75c60821e38225d477d7ff1bfa7ac8ca261191e1
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 /*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164 static bool pfmemalloc_active __read_mostly;
165
166 /*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
185 typedef unsigned int kmem_bufctl_t;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
190
191 /*
192 * struct slab
193 *
194 * Manages the objs in a slab. Placed either at the beginning of mem allocated
195 * for a slab, or allocated from an general cache.
196 * Slabs are chained into three list: fully used, partial, fully free slabs.
197 */
198 struct slab {
199 struct {
200 struct list_head list;
201 void *s_mem; /* including colour offset */
202 unsigned int inuse; /* num of objs active in slab */
203 kmem_bufctl_t free;
204 };
205 };
206
207 /*
208 * struct array_cache
209 *
210 * Purpose:
211 * - LIFO ordering, to hand out cache-warm objects from _alloc
212 * - reduce the number of linked list operations
213 * - reduce spinlock operations
214 *
215 * The limit is stored in the per-cpu structure to reduce the data cache
216 * footprint.
217 *
218 */
219 struct array_cache {
220 unsigned int avail;
221 unsigned int limit;
222 unsigned int batchcount;
223 unsigned int touched;
224 spinlock_t lock;
225 void *entry[]; /*
226 * Must have this definition in here for the proper
227 * alignment of array_cache. Also simplifies accessing
228 * the entries.
229 *
230 * Entries should not be directly dereferenced as
231 * entries belonging to slabs marked pfmemalloc will
232 * have the lower bits set SLAB_OBJ_PFMEMALLOC
233 */
234 };
235
236 #define SLAB_OBJ_PFMEMALLOC 1
237 static inline bool is_obj_pfmemalloc(void *objp)
238 {
239 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
240 }
241
242 static inline void set_obj_pfmemalloc(void **objp)
243 {
244 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
245 return;
246 }
247
248 static inline void clear_obj_pfmemalloc(void **objp)
249 {
250 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
251 }
252
253 /*
254 * bootstrap: The caches do not work without cpuarrays anymore, but the
255 * cpuarrays are allocated from the generic caches...
256 */
257 #define BOOT_CPUCACHE_ENTRIES 1
258 struct arraycache_init {
259 struct array_cache cache;
260 void *entries[BOOT_CPUCACHE_ENTRIES];
261 };
262
263 /*
264 * Need this for bootstrapping a per node allocator.
265 */
266 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
267 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
268 #define CACHE_CACHE 0
269 #define SIZE_AC MAX_NUMNODES
270 #define SIZE_NODE (2 * MAX_NUMNODES)
271
272 static int drain_freelist(struct kmem_cache *cache,
273 struct kmem_cache_node *n, int tofree);
274 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
275 int node);
276 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
277 static void cache_reap(struct work_struct *unused);
278
279 static int slab_early_init = 1;
280
281 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
282 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
283
284 static void kmem_cache_node_init(struct kmem_cache_node *parent)
285 {
286 INIT_LIST_HEAD(&parent->slabs_full);
287 INIT_LIST_HEAD(&parent->slabs_partial);
288 INIT_LIST_HEAD(&parent->slabs_free);
289 parent->shared = NULL;
290 parent->alien = NULL;
291 parent->colour_next = 0;
292 spin_lock_init(&parent->list_lock);
293 parent->free_objects = 0;
294 parent->free_touched = 0;
295 }
296
297 #define MAKE_LIST(cachep, listp, slab, nodeid) \
298 do { \
299 INIT_LIST_HEAD(listp); \
300 list_splice(&(cachep->node[nodeid]->slab), listp); \
301 } while (0)
302
303 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
304 do { \
305 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
306 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
307 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
308 } while (0)
309
310 #define CFLGS_OFF_SLAB (0x80000000UL)
311 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
312
313 #define BATCHREFILL_LIMIT 16
314 /*
315 * Optimization question: fewer reaps means less probability for unnessary
316 * cpucache drain/refill cycles.
317 *
318 * OTOH the cpuarrays can contain lots of objects,
319 * which could lock up otherwise freeable slabs.
320 */
321 #define REAPTIMEOUT_CPUC (2*HZ)
322 #define REAPTIMEOUT_LIST3 (4*HZ)
323
324 #if STATS
325 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
326 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
327 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
328 #define STATS_INC_GROWN(x) ((x)->grown++)
329 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
330 #define STATS_SET_HIGH(x) \
331 do { \
332 if ((x)->num_active > (x)->high_mark) \
333 (x)->high_mark = (x)->num_active; \
334 } while (0)
335 #define STATS_INC_ERR(x) ((x)->errors++)
336 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
337 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
338 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
339 #define STATS_SET_FREEABLE(x, i) \
340 do { \
341 if ((x)->max_freeable < i) \
342 (x)->max_freeable = i; \
343 } while (0)
344 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
345 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
346 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
347 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
348 #else
349 #define STATS_INC_ACTIVE(x) do { } while (0)
350 #define STATS_DEC_ACTIVE(x) do { } while (0)
351 #define STATS_INC_ALLOCED(x) do { } while (0)
352 #define STATS_INC_GROWN(x) do { } while (0)
353 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
354 #define STATS_SET_HIGH(x) do { } while (0)
355 #define STATS_INC_ERR(x) do { } while (0)
356 #define STATS_INC_NODEALLOCS(x) do { } while (0)
357 #define STATS_INC_NODEFREES(x) do { } while (0)
358 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
359 #define STATS_SET_FREEABLE(x, i) do { } while (0)
360 #define STATS_INC_ALLOCHIT(x) do { } while (0)
361 #define STATS_INC_ALLOCMISS(x) do { } while (0)
362 #define STATS_INC_FREEHIT(x) do { } while (0)
363 #define STATS_INC_FREEMISS(x) do { } while (0)
364 #endif
365
366 #if DEBUG
367
368 /*
369 * memory layout of objects:
370 * 0 : objp
371 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
372 * the end of an object is aligned with the end of the real
373 * allocation. Catches writes behind the end of the allocation.
374 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
375 * redzone word.
376 * cachep->obj_offset: The real object.
377 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
378 * cachep->size - 1* BYTES_PER_WORD: last caller address
379 * [BYTES_PER_WORD long]
380 */
381 static int obj_offset(struct kmem_cache *cachep)
382 {
383 return cachep->obj_offset;
384 }
385
386 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
387 {
388 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
389 return (unsigned long long*) (objp + obj_offset(cachep) -
390 sizeof(unsigned long long));
391 }
392
393 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
394 {
395 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
396 if (cachep->flags & SLAB_STORE_USER)
397 return (unsigned long long *)(objp + cachep->size -
398 sizeof(unsigned long long) -
399 REDZONE_ALIGN);
400 return (unsigned long long *) (objp + cachep->size -
401 sizeof(unsigned long long));
402 }
403
404 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
405 {
406 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
407 return (void **)(objp + cachep->size - BYTES_PER_WORD);
408 }
409
410 #else
411
412 #define obj_offset(x) 0
413 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
414 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
415 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
416
417 #endif
418
419 /*
420 * Do not go above this order unless 0 objects fit into the slab or
421 * overridden on the command line.
422 */
423 #define SLAB_MAX_ORDER_HI 1
424 #define SLAB_MAX_ORDER_LO 0
425 static int slab_max_order = SLAB_MAX_ORDER_LO;
426 static bool slab_max_order_set __initdata;
427
428 static inline struct kmem_cache *virt_to_cache(const void *obj)
429 {
430 struct page *page = virt_to_head_page(obj);
431 return page->slab_cache;
432 }
433
434 static inline struct slab *virt_to_slab(const void *obj)
435 {
436 struct page *page = virt_to_head_page(obj);
437
438 VM_BUG_ON(!PageSlab(page));
439 return page->slab_page;
440 }
441
442 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
443 unsigned int idx)
444 {
445 return slab->s_mem + cache->size * idx;
446 }
447
448 /*
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct slab *slab, void *obj)
456 {
457 u32 offset = (obj - slab->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 }
460
461 static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
471 };
472
473 #define BAD_ALIEN_MAGIC 0x01020304ul
474
475 #ifdef CONFIG_LOCKDEP
476
477 /*
478 * Slab sometimes uses the kmalloc slabs to store the slab headers
479 * for other slabs "off slab".
480 * The locking for this is tricky in that it nests within the locks
481 * of all other slabs in a few places; to deal with this special
482 * locking we put on-slab caches into a separate lock-class.
483 *
484 * We set lock class for alien array caches which are up during init.
485 * The lock annotation will be lost if all cpus of a node goes down and
486 * then comes back up during hotplug
487 */
488 static struct lock_class_key on_slab_l3_key;
489 static struct lock_class_key on_slab_alc_key;
490
491 static struct lock_class_key debugobj_l3_key;
492 static struct lock_class_key debugobj_alc_key;
493
494 static void slab_set_lock_classes(struct kmem_cache *cachep,
495 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
496 int q)
497 {
498 struct array_cache **alc;
499 struct kmem_cache_node *n;
500 int r;
501
502 n = cachep->node[q];
503 if (!n)
504 return;
505
506 lockdep_set_class(&n->list_lock, l3_key);
507 alc = n->alien;
508 /*
509 * FIXME: This check for BAD_ALIEN_MAGIC
510 * should go away when common slab code is taught to
511 * work even without alien caches.
512 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
513 * for alloc_alien_cache,
514 */
515 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
516 return;
517 for_each_node(r) {
518 if (alc[r])
519 lockdep_set_class(&alc[r]->lock, alc_key);
520 }
521 }
522
523 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
524 {
525 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
526 }
527
528 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
529 {
530 int node;
531
532 for_each_online_node(node)
533 slab_set_debugobj_lock_classes_node(cachep, node);
534 }
535
536 static void init_node_lock_keys(int q)
537 {
538 int i;
539
540 if (slab_state < UP)
541 return;
542
543 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
544 struct kmem_cache_node *n;
545 struct kmem_cache *cache = kmalloc_caches[i];
546
547 if (!cache)
548 continue;
549
550 n = cache->node[q];
551 if (!n || OFF_SLAB(cache))
552 continue;
553
554 slab_set_lock_classes(cache, &on_slab_l3_key,
555 &on_slab_alc_key, q);
556 }
557 }
558
559 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
560 {
561 if (!cachep->node[q])
562 return;
563
564 slab_set_lock_classes(cachep, &on_slab_l3_key,
565 &on_slab_alc_key, q);
566 }
567
568 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
569 {
570 int node;
571
572 VM_BUG_ON(OFF_SLAB(cachep));
573 for_each_node(node)
574 on_slab_lock_classes_node(cachep, node);
575 }
576
577 static inline void init_lock_keys(void)
578 {
579 int node;
580
581 for_each_node(node)
582 init_node_lock_keys(node);
583 }
584 #else
585 static void init_node_lock_keys(int q)
586 {
587 }
588
589 static inline void init_lock_keys(void)
590 {
591 }
592
593 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594 {
595 }
596
597 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
598 {
599 }
600
601 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
602 {
603 }
604
605 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
606 {
607 }
608 #endif
609
610 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
611
612 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
613 {
614 return cachep->array[smp_processor_id()];
615 }
616
617 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
618 {
619 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
620 }
621
622 /*
623 * Calculate the number of objects and left-over bytes for a given buffer size.
624 */
625 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
626 size_t align, int flags, size_t *left_over,
627 unsigned int *num)
628 {
629 int nr_objs;
630 size_t mgmt_size;
631 size_t slab_size = PAGE_SIZE << gfporder;
632
633 /*
634 * The slab management structure can be either off the slab or
635 * on it. For the latter case, the memory allocated for a
636 * slab is used for:
637 *
638 * - The struct slab
639 * - One kmem_bufctl_t for each object
640 * - Padding to respect alignment of @align
641 * - @buffer_size bytes for each object
642 *
643 * If the slab management structure is off the slab, then the
644 * alignment will already be calculated into the size. Because
645 * the slabs are all pages aligned, the objects will be at the
646 * correct alignment when allocated.
647 */
648 if (flags & CFLGS_OFF_SLAB) {
649 mgmt_size = 0;
650 nr_objs = slab_size / buffer_size;
651
652 if (nr_objs > SLAB_LIMIT)
653 nr_objs = SLAB_LIMIT;
654 } else {
655 /*
656 * Ignore padding for the initial guess. The padding
657 * is at most @align-1 bytes, and @buffer_size is at
658 * least @align. In the worst case, this result will
659 * be one greater than the number of objects that fit
660 * into the memory allocation when taking the padding
661 * into account.
662 */
663 nr_objs = (slab_size - sizeof(struct slab)) /
664 (buffer_size + sizeof(kmem_bufctl_t));
665
666 /*
667 * This calculated number will be either the right
668 * amount, or one greater than what we want.
669 */
670 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
671 > slab_size)
672 nr_objs--;
673
674 if (nr_objs > SLAB_LIMIT)
675 nr_objs = SLAB_LIMIT;
676
677 mgmt_size = slab_mgmt_size(nr_objs, align);
678 }
679 *num = nr_objs;
680 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
681 }
682
683 #if DEBUG
684 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
685
686 static void __slab_error(const char *function, struct kmem_cache *cachep,
687 char *msg)
688 {
689 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
690 function, cachep->name, msg);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694 #endif
695
696 /*
697 * By default on NUMA we use alien caches to stage the freeing of
698 * objects allocated from other nodes. This causes massive memory
699 * inefficiencies when using fake NUMA setup to split memory into a
700 * large number of small nodes, so it can be disabled on the command
701 * line
702 */
703
704 static int use_alien_caches __read_mostly = 1;
705 static int __init noaliencache_setup(char *s)
706 {
707 use_alien_caches = 0;
708 return 1;
709 }
710 __setup("noaliencache", noaliencache_setup);
711
712 static int __init slab_max_order_setup(char *str)
713 {
714 get_option(&str, &slab_max_order);
715 slab_max_order = slab_max_order < 0 ? 0 :
716 min(slab_max_order, MAX_ORDER - 1);
717 slab_max_order_set = true;
718
719 return 1;
720 }
721 __setup("slab_max_order=", slab_max_order_setup);
722
723 #ifdef CONFIG_NUMA
724 /*
725 * Special reaping functions for NUMA systems called from cache_reap().
726 * These take care of doing round robin flushing of alien caches (containing
727 * objects freed on different nodes from which they were allocated) and the
728 * flushing of remote pcps by calling drain_node_pages.
729 */
730 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
731
732 static void init_reap_node(int cpu)
733 {
734 int node;
735
736 node = next_node(cpu_to_mem(cpu), node_online_map);
737 if (node == MAX_NUMNODES)
738 node = first_node(node_online_map);
739
740 per_cpu(slab_reap_node, cpu) = node;
741 }
742
743 static void next_reap_node(void)
744 {
745 int node = __this_cpu_read(slab_reap_node);
746
747 node = next_node(node, node_online_map);
748 if (unlikely(node >= MAX_NUMNODES))
749 node = first_node(node_online_map);
750 __this_cpu_write(slab_reap_node, node);
751 }
752
753 #else
754 #define init_reap_node(cpu) do { } while (0)
755 #define next_reap_node(void) do { } while (0)
756 #endif
757
758 /*
759 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
760 * via the workqueue/eventd.
761 * Add the CPU number into the expiration time to minimize the possibility of
762 * the CPUs getting into lockstep and contending for the global cache chain
763 * lock.
764 */
765 static void start_cpu_timer(int cpu)
766 {
767 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
768
769 /*
770 * When this gets called from do_initcalls via cpucache_init(),
771 * init_workqueues() has already run, so keventd will be setup
772 * at that time.
773 */
774 if (keventd_up() && reap_work->work.func == NULL) {
775 init_reap_node(cpu);
776 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
777 schedule_delayed_work_on(cpu, reap_work,
778 __round_jiffies_relative(HZ, cpu));
779 }
780 }
781
782 static struct array_cache *alloc_arraycache(int node, int entries,
783 int batchcount, gfp_t gfp)
784 {
785 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
786 struct array_cache *nc = NULL;
787
788 nc = kmalloc_node(memsize, gfp, node);
789 /*
790 * The array_cache structures contain pointers to free object.
791 * However, when such objects are allocated or transferred to another
792 * cache the pointers are not cleared and they could be counted as
793 * valid references during a kmemleak scan. Therefore, kmemleak must
794 * not scan such objects.
795 */
796 kmemleak_no_scan(nc);
797 if (nc) {
798 nc->avail = 0;
799 nc->limit = entries;
800 nc->batchcount = batchcount;
801 nc->touched = 0;
802 spin_lock_init(&nc->lock);
803 }
804 return nc;
805 }
806
807 static inline bool is_slab_pfmemalloc(struct slab *slabp)
808 {
809 struct page *page = virt_to_page(slabp->s_mem);
810
811 return PageSlabPfmemalloc(page);
812 }
813
814 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
815 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
816 struct array_cache *ac)
817 {
818 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
819 struct slab *slabp;
820 unsigned long flags;
821
822 if (!pfmemalloc_active)
823 return;
824
825 spin_lock_irqsave(&n->list_lock, flags);
826 list_for_each_entry(slabp, &n->slabs_full, list)
827 if (is_slab_pfmemalloc(slabp))
828 goto out;
829
830 list_for_each_entry(slabp, &n->slabs_partial, list)
831 if (is_slab_pfmemalloc(slabp))
832 goto out;
833
834 list_for_each_entry(slabp, &n->slabs_free, list)
835 if (is_slab_pfmemalloc(slabp))
836 goto out;
837
838 pfmemalloc_active = false;
839 out:
840 spin_unlock_irqrestore(&n->list_lock, flags);
841 }
842
843 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
844 gfp_t flags, bool force_refill)
845 {
846 int i;
847 void *objp = ac->entry[--ac->avail];
848
849 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
850 if (unlikely(is_obj_pfmemalloc(objp))) {
851 struct kmem_cache_node *n;
852
853 if (gfp_pfmemalloc_allowed(flags)) {
854 clear_obj_pfmemalloc(&objp);
855 return objp;
856 }
857
858 /* The caller cannot use PFMEMALLOC objects, find another one */
859 for (i = 0; i < ac->avail; i++) {
860 /* If a !PFMEMALLOC object is found, swap them */
861 if (!is_obj_pfmemalloc(ac->entry[i])) {
862 objp = ac->entry[i];
863 ac->entry[i] = ac->entry[ac->avail];
864 ac->entry[ac->avail] = objp;
865 return objp;
866 }
867 }
868
869 /*
870 * If there are empty slabs on the slabs_free list and we are
871 * being forced to refill the cache, mark this one !pfmemalloc.
872 */
873 n = cachep->node[numa_mem_id()];
874 if (!list_empty(&n->slabs_free) && force_refill) {
875 struct slab *slabp = virt_to_slab(objp);
876 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
877 clear_obj_pfmemalloc(&objp);
878 recheck_pfmemalloc_active(cachep, ac);
879 return objp;
880 }
881
882 /* No !PFMEMALLOC objects available */
883 ac->avail++;
884 objp = NULL;
885 }
886
887 return objp;
888 }
889
890 static inline void *ac_get_obj(struct kmem_cache *cachep,
891 struct array_cache *ac, gfp_t flags, bool force_refill)
892 {
893 void *objp;
894
895 if (unlikely(sk_memalloc_socks()))
896 objp = __ac_get_obj(cachep, ac, flags, force_refill);
897 else
898 objp = ac->entry[--ac->avail];
899
900 return objp;
901 }
902
903 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
904 void *objp)
905 {
906 if (unlikely(pfmemalloc_active)) {
907 /* Some pfmemalloc slabs exist, check if this is one */
908 struct slab *slabp = virt_to_slab(objp);
909 struct page *page = virt_to_head_page(slabp->s_mem);
910 if (PageSlabPfmemalloc(page))
911 set_obj_pfmemalloc(&objp);
912 }
913
914 return objp;
915 }
916
917 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
918 void *objp)
919 {
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_put_obj(cachep, ac, objp);
922
923 ac->entry[ac->avail++] = objp;
924 }
925
926 /*
927 * Transfer objects in one arraycache to another.
928 * Locking must be handled by the caller.
929 *
930 * Return the number of entries transferred.
931 */
932 static int transfer_objects(struct array_cache *to,
933 struct array_cache *from, unsigned int max)
934 {
935 /* Figure out how many entries to transfer */
936 int nr = min3(from->avail, max, to->limit - to->avail);
937
938 if (!nr)
939 return 0;
940
941 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
942 sizeof(void *) *nr);
943
944 from->avail -= nr;
945 to->avail += nr;
946 return nr;
947 }
948
949 #ifndef CONFIG_NUMA
950
951 #define drain_alien_cache(cachep, alien) do { } while (0)
952 #define reap_alien(cachep, n) do { } while (0)
953
954 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
955 {
956 return (struct array_cache **)BAD_ALIEN_MAGIC;
957 }
958
959 static inline void free_alien_cache(struct array_cache **ac_ptr)
960 {
961 }
962
963 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
964 {
965 return 0;
966 }
967
968 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
969 gfp_t flags)
970 {
971 return NULL;
972 }
973
974 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
975 gfp_t flags, int nodeid)
976 {
977 return NULL;
978 }
979
980 #else /* CONFIG_NUMA */
981
982 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
983 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
984
985 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
986 {
987 struct array_cache **ac_ptr;
988 int memsize = sizeof(void *) * nr_node_ids;
989 int i;
990
991 if (limit > 1)
992 limit = 12;
993 ac_ptr = kzalloc_node(memsize, gfp, node);
994 if (ac_ptr) {
995 for_each_node(i) {
996 if (i == node || !node_online(i))
997 continue;
998 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
999 if (!ac_ptr[i]) {
1000 for (i--; i >= 0; i--)
1001 kfree(ac_ptr[i]);
1002 kfree(ac_ptr);
1003 return NULL;
1004 }
1005 }
1006 }
1007 return ac_ptr;
1008 }
1009
1010 static void free_alien_cache(struct array_cache **ac_ptr)
1011 {
1012 int i;
1013
1014 if (!ac_ptr)
1015 return;
1016 for_each_node(i)
1017 kfree(ac_ptr[i]);
1018 kfree(ac_ptr);
1019 }
1020
1021 static void __drain_alien_cache(struct kmem_cache *cachep,
1022 struct array_cache *ac, int node)
1023 {
1024 struct kmem_cache_node *n = cachep->node[node];
1025
1026 if (ac->avail) {
1027 spin_lock(&n->list_lock);
1028 /*
1029 * Stuff objects into the remote nodes shared array first.
1030 * That way we could avoid the overhead of putting the objects
1031 * into the free lists and getting them back later.
1032 */
1033 if (n->shared)
1034 transfer_objects(n->shared, ac, ac->limit);
1035
1036 free_block(cachep, ac->entry, ac->avail, node);
1037 ac->avail = 0;
1038 spin_unlock(&n->list_lock);
1039 }
1040 }
1041
1042 /*
1043 * Called from cache_reap() to regularly drain alien caches round robin.
1044 */
1045 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1046 {
1047 int node = __this_cpu_read(slab_reap_node);
1048
1049 if (n->alien) {
1050 struct array_cache *ac = n->alien[node];
1051
1052 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1053 __drain_alien_cache(cachep, ac, node);
1054 spin_unlock_irq(&ac->lock);
1055 }
1056 }
1057 }
1058
1059 static void drain_alien_cache(struct kmem_cache *cachep,
1060 struct array_cache **alien)
1061 {
1062 int i = 0;
1063 struct array_cache *ac;
1064 unsigned long flags;
1065
1066 for_each_online_node(i) {
1067 ac = alien[i];
1068 if (ac) {
1069 spin_lock_irqsave(&ac->lock, flags);
1070 __drain_alien_cache(cachep, ac, i);
1071 spin_unlock_irqrestore(&ac->lock, flags);
1072 }
1073 }
1074 }
1075
1076 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1077 {
1078 int nodeid = page_to_nid(virt_to_page(objp));
1079 struct kmem_cache_node *n;
1080 struct array_cache *alien = NULL;
1081 int node;
1082
1083 node = numa_mem_id();
1084
1085 /*
1086 * Make sure we are not freeing a object from another node to the array
1087 * cache on this cpu.
1088 */
1089 if (likely(nodeid == node))
1090 return 0;
1091
1092 n = cachep->node[node];
1093 STATS_INC_NODEFREES(cachep);
1094 if (n->alien && n->alien[nodeid]) {
1095 alien = n->alien[nodeid];
1096 spin_lock(&alien->lock);
1097 if (unlikely(alien->avail == alien->limit)) {
1098 STATS_INC_ACOVERFLOW(cachep);
1099 __drain_alien_cache(cachep, alien, nodeid);
1100 }
1101 ac_put_obj(cachep, alien, objp);
1102 spin_unlock(&alien->lock);
1103 } else {
1104 spin_lock(&(cachep->node[nodeid])->list_lock);
1105 free_block(cachep, &objp, 1, nodeid);
1106 spin_unlock(&(cachep->node[nodeid])->list_lock);
1107 }
1108 return 1;
1109 }
1110 #endif
1111
1112 /*
1113 * Allocates and initializes node for a node on each slab cache, used for
1114 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1115 * will be allocated off-node since memory is not yet online for the new node.
1116 * When hotplugging memory or a cpu, existing node are not replaced if
1117 * already in use.
1118 *
1119 * Must hold slab_mutex.
1120 */
1121 static int init_cache_node_node(int node)
1122 {
1123 struct kmem_cache *cachep;
1124 struct kmem_cache_node *n;
1125 const int memsize = sizeof(struct kmem_cache_node);
1126
1127 list_for_each_entry(cachep, &slab_caches, list) {
1128 /*
1129 * Set up the size64 kmemlist for cpu before we can
1130 * begin anything. Make sure some other cpu on this
1131 * node has not already allocated this
1132 */
1133 if (!cachep->node[node]) {
1134 n = kmalloc_node(memsize, GFP_KERNEL, node);
1135 if (!n)
1136 return -ENOMEM;
1137 kmem_cache_node_init(n);
1138 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1139 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1140
1141 /*
1142 * The l3s don't come and go as CPUs come and
1143 * go. slab_mutex is sufficient
1144 * protection here.
1145 */
1146 cachep->node[node] = n;
1147 }
1148
1149 spin_lock_irq(&cachep->node[node]->list_lock);
1150 cachep->node[node]->free_limit =
1151 (1 + nr_cpus_node(node)) *
1152 cachep->batchcount + cachep->num;
1153 spin_unlock_irq(&cachep->node[node]->list_lock);
1154 }
1155 return 0;
1156 }
1157
1158 static inline int slabs_tofree(struct kmem_cache *cachep,
1159 struct kmem_cache_node *n)
1160 {
1161 return (n->free_objects + cachep->num - 1) / cachep->num;
1162 }
1163
1164 static void cpuup_canceled(long cpu)
1165 {
1166 struct kmem_cache *cachep;
1167 struct kmem_cache_node *n = NULL;
1168 int node = cpu_to_mem(cpu);
1169 const struct cpumask *mask = cpumask_of_node(node);
1170
1171 list_for_each_entry(cachep, &slab_caches, list) {
1172 struct array_cache *nc;
1173 struct array_cache *shared;
1174 struct array_cache **alien;
1175
1176 /* cpu is dead; no one can alloc from it. */
1177 nc = cachep->array[cpu];
1178 cachep->array[cpu] = NULL;
1179 n = cachep->node[node];
1180
1181 if (!n)
1182 goto free_array_cache;
1183
1184 spin_lock_irq(&n->list_lock);
1185
1186 /* Free limit for this kmem_cache_node */
1187 n->free_limit -= cachep->batchcount;
1188 if (nc)
1189 free_block(cachep, nc->entry, nc->avail, node);
1190
1191 if (!cpumask_empty(mask)) {
1192 spin_unlock_irq(&n->list_lock);
1193 goto free_array_cache;
1194 }
1195
1196 shared = n->shared;
1197 if (shared) {
1198 free_block(cachep, shared->entry,
1199 shared->avail, node);
1200 n->shared = NULL;
1201 }
1202
1203 alien = n->alien;
1204 n->alien = NULL;
1205
1206 spin_unlock_irq(&n->list_lock);
1207
1208 kfree(shared);
1209 if (alien) {
1210 drain_alien_cache(cachep, alien);
1211 free_alien_cache(alien);
1212 }
1213 free_array_cache:
1214 kfree(nc);
1215 }
1216 /*
1217 * In the previous loop, all the objects were freed to
1218 * the respective cache's slabs, now we can go ahead and
1219 * shrink each nodelist to its limit.
1220 */
1221 list_for_each_entry(cachep, &slab_caches, list) {
1222 n = cachep->node[node];
1223 if (!n)
1224 continue;
1225 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1226 }
1227 }
1228
1229 static int cpuup_prepare(long cpu)
1230 {
1231 struct kmem_cache *cachep;
1232 struct kmem_cache_node *n = NULL;
1233 int node = cpu_to_mem(cpu);
1234 int err;
1235
1236 /*
1237 * We need to do this right in the beginning since
1238 * alloc_arraycache's are going to use this list.
1239 * kmalloc_node allows us to add the slab to the right
1240 * kmem_cache_node and not this cpu's kmem_cache_node
1241 */
1242 err = init_cache_node_node(node);
1243 if (err < 0)
1244 goto bad;
1245
1246 /*
1247 * Now we can go ahead with allocating the shared arrays and
1248 * array caches
1249 */
1250 list_for_each_entry(cachep, &slab_caches, list) {
1251 struct array_cache *nc;
1252 struct array_cache *shared = NULL;
1253 struct array_cache **alien = NULL;
1254
1255 nc = alloc_arraycache(node, cachep->limit,
1256 cachep->batchcount, GFP_KERNEL);
1257 if (!nc)
1258 goto bad;
1259 if (cachep->shared) {
1260 shared = alloc_arraycache(node,
1261 cachep->shared * cachep->batchcount,
1262 0xbaadf00d, GFP_KERNEL);
1263 if (!shared) {
1264 kfree(nc);
1265 goto bad;
1266 }
1267 }
1268 if (use_alien_caches) {
1269 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1270 if (!alien) {
1271 kfree(shared);
1272 kfree(nc);
1273 goto bad;
1274 }
1275 }
1276 cachep->array[cpu] = nc;
1277 n = cachep->node[node];
1278 BUG_ON(!n);
1279
1280 spin_lock_irq(&n->list_lock);
1281 if (!n->shared) {
1282 /*
1283 * We are serialised from CPU_DEAD or
1284 * CPU_UP_CANCELLED by the cpucontrol lock
1285 */
1286 n->shared = shared;
1287 shared = NULL;
1288 }
1289 #ifdef CONFIG_NUMA
1290 if (!n->alien) {
1291 n->alien = alien;
1292 alien = NULL;
1293 }
1294 #endif
1295 spin_unlock_irq(&n->list_lock);
1296 kfree(shared);
1297 free_alien_cache(alien);
1298 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1299 slab_set_debugobj_lock_classes_node(cachep, node);
1300 else if (!OFF_SLAB(cachep) &&
1301 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1302 on_slab_lock_classes_node(cachep, node);
1303 }
1304 init_node_lock_keys(node);
1305
1306 return 0;
1307 bad:
1308 cpuup_canceled(cpu);
1309 return -ENOMEM;
1310 }
1311
1312 static int cpuup_callback(struct notifier_block *nfb,
1313 unsigned long action, void *hcpu)
1314 {
1315 long cpu = (long)hcpu;
1316 int err = 0;
1317
1318 switch (action) {
1319 case CPU_UP_PREPARE:
1320 case CPU_UP_PREPARE_FROZEN:
1321 mutex_lock(&slab_mutex);
1322 err = cpuup_prepare(cpu);
1323 mutex_unlock(&slab_mutex);
1324 break;
1325 case CPU_ONLINE:
1326 case CPU_ONLINE_FROZEN:
1327 start_cpu_timer(cpu);
1328 break;
1329 #ifdef CONFIG_HOTPLUG_CPU
1330 case CPU_DOWN_PREPARE:
1331 case CPU_DOWN_PREPARE_FROZEN:
1332 /*
1333 * Shutdown cache reaper. Note that the slab_mutex is
1334 * held so that if cache_reap() is invoked it cannot do
1335 * anything expensive but will only modify reap_work
1336 * and reschedule the timer.
1337 */
1338 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1339 /* Now the cache_reaper is guaranteed to be not running. */
1340 per_cpu(slab_reap_work, cpu).work.func = NULL;
1341 break;
1342 case CPU_DOWN_FAILED:
1343 case CPU_DOWN_FAILED_FROZEN:
1344 start_cpu_timer(cpu);
1345 break;
1346 case CPU_DEAD:
1347 case CPU_DEAD_FROZEN:
1348 /*
1349 * Even if all the cpus of a node are down, we don't free the
1350 * kmem_cache_node of any cache. This to avoid a race between
1351 * cpu_down, and a kmalloc allocation from another cpu for
1352 * memory from the node of the cpu going down. The node
1353 * structure is usually allocated from kmem_cache_create() and
1354 * gets destroyed at kmem_cache_destroy().
1355 */
1356 /* fall through */
1357 #endif
1358 case CPU_UP_CANCELED:
1359 case CPU_UP_CANCELED_FROZEN:
1360 mutex_lock(&slab_mutex);
1361 cpuup_canceled(cpu);
1362 mutex_unlock(&slab_mutex);
1363 break;
1364 }
1365 return notifier_from_errno(err);
1366 }
1367
1368 static struct notifier_block cpucache_notifier = {
1369 &cpuup_callback, NULL, 0
1370 };
1371
1372 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1373 /*
1374 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1375 * Returns -EBUSY if all objects cannot be drained so that the node is not
1376 * removed.
1377 *
1378 * Must hold slab_mutex.
1379 */
1380 static int __meminit drain_cache_node_node(int node)
1381 {
1382 struct kmem_cache *cachep;
1383 int ret = 0;
1384
1385 list_for_each_entry(cachep, &slab_caches, list) {
1386 struct kmem_cache_node *n;
1387
1388 n = cachep->node[node];
1389 if (!n)
1390 continue;
1391
1392 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1393
1394 if (!list_empty(&n->slabs_full) ||
1395 !list_empty(&n->slabs_partial)) {
1396 ret = -EBUSY;
1397 break;
1398 }
1399 }
1400 return ret;
1401 }
1402
1403 static int __meminit slab_memory_callback(struct notifier_block *self,
1404 unsigned long action, void *arg)
1405 {
1406 struct memory_notify *mnb = arg;
1407 int ret = 0;
1408 int nid;
1409
1410 nid = mnb->status_change_nid;
1411 if (nid < 0)
1412 goto out;
1413
1414 switch (action) {
1415 case MEM_GOING_ONLINE:
1416 mutex_lock(&slab_mutex);
1417 ret = init_cache_node_node(nid);
1418 mutex_unlock(&slab_mutex);
1419 break;
1420 case MEM_GOING_OFFLINE:
1421 mutex_lock(&slab_mutex);
1422 ret = drain_cache_node_node(nid);
1423 mutex_unlock(&slab_mutex);
1424 break;
1425 case MEM_ONLINE:
1426 case MEM_OFFLINE:
1427 case MEM_CANCEL_ONLINE:
1428 case MEM_CANCEL_OFFLINE:
1429 break;
1430 }
1431 out:
1432 return notifier_from_errno(ret);
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1435
1436 /*
1437 * swap the static kmem_cache_node with kmalloced memory
1438 */
1439 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1440 int nodeid)
1441 {
1442 struct kmem_cache_node *ptr;
1443
1444 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1445 BUG_ON(!ptr);
1446
1447 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1448 /*
1449 * Do not assume that spinlocks can be initialized via memcpy:
1450 */
1451 spin_lock_init(&ptr->list_lock);
1452
1453 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1454 cachep->node[nodeid] = ptr;
1455 }
1456
1457 /*
1458 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1459 * size of kmem_cache_node.
1460 */
1461 static void __init set_up_node(struct kmem_cache *cachep, int index)
1462 {
1463 int node;
1464
1465 for_each_online_node(node) {
1466 cachep->node[node] = &init_kmem_cache_node[index + node];
1467 cachep->node[node]->next_reap = jiffies +
1468 REAPTIMEOUT_LIST3 +
1469 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1470 }
1471 }
1472
1473 /*
1474 * The memory after the last cpu cache pointer is used for the
1475 * the node pointer.
1476 */
1477 static void setup_node_pointer(struct kmem_cache *cachep)
1478 {
1479 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1480 }
1481
1482 /*
1483 * Initialisation. Called after the page allocator have been initialised and
1484 * before smp_init().
1485 */
1486 void __init kmem_cache_init(void)
1487 {
1488 int i;
1489
1490 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1491 sizeof(struct rcu_head));
1492 kmem_cache = &kmem_cache_boot;
1493 setup_node_pointer(kmem_cache);
1494
1495 if (num_possible_nodes() == 1)
1496 use_alien_caches = 0;
1497
1498 for (i = 0; i < NUM_INIT_LISTS; i++)
1499 kmem_cache_node_init(&init_kmem_cache_node[i]);
1500
1501 set_up_node(kmem_cache, CACHE_CACHE);
1502
1503 /*
1504 * Fragmentation resistance on low memory - only use bigger
1505 * page orders on machines with more than 32MB of memory if
1506 * not overridden on the command line.
1507 */
1508 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1509 slab_max_order = SLAB_MAX_ORDER_HI;
1510
1511 /* Bootstrap is tricky, because several objects are allocated
1512 * from caches that do not exist yet:
1513 * 1) initialize the kmem_cache cache: it contains the struct
1514 * kmem_cache structures of all caches, except kmem_cache itself:
1515 * kmem_cache is statically allocated.
1516 * Initially an __init data area is used for the head array and the
1517 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1518 * array at the end of the bootstrap.
1519 * 2) Create the first kmalloc cache.
1520 * The struct kmem_cache for the new cache is allocated normally.
1521 * An __init data area is used for the head array.
1522 * 3) Create the remaining kmalloc caches, with minimally sized
1523 * head arrays.
1524 * 4) Replace the __init data head arrays for kmem_cache and the first
1525 * kmalloc cache with kmalloc allocated arrays.
1526 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1527 * the other cache's with kmalloc allocated memory.
1528 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1529 */
1530
1531 /* 1) create the kmem_cache */
1532
1533 /*
1534 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1535 */
1536 create_boot_cache(kmem_cache, "kmem_cache",
1537 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1538 nr_node_ids * sizeof(struct kmem_cache_node *),
1539 SLAB_HWCACHE_ALIGN);
1540 list_add(&kmem_cache->list, &slab_caches);
1541
1542 /* 2+3) create the kmalloc caches */
1543
1544 /*
1545 * Initialize the caches that provide memory for the array cache and the
1546 * kmem_cache_node structures first. Without this, further allocations will
1547 * bug.
1548 */
1549
1550 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1551 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1552
1553 if (INDEX_AC != INDEX_NODE)
1554 kmalloc_caches[INDEX_NODE] =
1555 create_kmalloc_cache("kmalloc-node",
1556 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1557
1558 slab_early_init = 0;
1559
1560 /* 4) Replace the bootstrap head arrays */
1561 {
1562 struct array_cache *ptr;
1563
1564 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1565
1566 memcpy(ptr, cpu_cache_get(kmem_cache),
1567 sizeof(struct arraycache_init));
1568 /*
1569 * Do not assume that spinlocks can be initialized via memcpy:
1570 */
1571 spin_lock_init(&ptr->lock);
1572
1573 kmem_cache->array[smp_processor_id()] = ptr;
1574
1575 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1576
1577 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1578 != &initarray_generic.cache);
1579 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1580 sizeof(struct arraycache_init));
1581 /*
1582 * Do not assume that spinlocks can be initialized via memcpy:
1583 */
1584 spin_lock_init(&ptr->lock);
1585
1586 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1587 }
1588 /* 5) Replace the bootstrap kmem_cache_node */
1589 {
1590 int nid;
1591
1592 for_each_online_node(nid) {
1593 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1594
1595 init_list(kmalloc_caches[INDEX_AC],
1596 &init_kmem_cache_node[SIZE_AC + nid], nid);
1597
1598 if (INDEX_AC != INDEX_NODE) {
1599 init_list(kmalloc_caches[INDEX_NODE],
1600 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1601 }
1602 }
1603 }
1604
1605 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1606 }
1607
1608 void __init kmem_cache_init_late(void)
1609 {
1610 struct kmem_cache *cachep;
1611
1612 slab_state = UP;
1613
1614 /* 6) resize the head arrays to their final sizes */
1615 mutex_lock(&slab_mutex);
1616 list_for_each_entry(cachep, &slab_caches, list)
1617 if (enable_cpucache(cachep, GFP_NOWAIT))
1618 BUG();
1619 mutex_unlock(&slab_mutex);
1620
1621 /* Annotate slab for lockdep -- annotate the malloc caches */
1622 init_lock_keys();
1623
1624 /* Done! */
1625 slab_state = FULL;
1626
1627 /*
1628 * Register a cpu startup notifier callback that initializes
1629 * cpu_cache_get for all new cpus
1630 */
1631 register_cpu_notifier(&cpucache_notifier);
1632
1633 #ifdef CONFIG_NUMA
1634 /*
1635 * Register a memory hotplug callback that initializes and frees
1636 * node.
1637 */
1638 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1639 #endif
1640
1641 /*
1642 * The reap timers are started later, with a module init call: That part
1643 * of the kernel is not yet operational.
1644 */
1645 }
1646
1647 static int __init cpucache_init(void)
1648 {
1649 int cpu;
1650
1651 /*
1652 * Register the timers that return unneeded pages to the page allocator
1653 */
1654 for_each_online_cpu(cpu)
1655 start_cpu_timer(cpu);
1656
1657 /* Done! */
1658 slab_state = FULL;
1659 return 0;
1660 }
1661 __initcall(cpucache_init);
1662
1663 static noinline void
1664 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1665 {
1666 struct kmem_cache_node *n;
1667 struct slab *slabp;
1668 unsigned long flags;
1669 int node;
1670
1671 printk(KERN_WARNING
1672 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1673 nodeid, gfpflags);
1674 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1675 cachep->name, cachep->size, cachep->gfporder);
1676
1677 for_each_online_node(node) {
1678 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1679 unsigned long active_slabs = 0, num_slabs = 0;
1680
1681 n = cachep->node[node];
1682 if (!n)
1683 continue;
1684
1685 spin_lock_irqsave(&n->list_lock, flags);
1686 list_for_each_entry(slabp, &n->slabs_full, list) {
1687 active_objs += cachep->num;
1688 active_slabs++;
1689 }
1690 list_for_each_entry(slabp, &n->slabs_partial, list) {
1691 active_objs += slabp->inuse;
1692 active_slabs++;
1693 }
1694 list_for_each_entry(slabp, &n->slabs_free, list)
1695 num_slabs++;
1696
1697 free_objects += n->free_objects;
1698 spin_unlock_irqrestore(&n->list_lock, flags);
1699
1700 num_slabs += active_slabs;
1701 num_objs = num_slabs * cachep->num;
1702 printk(KERN_WARNING
1703 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1704 node, active_slabs, num_slabs, active_objs, num_objs,
1705 free_objects);
1706 }
1707 }
1708
1709 /*
1710 * Interface to system's page allocator. No need to hold the cache-lock.
1711 *
1712 * If we requested dmaable memory, we will get it. Even if we
1713 * did not request dmaable memory, we might get it, but that
1714 * would be relatively rare and ignorable.
1715 */
1716 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1717 int nodeid)
1718 {
1719 struct page *page;
1720 int nr_pages;
1721
1722 flags |= cachep->allocflags;
1723 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1724 flags |= __GFP_RECLAIMABLE;
1725
1726 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1727 if (!page) {
1728 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1729 slab_out_of_memory(cachep, flags, nodeid);
1730 return NULL;
1731 }
1732
1733 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1734 if (unlikely(page->pfmemalloc))
1735 pfmemalloc_active = true;
1736
1737 nr_pages = (1 << cachep->gfporder);
1738 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1739 add_zone_page_state(page_zone(page),
1740 NR_SLAB_RECLAIMABLE, nr_pages);
1741 else
1742 add_zone_page_state(page_zone(page),
1743 NR_SLAB_UNRECLAIMABLE, nr_pages);
1744 __SetPageSlab(page);
1745 if (page->pfmemalloc)
1746 SetPageSlabPfmemalloc(page);
1747 memcg_bind_pages(cachep, cachep->gfporder);
1748
1749 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1750 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1751
1752 if (cachep->ctor)
1753 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1754 else
1755 kmemcheck_mark_unallocated_pages(page, nr_pages);
1756 }
1757
1758 return page;
1759 }
1760
1761 /*
1762 * Interface to system's page release.
1763 */
1764 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1765 {
1766 const unsigned long nr_freed = (1 << cachep->gfporder);
1767
1768 kmemcheck_free_shadow(page, cachep->gfporder);
1769
1770 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1771 sub_zone_page_state(page_zone(page),
1772 NR_SLAB_RECLAIMABLE, nr_freed);
1773 else
1774 sub_zone_page_state(page_zone(page),
1775 NR_SLAB_UNRECLAIMABLE, nr_freed);
1776
1777 BUG_ON(!PageSlab(page));
1778 __ClearPageSlabPfmemalloc(page);
1779 __ClearPageSlab(page);
1780
1781 memcg_release_pages(cachep, cachep->gfporder);
1782 if (current->reclaim_state)
1783 current->reclaim_state->reclaimed_slab += nr_freed;
1784 __free_memcg_kmem_pages(page, cachep->gfporder);
1785 }
1786
1787 static void kmem_rcu_free(struct rcu_head *head)
1788 {
1789 struct kmem_cache *cachep;
1790 struct page *page;
1791
1792 page = container_of(head, struct page, rcu_head);
1793 cachep = page->slab_cache;
1794
1795 kmem_freepages(cachep, page);
1796 }
1797
1798 #if DEBUG
1799
1800 #ifdef CONFIG_DEBUG_PAGEALLOC
1801 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1802 unsigned long caller)
1803 {
1804 int size = cachep->object_size;
1805
1806 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1807
1808 if (size < 5 * sizeof(unsigned long))
1809 return;
1810
1811 *addr++ = 0x12345678;
1812 *addr++ = caller;
1813 *addr++ = smp_processor_id();
1814 size -= 3 * sizeof(unsigned long);
1815 {
1816 unsigned long *sptr = &caller;
1817 unsigned long svalue;
1818
1819 while (!kstack_end(sptr)) {
1820 svalue = *sptr++;
1821 if (kernel_text_address(svalue)) {
1822 *addr++ = svalue;
1823 size -= sizeof(unsigned long);
1824 if (size <= sizeof(unsigned long))
1825 break;
1826 }
1827 }
1828
1829 }
1830 *addr++ = 0x87654321;
1831 }
1832 #endif
1833
1834 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1835 {
1836 int size = cachep->object_size;
1837 addr = &((char *)addr)[obj_offset(cachep)];
1838
1839 memset(addr, val, size);
1840 *(unsigned char *)(addr + size - 1) = POISON_END;
1841 }
1842
1843 static void dump_line(char *data, int offset, int limit)
1844 {
1845 int i;
1846 unsigned char error = 0;
1847 int bad_count = 0;
1848
1849 printk(KERN_ERR "%03x: ", offset);
1850 for (i = 0; i < limit; i++) {
1851 if (data[offset + i] != POISON_FREE) {
1852 error = data[offset + i];
1853 bad_count++;
1854 }
1855 }
1856 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1857 &data[offset], limit, 1);
1858
1859 if (bad_count == 1) {
1860 error ^= POISON_FREE;
1861 if (!(error & (error - 1))) {
1862 printk(KERN_ERR "Single bit error detected. Probably "
1863 "bad RAM.\n");
1864 #ifdef CONFIG_X86
1865 printk(KERN_ERR "Run memtest86+ or a similar memory "
1866 "test tool.\n");
1867 #else
1868 printk(KERN_ERR "Run a memory test tool.\n");
1869 #endif
1870 }
1871 }
1872 }
1873 #endif
1874
1875 #if DEBUG
1876
1877 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1878 {
1879 int i, size;
1880 char *realobj;
1881
1882 if (cachep->flags & SLAB_RED_ZONE) {
1883 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1884 *dbg_redzone1(cachep, objp),
1885 *dbg_redzone2(cachep, objp));
1886 }
1887
1888 if (cachep->flags & SLAB_STORE_USER) {
1889 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1890 *dbg_userword(cachep, objp),
1891 *dbg_userword(cachep, objp));
1892 }
1893 realobj = (char *)objp + obj_offset(cachep);
1894 size = cachep->object_size;
1895 for (i = 0; i < size && lines; i += 16, lines--) {
1896 int limit;
1897 limit = 16;
1898 if (i + limit > size)
1899 limit = size - i;
1900 dump_line(realobj, i, limit);
1901 }
1902 }
1903
1904 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1905 {
1906 char *realobj;
1907 int size, i;
1908 int lines = 0;
1909
1910 realobj = (char *)objp + obj_offset(cachep);
1911 size = cachep->object_size;
1912
1913 for (i = 0; i < size; i++) {
1914 char exp = POISON_FREE;
1915 if (i == size - 1)
1916 exp = POISON_END;
1917 if (realobj[i] != exp) {
1918 int limit;
1919 /* Mismatch ! */
1920 /* Print header */
1921 if (lines == 0) {
1922 printk(KERN_ERR
1923 "Slab corruption (%s): %s start=%p, len=%d\n",
1924 print_tainted(), cachep->name, realobj, size);
1925 print_objinfo(cachep, objp, 0);
1926 }
1927 /* Hexdump the affected line */
1928 i = (i / 16) * 16;
1929 limit = 16;
1930 if (i + limit > size)
1931 limit = size - i;
1932 dump_line(realobj, i, limit);
1933 i += 16;
1934 lines++;
1935 /* Limit to 5 lines */
1936 if (lines > 5)
1937 break;
1938 }
1939 }
1940 if (lines != 0) {
1941 /* Print some data about the neighboring objects, if they
1942 * exist:
1943 */
1944 struct slab *slabp = virt_to_slab(objp);
1945 unsigned int objnr;
1946
1947 objnr = obj_to_index(cachep, slabp, objp);
1948 if (objnr) {
1949 objp = index_to_obj(cachep, slabp, objnr - 1);
1950 realobj = (char *)objp + obj_offset(cachep);
1951 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1952 realobj, size);
1953 print_objinfo(cachep, objp, 2);
1954 }
1955 if (objnr + 1 < cachep->num) {
1956 objp = index_to_obj(cachep, slabp, objnr + 1);
1957 realobj = (char *)objp + obj_offset(cachep);
1958 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1959 realobj, size);
1960 print_objinfo(cachep, objp, 2);
1961 }
1962 }
1963 }
1964 #endif
1965
1966 #if DEBUG
1967 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1968 {
1969 int i;
1970 for (i = 0; i < cachep->num; i++) {
1971 void *objp = index_to_obj(cachep, slabp, i);
1972
1973 if (cachep->flags & SLAB_POISON) {
1974 #ifdef CONFIG_DEBUG_PAGEALLOC
1975 if (cachep->size % PAGE_SIZE == 0 &&
1976 OFF_SLAB(cachep))
1977 kernel_map_pages(virt_to_page(objp),
1978 cachep->size / PAGE_SIZE, 1);
1979 else
1980 check_poison_obj(cachep, objp);
1981 #else
1982 check_poison_obj(cachep, objp);
1983 #endif
1984 }
1985 if (cachep->flags & SLAB_RED_ZONE) {
1986 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1987 slab_error(cachep, "start of a freed object "
1988 "was overwritten");
1989 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1990 slab_error(cachep, "end of a freed object "
1991 "was overwritten");
1992 }
1993 }
1994 }
1995 #else
1996 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1997 {
1998 }
1999 #endif
2000
2001 /**
2002 * slab_destroy - destroy and release all objects in a slab
2003 * @cachep: cache pointer being destroyed
2004 * @slabp: slab pointer being destroyed
2005 *
2006 * Destroy all the objs in a slab, and release the mem back to the system.
2007 * Before calling the slab must have been unlinked from the cache. The
2008 * cache-lock is not held/needed.
2009 */
2010 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2011 {
2012 struct page *page = virt_to_head_page(slabp->s_mem);
2013
2014 slab_destroy_debugcheck(cachep, slabp);
2015 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2016 struct rcu_head *head;
2017
2018 /*
2019 * RCU free overloads the RCU head over the LRU.
2020 * slab_page has been overloeaded over the LRU,
2021 * however it is not used from now on so that
2022 * we can use it safely.
2023 */
2024 head = (void *)&page->rcu_head;
2025 call_rcu(head, kmem_rcu_free);
2026
2027 } else {
2028 kmem_freepages(cachep, page);
2029 }
2030
2031 /*
2032 * From now on, we don't use slab management
2033 * although actual page can be freed in rcu context
2034 */
2035 if (OFF_SLAB(cachep))
2036 kmem_cache_free(cachep->slabp_cache, slabp);
2037 }
2038
2039 /**
2040 * calculate_slab_order - calculate size (page order) of slabs
2041 * @cachep: pointer to the cache that is being created
2042 * @size: size of objects to be created in this cache.
2043 * @align: required alignment for the objects.
2044 * @flags: slab allocation flags
2045 *
2046 * Also calculates the number of objects per slab.
2047 *
2048 * This could be made much more intelligent. For now, try to avoid using
2049 * high order pages for slabs. When the gfp() functions are more friendly
2050 * towards high-order requests, this should be changed.
2051 */
2052 static size_t calculate_slab_order(struct kmem_cache *cachep,
2053 size_t size, size_t align, unsigned long flags)
2054 {
2055 unsigned long offslab_limit;
2056 size_t left_over = 0;
2057 int gfporder;
2058
2059 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2060 unsigned int num;
2061 size_t remainder;
2062
2063 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2064 if (!num)
2065 continue;
2066
2067 if (flags & CFLGS_OFF_SLAB) {
2068 /*
2069 * Max number of objs-per-slab for caches which
2070 * use off-slab slabs. Needed to avoid a possible
2071 * looping condition in cache_grow().
2072 */
2073 offslab_limit = size - sizeof(struct slab);
2074 offslab_limit /= sizeof(kmem_bufctl_t);
2075
2076 if (num > offslab_limit)
2077 break;
2078 }
2079
2080 /* Found something acceptable - save it away */
2081 cachep->num = num;
2082 cachep->gfporder = gfporder;
2083 left_over = remainder;
2084
2085 /*
2086 * A VFS-reclaimable slab tends to have most allocations
2087 * as GFP_NOFS and we really don't want to have to be allocating
2088 * higher-order pages when we are unable to shrink dcache.
2089 */
2090 if (flags & SLAB_RECLAIM_ACCOUNT)
2091 break;
2092
2093 /*
2094 * Large number of objects is good, but very large slabs are
2095 * currently bad for the gfp()s.
2096 */
2097 if (gfporder >= slab_max_order)
2098 break;
2099
2100 /*
2101 * Acceptable internal fragmentation?
2102 */
2103 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2104 break;
2105 }
2106 return left_over;
2107 }
2108
2109 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2110 {
2111 if (slab_state >= FULL)
2112 return enable_cpucache(cachep, gfp);
2113
2114 if (slab_state == DOWN) {
2115 /*
2116 * Note: Creation of first cache (kmem_cache).
2117 * The setup_node is taken care
2118 * of by the caller of __kmem_cache_create
2119 */
2120 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2121 slab_state = PARTIAL;
2122 } else if (slab_state == PARTIAL) {
2123 /*
2124 * Note: the second kmem_cache_create must create the cache
2125 * that's used by kmalloc(24), otherwise the creation of
2126 * further caches will BUG().
2127 */
2128 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2129
2130 /*
2131 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2132 * the second cache, then we need to set up all its node/,
2133 * otherwise the creation of further caches will BUG().
2134 */
2135 set_up_node(cachep, SIZE_AC);
2136 if (INDEX_AC == INDEX_NODE)
2137 slab_state = PARTIAL_NODE;
2138 else
2139 slab_state = PARTIAL_ARRAYCACHE;
2140 } else {
2141 /* Remaining boot caches */
2142 cachep->array[smp_processor_id()] =
2143 kmalloc(sizeof(struct arraycache_init), gfp);
2144
2145 if (slab_state == PARTIAL_ARRAYCACHE) {
2146 set_up_node(cachep, SIZE_NODE);
2147 slab_state = PARTIAL_NODE;
2148 } else {
2149 int node;
2150 for_each_online_node(node) {
2151 cachep->node[node] =
2152 kmalloc_node(sizeof(struct kmem_cache_node),
2153 gfp, node);
2154 BUG_ON(!cachep->node[node]);
2155 kmem_cache_node_init(cachep->node[node]);
2156 }
2157 }
2158 }
2159 cachep->node[numa_mem_id()]->next_reap =
2160 jiffies + REAPTIMEOUT_LIST3 +
2161 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2162
2163 cpu_cache_get(cachep)->avail = 0;
2164 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2165 cpu_cache_get(cachep)->batchcount = 1;
2166 cpu_cache_get(cachep)->touched = 0;
2167 cachep->batchcount = 1;
2168 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2169 return 0;
2170 }
2171
2172 /**
2173 * __kmem_cache_create - Create a cache.
2174 * @cachep: cache management descriptor
2175 * @flags: SLAB flags
2176 *
2177 * Returns a ptr to the cache on success, NULL on failure.
2178 * Cannot be called within a int, but can be interrupted.
2179 * The @ctor is run when new pages are allocated by the cache.
2180 *
2181 * The flags are
2182 *
2183 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2184 * to catch references to uninitialised memory.
2185 *
2186 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2187 * for buffer overruns.
2188 *
2189 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2190 * cacheline. This can be beneficial if you're counting cycles as closely
2191 * as davem.
2192 */
2193 int
2194 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2195 {
2196 size_t left_over, slab_size, ralign;
2197 gfp_t gfp;
2198 int err;
2199 size_t size = cachep->size;
2200
2201 #if DEBUG
2202 #if FORCED_DEBUG
2203 /*
2204 * Enable redzoning and last user accounting, except for caches with
2205 * large objects, if the increased size would increase the object size
2206 * above the next power of two: caches with object sizes just above a
2207 * power of two have a significant amount of internal fragmentation.
2208 */
2209 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2210 2 * sizeof(unsigned long long)))
2211 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2212 if (!(flags & SLAB_DESTROY_BY_RCU))
2213 flags |= SLAB_POISON;
2214 #endif
2215 if (flags & SLAB_DESTROY_BY_RCU)
2216 BUG_ON(flags & SLAB_POISON);
2217 #endif
2218
2219 /*
2220 * Check that size is in terms of words. This is needed to avoid
2221 * unaligned accesses for some archs when redzoning is used, and makes
2222 * sure any on-slab bufctl's are also correctly aligned.
2223 */
2224 if (size & (BYTES_PER_WORD - 1)) {
2225 size += (BYTES_PER_WORD - 1);
2226 size &= ~(BYTES_PER_WORD - 1);
2227 }
2228
2229 /*
2230 * Redzoning and user store require word alignment or possibly larger.
2231 * Note this will be overridden by architecture or caller mandated
2232 * alignment if either is greater than BYTES_PER_WORD.
2233 */
2234 if (flags & SLAB_STORE_USER)
2235 ralign = BYTES_PER_WORD;
2236
2237 if (flags & SLAB_RED_ZONE) {
2238 ralign = REDZONE_ALIGN;
2239 /* If redzoning, ensure that the second redzone is suitably
2240 * aligned, by adjusting the object size accordingly. */
2241 size += REDZONE_ALIGN - 1;
2242 size &= ~(REDZONE_ALIGN - 1);
2243 }
2244
2245 /* 3) caller mandated alignment */
2246 if (ralign < cachep->align) {
2247 ralign = cachep->align;
2248 }
2249 /* disable debug if necessary */
2250 if (ralign > __alignof__(unsigned long long))
2251 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2252 /*
2253 * 4) Store it.
2254 */
2255 cachep->align = ralign;
2256
2257 if (slab_is_available())
2258 gfp = GFP_KERNEL;
2259 else
2260 gfp = GFP_NOWAIT;
2261
2262 setup_node_pointer(cachep);
2263 #if DEBUG
2264
2265 /*
2266 * Both debugging options require word-alignment which is calculated
2267 * into align above.
2268 */
2269 if (flags & SLAB_RED_ZONE) {
2270 /* add space for red zone words */
2271 cachep->obj_offset += sizeof(unsigned long long);
2272 size += 2 * sizeof(unsigned long long);
2273 }
2274 if (flags & SLAB_STORE_USER) {
2275 /* user store requires one word storage behind the end of
2276 * the real object. But if the second red zone needs to be
2277 * aligned to 64 bits, we must allow that much space.
2278 */
2279 if (flags & SLAB_RED_ZONE)
2280 size += REDZONE_ALIGN;
2281 else
2282 size += BYTES_PER_WORD;
2283 }
2284 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2285 if (size >= kmalloc_size(INDEX_NODE + 1)
2286 && cachep->object_size > cache_line_size()
2287 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2288 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2289 size = PAGE_SIZE;
2290 }
2291 #endif
2292 #endif
2293
2294 /*
2295 * Determine if the slab management is 'on' or 'off' slab.
2296 * (bootstrapping cannot cope with offslab caches so don't do
2297 * it too early on. Always use on-slab management when
2298 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2299 */
2300 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2301 !(flags & SLAB_NOLEAKTRACE))
2302 /*
2303 * Size is large, assume best to place the slab management obj
2304 * off-slab (should allow better packing of objs).
2305 */
2306 flags |= CFLGS_OFF_SLAB;
2307
2308 size = ALIGN(size, cachep->align);
2309
2310 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2311
2312 if (!cachep->num)
2313 return -E2BIG;
2314
2315 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2316 + sizeof(struct slab), cachep->align);
2317
2318 /*
2319 * If the slab has been placed off-slab, and we have enough space then
2320 * move it on-slab. This is at the expense of any extra colouring.
2321 */
2322 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2323 flags &= ~CFLGS_OFF_SLAB;
2324 left_over -= slab_size;
2325 }
2326
2327 if (flags & CFLGS_OFF_SLAB) {
2328 /* really off slab. No need for manual alignment */
2329 slab_size =
2330 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2331
2332 #ifdef CONFIG_PAGE_POISONING
2333 /* If we're going to use the generic kernel_map_pages()
2334 * poisoning, then it's going to smash the contents of
2335 * the redzone and userword anyhow, so switch them off.
2336 */
2337 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2338 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2339 #endif
2340 }
2341
2342 cachep->colour_off = cache_line_size();
2343 /* Offset must be a multiple of the alignment. */
2344 if (cachep->colour_off < cachep->align)
2345 cachep->colour_off = cachep->align;
2346 cachep->colour = left_over / cachep->colour_off;
2347 cachep->slab_size = slab_size;
2348 cachep->flags = flags;
2349 cachep->allocflags = __GFP_COMP;
2350 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2351 cachep->allocflags |= GFP_DMA;
2352 cachep->size = size;
2353 cachep->reciprocal_buffer_size = reciprocal_value(size);
2354
2355 if (flags & CFLGS_OFF_SLAB) {
2356 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2357 /*
2358 * This is a possibility for one of the malloc_sizes caches.
2359 * But since we go off slab only for object size greater than
2360 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2361 * this should not happen at all.
2362 * But leave a BUG_ON for some lucky dude.
2363 */
2364 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2365 }
2366
2367 err = setup_cpu_cache(cachep, gfp);
2368 if (err) {
2369 __kmem_cache_shutdown(cachep);
2370 return err;
2371 }
2372
2373 if (flags & SLAB_DEBUG_OBJECTS) {
2374 /*
2375 * Would deadlock through slab_destroy()->call_rcu()->
2376 * debug_object_activate()->kmem_cache_alloc().
2377 */
2378 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2379
2380 slab_set_debugobj_lock_classes(cachep);
2381 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2382 on_slab_lock_classes(cachep);
2383
2384 return 0;
2385 }
2386
2387 #if DEBUG
2388 static void check_irq_off(void)
2389 {
2390 BUG_ON(!irqs_disabled());
2391 }
2392
2393 static void check_irq_on(void)
2394 {
2395 BUG_ON(irqs_disabled());
2396 }
2397
2398 static void check_spinlock_acquired(struct kmem_cache *cachep)
2399 {
2400 #ifdef CONFIG_SMP
2401 check_irq_off();
2402 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2403 #endif
2404 }
2405
2406 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2407 {
2408 #ifdef CONFIG_SMP
2409 check_irq_off();
2410 assert_spin_locked(&cachep->node[node]->list_lock);
2411 #endif
2412 }
2413
2414 #else
2415 #define check_irq_off() do { } while(0)
2416 #define check_irq_on() do { } while(0)
2417 #define check_spinlock_acquired(x) do { } while(0)
2418 #define check_spinlock_acquired_node(x, y) do { } while(0)
2419 #endif
2420
2421 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2422 struct array_cache *ac,
2423 int force, int node);
2424
2425 static void do_drain(void *arg)
2426 {
2427 struct kmem_cache *cachep = arg;
2428 struct array_cache *ac;
2429 int node = numa_mem_id();
2430
2431 check_irq_off();
2432 ac = cpu_cache_get(cachep);
2433 spin_lock(&cachep->node[node]->list_lock);
2434 free_block(cachep, ac->entry, ac->avail, node);
2435 spin_unlock(&cachep->node[node]->list_lock);
2436 ac->avail = 0;
2437 }
2438
2439 static void drain_cpu_caches(struct kmem_cache *cachep)
2440 {
2441 struct kmem_cache_node *n;
2442 int node;
2443
2444 on_each_cpu(do_drain, cachep, 1);
2445 check_irq_on();
2446 for_each_online_node(node) {
2447 n = cachep->node[node];
2448 if (n && n->alien)
2449 drain_alien_cache(cachep, n->alien);
2450 }
2451
2452 for_each_online_node(node) {
2453 n = cachep->node[node];
2454 if (n)
2455 drain_array(cachep, n, n->shared, 1, node);
2456 }
2457 }
2458
2459 /*
2460 * Remove slabs from the list of free slabs.
2461 * Specify the number of slabs to drain in tofree.
2462 *
2463 * Returns the actual number of slabs released.
2464 */
2465 static int drain_freelist(struct kmem_cache *cache,
2466 struct kmem_cache_node *n, int tofree)
2467 {
2468 struct list_head *p;
2469 int nr_freed;
2470 struct slab *slabp;
2471
2472 nr_freed = 0;
2473 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2474
2475 spin_lock_irq(&n->list_lock);
2476 p = n->slabs_free.prev;
2477 if (p == &n->slabs_free) {
2478 spin_unlock_irq(&n->list_lock);
2479 goto out;
2480 }
2481
2482 slabp = list_entry(p, struct slab, list);
2483 #if DEBUG
2484 BUG_ON(slabp->inuse);
2485 #endif
2486 list_del(&slabp->list);
2487 /*
2488 * Safe to drop the lock. The slab is no longer linked
2489 * to the cache.
2490 */
2491 n->free_objects -= cache->num;
2492 spin_unlock_irq(&n->list_lock);
2493 slab_destroy(cache, slabp);
2494 nr_freed++;
2495 }
2496 out:
2497 return nr_freed;
2498 }
2499
2500 /* Called with slab_mutex held to protect against cpu hotplug */
2501 static int __cache_shrink(struct kmem_cache *cachep)
2502 {
2503 int ret = 0, i = 0;
2504 struct kmem_cache_node *n;
2505
2506 drain_cpu_caches(cachep);
2507
2508 check_irq_on();
2509 for_each_online_node(i) {
2510 n = cachep->node[i];
2511 if (!n)
2512 continue;
2513
2514 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2515
2516 ret += !list_empty(&n->slabs_full) ||
2517 !list_empty(&n->slabs_partial);
2518 }
2519 return (ret ? 1 : 0);
2520 }
2521
2522 /**
2523 * kmem_cache_shrink - Shrink a cache.
2524 * @cachep: The cache to shrink.
2525 *
2526 * Releases as many slabs as possible for a cache.
2527 * To help debugging, a zero exit status indicates all slabs were released.
2528 */
2529 int kmem_cache_shrink(struct kmem_cache *cachep)
2530 {
2531 int ret;
2532 BUG_ON(!cachep || in_interrupt());
2533
2534 get_online_cpus();
2535 mutex_lock(&slab_mutex);
2536 ret = __cache_shrink(cachep);
2537 mutex_unlock(&slab_mutex);
2538 put_online_cpus();
2539 return ret;
2540 }
2541 EXPORT_SYMBOL(kmem_cache_shrink);
2542
2543 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2544 {
2545 int i;
2546 struct kmem_cache_node *n;
2547 int rc = __cache_shrink(cachep);
2548
2549 if (rc)
2550 return rc;
2551
2552 for_each_online_cpu(i)
2553 kfree(cachep->array[i]);
2554
2555 /* NUMA: free the node structures */
2556 for_each_online_node(i) {
2557 n = cachep->node[i];
2558 if (n) {
2559 kfree(n->shared);
2560 free_alien_cache(n->alien);
2561 kfree(n);
2562 }
2563 }
2564 return 0;
2565 }
2566
2567 /*
2568 * Get the memory for a slab management obj.
2569 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2570 * always come from malloc_sizes caches. The slab descriptor cannot
2571 * come from the same cache which is getting created because,
2572 * when we are searching for an appropriate cache for these
2573 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2574 * If we are creating a malloc_sizes cache here it would not be visible to
2575 * kmem_find_general_cachep till the initialization is complete.
2576 * Hence we cannot have slabp_cache same as the original cache.
2577 */
2578 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2579 struct page *page, int colour_off,
2580 gfp_t local_flags, int nodeid)
2581 {
2582 struct slab *slabp;
2583 void *addr = page_address(page);
2584
2585 if (OFF_SLAB(cachep)) {
2586 /* Slab management obj is off-slab. */
2587 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2588 local_flags, nodeid);
2589 /*
2590 * If the first object in the slab is leaked (it's allocated
2591 * but no one has a reference to it), we want to make sure
2592 * kmemleak does not treat the ->s_mem pointer as a reference
2593 * to the object. Otherwise we will not report the leak.
2594 */
2595 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2596 local_flags);
2597 if (!slabp)
2598 return NULL;
2599 } else {
2600 slabp = addr + colour_off;
2601 colour_off += cachep->slab_size;
2602 }
2603 slabp->inuse = 0;
2604 slabp->s_mem = addr + colour_off;
2605 slabp->free = 0;
2606 return slabp;
2607 }
2608
2609 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2610 {
2611 return (kmem_bufctl_t *) (slabp + 1);
2612 }
2613
2614 static void cache_init_objs(struct kmem_cache *cachep,
2615 struct slab *slabp)
2616 {
2617 int i;
2618
2619 for (i = 0; i < cachep->num; i++) {
2620 void *objp = index_to_obj(cachep, slabp, i);
2621 #if DEBUG
2622 /* need to poison the objs? */
2623 if (cachep->flags & SLAB_POISON)
2624 poison_obj(cachep, objp, POISON_FREE);
2625 if (cachep->flags & SLAB_STORE_USER)
2626 *dbg_userword(cachep, objp) = NULL;
2627
2628 if (cachep->flags & SLAB_RED_ZONE) {
2629 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2630 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2631 }
2632 /*
2633 * Constructors are not allowed to allocate memory from the same
2634 * cache which they are a constructor for. Otherwise, deadlock.
2635 * They must also be threaded.
2636 */
2637 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2638 cachep->ctor(objp + obj_offset(cachep));
2639
2640 if (cachep->flags & SLAB_RED_ZONE) {
2641 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2642 slab_error(cachep, "constructor overwrote the"
2643 " end of an object");
2644 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
2646 " start of an object");
2647 }
2648 if ((cachep->size % PAGE_SIZE) == 0 &&
2649 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2650 kernel_map_pages(virt_to_page(objp),
2651 cachep->size / PAGE_SIZE, 0);
2652 #else
2653 if (cachep->ctor)
2654 cachep->ctor(objp);
2655 #endif
2656 slab_bufctl(slabp)[i] = i + 1;
2657 }
2658 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2659 }
2660
2661 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2662 {
2663 if (CONFIG_ZONE_DMA_FLAG) {
2664 if (flags & GFP_DMA)
2665 BUG_ON(!(cachep->allocflags & GFP_DMA));
2666 else
2667 BUG_ON(cachep->allocflags & GFP_DMA);
2668 }
2669 }
2670
2671 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2672 int nodeid)
2673 {
2674 void *objp = index_to_obj(cachep, slabp, slabp->free);
2675 kmem_bufctl_t next;
2676
2677 slabp->inuse++;
2678 next = slab_bufctl(slabp)[slabp->free];
2679 #if DEBUG
2680 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2681 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2682 #endif
2683 slabp->free = next;
2684
2685 return objp;
2686 }
2687
2688 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2689 void *objp, int nodeid)
2690 {
2691 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2692
2693 #if DEBUG
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2696
2697 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2698 printk(KERN_ERR "slab: double free detected in cache "
2699 "'%s', objp %p\n", cachep->name, objp);
2700 BUG();
2701 }
2702 #endif
2703 slab_bufctl(slabp)[objnr] = slabp->free;
2704 slabp->free = objnr;
2705 slabp->inuse--;
2706 }
2707
2708 /*
2709 * Map pages beginning at addr to the given cache and slab. This is required
2710 * for the slab allocator to be able to lookup the cache and slab of a
2711 * virtual address for kfree, ksize, and slab debugging.
2712 */
2713 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2714 struct page *page)
2715 {
2716 page->slab_cache = cache;
2717 page->slab_page = slab;
2718 }
2719
2720 /*
2721 * Grow (by 1) the number of slabs within a cache. This is called by
2722 * kmem_cache_alloc() when there are no active objs left in a cache.
2723 */
2724 static int cache_grow(struct kmem_cache *cachep,
2725 gfp_t flags, int nodeid, struct page *page)
2726 {
2727 struct slab *slabp;
2728 size_t offset;
2729 gfp_t local_flags;
2730 struct kmem_cache_node *n;
2731
2732 /*
2733 * Be lazy and only check for valid flags here, keeping it out of the
2734 * critical path in kmem_cache_alloc().
2735 */
2736 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2737 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2738
2739 /* Take the node list lock to change the colour_next on this node */
2740 check_irq_off();
2741 n = cachep->node[nodeid];
2742 spin_lock(&n->list_lock);
2743
2744 /* Get colour for the slab, and cal the next value. */
2745 offset = n->colour_next;
2746 n->colour_next++;
2747 if (n->colour_next >= cachep->colour)
2748 n->colour_next = 0;
2749 spin_unlock(&n->list_lock);
2750
2751 offset *= cachep->colour_off;
2752
2753 if (local_flags & __GFP_WAIT)
2754 local_irq_enable();
2755
2756 /*
2757 * The test for missing atomic flag is performed here, rather than
2758 * the more obvious place, simply to reduce the critical path length
2759 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2760 * will eventually be caught here (where it matters).
2761 */
2762 kmem_flagcheck(cachep, flags);
2763
2764 /*
2765 * Get mem for the objs. Attempt to allocate a physical page from
2766 * 'nodeid'.
2767 */
2768 if (!page)
2769 page = kmem_getpages(cachep, local_flags, nodeid);
2770 if (!page)
2771 goto failed;
2772
2773 /* Get slab management. */
2774 slabp = alloc_slabmgmt(cachep, page, offset,
2775 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2776 if (!slabp)
2777 goto opps1;
2778
2779 slab_map_pages(cachep, slabp, page);
2780
2781 cache_init_objs(cachep, slabp);
2782
2783 if (local_flags & __GFP_WAIT)
2784 local_irq_disable();
2785 check_irq_off();
2786 spin_lock(&n->list_lock);
2787
2788 /* Make slab active. */
2789 list_add_tail(&slabp->list, &(n->slabs_free));
2790 STATS_INC_GROWN(cachep);
2791 n->free_objects += cachep->num;
2792 spin_unlock(&n->list_lock);
2793 return 1;
2794 opps1:
2795 kmem_freepages(cachep, page);
2796 failed:
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_disable();
2799 return 0;
2800 }
2801
2802 #if DEBUG
2803
2804 /*
2805 * Perform extra freeing checks:
2806 * - detect bad pointers.
2807 * - POISON/RED_ZONE checking
2808 */
2809 static void kfree_debugcheck(const void *objp)
2810 {
2811 if (!virt_addr_valid(objp)) {
2812 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2813 (unsigned long)objp);
2814 BUG();
2815 }
2816 }
2817
2818 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2819 {
2820 unsigned long long redzone1, redzone2;
2821
2822 redzone1 = *dbg_redzone1(cache, obj);
2823 redzone2 = *dbg_redzone2(cache, obj);
2824
2825 /*
2826 * Redzone is ok.
2827 */
2828 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2829 return;
2830
2831 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2832 slab_error(cache, "double free detected");
2833 else
2834 slab_error(cache, "memory outside object was overwritten");
2835
2836 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2837 obj, redzone1, redzone2);
2838 }
2839
2840 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2841 unsigned long caller)
2842 {
2843 unsigned int objnr;
2844 struct slab *slabp;
2845
2846 BUG_ON(virt_to_cache(objp) != cachep);
2847
2848 objp -= obj_offset(cachep);
2849 kfree_debugcheck(objp);
2850 slabp = virt_to_slab(objp);
2851
2852 if (cachep->flags & SLAB_RED_ZONE) {
2853 verify_redzone_free(cachep, objp);
2854 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2855 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2856 }
2857 if (cachep->flags & SLAB_STORE_USER)
2858 *dbg_userword(cachep, objp) = (void *)caller;
2859
2860 objnr = obj_to_index(cachep, slabp, objp);
2861
2862 BUG_ON(objnr >= cachep->num);
2863 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2864
2865 #ifdef CONFIG_DEBUG_SLAB_LEAK
2866 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2867 #endif
2868 if (cachep->flags & SLAB_POISON) {
2869 #ifdef CONFIG_DEBUG_PAGEALLOC
2870 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2871 store_stackinfo(cachep, objp, caller);
2872 kernel_map_pages(virt_to_page(objp),
2873 cachep->size / PAGE_SIZE, 0);
2874 } else {
2875 poison_obj(cachep, objp, POISON_FREE);
2876 }
2877 #else
2878 poison_obj(cachep, objp, POISON_FREE);
2879 #endif
2880 }
2881 return objp;
2882 }
2883
2884 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2885 {
2886 kmem_bufctl_t i;
2887 int entries = 0;
2888
2889 /* Check slab's freelist to see if this obj is there. */
2890 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2891 entries++;
2892 if (entries > cachep->num || i >= cachep->num)
2893 goto bad;
2894 }
2895 if (entries != cachep->num - slabp->inuse) {
2896 bad:
2897 printk(KERN_ERR "slab: Internal list corruption detected in "
2898 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2899 cachep->name, cachep->num, slabp, slabp->inuse,
2900 print_tainted());
2901 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2902 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2903 1);
2904 BUG();
2905 }
2906 }
2907 #else
2908 #define kfree_debugcheck(x) do { } while(0)
2909 #define cache_free_debugcheck(x,objp,z) (objp)
2910 #define check_slabp(x,y) do { } while(0)
2911 #endif
2912
2913 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2914 bool force_refill)
2915 {
2916 int batchcount;
2917 struct kmem_cache_node *n;
2918 struct array_cache *ac;
2919 int node;
2920
2921 check_irq_off();
2922 node = numa_mem_id();
2923 if (unlikely(force_refill))
2924 goto force_grow;
2925 retry:
2926 ac = cpu_cache_get(cachep);
2927 batchcount = ac->batchcount;
2928 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2929 /*
2930 * If there was little recent activity on this cache, then
2931 * perform only a partial refill. Otherwise we could generate
2932 * refill bouncing.
2933 */
2934 batchcount = BATCHREFILL_LIMIT;
2935 }
2936 n = cachep->node[node];
2937
2938 BUG_ON(ac->avail > 0 || !n);
2939 spin_lock(&n->list_lock);
2940
2941 /* See if we can refill from the shared array */
2942 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2943 n->shared->touched = 1;
2944 goto alloc_done;
2945 }
2946
2947 while (batchcount > 0) {
2948 struct list_head *entry;
2949 struct slab *slabp;
2950 /* Get slab alloc is to come from. */
2951 entry = n->slabs_partial.next;
2952 if (entry == &n->slabs_partial) {
2953 n->free_touched = 1;
2954 entry = n->slabs_free.next;
2955 if (entry == &n->slabs_free)
2956 goto must_grow;
2957 }
2958
2959 slabp = list_entry(entry, struct slab, list);
2960 check_slabp(cachep, slabp);
2961 check_spinlock_acquired(cachep);
2962
2963 /*
2964 * The slab was either on partial or free list so
2965 * there must be at least one object available for
2966 * allocation.
2967 */
2968 BUG_ON(slabp->inuse >= cachep->num);
2969
2970 while (slabp->inuse < cachep->num && batchcount--) {
2971 STATS_INC_ALLOCED(cachep);
2972 STATS_INC_ACTIVE(cachep);
2973 STATS_SET_HIGH(cachep);
2974
2975 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
2976 node));
2977 }
2978 check_slabp(cachep, slabp);
2979
2980 /* move slabp to correct slabp list: */
2981 list_del(&slabp->list);
2982 if (slabp->free == BUFCTL_END)
2983 list_add(&slabp->list, &n->slabs_full);
2984 else
2985 list_add(&slabp->list, &n->slabs_partial);
2986 }
2987
2988 must_grow:
2989 n->free_objects -= ac->avail;
2990 alloc_done:
2991 spin_unlock(&n->list_lock);
2992
2993 if (unlikely(!ac->avail)) {
2994 int x;
2995 force_grow:
2996 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2997
2998 /* cache_grow can reenable interrupts, then ac could change. */
2999 ac = cpu_cache_get(cachep);
3000 node = numa_mem_id();
3001
3002 /* no objects in sight? abort */
3003 if (!x && (ac->avail == 0 || force_refill))
3004 return NULL;
3005
3006 if (!ac->avail) /* objects refilled by interrupt? */
3007 goto retry;
3008 }
3009 ac->touched = 1;
3010
3011 return ac_get_obj(cachep, ac, flags, force_refill);
3012 }
3013
3014 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3015 gfp_t flags)
3016 {
3017 might_sleep_if(flags & __GFP_WAIT);
3018 #if DEBUG
3019 kmem_flagcheck(cachep, flags);
3020 #endif
3021 }
3022
3023 #if DEBUG
3024 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3025 gfp_t flags, void *objp, unsigned long caller)
3026 {
3027 if (!objp)
3028 return objp;
3029 if (cachep->flags & SLAB_POISON) {
3030 #ifdef CONFIG_DEBUG_PAGEALLOC
3031 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3032 kernel_map_pages(virt_to_page(objp),
3033 cachep->size / PAGE_SIZE, 1);
3034 else
3035 check_poison_obj(cachep, objp);
3036 #else
3037 check_poison_obj(cachep, objp);
3038 #endif
3039 poison_obj(cachep, objp, POISON_INUSE);
3040 }
3041 if (cachep->flags & SLAB_STORE_USER)
3042 *dbg_userword(cachep, objp) = (void *)caller;
3043
3044 if (cachep->flags & SLAB_RED_ZONE) {
3045 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3046 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3047 slab_error(cachep, "double free, or memory outside"
3048 " object was overwritten");
3049 printk(KERN_ERR
3050 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3051 objp, *dbg_redzone1(cachep, objp),
3052 *dbg_redzone2(cachep, objp));
3053 }
3054 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3055 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3056 }
3057 #ifdef CONFIG_DEBUG_SLAB_LEAK
3058 {
3059 struct slab *slabp;
3060 unsigned objnr;
3061
3062 slabp = virt_to_slab(objp);
3063 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3064 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3065 }
3066 #endif
3067 objp += obj_offset(cachep);
3068 if (cachep->ctor && cachep->flags & SLAB_POISON)
3069 cachep->ctor(objp);
3070 if (ARCH_SLAB_MINALIGN &&
3071 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3072 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3073 objp, (int)ARCH_SLAB_MINALIGN);
3074 }
3075 return objp;
3076 }
3077 #else
3078 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3079 #endif
3080
3081 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3082 {
3083 if (cachep == kmem_cache)
3084 return false;
3085
3086 return should_failslab(cachep->object_size, flags, cachep->flags);
3087 }
3088
3089 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3090 {
3091 void *objp;
3092 struct array_cache *ac;
3093 bool force_refill = false;
3094
3095 check_irq_off();
3096
3097 ac = cpu_cache_get(cachep);
3098 if (likely(ac->avail)) {
3099 ac->touched = 1;
3100 objp = ac_get_obj(cachep, ac, flags, false);
3101
3102 /*
3103 * Allow for the possibility all avail objects are not allowed
3104 * by the current flags
3105 */
3106 if (objp) {
3107 STATS_INC_ALLOCHIT(cachep);
3108 goto out;
3109 }
3110 force_refill = true;
3111 }
3112
3113 STATS_INC_ALLOCMISS(cachep);
3114 objp = cache_alloc_refill(cachep, flags, force_refill);
3115 /*
3116 * the 'ac' may be updated by cache_alloc_refill(),
3117 * and kmemleak_erase() requires its correct value.
3118 */
3119 ac = cpu_cache_get(cachep);
3120
3121 out:
3122 /*
3123 * To avoid a false negative, if an object that is in one of the
3124 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3125 * treat the array pointers as a reference to the object.
3126 */
3127 if (objp)
3128 kmemleak_erase(&ac->entry[ac->avail]);
3129 return objp;
3130 }
3131
3132 #ifdef CONFIG_NUMA
3133 /*
3134 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3135 *
3136 * If we are in_interrupt, then process context, including cpusets and
3137 * mempolicy, may not apply and should not be used for allocation policy.
3138 */
3139 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3140 {
3141 int nid_alloc, nid_here;
3142
3143 if (in_interrupt() || (flags & __GFP_THISNODE))
3144 return NULL;
3145 nid_alloc = nid_here = numa_mem_id();
3146 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3147 nid_alloc = cpuset_slab_spread_node();
3148 else if (current->mempolicy)
3149 nid_alloc = slab_node();
3150 if (nid_alloc != nid_here)
3151 return ____cache_alloc_node(cachep, flags, nid_alloc);
3152 return NULL;
3153 }
3154
3155 /*
3156 * Fallback function if there was no memory available and no objects on a
3157 * certain node and fall back is permitted. First we scan all the
3158 * available node for available objects. If that fails then we
3159 * perform an allocation without specifying a node. This allows the page
3160 * allocator to do its reclaim / fallback magic. We then insert the
3161 * slab into the proper nodelist and then allocate from it.
3162 */
3163 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3164 {
3165 struct zonelist *zonelist;
3166 gfp_t local_flags;
3167 struct zoneref *z;
3168 struct zone *zone;
3169 enum zone_type high_zoneidx = gfp_zone(flags);
3170 void *obj = NULL;
3171 int nid;
3172 unsigned int cpuset_mems_cookie;
3173
3174 if (flags & __GFP_THISNODE)
3175 return NULL;
3176
3177 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3178
3179 retry_cpuset:
3180 cpuset_mems_cookie = get_mems_allowed();
3181 zonelist = node_zonelist(slab_node(), flags);
3182
3183 retry:
3184 /*
3185 * Look through allowed nodes for objects available
3186 * from existing per node queues.
3187 */
3188 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3189 nid = zone_to_nid(zone);
3190
3191 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3192 cache->node[nid] &&
3193 cache->node[nid]->free_objects) {
3194 obj = ____cache_alloc_node(cache,
3195 flags | GFP_THISNODE, nid);
3196 if (obj)
3197 break;
3198 }
3199 }
3200
3201 if (!obj) {
3202 /*
3203 * This allocation will be performed within the constraints
3204 * of the current cpuset / memory policy requirements.
3205 * We may trigger various forms of reclaim on the allowed
3206 * set and go into memory reserves if necessary.
3207 */
3208 struct page *page;
3209
3210 if (local_flags & __GFP_WAIT)
3211 local_irq_enable();
3212 kmem_flagcheck(cache, flags);
3213 page = kmem_getpages(cache, local_flags, numa_mem_id());
3214 if (local_flags & __GFP_WAIT)
3215 local_irq_disable();
3216 if (page) {
3217 /*
3218 * Insert into the appropriate per node queues
3219 */
3220 nid = page_to_nid(page);
3221 if (cache_grow(cache, flags, nid, page)) {
3222 obj = ____cache_alloc_node(cache,
3223 flags | GFP_THISNODE, nid);
3224 if (!obj)
3225 /*
3226 * Another processor may allocate the
3227 * objects in the slab since we are
3228 * not holding any locks.
3229 */
3230 goto retry;
3231 } else {
3232 /* cache_grow already freed obj */
3233 obj = NULL;
3234 }
3235 }
3236 }
3237
3238 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3239 goto retry_cpuset;
3240 return obj;
3241 }
3242
3243 /*
3244 * A interface to enable slab creation on nodeid
3245 */
3246 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3247 int nodeid)
3248 {
3249 struct list_head *entry;
3250 struct slab *slabp;
3251 struct kmem_cache_node *n;
3252 void *obj;
3253 int x;
3254
3255 VM_BUG_ON(nodeid > num_online_nodes());
3256 n = cachep->node[nodeid];
3257 BUG_ON(!n);
3258
3259 retry:
3260 check_irq_off();
3261 spin_lock(&n->list_lock);
3262 entry = n->slabs_partial.next;
3263 if (entry == &n->slabs_partial) {
3264 n->free_touched = 1;
3265 entry = n->slabs_free.next;
3266 if (entry == &n->slabs_free)
3267 goto must_grow;
3268 }
3269
3270 slabp = list_entry(entry, struct slab, list);
3271 check_spinlock_acquired_node(cachep, nodeid);
3272 check_slabp(cachep, slabp);
3273
3274 STATS_INC_NODEALLOCS(cachep);
3275 STATS_INC_ACTIVE(cachep);
3276 STATS_SET_HIGH(cachep);
3277
3278 BUG_ON(slabp->inuse == cachep->num);
3279
3280 obj = slab_get_obj(cachep, slabp, nodeid);
3281 check_slabp(cachep, slabp);
3282 n->free_objects--;
3283 /* move slabp to correct slabp list: */
3284 list_del(&slabp->list);
3285
3286 if (slabp->free == BUFCTL_END)
3287 list_add(&slabp->list, &n->slabs_full);
3288 else
3289 list_add(&slabp->list, &n->slabs_partial);
3290
3291 spin_unlock(&n->list_lock);
3292 goto done;
3293
3294 must_grow:
3295 spin_unlock(&n->list_lock);
3296 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3297 if (x)
3298 goto retry;
3299
3300 return fallback_alloc(cachep, flags);
3301
3302 done:
3303 return obj;
3304 }
3305
3306 static __always_inline void *
3307 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3308 unsigned long caller)
3309 {
3310 unsigned long save_flags;
3311 void *ptr;
3312 int slab_node = numa_mem_id();
3313
3314 flags &= gfp_allowed_mask;
3315
3316 lockdep_trace_alloc(flags);
3317
3318 if (slab_should_failslab(cachep, flags))
3319 return NULL;
3320
3321 cachep = memcg_kmem_get_cache(cachep, flags);
3322
3323 cache_alloc_debugcheck_before(cachep, flags);
3324 local_irq_save(save_flags);
3325
3326 if (nodeid == NUMA_NO_NODE)
3327 nodeid = slab_node;
3328
3329 if (unlikely(!cachep->node[nodeid])) {
3330 /* Node not bootstrapped yet */
3331 ptr = fallback_alloc(cachep, flags);
3332 goto out;
3333 }
3334
3335 if (nodeid == slab_node) {
3336 /*
3337 * Use the locally cached objects if possible.
3338 * However ____cache_alloc does not allow fallback
3339 * to other nodes. It may fail while we still have
3340 * objects on other nodes available.
3341 */
3342 ptr = ____cache_alloc(cachep, flags);
3343 if (ptr)
3344 goto out;
3345 }
3346 /* ___cache_alloc_node can fall back to other nodes */
3347 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3348 out:
3349 local_irq_restore(save_flags);
3350 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3351 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3352 flags);
3353
3354 if (likely(ptr))
3355 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3356
3357 if (unlikely((flags & __GFP_ZERO) && ptr))
3358 memset(ptr, 0, cachep->object_size);
3359
3360 return ptr;
3361 }
3362
3363 static __always_inline void *
3364 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3365 {
3366 void *objp;
3367
3368 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3369 objp = alternate_node_alloc(cache, flags);
3370 if (objp)
3371 goto out;
3372 }
3373 objp = ____cache_alloc(cache, flags);
3374
3375 /*
3376 * We may just have run out of memory on the local node.
3377 * ____cache_alloc_node() knows how to locate memory on other nodes
3378 */
3379 if (!objp)
3380 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3381
3382 out:
3383 return objp;
3384 }
3385 #else
3386
3387 static __always_inline void *
3388 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3389 {
3390 return ____cache_alloc(cachep, flags);
3391 }
3392
3393 #endif /* CONFIG_NUMA */
3394
3395 static __always_inline void *
3396 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3397 {
3398 unsigned long save_flags;
3399 void *objp;
3400
3401 flags &= gfp_allowed_mask;
3402
3403 lockdep_trace_alloc(flags);
3404
3405 if (slab_should_failslab(cachep, flags))
3406 return NULL;
3407
3408 cachep = memcg_kmem_get_cache(cachep, flags);
3409
3410 cache_alloc_debugcheck_before(cachep, flags);
3411 local_irq_save(save_flags);
3412 objp = __do_cache_alloc(cachep, flags);
3413 local_irq_restore(save_flags);
3414 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3415 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3416 flags);
3417 prefetchw(objp);
3418
3419 if (likely(objp))
3420 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3421
3422 if (unlikely((flags & __GFP_ZERO) && objp))
3423 memset(objp, 0, cachep->object_size);
3424
3425 return objp;
3426 }
3427
3428 /*
3429 * Caller needs to acquire correct kmem_list's list_lock
3430 */
3431 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3432 int node)
3433 {
3434 int i;
3435 struct kmem_cache_node *n;
3436
3437 for (i = 0; i < nr_objects; i++) {
3438 void *objp;
3439 struct slab *slabp;
3440
3441 clear_obj_pfmemalloc(&objpp[i]);
3442 objp = objpp[i];
3443
3444 slabp = virt_to_slab(objp);
3445 n = cachep->node[node];
3446 list_del(&slabp->list);
3447 check_spinlock_acquired_node(cachep, node);
3448 check_slabp(cachep, slabp);
3449 slab_put_obj(cachep, slabp, objp, node);
3450 STATS_DEC_ACTIVE(cachep);
3451 n->free_objects++;
3452 check_slabp(cachep, slabp);
3453
3454 /* fixup slab chains */
3455 if (slabp->inuse == 0) {
3456 if (n->free_objects > n->free_limit) {
3457 n->free_objects -= cachep->num;
3458 /* No need to drop any previously held
3459 * lock here, even if we have a off-slab slab
3460 * descriptor it is guaranteed to come from
3461 * a different cache, refer to comments before
3462 * alloc_slabmgmt.
3463 */
3464 slab_destroy(cachep, slabp);
3465 } else {
3466 list_add(&slabp->list, &n->slabs_free);
3467 }
3468 } else {
3469 /* Unconditionally move a slab to the end of the
3470 * partial list on free - maximum time for the
3471 * other objects to be freed, too.
3472 */
3473 list_add_tail(&slabp->list, &n->slabs_partial);
3474 }
3475 }
3476 }
3477
3478 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3479 {
3480 int batchcount;
3481 struct kmem_cache_node *n;
3482 int node = numa_mem_id();
3483
3484 batchcount = ac->batchcount;
3485 #if DEBUG
3486 BUG_ON(!batchcount || batchcount > ac->avail);
3487 #endif
3488 check_irq_off();
3489 n = cachep->node[node];
3490 spin_lock(&n->list_lock);
3491 if (n->shared) {
3492 struct array_cache *shared_array = n->shared;
3493 int max = shared_array->limit - shared_array->avail;
3494 if (max) {
3495 if (batchcount > max)
3496 batchcount = max;
3497 memcpy(&(shared_array->entry[shared_array->avail]),
3498 ac->entry, sizeof(void *) * batchcount);
3499 shared_array->avail += batchcount;
3500 goto free_done;
3501 }
3502 }
3503
3504 free_block(cachep, ac->entry, batchcount, node);
3505 free_done:
3506 #if STATS
3507 {
3508 int i = 0;
3509 struct list_head *p;
3510
3511 p = n->slabs_free.next;
3512 while (p != &(n->slabs_free)) {
3513 struct slab *slabp;
3514
3515 slabp = list_entry(p, struct slab, list);
3516 BUG_ON(slabp->inuse);
3517
3518 i++;
3519 p = p->next;
3520 }
3521 STATS_SET_FREEABLE(cachep, i);
3522 }
3523 #endif
3524 spin_unlock(&n->list_lock);
3525 ac->avail -= batchcount;
3526 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3527 }
3528
3529 /*
3530 * Release an obj back to its cache. If the obj has a constructed state, it must
3531 * be in this state _before_ it is released. Called with disabled ints.
3532 */
3533 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3534 unsigned long caller)
3535 {
3536 struct array_cache *ac = cpu_cache_get(cachep);
3537
3538 check_irq_off();
3539 kmemleak_free_recursive(objp, cachep->flags);
3540 objp = cache_free_debugcheck(cachep, objp, caller);
3541
3542 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3543
3544 /*
3545 * Skip calling cache_free_alien() when the platform is not numa.
3546 * This will avoid cache misses that happen while accessing slabp (which
3547 * is per page memory reference) to get nodeid. Instead use a global
3548 * variable to skip the call, which is mostly likely to be present in
3549 * the cache.
3550 */
3551 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3552 return;
3553
3554 if (likely(ac->avail < ac->limit)) {
3555 STATS_INC_FREEHIT(cachep);
3556 } else {
3557 STATS_INC_FREEMISS(cachep);
3558 cache_flusharray(cachep, ac);
3559 }
3560
3561 ac_put_obj(cachep, ac, objp);
3562 }
3563
3564 /**
3565 * kmem_cache_alloc - Allocate an object
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 *
3569 * Allocate an object from this cache. The flags are only relevant
3570 * if the cache has no available objects.
3571 */
3572 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3573 {
3574 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3575
3576 trace_kmem_cache_alloc(_RET_IP_, ret,
3577 cachep->object_size, cachep->size, flags);
3578
3579 return ret;
3580 }
3581 EXPORT_SYMBOL(kmem_cache_alloc);
3582
3583 #ifdef CONFIG_TRACING
3584 void *
3585 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3586 {
3587 void *ret;
3588
3589 ret = slab_alloc(cachep, flags, _RET_IP_);
3590
3591 trace_kmalloc(_RET_IP_, ret,
3592 size, cachep->size, flags);
3593 return ret;
3594 }
3595 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3596 #endif
3597
3598 #ifdef CONFIG_NUMA
3599 /**
3600 * kmem_cache_alloc_node - Allocate an object on the specified node
3601 * @cachep: The cache to allocate from.
3602 * @flags: See kmalloc().
3603 * @nodeid: node number of the target node.
3604 *
3605 * Identical to kmem_cache_alloc but it will allocate memory on the given
3606 * node, which can improve the performance for cpu bound structures.
3607 *
3608 * Fallback to other node is possible if __GFP_THISNODE is not set.
3609 */
3610 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3611 {
3612 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3613
3614 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3615 cachep->object_size, cachep->size,
3616 flags, nodeid);
3617
3618 return ret;
3619 }
3620 EXPORT_SYMBOL(kmem_cache_alloc_node);
3621
3622 #ifdef CONFIG_TRACING
3623 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3624 gfp_t flags,
3625 int nodeid,
3626 size_t size)
3627 {
3628 void *ret;
3629
3630 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3631
3632 trace_kmalloc_node(_RET_IP_, ret,
3633 size, cachep->size,
3634 flags, nodeid);
3635 return ret;
3636 }
3637 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3638 #endif
3639
3640 static __always_inline void *
3641 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3642 {
3643 struct kmem_cache *cachep;
3644
3645 cachep = kmalloc_slab(size, flags);
3646 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3647 return cachep;
3648 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3649 }
3650
3651 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3652 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3653 {
3654 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3655 }
3656 EXPORT_SYMBOL(__kmalloc_node);
3657
3658 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3659 int node, unsigned long caller)
3660 {
3661 return __do_kmalloc_node(size, flags, node, caller);
3662 }
3663 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3664 #else
3665 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3666 {
3667 return __do_kmalloc_node(size, flags, node, 0);
3668 }
3669 EXPORT_SYMBOL(__kmalloc_node);
3670 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3671 #endif /* CONFIG_NUMA */
3672
3673 /**
3674 * __do_kmalloc - allocate memory
3675 * @size: how many bytes of memory are required.
3676 * @flags: the type of memory to allocate (see kmalloc).
3677 * @caller: function caller for debug tracking of the caller
3678 */
3679 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3680 unsigned long caller)
3681 {
3682 struct kmem_cache *cachep;
3683 void *ret;
3684
3685 /* If you want to save a few bytes .text space: replace
3686 * __ with kmem_.
3687 * Then kmalloc uses the uninlined functions instead of the inline
3688 * functions.
3689 */
3690 cachep = kmalloc_slab(size, flags);
3691 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3692 return cachep;
3693 ret = slab_alloc(cachep, flags, caller);
3694
3695 trace_kmalloc(caller, ret,
3696 size, cachep->size, flags);
3697
3698 return ret;
3699 }
3700
3701
3702 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3703 void *__kmalloc(size_t size, gfp_t flags)
3704 {
3705 return __do_kmalloc(size, flags, _RET_IP_);
3706 }
3707 EXPORT_SYMBOL(__kmalloc);
3708
3709 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3710 {
3711 return __do_kmalloc(size, flags, caller);
3712 }
3713 EXPORT_SYMBOL(__kmalloc_track_caller);
3714
3715 #else
3716 void *__kmalloc(size_t size, gfp_t flags)
3717 {
3718 return __do_kmalloc(size, flags, 0);
3719 }
3720 EXPORT_SYMBOL(__kmalloc);
3721 #endif
3722
3723 /**
3724 * kmem_cache_free - Deallocate an object
3725 * @cachep: The cache the allocation was from.
3726 * @objp: The previously allocated object.
3727 *
3728 * Free an object which was previously allocated from this
3729 * cache.
3730 */
3731 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3732 {
3733 unsigned long flags;
3734 cachep = cache_from_obj(cachep, objp);
3735 if (!cachep)
3736 return;
3737
3738 local_irq_save(flags);
3739 debug_check_no_locks_freed(objp, cachep->object_size);
3740 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3741 debug_check_no_obj_freed(objp, cachep->object_size);
3742 __cache_free(cachep, objp, _RET_IP_);
3743 local_irq_restore(flags);
3744
3745 trace_kmem_cache_free(_RET_IP_, objp);
3746 }
3747 EXPORT_SYMBOL(kmem_cache_free);
3748
3749 /**
3750 * kfree - free previously allocated memory
3751 * @objp: pointer returned by kmalloc.
3752 *
3753 * If @objp is NULL, no operation is performed.
3754 *
3755 * Don't free memory not originally allocated by kmalloc()
3756 * or you will run into trouble.
3757 */
3758 void kfree(const void *objp)
3759 {
3760 struct kmem_cache *c;
3761 unsigned long flags;
3762
3763 trace_kfree(_RET_IP_, objp);
3764
3765 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3766 return;
3767 local_irq_save(flags);
3768 kfree_debugcheck(objp);
3769 c = virt_to_cache(objp);
3770 debug_check_no_locks_freed(objp, c->object_size);
3771
3772 debug_check_no_obj_freed(objp, c->object_size);
3773 __cache_free(c, (void *)objp, _RET_IP_);
3774 local_irq_restore(flags);
3775 }
3776 EXPORT_SYMBOL(kfree);
3777
3778 /*
3779 * This initializes kmem_cache_node or resizes various caches for all nodes.
3780 */
3781 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3782 {
3783 int node;
3784 struct kmem_cache_node *n;
3785 struct array_cache *new_shared;
3786 struct array_cache **new_alien = NULL;
3787
3788 for_each_online_node(node) {
3789
3790 if (use_alien_caches) {
3791 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3792 if (!new_alien)
3793 goto fail;
3794 }
3795
3796 new_shared = NULL;
3797 if (cachep->shared) {
3798 new_shared = alloc_arraycache(node,
3799 cachep->shared*cachep->batchcount,
3800 0xbaadf00d, gfp);
3801 if (!new_shared) {
3802 free_alien_cache(new_alien);
3803 goto fail;
3804 }
3805 }
3806
3807 n = cachep->node[node];
3808 if (n) {
3809 struct array_cache *shared = n->shared;
3810
3811 spin_lock_irq(&n->list_lock);
3812
3813 if (shared)
3814 free_block(cachep, shared->entry,
3815 shared->avail, node);
3816
3817 n->shared = new_shared;
3818 if (!n->alien) {
3819 n->alien = new_alien;
3820 new_alien = NULL;
3821 }
3822 n->free_limit = (1 + nr_cpus_node(node)) *
3823 cachep->batchcount + cachep->num;
3824 spin_unlock_irq(&n->list_lock);
3825 kfree(shared);
3826 free_alien_cache(new_alien);
3827 continue;
3828 }
3829 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3830 if (!n) {
3831 free_alien_cache(new_alien);
3832 kfree(new_shared);
3833 goto fail;
3834 }
3835
3836 kmem_cache_node_init(n);
3837 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3838 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3839 n->shared = new_shared;
3840 n->alien = new_alien;
3841 n->free_limit = (1 + nr_cpus_node(node)) *
3842 cachep->batchcount + cachep->num;
3843 cachep->node[node] = n;
3844 }
3845 return 0;
3846
3847 fail:
3848 if (!cachep->list.next) {
3849 /* Cache is not active yet. Roll back what we did */
3850 node--;
3851 while (node >= 0) {
3852 if (cachep->node[node]) {
3853 n = cachep->node[node];
3854
3855 kfree(n->shared);
3856 free_alien_cache(n->alien);
3857 kfree(n);
3858 cachep->node[node] = NULL;
3859 }
3860 node--;
3861 }
3862 }
3863 return -ENOMEM;
3864 }
3865
3866 struct ccupdate_struct {
3867 struct kmem_cache *cachep;
3868 struct array_cache *new[0];
3869 };
3870
3871 static void do_ccupdate_local(void *info)
3872 {
3873 struct ccupdate_struct *new = info;
3874 struct array_cache *old;
3875
3876 check_irq_off();
3877 old = cpu_cache_get(new->cachep);
3878
3879 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3880 new->new[smp_processor_id()] = old;
3881 }
3882
3883 /* Always called with the slab_mutex held */
3884 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3885 int batchcount, int shared, gfp_t gfp)
3886 {
3887 struct ccupdate_struct *new;
3888 int i;
3889
3890 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3891 gfp);
3892 if (!new)
3893 return -ENOMEM;
3894
3895 for_each_online_cpu(i) {
3896 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3897 batchcount, gfp);
3898 if (!new->new[i]) {
3899 for (i--; i >= 0; i--)
3900 kfree(new->new[i]);
3901 kfree(new);
3902 return -ENOMEM;
3903 }
3904 }
3905 new->cachep = cachep;
3906
3907 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3908
3909 check_irq_on();
3910 cachep->batchcount = batchcount;
3911 cachep->limit = limit;
3912 cachep->shared = shared;
3913
3914 for_each_online_cpu(i) {
3915 struct array_cache *ccold = new->new[i];
3916 if (!ccold)
3917 continue;
3918 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3919 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3920 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3921 kfree(ccold);
3922 }
3923 kfree(new);
3924 return alloc_kmemlist(cachep, gfp);
3925 }
3926
3927 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3928 int batchcount, int shared, gfp_t gfp)
3929 {
3930 int ret;
3931 struct kmem_cache *c = NULL;
3932 int i = 0;
3933
3934 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3935
3936 if (slab_state < FULL)
3937 return ret;
3938
3939 if ((ret < 0) || !is_root_cache(cachep))
3940 return ret;
3941
3942 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3943 for_each_memcg_cache_index(i) {
3944 c = cache_from_memcg(cachep, i);
3945 if (c)
3946 /* return value determined by the parent cache only */
3947 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3948 }
3949
3950 return ret;
3951 }
3952
3953 /* Called with slab_mutex held always */
3954 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3955 {
3956 int err;
3957 int limit = 0;
3958 int shared = 0;
3959 int batchcount = 0;
3960
3961 if (!is_root_cache(cachep)) {
3962 struct kmem_cache *root = memcg_root_cache(cachep);
3963 limit = root->limit;
3964 shared = root->shared;
3965 batchcount = root->batchcount;
3966 }
3967
3968 if (limit && shared && batchcount)
3969 goto skip_setup;
3970 /*
3971 * The head array serves three purposes:
3972 * - create a LIFO ordering, i.e. return objects that are cache-warm
3973 * - reduce the number of spinlock operations.
3974 * - reduce the number of linked list operations on the slab and
3975 * bufctl chains: array operations are cheaper.
3976 * The numbers are guessed, we should auto-tune as described by
3977 * Bonwick.
3978 */
3979 if (cachep->size > 131072)
3980 limit = 1;
3981 else if (cachep->size > PAGE_SIZE)
3982 limit = 8;
3983 else if (cachep->size > 1024)
3984 limit = 24;
3985 else if (cachep->size > 256)
3986 limit = 54;
3987 else
3988 limit = 120;
3989
3990 /*
3991 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3992 * allocation behaviour: Most allocs on one cpu, most free operations
3993 * on another cpu. For these cases, an efficient object passing between
3994 * cpus is necessary. This is provided by a shared array. The array
3995 * replaces Bonwick's magazine layer.
3996 * On uniprocessor, it's functionally equivalent (but less efficient)
3997 * to a larger limit. Thus disabled by default.
3998 */
3999 shared = 0;
4000 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4001 shared = 8;
4002
4003 #if DEBUG
4004 /*
4005 * With debugging enabled, large batchcount lead to excessively long
4006 * periods with disabled local interrupts. Limit the batchcount
4007 */
4008 if (limit > 32)
4009 limit = 32;
4010 #endif
4011 batchcount = (limit + 1) / 2;
4012 skip_setup:
4013 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4014 if (err)
4015 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4016 cachep->name, -err);
4017 return err;
4018 }
4019
4020 /*
4021 * Drain an array if it contains any elements taking the node lock only if
4022 * necessary. Note that the node listlock also protects the array_cache
4023 * if drain_array() is used on the shared array.
4024 */
4025 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4026 struct array_cache *ac, int force, int node)
4027 {
4028 int tofree;
4029
4030 if (!ac || !ac->avail)
4031 return;
4032 if (ac->touched && !force) {
4033 ac->touched = 0;
4034 } else {
4035 spin_lock_irq(&n->list_lock);
4036 if (ac->avail) {
4037 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4038 if (tofree > ac->avail)
4039 tofree = (ac->avail + 1) / 2;
4040 free_block(cachep, ac->entry, tofree, node);
4041 ac->avail -= tofree;
4042 memmove(ac->entry, &(ac->entry[tofree]),
4043 sizeof(void *) * ac->avail);
4044 }
4045 spin_unlock_irq(&n->list_lock);
4046 }
4047 }
4048
4049 /**
4050 * cache_reap - Reclaim memory from caches.
4051 * @w: work descriptor
4052 *
4053 * Called from workqueue/eventd every few seconds.
4054 * Purpose:
4055 * - clear the per-cpu caches for this CPU.
4056 * - return freeable pages to the main free memory pool.
4057 *
4058 * If we cannot acquire the cache chain mutex then just give up - we'll try
4059 * again on the next iteration.
4060 */
4061 static void cache_reap(struct work_struct *w)
4062 {
4063 struct kmem_cache *searchp;
4064 struct kmem_cache_node *n;
4065 int node = numa_mem_id();
4066 struct delayed_work *work = to_delayed_work(w);
4067
4068 if (!mutex_trylock(&slab_mutex))
4069 /* Give up. Setup the next iteration. */
4070 goto out;
4071
4072 list_for_each_entry(searchp, &slab_caches, list) {
4073 check_irq_on();
4074
4075 /*
4076 * We only take the node lock if absolutely necessary and we
4077 * have established with reasonable certainty that
4078 * we can do some work if the lock was obtained.
4079 */
4080 n = searchp->node[node];
4081
4082 reap_alien(searchp, n);
4083
4084 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4085
4086 /*
4087 * These are racy checks but it does not matter
4088 * if we skip one check or scan twice.
4089 */
4090 if (time_after(n->next_reap, jiffies))
4091 goto next;
4092
4093 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4094
4095 drain_array(searchp, n, n->shared, 0, node);
4096
4097 if (n->free_touched)
4098 n->free_touched = 0;
4099 else {
4100 int freed;
4101
4102 freed = drain_freelist(searchp, n, (n->free_limit +
4103 5 * searchp->num - 1) / (5 * searchp->num));
4104 STATS_ADD_REAPED(searchp, freed);
4105 }
4106 next:
4107 cond_resched();
4108 }
4109 check_irq_on();
4110 mutex_unlock(&slab_mutex);
4111 next_reap_node();
4112 out:
4113 /* Set up the next iteration */
4114 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4115 }
4116
4117 #ifdef CONFIG_SLABINFO
4118 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4119 {
4120 struct slab *slabp;
4121 unsigned long active_objs;
4122 unsigned long num_objs;
4123 unsigned long active_slabs = 0;
4124 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4125 const char *name;
4126 char *error = NULL;
4127 int node;
4128 struct kmem_cache_node *n;
4129
4130 active_objs = 0;
4131 num_slabs = 0;
4132 for_each_online_node(node) {
4133 n = cachep->node[node];
4134 if (!n)
4135 continue;
4136
4137 check_irq_on();
4138 spin_lock_irq(&n->list_lock);
4139
4140 list_for_each_entry(slabp, &n->slabs_full, list) {
4141 if (slabp->inuse != cachep->num && !error)
4142 error = "slabs_full accounting error";
4143 active_objs += cachep->num;
4144 active_slabs++;
4145 }
4146 list_for_each_entry(slabp, &n->slabs_partial, list) {
4147 if (slabp->inuse == cachep->num && !error)
4148 error = "slabs_partial inuse accounting error";
4149 if (!slabp->inuse && !error)
4150 error = "slabs_partial/inuse accounting error";
4151 active_objs += slabp->inuse;
4152 active_slabs++;
4153 }
4154 list_for_each_entry(slabp, &n->slabs_free, list) {
4155 if (slabp->inuse && !error)
4156 error = "slabs_free/inuse accounting error";
4157 num_slabs++;
4158 }
4159 free_objects += n->free_objects;
4160 if (n->shared)
4161 shared_avail += n->shared->avail;
4162
4163 spin_unlock_irq(&n->list_lock);
4164 }
4165 num_slabs += active_slabs;
4166 num_objs = num_slabs * cachep->num;
4167 if (num_objs - active_objs != free_objects && !error)
4168 error = "free_objects accounting error";
4169
4170 name = cachep->name;
4171 if (error)
4172 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4173
4174 sinfo->active_objs = active_objs;
4175 sinfo->num_objs = num_objs;
4176 sinfo->active_slabs = active_slabs;
4177 sinfo->num_slabs = num_slabs;
4178 sinfo->shared_avail = shared_avail;
4179 sinfo->limit = cachep->limit;
4180 sinfo->batchcount = cachep->batchcount;
4181 sinfo->shared = cachep->shared;
4182 sinfo->objects_per_slab = cachep->num;
4183 sinfo->cache_order = cachep->gfporder;
4184 }
4185
4186 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4187 {
4188 #if STATS
4189 { /* node stats */
4190 unsigned long high = cachep->high_mark;
4191 unsigned long allocs = cachep->num_allocations;
4192 unsigned long grown = cachep->grown;
4193 unsigned long reaped = cachep->reaped;
4194 unsigned long errors = cachep->errors;
4195 unsigned long max_freeable = cachep->max_freeable;
4196 unsigned long node_allocs = cachep->node_allocs;
4197 unsigned long node_frees = cachep->node_frees;
4198 unsigned long overflows = cachep->node_overflow;
4199
4200 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4201 "%4lu %4lu %4lu %4lu %4lu",
4202 allocs, high, grown,
4203 reaped, errors, max_freeable, node_allocs,
4204 node_frees, overflows);
4205 }
4206 /* cpu stats */
4207 {
4208 unsigned long allochit = atomic_read(&cachep->allochit);
4209 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4210 unsigned long freehit = atomic_read(&cachep->freehit);
4211 unsigned long freemiss = atomic_read(&cachep->freemiss);
4212
4213 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4214 allochit, allocmiss, freehit, freemiss);
4215 }
4216 #endif
4217 }
4218
4219 #define MAX_SLABINFO_WRITE 128
4220 /**
4221 * slabinfo_write - Tuning for the slab allocator
4222 * @file: unused
4223 * @buffer: user buffer
4224 * @count: data length
4225 * @ppos: unused
4226 */
4227 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4228 size_t count, loff_t *ppos)
4229 {
4230 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4231 int limit, batchcount, shared, res;
4232 struct kmem_cache *cachep;
4233
4234 if (count > MAX_SLABINFO_WRITE)
4235 return -EINVAL;
4236 if (copy_from_user(&kbuf, buffer, count))
4237 return -EFAULT;
4238 kbuf[MAX_SLABINFO_WRITE] = '\0';
4239
4240 tmp = strchr(kbuf, ' ');
4241 if (!tmp)
4242 return -EINVAL;
4243 *tmp = '\0';
4244 tmp++;
4245 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4246 return -EINVAL;
4247
4248 /* Find the cache in the chain of caches. */
4249 mutex_lock(&slab_mutex);
4250 res = -EINVAL;
4251 list_for_each_entry(cachep, &slab_caches, list) {
4252 if (!strcmp(cachep->name, kbuf)) {
4253 if (limit < 1 || batchcount < 1 ||
4254 batchcount > limit || shared < 0) {
4255 res = 0;
4256 } else {
4257 res = do_tune_cpucache(cachep, limit,
4258 batchcount, shared,
4259 GFP_KERNEL);
4260 }
4261 break;
4262 }
4263 }
4264 mutex_unlock(&slab_mutex);
4265 if (res >= 0)
4266 res = count;
4267 return res;
4268 }
4269
4270 #ifdef CONFIG_DEBUG_SLAB_LEAK
4271
4272 static void *leaks_start(struct seq_file *m, loff_t *pos)
4273 {
4274 mutex_lock(&slab_mutex);
4275 return seq_list_start(&slab_caches, *pos);
4276 }
4277
4278 static inline int add_caller(unsigned long *n, unsigned long v)
4279 {
4280 unsigned long *p;
4281 int l;
4282 if (!v)
4283 return 1;
4284 l = n[1];
4285 p = n + 2;
4286 while (l) {
4287 int i = l/2;
4288 unsigned long *q = p + 2 * i;
4289 if (*q == v) {
4290 q[1]++;
4291 return 1;
4292 }
4293 if (*q > v) {
4294 l = i;
4295 } else {
4296 p = q + 2;
4297 l -= i + 1;
4298 }
4299 }
4300 if (++n[1] == n[0])
4301 return 0;
4302 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4303 p[0] = v;
4304 p[1] = 1;
4305 return 1;
4306 }
4307
4308 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4309 {
4310 void *p;
4311 int i;
4312 if (n[0] == n[1])
4313 return;
4314 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4315 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4316 continue;
4317 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4318 return;
4319 }
4320 }
4321
4322 static void show_symbol(struct seq_file *m, unsigned long address)
4323 {
4324 #ifdef CONFIG_KALLSYMS
4325 unsigned long offset, size;
4326 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4327
4328 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4329 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4330 if (modname[0])
4331 seq_printf(m, " [%s]", modname);
4332 return;
4333 }
4334 #endif
4335 seq_printf(m, "%p", (void *)address);
4336 }
4337
4338 static int leaks_show(struct seq_file *m, void *p)
4339 {
4340 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4341 struct slab *slabp;
4342 struct kmem_cache_node *n;
4343 const char *name;
4344 unsigned long *x = m->private;
4345 int node;
4346 int i;
4347
4348 if (!(cachep->flags & SLAB_STORE_USER))
4349 return 0;
4350 if (!(cachep->flags & SLAB_RED_ZONE))
4351 return 0;
4352
4353 /* OK, we can do it */
4354
4355 x[1] = 0;
4356
4357 for_each_online_node(node) {
4358 n = cachep->node[node];
4359 if (!n)
4360 continue;
4361
4362 check_irq_on();
4363 spin_lock_irq(&n->list_lock);
4364
4365 list_for_each_entry(slabp, &n->slabs_full, list)
4366 handle_slab(x, cachep, slabp);
4367 list_for_each_entry(slabp, &n->slabs_partial, list)
4368 handle_slab(x, cachep, slabp);
4369 spin_unlock_irq(&n->list_lock);
4370 }
4371 name = cachep->name;
4372 if (x[0] == x[1]) {
4373 /* Increase the buffer size */
4374 mutex_unlock(&slab_mutex);
4375 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4376 if (!m->private) {
4377 /* Too bad, we are really out */
4378 m->private = x;
4379 mutex_lock(&slab_mutex);
4380 return -ENOMEM;
4381 }
4382 *(unsigned long *)m->private = x[0] * 2;
4383 kfree(x);
4384 mutex_lock(&slab_mutex);
4385 /* Now make sure this entry will be retried */
4386 m->count = m->size;
4387 return 0;
4388 }
4389 for (i = 0; i < x[1]; i++) {
4390 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4391 show_symbol(m, x[2*i+2]);
4392 seq_putc(m, '\n');
4393 }
4394
4395 return 0;
4396 }
4397
4398 static const struct seq_operations slabstats_op = {
4399 .start = leaks_start,
4400 .next = slab_next,
4401 .stop = slab_stop,
4402 .show = leaks_show,
4403 };
4404
4405 static int slabstats_open(struct inode *inode, struct file *file)
4406 {
4407 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4408 int ret = -ENOMEM;
4409 if (n) {
4410 ret = seq_open(file, &slabstats_op);
4411 if (!ret) {
4412 struct seq_file *m = file->private_data;
4413 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4414 m->private = n;
4415 n = NULL;
4416 }
4417 kfree(n);
4418 }
4419 return ret;
4420 }
4421
4422 static const struct file_operations proc_slabstats_operations = {
4423 .open = slabstats_open,
4424 .read = seq_read,
4425 .llseek = seq_lseek,
4426 .release = seq_release_private,
4427 };
4428 #endif
4429
4430 static int __init slab_proc_init(void)
4431 {
4432 #ifdef CONFIG_DEBUG_SLAB_LEAK
4433 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4434 #endif
4435 return 0;
4436 }
4437 module_init(slab_proc_init);
4438 #endif
4439
4440 /**
4441 * ksize - get the actual amount of memory allocated for a given object
4442 * @objp: Pointer to the object
4443 *
4444 * kmalloc may internally round up allocations and return more memory
4445 * than requested. ksize() can be used to determine the actual amount of
4446 * memory allocated. The caller may use this additional memory, even though
4447 * a smaller amount of memory was initially specified with the kmalloc call.
4448 * The caller must guarantee that objp points to a valid object previously
4449 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4450 * must not be freed during the duration of the call.
4451 */
4452 size_t ksize(const void *objp)
4453 {
4454 BUG_ON(!objp);
4455 if (unlikely(objp == ZERO_SIZE_PTR))
4456 return 0;
4457
4458 return virt_to_cache(objp)->object_size;
4459 }
4460 EXPORT_SYMBOL(ksize);
This page took 0.117956 seconds and 4 git commands to generate.