mm/slab: lockless decision to grow cache
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221 static int slab_early_init = 1;
222
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
232 parent->colour_next = 0;
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236 }
237
238 #define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
242 } while (0)
243
244 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
250
251 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
252 #define CFLGS_OFF_SLAB (0x80000000UL)
253 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
254 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256 #define BATCHREFILL_LIMIT 16
257 /*
258 * Optimization question: fewer reaps means less probability for unnessary
259 * cpucache drain/refill cycles.
260 *
261 * OTOH the cpuarrays can contain lots of objects,
262 * which could lock up otherwise freeable slabs.
263 */
264 #define REAPTIMEOUT_AC (2*HZ)
265 #define REAPTIMEOUT_NODE (4*HZ)
266
267 #if STATS
268 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
269 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271 #define STATS_INC_GROWN(x) ((x)->grown++)
272 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
273 #define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
278 #define STATS_INC_ERR(x) ((x)->errors++)
279 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
280 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
281 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
282 #define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
287 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291 #else
292 #define STATS_INC_ACTIVE(x) do { } while (0)
293 #define STATS_DEC_ACTIVE(x) do { } while (0)
294 #define STATS_INC_ALLOCED(x) do { } while (0)
295 #define STATS_INC_GROWN(x) do { } while (0)
296 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
297 #define STATS_SET_HIGH(x) do { } while (0)
298 #define STATS_INC_ERR(x) do { } while (0)
299 #define STATS_INC_NODEALLOCS(x) do { } while (0)
300 #define STATS_INC_NODEFREES(x) do { } while (0)
301 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
302 #define STATS_SET_FREEABLE(x, i) do { } while (0)
303 #define STATS_INC_ALLOCHIT(x) do { } while (0)
304 #define STATS_INC_ALLOCMISS(x) do { } while (0)
305 #define STATS_INC_FREEHIT(x) do { } while (0)
306 #define STATS_INC_FREEMISS(x) do { } while (0)
307 #endif
308
309 #if DEBUG
310
311 /*
312 * memory layout of objects:
313 * 0 : objp
314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
315 * the end of an object is aligned with the end of the real
316 * allocation. Catches writes behind the end of the allocation.
317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
318 * redzone word.
319 * cachep->obj_offset: The real object.
320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321 * cachep->size - 1* BYTES_PER_WORD: last caller address
322 * [BYTES_PER_WORD long]
323 */
324 static int obj_offset(struct kmem_cache *cachep)
325 {
326 return cachep->obj_offset;
327 }
328
329 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
330 {
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
334 }
335
336 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
337 {
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
340 return (unsigned long long *)(objp + cachep->size -
341 sizeof(unsigned long long) -
342 REDZONE_ALIGN);
343 return (unsigned long long *) (objp + cachep->size -
344 sizeof(unsigned long long));
345 }
346
347 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
348 {
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
351 }
352
353 #else
354
355 #define obj_offset(x) 0
356 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
358 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360 #endif
361
362 #ifdef CONFIG_DEBUG_SLAB_LEAK
363
364 static inline bool is_store_user_clean(struct kmem_cache *cachep)
365 {
366 return atomic_read(&cachep->store_user_clean) == 1;
367 }
368
369 static inline void set_store_user_clean(struct kmem_cache *cachep)
370 {
371 atomic_set(&cachep->store_user_clean, 1);
372 }
373
374 static inline void set_store_user_dirty(struct kmem_cache *cachep)
375 {
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
378 }
379
380 #else
381 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382
383 #endif
384
385 /*
386 * Do not go above this order unless 0 objects fit into the slab or
387 * overridden on the command line.
388 */
389 #define SLAB_MAX_ORDER_HI 1
390 #define SLAB_MAX_ORDER_LO 0
391 static int slab_max_order = SLAB_MAX_ORDER_LO;
392 static bool slab_max_order_set __initdata;
393
394 static inline struct kmem_cache *virt_to_cache(const void *obj)
395 {
396 struct page *page = virt_to_head_page(obj);
397 return page->slab_cache;
398 }
399
400 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 unsigned int idx)
402 {
403 return page->s_mem + cache->size * idx;
404 }
405
406 /*
407 * We want to avoid an expensive divide : (offset / cache->size)
408 * Using the fact that size is a constant for a particular cache,
409 * we can replace (offset / cache->size) by
410 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
411 */
412 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413 const struct page *page, void *obj)
414 {
415 u32 offset = (obj - page->s_mem);
416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 }
418
419 #define BOOT_CPUCACHE_ENTRIES 1
420 /* internal cache of cache description objs */
421 static struct kmem_cache kmem_cache_boot = {
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
425 .size = sizeof(struct kmem_cache),
426 .name = "kmem_cache",
427 };
428
429 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
430
431 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
432 {
433 return this_cpu_ptr(cachep->cpu_cache);
434 }
435
436 /*
437 * Calculate the number of objects and left-over bytes for a given buffer size.
438 */
439 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
441 {
442 unsigned int num;
443 size_t slab_size = PAGE_SIZE << gfporder;
444
445 /*
446 * The slab management structure can be either off the slab or
447 * on it. For the latter case, the memory allocated for a
448 * slab is used for:
449 *
450 * - @buffer_size bytes for each object
451 * - One freelist_idx_t for each object
452 *
453 * We don't need to consider alignment of freelist because
454 * freelist will be at the end of slab page. The objects will be
455 * at the correct alignment.
456 *
457 * If the slab management structure is off the slab, then the
458 * alignment will already be calculated into the size. Because
459 * the slabs are all pages aligned, the objects will be at the
460 * correct alignment when allocated.
461 */
462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463 num = slab_size / buffer_size;
464 *left_over = slab_size % buffer_size;
465 } else {
466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
469 }
470
471 return num;
472 }
473
474 #if DEBUG
475 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
476
477 static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
479 {
480 pr_err("slab error in %s(): cache `%s': %s\n",
481 function, cachep->name, msg);
482 dump_stack();
483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
484 }
485 #endif
486
487 /*
488 * By default on NUMA we use alien caches to stage the freeing of
489 * objects allocated from other nodes. This causes massive memory
490 * inefficiencies when using fake NUMA setup to split memory into a
491 * large number of small nodes, so it can be disabled on the command
492 * line
493 */
494
495 static int use_alien_caches __read_mostly = 1;
496 static int __init noaliencache_setup(char *s)
497 {
498 use_alien_caches = 0;
499 return 1;
500 }
501 __setup("noaliencache", noaliencache_setup);
502
503 static int __init slab_max_order_setup(char *str)
504 {
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511 }
512 __setup("slab_max_order=", slab_max_order_setup);
513
514 #ifdef CONFIG_NUMA
515 /*
516 * Special reaping functions for NUMA systems called from cache_reap().
517 * These take care of doing round robin flushing of alien caches (containing
518 * objects freed on different nodes from which they were allocated) and the
519 * flushing of remote pcps by calling drain_node_pages.
520 */
521 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522
523 static void init_reap_node(int cpu)
524 {
525 int node;
526
527 node = next_node(cpu_to_mem(cpu), node_online_map);
528 if (node == MAX_NUMNODES)
529 node = first_node(node_online_map);
530
531 per_cpu(slab_reap_node, cpu) = node;
532 }
533
534 static void next_reap_node(void)
535 {
536 int node = __this_cpu_read(slab_reap_node);
537
538 node = next_node(node, node_online_map);
539 if (unlikely(node >= MAX_NUMNODES))
540 node = first_node(node_online_map);
541 __this_cpu_write(slab_reap_node, node);
542 }
543
544 #else
545 #define init_reap_node(cpu) do { } while (0)
546 #define next_reap_node(void) do { } while (0)
547 #endif
548
549 /*
550 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
551 * via the workqueue/eventd.
552 * Add the CPU number into the expiration time to minimize the possibility of
553 * the CPUs getting into lockstep and contending for the global cache chain
554 * lock.
555 */
556 static void start_cpu_timer(int cpu)
557 {
558 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
559
560 /*
561 * When this gets called from do_initcalls via cpucache_init(),
562 * init_workqueues() has already run, so keventd will be setup
563 * at that time.
564 */
565 if (keventd_up() && reap_work->work.func == NULL) {
566 init_reap_node(cpu);
567 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
568 schedule_delayed_work_on(cpu, reap_work,
569 __round_jiffies_relative(HZ, cpu));
570 }
571 }
572
573 static void init_arraycache(struct array_cache *ac, int limit, int batch)
574 {
575 /*
576 * The array_cache structures contain pointers to free object.
577 * However, when such objects are allocated or transferred to another
578 * cache the pointers are not cleared and they could be counted as
579 * valid references during a kmemleak scan. Therefore, kmemleak must
580 * not scan such objects.
581 */
582 kmemleak_no_scan(ac);
583 if (ac) {
584 ac->avail = 0;
585 ac->limit = limit;
586 ac->batchcount = batch;
587 ac->touched = 0;
588 }
589 }
590
591 static struct array_cache *alloc_arraycache(int node, int entries,
592 int batchcount, gfp_t gfp)
593 {
594 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
595 struct array_cache *ac = NULL;
596
597 ac = kmalloc_node(memsize, gfp, node);
598 init_arraycache(ac, entries, batchcount);
599 return ac;
600 }
601
602 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
603 struct page *page, void *objp)
604 {
605 struct kmem_cache_node *n;
606 int page_node;
607 LIST_HEAD(list);
608
609 page_node = page_to_nid(page);
610 n = get_node(cachep, page_node);
611
612 spin_lock(&n->list_lock);
613 free_block(cachep, &objp, 1, page_node, &list);
614 spin_unlock(&n->list_lock);
615
616 slabs_destroy(cachep, &list);
617 }
618
619 /*
620 * Transfer objects in one arraycache to another.
621 * Locking must be handled by the caller.
622 *
623 * Return the number of entries transferred.
624 */
625 static int transfer_objects(struct array_cache *to,
626 struct array_cache *from, unsigned int max)
627 {
628 /* Figure out how many entries to transfer */
629 int nr = min3(from->avail, max, to->limit - to->avail);
630
631 if (!nr)
632 return 0;
633
634 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
635 sizeof(void *) *nr);
636
637 from->avail -= nr;
638 to->avail += nr;
639 return nr;
640 }
641
642 #ifndef CONFIG_NUMA
643
644 #define drain_alien_cache(cachep, alien) do { } while (0)
645 #define reap_alien(cachep, n) do { } while (0)
646
647 static inline struct alien_cache **alloc_alien_cache(int node,
648 int limit, gfp_t gfp)
649 {
650 return NULL;
651 }
652
653 static inline void free_alien_cache(struct alien_cache **ac_ptr)
654 {
655 }
656
657 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
658 {
659 return 0;
660 }
661
662 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
663 gfp_t flags)
664 {
665 return NULL;
666 }
667
668 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
669 gfp_t flags, int nodeid)
670 {
671 return NULL;
672 }
673
674 static inline gfp_t gfp_exact_node(gfp_t flags)
675 {
676 return flags & ~__GFP_NOFAIL;
677 }
678
679 #else /* CONFIG_NUMA */
680
681 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
682 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
683
684 static struct alien_cache *__alloc_alien_cache(int node, int entries,
685 int batch, gfp_t gfp)
686 {
687 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
688 struct alien_cache *alc = NULL;
689
690 alc = kmalloc_node(memsize, gfp, node);
691 init_arraycache(&alc->ac, entries, batch);
692 spin_lock_init(&alc->lock);
693 return alc;
694 }
695
696 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
697 {
698 struct alien_cache **alc_ptr;
699 size_t memsize = sizeof(void *) * nr_node_ids;
700 int i;
701
702 if (limit > 1)
703 limit = 12;
704 alc_ptr = kzalloc_node(memsize, gfp, node);
705 if (!alc_ptr)
706 return NULL;
707
708 for_each_node(i) {
709 if (i == node || !node_online(i))
710 continue;
711 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
712 if (!alc_ptr[i]) {
713 for (i--; i >= 0; i--)
714 kfree(alc_ptr[i]);
715 kfree(alc_ptr);
716 return NULL;
717 }
718 }
719 return alc_ptr;
720 }
721
722 static void free_alien_cache(struct alien_cache **alc_ptr)
723 {
724 int i;
725
726 if (!alc_ptr)
727 return;
728 for_each_node(i)
729 kfree(alc_ptr[i]);
730 kfree(alc_ptr);
731 }
732
733 static void __drain_alien_cache(struct kmem_cache *cachep,
734 struct array_cache *ac, int node,
735 struct list_head *list)
736 {
737 struct kmem_cache_node *n = get_node(cachep, node);
738
739 if (ac->avail) {
740 spin_lock(&n->list_lock);
741 /*
742 * Stuff objects into the remote nodes shared array first.
743 * That way we could avoid the overhead of putting the objects
744 * into the free lists and getting them back later.
745 */
746 if (n->shared)
747 transfer_objects(n->shared, ac, ac->limit);
748
749 free_block(cachep, ac->entry, ac->avail, node, list);
750 ac->avail = 0;
751 spin_unlock(&n->list_lock);
752 }
753 }
754
755 /*
756 * Called from cache_reap() to regularly drain alien caches round robin.
757 */
758 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
759 {
760 int node = __this_cpu_read(slab_reap_node);
761
762 if (n->alien) {
763 struct alien_cache *alc = n->alien[node];
764 struct array_cache *ac;
765
766 if (alc) {
767 ac = &alc->ac;
768 if (ac->avail && spin_trylock_irq(&alc->lock)) {
769 LIST_HEAD(list);
770
771 __drain_alien_cache(cachep, ac, node, &list);
772 spin_unlock_irq(&alc->lock);
773 slabs_destroy(cachep, &list);
774 }
775 }
776 }
777 }
778
779 static void drain_alien_cache(struct kmem_cache *cachep,
780 struct alien_cache **alien)
781 {
782 int i = 0;
783 struct alien_cache *alc;
784 struct array_cache *ac;
785 unsigned long flags;
786
787 for_each_online_node(i) {
788 alc = alien[i];
789 if (alc) {
790 LIST_HEAD(list);
791
792 ac = &alc->ac;
793 spin_lock_irqsave(&alc->lock, flags);
794 __drain_alien_cache(cachep, ac, i, &list);
795 spin_unlock_irqrestore(&alc->lock, flags);
796 slabs_destroy(cachep, &list);
797 }
798 }
799 }
800
801 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
802 int node, int page_node)
803 {
804 struct kmem_cache_node *n;
805 struct alien_cache *alien = NULL;
806 struct array_cache *ac;
807 LIST_HEAD(list);
808
809 n = get_node(cachep, node);
810 STATS_INC_NODEFREES(cachep);
811 if (n->alien && n->alien[page_node]) {
812 alien = n->alien[page_node];
813 ac = &alien->ac;
814 spin_lock(&alien->lock);
815 if (unlikely(ac->avail == ac->limit)) {
816 STATS_INC_ACOVERFLOW(cachep);
817 __drain_alien_cache(cachep, ac, page_node, &list);
818 }
819 ac->entry[ac->avail++] = objp;
820 spin_unlock(&alien->lock);
821 slabs_destroy(cachep, &list);
822 } else {
823 n = get_node(cachep, page_node);
824 spin_lock(&n->list_lock);
825 free_block(cachep, &objp, 1, page_node, &list);
826 spin_unlock(&n->list_lock);
827 slabs_destroy(cachep, &list);
828 }
829 return 1;
830 }
831
832 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
833 {
834 int page_node = page_to_nid(virt_to_page(objp));
835 int node = numa_mem_id();
836 /*
837 * Make sure we are not freeing a object from another node to the array
838 * cache on this cpu.
839 */
840 if (likely(node == page_node))
841 return 0;
842
843 return __cache_free_alien(cachep, objp, node, page_node);
844 }
845
846 /*
847 * Construct gfp mask to allocate from a specific node but do not reclaim or
848 * warn about failures.
849 */
850 static inline gfp_t gfp_exact_node(gfp_t flags)
851 {
852 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
853 }
854 #endif
855
856 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
857 {
858 struct kmem_cache_node *n;
859
860 /*
861 * Set up the kmem_cache_node for cpu before we can
862 * begin anything. Make sure some other cpu on this
863 * node has not already allocated this
864 */
865 n = get_node(cachep, node);
866 if (n) {
867 spin_lock_irq(&n->list_lock);
868 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
869 cachep->num;
870 spin_unlock_irq(&n->list_lock);
871
872 return 0;
873 }
874
875 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
876 if (!n)
877 return -ENOMEM;
878
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882
883 n->free_limit =
884 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
885
886 /*
887 * The kmem_cache_nodes don't come and go as CPUs
888 * come and go. slab_mutex is sufficient
889 * protection here.
890 */
891 cachep->node[node] = n;
892
893 return 0;
894 }
895
896 /*
897 * Allocates and initializes node for a node on each slab cache, used for
898 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
899 * will be allocated off-node since memory is not yet online for the new node.
900 * When hotplugging memory or a cpu, existing node are not replaced if
901 * already in use.
902 *
903 * Must hold slab_mutex.
904 */
905 static int init_cache_node_node(int node)
906 {
907 int ret;
908 struct kmem_cache *cachep;
909
910 list_for_each_entry(cachep, &slab_caches, list) {
911 ret = init_cache_node(cachep, node, GFP_KERNEL);
912 if (ret)
913 return ret;
914 }
915
916 return 0;
917 }
918
919 static int setup_kmem_cache_node(struct kmem_cache *cachep,
920 int node, gfp_t gfp, bool force_change)
921 {
922 int ret = -ENOMEM;
923 struct kmem_cache_node *n;
924 struct array_cache *old_shared = NULL;
925 struct array_cache *new_shared = NULL;
926 struct alien_cache **new_alien = NULL;
927 LIST_HEAD(list);
928
929 if (use_alien_caches) {
930 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
931 if (!new_alien)
932 goto fail;
933 }
934
935 if (cachep->shared) {
936 new_shared = alloc_arraycache(node,
937 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
938 if (!new_shared)
939 goto fail;
940 }
941
942 ret = init_cache_node(cachep, node, gfp);
943 if (ret)
944 goto fail;
945
946 n = get_node(cachep, node);
947 spin_lock_irq(&n->list_lock);
948 if (n->shared && force_change) {
949 free_block(cachep, n->shared->entry,
950 n->shared->avail, node, &list);
951 n->shared->avail = 0;
952 }
953
954 if (!n->shared || force_change) {
955 old_shared = n->shared;
956 n->shared = new_shared;
957 new_shared = NULL;
958 }
959
960 if (!n->alien) {
961 n->alien = new_alien;
962 new_alien = NULL;
963 }
964
965 spin_unlock_irq(&n->list_lock);
966 slabs_destroy(cachep, &list);
967
968 /*
969 * To protect lockless access to n->shared during irq disabled context.
970 * If n->shared isn't NULL in irq disabled context, accessing to it is
971 * guaranteed to be valid until irq is re-enabled, because it will be
972 * freed after synchronize_sched().
973 */
974 if (force_change)
975 synchronize_sched();
976
977 fail:
978 kfree(old_shared);
979 kfree(new_shared);
980 free_alien_cache(new_alien);
981
982 return ret;
983 }
984
985 static void cpuup_canceled(long cpu)
986 {
987 struct kmem_cache *cachep;
988 struct kmem_cache_node *n = NULL;
989 int node = cpu_to_mem(cpu);
990 const struct cpumask *mask = cpumask_of_node(node);
991
992 list_for_each_entry(cachep, &slab_caches, list) {
993 struct array_cache *nc;
994 struct array_cache *shared;
995 struct alien_cache **alien;
996 LIST_HEAD(list);
997
998 n = get_node(cachep, node);
999 if (!n)
1000 continue;
1001
1002 spin_lock_irq(&n->list_lock);
1003
1004 /* Free limit for this kmem_cache_node */
1005 n->free_limit -= cachep->batchcount;
1006
1007 /* cpu is dead; no one can alloc from it. */
1008 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1009 if (nc) {
1010 free_block(cachep, nc->entry, nc->avail, node, &list);
1011 nc->avail = 0;
1012 }
1013
1014 if (!cpumask_empty(mask)) {
1015 spin_unlock_irq(&n->list_lock);
1016 goto free_slab;
1017 }
1018
1019 shared = n->shared;
1020 if (shared) {
1021 free_block(cachep, shared->entry,
1022 shared->avail, node, &list);
1023 n->shared = NULL;
1024 }
1025
1026 alien = n->alien;
1027 n->alien = NULL;
1028
1029 spin_unlock_irq(&n->list_lock);
1030
1031 kfree(shared);
1032 if (alien) {
1033 drain_alien_cache(cachep, alien);
1034 free_alien_cache(alien);
1035 }
1036
1037 free_slab:
1038 slabs_destroy(cachep, &list);
1039 }
1040 /*
1041 * In the previous loop, all the objects were freed to
1042 * the respective cache's slabs, now we can go ahead and
1043 * shrink each nodelist to its limit.
1044 */
1045 list_for_each_entry(cachep, &slab_caches, list) {
1046 n = get_node(cachep, node);
1047 if (!n)
1048 continue;
1049 drain_freelist(cachep, n, INT_MAX);
1050 }
1051 }
1052
1053 static int cpuup_prepare(long cpu)
1054 {
1055 struct kmem_cache *cachep;
1056 int node = cpu_to_mem(cpu);
1057 int err;
1058
1059 /*
1060 * We need to do this right in the beginning since
1061 * alloc_arraycache's are going to use this list.
1062 * kmalloc_node allows us to add the slab to the right
1063 * kmem_cache_node and not this cpu's kmem_cache_node
1064 */
1065 err = init_cache_node_node(node);
1066 if (err < 0)
1067 goto bad;
1068
1069 /*
1070 * Now we can go ahead with allocating the shared arrays and
1071 * array caches
1072 */
1073 list_for_each_entry(cachep, &slab_caches, list) {
1074 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1075 if (err)
1076 goto bad;
1077 }
1078
1079 return 0;
1080 bad:
1081 cpuup_canceled(cpu);
1082 return -ENOMEM;
1083 }
1084
1085 static int cpuup_callback(struct notifier_block *nfb,
1086 unsigned long action, void *hcpu)
1087 {
1088 long cpu = (long)hcpu;
1089 int err = 0;
1090
1091 switch (action) {
1092 case CPU_UP_PREPARE:
1093 case CPU_UP_PREPARE_FROZEN:
1094 mutex_lock(&slab_mutex);
1095 err = cpuup_prepare(cpu);
1096 mutex_unlock(&slab_mutex);
1097 break;
1098 case CPU_ONLINE:
1099 case CPU_ONLINE_FROZEN:
1100 start_cpu_timer(cpu);
1101 break;
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 /*
1106 * Shutdown cache reaper. Note that the slab_mutex is
1107 * held so that if cache_reap() is invoked it cannot do
1108 * anything expensive but will only modify reap_work
1109 * and reschedule the timer.
1110 */
1111 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1112 /* Now the cache_reaper is guaranteed to be not running. */
1113 per_cpu(slab_reap_work, cpu).work.func = NULL;
1114 break;
1115 case CPU_DOWN_FAILED:
1116 case CPU_DOWN_FAILED_FROZEN:
1117 start_cpu_timer(cpu);
1118 break;
1119 case CPU_DEAD:
1120 case CPU_DEAD_FROZEN:
1121 /*
1122 * Even if all the cpus of a node are down, we don't free the
1123 * kmem_cache_node of any cache. This to avoid a race between
1124 * cpu_down, and a kmalloc allocation from another cpu for
1125 * memory from the node of the cpu going down. The node
1126 * structure is usually allocated from kmem_cache_create() and
1127 * gets destroyed at kmem_cache_destroy().
1128 */
1129 /* fall through */
1130 #endif
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 mutex_lock(&slab_mutex);
1134 cpuup_canceled(cpu);
1135 mutex_unlock(&slab_mutex);
1136 break;
1137 }
1138 return notifier_from_errno(err);
1139 }
1140
1141 static struct notifier_block cpucache_notifier = {
1142 &cpuup_callback, NULL, 0
1143 };
1144
1145 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1146 /*
1147 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1148 * Returns -EBUSY if all objects cannot be drained so that the node is not
1149 * removed.
1150 *
1151 * Must hold slab_mutex.
1152 */
1153 static int __meminit drain_cache_node_node(int node)
1154 {
1155 struct kmem_cache *cachep;
1156 int ret = 0;
1157
1158 list_for_each_entry(cachep, &slab_caches, list) {
1159 struct kmem_cache_node *n;
1160
1161 n = get_node(cachep, node);
1162 if (!n)
1163 continue;
1164
1165 drain_freelist(cachep, n, INT_MAX);
1166
1167 if (!list_empty(&n->slabs_full) ||
1168 !list_empty(&n->slabs_partial)) {
1169 ret = -EBUSY;
1170 break;
1171 }
1172 }
1173 return ret;
1174 }
1175
1176 static int __meminit slab_memory_callback(struct notifier_block *self,
1177 unsigned long action, void *arg)
1178 {
1179 struct memory_notify *mnb = arg;
1180 int ret = 0;
1181 int nid;
1182
1183 nid = mnb->status_change_nid;
1184 if (nid < 0)
1185 goto out;
1186
1187 switch (action) {
1188 case MEM_GOING_ONLINE:
1189 mutex_lock(&slab_mutex);
1190 ret = init_cache_node_node(nid);
1191 mutex_unlock(&slab_mutex);
1192 break;
1193 case MEM_GOING_OFFLINE:
1194 mutex_lock(&slab_mutex);
1195 ret = drain_cache_node_node(nid);
1196 mutex_unlock(&slab_mutex);
1197 break;
1198 case MEM_ONLINE:
1199 case MEM_OFFLINE:
1200 case MEM_CANCEL_ONLINE:
1201 case MEM_CANCEL_OFFLINE:
1202 break;
1203 }
1204 out:
1205 return notifier_from_errno(ret);
1206 }
1207 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1208
1209 /*
1210 * swap the static kmem_cache_node with kmalloced memory
1211 */
1212 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1213 int nodeid)
1214 {
1215 struct kmem_cache_node *ptr;
1216
1217 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1218 BUG_ON(!ptr);
1219
1220 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1221 /*
1222 * Do not assume that spinlocks can be initialized via memcpy:
1223 */
1224 spin_lock_init(&ptr->list_lock);
1225
1226 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1227 cachep->node[nodeid] = ptr;
1228 }
1229
1230 /*
1231 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1232 * size of kmem_cache_node.
1233 */
1234 static void __init set_up_node(struct kmem_cache *cachep, int index)
1235 {
1236 int node;
1237
1238 for_each_online_node(node) {
1239 cachep->node[node] = &init_kmem_cache_node[index + node];
1240 cachep->node[node]->next_reap = jiffies +
1241 REAPTIMEOUT_NODE +
1242 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1243 }
1244 }
1245
1246 /*
1247 * Initialisation. Called after the page allocator have been initialised and
1248 * before smp_init().
1249 */
1250 void __init kmem_cache_init(void)
1251 {
1252 int i;
1253
1254 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1255 sizeof(struct rcu_head));
1256 kmem_cache = &kmem_cache_boot;
1257
1258 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1259 use_alien_caches = 0;
1260
1261 for (i = 0; i < NUM_INIT_LISTS; i++)
1262 kmem_cache_node_init(&init_kmem_cache_node[i]);
1263
1264 /*
1265 * Fragmentation resistance on low memory - only use bigger
1266 * page orders on machines with more than 32MB of memory if
1267 * not overridden on the command line.
1268 */
1269 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1270 slab_max_order = SLAB_MAX_ORDER_HI;
1271
1272 /* Bootstrap is tricky, because several objects are allocated
1273 * from caches that do not exist yet:
1274 * 1) initialize the kmem_cache cache: it contains the struct
1275 * kmem_cache structures of all caches, except kmem_cache itself:
1276 * kmem_cache is statically allocated.
1277 * Initially an __init data area is used for the head array and the
1278 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1279 * array at the end of the bootstrap.
1280 * 2) Create the first kmalloc cache.
1281 * The struct kmem_cache for the new cache is allocated normally.
1282 * An __init data area is used for the head array.
1283 * 3) Create the remaining kmalloc caches, with minimally sized
1284 * head arrays.
1285 * 4) Replace the __init data head arrays for kmem_cache and the first
1286 * kmalloc cache with kmalloc allocated arrays.
1287 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1288 * the other cache's with kmalloc allocated memory.
1289 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1290 */
1291
1292 /* 1) create the kmem_cache */
1293
1294 /*
1295 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1296 */
1297 create_boot_cache(kmem_cache, "kmem_cache",
1298 offsetof(struct kmem_cache, node) +
1299 nr_node_ids * sizeof(struct kmem_cache_node *),
1300 SLAB_HWCACHE_ALIGN);
1301 list_add(&kmem_cache->list, &slab_caches);
1302 slab_state = PARTIAL;
1303
1304 /*
1305 * Initialize the caches that provide memory for the kmem_cache_node
1306 * structures first. Without this, further allocations will bug.
1307 */
1308 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1309 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1310 slab_state = PARTIAL_NODE;
1311 setup_kmalloc_cache_index_table();
1312
1313 slab_early_init = 0;
1314
1315 /* 5) Replace the bootstrap kmem_cache_node */
1316 {
1317 int nid;
1318
1319 for_each_online_node(nid) {
1320 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1321
1322 init_list(kmalloc_caches[INDEX_NODE],
1323 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1324 }
1325 }
1326
1327 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1328 }
1329
1330 void __init kmem_cache_init_late(void)
1331 {
1332 struct kmem_cache *cachep;
1333
1334 slab_state = UP;
1335
1336 /* 6) resize the head arrays to their final sizes */
1337 mutex_lock(&slab_mutex);
1338 list_for_each_entry(cachep, &slab_caches, list)
1339 if (enable_cpucache(cachep, GFP_NOWAIT))
1340 BUG();
1341 mutex_unlock(&slab_mutex);
1342
1343 /* Done! */
1344 slab_state = FULL;
1345
1346 /*
1347 * Register a cpu startup notifier callback that initializes
1348 * cpu_cache_get for all new cpus
1349 */
1350 register_cpu_notifier(&cpucache_notifier);
1351
1352 #ifdef CONFIG_NUMA
1353 /*
1354 * Register a memory hotplug callback that initializes and frees
1355 * node.
1356 */
1357 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1358 #endif
1359
1360 /*
1361 * The reap timers are started later, with a module init call: That part
1362 * of the kernel is not yet operational.
1363 */
1364 }
1365
1366 static int __init cpucache_init(void)
1367 {
1368 int cpu;
1369
1370 /*
1371 * Register the timers that return unneeded pages to the page allocator
1372 */
1373 for_each_online_cpu(cpu)
1374 start_cpu_timer(cpu);
1375
1376 /* Done! */
1377 slab_state = FULL;
1378 return 0;
1379 }
1380 __initcall(cpucache_init);
1381
1382 static noinline void
1383 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1384 {
1385 #if DEBUG
1386 struct kmem_cache_node *n;
1387 struct page *page;
1388 unsigned long flags;
1389 int node;
1390 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1391 DEFAULT_RATELIMIT_BURST);
1392
1393 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1394 return;
1395
1396 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1397 nodeid, gfpflags, &gfpflags);
1398 pr_warn(" cache: %s, object size: %d, order: %d\n",
1399 cachep->name, cachep->size, cachep->gfporder);
1400
1401 for_each_kmem_cache_node(cachep, node, n) {
1402 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1403 unsigned long active_slabs = 0, num_slabs = 0;
1404
1405 spin_lock_irqsave(&n->list_lock, flags);
1406 list_for_each_entry(page, &n->slabs_full, lru) {
1407 active_objs += cachep->num;
1408 active_slabs++;
1409 }
1410 list_for_each_entry(page, &n->slabs_partial, lru) {
1411 active_objs += page->active;
1412 active_slabs++;
1413 }
1414 list_for_each_entry(page, &n->slabs_free, lru)
1415 num_slabs++;
1416
1417 free_objects += n->free_objects;
1418 spin_unlock_irqrestore(&n->list_lock, flags);
1419
1420 num_slabs += active_slabs;
1421 num_objs = num_slabs * cachep->num;
1422 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1423 node, active_slabs, num_slabs, active_objs, num_objs,
1424 free_objects);
1425 }
1426 #endif
1427 }
1428
1429 /*
1430 * Interface to system's page allocator. No need to hold the
1431 * kmem_cache_node ->list_lock.
1432 *
1433 * If we requested dmaable memory, we will get it. Even if we
1434 * did not request dmaable memory, we might get it, but that
1435 * would be relatively rare and ignorable.
1436 */
1437 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1438 int nodeid)
1439 {
1440 struct page *page;
1441 int nr_pages;
1442
1443 flags |= cachep->allocflags;
1444 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1445 flags |= __GFP_RECLAIMABLE;
1446
1447 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1448 if (!page) {
1449 slab_out_of_memory(cachep, flags, nodeid);
1450 return NULL;
1451 }
1452
1453 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1454 __free_pages(page, cachep->gfporder);
1455 return NULL;
1456 }
1457
1458 nr_pages = (1 << cachep->gfporder);
1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460 add_zone_page_state(page_zone(page),
1461 NR_SLAB_RECLAIMABLE, nr_pages);
1462 else
1463 add_zone_page_state(page_zone(page),
1464 NR_SLAB_UNRECLAIMABLE, nr_pages);
1465
1466 __SetPageSlab(page);
1467 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1468 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1469 SetPageSlabPfmemalloc(page);
1470
1471 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1472 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1473
1474 if (cachep->ctor)
1475 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1476 else
1477 kmemcheck_mark_unallocated_pages(page, nr_pages);
1478 }
1479
1480 return page;
1481 }
1482
1483 /*
1484 * Interface to system's page release.
1485 */
1486 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1487 {
1488 int order = cachep->gfporder;
1489 unsigned long nr_freed = (1 << order);
1490
1491 kmemcheck_free_shadow(page, order);
1492
1493 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1494 sub_zone_page_state(page_zone(page),
1495 NR_SLAB_RECLAIMABLE, nr_freed);
1496 else
1497 sub_zone_page_state(page_zone(page),
1498 NR_SLAB_UNRECLAIMABLE, nr_freed);
1499
1500 BUG_ON(!PageSlab(page));
1501 __ClearPageSlabPfmemalloc(page);
1502 __ClearPageSlab(page);
1503 page_mapcount_reset(page);
1504 page->mapping = NULL;
1505
1506 if (current->reclaim_state)
1507 current->reclaim_state->reclaimed_slab += nr_freed;
1508 memcg_uncharge_slab(page, order, cachep);
1509 __free_pages(page, order);
1510 }
1511
1512 static void kmem_rcu_free(struct rcu_head *head)
1513 {
1514 struct kmem_cache *cachep;
1515 struct page *page;
1516
1517 page = container_of(head, struct page, rcu_head);
1518 cachep = page->slab_cache;
1519
1520 kmem_freepages(cachep, page);
1521 }
1522
1523 #if DEBUG
1524 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1525 {
1526 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1527 (cachep->size % PAGE_SIZE) == 0)
1528 return true;
1529
1530 return false;
1531 }
1532
1533 #ifdef CONFIG_DEBUG_PAGEALLOC
1534 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1535 unsigned long caller)
1536 {
1537 int size = cachep->object_size;
1538
1539 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1540
1541 if (size < 5 * sizeof(unsigned long))
1542 return;
1543
1544 *addr++ = 0x12345678;
1545 *addr++ = caller;
1546 *addr++ = smp_processor_id();
1547 size -= 3 * sizeof(unsigned long);
1548 {
1549 unsigned long *sptr = &caller;
1550 unsigned long svalue;
1551
1552 while (!kstack_end(sptr)) {
1553 svalue = *sptr++;
1554 if (kernel_text_address(svalue)) {
1555 *addr++ = svalue;
1556 size -= sizeof(unsigned long);
1557 if (size <= sizeof(unsigned long))
1558 break;
1559 }
1560 }
1561
1562 }
1563 *addr++ = 0x87654321;
1564 }
1565
1566 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1567 int map, unsigned long caller)
1568 {
1569 if (!is_debug_pagealloc_cache(cachep))
1570 return;
1571
1572 if (caller)
1573 store_stackinfo(cachep, objp, caller);
1574
1575 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1576 }
1577
1578 #else
1579 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1580 int map, unsigned long caller) {}
1581
1582 #endif
1583
1584 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1585 {
1586 int size = cachep->object_size;
1587 addr = &((char *)addr)[obj_offset(cachep)];
1588
1589 memset(addr, val, size);
1590 *(unsigned char *)(addr + size - 1) = POISON_END;
1591 }
1592
1593 static void dump_line(char *data, int offset, int limit)
1594 {
1595 int i;
1596 unsigned char error = 0;
1597 int bad_count = 0;
1598
1599 pr_err("%03x: ", offset);
1600 for (i = 0; i < limit; i++) {
1601 if (data[offset + i] != POISON_FREE) {
1602 error = data[offset + i];
1603 bad_count++;
1604 }
1605 }
1606 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1607 &data[offset], limit, 1);
1608
1609 if (bad_count == 1) {
1610 error ^= POISON_FREE;
1611 if (!(error & (error - 1))) {
1612 pr_err("Single bit error detected. Probably bad RAM.\n");
1613 #ifdef CONFIG_X86
1614 pr_err("Run memtest86+ or a similar memory test tool.\n");
1615 #else
1616 pr_err("Run a memory test tool.\n");
1617 #endif
1618 }
1619 }
1620 }
1621 #endif
1622
1623 #if DEBUG
1624
1625 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1626 {
1627 int i, size;
1628 char *realobj;
1629
1630 if (cachep->flags & SLAB_RED_ZONE) {
1631 pr_err("Redzone: 0x%llx/0x%llx\n",
1632 *dbg_redzone1(cachep, objp),
1633 *dbg_redzone2(cachep, objp));
1634 }
1635
1636 if (cachep->flags & SLAB_STORE_USER) {
1637 pr_err("Last user: [<%p>](%pSR)\n",
1638 *dbg_userword(cachep, objp),
1639 *dbg_userword(cachep, objp));
1640 }
1641 realobj = (char *)objp + obj_offset(cachep);
1642 size = cachep->object_size;
1643 for (i = 0; i < size && lines; i += 16, lines--) {
1644 int limit;
1645 limit = 16;
1646 if (i + limit > size)
1647 limit = size - i;
1648 dump_line(realobj, i, limit);
1649 }
1650 }
1651
1652 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1653 {
1654 char *realobj;
1655 int size, i;
1656 int lines = 0;
1657
1658 if (is_debug_pagealloc_cache(cachep))
1659 return;
1660
1661 realobj = (char *)objp + obj_offset(cachep);
1662 size = cachep->object_size;
1663
1664 for (i = 0; i < size; i++) {
1665 char exp = POISON_FREE;
1666 if (i == size - 1)
1667 exp = POISON_END;
1668 if (realobj[i] != exp) {
1669 int limit;
1670 /* Mismatch ! */
1671 /* Print header */
1672 if (lines == 0) {
1673 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1674 print_tainted(), cachep->name,
1675 realobj, size);
1676 print_objinfo(cachep, objp, 0);
1677 }
1678 /* Hexdump the affected line */
1679 i = (i / 16) * 16;
1680 limit = 16;
1681 if (i + limit > size)
1682 limit = size - i;
1683 dump_line(realobj, i, limit);
1684 i += 16;
1685 lines++;
1686 /* Limit to 5 lines */
1687 if (lines > 5)
1688 break;
1689 }
1690 }
1691 if (lines != 0) {
1692 /* Print some data about the neighboring objects, if they
1693 * exist:
1694 */
1695 struct page *page = virt_to_head_page(objp);
1696 unsigned int objnr;
1697
1698 objnr = obj_to_index(cachep, page, objp);
1699 if (objnr) {
1700 objp = index_to_obj(cachep, page, objnr - 1);
1701 realobj = (char *)objp + obj_offset(cachep);
1702 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1703 print_objinfo(cachep, objp, 2);
1704 }
1705 if (objnr + 1 < cachep->num) {
1706 objp = index_to_obj(cachep, page, objnr + 1);
1707 realobj = (char *)objp + obj_offset(cachep);
1708 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1709 print_objinfo(cachep, objp, 2);
1710 }
1711 }
1712 }
1713 #endif
1714
1715 #if DEBUG
1716 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1717 struct page *page)
1718 {
1719 int i;
1720
1721 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1722 poison_obj(cachep, page->freelist - obj_offset(cachep),
1723 POISON_FREE);
1724 }
1725
1726 for (i = 0; i < cachep->num; i++) {
1727 void *objp = index_to_obj(cachep, page, i);
1728
1729 if (cachep->flags & SLAB_POISON) {
1730 check_poison_obj(cachep, objp);
1731 slab_kernel_map(cachep, objp, 1, 0);
1732 }
1733 if (cachep->flags & SLAB_RED_ZONE) {
1734 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1735 slab_error(cachep, "start of a freed object was overwritten");
1736 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1737 slab_error(cachep, "end of a freed object was overwritten");
1738 }
1739 }
1740 }
1741 #else
1742 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1743 struct page *page)
1744 {
1745 }
1746 #endif
1747
1748 /**
1749 * slab_destroy - destroy and release all objects in a slab
1750 * @cachep: cache pointer being destroyed
1751 * @page: page pointer being destroyed
1752 *
1753 * Destroy all the objs in a slab page, and release the mem back to the system.
1754 * Before calling the slab page must have been unlinked from the cache. The
1755 * kmem_cache_node ->list_lock is not held/needed.
1756 */
1757 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1758 {
1759 void *freelist;
1760
1761 freelist = page->freelist;
1762 slab_destroy_debugcheck(cachep, page);
1763 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1764 call_rcu(&page->rcu_head, kmem_rcu_free);
1765 else
1766 kmem_freepages(cachep, page);
1767
1768 /*
1769 * From now on, we don't use freelist
1770 * although actual page can be freed in rcu context
1771 */
1772 if (OFF_SLAB(cachep))
1773 kmem_cache_free(cachep->freelist_cache, freelist);
1774 }
1775
1776 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1777 {
1778 struct page *page, *n;
1779
1780 list_for_each_entry_safe(page, n, list, lru) {
1781 list_del(&page->lru);
1782 slab_destroy(cachep, page);
1783 }
1784 }
1785
1786 /**
1787 * calculate_slab_order - calculate size (page order) of slabs
1788 * @cachep: pointer to the cache that is being created
1789 * @size: size of objects to be created in this cache.
1790 * @flags: slab allocation flags
1791 *
1792 * Also calculates the number of objects per slab.
1793 *
1794 * This could be made much more intelligent. For now, try to avoid using
1795 * high order pages for slabs. When the gfp() functions are more friendly
1796 * towards high-order requests, this should be changed.
1797 */
1798 static size_t calculate_slab_order(struct kmem_cache *cachep,
1799 size_t size, unsigned long flags)
1800 {
1801 size_t left_over = 0;
1802 int gfporder;
1803
1804 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1805 unsigned int num;
1806 size_t remainder;
1807
1808 num = cache_estimate(gfporder, size, flags, &remainder);
1809 if (!num)
1810 continue;
1811
1812 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1813 if (num > SLAB_OBJ_MAX_NUM)
1814 break;
1815
1816 if (flags & CFLGS_OFF_SLAB) {
1817 struct kmem_cache *freelist_cache;
1818 size_t freelist_size;
1819
1820 freelist_size = num * sizeof(freelist_idx_t);
1821 freelist_cache = kmalloc_slab(freelist_size, 0u);
1822 if (!freelist_cache)
1823 continue;
1824
1825 /*
1826 * Needed to avoid possible looping condition
1827 * in cache_grow_begin()
1828 */
1829 if (OFF_SLAB(freelist_cache))
1830 continue;
1831
1832 /* check if off slab has enough benefit */
1833 if (freelist_cache->size > cachep->size / 2)
1834 continue;
1835 }
1836
1837 /* Found something acceptable - save it away */
1838 cachep->num = num;
1839 cachep->gfporder = gfporder;
1840 left_over = remainder;
1841
1842 /*
1843 * A VFS-reclaimable slab tends to have most allocations
1844 * as GFP_NOFS and we really don't want to have to be allocating
1845 * higher-order pages when we are unable to shrink dcache.
1846 */
1847 if (flags & SLAB_RECLAIM_ACCOUNT)
1848 break;
1849
1850 /*
1851 * Large number of objects is good, but very large slabs are
1852 * currently bad for the gfp()s.
1853 */
1854 if (gfporder >= slab_max_order)
1855 break;
1856
1857 /*
1858 * Acceptable internal fragmentation?
1859 */
1860 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1861 break;
1862 }
1863 return left_over;
1864 }
1865
1866 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1867 struct kmem_cache *cachep, int entries, int batchcount)
1868 {
1869 int cpu;
1870 size_t size;
1871 struct array_cache __percpu *cpu_cache;
1872
1873 size = sizeof(void *) * entries + sizeof(struct array_cache);
1874 cpu_cache = __alloc_percpu(size, sizeof(void *));
1875
1876 if (!cpu_cache)
1877 return NULL;
1878
1879 for_each_possible_cpu(cpu) {
1880 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1881 entries, batchcount);
1882 }
1883
1884 return cpu_cache;
1885 }
1886
1887 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1888 {
1889 if (slab_state >= FULL)
1890 return enable_cpucache(cachep, gfp);
1891
1892 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1893 if (!cachep->cpu_cache)
1894 return 1;
1895
1896 if (slab_state == DOWN) {
1897 /* Creation of first cache (kmem_cache). */
1898 set_up_node(kmem_cache, CACHE_CACHE);
1899 } else if (slab_state == PARTIAL) {
1900 /* For kmem_cache_node */
1901 set_up_node(cachep, SIZE_NODE);
1902 } else {
1903 int node;
1904
1905 for_each_online_node(node) {
1906 cachep->node[node] = kmalloc_node(
1907 sizeof(struct kmem_cache_node), gfp, node);
1908 BUG_ON(!cachep->node[node]);
1909 kmem_cache_node_init(cachep->node[node]);
1910 }
1911 }
1912
1913 cachep->node[numa_mem_id()]->next_reap =
1914 jiffies + REAPTIMEOUT_NODE +
1915 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1916
1917 cpu_cache_get(cachep)->avail = 0;
1918 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1919 cpu_cache_get(cachep)->batchcount = 1;
1920 cpu_cache_get(cachep)->touched = 0;
1921 cachep->batchcount = 1;
1922 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1923 return 0;
1924 }
1925
1926 unsigned long kmem_cache_flags(unsigned long object_size,
1927 unsigned long flags, const char *name,
1928 void (*ctor)(void *))
1929 {
1930 return flags;
1931 }
1932
1933 struct kmem_cache *
1934 __kmem_cache_alias(const char *name, size_t size, size_t align,
1935 unsigned long flags, void (*ctor)(void *))
1936 {
1937 struct kmem_cache *cachep;
1938
1939 cachep = find_mergeable(size, align, flags, name, ctor);
1940 if (cachep) {
1941 cachep->refcount++;
1942
1943 /*
1944 * Adjust the object sizes so that we clear
1945 * the complete object on kzalloc.
1946 */
1947 cachep->object_size = max_t(int, cachep->object_size, size);
1948 }
1949 return cachep;
1950 }
1951
1952 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1953 size_t size, unsigned long flags)
1954 {
1955 size_t left;
1956
1957 cachep->num = 0;
1958
1959 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1960 return false;
1961
1962 left = calculate_slab_order(cachep, size,
1963 flags | CFLGS_OBJFREELIST_SLAB);
1964 if (!cachep->num)
1965 return false;
1966
1967 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1968 return false;
1969
1970 cachep->colour = left / cachep->colour_off;
1971
1972 return true;
1973 }
1974
1975 static bool set_off_slab_cache(struct kmem_cache *cachep,
1976 size_t size, unsigned long flags)
1977 {
1978 size_t left;
1979
1980 cachep->num = 0;
1981
1982 /*
1983 * Always use on-slab management when SLAB_NOLEAKTRACE
1984 * to avoid recursive calls into kmemleak.
1985 */
1986 if (flags & SLAB_NOLEAKTRACE)
1987 return false;
1988
1989 /*
1990 * Size is large, assume best to place the slab management obj
1991 * off-slab (should allow better packing of objs).
1992 */
1993 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1994 if (!cachep->num)
1995 return false;
1996
1997 /*
1998 * If the slab has been placed off-slab, and we have enough space then
1999 * move it on-slab. This is at the expense of any extra colouring.
2000 */
2001 if (left >= cachep->num * sizeof(freelist_idx_t))
2002 return false;
2003
2004 cachep->colour = left / cachep->colour_off;
2005
2006 return true;
2007 }
2008
2009 static bool set_on_slab_cache(struct kmem_cache *cachep,
2010 size_t size, unsigned long flags)
2011 {
2012 size_t left;
2013
2014 cachep->num = 0;
2015
2016 left = calculate_slab_order(cachep, size, flags);
2017 if (!cachep->num)
2018 return false;
2019
2020 cachep->colour = left / cachep->colour_off;
2021
2022 return true;
2023 }
2024
2025 /**
2026 * __kmem_cache_create - Create a cache.
2027 * @cachep: cache management descriptor
2028 * @flags: SLAB flags
2029 *
2030 * Returns a ptr to the cache on success, NULL on failure.
2031 * Cannot be called within a int, but can be interrupted.
2032 * The @ctor is run when new pages are allocated by the cache.
2033 *
2034 * The flags are
2035 *
2036 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2037 * to catch references to uninitialised memory.
2038 *
2039 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2040 * for buffer overruns.
2041 *
2042 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2043 * cacheline. This can be beneficial if you're counting cycles as closely
2044 * as davem.
2045 */
2046 int
2047 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2048 {
2049 size_t ralign = BYTES_PER_WORD;
2050 gfp_t gfp;
2051 int err;
2052 size_t size = cachep->size;
2053
2054 #if DEBUG
2055 #if FORCED_DEBUG
2056 /*
2057 * Enable redzoning and last user accounting, except for caches with
2058 * large objects, if the increased size would increase the object size
2059 * above the next power of two: caches with object sizes just above a
2060 * power of two have a significant amount of internal fragmentation.
2061 */
2062 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2063 2 * sizeof(unsigned long long)))
2064 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2065 if (!(flags & SLAB_DESTROY_BY_RCU))
2066 flags |= SLAB_POISON;
2067 #endif
2068 #endif
2069
2070 /*
2071 * Check that size is in terms of words. This is needed to avoid
2072 * unaligned accesses for some archs when redzoning is used, and makes
2073 * sure any on-slab bufctl's are also correctly aligned.
2074 */
2075 if (size & (BYTES_PER_WORD - 1)) {
2076 size += (BYTES_PER_WORD - 1);
2077 size &= ~(BYTES_PER_WORD - 1);
2078 }
2079
2080 if (flags & SLAB_RED_ZONE) {
2081 ralign = REDZONE_ALIGN;
2082 /* If redzoning, ensure that the second redzone is suitably
2083 * aligned, by adjusting the object size accordingly. */
2084 size += REDZONE_ALIGN - 1;
2085 size &= ~(REDZONE_ALIGN - 1);
2086 }
2087
2088 /* 3) caller mandated alignment */
2089 if (ralign < cachep->align) {
2090 ralign = cachep->align;
2091 }
2092 /* disable debug if necessary */
2093 if (ralign > __alignof__(unsigned long long))
2094 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2095 /*
2096 * 4) Store it.
2097 */
2098 cachep->align = ralign;
2099 cachep->colour_off = cache_line_size();
2100 /* Offset must be a multiple of the alignment. */
2101 if (cachep->colour_off < cachep->align)
2102 cachep->colour_off = cachep->align;
2103
2104 if (slab_is_available())
2105 gfp = GFP_KERNEL;
2106 else
2107 gfp = GFP_NOWAIT;
2108
2109 #if DEBUG
2110
2111 /*
2112 * Both debugging options require word-alignment which is calculated
2113 * into align above.
2114 */
2115 if (flags & SLAB_RED_ZONE) {
2116 /* add space for red zone words */
2117 cachep->obj_offset += sizeof(unsigned long long);
2118 size += 2 * sizeof(unsigned long long);
2119 }
2120 if (flags & SLAB_STORE_USER) {
2121 /* user store requires one word storage behind the end of
2122 * the real object. But if the second red zone needs to be
2123 * aligned to 64 bits, we must allow that much space.
2124 */
2125 if (flags & SLAB_RED_ZONE)
2126 size += REDZONE_ALIGN;
2127 else
2128 size += BYTES_PER_WORD;
2129 }
2130 #endif
2131
2132 kasan_cache_create(cachep, &size, &flags);
2133
2134 size = ALIGN(size, cachep->align);
2135 /*
2136 * We should restrict the number of objects in a slab to implement
2137 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2138 */
2139 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2140 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2141
2142 #if DEBUG
2143 /*
2144 * To activate debug pagealloc, off-slab management is necessary
2145 * requirement. In early phase of initialization, small sized slab
2146 * doesn't get initialized so it would not be possible. So, we need
2147 * to check size >= 256. It guarantees that all necessary small
2148 * sized slab is initialized in current slab initialization sequence.
2149 */
2150 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2151 size >= 256 && cachep->object_size > cache_line_size()) {
2152 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2153 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2154
2155 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2156 flags |= CFLGS_OFF_SLAB;
2157 cachep->obj_offset += tmp_size - size;
2158 size = tmp_size;
2159 goto done;
2160 }
2161 }
2162 }
2163 #endif
2164
2165 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2166 flags |= CFLGS_OBJFREELIST_SLAB;
2167 goto done;
2168 }
2169
2170 if (set_off_slab_cache(cachep, size, flags)) {
2171 flags |= CFLGS_OFF_SLAB;
2172 goto done;
2173 }
2174
2175 if (set_on_slab_cache(cachep, size, flags))
2176 goto done;
2177
2178 return -E2BIG;
2179
2180 done:
2181 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2182 cachep->flags = flags;
2183 cachep->allocflags = __GFP_COMP;
2184 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2185 cachep->allocflags |= GFP_DMA;
2186 cachep->size = size;
2187 cachep->reciprocal_buffer_size = reciprocal_value(size);
2188
2189 #if DEBUG
2190 /*
2191 * If we're going to use the generic kernel_map_pages()
2192 * poisoning, then it's going to smash the contents of
2193 * the redzone and userword anyhow, so switch them off.
2194 */
2195 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2196 (cachep->flags & SLAB_POISON) &&
2197 is_debug_pagealloc_cache(cachep))
2198 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2199 #endif
2200
2201 if (OFF_SLAB(cachep)) {
2202 cachep->freelist_cache =
2203 kmalloc_slab(cachep->freelist_size, 0u);
2204 }
2205
2206 err = setup_cpu_cache(cachep, gfp);
2207 if (err) {
2208 __kmem_cache_release(cachep);
2209 return err;
2210 }
2211
2212 return 0;
2213 }
2214
2215 #if DEBUG
2216 static void check_irq_off(void)
2217 {
2218 BUG_ON(!irqs_disabled());
2219 }
2220
2221 static void check_irq_on(void)
2222 {
2223 BUG_ON(irqs_disabled());
2224 }
2225
2226 static void check_mutex_acquired(void)
2227 {
2228 BUG_ON(!mutex_is_locked(&slab_mutex));
2229 }
2230
2231 static void check_spinlock_acquired(struct kmem_cache *cachep)
2232 {
2233 #ifdef CONFIG_SMP
2234 check_irq_off();
2235 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2236 #endif
2237 }
2238
2239 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2240 {
2241 #ifdef CONFIG_SMP
2242 check_irq_off();
2243 assert_spin_locked(&get_node(cachep, node)->list_lock);
2244 #endif
2245 }
2246
2247 #else
2248 #define check_irq_off() do { } while(0)
2249 #define check_irq_on() do { } while(0)
2250 #define check_mutex_acquired() do { } while(0)
2251 #define check_spinlock_acquired(x) do { } while(0)
2252 #define check_spinlock_acquired_node(x, y) do { } while(0)
2253 #endif
2254
2255 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2256 int node, bool free_all, struct list_head *list)
2257 {
2258 int tofree;
2259
2260 if (!ac || !ac->avail)
2261 return;
2262
2263 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2264 if (tofree > ac->avail)
2265 tofree = (ac->avail + 1) / 2;
2266
2267 free_block(cachep, ac->entry, tofree, node, list);
2268 ac->avail -= tofree;
2269 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2270 }
2271
2272 static void do_drain(void *arg)
2273 {
2274 struct kmem_cache *cachep = arg;
2275 struct array_cache *ac;
2276 int node = numa_mem_id();
2277 struct kmem_cache_node *n;
2278 LIST_HEAD(list);
2279
2280 check_irq_off();
2281 ac = cpu_cache_get(cachep);
2282 n = get_node(cachep, node);
2283 spin_lock(&n->list_lock);
2284 free_block(cachep, ac->entry, ac->avail, node, &list);
2285 spin_unlock(&n->list_lock);
2286 slabs_destroy(cachep, &list);
2287 ac->avail = 0;
2288 }
2289
2290 static void drain_cpu_caches(struct kmem_cache *cachep)
2291 {
2292 struct kmem_cache_node *n;
2293 int node;
2294 LIST_HEAD(list);
2295
2296 on_each_cpu(do_drain, cachep, 1);
2297 check_irq_on();
2298 for_each_kmem_cache_node(cachep, node, n)
2299 if (n->alien)
2300 drain_alien_cache(cachep, n->alien);
2301
2302 for_each_kmem_cache_node(cachep, node, n) {
2303 spin_lock_irq(&n->list_lock);
2304 drain_array_locked(cachep, n->shared, node, true, &list);
2305 spin_unlock_irq(&n->list_lock);
2306
2307 slabs_destroy(cachep, &list);
2308 }
2309 }
2310
2311 /*
2312 * Remove slabs from the list of free slabs.
2313 * Specify the number of slabs to drain in tofree.
2314 *
2315 * Returns the actual number of slabs released.
2316 */
2317 static int drain_freelist(struct kmem_cache *cache,
2318 struct kmem_cache_node *n, int tofree)
2319 {
2320 struct list_head *p;
2321 int nr_freed;
2322 struct page *page;
2323
2324 nr_freed = 0;
2325 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2326
2327 spin_lock_irq(&n->list_lock);
2328 p = n->slabs_free.prev;
2329 if (p == &n->slabs_free) {
2330 spin_unlock_irq(&n->list_lock);
2331 goto out;
2332 }
2333
2334 page = list_entry(p, struct page, lru);
2335 list_del(&page->lru);
2336 /*
2337 * Safe to drop the lock. The slab is no longer linked
2338 * to the cache.
2339 */
2340 n->free_objects -= cache->num;
2341 spin_unlock_irq(&n->list_lock);
2342 slab_destroy(cache, page);
2343 nr_freed++;
2344 }
2345 out:
2346 return nr_freed;
2347 }
2348
2349 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2350 {
2351 int ret = 0;
2352 int node;
2353 struct kmem_cache_node *n;
2354
2355 drain_cpu_caches(cachep);
2356
2357 check_irq_on();
2358 for_each_kmem_cache_node(cachep, node, n) {
2359 drain_freelist(cachep, n, INT_MAX);
2360
2361 ret += !list_empty(&n->slabs_full) ||
2362 !list_empty(&n->slabs_partial);
2363 }
2364 return (ret ? 1 : 0);
2365 }
2366
2367 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2368 {
2369 return __kmem_cache_shrink(cachep, false);
2370 }
2371
2372 void __kmem_cache_release(struct kmem_cache *cachep)
2373 {
2374 int i;
2375 struct kmem_cache_node *n;
2376
2377 free_percpu(cachep->cpu_cache);
2378
2379 /* NUMA: free the node structures */
2380 for_each_kmem_cache_node(cachep, i, n) {
2381 kfree(n->shared);
2382 free_alien_cache(n->alien);
2383 kfree(n);
2384 cachep->node[i] = NULL;
2385 }
2386 }
2387
2388 /*
2389 * Get the memory for a slab management obj.
2390 *
2391 * For a slab cache when the slab descriptor is off-slab, the
2392 * slab descriptor can't come from the same cache which is being created,
2393 * Because if it is the case, that means we defer the creation of
2394 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2395 * And we eventually call down to __kmem_cache_create(), which
2396 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2397 * This is a "chicken-and-egg" problem.
2398 *
2399 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2400 * which are all initialized during kmem_cache_init().
2401 */
2402 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2403 struct page *page, int colour_off,
2404 gfp_t local_flags, int nodeid)
2405 {
2406 void *freelist;
2407 void *addr = page_address(page);
2408
2409 page->s_mem = addr + colour_off;
2410 page->active = 0;
2411
2412 if (OBJFREELIST_SLAB(cachep))
2413 freelist = NULL;
2414 else if (OFF_SLAB(cachep)) {
2415 /* Slab management obj is off-slab. */
2416 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2417 local_flags, nodeid);
2418 if (!freelist)
2419 return NULL;
2420 } else {
2421 /* We will use last bytes at the slab for freelist */
2422 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2423 cachep->freelist_size;
2424 }
2425
2426 return freelist;
2427 }
2428
2429 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2430 {
2431 return ((freelist_idx_t *)page->freelist)[idx];
2432 }
2433
2434 static inline void set_free_obj(struct page *page,
2435 unsigned int idx, freelist_idx_t val)
2436 {
2437 ((freelist_idx_t *)(page->freelist))[idx] = val;
2438 }
2439
2440 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2441 {
2442 #if DEBUG
2443 int i;
2444
2445 for (i = 0; i < cachep->num; i++) {
2446 void *objp = index_to_obj(cachep, page, i);
2447
2448 if (cachep->flags & SLAB_STORE_USER)
2449 *dbg_userword(cachep, objp) = NULL;
2450
2451 if (cachep->flags & SLAB_RED_ZONE) {
2452 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2453 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2454 }
2455 /*
2456 * Constructors are not allowed to allocate memory from the same
2457 * cache which they are a constructor for. Otherwise, deadlock.
2458 * They must also be threaded.
2459 */
2460 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2461 kasan_unpoison_object_data(cachep,
2462 objp + obj_offset(cachep));
2463 cachep->ctor(objp + obj_offset(cachep));
2464 kasan_poison_object_data(
2465 cachep, objp + obj_offset(cachep));
2466 }
2467
2468 if (cachep->flags & SLAB_RED_ZONE) {
2469 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2470 slab_error(cachep, "constructor overwrote the end of an object");
2471 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2472 slab_error(cachep, "constructor overwrote the start of an object");
2473 }
2474 /* need to poison the objs? */
2475 if (cachep->flags & SLAB_POISON) {
2476 poison_obj(cachep, objp, POISON_FREE);
2477 slab_kernel_map(cachep, objp, 0, 0);
2478 }
2479 }
2480 #endif
2481 }
2482
2483 static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2485 {
2486 int i;
2487 void *objp;
2488
2489 cache_init_objs_debug(cachep, page);
2490
2491 if (OBJFREELIST_SLAB(cachep)) {
2492 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2493 obj_offset(cachep);
2494 }
2495
2496 for (i = 0; i < cachep->num; i++) {
2497 /* constructor could break poison info */
2498 if (DEBUG == 0 && cachep->ctor) {
2499 objp = index_to_obj(cachep, page, i);
2500 kasan_unpoison_object_data(cachep, objp);
2501 cachep->ctor(objp);
2502 kasan_poison_object_data(cachep, objp);
2503 }
2504
2505 set_free_obj(page, i, i);
2506 }
2507 }
2508
2509 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2510 {
2511 if (CONFIG_ZONE_DMA_FLAG) {
2512 if (flags & GFP_DMA)
2513 BUG_ON(!(cachep->allocflags & GFP_DMA));
2514 else
2515 BUG_ON(cachep->allocflags & GFP_DMA);
2516 }
2517 }
2518
2519 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2520 {
2521 void *objp;
2522
2523 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2524 page->active++;
2525
2526 #if DEBUG
2527 if (cachep->flags & SLAB_STORE_USER)
2528 set_store_user_dirty(cachep);
2529 #endif
2530
2531 return objp;
2532 }
2533
2534 static void slab_put_obj(struct kmem_cache *cachep,
2535 struct page *page, void *objp)
2536 {
2537 unsigned int objnr = obj_to_index(cachep, page, objp);
2538 #if DEBUG
2539 unsigned int i;
2540
2541 /* Verify double free bug */
2542 for (i = page->active; i < cachep->num; i++) {
2543 if (get_free_obj(page, i) == objnr) {
2544 pr_err("slab: double free detected in cache '%s', objp %p\n",
2545 cachep->name, objp);
2546 BUG();
2547 }
2548 }
2549 #endif
2550 page->active--;
2551 if (!page->freelist)
2552 page->freelist = objp + obj_offset(cachep);
2553
2554 set_free_obj(page, page->active, objnr);
2555 }
2556
2557 /*
2558 * Map pages beginning at addr to the given cache and slab. This is required
2559 * for the slab allocator to be able to lookup the cache and slab of a
2560 * virtual address for kfree, ksize, and slab debugging.
2561 */
2562 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2563 void *freelist)
2564 {
2565 page->slab_cache = cache;
2566 page->freelist = freelist;
2567 }
2568
2569 /*
2570 * Grow (by 1) the number of slabs within a cache. This is called by
2571 * kmem_cache_alloc() when there are no active objs left in a cache.
2572 */
2573 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2574 gfp_t flags, int nodeid)
2575 {
2576 void *freelist;
2577 size_t offset;
2578 gfp_t local_flags;
2579 int page_node;
2580 struct kmem_cache_node *n;
2581 struct page *page;
2582
2583 /*
2584 * Be lazy and only check for valid flags here, keeping it out of the
2585 * critical path in kmem_cache_alloc().
2586 */
2587 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2588 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2589 BUG();
2590 }
2591 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2592
2593 check_irq_off();
2594 if (gfpflags_allow_blocking(local_flags))
2595 local_irq_enable();
2596
2597 /*
2598 * The test for missing atomic flag is performed here, rather than
2599 * the more obvious place, simply to reduce the critical path length
2600 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2601 * will eventually be caught here (where it matters).
2602 */
2603 kmem_flagcheck(cachep, flags);
2604
2605 /*
2606 * Get mem for the objs. Attempt to allocate a physical page from
2607 * 'nodeid'.
2608 */
2609 page = kmem_getpages(cachep, local_flags, nodeid);
2610 if (!page)
2611 goto failed;
2612
2613 page_node = page_to_nid(page);
2614 n = get_node(cachep, page_node);
2615
2616 /* Get colour for the slab, and cal the next value. */
2617 n->colour_next++;
2618 if (n->colour_next >= cachep->colour)
2619 n->colour_next = 0;
2620
2621 offset = n->colour_next;
2622 if (offset >= cachep->colour)
2623 offset = 0;
2624
2625 offset *= cachep->colour_off;
2626
2627 /* Get slab management. */
2628 freelist = alloc_slabmgmt(cachep, page, offset,
2629 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2630 if (OFF_SLAB(cachep) && !freelist)
2631 goto opps1;
2632
2633 slab_map_pages(cachep, page, freelist);
2634
2635 kasan_poison_slab(page);
2636 cache_init_objs(cachep, page);
2637
2638 if (gfpflags_allow_blocking(local_flags))
2639 local_irq_disable();
2640
2641 return page;
2642
2643 opps1:
2644 kmem_freepages(cachep, page);
2645 failed:
2646 if (gfpflags_allow_blocking(local_flags))
2647 local_irq_disable();
2648 return NULL;
2649 }
2650
2651 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2652 {
2653 struct kmem_cache_node *n;
2654 void *list = NULL;
2655
2656 check_irq_off();
2657
2658 if (!page)
2659 return;
2660
2661 INIT_LIST_HEAD(&page->lru);
2662 n = get_node(cachep, page_to_nid(page));
2663
2664 spin_lock(&n->list_lock);
2665 if (!page->active)
2666 list_add_tail(&page->lru, &(n->slabs_free));
2667 else
2668 fixup_slab_list(cachep, n, page, &list);
2669 STATS_INC_GROWN(cachep);
2670 n->free_objects += cachep->num - page->active;
2671 spin_unlock(&n->list_lock);
2672
2673 fixup_objfreelist_debug(cachep, &list);
2674 }
2675
2676 #if DEBUG
2677
2678 /*
2679 * Perform extra freeing checks:
2680 * - detect bad pointers.
2681 * - POISON/RED_ZONE checking
2682 */
2683 static void kfree_debugcheck(const void *objp)
2684 {
2685 if (!virt_addr_valid(objp)) {
2686 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2687 (unsigned long)objp);
2688 BUG();
2689 }
2690 }
2691
2692 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2693 {
2694 unsigned long long redzone1, redzone2;
2695
2696 redzone1 = *dbg_redzone1(cache, obj);
2697 redzone2 = *dbg_redzone2(cache, obj);
2698
2699 /*
2700 * Redzone is ok.
2701 */
2702 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2703 return;
2704
2705 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2706 slab_error(cache, "double free detected");
2707 else
2708 slab_error(cache, "memory outside object was overwritten");
2709
2710 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2711 obj, redzone1, redzone2);
2712 }
2713
2714 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2715 unsigned long caller)
2716 {
2717 unsigned int objnr;
2718 struct page *page;
2719
2720 BUG_ON(virt_to_cache(objp) != cachep);
2721
2722 objp -= obj_offset(cachep);
2723 kfree_debugcheck(objp);
2724 page = virt_to_head_page(objp);
2725
2726 if (cachep->flags & SLAB_RED_ZONE) {
2727 verify_redzone_free(cachep, objp);
2728 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2729 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2730 }
2731 if (cachep->flags & SLAB_STORE_USER) {
2732 set_store_user_dirty(cachep);
2733 *dbg_userword(cachep, objp) = (void *)caller;
2734 }
2735
2736 objnr = obj_to_index(cachep, page, objp);
2737
2738 BUG_ON(objnr >= cachep->num);
2739 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2740
2741 if (cachep->flags & SLAB_POISON) {
2742 poison_obj(cachep, objp, POISON_FREE);
2743 slab_kernel_map(cachep, objp, 0, caller);
2744 }
2745 return objp;
2746 }
2747
2748 #else
2749 #define kfree_debugcheck(x) do { } while(0)
2750 #define cache_free_debugcheck(x,objp,z) (objp)
2751 #endif
2752
2753 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2754 void **list)
2755 {
2756 #if DEBUG
2757 void *next = *list;
2758 void *objp;
2759
2760 while (next) {
2761 objp = next - obj_offset(cachep);
2762 next = *(void **)next;
2763 poison_obj(cachep, objp, POISON_FREE);
2764 }
2765 #endif
2766 }
2767
2768 static inline void fixup_slab_list(struct kmem_cache *cachep,
2769 struct kmem_cache_node *n, struct page *page,
2770 void **list)
2771 {
2772 /* move slabp to correct slabp list: */
2773 list_del(&page->lru);
2774 if (page->active == cachep->num) {
2775 list_add(&page->lru, &n->slabs_full);
2776 if (OBJFREELIST_SLAB(cachep)) {
2777 #if DEBUG
2778 /* Poisoning will be done without holding the lock */
2779 if (cachep->flags & SLAB_POISON) {
2780 void **objp = page->freelist;
2781
2782 *objp = *list;
2783 *list = objp;
2784 }
2785 #endif
2786 page->freelist = NULL;
2787 }
2788 } else
2789 list_add(&page->lru, &n->slabs_partial);
2790 }
2791
2792 /* Try to find non-pfmemalloc slab if needed */
2793 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2794 struct page *page, bool pfmemalloc)
2795 {
2796 if (!page)
2797 return NULL;
2798
2799 if (pfmemalloc)
2800 return page;
2801
2802 if (!PageSlabPfmemalloc(page))
2803 return page;
2804
2805 /* No need to keep pfmemalloc slab if we have enough free objects */
2806 if (n->free_objects > n->free_limit) {
2807 ClearPageSlabPfmemalloc(page);
2808 return page;
2809 }
2810
2811 /* Move pfmemalloc slab to the end of list to speed up next search */
2812 list_del(&page->lru);
2813 if (!page->active)
2814 list_add_tail(&page->lru, &n->slabs_free);
2815 else
2816 list_add_tail(&page->lru, &n->slabs_partial);
2817
2818 list_for_each_entry(page, &n->slabs_partial, lru) {
2819 if (!PageSlabPfmemalloc(page))
2820 return page;
2821 }
2822
2823 list_for_each_entry(page, &n->slabs_free, lru) {
2824 if (!PageSlabPfmemalloc(page))
2825 return page;
2826 }
2827
2828 return NULL;
2829 }
2830
2831 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2832 {
2833 struct page *page;
2834
2835 page = list_first_entry_or_null(&n->slabs_partial,
2836 struct page, lru);
2837 if (!page) {
2838 n->free_touched = 1;
2839 page = list_first_entry_or_null(&n->slabs_free,
2840 struct page, lru);
2841 }
2842
2843 if (sk_memalloc_socks())
2844 return get_valid_first_slab(n, page, pfmemalloc);
2845
2846 return page;
2847 }
2848
2849 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2850 struct kmem_cache_node *n, gfp_t flags)
2851 {
2852 struct page *page;
2853 void *obj;
2854 void *list = NULL;
2855
2856 if (!gfp_pfmemalloc_allowed(flags))
2857 return NULL;
2858
2859 spin_lock(&n->list_lock);
2860 page = get_first_slab(n, true);
2861 if (!page) {
2862 spin_unlock(&n->list_lock);
2863 return NULL;
2864 }
2865
2866 obj = slab_get_obj(cachep, page);
2867 n->free_objects--;
2868
2869 fixup_slab_list(cachep, n, page, &list);
2870
2871 spin_unlock(&n->list_lock);
2872 fixup_objfreelist_debug(cachep, &list);
2873
2874 return obj;
2875 }
2876
2877 /*
2878 * Slab list should be fixed up by fixup_slab_list() for existing slab
2879 * or cache_grow_end() for new slab
2880 */
2881 static __always_inline int alloc_block(struct kmem_cache *cachep,
2882 struct array_cache *ac, struct page *page, int batchcount)
2883 {
2884 /*
2885 * There must be at least one object available for
2886 * allocation.
2887 */
2888 BUG_ON(page->active >= cachep->num);
2889
2890 while (page->active < cachep->num && batchcount--) {
2891 STATS_INC_ALLOCED(cachep);
2892 STATS_INC_ACTIVE(cachep);
2893 STATS_SET_HIGH(cachep);
2894
2895 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2896 }
2897
2898 return batchcount;
2899 }
2900
2901 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2902 {
2903 int batchcount;
2904 struct kmem_cache_node *n;
2905 struct array_cache *ac, *shared;
2906 int node;
2907 void *list = NULL;
2908 struct page *page;
2909
2910 check_irq_off();
2911 node = numa_mem_id();
2912
2913 ac = cpu_cache_get(cachep);
2914 batchcount = ac->batchcount;
2915 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2916 /*
2917 * If there was little recent activity on this cache, then
2918 * perform only a partial refill. Otherwise we could generate
2919 * refill bouncing.
2920 */
2921 batchcount = BATCHREFILL_LIMIT;
2922 }
2923 n = get_node(cachep, node);
2924
2925 BUG_ON(ac->avail > 0 || !n);
2926 shared = READ_ONCE(n->shared);
2927 if (!n->free_objects && (!shared || !shared->avail))
2928 goto direct_grow;
2929
2930 spin_lock(&n->list_lock);
2931 shared = READ_ONCE(n->shared);
2932
2933 /* See if we can refill from the shared array */
2934 if (shared && transfer_objects(ac, shared, batchcount)) {
2935 shared->touched = 1;
2936 goto alloc_done;
2937 }
2938
2939 while (batchcount > 0) {
2940 /* Get slab alloc is to come from. */
2941 page = get_first_slab(n, false);
2942 if (!page)
2943 goto must_grow;
2944
2945 check_spinlock_acquired(cachep);
2946
2947 batchcount = alloc_block(cachep, ac, page, batchcount);
2948 fixup_slab_list(cachep, n, page, &list);
2949 }
2950
2951 must_grow:
2952 n->free_objects -= ac->avail;
2953 alloc_done:
2954 spin_unlock(&n->list_lock);
2955 fixup_objfreelist_debug(cachep, &list);
2956
2957 direct_grow:
2958 if (unlikely(!ac->avail)) {
2959 /* Check if we can use obj in pfmemalloc slab */
2960 if (sk_memalloc_socks()) {
2961 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2962
2963 if (obj)
2964 return obj;
2965 }
2966
2967 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2968
2969 /*
2970 * cache_grow_begin() can reenable interrupts,
2971 * then ac could change.
2972 */
2973 ac = cpu_cache_get(cachep);
2974 if (!ac->avail && page)
2975 alloc_block(cachep, ac, page, batchcount);
2976 cache_grow_end(cachep, page);
2977
2978 if (!ac->avail)
2979 return NULL;
2980 }
2981 ac->touched = 1;
2982
2983 return ac->entry[--ac->avail];
2984 }
2985
2986 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2987 gfp_t flags)
2988 {
2989 might_sleep_if(gfpflags_allow_blocking(flags));
2990 #if DEBUG
2991 kmem_flagcheck(cachep, flags);
2992 #endif
2993 }
2994
2995 #if DEBUG
2996 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2997 gfp_t flags, void *objp, unsigned long caller)
2998 {
2999 if (!objp)
3000 return objp;
3001 if (cachep->flags & SLAB_POISON) {
3002 check_poison_obj(cachep, objp);
3003 slab_kernel_map(cachep, objp, 1, 0);
3004 poison_obj(cachep, objp, POISON_INUSE);
3005 }
3006 if (cachep->flags & SLAB_STORE_USER)
3007 *dbg_userword(cachep, objp) = (void *)caller;
3008
3009 if (cachep->flags & SLAB_RED_ZONE) {
3010 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3011 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3012 slab_error(cachep, "double free, or memory outside object was overwritten");
3013 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3014 objp, *dbg_redzone1(cachep, objp),
3015 *dbg_redzone2(cachep, objp));
3016 }
3017 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3018 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3019 }
3020
3021 objp += obj_offset(cachep);
3022 if (cachep->ctor && cachep->flags & SLAB_POISON)
3023 cachep->ctor(objp);
3024 if (ARCH_SLAB_MINALIGN &&
3025 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3026 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3027 objp, (int)ARCH_SLAB_MINALIGN);
3028 }
3029 return objp;
3030 }
3031 #else
3032 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3033 #endif
3034
3035 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3036 {
3037 void *objp;
3038 struct array_cache *ac;
3039
3040 check_irq_off();
3041
3042 ac = cpu_cache_get(cachep);
3043 if (likely(ac->avail)) {
3044 ac->touched = 1;
3045 objp = ac->entry[--ac->avail];
3046
3047 STATS_INC_ALLOCHIT(cachep);
3048 goto out;
3049 }
3050
3051 STATS_INC_ALLOCMISS(cachep);
3052 objp = cache_alloc_refill(cachep, flags);
3053 /*
3054 * the 'ac' may be updated by cache_alloc_refill(),
3055 * and kmemleak_erase() requires its correct value.
3056 */
3057 ac = cpu_cache_get(cachep);
3058
3059 out:
3060 /*
3061 * To avoid a false negative, if an object that is in one of the
3062 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3063 * treat the array pointers as a reference to the object.
3064 */
3065 if (objp)
3066 kmemleak_erase(&ac->entry[ac->avail]);
3067 return objp;
3068 }
3069
3070 #ifdef CONFIG_NUMA
3071 /*
3072 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3073 *
3074 * If we are in_interrupt, then process context, including cpusets and
3075 * mempolicy, may not apply and should not be used for allocation policy.
3076 */
3077 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3078 {
3079 int nid_alloc, nid_here;
3080
3081 if (in_interrupt() || (flags & __GFP_THISNODE))
3082 return NULL;
3083 nid_alloc = nid_here = numa_mem_id();
3084 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3085 nid_alloc = cpuset_slab_spread_node();
3086 else if (current->mempolicy)
3087 nid_alloc = mempolicy_slab_node();
3088 if (nid_alloc != nid_here)
3089 return ____cache_alloc_node(cachep, flags, nid_alloc);
3090 return NULL;
3091 }
3092
3093 /*
3094 * Fallback function if there was no memory available and no objects on a
3095 * certain node and fall back is permitted. First we scan all the
3096 * available node for available objects. If that fails then we
3097 * perform an allocation without specifying a node. This allows the page
3098 * allocator to do its reclaim / fallback magic. We then insert the
3099 * slab into the proper nodelist and then allocate from it.
3100 */
3101 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3102 {
3103 struct zonelist *zonelist;
3104 struct zoneref *z;
3105 struct zone *zone;
3106 enum zone_type high_zoneidx = gfp_zone(flags);
3107 void *obj = NULL;
3108 struct page *page;
3109 int nid;
3110 unsigned int cpuset_mems_cookie;
3111
3112 if (flags & __GFP_THISNODE)
3113 return NULL;
3114
3115 retry_cpuset:
3116 cpuset_mems_cookie = read_mems_allowed_begin();
3117 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3118
3119 retry:
3120 /*
3121 * Look through allowed nodes for objects available
3122 * from existing per node queues.
3123 */
3124 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3125 nid = zone_to_nid(zone);
3126
3127 if (cpuset_zone_allowed(zone, flags) &&
3128 get_node(cache, nid) &&
3129 get_node(cache, nid)->free_objects) {
3130 obj = ____cache_alloc_node(cache,
3131 gfp_exact_node(flags), nid);
3132 if (obj)
3133 break;
3134 }
3135 }
3136
3137 if (!obj) {
3138 /*
3139 * This allocation will be performed within the constraints
3140 * of the current cpuset / memory policy requirements.
3141 * We may trigger various forms of reclaim on the allowed
3142 * set and go into memory reserves if necessary.
3143 */
3144 page = cache_grow_begin(cache, flags, numa_mem_id());
3145 cache_grow_end(cache, page);
3146 if (page) {
3147 nid = page_to_nid(page);
3148 obj = ____cache_alloc_node(cache,
3149 gfp_exact_node(flags), nid);
3150
3151 /*
3152 * Another processor may allocate the objects in
3153 * the slab since we are not holding any locks.
3154 */
3155 if (!obj)
3156 goto retry;
3157 }
3158 }
3159
3160 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3161 goto retry_cpuset;
3162 return obj;
3163 }
3164
3165 /*
3166 * A interface to enable slab creation on nodeid
3167 */
3168 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3169 int nodeid)
3170 {
3171 struct page *page;
3172 struct kmem_cache_node *n;
3173 void *obj = NULL;
3174 void *list = NULL;
3175
3176 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3177 n = get_node(cachep, nodeid);
3178 BUG_ON(!n);
3179
3180 check_irq_off();
3181 spin_lock(&n->list_lock);
3182 page = get_first_slab(n, false);
3183 if (!page)
3184 goto must_grow;
3185
3186 check_spinlock_acquired_node(cachep, nodeid);
3187
3188 STATS_INC_NODEALLOCS(cachep);
3189 STATS_INC_ACTIVE(cachep);
3190 STATS_SET_HIGH(cachep);
3191
3192 BUG_ON(page->active == cachep->num);
3193
3194 obj = slab_get_obj(cachep, page);
3195 n->free_objects--;
3196
3197 fixup_slab_list(cachep, n, page, &list);
3198
3199 spin_unlock(&n->list_lock);
3200 fixup_objfreelist_debug(cachep, &list);
3201 return obj;
3202
3203 must_grow:
3204 spin_unlock(&n->list_lock);
3205 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3206 if (page) {
3207 /* This slab isn't counted yet so don't update free_objects */
3208 obj = slab_get_obj(cachep, page);
3209 }
3210 cache_grow_end(cachep, page);
3211
3212 return obj ? obj : fallback_alloc(cachep, flags);
3213 }
3214
3215 static __always_inline void *
3216 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3217 unsigned long caller)
3218 {
3219 unsigned long save_flags;
3220 void *ptr;
3221 int slab_node = numa_mem_id();
3222
3223 flags &= gfp_allowed_mask;
3224 cachep = slab_pre_alloc_hook(cachep, flags);
3225 if (unlikely(!cachep))
3226 return NULL;
3227
3228 cache_alloc_debugcheck_before(cachep, flags);
3229 local_irq_save(save_flags);
3230
3231 if (nodeid == NUMA_NO_NODE)
3232 nodeid = slab_node;
3233
3234 if (unlikely(!get_node(cachep, nodeid))) {
3235 /* Node not bootstrapped yet */
3236 ptr = fallback_alloc(cachep, flags);
3237 goto out;
3238 }
3239
3240 if (nodeid == slab_node) {
3241 /*
3242 * Use the locally cached objects if possible.
3243 * However ____cache_alloc does not allow fallback
3244 * to other nodes. It may fail while we still have
3245 * objects on other nodes available.
3246 */
3247 ptr = ____cache_alloc(cachep, flags);
3248 if (ptr)
3249 goto out;
3250 }
3251 /* ___cache_alloc_node can fall back to other nodes */
3252 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3253 out:
3254 local_irq_restore(save_flags);
3255 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3256
3257 if (unlikely(flags & __GFP_ZERO) && ptr)
3258 memset(ptr, 0, cachep->object_size);
3259
3260 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3261 return ptr;
3262 }
3263
3264 static __always_inline void *
3265 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3266 {
3267 void *objp;
3268
3269 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3270 objp = alternate_node_alloc(cache, flags);
3271 if (objp)
3272 goto out;
3273 }
3274 objp = ____cache_alloc(cache, flags);
3275
3276 /*
3277 * We may just have run out of memory on the local node.
3278 * ____cache_alloc_node() knows how to locate memory on other nodes
3279 */
3280 if (!objp)
3281 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3282
3283 out:
3284 return objp;
3285 }
3286 #else
3287
3288 static __always_inline void *
3289 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3290 {
3291 return ____cache_alloc(cachep, flags);
3292 }
3293
3294 #endif /* CONFIG_NUMA */
3295
3296 static __always_inline void *
3297 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3298 {
3299 unsigned long save_flags;
3300 void *objp;
3301
3302 flags &= gfp_allowed_mask;
3303 cachep = slab_pre_alloc_hook(cachep, flags);
3304 if (unlikely(!cachep))
3305 return NULL;
3306
3307 cache_alloc_debugcheck_before(cachep, flags);
3308 local_irq_save(save_flags);
3309 objp = __do_cache_alloc(cachep, flags);
3310 local_irq_restore(save_flags);
3311 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3312 prefetchw(objp);
3313
3314 if (unlikely(flags & __GFP_ZERO) && objp)
3315 memset(objp, 0, cachep->object_size);
3316
3317 slab_post_alloc_hook(cachep, flags, 1, &objp);
3318 return objp;
3319 }
3320
3321 /*
3322 * Caller needs to acquire correct kmem_cache_node's list_lock
3323 * @list: List of detached free slabs should be freed by caller
3324 */
3325 static void free_block(struct kmem_cache *cachep, void **objpp,
3326 int nr_objects, int node, struct list_head *list)
3327 {
3328 int i;
3329 struct kmem_cache_node *n = get_node(cachep, node);
3330 struct page *page;
3331
3332 n->free_objects += nr_objects;
3333
3334 for (i = 0; i < nr_objects; i++) {
3335 void *objp;
3336 struct page *page;
3337
3338 objp = objpp[i];
3339
3340 page = virt_to_head_page(objp);
3341 list_del(&page->lru);
3342 check_spinlock_acquired_node(cachep, node);
3343 slab_put_obj(cachep, page, objp);
3344 STATS_DEC_ACTIVE(cachep);
3345
3346 /* fixup slab chains */
3347 if (page->active == 0)
3348 list_add(&page->lru, &n->slabs_free);
3349 else {
3350 /* Unconditionally move a slab to the end of the
3351 * partial list on free - maximum time for the
3352 * other objects to be freed, too.
3353 */
3354 list_add_tail(&page->lru, &n->slabs_partial);
3355 }
3356 }
3357
3358 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3359 n->free_objects -= cachep->num;
3360
3361 page = list_last_entry(&n->slabs_free, struct page, lru);
3362 list_del(&page->lru);
3363 list_add(&page->lru, list);
3364 }
3365 }
3366
3367 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3368 {
3369 int batchcount;
3370 struct kmem_cache_node *n;
3371 int node = numa_mem_id();
3372 LIST_HEAD(list);
3373
3374 batchcount = ac->batchcount;
3375
3376 check_irq_off();
3377 n = get_node(cachep, node);
3378 spin_lock(&n->list_lock);
3379 if (n->shared) {
3380 struct array_cache *shared_array = n->shared;
3381 int max = shared_array->limit - shared_array->avail;
3382 if (max) {
3383 if (batchcount > max)
3384 batchcount = max;
3385 memcpy(&(shared_array->entry[shared_array->avail]),
3386 ac->entry, sizeof(void *) * batchcount);
3387 shared_array->avail += batchcount;
3388 goto free_done;
3389 }
3390 }
3391
3392 free_block(cachep, ac->entry, batchcount, node, &list);
3393 free_done:
3394 #if STATS
3395 {
3396 int i = 0;
3397 struct page *page;
3398
3399 list_for_each_entry(page, &n->slabs_free, lru) {
3400 BUG_ON(page->active);
3401
3402 i++;
3403 }
3404 STATS_SET_FREEABLE(cachep, i);
3405 }
3406 #endif
3407 spin_unlock(&n->list_lock);
3408 slabs_destroy(cachep, &list);
3409 ac->avail -= batchcount;
3410 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3411 }
3412
3413 /*
3414 * Release an obj back to its cache. If the obj has a constructed state, it must
3415 * be in this state _before_ it is released. Called with disabled ints.
3416 */
3417 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3418 unsigned long caller)
3419 {
3420 struct array_cache *ac = cpu_cache_get(cachep);
3421
3422 kasan_slab_free(cachep, objp);
3423
3424 check_irq_off();
3425 kmemleak_free_recursive(objp, cachep->flags);
3426 objp = cache_free_debugcheck(cachep, objp, caller);
3427
3428 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3429
3430 /*
3431 * Skip calling cache_free_alien() when the platform is not numa.
3432 * This will avoid cache misses that happen while accessing slabp (which
3433 * is per page memory reference) to get nodeid. Instead use a global
3434 * variable to skip the call, which is mostly likely to be present in
3435 * the cache.
3436 */
3437 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3438 return;
3439
3440 if (ac->avail < ac->limit) {
3441 STATS_INC_FREEHIT(cachep);
3442 } else {
3443 STATS_INC_FREEMISS(cachep);
3444 cache_flusharray(cachep, ac);
3445 }
3446
3447 if (sk_memalloc_socks()) {
3448 struct page *page = virt_to_head_page(objp);
3449
3450 if (unlikely(PageSlabPfmemalloc(page))) {
3451 cache_free_pfmemalloc(cachep, page, objp);
3452 return;
3453 }
3454 }
3455
3456 ac->entry[ac->avail++] = objp;
3457 }
3458
3459 /**
3460 * kmem_cache_alloc - Allocate an object
3461 * @cachep: The cache to allocate from.
3462 * @flags: See kmalloc().
3463 *
3464 * Allocate an object from this cache. The flags are only relevant
3465 * if the cache has no available objects.
3466 */
3467 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3468 {
3469 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3470
3471 kasan_slab_alloc(cachep, ret, flags);
3472 trace_kmem_cache_alloc(_RET_IP_, ret,
3473 cachep->object_size, cachep->size, flags);
3474
3475 return ret;
3476 }
3477 EXPORT_SYMBOL(kmem_cache_alloc);
3478
3479 static __always_inline void
3480 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3481 size_t size, void **p, unsigned long caller)
3482 {
3483 size_t i;
3484
3485 for (i = 0; i < size; i++)
3486 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3487 }
3488
3489 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3490 void **p)
3491 {
3492 size_t i;
3493
3494 s = slab_pre_alloc_hook(s, flags);
3495 if (!s)
3496 return 0;
3497
3498 cache_alloc_debugcheck_before(s, flags);
3499
3500 local_irq_disable();
3501 for (i = 0; i < size; i++) {
3502 void *objp = __do_cache_alloc(s, flags);
3503
3504 if (unlikely(!objp))
3505 goto error;
3506 p[i] = objp;
3507 }
3508 local_irq_enable();
3509
3510 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3511
3512 /* Clear memory outside IRQ disabled section */
3513 if (unlikely(flags & __GFP_ZERO))
3514 for (i = 0; i < size; i++)
3515 memset(p[i], 0, s->object_size);
3516
3517 slab_post_alloc_hook(s, flags, size, p);
3518 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3519 return size;
3520 error:
3521 local_irq_enable();
3522 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3523 slab_post_alloc_hook(s, flags, i, p);
3524 __kmem_cache_free_bulk(s, i, p);
3525 return 0;
3526 }
3527 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3528
3529 #ifdef CONFIG_TRACING
3530 void *
3531 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3532 {
3533 void *ret;
3534
3535 ret = slab_alloc(cachep, flags, _RET_IP_);
3536
3537 kasan_kmalloc(cachep, ret, size, flags);
3538 trace_kmalloc(_RET_IP_, ret,
3539 size, cachep->size, flags);
3540 return ret;
3541 }
3542 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3543 #endif
3544
3545 #ifdef CONFIG_NUMA
3546 /**
3547 * kmem_cache_alloc_node - Allocate an object on the specified node
3548 * @cachep: The cache to allocate from.
3549 * @flags: See kmalloc().
3550 * @nodeid: node number of the target node.
3551 *
3552 * Identical to kmem_cache_alloc but it will allocate memory on the given
3553 * node, which can improve the performance for cpu bound structures.
3554 *
3555 * Fallback to other node is possible if __GFP_THISNODE is not set.
3556 */
3557 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3558 {
3559 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3560
3561 kasan_slab_alloc(cachep, ret, flags);
3562 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3563 cachep->object_size, cachep->size,
3564 flags, nodeid);
3565
3566 return ret;
3567 }
3568 EXPORT_SYMBOL(kmem_cache_alloc_node);
3569
3570 #ifdef CONFIG_TRACING
3571 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3572 gfp_t flags,
3573 int nodeid,
3574 size_t size)
3575 {
3576 void *ret;
3577
3578 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3579
3580 kasan_kmalloc(cachep, ret, size, flags);
3581 trace_kmalloc_node(_RET_IP_, ret,
3582 size, cachep->size,
3583 flags, nodeid);
3584 return ret;
3585 }
3586 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3587 #endif
3588
3589 static __always_inline void *
3590 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3591 {
3592 struct kmem_cache *cachep;
3593 void *ret;
3594
3595 cachep = kmalloc_slab(size, flags);
3596 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3597 return cachep;
3598 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3599 kasan_kmalloc(cachep, ret, size, flags);
3600
3601 return ret;
3602 }
3603
3604 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3605 {
3606 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3607 }
3608 EXPORT_SYMBOL(__kmalloc_node);
3609
3610 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3611 int node, unsigned long caller)
3612 {
3613 return __do_kmalloc_node(size, flags, node, caller);
3614 }
3615 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3616 #endif /* CONFIG_NUMA */
3617
3618 /**
3619 * __do_kmalloc - allocate memory
3620 * @size: how many bytes of memory are required.
3621 * @flags: the type of memory to allocate (see kmalloc).
3622 * @caller: function caller for debug tracking of the caller
3623 */
3624 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3625 unsigned long caller)
3626 {
3627 struct kmem_cache *cachep;
3628 void *ret;
3629
3630 cachep = kmalloc_slab(size, flags);
3631 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3632 return cachep;
3633 ret = slab_alloc(cachep, flags, caller);
3634
3635 kasan_kmalloc(cachep, ret, size, flags);
3636 trace_kmalloc(caller, ret,
3637 size, cachep->size, flags);
3638
3639 return ret;
3640 }
3641
3642 void *__kmalloc(size_t size, gfp_t flags)
3643 {
3644 return __do_kmalloc(size, flags, _RET_IP_);
3645 }
3646 EXPORT_SYMBOL(__kmalloc);
3647
3648 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3649 {
3650 return __do_kmalloc(size, flags, caller);
3651 }
3652 EXPORT_SYMBOL(__kmalloc_track_caller);
3653
3654 /**
3655 * kmem_cache_free - Deallocate an object
3656 * @cachep: The cache the allocation was from.
3657 * @objp: The previously allocated object.
3658 *
3659 * Free an object which was previously allocated from this
3660 * cache.
3661 */
3662 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3663 {
3664 unsigned long flags;
3665 cachep = cache_from_obj(cachep, objp);
3666 if (!cachep)
3667 return;
3668
3669 local_irq_save(flags);
3670 debug_check_no_locks_freed(objp, cachep->object_size);
3671 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3672 debug_check_no_obj_freed(objp, cachep->object_size);
3673 __cache_free(cachep, objp, _RET_IP_);
3674 local_irq_restore(flags);
3675
3676 trace_kmem_cache_free(_RET_IP_, objp);
3677 }
3678 EXPORT_SYMBOL(kmem_cache_free);
3679
3680 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3681 {
3682 struct kmem_cache *s;
3683 size_t i;
3684
3685 local_irq_disable();
3686 for (i = 0; i < size; i++) {
3687 void *objp = p[i];
3688
3689 if (!orig_s) /* called via kfree_bulk */
3690 s = virt_to_cache(objp);
3691 else
3692 s = cache_from_obj(orig_s, objp);
3693
3694 debug_check_no_locks_freed(objp, s->object_size);
3695 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3696 debug_check_no_obj_freed(objp, s->object_size);
3697
3698 __cache_free(s, objp, _RET_IP_);
3699 }
3700 local_irq_enable();
3701
3702 /* FIXME: add tracing */
3703 }
3704 EXPORT_SYMBOL(kmem_cache_free_bulk);
3705
3706 /**
3707 * kfree - free previously allocated memory
3708 * @objp: pointer returned by kmalloc.
3709 *
3710 * If @objp is NULL, no operation is performed.
3711 *
3712 * Don't free memory not originally allocated by kmalloc()
3713 * or you will run into trouble.
3714 */
3715 void kfree(const void *objp)
3716 {
3717 struct kmem_cache *c;
3718 unsigned long flags;
3719
3720 trace_kfree(_RET_IP_, objp);
3721
3722 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3723 return;
3724 local_irq_save(flags);
3725 kfree_debugcheck(objp);
3726 c = virt_to_cache(objp);
3727 debug_check_no_locks_freed(objp, c->object_size);
3728
3729 debug_check_no_obj_freed(objp, c->object_size);
3730 __cache_free(c, (void *)objp, _RET_IP_);
3731 local_irq_restore(flags);
3732 }
3733 EXPORT_SYMBOL(kfree);
3734
3735 /*
3736 * This initializes kmem_cache_node or resizes various caches for all nodes.
3737 */
3738 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3739 {
3740 int ret;
3741 int node;
3742 struct kmem_cache_node *n;
3743
3744 for_each_online_node(node) {
3745 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3746 if (ret)
3747 goto fail;
3748
3749 }
3750
3751 return 0;
3752
3753 fail:
3754 if (!cachep->list.next) {
3755 /* Cache is not active yet. Roll back what we did */
3756 node--;
3757 while (node >= 0) {
3758 n = get_node(cachep, node);
3759 if (n) {
3760 kfree(n->shared);
3761 free_alien_cache(n->alien);
3762 kfree(n);
3763 cachep->node[node] = NULL;
3764 }
3765 node--;
3766 }
3767 }
3768 return -ENOMEM;
3769 }
3770
3771 /* Always called with the slab_mutex held */
3772 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3773 int batchcount, int shared, gfp_t gfp)
3774 {
3775 struct array_cache __percpu *cpu_cache, *prev;
3776 int cpu;
3777
3778 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3779 if (!cpu_cache)
3780 return -ENOMEM;
3781
3782 prev = cachep->cpu_cache;
3783 cachep->cpu_cache = cpu_cache;
3784 kick_all_cpus_sync();
3785
3786 check_irq_on();
3787 cachep->batchcount = batchcount;
3788 cachep->limit = limit;
3789 cachep->shared = shared;
3790
3791 if (!prev)
3792 goto setup_node;
3793
3794 for_each_online_cpu(cpu) {
3795 LIST_HEAD(list);
3796 int node;
3797 struct kmem_cache_node *n;
3798 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3799
3800 node = cpu_to_mem(cpu);
3801 n = get_node(cachep, node);
3802 spin_lock_irq(&n->list_lock);
3803 free_block(cachep, ac->entry, ac->avail, node, &list);
3804 spin_unlock_irq(&n->list_lock);
3805 slabs_destroy(cachep, &list);
3806 }
3807 free_percpu(prev);
3808
3809 setup_node:
3810 return setup_kmem_cache_nodes(cachep, gfp);
3811 }
3812
3813 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3814 int batchcount, int shared, gfp_t gfp)
3815 {
3816 int ret;
3817 struct kmem_cache *c;
3818
3819 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3820
3821 if (slab_state < FULL)
3822 return ret;
3823
3824 if ((ret < 0) || !is_root_cache(cachep))
3825 return ret;
3826
3827 lockdep_assert_held(&slab_mutex);
3828 for_each_memcg_cache(c, cachep) {
3829 /* return value determined by the root cache only */
3830 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3831 }
3832
3833 return ret;
3834 }
3835
3836 /* Called with slab_mutex held always */
3837 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3838 {
3839 int err;
3840 int limit = 0;
3841 int shared = 0;
3842 int batchcount = 0;
3843
3844 if (!is_root_cache(cachep)) {
3845 struct kmem_cache *root = memcg_root_cache(cachep);
3846 limit = root->limit;
3847 shared = root->shared;
3848 batchcount = root->batchcount;
3849 }
3850
3851 if (limit && shared && batchcount)
3852 goto skip_setup;
3853 /*
3854 * The head array serves three purposes:
3855 * - create a LIFO ordering, i.e. return objects that are cache-warm
3856 * - reduce the number of spinlock operations.
3857 * - reduce the number of linked list operations on the slab and
3858 * bufctl chains: array operations are cheaper.
3859 * The numbers are guessed, we should auto-tune as described by
3860 * Bonwick.
3861 */
3862 if (cachep->size > 131072)
3863 limit = 1;
3864 else if (cachep->size > PAGE_SIZE)
3865 limit = 8;
3866 else if (cachep->size > 1024)
3867 limit = 24;
3868 else if (cachep->size > 256)
3869 limit = 54;
3870 else
3871 limit = 120;
3872
3873 /*
3874 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3875 * allocation behaviour: Most allocs on one cpu, most free operations
3876 * on another cpu. For these cases, an efficient object passing between
3877 * cpus is necessary. This is provided by a shared array. The array
3878 * replaces Bonwick's magazine layer.
3879 * On uniprocessor, it's functionally equivalent (but less efficient)
3880 * to a larger limit. Thus disabled by default.
3881 */
3882 shared = 0;
3883 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3884 shared = 8;
3885
3886 #if DEBUG
3887 /*
3888 * With debugging enabled, large batchcount lead to excessively long
3889 * periods with disabled local interrupts. Limit the batchcount
3890 */
3891 if (limit > 32)
3892 limit = 32;
3893 #endif
3894 batchcount = (limit + 1) / 2;
3895 skip_setup:
3896 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3897 if (err)
3898 pr_err("enable_cpucache failed for %s, error %d\n",
3899 cachep->name, -err);
3900 return err;
3901 }
3902
3903 /*
3904 * Drain an array if it contains any elements taking the node lock only if
3905 * necessary. Note that the node listlock also protects the array_cache
3906 * if drain_array() is used on the shared array.
3907 */
3908 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3909 struct array_cache *ac, int node)
3910 {
3911 LIST_HEAD(list);
3912
3913 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3914 check_mutex_acquired();
3915
3916 if (!ac || !ac->avail)
3917 return;
3918
3919 if (ac->touched) {
3920 ac->touched = 0;
3921 return;
3922 }
3923
3924 spin_lock_irq(&n->list_lock);
3925 drain_array_locked(cachep, ac, node, false, &list);
3926 spin_unlock_irq(&n->list_lock);
3927
3928 slabs_destroy(cachep, &list);
3929 }
3930
3931 /**
3932 * cache_reap - Reclaim memory from caches.
3933 * @w: work descriptor
3934 *
3935 * Called from workqueue/eventd every few seconds.
3936 * Purpose:
3937 * - clear the per-cpu caches for this CPU.
3938 * - return freeable pages to the main free memory pool.
3939 *
3940 * If we cannot acquire the cache chain mutex then just give up - we'll try
3941 * again on the next iteration.
3942 */
3943 static void cache_reap(struct work_struct *w)
3944 {
3945 struct kmem_cache *searchp;
3946 struct kmem_cache_node *n;
3947 int node = numa_mem_id();
3948 struct delayed_work *work = to_delayed_work(w);
3949
3950 if (!mutex_trylock(&slab_mutex))
3951 /* Give up. Setup the next iteration. */
3952 goto out;
3953
3954 list_for_each_entry(searchp, &slab_caches, list) {
3955 check_irq_on();
3956
3957 /*
3958 * We only take the node lock if absolutely necessary and we
3959 * have established with reasonable certainty that
3960 * we can do some work if the lock was obtained.
3961 */
3962 n = get_node(searchp, node);
3963
3964 reap_alien(searchp, n);
3965
3966 drain_array(searchp, n, cpu_cache_get(searchp), node);
3967
3968 /*
3969 * These are racy checks but it does not matter
3970 * if we skip one check or scan twice.
3971 */
3972 if (time_after(n->next_reap, jiffies))
3973 goto next;
3974
3975 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3976
3977 drain_array(searchp, n, n->shared, node);
3978
3979 if (n->free_touched)
3980 n->free_touched = 0;
3981 else {
3982 int freed;
3983
3984 freed = drain_freelist(searchp, n, (n->free_limit +
3985 5 * searchp->num - 1) / (5 * searchp->num));
3986 STATS_ADD_REAPED(searchp, freed);
3987 }
3988 next:
3989 cond_resched();
3990 }
3991 check_irq_on();
3992 mutex_unlock(&slab_mutex);
3993 next_reap_node();
3994 out:
3995 /* Set up the next iteration */
3996 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3997 }
3998
3999 #ifdef CONFIG_SLABINFO
4000 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4001 {
4002 struct page *page;
4003 unsigned long active_objs;
4004 unsigned long num_objs;
4005 unsigned long active_slabs = 0;
4006 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4007 const char *name;
4008 char *error = NULL;
4009 int node;
4010 struct kmem_cache_node *n;
4011
4012 active_objs = 0;
4013 num_slabs = 0;
4014 for_each_kmem_cache_node(cachep, node, n) {
4015
4016 check_irq_on();
4017 spin_lock_irq(&n->list_lock);
4018
4019 list_for_each_entry(page, &n->slabs_full, lru) {
4020 if (page->active != cachep->num && !error)
4021 error = "slabs_full accounting error";
4022 active_objs += cachep->num;
4023 active_slabs++;
4024 }
4025 list_for_each_entry(page, &n->slabs_partial, lru) {
4026 if (page->active == cachep->num && !error)
4027 error = "slabs_partial accounting error";
4028 if (!page->active && !error)
4029 error = "slabs_partial accounting error";
4030 active_objs += page->active;
4031 active_slabs++;
4032 }
4033 list_for_each_entry(page, &n->slabs_free, lru) {
4034 if (page->active && !error)
4035 error = "slabs_free accounting error";
4036 num_slabs++;
4037 }
4038 free_objects += n->free_objects;
4039 if (n->shared)
4040 shared_avail += n->shared->avail;
4041
4042 spin_unlock_irq(&n->list_lock);
4043 }
4044 num_slabs += active_slabs;
4045 num_objs = num_slabs * cachep->num;
4046 if (num_objs - active_objs != free_objects && !error)
4047 error = "free_objects accounting error";
4048
4049 name = cachep->name;
4050 if (error)
4051 pr_err("slab: cache %s error: %s\n", name, error);
4052
4053 sinfo->active_objs = active_objs;
4054 sinfo->num_objs = num_objs;
4055 sinfo->active_slabs = active_slabs;
4056 sinfo->num_slabs = num_slabs;
4057 sinfo->shared_avail = shared_avail;
4058 sinfo->limit = cachep->limit;
4059 sinfo->batchcount = cachep->batchcount;
4060 sinfo->shared = cachep->shared;
4061 sinfo->objects_per_slab = cachep->num;
4062 sinfo->cache_order = cachep->gfporder;
4063 }
4064
4065 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4066 {
4067 #if STATS
4068 { /* node stats */
4069 unsigned long high = cachep->high_mark;
4070 unsigned long allocs = cachep->num_allocations;
4071 unsigned long grown = cachep->grown;
4072 unsigned long reaped = cachep->reaped;
4073 unsigned long errors = cachep->errors;
4074 unsigned long max_freeable = cachep->max_freeable;
4075 unsigned long node_allocs = cachep->node_allocs;
4076 unsigned long node_frees = cachep->node_frees;
4077 unsigned long overflows = cachep->node_overflow;
4078
4079 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4080 allocs, high, grown,
4081 reaped, errors, max_freeable, node_allocs,
4082 node_frees, overflows);
4083 }
4084 /* cpu stats */
4085 {
4086 unsigned long allochit = atomic_read(&cachep->allochit);
4087 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4088 unsigned long freehit = atomic_read(&cachep->freehit);
4089 unsigned long freemiss = atomic_read(&cachep->freemiss);
4090
4091 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4092 allochit, allocmiss, freehit, freemiss);
4093 }
4094 #endif
4095 }
4096
4097 #define MAX_SLABINFO_WRITE 128
4098 /**
4099 * slabinfo_write - Tuning for the slab allocator
4100 * @file: unused
4101 * @buffer: user buffer
4102 * @count: data length
4103 * @ppos: unused
4104 */
4105 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4106 size_t count, loff_t *ppos)
4107 {
4108 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4109 int limit, batchcount, shared, res;
4110 struct kmem_cache *cachep;
4111
4112 if (count > MAX_SLABINFO_WRITE)
4113 return -EINVAL;
4114 if (copy_from_user(&kbuf, buffer, count))
4115 return -EFAULT;
4116 kbuf[MAX_SLABINFO_WRITE] = '\0';
4117
4118 tmp = strchr(kbuf, ' ');
4119 if (!tmp)
4120 return -EINVAL;
4121 *tmp = '\0';
4122 tmp++;
4123 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4124 return -EINVAL;
4125
4126 /* Find the cache in the chain of caches. */
4127 mutex_lock(&slab_mutex);
4128 res = -EINVAL;
4129 list_for_each_entry(cachep, &slab_caches, list) {
4130 if (!strcmp(cachep->name, kbuf)) {
4131 if (limit < 1 || batchcount < 1 ||
4132 batchcount > limit || shared < 0) {
4133 res = 0;
4134 } else {
4135 res = do_tune_cpucache(cachep, limit,
4136 batchcount, shared,
4137 GFP_KERNEL);
4138 }
4139 break;
4140 }
4141 }
4142 mutex_unlock(&slab_mutex);
4143 if (res >= 0)
4144 res = count;
4145 return res;
4146 }
4147
4148 #ifdef CONFIG_DEBUG_SLAB_LEAK
4149
4150 static inline int add_caller(unsigned long *n, unsigned long v)
4151 {
4152 unsigned long *p;
4153 int l;
4154 if (!v)
4155 return 1;
4156 l = n[1];
4157 p = n + 2;
4158 while (l) {
4159 int i = l/2;
4160 unsigned long *q = p + 2 * i;
4161 if (*q == v) {
4162 q[1]++;
4163 return 1;
4164 }
4165 if (*q > v) {
4166 l = i;
4167 } else {
4168 p = q + 2;
4169 l -= i + 1;
4170 }
4171 }
4172 if (++n[1] == n[0])
4173 return 0;
4174 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4175 p[0] = v;
4176 p[1] = 1;
4177 return 1;
4178 }
4179
4180 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4181 struct page *page)
4182 {
4183 void *p;
4184 int i, j;
4185 unsigned long v;
4186
4187 if (n[0] == n[1])
4188 return;
4189 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4190 bool active = true;
4191
4192 for (j = page->active; j < c->num; j++) {
4193 if (get_free_obj(page, j) == i) {
4194 active = false;
4195 break;
4196 }
4197 }
4198
4199 if (!active)
4200 continue;
4201
4202 /*
4203 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4204 * mapping is established when actual object allocation and
4205 * we could mistakenly access the unmapped object in the cpu
4206 * cache.
4207 */
4208 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4209 continue;
4210
4211 if (!add_caller(n, v))
4212 return;
4213 }
4214 }
4215
4216 static void show_symbol(struct seq_file *m, unsigned long address)
4217 {
4218 #ifdef CONFIG_KALLSYMS
4219 unsigned long offset, size;
4220 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4221
4222 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4223 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4224 if (modname[0])
4225 seq_printf(m, " [%s]", modname);
4226 return;
4227 }
4228 #endif
4229 seq_printf(m, "%p", (void *)address);
4230 }
4231
4232 static int leaks_show(struct seq_file *m, void *p)
4233 {
4234 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4235 struct page *page;
4236 struct kmem_cache_node *n;
4237 const char *name;
4238 unsigned long *x = m->private;
4239 int node;
4240 int i;
4241
4242 if (!(cachep->flags & SLAB_STORE_USER))
4243 return 0;
4244 if (!(cachep->flags & SLAB_RED_ZONE))
4245 return 0;
4246
4247 /*
4248 * Set store_user_clean and start to grab stored user information
4249 * for all objects on this cache. If some alloc/free requests comes
4250 * during the processing, information would be wrong so restart
4251 * whole processing.
4252 */
4253 do {
4254 set_store_user_clean(cachep);
4255 drain_cpu_caches(cachep);
4256
4257 x[1] = 0;
4258
4259 for_each_kmem_cache_node(cachep, node, n) {
4260
4261 check_irq_on();
4262 spin_lock_irq(&n->list_lock);
4263
4264 list_for_each_entry(page, &n->slabs_full, lru)
4265 handle_slab(x, cachep, page);
4266 list_for_each_entry(page, &n->slabs_partial, lru)
4267 handle_slab(x, cachep, page);
4268 spin_unlock_irq(&n->list_lock);
4269 }
4270 } while (!is_store_user_clean(cachep));
4271
4272 name = cachep->name;
4273 if (x[0] == x[1]) {
4274 /* Increase the buffer size */
4275 mutex_unlock(&slab_mutex);
4276 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4277 if (!m->private) {
4278 /* Too bad, we are really out */
4279 m->private = x;
4280 mutex_lock(&slab_mutex);
4281 return -ENOMEM;
4282 }
4283 *(unsigned long *)m->private = x[0] * 2;
4284 kfree(x);
4285 mutex_lock(&slab_mutex);
4286 /* Now make sure this entry will be retried */
4287 m->count = m->size;
4288 return 0;
4289 }
4290 for (i = 0; i < x[1]; i++) {
4291 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4292 show_symbol(m, x[2*i+2]);
4293 seq_putc(m, '\n');
4294 }
4295
4296 return 0;
4297 }
4298
4299 static const struct seq_operations slabstats_op = {
4300 .start = slab_start,
4301 .next = slab_next,
4302 .stop = slab_stop,
4303 .show = leaks_show,
4304 };
4305
4306 static int slabstats_open(struct inode *inode, struct file *file)
4307 {
4308 unsigned long *n;
4309
4310 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4311 if (!n)
4312 return -ENOMEM;
4313
4314 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4315
4316 return 0;
4317 }
4318
4319 static const struct file_operations proc_slabstats_operations = {
4320 .open = slabstats_open,
4321 .read = seq_read,
4322 .llseek = seq_lseek,
4323 .release = seq_release_private,
4324 };
4325 #endif
4326
4327 static int __init slab_proc_init(void)
4328 {
4329 #ifdef CONFIG_DEBUG_SLAB_LEAK
4330 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4331 #endif
4332 return 0;
4333 }
4334 module_init(slab_proc_init);
4335 #endif
4336
4337 /**
4338 * ksize - get the actual amount of memory allocated for a given object
4339 * @objp: Pointer to the object
4340 *
4341 * kmalloc may internally round up allocations and return more memory
4342 * than requested. ksize() can be used to determine the actual amount of
4343 * memory allocated. The caller may use this additional memory, even though
4344 * a smaller amount of memory was initially specified with the kmalloc call.
4345 * The caller must guarantee that objp points to a valid object previously
4346 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4347 * must not be freed during the duration of the call.
4348 */
4349 size_t ksize(const void *objp)
4350 {
4351 size_t size;
4352
4353 BUG_ON(!objp);
4354 if (unlikely(objp == ZERO_SIZE_PTR))
4355 return 0;
4356
4357 size = virt_to_cache(objp)->object_size;
4358 /* We assume that ksize callers could use the whole allocated area,
4359 * so we need to unpoison this area.
4360 */
4361 kasan_krealloc(objp, size, GFP_NOWAIT);
4362
4363 return size;
4364 }
4365 EXPORT_SYMBOL(ksize);
This page took 0.119686 seconds and 5 git commands to generate.