case, that means we defer the creation of
2467 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2468 * And we eventually call down to __kmem_cache_create(), which
2469 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2470 * This is a "chicken-and-egg" problem.
2471 *
2472 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2473 * which are all initialized during kmem_cache_init().
2474 */
2475 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2476 struct page *page, int colour_off,
2477 gfp_t local_flags, int nodeid)
2478 {
2479 void *freelist;
2480 void *addr = page_address(page);
2481
2482 if (OFF_SLAB(cachep)) {
2483 /* Slab management obj is off-slab. */
2484 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2485 local_flags, nodeid);
2486 if (!freelist)
2487 return NULL;
2488 } else {
2489 freelist = addr + colour_off;
2490 colour_off += cachep->freelist_size;
2491 }
2492 page->active = 0;
2493 page->s_mem = addr + colour_off;
2494 return freelist;
2495 }
2496
2497 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2498 {
2499 return ((freelist_idx_t *)page->freelist)[idx];
2500 }
2501
2502 static inline void set_free_obj(struct page *page,
2503 unsigned int idx, freelist_idx_t val)
2504 {
2505 ((freelist_idx_t *)(page->freelist))[idx] = val;
2506 }
2507
2508 static void cache_init_objs(struct kmem_cache *cachep,
2509 struct page *page)
2510 {
2511 int i;
2512
2513 for (i = 0; i < cachep->num; i++) {
2514 void *objp = index_to_obj(cachep, page, i);
2515 #if DEBUG
2516 /* need to poison the objs? */
2517 if (cachep->flags & SLAB_POISON)
2518 poison_obj(cachep, objp, POISON_FREE);
2519 if (cachep->flags & SLAB_STORE_USER)
2520 *dbg_userword(cachep, objp) = NULL;
2521
2522 if (cachep->flags & SLAB_RED_ZONE) {
2523 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2524 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2525 }
2526 /*
2527 * Constructors are not allowed to allocate memory from the same
2528 * cache which they are a constructor for. Otherwise, deadlock.
2529 * They must also be threaded.
2530 */
2531 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2532 cachep->ctor(objp + obj_offset(cachep));
2533
2534 if (cachep->flags & SLAB_RED_ZONE) {
2535 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2536 slab_error(cachep, "constructor overwrote the"
2537 " end of an object");
2538 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2539 slab_error(cachep, "constructor overwrote the"
2540 " start of an object");
2541 }
2542 if ((cachep->size % PAGE_SIZE) == 0 &&
2543 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2544 kernel_map_pages(virt_to_page(objp),
2545 cachep->size / PAGE_SIZE, 0);
2546 #else
2547 if (cachep->ctor)
2548 cachep->ctor(objp);
2549 #endif
2550 set_obj_status(page, i, OBJECT_FREE);
2551 set_free_obj(page, i, i);
2552 }
2553 }
2554
2555 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2556 {
2557 if (CONFIG_ZONE_DMA_FLAG) {
2558 if (flags & GFP_DMA)
2559 BUG_ON(!(cachep->allocflags & GFP_DMA));
2560 else
2561 BUG_ON(cachep->allocflags & GFP_DMA);
2562 }
2563 }
2564
2565 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2566 int nodeid)
2567 {
2568 void *objp;
2569
2570 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2571 page->active++;
2572 #if DEBUG
2573 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2574 #endif
2575
2576 return objp;
2577 }
2578
2579 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2580 void *objp, int nodeid)
2581 {
2582 unsigned int objnr = obj_to_index(cachep, page, objp);
2583 #if DEBUG
2584 unsigned int i;
2585
2586 /* Verify that the slab belongs to the intended node */
2587 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2588
2589 /* Verify double free bug */
2590 for (i = page->active; i < cachep->num; i++) {
2591 if (get_free_obj(page, i) == objnr) {
2592 printk(KERN_ERR "slab: double free detected in cache "
2593 "'%s', objp %p\n", cachep->name, objp);
2594 BUG();
2595 }
2596 }
2597 #endif
2598 page->active--;
2599 set_free_obj(page, page->active, objnr);
2600 }
2601
2602 /*
2603 * Map pages beginning at addr to the given cache and slab. This is required
2604 * for the slab allocator to be able to lookup the cache and slab of a
2605 * virtual address for kfree, ksize, and slab debugging.
2606 */
2607 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2608 void *freelist)
2609 {
2610 page->slab_cache = cache;
2611 page->freelist = freelist;
2612 }
2613
2614 /*
2615 * Grow (by 1) the number of slabs within a cache. This is called by
2616 * kmem_cache_alloc() when there are no active objs left in a cache.
2617 */
2618 static int cache_grow(struct kmem_cache *cachep,
2619 gfp_t flags, int nodeid, struct page *page)
2620 {
2621 void *freelist;
2622 size_t offset;
2623 gfp_t local_flags;
2624 struct kmem_cache_node *n;
2625
2626 /*
2627 * Be lazy and only check for valid flags here, keeping it out of the
2628 * critical path in kmem_cache_alloc().
2629 */
2630 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2631 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2632
2633 /* Take the node list lock to change the colour_next on this node */
2634 check_irq_off();
2635 n = get_node(cachep, nodeid);
2636 spin_lock(&n->list_lock);
2637
2638 /* Get colour for the slab, and cal the next value. */
2639 offset = n->colour_next;
2640 n->colour_next++;
2641 if (n->colour_next >= cachep->colour)
2642 n->colour_next = 0;
2643 spin_unlock(&n->list_lock);
2644
2645 offset *= cachep->colour_off;
2646
2647 if (local_flags & __GFP_WAIT)
2648 local_irq_enable();
2649
2650 /*
2651 * The test for missing atomic flag is performed here, rather than
2652 * the more obvious place, simply to reduce the critical path length
2653 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2654 * will eventually be caught here (where it matters).
2655 */
2656 kmem_flagcheck(cachep, flags);
2657
2658 /*
2659 * Get mem for the objs. Attempt to allocate a physical page from
2660 * 'nodeid'.
2661 */
2662 if (!page)
2663 page = kmem_getpages(cachep, local_flags, nodeid);
2664 if (!page)
2665 goto failed;
2666
2667 /* Get slab management. */
2668 freelist = alloc_slabmgmt(cachep, page, offset,
2669 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2670 if (!freelist)
2671 goto opps1;
2672
2673 slab_map_pages(cachep, page, freelist);
2674
2675 cache_init_objs(cachep, page);
2676
2677 if (local_flags & __GFP_WAIT)
2678 local_irq_disable();
2679 check_irq_off();
2680 spin_lock(&n->list_lock);
2681
2682 /* Make slab active. */
2683 list_add_tail(&page->lru, &(n->slabs_free));
2684 STATS_INC_GROWN(cachep);
2685 n->free_objects += cachep->num;
2686 spin_unlock(&n->list_lock);
2687 return 1;
2688 opps1:
2689 kmem_freepages(cachep, page);
2690 failed:
2691 if (local_flags & __GFP_WAIT)
2692 local_irq_disable();
2693 return 0;
2694 }
2695
2696 #if DEBUG
2697
2698 /*
2699 * Perform extra freeing checks:
2700 * - detect bad pointers.
2701 * - POISON/RED_ZONE checking
2702 */
2703 static void kfree_debugcheck(const void *objp)
2704 {
2705 if (!virt_addr_valid(objp)) {
2706 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2707 (unsigned long)objp);
2708 BUG();
2709 }
2710 }
2711
2712 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2713 {
2714 unsigned long long redzone1, redzone2;
2715
2716 redzone1 = *dbg_redzone1(cache, obj);
2717 redzone2 = *dbg_redzone2(cache, obj);
2718
2719 /*
2720 * Redzone is ok.
2721 */
2722 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2723 return;
2724
2725 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2726 slab_error(cache, "double free detected");
2727 else
2728 slab_error(cache, "memory outside object was overwritten");
2729
2730 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2731 obj, redzone1, redzone2);
2732 }
2733
2734 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2735 unsigned long caller)
2736 {
2737 unsigned int objnr;
2738 struct page *page;
2739
2740 BUG_ON(virt_to_cache(objp) != cachep);
2741
2742 objp -= obj_offset(cachep);
2743 kfree_debugcheck(objp);
2744 page = virt_to_head_page(objp);
2745
2746 if (cachep->flags & SLAB_RED_ZONE) {
2747 verify_redzone_free(cachep, objp);
2748 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2749 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2750 }
2751 if (cachep->flags & SLAB_STORE_USER)
2752 *dbg_userword(cachep, objp) = (void *)caller;
2753
2754 objnr = obj_to_index(cachep, page, objp);
2755
2756 BUG_ON(objnr >= cachep->num);
2757 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2758
2759 set_obj_status(page, objnr, OBJECT_FREE);
2760 if (cachep->flags & SLAB_POISON) {
2761 #ifdef CONFIG_DEBUG_PAGEALLOC
2762 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2763 store_stackinfo(cachep, objp, caller);
2764 kernel_map_pages(virt_to_page(objp),
2765 cachep->size / PAGE_SIZE, 0);
2766 } else {
2767 poison_obj(cachep, objp, POISON_FREE);
2768 }
2769 #else
2770 poison_obj(cachep, objp, POISON_FREE);
2771 #endif
2772 }
2773 return objp;
2774 }
2775
2776 #else
2777 #define kfree_debugcheck(x) do { } while(0)
2778 #define cache_free_debugcheck(x,objp,z) (objp)
2779 #endif
2780
2781 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2782 bool force_refill)
2783 {
2784 int batchcount;
2785 struct kmem_cache_node *n;
2786 struct array_cache *ac;
2787 int node;
2788
2789 check_irq_off();
2790 node = numa_mem_id();
2791 if (unlikely(force_refill))
2792 goto force_grow;
2793 retry:
2794 ac = cpu_cache_get(cachep);
2795 batchcount = ac->batchcount;
2796 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2797 /*
2798 * If there was little recent activity on this cache, then
2799 * perform only a partial refill. Otherwise we could generate
2800 * refill bouncing.
2801 */
2802 batchcount = BATCHREFILL_LIMIT;
2803 }
2804 n = get_node(cachep, node);
2805
2806 BUG_ON(ac->avail > 0 || !n);
2807 spin_lock(&n->list_lock);
2808
2809 /* See if we can refill from the shared array */
2810 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2811 n->shared->touched = 1;
2812 goto alloc_done;
2813 }
2814
2815 while (batchcount > 0) {
2816 struct list_head *entry;
2817 struct page *page;
2818 /* Get slab alloc is to come from. */
2819 entry = n->slabs_partial.next;
2820 if (entry == &n->slabs_partial) {
2821 n->free_touched = 1;
2822 entry = n->slabs_free.next;
2823 if (entry == &n->slabs_free)
2824 goto must_grow;
2825 }
2826
2827 page = list_entry(entry, struct page, lru);
2828 check_spinlock_acquired(cachep);
2829
2830 /*
2831 * The slab was either on partial or free list so
2832 * there must be at least one object available for
2833 * allocation.
2834 */
2835 BUG_ON(page->active >= cachep->num);
2836
2837 while (page->active < cachep->num && batchcount--) {
2838 STATS_INC_ALLOCED(cachep);
2839 STATS_INC_ACTIVE(cachep);
2840 STATS_SET_HIGH(cachep);
2841
2842 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2843 node));
2844 }
2845
2846 /* move slabp to correct slabp list: */
2847 list_del(&page->lru);
2848 if (page->active == cachep->num)
2849 list_add(&page->lru, &n->slabs_full);
2850 else
2851 list_add(&page->lru, &n->slabs_partial);
2852 }
2853
2854 must_grow:
2855 n->free_objects -= ac->avail;
2856 alloc_done:
2857 spin_unlock(&n->list_lock);
2858
2859 if (unlikely(!ac->avail)) {
2860 int x;
2861 force_grow:
2862 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2863
2864 /* cache_grow can reenable interrupts, then ac could change. */
2865 ac = cpu_cache_get(cachep);
2866 node = numa_mem_id();
2867
2868 /* no objects in sight? abort */
2869 if (!x && (ac->avail == 0 || force_refill))
2870 return NULL;
2871
2872 if (!ac->avail) /* objects refilled by interrupt? */
2873 goto retry;
2874 }
2875 ac->touched = 1;
2876
2877 return ac_get_obj(cachep, ac, flags, force_refill);
2878 }
2879
2880 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2881 gfp_t flags)
2882 {
2883 might_sleep_if(flags & __GFP_WAIT);
2884 #if DEBUG
2885 kmem_flagcheck(cachep, flags);
2886 #endif
2887 }
2888
2889 #if DEBUG
2890 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2891 gfp_t flags, void *objp, unsigned long caller)
2892 {
2893 struct page *page;
2894
2895 if (!objp)
2896 return objp;
2897 if (cachep->flags & SLAB_POISON) {
2898 #ifdef CONFIG_DEBUG_PAGEALLOC
2899 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2900 kernel_map_pages(virt_to_page(objp),
2901 cachep->size / PAGE_SIZE, 1);
2902 else
2903 check_poison_obj(cachep, objp);
2904 #else
2905 check_poison_obj(cachep, objp);
2906 #endif
2907 poison_obj(cachep, objp, POISON_INUSE);
2908 }
2909 if (cachep->flags & SLAB_STORE_USER)
2910 *dbg_userword(cachep, objp) = (void *)caller;
2911
2912 if (cachep->flags & SLAB_RED_ZONE) {
2913 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2914 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2915 slab_error(cachep, "double free, or memory outside"
2916 " object was overwritten");
2917 printk(KERN_ERR
2918 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2919 objp, *dbg_redzone1(cachep, objp),
2920 *dbg_redzone2(cachep, objp));
2921 }
2922 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2923 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2924 }
2925
2926 page = virt_to_head_page(objp);
2927 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2928 objp += obj_offset(cachep);
2929 if (cachep->ctor && cachep->flags & SLAB_POISON)
2930 cachep->ctor(objp);
2931 if (ARCH_SLAB_MINALIGN &&
2932 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2933 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2934 objp, (int)ARCH_SLAB_MINALIGN);
2935 }
2936 return objp;
2937 }
2938 #else
2939 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2940 #endif
2941
2942 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2943 {
2944 if (unlikely(cachep == kmem_cache))
2945 return false;
2946
2947 return should_failslab(cachep->object_size, flags, cachep->flags);
2948 }
2949
2950 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2951 {
2952 void *objp;
2953 struct array_cache *ac;
2954 bool force_refill = false;
2955
2956 check_irq_off();
2957
2958 ac = cpu_cache_get(cachep);
2959 if (likely(ac->avail)) {
2960 ac->touched = 1;
2961 objp = ac_get_obj(cachep, ac, flags, false);
2962
2963 /*
2964 * Allow for the possibility all avail objects are not allowed
2965 * by the current flags
2966 */
2967 if (objp) {
2968 STATS_INC_ALLOCHIT(cachep);
2969 goto out;
2970 }
2971 force_refill = true;
2972 }
2973
2974 STATS_INC_ALLOCMISS(cachep);
2975 objp = cache_alloc_refill(cachep, flags, force_refill);
2976 /*
2977 * the 'ac' may be updated by cache_alloc_refill(),
2978 * and kmemleak_erase() requires its correct value.
2979 */
2980 ac = cpu_cache_get(cachep);
2981
2982 out:
2983 /*
2984 * To avoid a false negative, if an object that is in one of the
2985 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2986 * treat the array pointers as a reference to the object.
2987 */
2988 if (objp)
2989 kmemleak_erase(&ac->entry[ac->avail]);
2990 return objp;
2991 }
2992
2993 #ifdef CONFIG_NUMA
2994 /*
2995 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
2996 *
2997 * If we are in_interrupt, then process context, including cpusets and
2998 * mempolicy, may not apply and should not be used for allocation policy.
2999 */
3000 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3001 {
3002 int nid_alloc, nid_here;
3003
3004 if (in_interrupt() || (flags & __GFP_THISNODE))
3005 return NULL;
3006 nid_alloc = nid_here = numa_mem_id();
3007 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3008 nid_alloc = cpuset_slab_spread_node();
3009 else if (current->mempolicy)
3010 nid_alloc = mempolicy_slab_node();
3011 if (nid_alloc != nid_here)
3012 return ____cache_alloc_node(cachep, flags, nid_alloc);
3013 return NULL;
3014 }
3015
3016 /*
3017 * Fallback function if there was no memory available and no objects on a
3018 * certain node and fall back is permitted. First we scan all the
3019 * available node for available objects. If that fails then we
3020 * perform an allocation without specifying a node. This allows the page
3021 * allocator to do its reclaim / fallback magic. We then insert the
3022 * slab into the proper nodelist and then allocate from it.
3023 */
3024 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3025 {
3026 struct zonelist *zonelist;
3027 gfp_t local_flags;
3028 struct zoneref *z;
3029 struct zone *zone;
3030 enum zone_type high_zoneidx = gfp_zone(flags);
3031 void *obj = NULL;
3032 int nid;
3033 unsigned int cpuset_mems_cookie;
3034
3035 if (flags & __GFP_THISNODE)
3036 return NULL;
3037
3038 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3039
3040 retry_cpuset:
3041 cpuset_mems_cookie = read_mems_allowed_begin();
3042 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3043
3044 retry:
3045 /*
3046 * Look through allowed nodes for objects available
3047 * from existing per node queues.
3048 */
3049 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3050 nid = zone_to_nid(zone);
3051
3052 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3053 get_node(cache, nid) &&
3054 get_node(cache, nid)->free_objects) {
3055 obj = ____cache_alloc_node(cache,
3056 flags | GFP_THISNODE, nid);
3057 if (obj)
3058 break;
3059 }
3060 }
3061
3062 if (!obj) {
3063 /*
3064 * This allocation will be performed within the constraints
3065 * of the current cpuset / memory policy requirements.
3066 * We may trigger various forms of reclaim on the allowed
3067 * set and go into memory reserves if necessary.
3068 */
3069 struct page *page;
3070
3071 if (local_flags & __GFP_WAIT)
3072 local_irq_enable();
3073 kmem_flagcheck(cache, flags);
3074 page = kmem_getpages(cache, local_flags, numa_mem_id());
3075 if (local_flags & __GFP_WAIT)
3076 local_irq_disable();
3077 if (page) {
3078 /*
3079 * Insert into the appropriate per node queues
3080 */
3081 nid = page_to_nid(page);
3082 if (cache_grow(cache, flags, nid, page)) {
3083 obj = ____cache_alloc_node(cache,
3084 flags | GFP_THISNODE, nid);
3085 if (!obj)
3086 /*
3087 * Another processor may allocate the
3088 * objects in the slab since we are
3089 * not holding any locks.
3090 */
3091 goto retry;
3092 } else {
3093 /* cache_grow already freed obj */
3094 obj = NULL;
3095 }
3096 }
3097 }
3098
3099 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3100 goto retry_cpuset;
3101 return obj;
3102 }
3103
3104 /*
3105 * A interface to enable slab creation on nodeid
3106 */
3107 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3108 int nodeid)
3109 {
3110 struct list_head *entry;
3111 struct page *page;
3112 struct kmem_cache_node *n;
3113 void *obj;
3114 int x;
3115
3116 VM_BUG_ON(nodeid > num_online_nodes());
3117 n = get_node(cachep, nodeid);
3118 BUG_ON(!n);
3119
3120 retry:
3121 check_irq_off();
3122 spin_lock(&n->list_lock);
3123 entry = n->slabs_partial.next;
3124 if (entry == &n->slabs_partial) {
3125 n->free_touched = 1;
3126 entry = n->slabs_free.next;
3127 if (entry == &n->slabs_free)
3128 goto must_grow;
3129 }
3130
3131 page = list_entry(entry, struct page, lru);
3132 check_spinlock_acquired_node(cachep, nodeid);
3133
3134 STATS_INC_NODEALLOCS(cachep);
3135 STATS_INC_ACTIVE(cachep);
3136 STATS_SET_HIGH(cachep);
3137
3138 BUG_ON(page->active == cachep->num);
3139
3140 obj = slab_get_obj(cachep, page, nodeid);
3141 n->free_objects--;
3142 /* move slabp to correct slabp list: */
3143 list_del(&page->lru);
3144
3145 if (page->active == cachep->num)
3146 list_add(&page->lru, &n->slabs_full);
3147 else
3148 list_add(&page->lru, &n->slabs_partial);
3149
3150 spin_unlock(&n->list_lock);
3151 goto done;
3152
3153 must_grow:
3154 spin_unlock(&n->list_lock);
3155 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3156 if (x)
3157 goto retry;
3158
3159 return fallback_alloc(cachep, flags);
3160
3161 done:
3162 return obj;
3163 }
3164
3165 static __always_inline void *
3166 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3167 unsigned long caller)
3168 {
3169 unsigned long save_flags;
3170 void *ptr;
3171 int slab_node = numa_mem_id();
3172
3173 flags &= gfp_allowed_mask;
3174
3175 lockdep_trace_alloc(flags);
3176
3177 if (slab_should_failslab(cachep, flags))
3178 return NULL;
3179
3180 cachep = memcg_kmem_get_cache(cachep, flags);
3181
3182 cache_alloc_debugcheck_before(cachep, flags);
3183 local_irq_save(save_flags);
3184
3185 if (nodeid == NUMA_NO_NODE)
3186 nodeid = slab_node;
3187
3188 if (unlikely(!get_node(cachep, nodeid))) {
3189 /* Node not bootstrapped yet */
3190 ptr = fallback_alloc(cachep, flags);
3191 goto out;
3192 }
3193
3194 if (nodeid == slab_node) {
3195 /*
3196 * Use the locally cached objects if possible.
3197 * However ____cache_alloc does not allow fallback
3198 * to other nodes. It may fail while we still have
3199 * objects on other nodes available.
3200 */
3201 ptr = ____cache_alloc(cachep, flags);
3202 if (ptr)
3203 goto out;
3204 }
3205 /* ___cache_alloc_node can fall back to other nodes */
3206 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3207 out:
3208 local_irq_restore(save_flags);
3209 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3210 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3211 flags);
3212
3213 if (likely(ptr)) {
3214 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3215 if (unlikely(flags & __GFP_ZERO))
3216 memset(ptr, 0, cachep->object_size);
3217 }
3218
3219 return ptr;
3220 }
3221
3222 static __always_inline void *
3223 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3224 {
3225 void *objp;
3226
3227 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3228 objp = alternate_node_alloc(cache, flags);
3229 if (objp)
3230 goto out;
3231 }
3232 objp = ____cache_alloc(cache, flags);
3233
3234 /*
3235 * We may just have run out of memory on the local node.
3236 * ____cache_alloc_node() knows how to locate memory on other nodes
3237 */
3238 if (!objp)
3239 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3240
3241 out:
3242 return objp;
3243 }
3244 #else
3245
3246 static __always_inline void *
3247 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3248 {
3249 return ____cache_alloc(cachep, flags);
3250 }
3251
3252 #endif /* CONFIG_NUMA */
3253
3254 static __always_inline void *
3255 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3256 {
3257 unsigned long save_flags;
3258 void *objp;
3259
3260 flags &= gfp_allowed_mask;
3261
3262 lockdep_trace_alloc(flags);
3263
3264 if (slab_should_failslab(cachep, flags))
3265 return NULL;
3266
3267 cachep = memcg_kmem_get_cache(cachep, flags);
3268
3269 cache_alloc_debugcheck_before(cachep, flags);
3270 local_irq_save(save_flags);
3271 objp = __do_cache_alloc(cachep, flags);
3272 local_irq_restore(save_flags);
3273 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3274 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3275 flags);
3276 prefetchw(objp);
3277
3278 if (likely(objp)) {
3279 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3280 if (unlikely(flags & __GFP_ZERO))
3281 memset(objp, 0, cachep->object_size);
3282 }
3283
3284 return objp;
3285 }
3286
3287 /*
3288 * Caller needs to acquire correct kmem_cache_node's list_lock
3289 * @list: List of detached free slabs should be freed by caller
3290 */
3291 static void free_block(struct kmem_cache *cachep, void **objpp,
3292 int nr_objects, int node, struct list_head *list)
3293 {
3294 int i;
3295 struct kmem_cache_node *n = get_node(cachep, node);
3296
3297 for (i = 0; i < nr_objects; i++) {
3298 void *objp;
3299 struct page *page;
3300
3301 clear_obj_pfmemalloc(&objpp[i]);
3302 objp = objpp[i];
3303
3304 page = virt_to_head_page(objp);
3305 list_del(&page->lru);
3306 check_spinlock_acquired_node(cachep, node);
3307 slab_put_obj(cachep, page, objp, node);
3308 STATS_DEC_ACTIVE(cachep);
3309 n->free_objects++;
3310
3311 /* fixup slab chains */
3312 if (page->active == 0) {
3313 if (n->free_objects > n->free_limit) {
3314 n->free_objects -= cachep->num;
3315 list_add_tail(&page->lru, list);
3316 } else {
3317 list_add(&page->lru, &n->slabs_free);
3318 }
3319 } else {
3320 /* Unconditionally move a slab to the end of the
3321 * partial list on free - maximum time for the
3322 * other objects to be freed, too.
3323 */
3324 list_add_tail(&page->lru, &n->slabs_partial);
3325 }
3326 }
3327 }
3328
3329 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3330 {
3331 int batchcount;
3332 struct kmem_cache_node *n;
3333 int node = numa_mem_id();
3334 LIST_HEAD(list);
3335
3336 batchcount = ac->batchcount;
3337 #if DEBUG
3338 BUG_ON(!batchcount || batchcount > ac->avail);
3339 #endif
3340 check_irq_off();
3341 n = get_node(cachep, node);
3342 spin_lock(&n->list_lock);
3343 if (n->shared) {
3344 struct array_cache *shared_array = n->shared;
3345 int max = shared_array->limit - shared_array->avail;
3346 if (max) {
3347 if (batchcount > max)
3348 batchcount = max;
3349 memcpy(&(shared_array->entry[shared_array->avail]),
3350 ac->entry, sizeof(void *) * batchcount);
3351 shared_array->avail += batchcount;
3352 goto free_done;
3353 }
3354 }
3355
3356 free_block(cachep, ac->entry, batchcount, node, &list);
3357 free_done:
3358 #if STATS
3359 {
3360 int i = 0;
3361 struct list_head *p;
3362
3363 p = n->slabs_free.next;
3364 while (p != &(n->slabs_free)) {
3365 struct page *page;
3366
3367 page = list_entry(p, struct page, lru);
3368 BUG_ON(page->active);
3369
3370 i++;
3371 p = p->next;
3372 }
3373 STATS_SET_FREEABLE(cachep, i);
3374 }
3375 #endif
3376 spin_unlock(&n->list_lock);
3377 slabs_destroy(cachep, &list);
3378 ac->avail -= batchcount;
3379 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3380 }
3381
3382 /*
3383 * Release an obj back to its cache. If the obj has a constructed state, it must
3384 * be in this state _before_ it is released. Called with disabled ints.
3385 */
3386 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3387 unsigned long caller)
3388 {
3389 struct array_cache *ac = cpu_cache_get(cachep);
3390
3391 check_irq_off();
3392 kmemleak_free_recursive(objp, cachep->flags);
3393 objp = cache_free_debugcheck(cachep, objp, caller);
3394
3395 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3396
3397 /*
3398 * Skip calling cache_free_alien() when the platform is not numa.
3399 * This will avoid cache misses that happen while accessing slabp (which
3400 * is per page memory reference) to get nodeid. Instead use a global
3401 * variable to skip the call, which is mostly likely to be present in
3402 * the cache.
3403 */
3404 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3405 return;
3406
3407 if (likely(ac->avail < ac->limit)) {
3408 STATS_INC_FREEHIT(cachep);
3409 } else {
3410 STATS_INC_FREEMISS(cachep);
3411 cache_flusharray(cachep, ac);
3412 }
3413
3414 ac_put_obj(cachep, ac, objp);
3415 }
3416
3417 /**
3418 * kmem_cache_alloc - Allocate an object
3419 * @cachep: The cache to allocate from.
3420 * @flags: See kmalloc().
3421 *
3422 * Allocate an object from this cache. The flags are only relevant
3423 * if the cache has no available objects.
3424 */
3425 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3426 {
3427 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3428
3429 trace_kmem_cache_alloc(_RET_IP_, ret,
3430 cachep->object_size, cachep->size, flags);
3431
3432 return ret;
3433 }
3434 EXPORT_SYMBOL(kmem_cache_alloc);
3435
3436 #ifdef CONFIG_TRACING
3437 void *
3438 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3439 {
3440 void *ret;
3441
3442 ret = slab_alloc(cachep, flags, _RET_IP_);
3443
3444 trace_kmalloc(_RET_IP_, ret,
3445 size, cachep->size, flags);
3446 return ret;
3447 }
3448 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3449 #endif
3450
3451 #ifdef CONFIG_NUMA
3452 /**
3453 * kmem_cache_alloc_node - Allocate an object on the specified node
3454 * @cachep: The cache to allocate from.
3455 * @flags: See kmalloc().
3456 * @nodeid: node number of the target node.
3457 *
3458 * Identical to kmem_cache_alloc but it will allocate memory on the given
3459 * node, which can improve the performance for cpu bound structures.
3460 *
3461 * Fallback to other node is possible if __GFP_THISNODE is not set.
3462 */
3463 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3464 {
3465 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3466
3467 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3468 cachep->object_size, cachep->size,
3469 flags, nodeid);
3470
3471 return ret;
3472 }
3473 EXPORT_SYMBOL(kmem_cache_alloc_node);
3474
3475 #ifdef CONFIG_TRACING
3476 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3477 gfp_t flags,
3478 int nodeid,
3479 size_t size)
3480 {
3481 void *ret;
3482
3483 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3484
3485 trace_kmalloc_node(_RET_IP_, ret,
3486 size, cachep->size,
3487 flags, nodeid);
3488 return ret;
3489 }
3490 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3491 #endif
3492
3493 static __always_inline void *
3494 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3495 {
3496 struct kmem_cache *cachep;
3497
3498 cachep = kmalloc_slab(size, flags);
3499 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3500 return cachep;
3501 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3502 }
3503
3504 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3505 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3506 {
3507 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3508 }
3509 EXPORT_SYMBOL(__kmalloc_node);
3510
3511 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3512 int node, unsigned long caller)
3513 {
3514 return __do_kmalloc_node(size, flags, node, caller);
3515 }
3516 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3517 #else
3518 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3519 {
3520 return __do_kmalloc_node(size, flags, node, 0);
3521 }
3522 EXPORT_SYMBOL(__kmalloc_node);
3523 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3524 #endif /* CONFIG_NUMA */
3525
3526 /**
3527 * __do_kmalloc - allocate memory
3528 * @size: how many bytes of memory are required.
3529 * @flags: the type of memory to allocate (see kmalloc).
3530 * @caller: function caller for debug tracking of the caller
3531 */
3532 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3533 unsigned long caller)
3534 {
3535 struct kmem_cache *cachep;
3536 void *ret;
3537
3538 cachep = kmalloc_slab(size, flags);
3539 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3540 return cachep;
3541 ret = slab_alloc(cachep, flags, caller);
3542
3543 trace_kmalloc(caller, ret,
3544 size, cachep->size, flags);
3545
3546 return ret;
3547 }
3548
3549
3550 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3551 void *__kmalloc(size_t size, gfp_t flags)
3552 {
3553 return __do_kmalloc(size, flags, _RET_IP_);
3554 }
3555 EXPORT_SYMBOL(__kmalloc);
3556
3557 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3558 {
3559 return __do_kmalloc(size, flags, caller);
3560 }
3561 EXPORT_SYMBOL(__kmalloc_track_caller);
3562
3563 #else
3564 void *__kmalloc(size_t size, gfp_t flags)
3565 {
3566 return __do_kmalloc(size, flags, 0);
3567 }
3568 EXPORT_SYMBOL(__kmalloc);
3569 #endif
3570
3571 /**
3572 * kmem_cache_free - Deallocate an object
3573 * @cachep: The cache the allocation was from.
3574 * @objp: The previously allocated object.
3575 *
3576 * Free an object which was previously allocated from this
3577 * cache.
3578 */
3579 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3580 {
3581 unsigned long flags;
3582 cachep = cache_from_obj(cachep, objp);
3583 if (!cachep)
3584 return;
3585
3586 local_irq_save(flags);
3587 debug_check_no_locks_freed(objp, cachep->object_size);
3588 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3589 debug_check_no_obj_freed(objp, cachep->object_size);
3590 __cache_free(cachep, objp, _RET_IP_);
3591 local_irq_restore(flags);
3592
3593 trace_kmem_cache_free(_RET_IP_, objp);
3594 }
3595 EXPORT_SYMBOL(kmem_cache_free);
3596
3597 /**
3598 * kfree - free previously allocated memory
3599 * @objp: pointer returned by kmalloc.
3600 *
3601 * If @objp is NULL, no operation is performed.
3602 *
3603 * Don't free memory not originally allocated by kmalloc()
3604 * or you will run into trouble.
3605 */
3606 void kfree(const void *objp)
3607 {
3608 struct kmem_cache *c;
3609 unsigned long flags;
3610
3611 trace_kfree(_RET_IP_, objp);
3612
3613 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3614 return;
3615 local_irq_save(flags);
3616 kfree_debugcheck(objp);
3617 c = virt_to_cache(objp);
3618 debug_check_no_locks_freed(objp, c->object_size);
3619
3620 debug_check_no_obj_freed(objp, c->object_size);
3621 __cache_free(c, (void *)objp, _RET_IP_);
3622 local_irq_restore(flags);
3623 }
3624 EXPORT_SYMBOL(kfree);
3625
3626 /*
3627 * This initializes kmem_cache_node or resizes various caches for all nodes.
3628 */
3629 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3630 {
3631 int node;
3632 struct kmem_cache_node *n;
3633 struct array_cache *new_shared;
3634 struct alien_cache **new_alien = NULL;
3635
3636 for_each_online_node(node) {
3637
3638 if (use_alien_caches) {
3639 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3640 if (!new_alien)
3641 goto fail;
3642 }
3643
3644 new_shared = NULL;
3645 if (cachep->shared) {
3646 new_shared = alloc_arraycache(node,
3647 cachep->shared*cachep->batchcount,
3648 0xbaadf00d, gfp);
3649 if (!new_shared) {
3650 free_alien_cache(new_alien);
3651 goto fail;
3652 }
3653 }
3654
3655 n = get_node(cachep, node);
3656 if (n) {
3657 struct array_cache *shared = n->shared;
3658 LIST_HEAD(list);
3659
3660 spin_lock_irq(&n->list_lock);
3661
3662 if (shared)
3663 free_block(cachep, shared->entry,
3664 shared->avail, node, &list);
3665
3666 n->shared = new_shared;
3667 if (!n->alien) {
3668 n->alien = new_alien;
3669 new_alien = NULL;
3670 }
3671 n->free_limit = (1 + nr_cpus_node(node)) *
3672 cachep->batchcount + cachep->num;
3673 spin_unlock_irq(&n->list_lock);
3674 slabs_destroy(cachep, &list);
3675 kfree(shared);
3676 free_alien_cache(new_alien);
3677 continue;
3678 }
3679 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3680 if (!n) {
3681 free_alien_cache(new_alien);
3682 kfree(new_shared);
3683 goto fail;
3684 }
3685
3686 kmem_cache_node_init(n);
3687 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3688 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3689 n->shared = new_shared;
3690 n->alien = new_alien;
3691 n->free_limit = (1 + nr_cpus_node(node)) *
3692 cachep->batchcount + cachep->num;
3693 cachep->node[node] = n;
3694 }
3695 return 0;
3696
3697 fail:
3698 if (!cachep->list.next) {
3699 /* Cache is not active yet. Roll back what we did */
3700 node--;
3701 while (node >= 0) {
3702 n = get_node(cachep, node);
3703 if (n) {
3704 kfree(n->shared);
3705 free_alien_cache(n->alien);
3706 kfree(n);
3707 cachep->node[node] = NULL;
3708 }
3709 node--;
3710 }
3711 }
3712 return -ENOMEM;
3713 }
3714
3715 struct ccupdate_struct {
3716 struct kmem_cache *cachep;
3717 struct array_cache *new[0];
3718 };
3719
3720 static void do_ccupdate_local(void *info)
3721 {
3722 struct ccupdate_struct *new = info;
3723 struct array_cache *old;
3724
3725 check_irq_off();
3726 old = cpu_cache_get(new->cachep);
3727
3728 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3729 new->new[smp_processor_id()] = old;
3730 }
3731
3732 /* Always called with the slab_mutex held */
3733 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3734 int batchcount, int shared, gfp_t gfp)
3735 {
3736 struct ccupdate_struct *new;
3737 int i;
3738
3739 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3740 gfp);
3741 if (!new)
3742 return -ENOMEM;
3743
3744 for_each_online_cpu(i) {
3745 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3746 batchcount, gfp);
3747 if (!new->new[i]) {
3748 for (i--; i >= 0; i--)
3749 kfree(new->new[i]);
3750 kfree(new);
3751 return -ENOMEM;
3752 }
3753 }
3754 new->cachep = cachep;
3755
3756 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3757
3758 check_irq_on();
3759 cachep->batchcount = batchcount;
3760 cachep->limit = limit;
3761 cachep->shared = shared;
3762
3763 for_each_online_cpu(i) {
3764 LIST_HEAD(list);
3765 struct array_cache *ccold = new->new[i];
3766 int node;
3767 struct kmem_cache_node *n;
3768
3769 if (!ccold)
3770 continue;
3771
3772 node = cpu_to_mem(i);
3773 n = get_node(cachep, node);
3774 spin_lock_irq(&n->list_lock);
3775 free_block(cachep, ccold->entry, ccold->avail, node, &list);
3776 spin_unlock_irq(&n->list_lock);
3777 slabs_destroy(cachep, &list);
3778 kfree(ccold);
3779 }
3780 kfree(new);
3781 return alloc_kmem_cache_node(cachep, gfp);
3782 }
3783
3784 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3785 int batchcount, int shared, gfp_t gfp)
3786 {
3787 int ret;
3788 struct kmem_cache *c = NULL;
3789 int i = 0;
3790
3791 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3792
3793 if (slab_state < FULL)
3794 return ret;
3795
3796 if ((ret < 0) || !is_root_cache(cachep))
3797 return ret;
3798
3799 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3800 for_each_memcg_cache_index(i) {
3801 c = cache_from_memcg_idx(cachep, i);
3802 if (c)
3803 /* return value determined by the parent cache only */
3804 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3805 }
3806
3807 return ret;
3808 }
3809
3810 /* Called with slab_mutex held always */
3811 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3812 {
3813 int err;
3814 int limit = 0;
3815 int shared = 0;
3816 int batchcount = 0;
3817
3818 if (!is_root_cache(cachep)) {
3819 struct kmem_cache *root = memcg_root_cache(cachep);
3820 limit = root->limit;
3821 shared = root->shared;
3822 batchcount = root->batchcount;
3823 }
3824
3825 if (limit && shared && batchcount)
3826 goto skip_setup;
3827 /*
3828 * The head array serves three purposes:
3829 * - create a LIFO ordering, i.e. return objects that are cache-warm
3830 * - reduce the number of spinlock operations.
3831 * - reduce the number of linked list operations on the slab and
3832 * bufctl chains: array operations are cheaper.
3833 * The numbers are guessed, we should auto-tune as described by
3834 * Bonwick.
3835 */
3836 if (cachep->size > 131072)
3837 limit = 1;
3838 else if (cachep->size > PAGE_SIZE)
3839 limit = 8;
3840 else if (cachep->size > 1024)
3841 limit = 24;
3842 else if (cachep->size > 256)
3843 limit = 54;
3844 else
3845 limit = 120;
3846
3847 /*
3848 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3849 * allocation behaviour: Most allocs on one cpu, most free operations
3850 * on another cpu. For these cases, an efficient object passing between
3851 * cpus is necessary. This is provided by a shared array. The array
3852 * replaces Bonwick's magazine layer.
3853 * On uniprocessor, it's functionally equivalent (but less efficient)
3854 * to a larger limit. Thus disabled by default.
3855 */
3856 shared = 0;
3857 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3858 shared = 8;
3859
3860 #if DEBUG
3861 /*
3862 * With debugging enabled, large batchcount lead to excessively long
3863 * periods with disabled local interrupts. Limit the batchcount
3864 */
3865 if (limit > 32)
3866 limit = 32;
3867 #endif
3868 batchcount = (limit + 1) / 2;
3869 skip_setup:
3870 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3871 if (err)
3872 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3873 cachep->name, -err);
3874 return err;
3875 }
3876
3877 /*
3878 * Drain an array if it contains any elements taking the node lock only if
3879 * necessary. Note that the node listlock also protects the array_cache
3880 * if drain_array() is used on the shared array.
3881 */
3882 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3883 struct array_cache *ac, int force, int node)
3884 {
3885 LIST_HEAD(list);
3886 int tofree;
3887
3888 if (!ac || !ac->avail)
3889 return;
3890 if (ac->touched && !force) {
3891 ac->touched = 0;
3892 } else {
3893 spin_lock_irq(&n->list_lock);
3894 if (ac->avail) {
3895 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3896 if (tofree > ac->avail)
3897 tofree = (ac->avail + 1) / 2;
3898 free_block(cachep, ac->entry, tofree, node, &list);
3899 ac->avail -= tofree;
3900 memmove(ac->entry, &(ac->entry[tofree]),
3901 sizeof(void *) * ac->avail);
3902 }
3903 spin_unlock_irq(&n->list_lock);
3904 slabs_destroy(cachep, &list);
3905 }
3906 }
3907
3908 /**
3909 * cache_reap - Reclaim memory from caches.
3910 * @w: work descriptor
3911 *
3912 * Called from workqueue/eventd every few seconds.
3913 * Purpose:
3914 * - clear the per-cpu caches for this CPU.
3915 * - return freeable pages to the main free memory pool.
3916 *
3917 * If we cannot acquire the cache chain mutex then just give up - we'll try
3918 * again on the next iteration.
3919 */
3920 static void cache_reap(struct work_struct *w)
3921 {
3922 struct kmem_cache *searchp;
3923 struct kmem_cache_node *n;
3924 int node = numa_mem_id();
3925 struct delayed_work *work = to_delayed_work(w);
3926
3927 if (!mutex_trylock(&slab_mutex))
3928 /* Give up. Setup the next iteration. */
3929 goto out;
3930
3931 list_for_each_entry(searchp, &slab_caches, list) {
3932 check_irq_on();
3933
3934 /*
3935 * We only take the node lock if absolutely necessary and we
3936 * have established with reasonable certainty that
3937 * we can do some work if the lock was obtained.
3938 */
3939 n = get_node(searchp, node);
3940
3941 reap_alien(searchp, n);
3942
3943 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3944
3945 /*
3946 * These are racy checks but it does not matter
3947 * if we skip one check or scan twice.
3948 */
3949 if (time_after(n->next_reap, jiffies))
3950 goto next;
3951
3952 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3953
3954 drain_array(searchp, n, n->shared, 0, node);
3955
3956 if (n->free_touched)
3957 n->free_touched = 0;
3958 else {
3959 int freed;
3960
3961 freed = drain_freelist(searchp, n, (n->free_limit +
3962 5 * searchp->num - 1) / (5 * searchp->num));
3963 STATS_ADD_REAPED(searchp, freed);
3964 }
3965 next:
3966 cond_resched();
3967 }
3968 check_irq_on();
3969 mutex_unlock(&slab_mutex);
3970 next_reap_node();
3971 out:
3972 /* Set up the next iteration */
3973 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3974 }
3975
3976 #ifdef CONFIG_SLABINFO
3977 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3978 {
3979 struct page *page;
3980 unsigned long active_objs;
3981 unsigned long num_objs;
3982 unsigned long active_slabs = 0;
3983 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3984 const char *name;
3985 char *error = NULL;
3986 int node;
3987 struct kmem_cache_node *n;
3988
3989 active_objs = 0;
3990 num_slabs = 0;
3991 for_each_kmem_cache_node(cachep, node, n) {
3992
3993 check_irq_on();
3994 spin_lock_irq(&n->list_lock);
3995
3996 list_for_each_entry(page, &n->slabs_full, lru) {
3997 if (page->active != cachep->num && !error)
3998 error = "slabs_full accounting error";
3999 active_objs += cachep->num;
4000 active_slabs++;
4001 }
4002 list_for_each_entry(page, &n->slabs_partial, lru) {
4003 if (page->active == cachep->num && !error)
4004 error = "slabs_partial accounting error";
4005 if (!page->active && !error)
4006 error = "slabs_partial accounting error";
4007 active_objs += page->active;
4008 active_slabs++;
4009 }
4010 list_for_each_entry(page, &n->slabs_free, lru) {
4011 if (page->active && !error)
4012 error = "slabs_free accounting error";
4013 num_slabs++;
4014 }
4015 free_objects += n->free_objects;
4016 if (n->shared)
4017 shared_avail += n->shared->avail;
4018
4019 spin_unlock_irq(&n->list_lock);
4020 }
4021 num_slabs += active_slabs;
4022 num_objs = num_slabs * cachep->num;
4023 if (num_objs - active_objs != free_objects && !error)
4024 error = "free_objects accounting error";
4025
4026 name = cachep->name;
4027 if (error)
4028 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4029
4030 sinfo->active_objs = active_objs;
4031 sinfo->num_objs = num_objs;
4032 sinfo->active_slabs = active_slabs;
4033 sinfo->num_slabs = num_slabs;
4034 sinfo->shared_avail = shared_avail;
4035 sinfo->limit = cachep->limit;
4036 sinfo->batchcount = cachep->batchcount;
4037 sinfo->shared = cachep->shared;
4038 sinfo->objects_per_slab = cachep->num;
4039 sinfo->cache_order = cachep->gfporder;
4040 }
4041
4042 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4043 {
4044 #if STATS
4045 { /* node stats */
4046 unsigned long high = cachep->high_mark;
4047 unsigned long allocs = cachep->num_allocations;
4048 unsigned long grown = cachep->grown;
4049 unsigned long reaped = cachep->reaped;
4050 unsigned long errors = cachep->errors;
4051 unsigned long max_freeable = cachep->max_freeable;
4052 unsigned long node_allocs = cachep->node_allocs;
4053 unsigned long node_frees = cachep->node_frees;
4054 unsigned long overflows = cachep->node_overflow;
4055
4056 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4057 "%4lu %4lu %4lu %4lu %4lu",
4058 allocs, high, grown,
4059 reaped, errors, max_freeable, node_allocs,
4060 node_frees, overflows);
4061 }
4062 /* cpu stats */
4063 {
4064 unsigned long allochit = atomic_read(&cachep->allochit);
4065 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4066 unsigned long freehit = atomic_read(&cachep->freehit);
4067 unsigned long freemiss = atomic_read(&cachep->freemiss);
4068
4069 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4070 allochit, allocmiss, freehit, freemiss);
4071 }
4072 #endif
4073 }
4074
4075 #define MAX_SLABINFO_WRITE 128
4076 /**
4077 * slabinfo_write - Tuning for the slab allocator
4078 * @file: unused
4079 * @buffer: user buffer
4080 * @count: data length
4081 * @ppos: unused
4082 */
4083 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4084 size_t count, loff_t *ppos)
4085 {
4086 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4087 int limit, batchcount, shared, res;
4088 struct kmem_cache *cachep;
4089
4090 if (count > MAX_SLABINFO_WRITE)
4091 return -EINVAL;
4092 if (copy_from_user(&kbuf, buffer, count))
4093 return -EFAULT;
4094 kbuf[MAX_SLABINFO_WRITE] = '\0';
4095
4096 tmp = strchr(kbuf, ' ');
4097 if (!tmp)
4098 return -EINVAL;
4099 *tmp = '\0';
4100 tmp++;
4101 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4102 return -EINVAL;
4103
4104 /* Find the cache in the chain of caches. */
4105 mutex_lock(&slab_mutex);
4106 res = -EINVAL;
4107 list_for_each_entry(cachep, &slab_caches, list) {
4108 if (!strcmp(cachep->name, kbuf)) {
4109 if (limit < 1 || batchcount < 1 ||
4110 batchcount > limit || shared < 0) {
4111 res = 0;
4112 } else {
4113 res = do_tune_cpucache(cachep, limit,
4114 batchcount, shared,
4115 GFP_KERNEL);
4116 }
4117 break;
4118 }
4119 }
4120 mutex_unlock(&slab_mutex);
4121 if (res >= 0)
4122 res = count;
4123 return res;
4124 }
4125
4126 #ifdef CONFIG_DEBUG_SLAB_LEAK
4127
4128 static void *leaks_start(struct seq_file *m, loff_t *pos)
4129 {
4130 mutex_lock(&slab_mutex);
4131 return seq_list_start(&slab_caches, *pos);
4132 }
4133
4134 static inline int add_caller(unsigned long *n, unsigned long v)
4135 {
4136 unsigned long *p;
4137 int l;
4138 if (!v)
4139 return 1;
4140 l = n[1];
4141 p = n + 2;
4142 while (l) {
4143 int i = l/2;
4144 unsigned long *q = p + 2 * i;
4145 if (*q == v) {
4146 q[1]++;
4147 return 1;
4148 }
4149 if (*q > v) {
4150 l = i;
4151 } else {
4152 p = q + 2;
4153 l -= i + 1;
4154 }
4155 }
4156 if (++n[1] == n[0])
4157 return 0;
4158 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4159 p[0] = v;
4160 p[1] = 1;
4161 return 1;
4162 }
4163
4164 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4165 struct page *page)
4166 {
4167 void *p;
4168 int i;
4169
4170 if (n[0] == n[1])
4171 return;
4172 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4173 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4174 continue;
4175
4176 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4177 return;
4178 }
4179 }
4180
4181 static void show_symbol(struct seq_file *m, unsigned long address)
4182 {
4183 #ifdef CONFIG_KALLSYMS
4184 unsigned long offset, size;
4185 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4186
4187 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4188 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4189 if (modname[0])
4190 seq_printf(m, " [%s]", modname);
4191 return;
4192 }
4193 #endif
4194 seq_printf(m, "%p", (void *)address);
4195 }
4196
4197 static int leaks_show(struct seq_file *m, void *p)
4198 {
4199 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4200 struct page *page;
4201 struct kmem_cache_node *n;
4202 const char *name;
4203 unsigned long *x = m->private;
4204 int node;
4205 int i;
4206
4207 if (!(cachep->flags & SLAB_STORE_USER))
4208 return 0;
4209 if (!(cachep->flags & SLAB_RED_ZONE))
4210 return 0;
4211
4212 /* OK, we can do it */
4213
4214 x[1] = 0;
4215
4216 for_each_kmem_cache_node(cachep, node, n) {
4217
4218 check_irq_on();
4219 spin_lock_irq(&n->list_lock);
4220
4221 list_for_each_entry(page, &n->slabs_full, lru)
4222 handle_slab(x, cachep, page);
4223 list_for_each_entry(page, &n->slabs_partial, lru)
4224 handle_slab(x, cachep, page);
4225 spin_unlock_irq(&n->list_lock);
4226 }
4227 name = cachep->name;
4228 if (x[0] == x[1]) {
4229 /* Increase the buffer size */
4230 mutex_unlock(&slab_mutex);
4231 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4232 if (!m->private) {
4233 /* Too bad, we are really out */
4234 m->private = x;
4235 mutex_lock(&slab_mutex);
4236 return -ENOMEM;
4237 }
4238 *(unsigned long *)m->private = x[0] * 2;
4239 kfree(x);
4240 mutex_lock(&slab_mutex);
4241 /* Now make sure this entry will be retried */
4242 m->count = m->size;
4243 return 0;
4244 }
4245 for (i = 0; i < x[1]; i++) {
4246 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4247 show_symbol(m, x[2*i+2]);
4248 seq_putc(m, '\n');
4249 }
4250
4251 return 0;
4252 }
4253
4254 static const struct seq_operations slabstats_op = {
4255 .start = leaks_start,
4256 .next = slab_next,
4257 .stop = slab_stop,
4258 .show = leaks_show,
4259 };
4260
4261 static int slabstats_open(struct inode *inode, struct file *file)
4262 {
4263 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4264 int ret = -ENOMEM;
4265 if (n) {
4266 ret = seq_open(file, &slabstats_op);
4267 if (!ret) {
4268 struct seq_file *m = file->private_data;
4269 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4270 m->private = n;
4271 n = NULL;
4272 }
4273 kfree(n);
4274 }
4275 return ret;
4276 }
4277
4278 static const struct file_operations proc_slabstats_operations = {
4279 .open = slabstats_open,
4280 .read = seq_read,
4281 .llseek = seq_lseek,
4282 .release = seq_release_private,
4283 };
4284 #endif
4285
4286 static int __init slab_proc_init(void)
4287 {
4288 #ifdef CONFIG_DEBUG_SLAB_LEAK
4289 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4290 #endif
4291 return 0;
4292 }
4293 module_init(slab_proc_init);
4294 #endif
4295
4296 /**
4297 * ksize - get the actual amount of memory allocated for a given object
4298 * @objp: Pointer to the object
4299 *
4300 * kmalloc may internally round up allocations and return more memory
4301 * than requested. ksize() can be used to determine the actual amount of
4302 * memory allocated. The caller may use this additional memory, even though
4303 * a smaller amount of memory was initially specified with the kmalloc call.
4304 * The caller must guarantee that objp points to a valid object previously
4305 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4306 * must not be freed during the duration of the call.
4307 */
4308 size_t ksize(const void *objp)
4309 {
4310 BUG_ON(!objp);
4311 if (unlikely(objp == ZERO_SIZE_PTR))
4312 return 0;
4313
4314 return virt_to_cache(objp)->object_size;
4315 }
4316 EXPORT_SYMBOL(ksize);
This page took 0.118341 seconds and 5 git commands to generate.