Documentation: networking: add a DSA document
[deliverable/linux.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25
26 #include "slab.h"
27
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32
33 /*
34 * Set of flags that will prevent slab merging
35 */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
39
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
41
42 /*
43 * Merge control. If this is set then no merging of slab caches will occur.
44 * (Could be removed. This was introduced to pacify the merge skeptics.)
45 */
46 static int slab_nomerge;
47
48 static int __init setup_slab_nomerge(char *str)
49 {
50 slab_nomerge = 1;
51 return 1;
52 }
53
54 #ifdef CONFIG_SLUB
55 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
56 #endif
57
58 __setup("slab_nomerge", setup_slab_nomerge);
59
60 /*
61 * Determine the size of a slab object
62 */
63 unsigned int kmem_cache_size(struct kmem_cache *s)
64 {
65 return s->object_size;
66 }
67 EXPORT_SYMBOL(kmem_cache_size);
68
69 #ifdef CONFIG_DEBUG_VM
70 static int kmem_cache_sanity_check(const char *name, size_t size)
71 {
72 struct kmem_cache *s = NULL;
73
74 if (!name || in_interrupt() || size < sizeof(void *) ||
75 size > KMALLOC_MAX_SIZE) {
76 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
77 return -EINVAL;
78 }
79
80 list_for_each_entry(s, &slab_caches, list) {
81 char tmp;
82 int res;
83
84 /*
85 * This happens when the module gets unloaded and doesn't
86 * destroy its slab cache and no-one else reuses the vmalloc
87 * area of the module. Print a warning.
88 */
89 res = probe_kernel_address(s->name, tmp);
90 if (res) {
91 pr_err("Slab cache with size %d has lost its name\n",
92 s->object_size);
93 continue;
94 }
95 }
96
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
98 return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, size_t size)
102 {
103 return 0;
104 }
105 #endif
106
107 #ifdef CONFIG_MEMCG_KMEM
108 void slab_init_memcg_params(struct kmem_cache *s)
109 {
110 s->memcg_params.is_root_cache = true;
111 INIT_LIST_HEAD(&s->memcg_params.list);
112 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
113 }
114
115 static int init_memcg_params(struct kmem_cache *s,
116 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
117 {
118 struct memcg_cache_array *arr;
119
120 if (memcg) {
121 s->memcg_params.is_root_cache = false;
122 s->memcg_params.memcg = memcg;
123 s->memcg_params.root_cache = root_cache;
124 return 0;
125 }
126
127 slab_init_memcg_params(s);
128
129 if (!memcg_nr_cache_ids)
130 return 0;
131
132 arr = kzalloc(sizeof(struct memcg_cache_array) +
133 memcg_nr_cache_ids * sizeof(void *),
134 GFP_KERNEL);
135 if (!arr)
136 return -ENOMEM;
137
138 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
139 return 0;
140 }
141
142 static void destroy_memcg_params(struct kmem_cache *s)
143 {
144 if (is_root_cache(s))
145 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
146 }
147
148 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
149 {
150 struct memcg_cache_array *old, *new;
151
152 if (!is_root_cache(s))
153 return 0;
154
155 new = kzalloc(sizeof(struct memcg_cache_array) +
156 new_array_size * sizeof(void *), GFP_KERNEL);
157 if (!new)
158 return -ENOMEM;
159
160 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
161 lockdep_is_held(&slab_mutex));
162 if (old)
163 memcpy(new->entries, old->entries,
164 memcg_nr_cache_ids * sizeof(void *));
165
166 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
167 if (old)
168 kfree_rcu(old, rcu);
169 return 0;
170 }
171
172 int memcg_update_all_caches(int num_memcgs)
173 {
174 struct kmem_cache *s;
175 int ret = 0;
176
177 mutex_lock(&slab_mutex);
178 list_for_each_entry(s, &slab_caches, list) {
179 ret = update_memcg_params(s, num_memcgs);
180 /*
181 * Instead of freeing the memory, we'll just leave the caches
182 * up to this point in an updated state.
183 */
184 if (ret)
185 break;
186 }
187 mutex_unlock(&slab_mutex);
188 return ret;
189 }
190 #else
191 static inline int init_memcg_params(struct kmem_cache *s,
192 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
193 {
194 return 0;
195 }
196
197 static inline void destroy_memcg_params(struct kmem_cache *s)
198 {
199 }
200 #endif /* CONFIG_MEMCG_KMEM */
201
202 /*
203 * Find a mergeable slab cache
204 */
205 int slab_unmergeable(struct kmem_cache *s)
206 {
207 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
208 return 1;
209
210 if (!is_root_cache(s))
211 return 1;
212
213 if (s->ctor)
214 return 1;
215
216 /*
217 * We may have set a slab to be unmergeable during bootstrap.
218 */
219 if (s->refcount < 0)
220 return 1;
221
222 return 0;
223 }
224
225 struct kmem_cache *find_mergeable(size_t size, size_t align,
226 unsigned long flags, const char *name, void (*ctor)(void *))
227 {
228 struct kmem_cache *s;
229
230 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
231 return NULL;
232
233 if (ctor)
234 return NULL;
235
236 size = ALIGN(size, sizeof(void *));
237 align = calculate_alignment(flags, align, size);
238 size = ALIGN(size, align);
239 flags = kmem_cache_flags(size, flags, name, NULL);
240
241 list_for_each_entry_reverse(s, &slab_caches, list) {
242 if (slab_unmergeable(s))
243 continue;
244
245 if (size > s->size)
246 continue;
247
248 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
249 continue;
250 /*
251 * Check if alignment is compatible.
252 * Courtesy of Adrian Drzewiecki
253 */
254 if ((s->size & ~(align - 1)) != s->size)
255 continue;
256
257 if (s->size - size >= sizeof(void *))
258 continue;
259
260 if (IS_ENABLED(CONFIG_SLAB) && align &&
261 (align > s->align || s->align % align))
262 continue;
263
264 return s;
265 }
266 return NULL;
267 }
268
269 /*
270 * Figure out what the alignment of the objects will be given a set of
271 * flags, a user specified alignment and the size of the objects.
272 */
273 unsigned long calculate_alignment(unsigned long flags,
274 unsigned long align, unsigned long size)
275 {
276 /*
277 * If the user wants hardware cache aligned objects then follow that
278 * suggestion if the object is sufficiently large.
279 *
280 * The hardware cache alignment cannot override the specified
281 * alignment though. If that is greater then use it.
282 */
283 if (flags & SLAB_HWCACHE_ALIGN) {
284 unsigned long ralign = cache_line_size();
285 while (size <= ralign / 2)
286 ralign /= 2;
287 align = max(align, ralign);
288 }
289
290 if (align < ARCH_SLAB_MINALIGN)
291 align = ARCH_SLAB_MINALIGN;
292
293 return ALIGN(align, sizeof(void *));
294 }
295
296 static struct kmem_cache *
297 do_kmem_cache_create(const char *name, size_t object_size, size_t size,
298 size_t align, unsigned long flags, void (*ctor)(void *),
299 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
300 {
301 struct kmem_cache *s;
302 int err;
303
304 err = -ENOMEM;
305 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
306 if (!s)
307 goto out;
308
309 s->name = name;
310 s->object_size = object_size;
311 s->size = size;
312 s->align = align;
313 s->ctor = ctor;
314
315 err = init_memcg_params(s, memcg, root_cache);
316 if (err)
317 goto out_free_cache;
318
319 err = __kmem_cache_create(s, flags);
320 if (err)
321 goto out_free_cache;
322
323 s->refcount = 1;
324 list_add(&s->list, &slab_caches);
325 out:
326 if (err)
327 return ERR_PTR(err);
328 return s;
329
330 out_free_cache:
331 destroy_memcg_params(s);
332 kmem_cache_free(kmem_cache, s);
333 goto out;
334 }
335
336 /*
337 * kmem_cache_create - Create a cache.
338 * @name: A string which is used in /proc/slabinfo to identify this cache.
339 * @size: The size of objects to be created in this cache.
340 * @align: The required alignment for the objects.
341 * @flags: SLAB flags
342 * @ctor: A constructor for the objects.
343 *
344 * Returns a ptr to the cache on success, NULL on failure.
345 * Cannot be called within a interrupt, but can be interrupted.
346 * The @ctor is run when new pages are allocated by the cache.
347 *
348 * The flags are
349 *
350 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
351 * to catch references to uninitialised memory.
352 *
353 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
354 * for buffer overruns.
355 *
356 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
357 * cacheline. This can be beneficial if you're counting cycles as closely
358 * as davem.
359 */
360 struct kmem_cache *
361 kmem_cache_create(const char *name, size_t size, size_t align,
362 unsigned long flags, void (*ctor)(void *))
363 {
364 struct kmem_cache *s;
365 const char *cache_name;
366 int err;
367
368 get_online_cpus();
369 get_online_mems();
370 memcg_get_cache_ids();
371
372 mutex_lock(&slab_mutex);
373
374 err = kmem_cache_sanity_check(name, size);
375 if (err) {
376 s = NULL; /* suppress uninit var warning */
377 goto out_unlock;
378 }
379
380 /*
381 * Some allocators will constraint the set of valid flags to a subset
382 * of all flags. We expect them to define CACHE_CREATE_MASK in this
383 * case, and we'll just provide them with a sanitized version of the
384 * passed flags.
385 */
386 flags &= CACHE_CREATE_MASK;
387
388 s = __kmem_cache_alias(name, size, align, flags, ctor);
389 if (s)
390 goto out_unlock;
391
392 cache_name = kstrdup_const(name, GFP_KERNEL);
393 if (!cache_name) {
394 err = -ENOMEM;
395 goto out_unlock;
396 }
397
398 s = do_kmem_cache_create(cache_name, size, size,
399 calculate_alignment(flags, align, size),
400 flags, ctor, NULL, NULL);
401 if (IS_ERR(s)) {
402 err = PTR_ERR(s);
403 kfree_const(cache_name);
404 }
405
406 out_unlock:
407 mutex_unlock(&slab_mutex);
408
409 memcg_put_cache_ids();
410 put_online_mems();
411 put_online_cpus();
412
413 if (err) {
414 if (flags & SLAB_PANIC)
415 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
416 name, err);
417 else {
418 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
419 name, err);
420 dump_stack();
421 }
422 return NULL;
423 }
424 return s;
425 }
426 EXPORT_SYMBOL(kmem_cache_create);
427
428 static int do_kmem_cache_shutdown(struct kmem_cache *s,
429 struct list_head *release, bool *need_rcu_barrier)
430 {
431 if (__kmem_cache_shutdown(s) != 0) {
432 printk(KERN_ERR "kmem_cache_destroy %s: "
433 "Slab cache still has objects\n", s->name);
434 dump_stack();
435 return -EBUSY;
436 }
437
438 if (s->flags & SLAB_DESTROY_BY_RCU)
439 *need_rcu_barrier = true;
440
441 #ifdef CONFIG_MEMCG_KMEM
442 if (!is_root_cache(s))
443 list_del(&s->memcg_params.list);
444 #endif
445 list_move(&s->list, release);
446 return 0;
447 }
448
449 static void do_kmem_cache_release(struct list_head *release,
450 bool need_rcu_barrier)
451 {
452 struct kmem_cache *s, *s2;
453
454 if (need_rcu_barrier)
455 rcu_barrier();
456
457 list_for_each_entry_safe(s, s2, release, list) {
458 #ifdef SLAB_SUPPORTS_SYSFS
459 sysfs_slab_remove(s);
460 #else
461 slab_kmem_cache_release(s);
462 #endif
463 }
464 }
465
466 #ifdef CONFIG_MEMCG_KMEM
467 /*
468 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
469 * @memcg: The memory cgroup the new cache is for.
470 * @root_cache: The parent of the new cache.
471 *
472 * This function attempts to create a kmem cache that will serve allocation
473 * requests going from @memcg to @root_cache. The new cache inherits properties
474 * from its parent.
475 */
476 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
477 struct kmem_cache *root_cache)
478 {
479 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
480 struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
481 struct memcg_cache_array *arr;
482 struct kmem_cache *s = NULL;
483 char *cache_name;
484 int idx;
485
486 get_online_cpus();
487 get_online_mems();
488
489 mutex_lock(&slab_mutex);
490
491 /*
492 * The memory cgroup could have been deactivated while the cache
493 * creation work was pending.
494 */
495 if (!memcg_kmem_is_active(memcg))
496 goto out_unlock;
497
498 idx = memcg_cache_id(memcg);
499 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
500 lockdep_is_held(&slab_mutex));
501
502 /*
503 * Since per-memcg caches are created asynchronously on first
504 * allocation (see memcg_kmem_get_cache()), several threads can try to
505 * create the same cache, but only one of them may succeed.
506 */
507 if (arr->entries[idx])
508 goto out_unlock;
509
510 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
511 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
512 css->id, memcg_name_buf);
513 if (!cache_name)
514 goto out_unlock;
515
516 s = do_kmem_cache_create(cache_name, root_cache->object_size,
517 root_cache->size, root_cache->align,
518 root_cache->flags, root_cache->ctor,
519 memcg, root_cache);
520 /*
521 * If we could not create a memcg cache, do not complain, because
522 * that's not critical at all as we can always proceed with the root
523 * cache.
524 */
525 if (IS_ERR(s)) {
526 kfree(cache_name);
527 goto out_unlock;
528 }
529
530 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
531
532 /*
533 * Since readers won't lock (see cache_from_memcg_idx()), we need a
534 * barrier here to ensure nobody will see the kmem_cache partially
535 * initialized.
536 */
537 smp_wmb();
538 arr->entries[idx] = s;
539
540 out_unlock:
541 mutex_unlock(&slab_mutex);
542
543 put_online_mems();
544 put_online_cpus();
545 }
546
547 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
548 {
549 int idx;
550 struct memcg_cache_array *arr;
551 struct kmem_cache *s, *c;
552
553 idx = memcg_cache_id(memcg);
554
555 get_online_cpus();
556 get_online_mems();
557
558 mutex_lock(&slab_mutex);
559 list_for_each_entry(s, &slab_caches, list) {
560 if (!is_root_cache(s))
561 continue;
562
563 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
564 lockdep_is_held(&slab_mutex));
565 c = arr->entries[idx];
566 if (!c)
567 continue;
568
569 __kmem_cache_shrink(c, true);
570 arr->entries[idx] = NULL;
571 }
572 mutex_unlock(&slab_mutex);
573
574 put_online_mems();
575 put_online_cpus();
576 }
577
578 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
579 {
580 LIST_HEAD(release);
581 bool need_rcu_barrier = false;
582 struct kmem_cache *s, *s2;
583
584 get_online_cpus();
585 get_online_mems();
586
587 mutex_lock(&slab_mutex);
588 list_for_each_entry_safe(s, s2, &slab_caches, list) {
589 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
590 continue;
591 /*
592 * The cgroup is about to be freed and therefore has no charges
593 * left. Hence, all its caches must be empty by now.
594 */
595 BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
596 }
597 mutex_unlock(&slab_mutex);
598
599 put_online_mems();
600 put_online_cpus();
601
602 do_kmem_cache_release(&release, need_rcu_barrier);
603 }
604 #endif /* CONFIG_MEMCG_KMEM */
605
606 void slab_kmem_cache_release(struct kmem_cache *s)
607 {
608 destroy_memcg_params(s);
609 kfree_const(s->name);
610 kmem_cache_free(kmem_cache, s);
611 }
612
613 void kmem_cache_destroy(struct kmem_cache *s)
614 {
615 struct kmem_cache *c, *c2;
616 LIST_HEAD(release);
617 bool need_rcu_barrier = false;
618 bool busy = false;
619
620 BUG_ON(!is_root_cache(s));
621
622 get_online_cpus();
623 get_online_mems();
624
625 mutex_lock(&slab_mutex);
626
627 s->refcount--;
628 if (s->refcount)
629 goto out_unlock;
630
631 for_each_memcg_cache_safe(c, c2, s) {
632 if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
633 busy = true;
634 }
635
636 if (!busy)
637 do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
638
639 out_unlock:
640 mutex_unlock(&slab_mutex);
641
642 put_online_mems();
643 put_online_cpus();
644
645 do_kmem_cache_release(&release, need_rcu_barrier);
646 }
647 EXPORT_SYMBOL(kmem_cache_destroy);
648
649 /**
650 * kmem_cache_shrink - Shrink a cache.
651 * @cachep: The cache to shrink.
652 *
653 * Releases as many slabs as possible for a cache.
654 * To help debugging, a zero exit status indicates all slabs were released.
655 */
656 int kmem_cache_shrink(struct kmem_cache *cachep)
657 {
658 int ret;
659
660 get_online_cpus();
661 get_online_mems();
662 ret = __kmem_cache_shrink(cachep, false);
663 put_online_mems();
664 put_online_cpus();
665 return ret;
666 }
667 EXPORT_SYMBOL(kmem_cache_shrink);
668
669 int slab_is_available(void)
670 {
671 return slab_state >= UP;
672 }
673
674 #ifndef CONFIG_SLOB
675 /* Create a cache during boot when no slab services are available yet */
676 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
677 unsigned long flags)
678 {
679 int err;
680
681 s->name = name;
682 s->size = s->object_size = size;
683 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
684
685 slab_init_memcg_params(s);
686
687 err = __kmem_cache_create(s, flags);
688
689 if (err)
690 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
691 name, size, err);
692
693 s->refcount = -1; /* Exempt from merging for now */
694 }
695
696 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
697 unsigned long flags)
698 {
699 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
700
701 if (!s)
702 panic("Out of memory when creating slab %s\n", name);
703
704 create_boot_cache(s, name, size, flags);
705 list_add(&s->list, &slab_caches);
706 s->refcount = 1;
707 return s;
708 }
709
710 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
711 EXPORT_SYMBOL(kmalloc_caches);
712
713 #ifdef CONFIG_ZONE_DMA
714 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
715 EXPORT_SYMBOL(kmalloc_dma_caches);
716 #endif
717
718 /*
719 * Conversion table for small slabs sizes / 8 to the index in the
720 * kmalloc array. This is necessary for slabs < 192 since we have non power
721 * of two cache sizes there. The size of larger slabs can be determined using
722 * fls.
723 */
724 static s8 size_index[24] = {
725 3, /* 8 */
726 4, /* 16 */
727 5, /* 24 */
728 5, /* 32 */
729 6, /* 40 */
730 6, /* 48 */
731 6, /* 56 */
732 6, /* 64 */
733 1, /* 72 */
734 1, /* 80 */
735 1, /* 88 */
736 1, /* 96 */
737 7, /* 104 */
738 7, /* 112 */
739 7, /* 120 */
740 7, /* 128 */
741 2, /* 136 */
742 2, /* 144 */
743 2, /* 152 */
744 2, /* 160 */
745 2, /* 168 */
746 2, /* 176 */
747 2, /* 184 */
748 2 /* 192 */
749 };
750
751 static inline int size_index_elem(size_t bytes)
752 {
753 return (bytes - 1) / 8;
754 }
755
756 /*
757 * Find the kmem_cache structure that serves a given size of
758 * allocation
759 */
760 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
761 {
762 int index;
763
764 if (unlikely(size > KMALLOC_MAX_SIZE)) {
765 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
766 return NULL;
767 }
768
769 if (size <= 192) {
770 if (!size)
771 return ZERO_SIZE_PTR;
772
773 index = size_index[size_index_elem(size)];
774 } else
775 index = fls(size - 1);
776
777 #ifdef CONFIG_ZONE_DMA
778 if (unlikely((flags & GFP_DMA)))
779 return kmalloc_dma_caches[index];
780
781 #endif
782 return kmalloc_caches[index];
783 }
784
785 /*
786 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
787 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
788 * kmalloc-67108864.
789 */
790 static struct {
791 const char *name;
792 unsigned long size;
793 } const kmalloc_info[] __initconst = {
794 {NULL, 0}, {"kmalloc-96", 96},
795 {"kmalloc-192", 192}, {"kmalloc-8", 8},
796 {"kmalloc-16", 16}, {"kmalloc-32", 32},
797 {"kmalloc-64", 64}, {"kmalloc-128", 128},
798 {"kmalloc-256", 256}, {"kmalloc-512", 512},
799 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
800 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
801 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
802 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
803 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
804 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
805 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
806 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
807 {"kmalloc-67108864", 67108864}
808 };
809
810 /*
811 * Patch up the size_index table if we have strange large alignment
812 * requirements for the kmalloc array. This is only the case for
813 * MIPS it seems. The standard arches will not generate any code here.
814 *
815 * Largest permitted alignment is 256 bytes due to the way we
816 * handle the index determination for the smaller caches.
817 *
818 * Make sure that nothing crazy happens if someone starts tinkering
819 * around with ARCH_KMALLOC_MINALIGN
820 */
821 void __init setup_kmalloc_cache_index_table(void)
822 {
823 int i;
824
825 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
826 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
827
828 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
829 int elem = size_index_elem(i);
830
831 if (elem >= ARRAY_SIZE(size_index))
832 break;
833 size_index[elem] = KMALLOC_SHIFT_LOW;
834 }
835
836 if (KMALLOC_MIN_SIZE >= 64) {
837 /*
838 * The 96 byte size cache is not used if the alignment
839 * is 64 byte.
840 */
841 for (i = 64 + 8; i <= 96; i += 8)
842 size_index[size_index_elem(i)] = 7;
843
844 }
845
846 if (KMALLOC_MIN_SIZE >= 128) {
847 /*
848 * The 192 byte sized cache is not used if the alignment
849 * is 128 byte. Redirect kmalloc to use the 256 byte cache
850 * instead.
851 */
852 for (i = 128 + 8; i <= 192; i += 8)
853 size_index[size_index_elem(i)] = 8;
854 }
855 }
856
857 static void __init new_kmalloc_cache(int idx, unsigned long flags)
858 {
859 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
860 kmalloc_info[idx].size, flags);
861 }
862
863 /*
864 * Create the kmalloc array. Some of the regular kmalloc arrays
865 * may already have been created because they were needed to
866 * enable allocations for slab creation.
867 */
868 void __init create_kmalloc_caches(unsigned long flags)
869 {
870 int i;
871
872 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
873 if (!kmalloc_caches[i])
874 new_kmalloc_cache(i, flags);
875
876 /*
877 * Caches that are not of the two-to-the-power-of size.
878 * These have to be created immediately after the
879 * earlier power of two caches
880 */
881 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
882 new_kmalloc_cache(1, flags);
883 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
884 new_kmalloc_cache(2, flags);
885 }
886
887 /* Kmalloc array is now usable */
888 slab_state = UP;
889
890 #ifdef CONFIG_ZONE_DMA
891 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
892 struct kmem_cache *s = kmalloc_caches[i];
893
894 if (s) {
895 int size = kmalloc_size(i);
896 char *n = kasprintf(GFP_NOWAIT,
897 "dma-kmalloc-%d", size);
898
899 BUG_ON(!n);
900 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
901 size, SLAB_CACHE_DMA | flags);
902 }
903 }
904 #endif
905 }
906 #endif /* !CONFIG_SLOB */
907
908 /*
909 * To avoid unnecessary overhead, we pass through large allocation requests
910 * directly to the page allocator. We use __GFP_COMP, because we will need to
911 * know the allocation order to free the pages properly in kfree.
912 */
913 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
914 {
915 void *ret;
916 struct page *page;
917
918 flags |= __GFP_COMP;
919 page = alloc_kmem_pages(flags, order);
920 ret = page ? page_address(page) : NULL;
921 kmemleak_alloc(ret, size, 1, flags);
922 kasan_kmalloc_large(ret, size);
923 return ret;
924 }
925 EXPORT_SYMBOL(kmalloc_order);
926
927 #ifdef CONFIG_TRACING
928 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
929 {
930 void *ret = kmalloc_order(size, flags, order);
931 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
932 return ret;
933 }
934 EXPORT_SYMBOL(kmalloc_order_trace);
935 #endif
936
937 #ifdef CONFIG_SLABINFO
938
939 #ifdef CONFIG_SLAB
940 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
941 #else
942 #define SLABINFO_RIGHTS S_IRUSR
943 #endif
944
945 static void print_slabinfo_header(struct seq_file *m)
946 {
947 /*
948 * Output format version, so at least we can change it
949 * without _too_ many complaints.
950 */
951 #ifdef CONFIG_DEBUG_SLAB
952 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
953 #else
954 seq_puts(m, "slabinfo - version: 2.1\n");
955 #endif
956 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
957 "<objperslab> <pagesperslab>");
958 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
959 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
960 #ifdef CONFIG_DEBUG_SLAB
961 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
962 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
963 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
964 #endif
965 seq_putc(m, '\n');
966 }
967
968 void *slab_start(struct seq_file *m, loff_t *pos)
969 {
970 mutex_lock(&slab_mutex);
971 return seq_list_start(&slab_caches, *pos);
972 }
973
974 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
975 {
976 return seq_list_next(p, &slab_caches, pos);
977 }
978
979 void slab_stop(struct seq_file *m, void *p)
980 {
981 mutex_unlock(&slab_mutex);
982 }
983
984 static void
985 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
986 {
987 struct kmem_cache *c;
988 struct slabinfo sinfo;
989
990 if (!is_root_cache(s))
991 return;
992
993 for_each_memcg_cache(c, s) {
994 memset(&sinfo, 0, sizeof(sinfo));
995 get_slabinfo(c, &sinfo);
996
997 info->active_slabs += sinfo.active_slabs;
998 info->num_slabs += sinfo.num_slabs;
999 info->shared_avail += sinfo.shared_avail;
1000 info->active_objs += sinfo.active_objs;
1001 info->num_objs += sinfo.num_objs;
1002 }
1003 }
1004
1005 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1006 {
1007 struct slabinfo sinfo;
1008
1009 memset(&sinfo, 0, sizeof(sinfo));
1010 get_slabinfo(s, &sinfo);
1011
1012 memcg_accumulate_slabinfo(s, &sinfo);
1013
1014 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1015 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1016 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1017
1018 seq_printf(m, " : tunables %4u %4u %4u",
1019 sinfo.limit, sinfo.batchcount, sinfo.shared);
1020 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1021 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1022 slabinfo_show_stats(m, s);
1023 seq_putc(m, '\n');
1024 }
1025
1026 static int slab_show(struct seq_file *m, void *p)
1027 {
1028 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1029
1030 if (p == slab_caches.next)
1031 print_slabinfo_header(m);
1032 if (is_root_cache(s))
1033 cache_show(s, m);
1034 return 0;
1035 }
1036
1037 #ifdef CONFIG_MEMCG_KMEM
1038 int memcg_slab_show(struct seq_file *m, void *p)
1039 {
1040 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1041 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1042
1043 if (p == slab_caches.next)
1044 print_slabinfo_header(m);
1045 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1046 cache_show(s, m);
1047 return 0;
1048 }
1049 #endif
1050
1051 /*
1052 * slabinfo_op - iterator that generates /proc/slabinfo
1053 *
1054 * Output layout:
1055 * cache-name
1056 * num-active-objs
1057 * total-objs
1058 * object size
1059 * num-active-slabs
1060 * total-slabs
1061 * num-pages-per-slab
1062 * + further values on SMP and with statistics enabled
1063 */
1064 static const struct seq_operations slabinfo_op = {
1065 .start = slab_start,
1066 .next = slab_next,
1067 .stop = slab_stop,
1068 .show = slab_show,
1069 };
1070
1071 static int slabinfo_open(struct inode *inode, struct file *file)
1072 {
1073 return seq_open(file, &slabinfo_op);
1074 }
1075
1076 static const struct file_operations proc_slabinfo_operations = {
1077 .open = slabinfo_open,
1078 .read = seq_read,
1079 .write = slabinfo_write,
1080 .llseek = seq_lseek,
1081 .release = seq_release,
1082 };
1083
1084 static int __init slab_proc_init(void)
1085 {
1086 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1087 &proc_slabinfo_operations);
1088 return 0;
1089 }
1090 module_init(slab_proc_init);
1091 #endif /* CONFIG_SLABINFO */
1092
1093 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1094 gfp_t flags)
1095 {
1096 void *ret;
1097 size_t ks = 0;
1098
1099 if (p)
1100 ks = ksize(p);
1101
1102 if (ks >= new_size) {
1103 kasan_krealloc((void *)p, new_size);
1104 return (void *)p;
1105 }
1106
1107 ret = kmalloc_track_caller(new_size, flags);
1108 if (ret && p)
1109 memcpy(ret, p, ks);
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * __krealloc - like krealloc() but don't free @p.
1116 * @p: object to reallocate memory for.
1117 * @new_size: how many bytes of memory are required.
1118 * @flags: the type of memory to allocate.
1119 *
1120 * This function is like krealloc() except it never frees the originally
1121 * allocated buffer. Use this if you don't want to free the buffer immediately
1122 * like, for example, with RCU.
1123 */
1124 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1125 {
1126 if (unlikely(!new_size))
1127 return ZERO_SIZE_PTR;
1128
1129 return __do_krealloc(p, new_size, flags);
1130
1131 }
1132 EXPORT_SYMBOL(__krealloc);
1133
1134 /**
1135 * krealloc - reallocate memory. The contents will remain unchanged.
1136 * @p: object to reallocate memory for.
1137 * @new_size: how many bytes of memory are required.
1138 * @flags: the type of memory to allocate.
1139 *
1140 * The contents of the object pointed to are preserved up to the
1141 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1142 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1143 * %NULL pointer, the object pointed to is freed.
1144 */
1145 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1146 {
1147 void *ret;
1148
1149 if (unlikely(!new_size)) {
1150 kfree(p);
1151 return ZERO_SIZE_PTR;
1152 }
1153
1154 ret = __do_krealloc(p, new_size, flags);
1155 if (ret && p != ret)
1156 kfree(p);
1157
1158 return ret;
1159 }
1160 EXPORT_SYMBOL(krealloc);
1161
1162 /**
1163 * kzfree - like kfree but zero memory
1164 * @p: object to free memory of
1165 *
1166 * The memory of the object @p points to is zeroed before freed.
1167 * If @p is %NULL, kzfree() does nothing.
1168 *
1169 * Note: this function zeroes the whole allocated buffer which can be a good
1170 * deal bigger than the requested buffer size passed to kmalloc(). So be
1171 * careful when using this function in performance sensitive code.
1172 */
1173 void kzfree(const void *p)
1174 {
1175 size_t ks;
1176 void *mem = (void *)p;
1177
1178 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1179 return;
1180 ks = ksize(mem);
1181 memset(mem, 0, ks);
1182 kfree(mem);
1183 }
1184 EXPORT_SYMBOL(kzfree);
1185
1186 /* Tracepoints definitions. */
1187 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1188 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1189 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1190 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1191 EXPORT_TRACEPOINT_SYMBOL(kfree);
1192 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
This page took 0.081919 seconds and 5 git commands to generate.