iio: accel: kxcjk-1013: Fix kxcjk10013_set_range
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238 * Need this for bootstrapping a per node allocator.
239 */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
244
245 static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252
253 static int slab_early_init = 1;
254
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268 }
269
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286 #define BATCHREFILL_LIMIT 16
287 /*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
290 *
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
293 */
294 #define REAPTIMEOUT_AC (2*HZ)
295 #define REAPTIMEOUT_NODE (4*HZ)
296
297 #if STATS
298 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301 #define STATS_INC_GROWN(x) ((x)->grown++)
302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303 #define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
308 #define STATS_INC_ERR(x) ((x)->errors++)
309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312 #define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321 #else
322 #define STATS_INC_ACTIVE(x) do { } while (0)
323 #define STATS_DEC_ACTIVE(x) do { } while (0)
324 #define STATS_INC_ALLOCED(x) do { } while (0)
325 #define STATS_INC_GROWN(x) do { } while (0)
326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327 #define STATS_SET_HIGH(x) do { } while (0)
328 #define STATS_INC_ERR(x) do { } while (0)
329 #define STATS_INC_NODEALLOCS(x) do { } while (0)
330 #define STATS_INC_NODEFREES(x) do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
332 #define STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x) do { } while (0)
334 #define STATS_INC_ALLOCMISS(x) do { } while (0)
335 #define STATS_INC_FREEHIT(x) do { } while (0)
336 #define STATS_INC_FREEMISS(x) do { } while (0)
337 #endif
338
339 #if DEBUG
340
341 /*
342 * memory layout of objects:
343 * 0 : objp
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348 * redzone word.
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 * [BYTES_PER_WORD long]
353 */
354 static int obj_offset(struct kmem_cache *cachep)
355 {
356 return cachep->obj_offset;
357 }
358
359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360 {
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
364 }
365
366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367 {
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
370 return (unsigned long long *)(objp + cachep->size -
371 sizeof(unsigned long long) -
372 REDZONE_ALIGN);
373 return (unsigned long long *) (objp + cachep->size -
374 sizeof(unsigned long long));
375 }
376
377 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378 {
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
381 }
382
383 #else
384
385 #define obj_offset(x) 0
386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390 #endif
391
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
394
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
396
397 static void set_obj_status(struct page *page, int idx, int val)
398 {
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406 }
407
408 static inline unsigned int get_obj_status(struct page *page, int idx)
409 {
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418 }
419
420 #else
421 static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423 #endif
424
425 /*
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
428 */
429 #define SLAB_MAX_ORDER_HI 1
430 #define SLAB_MAX_ORDER_LO 0
431 static int slab_max_order = SLAB_MAX_ORDER_LO;
432 static bool slab_max_order_set __initdata;
433
434 static inline struct kmem_cache *virt_to_cache(const void *obj)
435 {
436 struct page *page = virt_to_head_page(obj);
437 return page->slab_cache;
438 }
439
440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 unsigned int idx)
442 {
443 return page->s_mem + cache->size * idx;
444 }
445
446 /*
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
452 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 const struct page *page, void *obj)
454 {
455 u32 offset = (obj - page->s_mem);
456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 }
458
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
466 };
467
468 #define BAD_ALIEN_MAGIC 0x01020304ul
469
470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473 {
474 return this_cpu_ptr(cachep->cpu_cache);
475 }
476
477 static size_t calculate_freelist_size(int nr_objs, size_t align)
478 {
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489 }
490
491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
493 {
494 int nr_objs;
495 size_t remained_size;
496 size_t freelist_size;
497 int extra_space = 0;
498
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
501 /*
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
507 * into account.
508 */
509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511 /*
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
514 */
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
518 nr_objs--;
519
520 return nr_objs;
521 }
522
523 /*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
526 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529 {
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
533
534 /*
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
537 * slab is used for:
538 *
539 * - One unsigned int for each object
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
542 *
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
547 */
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
552 } else {
553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 sizeof(freelist_idx_t), align);
555 mgmt_size = calculate_freelist_size(nr_objs, align);
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559 }
560
561 #if DEBUG
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
564 static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
566 {
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 function, cachep->name, msg);
569 dump_stack();
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572 #endif
573
574 /*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580 */
581
582 static int use_alien_caches __read_mostly = 1;
583 static int __init noaliencache_setup(char *s)
584 {
585 use_alien_caches = 0;
586 return 1;
587 }
588 __setup("noaliencache", noaliencache_setup);
589
590 static int __init slab_max_order_setup(char *str)
591 {
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598 }
599 __setup("slab_max_order=", slab_max_order_setup);
600
601 #ifdef CONFIG_NUMA
602 /*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610 static void init_reap_node(int cpu)
611 {
612 int node;
613
614 node = next_node(cpu_to_mem(cpu), node_online_map);
615 if (node == MAX_NUMNODES)
616 node = first_node(node_online_map);
617
618 per_cpu(slab_reap_node, cpu) = node;
619 }
620
621 static void next_reap_node(void)
622 {
623 int node = __this_cpu_read(slab_reap_node);
624
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
628 __this_cpu_write(slab_reap_node, node);
629 }
630
631 #else
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
634 #endif
635
636 /*
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
643 static void start_cpu_timer(int cpu)
644 {
645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647 /*
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
650 * at that time.
651 */
652 if (keventd_up() && reap_work->work.func == NULL) {
653 init_reap_node(cpu);
654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
657 }
658 }
659
660 static void init_arraycache(struct array_cache *ac, int limit, int batch)
661 {
662 /*
663 * The array_cache structures contain pointers to free object.
664 * However, when such objects are allocated or transferred to another
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
668 */
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
675 }
676 }
677
678 static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680 {
681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
687 }
688
689 static inline bool is_slab_pfmemalloc(struct page *page)
690 {
691 return PageSlabPfmemalloc(page);
692 }
693
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697 {
698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 struct page *page;
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
705 spin_lock_irqsave(&n->list_lock, flags);
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
709
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
712 goto out;
713
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
716 goto out;
717
718 pfmemalloc_active = false;
719 out:
720 spin_unlock_irqrestore(&n->list_lock, flags);
721 }
722
723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 gfp_t flags, bool force_refill)
725 {
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp))) {
731 struct kmem_cache_node *n;
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738 /* The caller cannot use PFMEMALLOC objects, find another one */
739 for (i = 0; i < ac->avail; i++) {
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749 /*
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
752 */
753 n = get_node(cachep, numa_mem_id());
754 if (!list_empty(&n->slabs_free) && force_refill) {
755 struct page *page = virt_to_head_page(objp);
756 ClearPageSlabPfmemalloc(page);
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762 /* No !PFMEMALLOC objects available */
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768 }
769
770 static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772 {
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781 }
782
783 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
785 {
786 if (unlikely(pfmemalloc_active)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
788 struct page *page = virt_to_head_page(objp);
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
793 return objp;
794 }
795
796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798 {
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
802 ac->entry[ac->avail++] = objp;
803 }
804
805 /*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
811 static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813 {
814 /* Figure out how many entries to transfer */
815 int nr = min3(from->avail, max, to->limit - to->avail);
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
825 return nr;
826 }
827
828 #ifndef CONFIG_NUMA
829
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
832
833 static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
835 {
836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 }
838
839 static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 {
841 }
842
843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844 {
845 return 0;
846 }
847
848 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850 {
851 return NULL;
852 }
853
854 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 gfp_t flags, int nodeid)
856 {
857 return NULL;
858 }
859
860 #else /* CONFIG_NUMA */
861
862 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864
865 static struct alien_cache *__alloc_alien_cache(int node, int entries,
866 int batch, gfp_t gfp)
867 {
868 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
869 struct alien_cache *alc = NULL;
870
871 alc = kmalloc_node(memsize, gfp, node);
872 init_arraycache(&alc->ac, entries, batch);
873 spin_lock_init(&alc->lock);
874 return alc;
875 }
876
877 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878 {
879 struct alien_cache **alc_ptr;
880 size_t memsize = sizeof(void *) * nr_node_ids;
881 int i;
882
883 if (limit > 1)
884 limit = 12;
885 alc_ptr = kzalloc_node(memsize, gfp, node);
886 if (!alc_ptr)
887 return NULL;
888
889 for_each_node(i) {
890 if (i == node || !node_online(i))
891 continue;
892 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893 if (!alc_ptr[i]) {
894 for (i--; i >= 0; i--)
895 kfree(alc_ptr[i]);
896 kfree(alc_ptr);
897 return NULL;
898 }
899 }
900 return alc_ptr;
901 }
902
903 static void free_alien_cache(struct alien_cache **alc_ptr)
904 {
905 int i;
906
907 if (!alc_ptr)
908 return;
909 for_each_node(i)
910 kfree(alc_ptr[i]);
911 kfree(alc_ptr);
912 }
913
914 static void __drain_alien_cache(struct kmem_cache *cachep,
915 struct array_cache *ac, int node,
916 struct list_head *list)
917 {
918 struct kmem_cache_node *n = get_node(cachep, node);
919
920 if (ac->avail) {
921 spin_lock(&n->list_lock);
922 /*
923 * Stuff objects into the remote nodes shared array first.
924 * That way we could avoid the overhead of putting the objects
925 * into the free lists and getting them back later.
926 */
927 if (n->shared)
928 transfer_objects(n->shared, ac, ac->limit);
929
930 free_block(cachep, ac->entry, ac->avail, node, list);
931 ac->avail = 0;
932 spin_unlock(&n->list_lock);
933 }
934 }
935
936 /*
937 * Called from cache_reap() to regularly drain alien caches round robin.
938 */
939 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940 {
941 int node = __this_cpu_read(slab_reap_node);
942
943 if (n->alien) {
944 struct alien_cache *alc = n->alien[node];
945 struct array_cache *ac;
946
947 if (alc) {
948 ac = &alc->ac;
949 if (ac->avail && spin_trylock_irq(&alc->lock)) {
950 LIST_HEAD(list);
951
952 __drain_alien_cache(cachep, ac, node, &list);
953 spin_unlock_irq(&alc->lock);
954 slabs_destroy(cachep, &list);
955 }
956 }
957 }
958 }
959
960 static void drain_alien_cache(struct kmem_cache *cachep,
961 struct alien_cache **alien)
962 {
963 int i = 0;
964 struct alien_cache *alc;
965 struct array_cache *ac;
966 unsigned long flags;
967
968 for_each_online_node(i) {
969 alc = alien[i];
970 if (alc) {
971 LIST_HEAD(list);
972
973 ac = &alc->ac;
974 spin_lock_irqsave(&alc->lock, flags);
975 __drain_alien_cache(cachep, ac, i, &list);
976 spin_unlock_irqrestore(&alc->lock, flags);
977 slabs_destroy(cachep, &list);
978 }
979 }
980 }
981
982 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983 int node, int page_node)
984 {
985 struct kmem_cache_node *n;
986 struct alien_cache *alien = NULL;
987 struct array_cache *ac;
988 LIST_HEAD(list);
989
990 n = get_node(cachep, node);
991 STATS_INC_NODEFREES(cachep);
992 if (n->alien && n->alien[page_node]) {
993 alien = n->alien[page_node];
994 ac = &alien->ac;
995 spin_lock(&alien->lock);
996 if (unlikely(ac->avail == ac->limit)) {
997 STATS_INC_ACOVERFLOW(cachep);
998 __drain_alien_cache(cachep, ac, page_node, &list);
999 }
1000 ac_put_obj(cachep, ac, objp);
1001 spin_unlock(&alien->lock);
1002 slabs_destroy(cachep, &list);
1003 } else {
1004 n = get_node(cachep, page_node);
1005 spin_lock(&n->list_lock);
1006 free_block(cachep, &objp, 1, page_node, &list);
1007 spin_unlock(&n->list_lock);
1008 slabs_destroy(cachep, &list);
1009 }
1010 return 1;
1011 }
1012
1013 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1014 {
1015 int page_node = page_to_nid(virt_to_page(objp));
1016 int node = numa_mem_id();
1017 /*
1018 * Make sure we are not freeing a object from another node to the array
1019 * cache on this cpu.
1020 */
1021 if (likely(node == page_node))
1022 return 0;
1023
1024 return __cache_free_alien(cachep, objp, node, page_node);
1025 }
1026 #endif
1027
1028 /*
1029 * Allocates and initializes node for a node on each slab cache, used for
1030 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1031 * will be allocated off-node since memory is not yet online for the new node.
1032 * When hotplugging memory or a cpu, existing node are not replaced if
1033 * already in use.
1034 *
1035 * Must hold slab_mutex.
1036 */
1037 static int init_cache_node_node(int node)
1038 {
1039 struct kmem_cache *cachep;
1040 struct kmem_cache_node *n;
1041 const size_t memsize = sizeof(struct kmem_cache_node);
1042
1043 list_for_each_entry(cachep, &slab_caches, list) {
1044 /*
1045 * Set up the kmem_cache_node for cpu before we can
1046 * begin anything. Make sure some other cpu on this
1047 * node has not already allocated this
1048 */
1049 n = get_node(cachep, node);
1050 if (!n) {
1051 n = kmalloc_node(memsize, GFP_KERNEL, node);
1052 if (!n)
1053 return -ENOMEM;
1054 kmem_cache_node_init(n);
1055 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057
1058 /*
1059 * The kmem_cache_nodes don't come and go as CPUs
1060 * come and go. slab_mutex is sufficient
1061 * protection here.
1062 */
1063 cachep->node[node] = n;
1064 }
1065
1066 spin_lock_irq(&n->list_lock);
1067 n->free_limit =
1068 (1 + nr_cpus_node(node)) *
1069 cachep->batchcount + cachep->num;
1070 spin_unlock_irq(&n->list_lock);
1071 }
1072 return 0;
1073 }
1074
1075 static inline int slabs_tofree(struct kmem_cache *cachep,
1076 struct kmem_cache_node *n)
1077 {
1078 return (n->free_objects + cachep->num - 1) / cachep->num;
1079 }
1080
1081 static void cpuup_canceled(long cpu)
1082 {
1083 struct kmem_cache *cachep;
1084 struct kmem_cache_node *n = NULL;
1085 int node = cpu_to_mem(cpu);
1086 const struct cpumask *mask = cpumask_of_node(node);
1087
1088 list_for_each_entry(cachep, &slab_caches, list) {
1089 struct array_cache *nc;
1090 struct array_cache *shared;
1091 struct alien_cache **alien;
1092 LIST_HEAD(list);
1093
1094 n = get_node(cachep, node);
1095 if (!n)
1096 continue;
1097
1098 spin_lock_irq(&n->list_lock);
1099
1100 /* Free limit for this kmem_cache_node */
1101 n->free_limit -= cachep->batchcount;
1102
1103 /* cpu is dead; no one can alloc from it. */
1104 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105 if (nc) {
1106 free_block(cachep, nc->entry, nc->avail, node, &list);
1107 nc->avail = 0;
1108 }
1109
1110 if (!cpumask_empty(mask)) {
1111 spin_unlock_irq(&n->list_lock);
1112 goto free_slab;
1113 }
1114
1115 shared = n->shared;
1116 if (shared) {
1117 free_block(cachep, shared->entry,
1118 shared->avail, node, &list);
1119 n->shared = NULL;
1120 }
1121
1122 alien = n->alien;
1123 n->alien = NULL;
1124
1125 spin_unlock_irq(&n->list_lock);
1126
1127 kfree(shared);
1128 if (alien) {
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1131 }
1132
1133 free_slab:
1134 slabs_destroy(cachep, &list);
1135 }
1136 /*
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1140 */
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 n = get_node(cachep, node);
1143 if (!n)
1144 continue;
1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 }
1147 }
1148
1149 static int cpuup_prepare(long cpu)
1150 {
1151 struct kmem_cache *cachep;
1152 struct kmem_cache_node *n = NULL;
1153 int node = cpu_to_mem(cpu);
1154 int err;
1155
1156 /*
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
1160 * kmem_cache_node and not this cpu's kmem_cache_node
1161 */
1162 err = init_cache_node_node(node);
1163 if (err < 0)
1164 goto bad;
1165
1166 /*
1167 * Now we can go ahead with allocating the shared arrays and
1168 * array caches
1169 */
1170 list_for_each_entry(cachep, &slab_caches, list) {
1171 struct array_cache *shared = NULL;
1172 struct alien_cache **alien = NULL;
1173
1174 if (cachep->shared) {
1175 shared = alloc_arraycache(node,
1176 cachep->shared * cachep->batchcount,
1177 0xbaadf00d, GFP_KERNEL);
1178 if (!shared)
1179 goto bad;
1180 }
1181 if (use_alien_caches) {
1182 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183 if (!alien) {
1184 kfree(shared);
1185 goto bad;
1186 }
1187 }
1188 n = get_node(cachep, node);
1189 BUG_ON(!n);
1190
1191 spin_lock_irq(&n->list_lock);
1192 if (!n->shared) {
1193 /*
1194 * We are serialised from CPU_DEAD or
1195 * CPU_UP_CANCELLED by the cpucontrol lock
1196 */
1197 n->shared = shared;
1198 shared = NULL;
1199 }
1200 #ifdef CONFIG_NUMA
1201 if (!n->alien) {
1202 n->alien = alien;
1203 alien = NULL;
1204 }
1205 #endif
1206 spin_unlock_irq(&n->list_lock);
1207 kfree(shared);
1208 free_alien_cache(alien);
1209 }
1210
1211 return 0;
1212 bad:
1213 cpuup_canceled(cpu);
1214 return -ENOMEM;
1215 }
1216
1217 static int cpuup_callback(struct notifier_block *nfb,
1218 unsigned long action, void *hcpu)
1219 {
1220 long cpu = (long)hcpu;
1221 int err = 0;
1222
1223 switch (action) {
1224 case CPU_UP_PREPARE:
1225 case CPU_UP_PREPARE_FROZEN:
1226 mutex_lock(&slab_mutex);
1227 err = cpuup_prepare(cpu);
1228 mutex_unlock(&slab_mutex);
1229 break;
1230 case CPU_ONLINE:
1231 case CPU_ONLINE_FROZEN:
1232 start_cpu_timer(cpu);
1233 break;
1234 #ifdef CONFIG_HOTPLUG_CPU
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 /*
1238 * Shutdown cache reaper. Note that the slab_mutex is
1239 * held so that if cache_reap() is invoked it cannot do
1240 * anything expensive but will only modify reap_work
1241 * and reschedule the timer.
1242 */
1243 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244 /* Now the cache_reaper is guaranteed to be not running. */
1245 per_cpu(slab_reap_work, cpu).work.func = NULL;
1246 break;
1247 case CPU_DOWN_FAILED:
1248 case CPU_DOWN_FAILED_FROZEN:
1249 start_cpu_timer(cpu);
1250 break;
1251 case CPU_DEAD:
1252 case CPU_DEAD_FROZEN:
1253 /*
1254 * Even if all the cpus of a node are down, we don't free the
1255 * kmem_cache_node of any cache. This to avoid a race between
1256 * cpu_down, and a kmalloc allocation from another cpu for
1257 * memory from the node of the cpu going down. The node
1258 * structure is usually allocated from kmem_cache_create() and
1259 * gets destroyed at kmem_cache_destroy().
1260 */
1261 /* fall through */
1262 #endif
1263 case CPU_UP_CANCELED:
1264 case CPU_UP_CANCELED_FROZEN:
1265 mutex_lock(&slab_mutex);
1266 cpuup_canceled(cpu);
1267 mutex_unlock(&slab_mutex);
1268 break;
1269 }
1270 return notifier_from_errno(err);
1271 }
1272
1273 static struct notifier_block cpucache_notifier = {
1274 &cpuup_callback, NULL, 0
1275 };
1276
1277 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1278 /*
1279 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280 * Returns -EBUSY if all objects cannot be drained so that the node is not
1281 * removed.
1282 *
1283 * Must hold slab_mutex.
1284 */
1285 static int __meminit drain_cache_node_node(int node)
1286 {
1287 struct kmem_cache *cachep;
1288 int ret = 0;
1289
1290 list_for_each_entry(cachep, &slab_caches, list) {
1291 struct kmem_cache_node *n;
1292
1293 n = get_node(cachep, node);
1294 if (!n)
1295 continue;
1296
1297 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1298
1299 if (!list_empty(&n->slabs_full) ||
1300 !list_empty(&n->slabs_partial)) {
1301 ret = -EBUSY;
1302 break;
1303 }
1304 }
1305 return ret;
1306 }
1307
1308 static int __meminit slab_memory_callback(struct notifier_block *self,
1309 unsigned long action, void *arg)
1310 {
1311 struct memory_notify *mnb = arg;
1312 int ret = 0;
1313 int nid;
1314
1315 nid = mnb->status_change_nid;
1316 if (nid < 0)
1317 goto out;
1318
1319 switch (action) {
1320 case MEM_GOING_ONLINE:
1321 mutex_lock(&slab_mutex);
1322 ret = init_cache_node_node(nid);
1323 mutex_unlock(&slab_mutex);
1324 break;
1325 case MEM_GOING_OFFLINE:
1326 mutex_lock(&slab_mutex);
1327 ret = drain_cache_node_node(nid);
1328 mutex_unlock(&slab_mutex);
1329 break;
1330 case MEM_ONLINE:
1331 case MEM_OFFLINE:
1332 case MEM_CANCEL_ONLINE:
1333 case MEM_CANCEL_OFFLINE:
1334 break;
1335 }
1336 out:
1337 return notifier_from_errno(ret);
1338 }
1339 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1340
1341 /*
1342 * swap the static kmem_cache_node with kmalloced memory
1343 */
1344 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345 int nodeid)
1346 {
1347 struct kmem_cache_node *ptr;
1348
1349 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350 BUG_ON(!ptr);
1351
1352 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1353 /*
1354 * Do not assume that spinlocks can be initialized via memcpy:
1355 */
1356 spin_lock_init(&ptr->list_lock);
1357
1358 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359 cachep->node[nodeid] = ptr;
1360 }
1361
1362 /*
1363 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364 * size of kmem_cache_node.
1365 */
1366 static void __init set_up_node(struct kmem_cache *cachep, int index)
1367 {
1368 int node;
1369
1370 for_each_online_node(node) {
1371 cachep->node[node] = &init_kmem_cache_node[index + node];
1372 cachep->node[node]->next_reap = jiffies +
1373 REAPTIMEOUT_NODE +
1374 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1375 }
1376 }
1377
1378 /*
1379 * Initialisation. Called after the page allocator have been initialised and
1380 * before smp_init().
1381 */
1382 void __init kmem_cache_init(void)
1383 {
1384 int i;
1385
1386 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387 sizeof(struct rcu_head));
1388 kmem_cache = &kmem_cache_boot;
1389
1390 if (num_possible_nodes() == 1)
1391 use_alien_caches = 0;
1392
1393 for (i = 0; i < NUM_INIT_LISTS; i++)
1394 kmem_cache_node_init(&init_kmem_cache_node[i]);
1395
1396 /*
1397 * Fragmentation resistance on low memory - only use bigger
1398 * page orders on machines with more than 32MB of memory if
1399 * not overridden on the command line.
1400 */
1401 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402 slab_max_order = SLAB_MAX_ORDER_HI;
1403
1404 /* Bootstrap is tricky, because several objects are allocated
1405 * from caches that do not exist yet:
1406 * 1) initialize the kmem_cache cache: it contains the struct
1407 * kmem_cache structures of all caches, except kmem_cache itself:
1408 * kmem_cache is statically allocated.
1409 * Initially an __init data area is used for the head array and the
1410 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1411 * array at the end of the bootstrap.
1412 * 2) Create the first kmalloc cache.
1413 * The struct kmem_cache for the new cache is allocated normally.
1414 * An __init data area is used for the head array.
1415 * 3) Create the remaining kmalloc caches, with minimally sized
1416 * head arrays.
1417 * 4) Replace the __init data head arrays for kmem_cache and the first
1418 * kmalloc cache with kmalloc allocated arrays.
1419 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420 * the other cache's with kmalloc allocated memory.
1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1422 */
1423
1424 /* 1) create the kmem_cache */
1425
1426 /*
1427 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1428 */
1429 create_boot_cache(kmem_cache, "kmem_cache",
1430 offsetof(struct kmem_cache, node) +
1431 nr_node_ids * sizeof(struct kmem_cache_node *),
1432 SLAB_HWCACHE_ALIGN);
1433 list_add(&kmem_cache->list, &slab_caches);
1434 slab_state = PARTIAL;
1435
1436 /*
1437 * Initialize the caches that provide memory for the kmem_cache_node
1438 * structures first. Without this, further allocations will bug.
1439 */
1440 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442 slab_state = PARTIAL_NODE;
1443
1444 slab_early_init = 0;
1445
1446 /* 5) Replace the bootstrap kmem_cache_node */
1447 {
1448 int nid;
1449
1450 for_each_online_node(nid) {
1451 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1452
1453 init_list(kmalloc_caches[INDEX_NODE],
1454 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1455 }
1456 }
1457
1458 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1459 }
1460
1461 void __init kmem_cache_init_late(void)
1462 {
1463 struct kmem_cache *cachep;
1464
1465 slab_state = UP;
1466
1467 /* 6) resize the head arrays to their final sizes */
1468 mutex_lock(&slab_mutex);
1469 list_for_each_entry(cachep, &slab_caches, list)
1470 if (enable_cpucache(cachep, GFP_NOWAIT))
1471 BUG();
1472 mutex_unlock(&slab_mutex);
1473
1474 /* Done! */
1475 slab_state = FULL;
1476
1477 /*
1478 * Register a cpu startup notifier callback that initializes
1479 * cpu_cache_get for all new cpus
1480 */
1481 register_cpu_notifier(&cpucache_notifier);
1482
1483 #ifdef CONFIG_NUMA
1484 /*
1485 * Register a memory hotplug callback that initializes and frees
1486 * node.
1487 */
1488 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489 #endif
1490
1491 /*
1492 * The reap timers are started later, with a module init call: That part
1493 * of the kernel is not yet operational.
1494 */
1495 }
1496
1497 static int __init cpucache_init(void)
1498 {
1499 int cpu;
1500
1501 /*
1502 * Register the timers that return unneeded pages to the page allocator
1503 */
1504 for_each_online_cpu(cpu)
1505 start_cpu_timer(cpu);
1506
1507 /* Done! */
1508 slab_state = FULL;
1509 return 0;
1510 }
1511 __initcall(cpucache_init);
1512
1513 static noinline void
1514 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1515 {
1516 #if DEBUG
1517 struct kmem_cache_node *n;
1518 struct page *page;
1519 unsigned long flags;
1520 int node;
1521 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522 DEFAULT_RATELIMIT_BURST);
1523
1524 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525 return;
1526
1527 printk(KERN_WARNING
1528 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 nodeid, gfpflags);
1530 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1531 cachep->name, cachep->size, cachep->gfporder);
1532
1533 for_each_kmem_cache_node(cachep, node, n) {
1534 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535 unsigned long active_slabs = 0, num_slabs = 0;
1536
1537 spin_lock_irqsave(&n->list_lock, flags);
1538 list_for_each_entry(page, &n->slabs_full, lru) {
1539 active_objs += cachep->num;
1540 active_slabs++;
1541 }
1542 list_for_each_entry(page, &n->slabs_partial, lru) {
1543 active_objs += page->active;
1544 active_slabs++;
1545 }
1546 list_for_each_entry(page, &n->slabs_free, lru)
1547 num_slabs++;
1548
1549 free_objects += n->free_objects;
1550 spin_unlock_irqrestore(&n->list_lock, flags);
1551
1552 num_slabs += active_slabs;
1553 num_objs = num_slabs * cachep->num;
1554 printk(KERN_WARNING
1555 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 node, active_slabs, num_slabs, active_objs, num_objs,
1557 free_objects);
1558 }
1559 #endif
1560 }
1561
1562 /*
1563 * Interface to system's page allocator. No need to hold the
1564 * kmem_cache_node ->list_lock.
1565 *
1566 * If we requested dmaable memory, we will get it. Even if we
1567 * did not request dmaable memory, we might get it, but that
1568 * would be relatively rare and ignorable.
1569 */
1570 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571 int nodeid)
1572 {
1573 struct page *page;
1574 int nr_pages;
1575
1576 flags |= cachep->allocflags;
1577 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578 flags |= __GFP_RECLAIMABLE;
1579
1580 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581 return NULL;
1582
1583 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584 if (!page) {
1585 memcg_uncharge_slab(cachep, cachep->gfporder);
1586 slab_out_of_memory(cachep, flags, nodeid);
1587 return NULL;
1588 }
1589
1590 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591 if (unlikely(page->pfmemalloc))
1592 pfmemalloc_active = true;
1593
1594 nr_pages = (1 << cachep->gfporder);
1595 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_RECLAIMABLE, nr_pages);
1598 else
1599 add_zone_page_state(page_zone(page),
1600 NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 __SetPageSlab(page);
1602 if (page->pfmemalloc)
1603 SetPageSlabPfmemalloc(page);
1604
1605 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1607
1608 if (cachep->ctor)
1609 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610 else
1611 kmemcheck_mark_unallocated_pages(page, nr_pages);
1612 }
1613
1614 return page;
1615 }
1616
1617 /*
1618 * Interface to system's page release.
1619 */
1620 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1621 {
1622 const unsigned long nr_freed = (1 << cachep->gfporder);
1623
1624 kmemcheck_free_shadow(page, cachep->gfporder);
1625
1626 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 sub_zone_page_state(page_zone(page),
1628 NR_SLAB_RECLAIMABLE, nr_freed);
1629 else
1630 sub_zone_page_state(page_zone(page),
1631 NR_SLAB_UNRECLAIMABLE, nr_freed);
1632
1633 BUG_ON(!PageSlab(page));
1634 __ClearPageSlabPfmemalloc(page);
1635 __ClearPageSlab(page);
1636 page_mapcount_reset(page);
1637 page->mapping = NULL;
1638
1639 if (current->reclaim_state)
1640 current->reclaim_state->reclaimed_slab += nr_freed;
1641 __free_pages(page, cachep->gfporder);
1642 memcg_uncharge_slab(cachep, cachep->gfporder);
1643 }
1644
1645 static void kmem_rcu_free(struct rcu_head *head)
1646 {
1647 struct kmem_cache *cachep;
1648 struct page *page;
1649
1650 page = container_of(head, struct page, rcu_head);
1651 cachep = page->slab_cache;
1652
1653 kmem_freepages(cachep, page);
1654 }
1655
1656 #if DEBUG
1657
1658 #ifdef CONFIG_DEBUG_PAGEALLOC
1659 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1660 unsigned long caller)
1661 {
1662 int size = cachep->object_size;
1663
1664 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1665
1666 if (size < 5 * sizeof(unsigned long))
1667 return;
1668
1669 *addr++ = 0x12345678;
1670 *addr++ = caller;
1671 *addr++ = smp_processor_id();
1672 size -= 3 * sizeof(unsigned long);
1673 {
1674 unsigned long *sptr = &caller;
1675 unsigned long svalue;
1676
1677 while (!kstack_end(sptr)) {
1678 svalue = *sptr++;
1679 if (kernel_text_address(svalue)) {
1680 *addr++ = svalue;
1681 size -= sizeof(unsigned long);
1682 if (size <= sizeof(unsigned long))
1683 break;
1684 }
1685 }
1686
1687 }
1688 *addr++ = 0x87654321;
1689 }
1690 #endif
1691
1692 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1693 {
1694 int size = cachep->object_size;
1695 addr = &((char *)addr)[obj_offset(cachep)];
1696
1697 memset(addr, val, size);
1698 *(unsigned char *)(addr + size - 1) = POISON_END;
1699 }
1700
1701 static void dump_line(char *data, int offset, int limit)
1702 {
1703 int i;
1704 unsigned char error = 0;
1705 int bad_count = 0;
1706
1707 printk(KERN_ERR "%03x: ", offset);
1708 for (i = 0; i < limit; i++) {
1709 if (data[offset + i] != POISON_FREE) {
1710 error = data[offset + i];
1711 bad_count++;
1712 }
1713 }
1714 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715 &data[offset], limit, 1);
1716
1717 if (bad_count == 1) {
1718 error ^= POISON_FREE;
1719 if (!(error & (error - 1))) {
1720 printk(KERN_ERR "Single bit error detected. Probably "
1721 "bad RAM.\n");
1722 #ifdef CONFIG_X86
1723 printk(KERN_ERR "Run memtest86+ or a similar memory "
1724 "test tool.\n");
1725 #else
1726 printk(KERN_ERR "Run a memory test tool.\n");
1727 #endif
1728 }
1729 }
1730 }
1731 #endif
1732
1733 #if DEBUG
1734
1735 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1736 {
1737 int i, size;
1738 char *realobj;
1739
1740 if (cachep->flags & SLAB_RED_ZONE) {
1741 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1742 *dbg_redzone1(cachep, objp),
1743 *dbg_redzone2(cachep, objp));
1744 }
1745
1746 if (cachep->flags & SLAB_STORE_USER) {
1747 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748 *dbg_userword(cachep, objp),
1749 *dbg_userword(cachep, objp));
1750 }
1751 realobj = (char *)objp + obj_offset(cachep);
1752 size = cachep->object_size;
1753 for (i = 0; i < size && lines; i += 16, lines--) {
1754 int limit;
1755 limit = 16;
1756 if (i + limit > size)
1757 limit = size - i;
1758 dump_line(realobj, i, limit);
1759 }
1760 }
1761
1762 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1763 {
1764 char *realobj;
1765 int size, i;
1766 int lines = 0;
1767
1768 realobj = (char *)objp + obj_offset(cachep);
1769 size = cachep->object_size;
1770
1771 for (i = 0; i < size; i++) {
1772 char exp = POISON_FREE;
1773 if (i == size - 1)
1774 exp = POISON_END;
1775 if (realobj[i] != exp) {
1776 int limit;
1777 /* Mismatch ! */
1778 /* Print header */
1779 if (lines == 0) {
1780 printk(KERN_ERR
1781 "Slab corruption (%s): %s start=%p, len=%d\n",
1782 print_tainted(), cachep->name, realobj, size);
1783 print_objinfo(cachep, objp, 0);
1784 }
1785 /* Hexdump the affected line */
1786 i = (i / 16) * 16;
1787 limit = 16;
1788 if (i + limit > size)
1789 limit = size - i;
1790 dump_line(realobj, i, limit);
1791 i += 16;
1792 lines++;
1793 /* Limit to 5 lines */
1794 if (lines > 5)
1795 break;
1796 }
1797 }
1798 if (lines != 0) {
1799 /* Print some data about the neighboring objects, if they
1800 * exist:
1801 */
1802 struct page *page = virt_to_head_page(objp);
1803 unsigned int objnr;
1804
1805 objnr = obj_to_index(cachep, page, objp);
1806 if (objnr) {
1807 objp = index_to_obj(cachep, page, objnr - 1);
1808 realobj = (char *)objp + obj_offset(cachep);
1809 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1810 realobj, size);
1811 print_objinfo(cachep, objp, 2);
1812 }
1813 if (objnr + 1 < cachep->num) {
1814 objp = index_to_obj(cachep, page, objnr + 1);
1815 realobj = (char *)objp + obj_offset(cachep);
1816 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1817 realobj, size);
1818 print_objinfo(cachep, objp, 2);
1819 }
1820 }
1821 }
1822 #endif
1823
1824 #if DEBUG
1825 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826 struct page *page)
1827 {
1828 int i;
1829 for (i = 0; i < cachep->num; i++) {
1830 void *objp = index_to_obj(cachep, page, i);
1831
1832 if (cachep->flags & SLAB_POISON) {
1833 #ifdef CONFIG_DEBUG_PAGEALLOC
1834 if (cachep->size % PAGE_SIZE == 0 &&
1835 OFF_SLAB(cachep))
1836 kernel_map_pages(virt_to_page(objp),
1837 cachep->size / PAGE_SIZE, 1);
1838 else
1839 check_poison_obj(cachep, objp);
1840 #else
1841 check_poison_obj(cachep, objp);
1842 #endif
1843 }
1844 if (cachep->flags & SLAB_RED_ZONE) {
1845 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846 slab_error(cachep, "start of a freed object "
1847 "was overwritten");
1848 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849 slab_error(cachep, "end of a freed object "
1850 "was overwritten");
1851 }
1852 }
1853 }
1854 #else
1855 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856 struct page *page)
1857 {
1858 }
1859 #endif
1860
1861 /**
1862 * slab_destroy - destroy and release all objects in a slab
1863 * @cachep: cache pointer being destroyed
1864 * @page: page pointer being destroyed
1865 *
1866 * Destroy all the objs in a slab page, and release the mem back to the system.
1867 * Before calling the slab page must have been unlinked from the cache. The
1868 * kmem_cache_node ->list_lock is not held/needed.
1869 */
1870 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1871 {
1872 void *freelist;
1873
1874 freelist = page->freelist;
1875 slab_destroy_debugcheck(cachep, page);
1876 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877 struct rcu_head *head;
1878
1879 /*
1880 * RCU free overloads the RCU head over the LRU.
1881 * slab_page has been overloeaded over the LRU,
1882 * however it is not used from now on so that
1883 * we can use it safely.
1884 */
1885 head = (void *)&page->rcu_head;
1886 call_rcu(head, kmem_rcu_free);
1887
1888 } else {
1889 kmem_freepages(cachep, page);
1890 }
1891
1892 /*
1893 * From now on, we don't use freelist
1894 * although actual page can be freed in rcu context
1895 */
1896 if (OFF_SLAB(cachep))
1897 kmem_cache_free(cachep->freelist_cache, freelist);
1898 }
1899
1900 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901 {
1902 struct page *page, *n;
1903
1904 list_for_each_entry_safe(page, n, list, lru) {
1905 list_del(&page->lru);
1906 slab_destroy(cachep, page);
1907 }
1908 }
1909
1910 /**
1911 * calculate_slab_order - calculate size (page order) of slabs
1912 * @cachep: pointer to the cache that is being created
1913 * @size: size of objects to be created in this cache.
1914 * @align: required alignment for the objects.
1915 * @flags: slab allocation flags
1916 *
1917 * Also calculates the number of objects per slab.
1918 *
1919 * This could be made much more intelligent. For now, try to avoid using
1920 * high order pages for slabs. When the gfp() functions are more friendly
1921 * towards high-order requests, this should be changed.
1922 */
1923 static size_t calculate_slab_order(struct kmem_cache *cachep,
1924 size_t size, size_t align, unsigned long flags)
1925 {
1926 unsigned long offslab_limit;
1927 size_t left_over = 0;
1928 int gfporder;
1929
1930 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 unsigned int num;
1932 size_t remainder;
1933
1934 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 if (!num)
1936 continue;
1937
1938 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 if (num > SLAB_OBJ_MAX_NUM)
1940 break;
1941
1942 if (flags & CFLGS_OFF_SLAB) {
1943 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1944 /*
1945 * Max number of objs-per-slab for caches which
1946 * use off-slab slabs. Needed to avoid a possible
1947 * looping condition in cache_grow().
1948 */
1949 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950 freelist_size_per_obj += sizeof(char);
1951 offslab_limit = size;
1952 offslab_limit /= freelist_size_per_obj;
1953
1954 if (num > offslab_limit)
1955 break;
1956 }
1957
1958 /* Found something acceptable - save it away */
1959 cachep->num = num;
1960 cachep->gfporder = gfporder;
1961 left_over = remainder;
1962
1963 /*
1964 * A VFS-reclaimable slab tends to have most allocations
1965 * as GFP_NOFS and we really don't want to have to be allocating
1966 * higher-order pages when we are unable to shrink dcache.
1967 */
1968 if (flags & SLAB_RECLAIM_ACCOUNT)
1969 break;
1970
1971 /*
1972 * Large number of objects is good, but very large slabs are
1973 * currently bad for the gfp()s.
1974 */
1975 if (gfporder >= slab_max_order)
1976 break;
1977
1978 /*
1979 * Acceptable internal fragmentation?
1980 */
1981 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982 break;
1983 }
1984 return left_over;
1985 }
1986
1987 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988 struct kmem_cache *cachep, int entries, int batchcount)
1989 {
1990 int cpu;
1991 size_t size;
1992 struct array_cache __percpu *cpu_cache;
1993
1994 size = sizeof(void *) * entries + sizeof(struct array_cache);
1995 cpu_cache = __alloc_percpu(size, sizeof(void *));
1996
1997 if (!cpu_cache)
1998 return NULL;
1999
2000 for_each_possible_cpu(cpu) {
2001 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002 entries, batchcount);
2003 }
2004
2005 return cpu_cache;
2006 }
2007
2008 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2009 {
2010 if (slab_state >= FULL)
2011 return enable_cpucache(cachep, gfp);
2012
2013 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014 if (!cachep->cpu_cache)
2015 return 1;
2016
2017 if (slab_state == DOWN) {
2018 /* Creation of first cache (kmem_cache). */
2019 set_up_node(kmem_cache, CACHE_CACHE);
2020 } else if (slab_state == PARTIAL) {
2021 /* For kmem_cache_node */
2022 set_up_node(cachep, SIZE_NODE);
2023 } else {
2024 int node;
2025
2026 for_each_online_node(node) {
2027 cachep->node[node] = kmalloc_node(
2028 sizeof(struct kmem_cache_node), gfp, node);
2029 BUG_ON(!cachep->node[node]);
2030 kmem_cache_node_init(cachep->node[node]);
2031 }
2032 }
2033
2034 cachep->node[numa_mem_id()]->next_reap =
2035 jiffies + REAPTIMEOUT_NODE +
2036 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2037
2038 cpu_cache_get(cachep)->avail = 0;
2039 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 cpu_cache_get(cachep)->batchcount = 1;
2041 cpu_cache_get(cachep)->touched = 0;
2042 cachep->batchcount = 1;
2043 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044 return 0;
2045 }
2046
2047 unsigned long kmem_cache_flags(unsigned long object_size,
2048 unsigned long flags, const char *name,
2049 void (*ctor)(void *))
2050 {
2051 return flags;
2052 }
2053
2054 struct kmem_cache *
2055 __kmem_cache_alias(const char *name, size_t size, size_t align,
2056 unsigned long flags, void (*ctor)(void *))
2057 {
2058 struct kmem_cache *cachep;
2059
2060 cachep = find_mergeable(size, align, flags, name, ctor);
2061 if (cachep) {
2062 cachep->refcount++;
2063
2064 /*
2065 * Adjust the object sizes so that we clear
2066 * the complete object on kzalloc.
2067 */
2068 cachep->object_size = max_t(int, cachep->object_size, size);
2069 }
2070 return cachep;
2071 }
2072
2073 /**
2074 * __kmem_cache_create - Create a cache.
2075 * @cachep: cache management descriptor
2076 * @flags: SLAB flags
2077 *
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
2080 * The @ctor is run when new pages are allocated by the cache.
2081 *
2082 * The flags are
2083 *
2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085 * to catch references to uninitialised memory.
2086 *
2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088 * for buffer overruns.
2089 *
2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091 * cacheline. This can be beneficial if you're counting cycles as closely
2092 * as davem.
2093 */
2094 int
2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2096 {
2097 size_t left_over, freelist_size;
2098 size_t ralign = BYTES_PER_WORD;
2099 gfp_t gfp;
2100 int err;
2101 size_t size = cachep->size;
2102
2103 #if DEBUG
2104 #if FORCED_DEBUG
2105 /*
2106 * Enable redzoning and last user accounting, except for caches with
2107 * large objects, if the increased size would increase the object size
2108 * above the next power of two: caches with object sizes just above a
2109 * power of two have a significant amount of internal fragmentation.
2110 */
2111 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112 2 * sizeof(unsigned long long)))
2113 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2114 if (!(flags & SLAB_DESTROY_BY_RCU))
2115 flags |= SLAB_POISON;
2116 #endif
2117 if (flags & SLAB_DESTROY_BY_RCU)
2118 BUG_ON(flags & SLAB_POISON);
2119 #endif
2120
2121 /*
2122 * Check that size is in terms of words. This is needed to avoid
2123 * unaligned accesses for some archs when redzoning is used, and makes
2124 * sure any on-slab bufctl's are also correctly aligned.
2125 */
2126 if (size & (BYTES_PER_WORD - 1)) {
2127 size += (BYTES_PER_WORD - 1);
2128 size &= ~(BYTES_PER_WORD - 1);
2129 }
2130
2131 if (flags & SLAB_RED_ZONE) {
2132 ralign = REDZONE_ALIGN;
2133 /* If redzoning, ensure that the second redzone is suitably
2134 * aligned, by adjusting the object size accordingly. */
2135 size += REDZONE_ALIGN - 1;
2136 size &= ~(REDZONE_ALIGN - 1);
2137 }
2138
2139 /* 3) caller mandated alignment */
2140 if (ralign < cachep->align) {
2141 ralign = cachep->align;
2142 }
2143 /* disable debug if necessary */
2144 if (ralign > __alignof__(unsigned long long))
2145 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2146 /*
2147 * 4) Store it.
2148 */
2149 cachep->align = ralign;
2150
2151 if (slab_is_available())
2152 gfp = GFP_KERNEL;
2153 else
2154 gfp = GFP_NOWAIT;
2155
2156 #if DEBUG
2157
2158 /*
2159 * Both debugging options require word-alignment which is calculated
2160 * into align above.
2161 */
2162 if (flags & SLAB_RED_ZONE) {
2163 /* add space for red zone words */
2164 cachep->obj_offset += sizeof(unsigned long long);
2165 size += 2 * sizeof(unsigned long long);
2166 }
2167 if (flags & SLAB_STORE_USER) {
2168 /* user store requires one word storage behind the end of
2169 * the real object. But if the second red zone needs to be
2170 * aligned to 64 bits, we must allow that much space.
2171 */
2172 if (flags & SLAB_RED_ZONE)
2173 size += REDZONE_ALIGN;
2174 else
2175 size += BYTES_PER_WORD;
2176 }
2177 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2178 if (size >= kmalloc_size(INDEX_NODE + 1)
2179 && cachep->object_size > cache_line_size()
2180 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2181 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2182 size = PAGE_SIZE;
2183 }
2184 #endif
2185 #endif
2186
2187 /*
2188 * Determine if the slab management is 'on' or 'off' slab.
2189 * (bootstrapping cannot cope with offslab caches so don't do
2190 * it too early on. Always use on-slab management when
2191 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2192 */
2193 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2194 !(flags & SLAB_NOLEAKTRACE))
2195 /*
2196 * Size is large, assume best to place the slab management obj
2197 * off-slab (should allow better packing of objs).
2198 */
2199 flags |= CFLGS_OFF_SLAB;
2200
2201 size = ALIGN(size, cachep->align);
2202 /*
2203 * We should restrict the number of objects in a slab to implement
2204 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2205 */
2206 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2207 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2208
2209 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2210
2211 if (!cachep->num)
2212 return -E2BIG;
2213
2214 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2215
2216 /*
2217 * If the slab has been placed off-slab, and we have enough space then
2218 * move it on-slab. This is at the expense of any extra colouring.
2219 */
2220 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2221 flags &= ~CFLGS_OFF_SLAB;
2222 left_over -= freelist_size;
2223 }
2224
2225 if (flags & CFLGS_OFF_SLAB) {
2226 /* really off slab. No need for manual alignment */
2227 freelist_size = calculate_freelist_size(cachep->num, 0);
2228
2229 #ifdef CONFIG_PAGE_POISONING
2230 /* If we're going to use the generic kernel_map_pages()
2231 * poisoning, then it's going to smash the contents of
2232 * the redzone and userword anyhow, so switch them off.
2233 */
2234 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2235 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2236 #endif
2237 }
2238
2239 cachep->colour_off = cache_line_size();
2240 /* Offset must be a multiple of the alignment. */
2241 if (cachep->colour_off < cachep->align)
2242 cachep->colour_off = cachep->align;
2243 cachep->colour = left_over / cachep->colour_off;
2244 cachep->freelist_size = freelist_size;
2245 cachep->flags = flags;
2246 cachep->allocflags = __GFP_COMP;
2247 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2248 cachep->allocflags |= GFP_DMA;
2249 cachep->size = size;
2250 cachep->reciprocal_buffer_size = reciprocal_value(size);
2251
2252 if (flags & CFLGS_OFF_SLAB) {
2253 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2254 /*
2255 * This is a possibility for one of the kmalloc_{dma,}_caches.
2256 * But since we go off slab only for object size greater than
2257 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2258 * in ascending order,this should not happen at all.
2259 * But leave a BUG_ON for some lucky dude.
2260 */
2261 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2262 }
2263
2264 err = setup_cpu_cache(cachep, gfp);
2265 if (err) {
2266 __kmem_cache_shutdown(cachep);
2267 return err;
2268 }
2269
2270 return 0;
2271 }
2272
2273 #if DEBUG
2274 static void check_irq_off(void)
2275 {
2276 BUG_ON(!irqs_disabled());
2277 }
2278
2279 static void check_irq_on(void)
2280 {
2281 BUG_ON(irqs_disabled());
2282 }
2283
2284 static void check_spinlock_acquired(struct kmem_cache *cachep)
2285 {
2286 #ifdef CONFIG_SMP
2287 check_irq_off();
2288 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2289 #endif
2290 }
2291
2292 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2293 {
2294 #ifdef CONFIG_SMP
2295 check_irq_off();
2296 assert_spin_locked(&get_node(cachep, node)->list_lock);
2297 #endif
2298 }
2299
2300 #else
2301 #define check_irq_off() do { } while(0)
2302 #define check_irq_on() do { } while(0)
2303 #define check_spinlock_acquired(x) do { } while(0)
2304 #define check_spinlock_acquired_node(x, y) do { } while(0)
2305 #endif
2306
2307 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2308 struct array_cache *ac,
2309 int force, int node);
2310
2311 static void do_drain(void *arg)
2312 {
2313 struct kmem_cache *cachep = arg;
2314 struct array_cache *ac;
2315 int node = numa_mem_id();
2316 struct kmem_cache_node *n;
2317 LIST_HEAD(list);
2318
2319 check_irq_off();
2320 ac = cpu_cache_get(cachep);
2321 n = get_node(cachep, node);
2322 spin_lock(&n->list_lock);
2323 free_block(cachep, ac->entry, ac->avail, node, &list);
2324 spin_unlock(&n->list_lock);
2325 slabs_destroy(cachep, &list);
2326 ac->avail = 0;
2327 }
2328
2329 static void drain_cpu_caches(struct kmem_cache *cachep)
2330 {
2331 struct kmem_cache_node *n;
2332 int node;
2333
2334 on_each_cpu(do_drain, cachep, 1);
2335 check_irq_on();
2336 for_each_kmem_cache_node(cachep, node, n)
2337 if (n->alien)
2338 drain_alien_cache(cachep, n->alien);
2339
2340 for_each_kmem_cache_node(cachep, node, n)
2341 drain_array(cachep, n, n->shared, 1, node);
2342 }
2343
2344 /*
2345 * Remove slabs from the list of free slabs.
2346 * Specify the number of slabs to drain in tofree.
2347 *
2348 * Returns the actual number of slabs released.
2349 */
2350 static int drain_freelist(struct kmem_cache *cache,
2351 struct kmem_cache_node *n, int tofree)
2352 {
2353 struct list_head *p;
2354 int nr_freed;
2355 struct page *page;
2356
2357 nr_freed = 0;
2358 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2359
2360 spin_lock_irq(&n->list_lock);
2361 p = n->slabs_free.prev;
2362 if (p == &n->slabs_free) {
2363 spin_unlock_irq(&n->list_lock);
2364 goto out;
2365 }
2366
2367 page = list_entry(p, struct page, lru);
2368 #if DEBUG
2369 BUG_ON(page->active);
2370 #endif
2371 list_del(&page->lru);
2372 /*
2373 * Safe to drop the lock. The slab is no longer linked
2374 * to the cache.
2375 */
2376 n->free_objects -= cache->num;
2377 spin_unlock_irq(&n->list_lock);
2378 slab_destroy(cache, page);
2379 nr_freed++;
2380 }
2381 out:
2382 return nr_freed;
2383 }
2384
2385 int __kmem_cache_shrink(struct kmem_cache *cachep)
2386 {
2387 int ret = 0;
2388 int node;
2389 struct kmem_cache_node *n;
2390
2391 drain_cpu_caches(cachep);
2392
2393 check_irq_on();
2394 for_each_kmem_cache_node(cachep, node, n) {
2395 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2396
2397 ret += !list_empty(&n->slabs_full) ||
2398 !list_empty(&n->slabs_partial);
2399 }
2400 return (ret ? 1 : 0);
2401 }
2402
2403 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2404 {
2405 int i;
2406 struct kmem_cache_node *n;
2407 int rc = __kmem_cache_shrink(cachep);
2408
2409 if (rc)
2410 return rc;
2411
2412 free_percpu(cachep->cpu_cache);
2413
2414 /* NUMA: free the node structures */
2415 for_each_kmem_cache_node(cachep, i, n) {
2416 kfree(n->shared);
2417 free_alien_cache(n->alien);
2418 kfree(n);
2419 cachep->node[i] = NULL;
2420 }
2421 return 0;
2422 }
2423
2424 /*
2425 * Get the memory for a slab management obj.
2426 *
2427 * For a slab cache when the slab descriptor is off-slab, the
2428 * slab descriptor can't come from the same cache which is being created,
2429 * Because if it is the case, that means we defer the creation of
2430 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2431 * And we eventually call down to __kmem_cache_create(), which
2432 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2433 * This is a "chicken-and-egg" problem.
2434 *
2435 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2436 * which are all initialized during kmem_cache_init().
2437 */
2438 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2439 struct page *page, int colour_off,
2440 gfp_t local_flags, int nodeid)
2441 {
2442 void *freelist;
2443 void *addr = page_address(page);
2444
2445 if (OFF_SLAB(cachep)) {
2446 /* Slab management obj is off-slab. */
2447 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2448 local_flags, nodeid);
2449 if (!freelist)
2450 return NULL;
2451 } else {
2452 freelist = addr + colour_off;
2453 colour_off += cachep->freelist_size;
2454 }
2455 page->active = 0;
2456 page->s_mem = addr + colour_off;
2457 return freelist;
2458 }
2459
2460 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2461 {
2462 return ((freelist_idx_t *)page->freelist)[idx];
2463 }
2464
2465 static inline void set_free_obj(struct page *page,
2466 unsigned int idx, freelist_idx_t val)
2467 {
2468 ((freelist_idx_t *)(page->freelist))[idx] = val;
2469 }
2470
2471 static void cache_init_objs(struct kmem_cache *cachep,
2472 struct page *page)
2473 {
2474 int i;
2475
2476 for (i = 0; i < cachep->num; i++) {
2477 void *objp = index_to_obj(cachep, page, i);
2478 #if DEBUG
2479 /* need to poison the objs? */
2480 if (cachep->flags & SLAB_POISON)
2481 poison_obj(cachep, objp, POISON_FREE);
2482 if (cachep->flags & SLAB_STORE_USER)
2483 *dbg_userword(cachep, objp) = NULL;
2484
2485 if (cachep->flags & SLAB_RED_ZONE) {
2486 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2487 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2488 }
2489 /*
2490 * Constructors are not allowed to allocate memory from the same
2491 * cache which they are a constructor for. Otherwise, deadlock.
2492 * They must also be threaded.
2493 */
2494 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2495 cachep->ctor(objp + obj_offset(cachep));
2496
2497 if (cachep->flags & SLAB_RED_ZONE) {
2498 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2499 slab_error(cachep, "constructor overwrote the"
2500 " end of an object");
2501 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2502 slab_error(cachep, "constructor overwrote the"
2503 " start of an object");
2504 }
2505 if ((cachep->size % PAGE_SIZE) == 0 &&
2506 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2507 kernel_map_pages(virt_to_page(objp),
2508 cachep->size / PAGE_SIZE, 0);
2509 #else
2510 if (cachep->ctor)
2511 cachep->ctor(objp);
2512 #endif
2513 set_obj_status(page, i, OBJECT_FREE);
2514 set_free_obj(page, i, i);
2515 }
2516 }
2517
2518 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2519 {
2520 if (CONFIG_ZONE_DMA_FLAG) {
2521 if (flags & GFP_DMA)
2522 BUG_ON(!(cachep->allocflags & GFP_DMA));
2523 else
2524 BUG_ON(cachep->allocflags & GFP_DMA);
2525 }
2526 }
2527
2528 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2529 int nodeid)
2530 {
2531 void *objp;
2532
2533 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2534 page->active++;
2535 #if DEBUG
2536 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2537 #endif
2538
2539 return objp;
2540 }
2541
2542 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2543 void *objp, int nodeid)
2544 {
2545 unsigned int objnr = obj_to_index(cachep, page, objp);
2546 #if DEBUG
2547 unsigned int i;
2548
2549 /* Verify that the slab belongs to the intended node */
2550 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2551
2552 /* Verify double free bug */
2553 for (i = page->active; i < cachep->num; i++) {
2554 if (get_free_obj(page, i) == objnr) {
2555 printk(KERN_ERR "slab: double free detected in cache "
2556 "'%s', objp %p\n", cachep->name, objp);
2557 BUG();
2558 }
2559 }
2560 #endif
2561 page->active--;
2562 set_free_obj(page, page->active, objnr);
2563 }
2564
2565 /*
2566 * Map pages beginning at addr to the given cache and slab. This is required
2567 * for the slab allocator to be able to lookup the cache and slab of a
2568 * virtual address for kfree, ksize, and slab debugging.
2569 */
2570 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2571 void *freelist)
2572 {
2573 page->slab_cache = cache;
2574 page->freelist = freelist;
2575 }
2576
2577 /*
2578 * Grow (by 1) the number of slabs within a cache. This is called by
2579 * kmem_cache_alloc() when there are no active objs left in a cache.
2580 */
2581 static int cache_grow(struct kmem_cache *cachep,
2582 gfp_t flags, int nodeid, struct page *page)
2583 {
2584 void *freelist;
2585 size_t offset;
2586 gfp_t local_flags;
2587 struct kmem_cache_node *n;
2588
2589 /*
2590 * Be lazy and only check for valid flags here, keeping it out of the
2591 * critical path in kmem_cache_alloc().
2592 */
2593 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2594 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2595
2596 /* Take the node list lock to change the colour_next on this node */
2597 check_irq_off();
2598 n = get_node(cachep, nodeid);
2599 spin_lock(&n->list_lock);
2600
2601 /* Get colour for the slab, and cal the next value. */
2602 offset = n->colour_next;
2603 n->colour_next++;
2604 if (n->colour_next >= cachep->colour)
2605 n->colour_next = 0;
2606 spin_unlock(&n->list_lock);
2607
2608 offset *= cachep->colour_off;
2609
2610 if (local_flags & __GFP_WAIT)
2611 local_irq_enable();
2612
2613 /*
2614 * The test for missing atomic flag is performed here, rather than
2615 * the more obvious place, simply to reduce the critical path length
2616 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2617 * will eventually be caught here (where it matters).
2618 */
2619 kmem_flagcheck(cachep, flags);
2620
2621 /*
2622 * Get mem for the objs. Attempt to allocate a physical page from
2623 * 'nodeid'.
2624 */
2625 if (!page)
2626 page = kmem_getpages(cachep, local_flags, nodeid);
2627 if (!page)
2628 goto failed;
2629
2630 /* Get slab management. */
2631 freelist = alloc_slabmgmt(cachep, page, offset,
2632 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2633 if (!freelist)
2634 goto opps1;
2635
2636 slab_map_pages(cachep, page, freelist);
2637
2638 cache_init_objs(cachep, page);
2639
2640 if (local_flags & __GFP_WAIT)
2641 local_irq_disable();
2642 check_irq_off();
2643 spin_lock(&n->list_lock);
2644
2645 /* Make slab active. */
2646 list_add_tail(&page->lru, &(n->slabs_free));
2647 STATS_INC_GROWN(cachep);
2648 n->free_objects += cachep->num;
2649 spin_unlock(&n->list_lock);
2650 return 1;
2651 opps1:
2652 kmem_freepages(cachep, page);
2653 failed:
2654 if (local_flags & __GFP_WAIT)
2655 local_irq_disable();
2656 return 0;
2657 }
2658
2659 #if DEBUG
2660
2661 /*
2662 * Perform extra freeing checks:
2663 * - detect bad pointers.
2664 * - POISON/RED_ZONE checking
2665 */
2666 static void kfree_debugcheck(const void *objp)
2667 {
2668 if (!virt_addr_valid(objp)) {
2669 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2670 (unsigned long)objp);
2671 BUG();
2672 }
2673 }
2674
2675 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2676 {
2677 unsigned long long redzone1, redzone2;
2678
2679 redzone1 = *dbg_redzone1(cache, obj);
2680 redzone2 = *dbg_redzone2(cache, obj);
2681
2682 /*
2683 * Redzone is ok.
2684 */
2685 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2686 return;
2687
2688 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2689 slab_error(cache, "double free detected");
2690 else
2691 slab_error(cache, "memory outside object was overwritten");
2692
2693 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2694 obj, redzone1, redzone2);
2695 }
2696
2697 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2698 unsigned long caller)
2699 {
2700 unsigned int objnr;
2701 struct page *page;
2702
2703 BUG_ON(virt_to_cache(objp) != cachep);
2704
2705 objp -= obj_offset(cachep);
2706 kfree_debugcheck(objp);
2707 page = virt_to_head_page(objp);
2708
2709 if (cachep->flags & SLAB_RED_ZONE) {
2710 verify_redzone_free(cachep, objp);
2711 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2712 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2713 }
2714 if (cachep->flags & SLAB_STORE_USER)
2715 *dbg_userword(cachep, objp) = (void *)caller;
2716
2717 objnr = obj_to_index(cachep, page, objp);
2718
2719 BUG_ON(objnr >= cachep->num);
2720 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2721
2722 set_obj_status(page, objnr, OBJECT_FREE);
2723 if (cachep->flags & SLAB_POISON) {
2724 #ifdef CONFIG_DEBUG_PAGEALLOC
2725 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2726 store_stackinfo(cachep, objp, caller);
2727 kernel_map_pages(virt_to_page(objp),
2728 cachep->size / PAGE_SIZE, 0);
2729 } else {
2730 poison_obj(cachep, objp, POISON_FREE);
2731 }
2732 #else
2733 poison_obj(cachep, objp, POISON_FREE);
2734 #endif
2735 }
2736 return objp;
2737 }
2738
2739 #else
2740 #define kfree_debugcheck(x) do { } while(0)
2741 #define cache_free_debugcheck(x,objp,z) (objp)
2742 #endif
2743
2744 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2745 bool force_refill)
2746 {
2747 int batchcount;
2748 struct kmem_cache_node *n;
2749 struct array_cache *ac;
2750 int node;
2751
2752 check_irq_off();
2753 node = numa_mem_id();
2754 if (unlikely(force_refill))
2755 goto force_grow;
2756 retry:
2757 ac = cpu_cache_get(cachep);
2758 batchcount = ac->batchcount;
2759 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2760 /*
2761 * If there was little recent activity on this cache, then
2762 * perform only a partial refill. Otherwise we could generate
2763 * refill bouncing.
2764 */
2765 batchcount = BATCHREFILL_LIMIT;
2766 }
2767 n = get_node(cachep, node);
2768
2769 BUG_ON(ac->avail > 0 || !n);
2770 spin_lock(&n->list_lock);
2771
2772 /* See if we can refill from the shared array */
2773 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2774 n->shared->touched = 1;
2775 goto alloc_done;
2776 }
2777
2778 while (batchcount > 0) {
2779 struct list_head *entry;
2780 struct page *page;
2781 /* Get slab alloc is to come from. */
2782 entry = n->slabs_partial.next;
2783 if (entry == &n->slabs_partial) {
2784 n->free_touched = 1;
2785 entry = n->slabs_free.next;
2786 if (entry == &n->slabs_free)
2787 goto must_grow;
2788 }
2789
2790 page = list_entry(entry, struct page, lru);
2791 check_spinlock_acquired(cachep);
2792
2793 /*
2794 * The slab was either on partial or free list so
2795 * there must be at least one object available for
2796 * allocation.
2797 */
2798 BUG_ON(page->active >= cachep->num);
2799
2800 while (page->active < cachep->num && batchcount--) {
2801 STATS_INC_ALLOCED(cachep);
2802 STATS_INC_ACTIVE(cachep);
2803 STATS_SET_HIGH(cachep);
2804
2805 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2806 node));
2807 }
2808
2809 /* move slabp to correct slabp list: */
2810 list_del(&page->lru);
2811 if (page->active == cachep->num)
2812 list_add(&page->lru, &n->slabs_full);
2813 else
2814 list_add(&page->lru, &n->slabs_partial);
2815 }
2816
2817 must_grow:
2818 n->free_objects -= ac->avail;
2819 alloc_done:
2820 spin_unlock(&n->list_lock);
2821
2822 if (unlikely(!ac->avail)) {
2823 int x;
2824 force_grow:
2825 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2826
2827 /* cache_grow can reenable interrupts, then ac could change. */
2828 ac = cpu_cache_get(cachep);
2829 node = numa_mem_id();
2830
2831 /* no objects in sight? abort */
2832 if (!x && (ac->avail == 0 || force_refill))
2833 return NULL;
2834
2835 if (!ac->avail) /* objects refilled by interrupt? */
2836 goto retry;
2837 }
2838 ac->touched = 1;
2839
2840 return ac_get_obj(cachep, ac, flags, force_refill);
2841 }
2842
2843 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2844 gfp_t flags)
2845 {
2846 might_sleep_if(flags & __GFP_WAIT);
2847 #if DEBUG
2848 kmem_flagcheck(cachep, flags);
2849 #endif
2850 }
2851
2852 #if DEBUG
2853 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2854 gfp_t flags, void *objp, unsigned long caller)
2855 {
2856 struct page *page;
2857
2858 if (!objp)
2859 return objp;
2860 if (cachep->flags & SLAB_POISON) {
2861 #ifdef CONFIG_DEBUG_PAGEALLOC
2862 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2863 kernel_map_pages(virt_to_page(objp),
2864 cachep->size / PAGE_SIZE, 1);
2865 else
2866 check_poison_obj(cachep, objp);
2867 #else
2868 check_poison_obj(cachep, objp);
2869 #endif
2870 poison_obj(cachep, objp, POISON_INUSE);
2871 }
2872 if (cachep->flags & SLAB_STORE_USER)
2873 *dbg_userword(cachep, objp) = (void *)caller;
2874
2875 if (cachep->flags & SLAB_RED_ZONE) {
2876 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2877 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2878 slab_error(cachep, "double free, or memory outside"
2879 " object was overwritten");
2880 printk(KERN_ERR
2881 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2882 objp, *dbg_redzone1(cachep, objp),
2883 *dbg_redzone2(cachep, objp));
2884 }
2885 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2886 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2887 }
2888
2889 page = virt_to_head_page(objp);
2890 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2891 objp += obj_offset(cachep);
2892 if (cachep->ctor && cachep->flags & SLAB_POISON)
2893 cachep->ctor(objp);
2894 if (ARCH_SLAB_MINALIGN &&
2895 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2896 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2897 objp, (int)ARCH_SLAB_MINALIGN);
2898 }
2899 return objp;
2900 }
2901 #else
2902 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2903 #endif
2904
2905 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2906 {
2907 if (unlikely(cachep == kmem_cache))
2908 return false;
2909
2910 return should_failslab(cachep->object_size, flags, cachep->flags);
2911 }
2912
2913 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2914 {
2915 void *objp;
2916 struct array_cache *ac;
2917 bool force_refill = false;
2918
2919 check_irq_off();
2920
2921 ac = cpu_cache_get(cachep);
2922 if (likely(ac->avail)) {
2923 ac->touched = 1;
2924 objp = ac_get_obj(cachep, ac, flags, false);
2925
2926 /*
2927 * Allow for the possibility all avail objects are not allowed
2928 * by the current flags
2929 */
2930 if (objp) {
2931 STATS_INC_ALLOCHIT(cachep);
2932 goto out;
2933 }
2934 force_refill = true;
2935 }
2936
2937 STATS_INC_ALLOCMISS(cachep);
2938 objp = cache_alloc_refill(cachep, flags, force_refill);
2939 /*
2940 * the 'ac' may be updated by cache_alloc_refill(),
2941 * and kmemleak_erase() requires its correct value.
2942 */
2943 ac = cpu_cache_get(cachep);
2944
2945 out:
2946 /*
2947 * To avoid a false negative, if an object that is in one of the
2948 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2949 * treat the array pointers as a reference to the object.
2950 */
2951 if (objp)
2952 kmemleak_erase(&ac->entry[ac->avail]);
2953 return objp;
2954 }
2955
2956 #ifdef CONFIG_NUMA
2957 /*
2958 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2959 *
2960 * If we are in_interrupt, then process context, including cpusets and
2961 * mempolicy, may not apply and should not be used for allocation policy.
2962 */
2963 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2964 {
2965 int nid_alloc, nid_here;
2966
2967 if (in_interrupt() || (flags & __GFP_THISNODE))
2968 return NULL;
2969 nid_alloc = nid_here = numa_mem_id();
2970 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2971 nid_alloc = cpuset_slab_spread_node();
2972 else if (current->mempolicy)
2973 nid_alloc = mempolicy_slab_node();
2974 if (nid_alloc != nid_here)
2975 return ____cache_alloc_node(cachep, flags, nid_alloc);
2976 return NULL;
2977 }
2978
2979 /*
2980 * Fallback function if there was no memory available and no objects on a
2981 * certain node and fall back is permitted. First we scan all the
2982 * available node for available objects. If that fails then we
2983 * perform an allocation without specifying a node. This allows the page
2984 * allocator to do its reclaim / fallback magic. We then insert the
2985 * slab into the proper nodelist and then allocate from it.
2986 */
2987 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2988 {
2989 struct zonelist *zonelist;
2990 gfp_t local_flags;
2991 struct zoneref *z;
2992 struct zone *zone;
2993 enum zone_type high_zoneidx = gfp_zone(flags);
2994 void *obj = NULL;
2995 int nid;
2996 unsigned int cpuset_mems_cookie;
2997
2998 if (flags & __GFP_THISNODE)
2999 return NULL;
3000
3001 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3002
3003 retry_cpuset:
3004 cpuset_mems_cookie = read_mems_allowed_begin();
3005 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3006
3007 retry:
3008 /*
3009 * Look through allowed nodes for objects available
3010 * from existing per node queues.
3011 */
3012 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3013 nid = zone_to_nid(zone);
3014
3015 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3016 get_node(cache, nid) &&
3017 get_node(cache, nid)->free_objects) {
3018 obj = ____cache_alloc_node(cache,
3019 flags | GFP_THISNODE, nid);
3020 if (obj)
3021 break;
3022 }
3023 }
3024
3025 if (!obj) {
3026 /*
3027 * This allocation will be performed within the constraints
3028 * of the current cpuset / memory policy requirements.
3029 * We may trigger various forms of reclaim on the allowed
3030 * set and go into memory reserves if necessary.
3031 */
3032 struct page *page;
3033
3034 if (local_flags & __GFP_WAIT)
3035 local_irq_enable();
3036 kmem_flagcheck(cache, flags);
3037 page = kmem_getpages(cache, local_flags, numa_mem_id());
3038 if (local_flags & __GFP_WAIT)
3039 local_irq_disable();
3040 if (page) {
3041 /*
3042 * Insert into the appropriate per node queues
3043 */
3044 nid = page_to_nid(page);
3045 if (cache_grow(cache, flags, nid, page)) {
3046 obj = ____cache_alloc_node(cache,
3047 flags | GFP_THISNODE, nid);
3048 if (!obj)
3049 /*
3050 * Another processor may allocate the
3051 * objects in the slab since we are
3052 * not holding any locks.
3053 */
3054 goto retry;
3055 } else {
3056 /* cache_grow already freed obj */
3057 obj = NULL;
3058 }
3059 }
3060 }
3061
3062 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3063 goto retry_cpuset;
3064 return obj;
3065 }
3066
3067 /*
3068 * A interface to enable slab creation on nodeid
3069 */
3070 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3071 int nodeid)
3072 {
3073 struct list_head *entry;
3074 struct page *page;
3075 struct kmem_cache_node *n;
3076 void *obj;
3077 int x;
3078
3079 VM_BUG_ON(nodeid > num_online_nodes());
3080 n = get_node(cachep, nodeid);
3081 BUG_ON(!n);
3082
3083 retry:
3084 check_irq_off();
3085 spin_lock(&n->list_lock);
3086 entry = n->slabs_partial.next;
3087 if (entry == &n->slabs_partial) {
3088 n->free_touched = 1;
3089 entry = n->slabs_free.next;
3090 if (entry == &n->slabs_free)
3091 goto must_grow;
3092 }
3093
3094 page = list_entry(entry, struct page, lru);
3095 check_spinlock_acquired_node(cachep, nodeid);
3096
3097 STATS_INC_NODEALLOCS(cachep);
3098 STATS_INC_ACTIVE(cachep);
3099 STATS_SET_HIGH(cachep);
3100
3101 BUG_ON(page->active == cachep->num);
3102
3103 obj = slab_get_obj(cachep, page, nodeid);
3104 n->free_objects--;
3105 /* move slabp to correct slabp list: */
3106 list_del(&page->lru);
3107
3108 if (page->active == cachep->num)
3109 list_add(&page->lru, &n->slabs_full);
3110 else
3111 list_add(&page->lru, &n->slabs_partial);
3112
3113 spin_unlock(&n->list_lock);
3114 goto done;
3115
3116 must_grow:
3117 spin_unlock(&n->list_lock);
3118 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3119 if (x)
3120 goto retry;
3121
3122 return fallback_alloc(cachep, flags);
3123
3124 done:
3125 return obj;
3126 }
3127
3128 static __always_inline void *
3129 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3130 unsigned long caller)
3131 {
3132 unsigned long save_flags;
3133 void *ptr;
3134 int slab_node = numa_mem_id();
3135
3136 flags &= gfp_allowed_mask;
3137
3138 lockdep_trace_alloc(flags);
3139
3140 if (slab_should_failslab(cachep, flags))
3141 return NULL;
3142
3143 cachep = memcg_kmem_get_cache(cachep, flags);
3144
3145 cache_alloc_debugcheck_before(cachep, flags);
3146 local_irq_save(save_flags);
3147
3148 if (nodeid == NUMA_NO_NODE)
3149 nodeid = slab_node;
3150
3151 if (unlikely(!get_node(cachep, nodeid))) {
3152 /* Node not bootstrapped yet */
3153 ptr = fallback_alloc(cachep, flags);
3154 goto out;
3155 }
3156
3157 if (nodeid == slab_node) {
3158 /*
3159 * Use the locally cached objects if possible.
3160 * However ____cache_alloc does not allow fallback
3161 * to other nodes. It may fail while we still have
3162 * objects on other nodes available.
3163 */
3164 ptr = ____cache_alloc(cachep, flags);
3165 if (ptr)
3166 goto out;
3167 }
3168 /* ___cache_alloc_node can fall back to other nodes */
3169 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3170 out:
3171 local_irq_restore(save_flags);
3172 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3173 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3174 flags);
3175
3176 if (likely(ptr)) {
3177 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3178 if (unlikely(flags & __GFP_ZERO))
3179 memset(ptr, 0, cachep->object_size);
3180 }
3181
3182 return ptr;
3183 }
3184
3185 static __always_inline void *
3186 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3187 {
3188 void *objp;
3189
3190 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3191 objp = alternate_node_alloc(cache, flags);
3192 if (objp)
3193 goto out;
3194 }
3195 objp = ____cache_alloc(cache, flags);
3196
3197 /*
3198 * We may just have run out of memory on the local node.
3199 * ____cache_alloc_node() knows how to locate memory on other nodes
3200 */
3201 if (!objp)
3202 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3203
3204 out:
3205 return objp;
3206 }
3207 #else
3208
3209 static __always_inline void *
3210 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3211 {
3212 return ____cache_alloc(cachep, flags);
3213 }
3214
3215 #endif /* CONFIG_NUMA */
3216
3217 static __always_inline void *
3218 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3219 {
3220 unsigned long save_flags;
3221 void *objp;
3222
3223 flags &= gfp_allowed_mask;
3224
3225 lockdep_trace_alloc(flags);
3226
3227 if (slab_should_failslab(cachep, flags))
3228 return NULL;
3229
3230 cachep = memcg_kmem_get_cache(cachep, flags);
3231
3232 cache_alloc_debugcheck_before(cachep, flags);
3233 local_irq_save(save_flags);
3234 objp = __do_cache_alloc(cachep, flags);
3235 local_irq_restore(save_flags);
3236 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3237 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3238 flags);
3239 prefetchw(objp);
3240
3241 if (likely(objp)) {
3242 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3243 if (unlikely(flags & __GFP_ZERO))
3244 memset(objp, 0, cachep->object_size);
3245 }
3246
3247 return objp;
3248 }
3249
3250 /*
3251 * Caller needs to acquire correct kmem_cache_node's list_lock
3252 * @list: List of detached free slabs should be freed by caller
3253 */
3254 static void free_block(struct kmem_cache *cachep, void **objpp,
3255 int nr_objects, int node, struct list_head *list)
3256 {
3257 int i;
3258 struct kmem_cache_node *n = get_node(cachep, node);
3259
3260 for (i = 0; i < nr_objects; i++) {
3261 void *objp;
3262 struct page *page;
3263
3264 clear_obj_pfmemalloc(&objpp[i]);
3265 objp = objpp[i];
3266
3267 page = virt_to_head_page(objp);
3268 list_del(&page->lru);
3269 check_spinlock_acquired_node(cachep, node);
3270 slab_put_obj(cachep, page, objp, node);
3271 STATS_DEC_ACTIVE(cachep);
3272 n->free_objects++;
3273
3274 /* fixup slab chains */
3275 if (page->active == 0) {
3276 if (n->free_objects > n->free_limit) {
3277 n->free_objects -= cachep->num;
3278 list_add_tail(&page->lru, list);
3279 } else {
3280 list_add(&page->lru, &n->slabs_free);
3281 }
3282 } else {
3283 /* Unconditionally move a slab to the end of the
3284 * partial list on free - maximum time for the
3285 * other objects to be freed, too.
3286 */
3287 list_add_tail(&page->lru, &n->slabs_partial);
3288 }
3289 }
3290 }
3291
3292 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3293 {
3294 int batchcount;
3295 struct kmem_cache_node *n;
3296 int node = numa_mem_id();
3297 LIST_HEAD(list);
3298
3299 batchcount = ac->batchcount;
3300 #if DEBUG
3301 BUG_ON(!batchcount || batchcount > ac->avail);
3302 #endif
3303 check_irq_off();
3304 n = get_node(cachep, node);
3305 spin_lock(&n->list_lock);
3306 if (n->shared) {
3307 struct array_cache *shared_array = n->shared;
3308 int max = shared_array->limit - shared_array->avail;
3309 if (max) {
3310 if (batchcount > max)
3311 batchcount = max;
3312 memcpy(&(shared_array->entry[shared_array->avail]),
3313 ac->entry, sizeof(void *) * batchcount);
3314 shared_array->avail += batchcount;
3315 goto free_done;
3316 }
3317 }
3318
3319 free_block(cachep, ac->entry, batchcount, node, &list);
3320 free_done:
3321 #if STATS
3322 {
3323 int i = 0;
3324 struct list_head *p;
3325
3326 p = n->slabs_free.next;
3327 while (p != &(n->slabs_free)) {
3328 struct page *page;
3329
3330 page = list_entry(p, struct page, lru);
3331 BUG_ON(page->active);
3332
3333 i++;
3334 p = p->next;
3335 }
3336 STATS_SET_FREEABLE(cachep, i);
3337 }
3338 #endif
3339 spin_unlock(&n->list_lock);
3340 slabs_destroy(cachep, &list);
3341 ac->avail -= batchcount;
3342 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3343 }
3344
3345 /*
3346 * Release an obj back to its cache. If the obj has a constructed state, it must
3347 * be in this state _before_ it is released. Called with disabled ints.
3348 */
3349 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3350 unsigned long caller)
3351 {
3352 struct array_cache *ac = cpu_cache_get(cachep);
3353
3354 check_irq_off();
3355 kmemleak_free_recursive(objp, cachep->flags);
3356 objp = cache_free_debugcheck(cachep, objp, caller);
3357
3358 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3359
3360 /*
3361 * Skip calling cache_free_alien() when the platform is not numa.
3362 * This will avoid cache misses that happen while accessing slabp (which
3363 * is per page memory reference) to get nodeid. Instead use a global
3364 * variable to skip the call, which is mostly likely to be present in
3365 * the cache.
3366 */
3367 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3368 return;
3369
3370 if (ac->avail < ac->limit) {
3371 STATS_INC_FREEHIT(cachep);
3372 } else {
3373 STATS_INC_FREEMISS(cachep);
3374 cache_flusharray(cachep, ac);
3375 }
3376
3377 ac_put_obj(cachep, ac, objp);
3378 }
3379
3380 /**
3381 * kmem_cache_alloc - Allocate an object
3382 * @cachep: The cache to allocate from.
3383 * @flags: See kmalloc().
3384 *
3385 * Allocate an object from this cache. The flags are only relevant
3386 * if the cache has no available objects.
3387 */
3388 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3389 {
3390 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3391
3392 trace_kmem_cache_alloc(_RET_IP_, ret,
3393 cachep->object_size, cachep->size, flags);
3394
3395 return ret;
3396 }
3397 EXPORT_SYMBOL(kmem_cache_alloc);
3398
3399 #ifdef CONFIG_TRACING
3400 void *
3401 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3402 {
3403 void *ret;
3404
3405 ret = slab_alloc(cachep, flags, _RET_IP_);
3406
3407 trace_kmalloc(_RET_IP_, ret,
3408 size, cachep->size, flags);
3409 return ret;
3410 }
3411 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3412 #endif
3413
3414 #ifdef CONFIG_NUMA
3415 /**
3416 * kmem_cache_alloc_node - Allocate an object on the specified node
3417 * @cachep: The cache to allocate from.
3418 * @flags: See kmalloc().
3419 * @nodeid: node number of the target node.
3420 *
3421 * Identical to kmem_cache_alloc but it will allocate memory on the given
3422 * node, which can improve the performance for cpu bound structures.
3423 *
3424 * Fallback to other node is possible if __GFP_THISNODE is not set.
3425 */
3426 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3427 {
3428 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3429
3430 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3431 cachep->object_size, cachep->size,
3432 flags, nodeid);
3433
3434 return ret;
3435 }
3436 EXPORT_SYMBOL(kmem_cache_alloc_node);
3437
3438 #ifdef CONFIG_TRACING
3439 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3440 gfp_t flags,
3441 int nodeid,
3442 size_t size)
3443 {
3444 void *ret;
3445
3446 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3447
3448 trace_kmalloc_node(_RET_IP_, ret,
3449 size, cachep->size,
3450 flags, nodeid);
3451 return ret;
3452 }
3453 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3454 #endif
3455
3456 static __always_inline void *
3457 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3458 {
3459 struct kmem_cache *cachep;
3460
3461 cachep = kmalloc_slab(size, flags);
3462 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3463 return cachep;
3464 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3465 }
3466
3467 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3468 {
3469 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3470 }
3471 EXPORT_SYMBOL(__kmalloc_node);
3472
3473 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3474 int node, unsigned long caller)
3475 {
3476 return __do_kmalloc_node(size, flags, node, caller);
3477 }
3478 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3479 #endif /* CONFIG_NUMA */
3480
3481 /**
3482 * __do_kmalloc - allocate memory
3483 * @size: how many bytes of memory are required.
3484 * @flags: the type of memory to allocate (see kmalloc).
3485 * @caller: function caller for debug tracking of the caller
3486 */
3487 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3488 unsigned long caller)
3489 {
3490 struct kmem_cache *cachep;
3491 void *ret;
3492
3493 cachep = kmalloc_slab(size, flags);
3494 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3495 return cachep;
3496 ret = slab_alloc(cachep, flags, caller);
3497
3498 trace_kmalloc(caller, ret,
3499 size, cachep->size, flags);
3500
3501 return ret;
3502 }
3503
3504 void *__kmalloc(size_t size, gfp_t flags)
3505 {
3506 return __do_kmalloc(size, flags, _RET_IP_);
3507 }
3508 EXPORT_SYMBOL(__kmalloc);
3509
3510 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3511 {
3512 return __do_kmalloc(size, flags, caller);
3513 }
3514 EXPORT_SYMBOL(__kmalloc_track_caller);
3515
3516 /**
3517 * kmem_cache_free - Deallocate an object
3518 * @cachep: The cache the allocation was from.
3519 * @objp: The previously allocated object.
3520 *
3521 * Free an object which was previously allocated from this
3522 * cache.
3523 */
3524 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3525 {
3526 unsigned long flags;
3527 cachep = cache_from_obj(cachep, objp);
3528 if (!cachep)
3529 return;
3530
3531 local_irq_save(flags);
3532 debug_check_no_locks_freed(objp, cachep->object_size);
3533 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3534 debug_check_no_obj_freed(objp, cachep->object_size);
3535 __cache_free(cachep, objp, _RET_IP_);
3536 local_irq_restore(flags);
3537
3538 trace_kmem_cache_free(_RET_IP_, objp);
3539 }
3540 EXPORT_SYMBOL(kmem_cache_free);
3541
3542 /**
3543 * kfree - free previously allocated memory
3544 * @objp: pointer returned by kmalloc.
3545 *
3546 * If @objp is NULL, no operation is performed.
3547 *
3548 * Don't free memory not originally allocated by kmalloc()
3549 * or you will run into trouble.
3550 */
3551 void kfree(const void *objp)
3552 {
3553 struct kmem_cache *c;
3554 unsigned long flags;
3555
3556 trace_kfree(_RET_IP_, objp);
3557
3558 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3559 return;
3560 local_irq_save(flags);
3561 kfree_debugcheck(objp);
3562 c = virt_to_cache(objp);
3563 debug_check_no_locks_freed(objp, c->object_size);
3564
3565 debug_check_no_obj_freed(objp, c->object_size);
3566 __cache_free(c, (void *)objp, _RET_IP_);
3567 local_irq_restore(flags);
3568 }
3569 EXPORT_SYMBOL(kfree);
3570
3571 /*
3572 * This initializes kmem_cache_node or resizes various caches for all nodes.
3573 */
3574 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3575 {
3576 int node;
3577 struct kmem_cache_node *n;
3578 struct array_cache *new_shared;
3579 struct alien_cache **new_alien = NULL;
3580
3581 for_each_online_node(node) {
3582
3583 if (use_alien_caches) {
3584 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3585 if (!new_alien)
3586 goto fail;
3587 }
3588
3589 new_shared = NULL;
3590 if (cachep->shared) {
3591 new_shared = alloc_arraycache(node,
3592 cachep->shared*cachep->batchcount,
3593 0xbaadf00d, gfp);
3594 if (!new_shared) {
3595 free_alien_cache(new_alien);
3596 goto fail;
3597 }
3598 }
3599
3600 n = get_node(cachep, node);
3601 if (n) {
3602 struct array_cache *shared = n->shared;
3603 LIST_HEAD(list);
3604
3605 spin_lock_irq(&n->list_lock);
3606
3607 if (shared)
3608 free_block(cachep, shared->entry,
3609 shared->avail, node, &list);
3610
3611 n->shared = new_shared;
3612 if (!n->alien) {
3613 n->alien = new_alien;
3614 new_alien = NULL;
3615 }
3616 n->free_limit = (1 + nr_cpus_node(node)) *
3617 cachep->batchcount + cachep->num;
3618 spin_unlock_irq(&n->list_lock);
3619 slabs_destroy(cachep, &list);
3620 kfree(shared);
3621 free_alien_cache(new_alien);
3622 continue;
3623 }
3624 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3625 if (!n) {
3626 free_alien_cache(new_alien);
3627 kfree(new_shared);
3628 goto fail;
3629 }
3630
3631 kmem_cache_node_init(n);
3632 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3633 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3634 n->shared = new_shared;
3635 n->alien = new_alien;
3636 n->free_limit = (1 + nr_cpus_node(node)) *
3637 cachep->batchcount + cachep->num;
3638 cachep->node[node] = n;
3639 }
3640 return 0;
3641
3642 fail:
3643 if (!cachep->list.next) {
3644 /* Cache is not active yet. Roll back what we did */
3645 node--;
3646 while (node >= 0) {
3647 n = get_node(cachep, node);
3648 if (n) {
3649 kfree(n->shared);
3650 free_alien_cache(n->alien);
3651 kfree(n);
3652 cachep->node[node] = NULL;
3653 }
3654 node--;
3655 }
3656 }
3657 return -ENOMEM;
3658 }
3659
3660 /* Always called with the slab_mutex held */
3661 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3662 int batchcount, int shared, gfp_t gfp)
3663 {
3664 struct array_cache __percpu *cpu_cache, *prev;
3665 int cpu;
3666
3667 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3668 if (!cpu_cache)
3669 return -ENOMEM;
3670
3671 prev = cachep->cpu_cache;
3672 cachep->cpu_cache = cpu_cache;
3673 kick_all_cpus_sync();
3674
3675 check_irq_on();
3676 cachep->batchcount = batchcount;
3677 cachep->limit = limit;
3678 cachep->shared = shared;
3679
3680 if (!prev)
3681 goto alloc_node;
3682
3683 for_each_online_cpu(cpu) {
3684 LIST_HEAD(list);
3685 int node;
3686 struct kmem_cache_node *n;
3687 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3688
3689 node = cpu_to_mem(cpu);
3690 n = get_node(cachep, node);
3691 spin_lock_irq(&n->list_lock);
3692 free_block(cachep, ac->entry, ac->avail, node, &list);
3693 spin_unlock_irq(&n->list_lock);
3694 slabs_destroy(cachep, &list);
3695 }
3696 free_percpu(prev);
3697
3698 alloc_node:
3699 return alloc_kmem_cache_node(cachep, gfp);
3700 }
3701
3702 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3703 int batchcount, int shared, gfp_t gfp)
3704 {
3705 int ret;
3706 struct kmem_cache *c = NULL;
3707 int i = 0;
3708
3709 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3710
3711 if (slab_state < FULL)
3712 return ret;
3713
3714 if ((ret < 0) || !is_root_cache(cachep))
3715 return ret;
3716
3717 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3718 for_each_memcg_cache_index(i) {
3719 c = cache_from_memcg_idx(cachep, i);
3720 if (c)
3721 /* return value determined by the parent cache only */
3722 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3723 }
3724
3725 return ret;
3726 }
3727
3728 /* Called with slab_mutex held always */
3729 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3730 {
3731 int err;
3732 int limit = 0;
3733 int shared = 0;
3734 int batchcount = 0;
3735
3736 if (!is_root_cache(cachep)) {
3737 struct kmem_cache *root = memcg_root_cache(cachep);
3738 limit = root->limit;
3739 shared = root->shared;
3740 batchcount = root->batchcount;
3741 }
3742
3743 if (limit && shared && batchcount)
3744 goto skip_setup;
3745 /*
3746 * The head array serves three purposes:
3747 * - create a LIFO ordering, i.e. return objects that are cache-warm
3748 * - reduce the number of spinlock operations.
3749 * - reduce the number of linked list operations on the slab and
3750 * bufctl chains: array operations are cheaper.
3751 * The numbers are guessed, we should auto-tune as described by
3752 * Bonwick.
3753 */
3754 if (cachep->size > 131072)
3755 limit = 1;
3756 else if (cachep->size > PAGE_SIZE)
3757 limit = 8;
3758 else if (cachep->size > 1024)
3759 limit = 24;
3760 else if (cachep->size > 256)
3761 limit = 54;
3762 else
3763 limit = 120;
3764
3765 /*
3766 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3767 * allocation behaviour: Most allocs on one cpu, most free operations
3768 * on another cpu. For these cases, an efficient object passing between
3769 * cpus is necessary. This is provided by a shared array. The array
3770 * replaces Bonwick's magazine layer.
3771 * On uniprocessor, it's functionally equivalent (but less efficient)
3772 * to a larger limit. Thus disabled by default.
3773 */
3774 shared = 0;
3775 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3776 shared = 8;
3777
3778 #if DEBUG
3779 /*
3780 * With debugging enabled, large batchcount lead to excessively long
3781 * periods with disabled local interrupts. Limit the batchcount
3782 */
3783 if (limit > 32)
3784 limit = 32;
3785 #endif
3786 batchcount = (limit + 1) / 2;
3787 skip_setup:
3788 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3789 if (err)
3790 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3791 cachep->name, -err);
3792 return err;
3793 }
3794
3795 /*
3796 * Drain an array if it contains any elements taking the node lock only if
3797 * necessary. Note that the node listlock also protects the array_cache
3798 * if drain_array() is used on the shared array.
3799 */
3800 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3801 struct array_cache *ac, int force, int node)
3802 {
3803 LIST_HEAD(list);
3804 int tofree;
3805
3806 if (!ac || !ac->avail)
3807 return;
3808 if (ac->touched && !force) {
3809 ac->touched = 0;
3810 } else {
3811 spin_lock_irq(&n->list_lock);
3812 if (ac->avail) {
3813 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3814 if (tofree > ac->avail)
3815 tofree = (ac->avail + 1) / 2;
3816 free_block(cachep, ac->entry, tofree, node, &list);
3817 ac->avail -= tofree;
3818 memmove(ac->entry, &(ac->entry[tofree]),
3819 sizeof(void *) * ac->avail);
3820 }
3821 spin_unlock_irq(&n->list_lock);
3822 slabs_destroy(cachep, &list);
3823 }
3824 }
3825
3826 /**
3827 * cache_reap - Reclaim memory from caches.
3828 * @w: work descriptor
3829 *
3830 * Called from workqueue/eventd every few seconds.
3831 * Purpose:
3832 * - clear the per-cpu caches for this CPU.
3833 * - return freeable pages to the main free memory pool.
3834 *
3835 * If we cannot acquire the cache chain mutex then just give up - we'll try
3836 * again on the next iteration.
3837 */
3838 static void cache_reap(struct work_struct *w)
3839 {
3840 struct kmem_cache *searchp;
3841 struct kmem_cache_node *n;
3842 int node = numa_mem_id();
3843 struct delayed_work *work = to_delayed_work(w);
3844
3845 if (!mutex_trylock(&slab_mutex))
3846 /* Give up. Setup the next iteration. */
3847 goto out;
3848
3849 list_for_each_entry(searchp, &slab_caches, list) {
3850 check_irq_on();
3851
3852 /*
3853 * We only take the node lock if absolutely necessary and we
3854 * have established with reasonable certainty that
3855 * we can do some work if the lock was obtained.
3856 */
3857 n = get_node(searchp, node);
3858
3859 reap_alien(searchp, n);
3860
3861 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3862
3863 /*
3864 * These are racy checks but it does not matter
3865 * if we skip one check or scan twice.
3866 */
3867 if (time_after(n->next_reap, jiffies))
3868 goto next;
3869
3870 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3871
3872 drain_array(searchp, n, n->shared, 0, node);
3873
3874 if (n->free_touched)
3875 n->free_touched = 0;
3876 else {
3877 int freed;
3878
3879 freed = drain_freelist(searchp, n, (n->free_limit +
3880 5 * searchp->num - 1) / (5 * searchp->num));
3881 STATS_ADD_REAPED(searchp, freed);
3882 }
3883 next:
3884 cond_resched();
3885 }
3886 check_irq_on();
3887 mutex_unlock(&slab_mutex);
3888 next_reap_node();
3889 out:
3890 /* Set up the next iteration */
3891 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3892 }
3893
3894 #ifdef CONFIG_SLABINFO
3895 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3896 {
3897 struct page *page;
3898 unsigned long active_objs;
3899 unsigned long num_objs;
3900 unsigned long active_slabs = 0;
3901 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3902 const char *name;
3903 char *error = NULL;
3904 int node;
3905 struct kmem_cache_node *n;
3906
3907 active_objs = 0;
3908 num_slabs = 0;
3909 for_each_kmem_cache_node(cachep, node, n) {
3910
3911 check_irq_on();
3912 spin_lock_irq(&n->list_lock);
3913
3914 list_for_each_entry(page, &n->slabs_full, lru) {
3915 if (page->active != cachep->num && !error)
3916 error = "slabs_full accounting error";
3917 active_objs += cachep->num;
3918 active_slabs++;
3919 }
3920 list_for_each_entry(page, &n->slabs_partial, lru) {
3921 if (page->active == cachep->num && !error)
3922 error = "slabs_partial accounting error";
3923 if (!page->active && !error)
3924 error = "slabs_partial accounting error";
3925 active_objs += page->active;
3926 active_slabs++;
3927 }
3928 list_for_each_entry(page, &n->slabs_free, lru) {
3929 if (page->active && !error)
3930 error = "slabs_free accounting error";
3931 num_slabs++;
3932 }
3933 free_objects += n->free_objects;
3934 if (n->shared)
3935 shared_avail += n->shared->avail;
3936
3937 spin_unlock_irq(&n->list_lock);
3938 }
3939 num_slabs += active_slabs;
3940 num_objs = num_slabs * cachep->num;
3941 if (num_objs - active_objs != free_objects && !error)
3942 error = "free_objects accounting error";
3943
3944 name = cachep->name;
3945 if (error)
3946 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3947
3948 sinfo->active_objs = active_objs;
3949 sinfo->num_objs = num_objs;
3950 sinfo->active_slabs = active_slabs;
3951 sinfo->num_slabs = num_slabs;
3952 sinfo->shared_avail = shared_avail;
3953 sinfo->limit = cachep->limit;
3954 sinfo->batchcount = cachep->batchcount;
3955 sinfo->shared = cachep->shared;
3956 sinfo->objects_per_slab = cachep->num;
3957 sinfo->cache_order = cachep->gfporder;
3958 }
3959
3960 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3961 {
3962 #if STATS
3963 { /* node stats */
3964 unsigned long high = cachep->high_mark;
3965 unsigned long allocs = cachep->num_allocations;
3966 unsigned long grown = cachep->grown;
3967 unsigned long reaped = cachep->reaped;
3968 unsigned long errors = cachep->errors;
3969 unsigned long max_freeable = cachep->max_freeable;
3970 unsigned long node_allocs = cachep->node_allocs;
3971 unsigned long node_frees = cachep->node_frees;
3972 unsigned long overflows = cachep->node_overflow;
3973
3974 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3975 "%4lu %4lu %4lu %4lu %4lu",
3976 allocs, high, grown,
3977 reaped, errors, max_freeable, node_allocs,
3978 node_frees, overflows);
3979 }
3980 /* cpu stats */
3981 {
3982 unsigned long allochit = atomic_read(&cachep->allochit);
3983 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3984 unsigned long freehit = atomic_read(&cachep->freehit);
3985 unsigned long freemiss = atomic_read(&cachep->freemiss);
3986
3987 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3988 allochit, allocmiss, freehit, freemiss);
3989 }
3990 #endif
3991 }
3992
3993 #define MAX_SLABINFO_WRITE 128
3994 /**
3995 * slabinfo_write - Tuning for the slab allocator
3996 * @file: unused
3997 * @buffer: user buffer
3998 * @count: data length
3999 * @ppos: unused
4000 */
4001 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4002 size_t count, loff_t *ppos)
4003 {
4004 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4005 int limit, batchcount, shared, res;
4006 struct kmem_cache *cachep;
4007
4008 if (count > MAX_SLABINFO_WRITE)
4009 return -EINVAL;
4010 if (copy_from_user(&kbuf, buffer, count))
4011 return -EFAULT;
4012 kbuf[MAX_SLABINFO_WRITE] = '\0';
4013
4014 tmp = strchr(kbuf, ' ');
4015 if (!tmp)
4016 return -EINVAL;
4017 *tmp = '\0';
4018 tmp++;
4019 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4020 return -EINVAL;
4021
4022 /* Find the cache in the chain of caches. */
4023 mutex_lock(&slab_mutex);
4024 res = -EINVAL;
4025 list_for_each_entry(cachep, &slab_caches, list) {
4026 if (!strcmp(cachep->name, kbuf)) {
4027 if (limit < 1 || batchcount < 1 ||
4028 batchcount > limit || shared < 0) {
4029 res = 0;
4030 } else {
4031 res = do_tune_cpucache(cachep, limit,
4032 batchcount, shared,
4033 GFP_KERNEL);
4034 }
4035 break;
4036 }
4037 }
4038 mutex_unlock(&slab_mutex);
4039 if (res >= 0)
4040 res = count;
4041 return res;
4042 }
4043
4044 #ifdef CONFIG_DEBUG_SLAB_LEAK
4045
4046 static void *leaks_start(struct seq_file *m, loff_t *pos)
4047 {
4048 mutex_lock(&slab_mutex);
4049 return seq_list_start(&slab_caches, *pos);
4050 }
4051
4052 static inline int add_caller(unsigned long *n, unsigned long v)
4053 {
4054 unsigned long *p;
4055 int l;
4056 if (!v)
4057 return 1;
4058 l = n[1];
4059 p = n + 2;
4060 while (l) {
4061 int i = l/2;
4062 unsigned long *q = p + 2 * i;
4063 if (*q == v) {
4064 q[1]++;
4065 return 1;
4066 }
4067 if (*q > v) {
4068 l = i;
4069 } else {
4070 p = q + 2;
4071 l -= i + 1;
4072 }
4073 }
4074 if (++n[1] == n[0])
4075 return 0;
4076 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4077 p[0] = v;
4078 p[1] = 1;
4079 return 1;
4080 }
4081
4082 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4083 struct page *page)
4084 {
4085 void *p;
4086 int i;
4087
4088 if (n[0] == n[1])
4089 return;
4090 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4091 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4092 continue;
4093
4094 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4095 return;
4096 }
4097 }
4098
4099 static void show_symbol(struct seq_file *m, unsigned long address)
4100 {
4101 #ifdef CONFIG_KALLSYMS
4102 unsigned long offset, size;
4103 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4104
4105 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4106 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4107 if (modname[0])
4108 seq_printf(m, " [%s]", modname);
4109 return;
4110 }
4111 #endif
4112 seq_printf(m, "%p", (void *)address);
4113 }
4114
4115 static int leaks_show(struct seq_file *m, void *p)
4116 {
4117 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4118 struct page *page;
4119 struct kmem_cache_node *n;
4120 const char *name;
4121 unsigned long *x = m->private;
4122 int node;
4123 int i;
4124
4125 if (!(cachep->flags & SLAB_STORE_USER))
4126 return 0;
4127 if (!(cachep->flags & SLAB_RED_ZONE))
4128 return 0;
4129
4130 /* OK, we can do it */
4131
4132 x[1] = 0;
4133
4134 for_each_kmem_cache_node(cachep, node, n) {
4135
4136 check_irq_on();
4137 spin_lock_irq(&n->list_lock);
4138
4139 list_for_each_entry(page, &n->slabs_full, lru)
4140 handle_slab(x, cachep, page);
4141 list_for_each_entry(page, &n->slabs_partial, lru)
4142 handle_slab(x, cachep, page);
4143 spin_unlock_irq(&n->list_lock);
4144 }
4145 name = cachep->name;
4146 if (x[0] == x[1]) {
4147 /* Increase the buffer size */
4148 mutex_unlock(&slab_mutex);
4149 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4150 if (!m->private) {
4151 /* Too bad, we are really out */
4152 m->private = x;
4153 mutex_lock(&slab_mutex);
4154 return -ENOMEM;
4155 }
4156 *(unsigned long *)m->private = x[0] * 2;
4157 kfree(x);
4158 mutex_lock(&slab_mutex);
4159 /* Now make sure this entry will be retried */
4160 m->count = m->size;
4161 return 0;
4162 }
4163 for (i = 0; i < x[1]; i++) {
4164 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4165 show_symbol(m, x[2*i+2]);
4166 seq_putc(m, '\n');
4167 }
4168
4169 return 0;
4170 }
4171
4172 static const struct seq_operations slabstats_op = {
4173 .start = leaks_start,
4174 .next = slab_next,
4175 .stop = slab_stop,
4176 .show = leaks_show,
4177 };
4178
4179 static int slabstats_open(struct inode *inode, struct file *file)
4180 {
4181 unsigned long *n;
4182
4183 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4184 if (!n)
4185 return -ENOMEM;
4186
4187 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4188
4189 return 0;
4190 }
4191
4192 static const struct file_operations proc_slabstats_operations = {
4193 .open = slabstats_open,
4194 .read = seq_read,
4195 .llseek = seq_lseek,
4196 .release = seq_release_private,
4197 };
4198 #endif
4199
4200 static int __init slab_proc_init(void)
4201 {
4202 #ifdef CONFIG_DEBUG_SLAB_LEAK
4203 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4204 #endif
4205 return 0;
4206 }
4207 module_init(slab_proc_init);
4208 #endif
4209
4210 /**
4211 * ksize - get the actual amount of memory allocated for a given object
4212 * @objp: Pointer to the object
4213 *
4214 * kmalloc may internally round up allocations and return more memory
4215 * than requested. ksize() can be used to determine the actual amount of
4216 * memory allocated. The caller may use this additional memory, even though
4217 * a smaller amount of memory was initially specified with the kmalloc call.
4218 * The caller must guarantee that objp points to a valid object previously
4219 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4220 * must not be freed during the duration of the call.
4221 */
4222 size_t ksize(const void *objp)
4223 {
4224 BUG_ON(!objp);
4225 if (unlikely(objp == ZERO_SIZE_PTR))
4226 return 0;
4227
4228 return virt_to_cache(objp)->object_size;
4229 }
4230 EXPORT_SYMBOL(ksize);
This page took 0.116387 seconds and 5 git commands to generate.