mm: munlock: remove unnecessary call to lru_add_drain()
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in the.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363 {
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s->flags & __CMPXCHG_DOUBLE) {
368 if (cmpxchg_double(&page->freelist, &page->counters,
369 freelist_old, counters_old,
370 freelist_new, counters_new))
371 return 1;
372 } else
373 #endif
374 {
375 slab_lock(page);
376 if (page->freelist == freelist_old && page->counters == counters_old) {
377 page->freelist = freelist_new;
378 page->counters = counters_new;
379 slab_unlock(page);
380 return 1;
381 }
382 slab_unlock(page);
383 }
384
385 cpu_relax();
386 stat(s, CMPXCHG_DOUBLE_FAIL);
387
388 #ifdef SLUB_DEBUG_CMPXCHG
389 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391
392 return 0;
393 }
394
395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 void *freelist_old, unsigned long counters_old,
397 void *freelist_new, unsigned long counters_new,
398 const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 if (s->flags & __CMPXCHG_DOUBLE) {
403 if (cmpxchg_double(&page->freelist, &page->counters,
404 freelist_old, counters_old,
405 freelist_new, counters_new))
406 return 1;
407 } else
408 #endif
409 {
410 unsigned long flags;
411
412 local_irq_save(flags);
413 slab_lock(page);
414 if (page->freelist == freelist_old && page->counters == counters_old) {
415 page->freelist = freelist_new;
416 page->counters = counters_new;
417 slab_unlock(page);
418 local_irq_restore(flags);
419 return 1;
420 }
421 slab_unlock(page);
422 local_irq_restore(flags);
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428 #ifdef SLUB_DEBUG_CMPXCHG
429 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431
432 return 0;
433 }
434
435 #ifdef CONFIG_SLUB_DEBUG
436 /*
437 * Determine a map of object in use on a page.
438 *
439 * Node listlock must be held to guarantee that the page does
440 * not vanish from under us.
441 */
442 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
443 {
444 void *p;
445 void *addr = page_address(page);
446
447 for (p = page->freelist; p; p = get_freepointer(s, p))
448 set_bit(slab_index(p, s, addr), map);
449 }
450
451 /*
452 * Debug settings:
453 */
454 #ifdef CONFIG_SLUB_DEBUG_ON
455 static int slub_debug = DEBUG_DEFAULT_FLAGS;
456 #else
457 static int slub_debug;
458 #endif
459
460 static char *slub_debug_slabs;
461 static int disable_higher_order_debug;
462
463 /*
464 * Object debugging
465 */
466 static void print_section(char *text, u8 *addr, unsigned int length)
467 {
468 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
469 length, 1);
470 }
471
472 static struct track *get_track(struct kmem_cache *s, void *object,
473 enum track_item alloc)
474 {
475 struct track *p;
476
477 if (s->offset)
478 p = object + s->offset + sizeof(void *);
479 else
480 p = object + s->inuse;
481
482 return p + alloc;
483 }
484
485 static void set_track(struct kmem_cache *s, void *object,
486 enum track_item alloc, unsigned long addr)
487 {
488 struct track *p = get_track(s, object, alloc);
489
490 if (addr) {
491 #ifdef CONFIG_STACKTRACE
492 struct stack_trace trace;
493 int i;
494
495 trace.nr_entries = 0;
496 trace.max_entries = TRACK_ADDRS_COUNT;
497 trace.entries = p->addrs;
498 trace.skip = 3;
499 save_stack_trace(&trace);
500
501 /* See rant in lockdep.c */
502 if (trace.nr_entries != 0 &&
503 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
504 trace.nr_entries--;
505
506 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
507 p->addrs[i] = 0;
508 #endif
509 p->addr = addr;
510 p->cpu = smp_processor_id();
511 p->pid = current->pid;
512 p->when = jiffies;
513 } else
514 memset(p, 0, sizeof(struct track));
515 }
516
517 static void init_tracking(struct kmem_cache *s, void *object)
518 {
519 if (!(s->flags & SLAB_STORE_USER))
520 return;
521
522 set_track(s, object, TRACK_FREE, 0UL);
523 set_track(s, object, TRACK_ALLOC, 0UL);
524 }
525
526 static void print_track(const char *s, struct track *t)
527 {
528 if (!t->addr)
529 return;
530
531 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
532 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
533 #ifdef CONFIG_STACKTRACE
534 {
535 int i;
536 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
537 if (t->addrs[i])
538 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
539 else
540 break;
541 }
542 #endif
543 }
544
545 static void print_tracking(struct kmem_cache *s, void *object)
546 {
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
551 print_track("Freed", get_track(s, object, TRACK_FREE));
552 }
553
554 static void print_page_info(struct page *page)
555 {
556 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
557 page, page->objects, page->inuse, page->freelist, page->flags);
558
559 }
560
561 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
562 {
563 va_list args;
564 char buf[100];
565
566 va_start(args, fmt);
567 vsnprintf(buf, sizeof(buf), fmt, args);
568 va_end(args);
569 printk(KERN_ERR "========================================"
570 "=====================================\n");
571 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
572 printk(KERN_ERR "----------------------------------------"
573 "-------------------------------------\n\n");
574
575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 }
577
578 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579 {
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587 }
588
589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
590 {
591 unsigned int off; /* Offset of last byte */
592 u8 *addr = page_address(page);
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
602 print_section("Bytes b4 ", p - 16, 16);
603
604 print_section("Object ", p, min_t(unsigned long, s->object_size,
605 PAGE_SIZE));
606 if (s->flags & SLAB_RED_ZONE)
607 print_section("Redzone ", p + s->object_size,
608 s->inuse - s->object_size);
609
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
615 if (s->flags & SLAB_STORE_USER)
616 off += 2 * sizeof(struct track);
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
620 print_section("Padding ", p + off, s->size - off);
621
622 dump_stack();
623 }
624
625 static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627 {
628 slab_bug(s, "%s", reason);
629 print_trailer(s, page, object);
630 }
631
632 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
633 {
634 va_list args;
635 char buf[100];
636
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
639 va_end(args);
640 slab_bug(s, "%s", buf);
641 print_page_info(page);
642 dump_stack();
643 }
644
645 static void init_object(struct kmem_cache *s, void *object, u8 val)
646 {
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->object_size - 1);
651 p[s->object_size - 1] = POISON_END;
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
655 memset(p + s->object_size, val, s->inuse - s->object_size);
656 }
657
658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 void *from, void *to)
660 {
661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 memset(from, data, to - from);
663 }
664
665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 u8 *object, char *what,
667 u8 *start, unsigned int value, unsigned int bytes)
668 {
669 u8 *fault;
670 u8 *end;
671
672 fault = memchr_inv(start, value, bytes);
673 if (!fault)
674 return 1;
675
676 end = start + bytes;
677 while (end > fault && end[-1] == value)
678 end--;
679
680 slab_bug(s, "%s overwritten", what);
681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault, end - 1, fault[0], value);
683 print_trailer(s, page, object);
684
685 restore_bytes(s, what, value, fault, end);
686 return 0;
687 }
688
689 /*
690 * Object layout:
691 *
692 * object address
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
696 *
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
698 * 0xa5 (POISON_END)
699 *
700 * object + s->object_size
701 * Padding to reach word boundary. This is also used for Redzoning.
702 * Padding is extended by another word if Redzoning is enabled and
703 * object_size == inuse.
704 *
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
707 *
708 * object + s->inuse
709 * Meta data starts here.
710 *
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
713 * C. Padding to reach required alignment boundary or at mininum
714 * one word if debugging is on to be able to detect writes
715 * before the word boundary.
716 *
717 * Padding is done using 0x5a (POISON_INUSE)
718 *
719 * object + s->size
720 * Nothing is used beyond s->size.
721 *
722 * If slabcaches are merged then the object_size and inuse boundaries are mostly
723 * ignored. And therefore no slab options that rely on these boundaries
724 * may be used with merged slabcaches.
725 */
726
727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728 {
729 unsigned long off = s->inuse; /* The end of info */
730
731 if (s->offset)
732 /* Freepointer is placed after the object. */
733 off += sizeof(void *);
734
735 if (s->flags & SLAB_STORE_USER)
736 /* We also have user information there */
737 off += 2 * sizeof(struct track);
738
739 if (s->size == off)
740 return 1;
741
742 return check_bytes_and_report(s, page, p, "Object padding",
743 p + off, POISON_INUSE, s->size - off);
744 }
745
746 /* Check the pad bytes at the end of a slab page */
747 static int slab_pad_check(struct kmem_cache *s, struct page *page)
748 {
749 u8 *start;
750 u8 *fault;
751 u8 *end;
752 int length;
753 int remainder;
754
755 if (!(s->flags & SLAB_POISON))
756 return 1;
757
758 start = page_address(page);
759 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 end = start + length;
761 remainder = length % s->size;
762 if (!remainder)
763 return 1;
764
765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 if (!fault)
767 return 1;
768 while (end > fault && end[-1] == POISON_INUSE)
769 end--;
770
771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772 print_section("Padding ", end - remainder, remainder);
773
774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775 return 0;
776 }
777
778 static int check_object(struct kmem_cache *s, struct page *page,
779 void *object, u8 val)
780 {
781 u8 *p = object;
782 u8 *endobject = object + s->object_size;
783
784 if (s->flags & SLAB_RED_ZONE) {
785 if (!check_bytes_and_report(s, page, object, "Redzone",
786 endobject, val, s->inuse - s->object_size))
787 return 0;
788 } else {
789 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
790 check_bytes_and_report(s, page, p, "Alignment padding",
791 endobject, POISON_INUSE, s->inuse - s->object_size);
792 }
793 }
794
795 if (s->flags & SLAB_POISON) {
796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797 (!check_bytes_and_report(s, page, p, "Poison", p,
798 POISON_FREE, s->object_size - 1) ||
799 !check_bytes_and_report(s, page, p, "Poison",
800 p + s->object_size - 1, POISON_END, 1)))
801 return 0;
802 /*
803 * check_pad_bytes cleans up on its own.
804 */
805 check_pad_bytes(s, page, p);
806 }
807
808 if (!s->offset && val == SLUB_RED_ACTIVE)
809 /*
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
812 */
813 return 1;
814
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 object_err(s, page, p, "Freepointer corrupt");
818 /*
819 * No choice but to zap it and thus lose the remainder
820 * of the free objects in this slab. May cause
821 * another error because the object count is now wrong.
822 */
823 set_freepointer(s, p, NULL);
824 return 0;
825 }
826 return 1;
827 }
828
829 static int check_slab(struct kmem_cache *s, struct page *page)
830 {
831 int maxobj;
832
833 VM_BUG_ON(!irqs_disabled());
834
835 if (!PageSlab(page)) {
836 slab_err(s, page, "Not a valid slab page");
837 return 0;
838 }
839
840 maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 if (page->objects > maxobj) {
842 slab_err(s, page, "objects %u > max %u",
843 s->name, page->objects, maxobj);
844 return 0;
845 }
846 if (page->inuse > page->objects) {
847 slab_err(s, page, "inuse %u > max %u",
848 s->name, page->inuse, page->objects);
849 return 0;
850 }
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s, page);
853 return 1;
854 }
855
856 /*
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
859 */
860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861 {
862 int nr = 0;
863 void *fp;
864 void *object = NULL;
865 unsigned long max_objects;
866
867 fp = page->freelist;
868 while (fp && nr <= page->objects) {
869 if (fp == search)
870 return 1;
871 if (!check_valid_pointer(s, page, fp)) {
872 if (object) {
873 object_err(s, page, object,
874 "Freechain corrupt");
875 set_freepointer(s, object, NULL);
876 break;
877 } else {
878 slab_err(s, page, "Freepointer corrupt");
879 page->freelist = NULL;
880 page->inuse = page->objects;
881 slab_fix(s, "Freelist cleared");
882 return 0;
883 }
884 break;
885 }
886 object = fp;
887 fp = get_freepointer(s, object);
888 nr++;
889 }
890
891 max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 if (max_objects > MAX_OBJS_PER_PAGE)
893 max_objects = MAX_OBJS_PER_PAGE;
894
895 if (page->objects != max_objects) {
896 slab_err(s, page, "Wrong number of objects. Found %d but "
897 "should be %d", page->objects, max_objects);
898 page->objects = max_objects;
899 slab_fix(s, "Number of objects adjusted.");
900 }
901 if (page->inuse != page->objects - nr) {
902 slab_err(s, page, "Wrong object count. Counter is %d but "
903 "counted were %d", page->inuse, page->objects - nr);
904 page->inuse = page->objects - nr;
905 slab_fix(s, "Object count adjusted.");
906 }
907 return search == NULL;
908 }
909
910 static void trace(struct kmem_cache *s, struct page *page, void *object,
911 int alloc)
912 {
913 if (s->flags & SLAB_TRACE) {
914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 s->name,
916 alloc ? "alloc" : "free",
917 object, page->inuse,
918 page->freelist);
919
920 if (!alloc)
921 print_section("Object ", (void *)object, s->object_size);
922
923 dump_stack();
924 }
925 }
926
927 /*
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
930 */
931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932 {
933 flags &= gfp_allowed_mask;
934 lockdep_trace_alloc(flags);
935 might_sleep_if(flags & __GFP_WAIT);
936
937 return should_failslab(s->object_size, flags, s->flags);
938 }
939
940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941 {
942 flags &= gfp_allowed_mask;
943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
945 }
946
947 static inline void slab_free_hook(struct kmem_cache *s, void *x)
948 {
949 kmemleak_free_recursive(x, s->flags);
950
951 /*
952 * Trouble is that we may no longer disable interupts in the fast path
953 * So in order to make the debug calls that expect irqs to be
954 * disabled we need to disable interrupts temporarily.
955 */
956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 {
958 unsigned long flags;
959
960 local_irq_save(flags);
961 kmemcheck_slab_free(s, x, s->object_size);
962 debug_check_no_locks_freed(x, s->object_size);
963 local_irq_restore(flags);
964 }
965 #endif
966 if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 debug_check_no_obj_freed(x, s->object_size);
968 }
969
970 /*
971 * Tracking of fully allocated slabs for debugging purposes.
972 *
973 * list_lock must be held.
974 */
975 static void add_full(struct kmem_cache *s,
976 struct kmem_cache_node *n, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 list_add(&page->lru, &n->full);
982 }
983
984 /*
985 * list_lock must be held.
986 */
987 static void remove_full(struct kmem_cache *s, struct page *page)
988 {
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
991
992 list_del(&page->lru);
993 }
994
995 /* Tracking of the number of slabs for debugging purposes */
996 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 return atomic_long_read(&n->nr_slabs);
1001 }
1002
1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004 {
1005 return atomic_long_read(&n->nr_slabs);
1006 }
1007
1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 {
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 /*
1013 * May be called early in order to allocate a slab for the
1014 * kmem_cache_node structure. Solve the chicken-egg
1015 * dilemma by deferring the increment of the count during
1016 * bootstrap (see early_kmem_cache_node_alloc).
1017 */
1018 if (likely(n)) {
1019 atomic_long_inc(&n->nr_slabs);
1020 atomic_long_add(objects, &n->total_objects);
1021 }
1022 }
1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 atomic_long_dec(&n->nr_slabs);
1028 atomic_long_sub(objects, &n->total_objects);
1029 }
1030
1031 /* Object debug checks for alloc/free paths */
1032 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 void *object)
1034 {
1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 return;
1037
1038 init_object(s, object, SLUB_RED_INACTIVE);
1039 init_tracking(s, object);
1040 }
1041
1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043 void *object, unsigned long addr)
1044 {
1045 if (!check_slab(s, page))
1046 goto bad;
1047
1048 if (!check_valid_pointer(s, page, object)) {
1049 object_err(s, page, object, "Freelist Pointer check fails");
1050 goto bad;
1051 }
1052
1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1054 goto bad;
1055
1056 /* Success perform special debug activities for allocs */
1057 if (s->flags & SLAB_STORE_USER)
1058 set_track(s, object, TRACK_ALLOC, addr);
1059 trace(s, page, object, 1);
1060 init_object(s, object, SLUB_RED_ACTIVE);
1061 return 1;
1062
1063 bad:
1064 if (PageSlab(page)) {
1065 /*
1066 * If this is a slab page then lets do the best we can
1067 * to avoid issues in the future. Marking all objects
1068 * as used avoids touching the remaining objects.
1069 */
1070 slab_fix(s, "Marking all objects used");
1071 page->inuse = page->objects;
1072 page->freelist = NULL;
1073 }
1074 return 0;
1075 }
1076
1077 static noinline struct kmem_cache_node *free_debug_processing(
1078 struct kmem_cache *s, struct page *page, void *object,
1079 unsigned long addr, unsigned long *flags)
1080 {
1081 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1082
1083 spin_lock_irqsave(&n->list_lock, *flags);
1084 slab_lock(page);
1085
1086 if (!check_slab(s, page))
1087 goto fail;
1088
1089 if (!check_valid_pointer(s, page, object)) {
1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
1095 object_err(s, page, object, "Object already free");
1096 goto fail;
1097 }
1098
1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 goto out;
1101
1102 if (unlikely(s != page->slab_cache)) {
1103 if (!PageSlab(page)) {
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
1106 } else if (!page->slab_cache) {
1107 printk(KERN_ERR
1108 "SLUB <none>: no slab for object 0x%p.\n",
1109 object);
1110 dump_stack();
1111 } else
1112 object_err(s, page, object,
1113 "page slab pointer corrupt.");
1114 goto fail;
1115 }
1116
1117 if (s->flags & SLAB_STORE_USER)
1118 set_track(s, object, TRACK_FREE, addr);
1119 trace(s, page, object, 0);
1120 init_object(s, object, SLUB_RED_INACTIVE);
1121 out:
1122 slab_unlock(page);
1123 /*
1124 * Keep node_lock to preserve integrity
1125 * until the object is actually freed
1126 */
1127 return n;
1128
1129 fail:
1130 slab_unlock(page);
1131 spin_unlock_irqrestore(&n->list_lock, *flags);
1132 slab_fix(s, "Object at 0x%p not freed", object);
1133 return NULL;
1134 }
1135
1136 static int __init setup_slub_debug(char *str)
1137 {
1138 slub_debug = DEBUG_DEFAULT_FLAGS;
1139 if (*str++ != '=' || !*str)
1140 /*
1141 * No options specified. Switch on full debugging.
1142 */
1143 goto out;
1144
1145 if (*str == ',')
1146 /*
1147 * No options but restriction on slabs. This means full
1148 * debugging for slabs matching a pattern.
1149 */
1150 goto check_slabs;
1151
1152 if (tolower(*str) == 'o') {
1153 /*
1154 * Avoid enabling debugging on caches if its minimum order
1155 * would increase as a result.
1156 */
1157 disable_higher_order_debug = 1;
1158 goto out;
1159 }
1160
1161 slub_debug = 0;
1162 if (*str == '-')
1163 /*
1164 * Switch off all debugging measures.
1165 */
1166 goto out;
1167
1168 /*
1169 * Determine which debug features should be switched on
1170 */
1171 for (; *str && *str != ','; str++) {
1172 switch (tolower(*str)) {
1173 case 'f':
1174 slub_debug |= SLAB_DEBUG_FREE;
1175 break;
1176 case 'z':
1177 slub_debug |= SLAB_RED_ZONE;
1178 break;
1179 case 'p':
1180 slub_debug |= SLAB_POISON;
1181 break;
1182 case 'u':
1183 slub_debug |= SLAB_STORE_USER;
1184 break;
1185 case 't':
1186 slub_debug |= SLAB_TRACE;
1187 break;
1188 case 'a':
1189 slub_debug |= SLAB_FAILSLAB;
1190 break;
1191 default:
1192 printk(KERN_ERR "slub_debug option '%c' "
1193 "unknown. skipped\n", *str);
1194 }
1195 }
1196
1197 check_slabs:
1198 if (*str == ',')
1199 slub_debug_slabs = str + 1;
1200 out:
1201 return 1;
1202 }
1203
1204 __setup("slub_debug", setup_slub_debug);
1205
1206 static unsigned long kmem_cache_flags(unsigned long object_size,
1207 unsigned long flags, const char *name,
1208 void (*ctor)(void *))
1209 {
1210 /*
1211 * Enable debugging if selected on the kernel commandline.
1212 */
1213 if (slub_debug && (!slub_debug_slabs ||
1214 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1215 flags |= slub_debug;
1216
1217 return flags;
1218 }
1219 #else
1220 static inline void setup_object_debug(struct kmem_cache *s,
1221 struct page *page, void *object) {}
1222
1223 static inline int alloc_debug_processing(struct kmem_cache *s,
1224 struct page *page, void *object, unsigned long addr) { return 0; }
1225
1226 static inline struct kmem_cache_node *free_debug_processing(
1227 struct kmem_cache *s, struct page *page, void *object,
1228 unsigned long addr, unsigned long *flags) { return NULL; }
1229
1230 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1231 { return 1; }
1232 static inline int check_object(struct kmem_cache *s, struct page *page,
1233 void *object, u8 val) { return 1; }
1234 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1235 struct page *page) {}
1236 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1237 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1238 unsigned long flags, const char *name,
1239 void (*ctor)(void *))
1240 {
1241 return flags;
1242 }
1243 #define slub_debug 0
1244
1245 #define disable_higher_order_debug 0
1246
1247 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1248 { return 0; }
1249 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1250 { return 0; }
1251 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1252 int objects) {}
1253 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1254 int objects) {}
1255
1256 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1257 { return 0; }
1258
1259 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1260 void *object) {}
1261
1262 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1263
1264 #endif /* CONFIG_SLUB_DEBUG */
1265
1266 /*
1267 * Slab allocation and freeing
1268 */
1269 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1270 struct kmem_cache_order_objects oo)
1271 {
1272 int order = oo_order(oo);
1273
1274 flags |= __GFP_NOTRACK;
1275
1276 if (node == NUMA_NO_NODE)
1277 return alloc_pages(flags, order);
1278 else
1279 return alloc_pages_exact_node(node, flags, order);
1280 }
1281
1282 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1283 {
1284 struct page *page;
1285 struct kmem_cache_order_objects oo = s->oo;
1286 gfp_t alloc_gfp;
1287
1288 flags &= gfp_allowed_mask;
1289
1290 if (flags & __GFP_WAIT)
1291 local_irq_enable();
1292
1293 flags |= s->allocflags;
1294
1295 /*
1296 * Let the initial higher-order allocation fail under memory pressure
1297 * so we fall-back to the minimum order allocation.
1298 */
1299 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1300
1301 page = alloc_slab_page(alloc_gfp, node, oo);
1302 if (unlikely(!page)) {
1303 oo = s->min;
1304 /*
1305 * Allocation may have failed due to fragmentation.
1306 * Try a lower order alloc if possible
1307 */
1308 page = alloc_slab_page(flags, node, oo);
1309
1310 if (page)
1311 stat(s, ORDER_FALLBACK);
1312 }
1313
1314 if (kmemcheck_enabled && page
1315 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1316 int pages = 1 << oo_order(oo);
1317
1318 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1319
1320 /*
1321 * Objects from caches that have a constructor don't get
1322 * cleared when they're allocated, so we need to do it here.
1323 */
1324 if (s->ctor)
1325 kmemcheck_mark_uninitialized_pages(page, pages);
1326 else
1327 kmemcheck_mark_unallocated_pages(page, pages);
1328 }
1329
1330 if (flags & __GFP_WAIT)
1331 local_irq_disable();
1332 if (!page)
1333 return NULL;
1334
1335 page->objects = oo_objects(oo);
1336 mod_zone_page_state(page_zone(page),
1337 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1338 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1339 1 << oo_order(oo));
1340
1341 return page;
1342 }
1343
1344 static void setup_object(struct kmem_cache *s, struct page *page,
1345 void *object)
1346 {
1347 setup_object_debug(s, page, object);
1348 if (unlikely(s->ctor))
1349 s->ctor(object);
1350 }
1351
1352 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1353 {
1354 struct page *page;
1355 void *start;
1356 void *last;
1357 void *p;
1358 int order;
1359
1360 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1361
1362 page = allocate_slab(s,
1363 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1364 if (!page)
1365 goto out;
1366
1367 order = compound_order(page);
1368 inc_slabs_node(s, page_to_nid(page), page->objects);
1369 memcg_bind_pages(s, order);
1370 page->slab_cache = s;
1371 __SetPageSlab(page);
1372 if (page->pfmemalloc)
1373 SetPageSlabPfmemalloc(page);
1374
1375 start = page_address(page);
1376
1377 if (unlikely(s->flags & SLAB_POISON))
1378 memset(start, POISON_INUSE, PAGE_SIZE << order);
1379
1380 last = start;
1381 for_each_object(p, s, start, page->objects) {
1382 setup_object(s, page, last);
1383 set_freepointer(s, last, p);
1384 last = p;
1385 }
1386 setup_object(s, page, last);
1387 set_freepointer(s, last, NULL);
1388
1389 page->freelist = start;
1390 page->inuse = page->objects;
1391 page->frozen = 1;
1392 out:
1393 return page;
1394 }
1395
1396 static void __free_slab(struct kmem_cache *s, struct page *page)
1397 {
1398 int order = compound_order(page);
1399 int pages = 1 << order;
1400
1401 if (kmem_cache_debug(s)) {
1402 void *p;
1403
1404 slab_pad_check(s, page);
1405 for_each_object(p, s, page_address(page),
1406 page->objects)
1407 check_object(s, page, p, SLUB_RED_INACTIVE);
1408 }
1409
1410 kmemcheck_free_shadow(page, compound_order(page));
1411
1412 mod_zone_page_state(page_zone(page),
1413 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1414 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1415 -pages);
1416
1417 __ClearPageSlabPfmemalloc(page);
1418 __ClearPageSlab(page);
1419
1420 memcg_release_pages(s, order);
1421 page_mapcount_reset(page);
1422 if (current->reclaim_state)
1423 current->reclaim_state->reclaimed_slab += pages;
1424 __free_memcg_kmem_pages(page, order);
1425 }
1426
1427 #define need_reserve_slab_rcu \
1428 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1429
1430 static void rcu_free_slab(struct rcu_head *h)
1431 {
1432 struct page *page;
1433
1434 if (need_reserve_slab_rcu)
1435 page = virt_to_head_page(h);
1436 else
1437 page = container_of((struct list_head *)h, struct page, lru);
1438
1439 __free_slab(page->slab_cache, page);
1440 }
1441
1442 static void free_slab(struct kmem_cache *s, struct page *page)
1443 {
1444 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1445 struct rcu_head *head;
1446
1447 if (need_reserve_slab_rcu) {
1448 int order = compound_order(page);
1449 int offset = (PAGE_SIZE << order) - s->reserved;
1450
1451 VM_BUG_ON(s->reserved != sizeof(*head));
1452 head = page_address(page) + offset;
1453 } else {
1454 /*
1455 * RCU free overloads the RCU head over the LRU
1456 */
1457 head = (void *)&page->lru;
1458 }
1459
1460 call_rcu(head, rcu_free_slab);
1461 } else
1462 __free_slab(s, page);
1463 }
1464
1465 static void discard_slab(struct kmem_cache *s, struct page *page)
1466 {
1467 dec_slabs_node(s, page_to_nid(page), page->objects);
1468 free_slab(s, page);
1469 }
1470
1471 /*
1472 * Management of partially allocated slabs.
1473 *
1474 * list_lock must be held.
1475 */
1476 static inline void add_partial(struct kmem_cache_node *n,
1477 struct page *page, int tail)
1478 {
1479 n->nr_partial++;
1480 if (tail == DEACTIVATE_TO_TAIL)
1481 list_add_tail(&page->lru, &n->partial);
1482 else
1483 list_add(&page->lru, &n->partial);
1484 }
1485
1486 /*
1487 * list_lock must be held.
1488 */
1489 static inline void remove_partial(struct kmem_cache_node *n,
1490 struct page *page)
1491 {
1492 list_del(&page->lru);
1493 n->nr_partial--;
1494 }
1495
1496 /*
1497 * Remove slab from the partial list, freeze it and
1498 * return the pointer to the freelist.
1499 *
1500 * Returns a list of objects or NULL if it fails.
1501 *
1502 * Must hold list_lock since we modify the partial list.
1503 */
1504 static inline void *acquire_slab(struct kmem_cache *s,
1505 struct kmem_cache_node *n, struct page *page,
1506 int mode, int *objects)
1507 {
1508 void *freelist;
1509 unsigned long counters;
1510 struct page new;
1511
1512 /*
1513 * Zap the freelist and set the frozen bit.
1514 * The old freelist is the list of objects for the
1515 * per cpu allocation list.
1516 */
1517 freelist = page->freelist;
1518 counters = page->counters;
1519 new.counters = counters;
1520 *objects = new.objects - new.inuse;
1521 if (mode) {
1522 new.inuse = page->objects;
1523 new.freelist = NULL;
1524 } else {
1525 new.freelist = freelist;
1526 }
1527
1528 VM_BUG_ON(new.frozen);
1529 new.frozen = 1;
1530
1531 if (!__cmpxchg_double_slab(s, page,
1532 freelist, counters,
1533 new.freelist, new.counters,
1534 "acquire_slab"))
1535 return NULL;
1536
1537 remove_partial(n, page);
1538 WARN_ON(!freelist);
1539 return freelist;
1540 }
1541
1542 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1543 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1544
1545 /*
1546 * Try to allocate a partial slab from a specific node.
1547 */
1548 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1549 struct kmem_cache_cpu *c, gfp_t flags)
1550 {
1551 struct page *page, *page2;
1552 void *object = NULL;
1553 int available = 0;
1554 int objects;
1555
1556 /*
1557 * Racy check. If we mistakenly see no partial slabs then we
1558 * just allocate an empty slab. If we mistakenly try to get a
1559 * partial slab and there is none available then get_partials()
1560 * will return NULL.
1561 */
1562 if (!n || !n->nr_partial)
1563 return NULL;
1564
1565 spin_lock(&n->list_lock);
1566 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1567 void *t;
1568
1569 if (!pfmemalloc_match(page, flags))
1570 continue;
1571
1572 t = acquire_slab(s, n, page, object == NULL, &objects);
1573 if (!t)
1574 break;
1575
1576 available += objects;
1577 if (!object) {
1578 c->page = page;
1579 stat(s, ALLOC_FROM_PARTIAL);
1580 object = t;
1581 } else {
1582 put_cpu_partial(s, page, 0);
1583 stat(s, CPU_PARTIAL_NODE);
1584 }
1585 if (!kmem_cache_has_cpu_partial(s)
1586 || available > s->cpu_partial / 2)
1587 break;
1588
1589 }
1590 spin_unlock(&n->list_lock);
1591 return object;
1592 }
1593
1594 /*
1595 * Get a page from somewhere. Search in increasing NUMA distances.
1596 */
1597 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1598 struct kmem_cache_cpu *c)
1599 {
1600 #ifdef CONFIG_NUMA
1601 struct zonelist *zonelist;
1602 struct zoneref *z;
1603 struct zone *zone;
1604 enum zone_type high_zoneidx = gfp_zone(flags);
1605 void *object;
1606 unsigned int cpuset_mems_cookie;
1607
1608 /*
1609 * The defrag ratio allows a configuration of the tradeoffs between
1610 * inter node defragmentation and node local allocations. A lower
1611 * defrag_ratio increases the tendency to do local allocations
1612 * instead of attempting to obtain partial slabs from other nodes.
1613 *
1614 * If the defrag_ratio is set to 0 then kmalloc() always
1615 * returns node local objects. If the ratio is higher then kmalloc()
1616 * may return off node objects because partial slabs are obtained
1617 * from other nodes and filled up.
1618 *
1619 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1620 * defrag_ratio = 1000) then every (well almost) allocation will
1621 * first attempt to defrag slab caches on other nodes. This means
1622 * scanning over all nodes to look for partial slabs which may be
1623 * expensive if we do it every time we are trying to find a slab
1624 * with available objects.
1625 */
1626 if (!s->remote_node_defrag_ratio ||
1627 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1628 return NULL;
1629
1630 do {
1631 cpuset_mems_cookie = get_mems_allowed();
1632 zonelist = node_zonelist(slab_node(), flags);
1633 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1634 struct kmem_cache_node *n;
1635
1636 n = get_node(s, zone_to_nid(zone));
1637
1638 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1639 n->nr_partial > s->min_partial) {
1640 object = get_partial_node(s, n, c, flags);
1641 if (object) {
1642 /*
1643 * Return the object even if
1644 * put_mems_allowed indicated that
1645 * the cpuset mems_allowed was
1646 * updated in parallel. It's a
1647 * harmless race between the alloc
1648 * and the cpuset update.
1649 */
1650 put_mems_allowed(cpuset_mems_cookie);
1651 return object;
1652 }
1653 }
1654 }
1655 } while (!put_mems_allowed(cpuset_mems_cookie));
1656 #endif
1657 return NULL;
1658 }
1659
1660 /*
1661 * Get a partial page, lock it and return it.
1662 */
1663 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1664 struct kmem_cache_cpu *c)
1665 {
1666 void *object;
1667 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1668
1669 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1670 if (object || node != NUMA_NO_NODE)
1671 return object;
1672
1673 return get_any_partial(s, flags, c);
1674 }
1675
1676 #ifdef CONFIG_PREEMPT
1677 /*
1678 * Calculate the next globally unique transaction for disambiguiation
1679 * during cmpxchg. The transactions start with the cpu number and are then
1680 * incremented by CONFIG_NR_CPUS.
1681 */
1682 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1683 #else
1684 /*
1685 * No preemption supported therefore also no need to check for
1686 * different cpus.
1687 */
1688 #define TID_STEP 1
1689 #endif
1690
1691 static inline unsigned long next_tid(unsigned long tid)
1692 {
1693 return tid + TID_STEP;
1694 }
1695
1696 static inline unsigned int tid_to_cpu(unsigned long tid)
1697 {
1698 return tid % TID_STEP;
1699 }
1700
1701 static inline unsigned long tid_to_event(unsigned long tid)
1702 {
1703 return tid / TID_STEP;
1704 }
1705
1706 static inline unsigned int init_tid(int cpu)
1707 {
1708 return cpu;
1709 }
1710
1711 static inline void note_cmpxchg_failure(const char *n,
1712 const struct kmem_cache *s, unsigned long tid)
1713 {
1714 #ifdef SLUB_DEBUG_CMPXCHG
1715 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1716
1717 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1718
1719 #ifdef CONFIG_PREEMPT
1720 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1721 printk("due to cpu change %d -> %d\n",
1722 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1723 else
1724 #endif
1725 if (tid_to_event(tid) != tid_to_event(actual_tid))
1726 printk("due to cpu running other code. Event %ld->%ld\n",
1727 tid_to_event(tid), tid_to_event(actual_tid));
1728 else
1729 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1730 actual_tid, tid, next_tid(tid));
1731 #endif
1732 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1733 }
1734
1735 static void init_kmem_cache_cpus(struct kmem_cache *s)
1736 {
1737 int cpu;
1738
1739 for_each_possible_cpu(cpu)
1740 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1741 }
1742
1743 /*
1744 * Remove the cpu slab
1745 */
1746 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1747 {
1748 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1749 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1750 int lock = 0;
1751 enum slab_modes l = M_NONE, m = M_NONE;
1752 void *nextfree;
1753 int tail = DEACTIVATE_TO_HEAD;
1754 struct page new;
1755 struct page old;
1756
1757 if (page->freelist) {
1758 stat(s, DEACTIVATE_REMOTE_FREES);
1759 tail = DEACTIVATE_TO_TAIL;
1760 }
1761
1762 /*
1763 * Stage one: Free all available per cpu objects back
1764 * to the page freelist while it is still frozen. Leave the
1765 * last one.
1766 *
1767 * There is no need to take the list->lock because the page
1768 * is still frozen.
1769 */
1770 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1771 void *prior;
1772 unsigned long counters;
1773
1774 do {
1775 prior = page->freelist;
1776 counters = page->counters;
1777 set_freepointer(s, freelist, prior);
1778 new.counters = counters;
1779 new.inuse--;
1780 VM_BUG_ON(!new.frozen);
1781
1782 } while (!__cmpxchg_double_slab(s, page,
1783 prior, counters,
1784 freelist, new.counters,
1785 "drain percpu freelist"));
1786
1787 freelist = nextfree;
1788 }
1789
1790 /*
1791 * Stage two: Ensure that the page is unfrozen while the
1792 * list presence reflects the actual number of objects
1793 * during unfreeze.
1794 *
1795 * We setup the list membership and then perform a cmpxchg
1796 * with the count. If there is a mismatch then the page
1797 * is not unfrozen but the page is on the wrong list.
1798 *
1799 * Then we restart the process which may have to remove
1800 * the page from the list that we just put it on again
1801 * because the number of objects in the slab may have
1802 * changed.
1803 */
1804 redo:
1805
1806 old.freelist = page->freelist;
1807 old.counters = page->counters;
1808 VM_BUG_ON(!old.frozen);
1809
1810 /* Determine target state of the slab */
1811 new.counters = old.counters;
1812 if (freelist) {
1813 new.inuse--;
1814 set_freepointer(s, freelist, old.freelist);
1815 new.freelist = freelist;
1816 } else
1817 new.freelist = old.freelist;
1818
1819 new.frozen = 0;
1820
1821 if (!new.inuse && n->nr_partial > s->min_partial)
1822 m = M_FREE;
1823 else if (new.freelist) {
1824 m = M_PARTIAL;
1825 if (!lock) {
1826 lock = 1;
1827 /*
1828 * Taking the spinlock removes the possiblity
1829 * that acquire_slab() will see a slab page that
1830 * is frozen
1831 */
1832 spin_lock(&n->list_lock);
1833 }
1834 } else {
1835 m = M_FULL;
1836 if (kmem_cache_debug(s) && !lock) {
1837 lock = 1;
1838 /*
1839 * This also ensures that the scanning of full
1840 * slabs from diagnostic functions will not see
1841 * any frozen slabs.
1842 */
1843 spin_lock(&n->list_lock);
1844 }
1845 }
1846
1847 if (l != m) {
1848
1849 if (l == M_PARTIAL)
1850
1851 remove_partial(n, page);
1852
1853 else if (l == M_FULL)
1854
1855 remove_full(s, page);
1856
1857 if (m == M_PARTIAL) {
1858
1859 add_partial(n, page, tail);
1860 stat(s, tail);
1861
1862 } else if (m == M_FULL) {
1863
1864 stat(s, DEACTIVATE_FULL);
1865 add_full(s, n, page);
1866
1867 }
1868 }
1869
1870 l = m;
1871 if (!__cmpxchg_double_slab(s, page,
1872 old.freelist, old.counters,
1873 new.freelist, new.counters,
1874 "unfreezing slab"))
1875 goto redo;
1876
1877 if (lock)
1878 spin_unlock(&n->list_lock);
1879
1880 if (m == M_FREE) {
1881 stat(s, DEACTIVATE_EMPTY);
1882 discard_slab(s, page);
1883 stat(s, FREE_SLAB);
1884 }
1885 }
1886
1887 /*
1888 * Unfreeze all the cpu partial slabs.
1889 *
1890 * This function must be called with interrupts disabled
1891 * for the cpu using c (or some other guarantee must be there
1892 * to guarantee no concurrent accesses).
1893 */
1894 static void unfreeze_partials(struct kmem_cache *s,
1895 struct kmem_cache_cpu *c)
1896 {
1897 #ifdef CONFIG_SLUB_CPU_PARTIAL
1898 struct kmem_cache_node *n = NULL, *n2 = NULL;
1899 struct page *page, *discard_page = NULL;
1900
1901 while ((page = c->partial)) {
1902 struct page new;
1903 struct page old;
1904
1905 c->partial = page->next;
1906
1907 n2 = get_node(s, page_to_nid(page));
1908 if (n != n2) {
1909 if (n)
1910 spin_unlock(&n->list_lock);
1911
1912 n = n2;
1913 spin_lock(&n->list_lock);
1914 }
1915
1916 do {
1917
1918 old.freelist = page->freelist;
1919 old.counters = page->counters;
1920 VM_BUG_ON(!old.frozen);
1921
1922 new.counters = old.counters;
1923 new.freelist = old.freelist;
1924
1925 new.frozen = 0;
1926
1927 } while (!__cmpxchg_double_slab(s, page,
1928 old.freelist, old.counters,
1929 new.freelist, new.counters,
1930 "unfreezing slab"));
1931
1932 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1933 page->next = discard_page;
1934 discard_page = page;
1935 } else {
1936 add_partial(n, page, DEACTIVATE_TO_TAIL);
1937 stat(s, FREE_ADD_PARTIAL);
1938 }
1939 }
1940
1941 if (n)
1942 spin_unlock(&n->list_lock);
1943
1944 while (discard_page) {
1945 page = discard_page;
1946 discard_page = discard_page->next;
1947
1948 stat(s, DEACTIVATE_EMPTY);
1949 discard_slab(s, page);
1950 stat(s, FREE_SLAB);
1951 }
1952 #endif
1953 }
1954
1955 /*
1956 * Put a page that was just frozen (in __slab_free) into a partial page
1957 * slot if available. This is done without interrupts disabled and without
1958 * preemption disabled. The cmpxchg is racy and may put the partial page
1959 * onto a random cpus partial slot.
1960 *
1961 * If we did not find a slot then simply move all the partials to the
1962 * per node partial list.
1963 */
1964 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1965 {
1966 #ifdef CONFIG_SLUB_CPU_PARTIAL
1967 struct page *oldpage;
1968 int pages;
1969 int pobjects;
1970
1971 do {
1972 pages = 0;
1973 pobjects = 0;
1974 oldpage = this_cpu_read(s->cpu_slab->partial);
1975
1976 if (oldpage) {
1977 pobjects = oldpage->pobjects;
1978 pages = oldpage->pages;
1979 if (drain && pobjects > s->cpu_partial) {
1980 unsigned long flags;
1981 /*
1982 * partial array is full. Move the existing
1983 * set to the per node partial list.
1984 */
1985 local_irq_save(flags);
1986 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1987 local_irq_restore(flags);
1988 oldpage = NULL;
1989 pobjects = 0;
1990 pages = 0;
1991 stat(s, CPU_PARTIAL_DRAIN);
1992 }
1993 }
1994
1995 pages++;
1996 pobjects += page->objects - page->inuse;
1997
1998 page->pages = pages;
1999 page->pobjects = pobjects;
2000 page->next = oldpage;
2001
2002 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2003 #endif
2004 }
2005
2006 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2007 {
2008 stat(s, CPUSLAB_FLUSH);
2009 deactivate_slab(s, c->page, c->freelist);
2010
2011 c->tid = next_tid(c->tid);
2012 c->page = NULL;
2013 c->freelist = NULL;
2014 }
2015
2016 /*
2017 * Flush cpu slab.
2018 *
2019 * Called from IPI handler with interrupts disabled.
2020 */
2021 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2022 {
2023 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2024
2025 if (likely(c)) {
2026 if (c->page)
2027 flush_slab(s, c);
2028
2029 unfreeze_partials(s, c);
2030 }
2031 }
2032
2033 static void flush_cpu_slab(void *d)
2034 {
2035 struct kmem_cache *s = d;
2036
2037 __flush_cpu_slab(s, smp_processor_id());
2038 }
2039
2040 static bool has_cpu_slab(int cpu, void *info)
2041 {
2042 struct kmem_cache *s = info;
2043 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2044
2045 return c->page || c->partial;
2046 }
2047
2048 static void flush_all(struct kmem_cache *s)
2049 {
2050 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2051 }
2052
2053 /*
2054 * Check if the objects in a per cpu structure fit numa
2055 * locality expectations.
2056 */
2057 static inline int node_match(struct page *page, int node)
2058 {
2059 #ifdef CONFIG_NUMA
2060 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2061 return 0;
2062 #endif
2063 return 1;
2064 }
2065
2066 static int count_free(struct page *page)
2067 {
2068 return page->objects - page->inuse;
2069 }
2070
2071 static unsigned long count_partial(struct kmem_cache_node *n,
2072 int (*get_count)(struct page *))
2073 {
2074 unsigned long flags;
2075 unsigned long x = 0;
2076 struct page *page;
2077
2078 spin_lock_irqsave(&n->list_lock, flags);
2079 list_for_each_entry(page, &n->partial, lru)
2080 x += get_count(page);
2081 spin_unlock_irqrestore(&n->list_lock, flags);
2082 return x;
2083 }
2084
2085 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2086 {
2087 #ifdef CONFIG_SLUB_DEBUG
2088 return atomic_long_read(&n->total_objects);
2089 #else
2090 return 0;
2091 #endif
2092 }
2093
2094 static noinline void
2095 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2096 {
2097 int node;
2098
2099 printk(KERN_WARNING
2100 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2101 nid, gfpflags);
2102 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2103 "default order: %d, min order: %d\n", s->name, s->object_size,
2104 s->size, oo_order(s->oo), oo_order(s->min));
2105
2106 if (oo_order(s->min) > get_order(s->object_size))
2107 printk(KERN_WARNING " %s debugging increased min order, use "
2108 "slub_debug=O to disable.\n", s->name);
2109
2110 for_each_online_node(node) {
2111 struct kmem_cache_node *n = get_node(s, node);
2112 unsigned long nr_slabs;
2113 unsigned long nr_objs;
2114 unsigned long nr_free;
2115
2116 if (!n)
2117 continue;
2118
2119 nr_free = count_partial(n, count_free);
2120 nr_slabs = node_nr_slabs(n);
2121 nr_objs = node_nr_objs(n);
2122
2123 printk(KERN_WARNING
2124 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2125 node, nr_slabs, nr_objs, nr_free);
2126 }
2127 }
2128
2129 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2130 int node, struct kmem_cache_cpu **pc)
2131 {
2132 void *freelist;
2133 struct kmem_cache_cpu *c = *pc;
2134 struct page *page;
2135
2136 freelist = get_partial(s, flags, node, c);
2137
2138 if (freelist)
2139 return freelist;
2140
2141 page = new_slab(s, flags, node);
2142 if (page) {
2143 c = __this_cpu_ptr(s->cpu_slab);
2144 if (c->page)
2145 flush_slab(s, c);
2146
2147 /*
2148 * No other reference to the page yet so we can
2149 * muck around with it freely without cmpxchg
2150 */
2151 freelist = page->freelist;
2152 page->freelist = NULL;
2153
2154 stat(s, ALLOC_SLAB);
2155 c->page = page;
2156 *pc = c;
2157 } else
2158 freelist = NULL;
2159
2160 return freelist;
2161 }
2162
2163 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2164 {
2165 if (unlikely(PageSlabPfmemalloc(page)))
2166 return gfp_pfmemalloc_allowed(gfpflags);
2167
2168 return true;
2169 }
2170
2171 /*
2172 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2173 * or deactivate the page.
2174 *
2175 * The page is still frozen if the return value is not NULL.
2176 *
2177 * If this function returns NULL then the page has been unfrozen.
2178 *
2179 * This function must be called with interrupt disabled.
2180 */
2181 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2182 {
2183 struct page new;
2184 unsigned long counters;
2185 void *freelist;
2186
2187 do {
2188 freelist = page->freelist;
2189 counters = page->counters;
2190
2191 new.counters = counters;
2192 VM_BUG_ON(!new.frozen);
2193
2194 new.inuse = page->objects;
2195 new.frozen = freelist != NULL;
2196
2197 } while (!__cmpxchg_double_slab(s, page,
2198 freelist, counters,
2199 NULL, new.counters,
2200 "get_freelist"));
2201
2202 return freelist;
2203 }
2204
2205 /*
2206 * Slow path. The lockless freelist is empty or we need to perform
2207 * debugging duties.
2208 *
2209 * Processing is still very fast if new objects have been freed to the
2210 * regular freelist. In that case we simply take over the regular freelist
2211 * as the lockless freelist and zap the regular freelist.
2212 *
2213 * If that is not working then we fall back to the partial lists. We take the
2214 * first element of the freelist as the object to allocate now and move the
2215 * rest of the freelist to the lockless freelist.
2216 *
2217 * And if we were unable to get a new slab from the partial slab lists then
2218 * we need to allocate a new slab. This is the slowest path since it involves
2219 * a call to the page allocator and the setup of a new slab.
2220 */
2221 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2222 unsigned long addr, struct kmem_cache_cpu *c)
2223 {
2224 void *freelist;
2225 struct page *page;
2226 unsigned long flags;
2227
2228 local_irq_save(flags);
2229 #ifdef CONFIG_PREEMPT
2230 /*
2231 * We may have been preempted and rescheduled on a different
2232 * cpu before disabling interrupts. Need to reload cpu area
2233 * pointer.
2234 */
2235 c = this_cpu_ptr(s->cpu_slab);
2236 #endif
2237
2238 page = c->page;
2239 if (!page)
2240 goto new_slab;
2241 redo:
2242
2243 if (unlikely(!node_match(page, node))) {
2244 stat(s, ALLOC_NODE_MISMATCH);
2245 deactivate_slab(s, page, c->freelist);
2246 c->page = NULL;
2247 c->freelist = NULL;
2248 goto new_slab;
2249 }
2250
2251 /*
2252 * By rights, we should be searching for a slab page that was
2253 * PFMEMALLOC but right now, we are losing the pfmemalloc
2254 * information when the page leaves the per-cpu allocator
2255 */
2256 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2257 deactivate_slab(s, page, c->freelist);
2258 c->page = NULL;
2259 c->freelist = NULL;
2260 goto new_slab;
2261 }
2262
2263 /* must check again c->freelist in case of cpu migration or IRQ */
2264 freelist = c->freelist;
2265 if (freelist)
2266 goto load_freelist;
2267
2268 stat(s, ALLOC_SLOWPATH);
2269
2270 freelist = get_freelist(s, page);
2271
2272 if (!freelist) {
2273 c->page = NULL;
2274 stat(s, DEACTIVATE_BYPASS);
2275 goto new_slab;
2276 }
2277
2278 stat(s, ALLOC_REFILL);
2279
2280 load_freelist:
2281 /*
2282 * freelist is pointing to the list of objects to be used.
2283 * page is pointing to the page from which the objects are obtained.
2284 * That page must be frozen for per cpu allocations to work.
2285 */
2286 VM_BUG_ON(!c->page->frozen);
2287 c->freelist = get_freepointer(s, freelist);
2288 c->tid = next_tid(c->tid);
2289 local_irq_restore(flags);
2290 return freelist;
2291
2292 new_slab:
2293
2294 if (c->partial) {
2295 page = c->page = c->partial;
2296 c->partial = page->next;
2297 stat(s, CPU_PARTIAL_ALLOC);
2298 c->freelist = NULL;
2299 goto redo;
2300 }
2301
2302 freelist = new_slab_objects(s, gfpflags, node, &c);
2303
2304 if (unlikely(!freelist)) {
2305 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2306 slab_out_of_memory(s, gfpflags, node);
2307
2308 local_irq_restore(flags);
2309 return NULL;
2310 }
2311
2312 page = c->page;
2313 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2314 goto load_freelist;
2315
2316 /* Only entered in the debug case */
2317 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2318 goto new_slab; /* Slab failed checks. Next slab needed */
2319
2320 deactivate_slab(s, page, get_freepointer(s, freelist));
2321 c->page = NULL;
2322 c->freelist = NULL;
2323 local_irq_restore(flags);
2324 return freelist;
2325 }
2326
2327 /*
2328 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2329 * have the fastpath folded into their functions. So no function call
2330 * overhead for requests that can be satisfied on the fastpath.
2331 *
2332 * The fastpath works by first checking if the lockless freelist can be used.
2333 * If not then __slab_alloc is called for slow processing.
2334 *
2335 * Otherwise we can simply pick the next object from the lockless free list.
2336 */
2337 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2338 gfp_t gfpflags, int node, unsigned long addr)
2339 {
2340 void **object;
2341 struct kmem_cache_cpu *c;
2342 struct page *page;
2343 unsigned long tid;
2344
2345 if (slab_pre_alloc_hook(s, gfpflags))
2346 return NULL;
2347
2348 s = memcg_kmem_get_cache(s, gfpflags);
2349 redo:
2350 /*
2351 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2352 * enabled. We may switch back and forth between cpus while
2353 * reading from one cpu area. That does not matter as long
2354 * as we end up on the original cpu again when doing the cmpxchg.
2355 *
2356 * Preemption is disabled for the retrieval of the tid because that
2357 * must occur from the current processor. We cannot allow rescheduling
2358 * on a different processor between the determination of the pointer
2359 * and the retrieval of the tid.
2360 */
2361 preempt_disable();
2362 c = __this_cpu_ptr(s->cpu_slab);
2363
2364 /*
2365 * The transaction ids are globally unique per cpu and per operation on
2366 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2367 * occurs on the right processor and that there was no operation on the
2368 * linked list in between.
2369 */
2370 tid = c->tid;
2371 preempt_enable();
2372
2373 object = c->freelist;
2374 page = c->page;
2375 if (unlikely(!object || !page || !node_match(page, node)))
2376 object = __slab_alloc(s, gfpflags, node, addr, c);
2377
2378 else {
2379 void *next_object = get_freepointer_safe(s, object);
2380
2381 /*
2382 * The cmpxchg will only match if there was no additional
2383 * operation and if we are on the right processor.
2384 *
2385 * The cmpxchg does the following atomically (without lock semantics!)
2386 * 1. Relocate first pointer to the current per cpu area.
2387 * 2. Verify that tid and freelist have not been changed
2388 * 3. If they were not changed replace tid and freelist
2389 *
2390 * Since this is without lock semantics the protection is only against
2391 * code executing on this cpu *not* from access by other cpus.
2392 */
2393 if (unlikely(!this_cpu_cmpxchg_double(
2394 s->cpu_slab->freelist, s->cpu_slab->tid,
2395 object, tid,
2396 next_object, next_tid(tid)))) {
2397
2398 note_cmpxchg_failure("slab_alloc", s, tid);
2399 goto redo;
2400 }
2401 prefetch_freepointer(s, next_object);
2402 stat(s, ALLOC_FASTPATH);
2403 }
2404
2405 if (unlikely(gfpflags & __GFP_ZERO) && object)
2406 memset(object, 0, s->object_size);
2407
2408 slab_post_alloc_hook(s, gfpflags, object);
2409
2410 return object;
2411 }
2412
2413 static __always_inline void *slab_alloc(struct kmem_cache *s,
2414 gfp_t gfpflags, unsigned long addr)
2415 {
2416 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2417 }
2418
2419 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2420 {
2421 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2422
2423 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2424
2425 return ret;
2426 }
2427 EXPORT_SYMBOL(kmem_cache_alloc);
2428
2429 #ifdef CONFIG_TRACING
2430 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2431 {
2432 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2433 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2434 return ret;
2435 }
2436 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2437
2438 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2439 {
2440 void *ret = kmalloc_order(size, flags, order);
2441 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2442 return ret;
2443 }
2444 EXPORT_SYMBOL(kmalloc_order_trace);
2445 #endif
2446
2447 #ifdef CONFIG_NUMA
2448 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2449 {
2450 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2451
2452 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2453 s->object_size, s->size, gfpflags, node);
2454
2455 return ret;
2456 }
2457 EXPORT_SYMBOL(kmem_cache_alloc_node);
2458
2459 #ifdef CONFIG_TRACING
2460 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2461 gfp_t gfpflags,
2462 int node, size_t size)
2463 {
2464 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2465
2466 trace_kmalloc_node(_RET_IP_, ret,
2467 size, s->size, gfpflags, node);
2468 return ret;
2469 }
2470 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2471 #endif
2472 #endif
2473
2474 /*
2475 * Slow patch handling. This may still be called frequently since objects
2476 * have a longer lifetime than the cpu slabs in most processing loads.
2477 *
2478 * So we still attempt to reduce cache line usage. Just take the slab
2479 * lock and free the item. If there is no additional partial page
2480 * handling required then we can return immediately.
2481 */
2482 static void __slab_free(struct kmem_cache *s, struct page *page,
2483 void *x, unsigned long addr)
2484 {
2485 void *prior;
2486 void **object = (void *)x;
2487 int was_frozen;
2488 struct page new;
2489 unsigned long counters;
2490 struct kmem_cache_node *n = NULL;
2491 unsigned long uninitialized_var(flags);
2492
2493 stat(s, FREE_SLOWPATH);
2494
2495 if (kmem_cache_debug(s) &&
2496 !(n = free_debug_processing(s, page, x, addr, &flags)))
2497 return;
2498
2499 do {
2500 if (unlikely(n)) {
2501 spin_unlock_irqrestore(&n->list_lock, flags);
2502 n = NULL;
2503 }
2504 prior = page->freelist;
2505 counters = page->counters;
2506 set_freepointer(s, object, prior);
2507 new.counters = counters;
2508 was_frozen = new.frozen;
2509 new.inuse--;
2510 if ((!new.inuse || !prior) && !was_frozen) {
2511
2512 if (kmem_cache_has_cpu_partial(s) && !prior)
2513
2514 /*
2515 * Slab was on no list before and will be partially empty
2516 * We can defer the list move and instead freeze it.
2517 */
2518 new.frozen = 1;
2519
2520 else { /* Needs to be taken off a list */
2521
2522 n = get_node(s, page_to_nid(page));
2523 /*
2524 * Speculatively acquire the list_lock.
2525 * If the cmpxchg does not succeed then we may
2526 * drop the list_lock without any processing.
2527 *
2528 * Otherwise the list_lock will synchronize with
2529 * other processors updating the list of slabs.
2530 */
2531 spin_lock_irqsave(&n->list_lock, flags);
2532
2533 }
2534 }
2535
2536 } while (!cmpxchg_double_slab(s, page,
2537 prior, counters,
2538 object, new.counters,
2539 "__slab_free"));
2540
2541 if (likely(!n)) {
2542
2543 /*
2544 * If we just froze the page then put it onto the
2545 * per cpu partial list.
2546 */
2547 if (new.frozen && !was_frozen) {
2548 put_cpu_partial(s, page, 1);
2549 stat(s, CPU_PARTIAL_FREE);
2550 }
2551 /*
2552 * The list lock was not taken therefore no list
2553 * activity can be necessary.
2554 */
2555 if (was_frozen)
2556 stat(s, FREE_FROZEN);
2557 return;
2558 }
2559
2560 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2561 goto slab_empty;
2562
2563 /*
2564 * Objects left in the slab. If it was not on the partial list before
2565 * then add it.
2566 */
2567 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2568 if (kmem_cache_debug(s))
2569 remove_full(s, page);
2570 add_partial(n, page, DEACTIVATE_TO_TAIL);
2571 stat(s, FREE_ADD_PARTIAL);
2572 }
2573 spin_unlock_irqrestore(&n->list_lock, flags);
2574 return;
2575
2576 slab_empty:
2577 if (prior) {
2578 /*
2579 * Slab on the partial list.
2580 */
2581 remove_partial(n, page);
2582 stat(s, FREE_REMOVE_PARTIAL);
2583 } else
2584 /* Slab must be on the full list */
2585 remove_full(s, page);
2586
2587 spin_unlock_irqrestore(&n->list_lock, flags);
2588 stat(s, FREE_SLAB);
2589 discard_slab(s, page);
2590 }
2591
2592 /*
2593 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2594 * can perform fastpath freeing without additional function calls.
2595 *
2596 * The fastpath is only possible if we are freeing to the current cpu slab
2597 * of this processor. This typically the case if we have just allocated
2598 * the item before.
2599 *
2600 * If fastpath is not possible then fall back to __slab_free where we deal
2601 * with all sorts of special processing.
2602 */
2603 static __always_inline void slab_free(struct kmem_cache *s,
2604 struct page *page, void *x, unsigned long addr)
2605 {
2606 void **object = (void *)x;
2607 struct kmem_cache_cpu *c;
2608 unsigned long tid;
2609
2610 slab_free_hook(s, x);
2611
2612 redo:
2613 /*
2614 * Determine the currently cpus per cpu slab.
2615 * The cpu may change afterward. However that does not matter since
2616 * data is retrieved via this pointer. If we are on the same cpu
2617 * during the cmpxchg then the free will succedd.
2618 */
2619 preempt_disable();
2620 c = __this_cpu_ptr(s->cpu_slab);
2621
2622 tid = c->tid;
2623 preempt_enable();
2624
2625 if (likely(page == c->page)) {
2626 set_freepointer(s, object, c->freelist);
2627
2628 if (unlikely(!this_cpu_cmpxchg_double(
2629 s->cpu_slab->freelist, s->cpu_slab->tid,
2630 c->freelist, tid,
2631 object, next_tid(tid)))) {
2632
2633 note_cmpxchg_failure("slab_free", s, tid);
2634 goto redo;
2635 }
2636 stat(s, FREE_FASTPATH);
2637 } else
2638 __slab_free(s, page, x, addr);
2639
2640 }
2641
2642 void kmem_cache_free(struct kmem_cache *s, void *x)
2643 {
2644 s = cache_from_obj(s, x);
2645 if (!s)
2646 return;
2647 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2648 trace_kmem_cache_free(_RET_IP_, x);
2649 }
2650 EXPORT_SYMBOL(kmem_cache_free);
2651
2652 /*
2653 * Object placement in a slab is made very easy because we always start at
2654 * offset 0. If we tune the size of the object to the alignment then we can
2655 * get the required alignment by putting one properly sized object after
2656 * another.
2657 *
2658 * Notice that the allocation order determines the sizes of the per cpu
2659 * caches. Each processor has always one slab available for allocations.
2660 * Increasing the allocation order reduces the number of times that slabs
2661 * must be moved on and off the partial lists and is therefore a factor in
2662 * locking overhead.
2663 */
2664
2665 /*
2666 * Mininum / Maximum order of slab pages. This influences locking overhead
2667 * and slab fragmentation. A higher order reduces the number of partial slabs
2668 * and increases the number of allocations possible without having to
2669 * take the list_lock.
2670 */
2671 static int slub_min_order;
2672 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2673 static int slub_min_objects;
2674
2675 /*
2676 * Merge control. If this is set then no merging of slab caches will occur.
2677 * (Could be removed. This was introduced to pacify the merge skeptics.)
2678 */
2679 static int slub_nomerge;
2680
2681 /*
2682 * Calculate the order of allocation given an slab object size.
2683 *
2684 * The order of allocation has significant impact on performance and other
2685 * system components. Generally order 0 allocations should be preferred since
2686 * order 0 does not cause fragmentation in the page allocator. Larger objects
2687 * be problematic to put into order 0 slabs because there may be too much
2688 * unused space left. We go to a higher order if more than 1/16th of the slab
2689 * would be wasted.
2690 *
2691 * In order to reach satisfactory performance we must ensure that a minimum
2692 * number of objects is in one slab. Otherwise we may generate too much
2693 * activity on the partial lists which requires taking the list_lock. This is
2694 * less a concern for large slabs though which are rarely used.
2695 *
2696 * slub_max_order specifies the order where we begin to stop considering the
2697 * number of objects in a slab as critical. If we reach slub_max_order then
2698 * we try to keep the page order as low as possible. So we accept more waste
2699 * of space in favor of a small page order.
2700 *
2701 * Higher order allocations also allow the placement of more objects in a
2702 * slab and thereby reduce object handling overhead. If the user has
2703 * requested a higher mininum order then we start with that one instead of
2704 * the smallest order which will fit the object.
2705 */
2706 static inline int slab_order(int size, int min_objects,
2707 int max_order, int fract_leftover, int reserved)
2708 {
2709 int order;
2710 int rem;
2711 int min_order = slub_min_order;
2712
2713 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2714 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2715
2716 for (order = max(min_order,
2717 fls(min_objects * size - 1) - PAGE_SHIFT);
2718 order <= max_order; order++) {
2719
2720 unsigned long slab_size = PAGE_SIZE << order;
2721
2722 if (slab_size < min_objects * size + reserved)
2723 continue;
2724
2725 rem = (slab_size - reserved) % size;
2726
2727 if (rem <= slab_size / fract_leftover)
2728 break;
2729
2730 }
2731
2732 return order;
2733 }
2734
2735 static inline int calculate_order(int size, int reserved)
2736 {
2737 int order;
2738 int min_objects;
2739 int fraction;
2740 int max_objects;
2741
2742 /*
2743 * Attempt to find best configuration for a slab. This
2744 * works by first attempting to generate a layout with
2745 * the best configuration and backing off gradually.
2746 *
2747 * First we reduce the acceptable waste in a slab. Then
2748 * we reduce the minimum objects required in a slab.
2749 */
2750 min_objects = slub_min_objects;
2751 if (!min_objects)
2752 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2753 max_objects = order_objects(slub_max_order, size, reserved);
2754 min_objects = min(min_objects, max_objects);
2755
2756 while (min_objects > 1) {
2757 fraction = 16;
2758 while (fraction >= 4) {
2759 order = slab_order(size, min_objects,
2760 slub_max_order, fraction, reserved);
2761 if (order <= slub_max_order)
2762 return order;
2763 fraction /= 2;
2764 }
2765 min_objects--;
2766 }
2767
2768 /*
2769 * We were unable to place multiple objects in a slab. Now
2770 * lets see if we can place a single object there.
2771 */
2772 order = slab_order(size, 1, slub_max_order, 1, reserved);
2773 if (order <= slub_max_order)
2774 return order;
2775
2776 /*
2777 * Doh this slab cannot be placed using slub_max_order.
2778 */
2779 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2780 if (order < MAX_ORDER)
2781 return order;
2782 return -ENOSYS;
2783 }
2784
2785 static void
2786 init_kmem_cache_node(struct kmem_cache_node *n)
2787 {
2788 n->nr_partial = 0;
2789 spin_lock_init(&n->list_lock);
2790 INIT_LIST_HEAD(&n->partial);
2791 #ifdef CONFIG_SLUB_DEBUG
2792 atomic_long_set(&n->nr_slabs, 0);
2793 atomic_long_set(&n->total_objects, 0);
2794 INIT_LIST_HEAD(&n->full);
2795 #endif
2796 }
2797
2798 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2799 {
2800 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2801 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2802
2803 /*
2804 * Must align to double word boundary for the double cmpxchg
2805 * instructions to work; see __pcpu_double_call_return_bool().
2806 */
2807 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2808 2 * sizeof(void *));
2809
2810 if (!s->cpu_slab)
2811 return 0;
2812
2813 init_kmem_cache_cpus(s);
2814
2815 return 1;
2816 }
2817
2818 static struct kmem_cache *kmem_cache_node;
2819
2820 /*
2821 * No kmalloc_node yet so do it by hand. We know that this is the first
2822 * slab on the node for this slabcache. There are no concurrent accesses
2823 * possible.
2824 *
2825 * Note that this function only works on the kmalloc_node_cache
2826 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2827 * memory on a fresh node that has no slab structures yet.
2828 */
2829 static void early_kmem_cache_node_alloc(int node)
2830 {
2831 struct page *page;
2832 struct kmem_cache_node *n;
2833
2834 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2835
2836 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2837
2838 BUG_ON(!page);
2839 if (page_to_nid(page) != node) {
2840 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2841 "node %d\n", node);
2842 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2843 "in order to be able to continue\n");
2844 }
2845
2846 n = page->freelist;
2847 BUG_ON(!n);
2848 page->freelist = get_freepointer(kmem_cache_node, n);
2849 page->inuse = 1;
2850 page->frozen = 0;
2851 kmem_cache_node->node[node] = n;
2852 #ifdef CONFIG_SLUB_DEBUG
2853 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2854 init_tracking(kmem_cache_node, n);
2855 #endif
2856 init_kmem_cache_node(n);
2857 inc_slabs_node(kmem_cache_node, node, page->objects);
2858
2859 add_partial(n, page, DEACTIVATE_TO_HEAD);
2860 }
2861
2862 static void free_kmem_cache_nodes(struct kmem_cache *s)
2863 {
2864 int node;
2865
2866 for_each_node_state(node, N_NORMAL_MEMORY) {
2867 struct kmem_cache_node *n = s->node[node];
2868
2869 if (n)
2870 kmem_cache_free(kmem_cache_node, n);
2871
2872 s->node[node] = NULL;
2873 }
2874 }
2875
2876 static int init_kmem_cache_nodes(struct kmem_cache *s)
2877 {
2878 int node;
2879
2880 for_each_node_state(node, N_NORMAL_MEMORY) {
2881 struct kmem_cache_node *n;
2882
2883 if (slab_state == DOWN) {
2884 early_kmem_cache_node_alloc(node);
2885 continue;
2886 }
2887 n = kmem_cache_alloc_node(kmem_cache_node,
2888 GFP_KERNEL, node);
2889
2890 if (!n) {
2891 free_kmem_cache_nodes(s);
2892 return 0;
2893 }
2894
2895 s->node[node] = n;
2896 init_kmem_cache_node(n);
2897 }
2898 return 1;
2899 }
2900
2901 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2902 {
2903 if (min < MIN_PARTIAL)
2904 min = MIN_PARTIAL;
2905 else if (min > MAX_PARTIAL)
2906 min = MAX_PARTIAL;
2907 s->min_partial = min;
2908 }
2909
2910 /*
2911 * calculate_sizes() determines the order and the distribution of data within
2912 * a slab object.
2913 */
2914 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2915 {
2916 unsigned long flags = s->flags;
2917 unsigned long size = s->object_size;
2918 int order;
2919
2920 /*
2921 * Round up object size to the next word boundary. We can only
2922 * place the free pointer at word boundaries and this determines
2923 * the possible location of the free pointer.
2924 */
2925 size = ALIGN(size, sizeof(void *));
2926
2927 #ifdef CONFIG_SLUB_DEBUG
2928 /*
2929 * Determine if we can poison the object itself. If the user of
2930 * the slab may touch the object after free or before allocation
2931 * then we should never poison the object itself.
2932 */
2933 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2934 !s->ctor)
2935 s->flags |= __OBJECT_POISON;
2936 else
2937 s->flags &= ~__OBJECT_POISON;
2938
2939
2940 /*
2941 * If we are Redzoning then check if there is some space between the
2942 * end of the object and the free pointer. If not then add an
2943 * additional word to have some bytes to store Redzone information.
2944 */
2945 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2946 size += sizeof(void *);
2947 #endif
2948
2949 /*
2950 * With that we have determined the number of bytes in actual use
2951 * by the object. This is the potential offset to the free pointer.
2952 */
2953 s->inuse = size;
2954
2955 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2956 s->ctor)) {
2957 /*
2958 * Relocate free pointer after the object if it is not
2959 * permitted to overwrite the first word of the object on
2960 * kmem_cache_free.
2961 *
2962 * This is the case if we do RCU, have a constructor or
2963 * destructor or are poisoning the objects.
2964 */
2965 s->offset = size;
2966 size += sizeof(void *);
2967 }
2968
2969 #ifdef CONFIG_SLUB_DEBUG
2970 if (flags & SLAB_STORE_USER)
2971 /*
2972 * Need to store information about allocs and frees after
2973 * the object.
2974 */
2975 size += 2 * sizeof(struct track);
2976
2977 if (flags & SLAB_RED_ZONE)
2978 /*
2979 * Add some empty padding so that we can catch
2980 * overwrites from earlier objects rather than let
2981 * tracking information or the free pointer be
2982 * corrupted if a user writes before the start
2983 * of the object.
2984 */
2985 size += sizeof(void *);
2986 #endif
2987
2988 /*
2989 * SLUB stores one object immediately after another beginning from
2990 * offset 0. In order to align the objects we have to simply size
2991 * each object to conform to the alignment.
2992 */
2993 size = ALIGN(size, s->align);
2994 s->size = size;
2995 if (forced_order >= 0)
2996 order = forced_order;
2997 else
2998 order = calculate_order(size, s->reserved);
2999
3000 if (order < 0)
3001 return 0;
3002
3003 s->allocflags = 0;
3004 if (order)
3005 s->allocflags |= __GFP_COMP;
3006
3007 if (s->flags & SLAB_CACHE_DMA)
3008 s->allocflags |= GFP_DMA;
3009
3010 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3011 s->allocflags |= __GFP_RECLAIMABLE;
3012
3013 /*
3014 * Determine the number of objects per slab
3015 */
3016 s->oo = oo_make(order, size, s->reserved);
3017 s->min = oo_make(get_order(size), size, s->reserved);
3018 if (oo_objects(s->oo) > oo_objects(s->max))
3019 s->max = s->oo;
3020
3021 return !!oo_objects(s->oo);
3022 }
3023
3024 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3025 {
3026 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3027 s->reserved = 0;
3028
3029 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3030 s->reserved = sizeof(struct rcu_head);
3031
3032 if (!calculate_sizes(s, -1))
3033 goto error;
3034 if (disable_higher_order_debug) {
3035 /*
3036 * Disable debugging flags that store metadata if the min slab
3037 * order increased.
3038 */
3039 if (get_order(s->size) > get_order(s->object_size)) {
3040 s->flags &= ~DEBUG_METADATA_FLAGS;
3041 s->offset = 0;
3042 if (!calculate_sizes(s, -1))
3043 goto error;
3044 }
3045 }
3046
3047 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3048 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3049 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3050 /* Enable fast mode */
3051 s->flags |= __CMPXCHG_DOUBLE;
3052 #endif
3053
3054 /*
3055 * The larger the object size is, the more pages we want on the partial
3056 * list to avoid pounding the page allocator excessively.
3057 */
3058 set_min_partial(s, ilog2(s->size) / 2);
3059
3060 /*
3061 * cpu_partial determined the maximum number of objects kept in the
3062 * per cpu partial lists of a processor.
3063 *
3064 * Per cpu partial lists mainly contain slabs that just have one
3065 * object freed. If they are used for allocation then they can be
3066 * filled up again with minimal effort. The slab will never hit the
3067 * per node partial lists and therefore no locking will be required.
3068 *
3069 * This setting also determines
3070 *
3071 * A) The number of objects from per cpu partial slabs dumped to the
3072 * per node list when we reach the limit.
3073 * B) The number of objects in cpu partial slabs to extract from the
3074 * per node list when we run out of per cpu objects. We only fetch 50%
3075 * to keep some capacity around for frees.
3076 */
3077 if (!kmem_cache_has_cpu_partial(s))
3078 s->cpu_partial = 0;
3079 else if (s->size >= PAGE_SIZE)
3080 s->cpu_partial = 2;
3081 else if (s->size >= 1024)
3082 s->cpu_partial = 6;
3083 else if (s->size >= 256)
3084 s->cpu_partial = 13;
3085 else
3086 s->cpu_partial = 30;
3087
3088 #ifdef CONFIG_NUMA
3089 s->remote_node_defrag_ratio = 1000;
3090 #endif
3091 if (!init_kmem_cache_nodes(s))
3092 goto error;
3093
3094 if (alloc_kmem_cache_cpus(s))
3095 return 0;
3096
3097 free_kmem_cache_nodes(s);
3098 error:
3099 if (flags & SLAB_PANIC)
3100 panic("Cannot create slab %s size=%lu realsize=%u "
3101 "order=%u offset=%u flags=%lx\n",
3102 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3103 s->offset, flags);
3104 return -EINVAL;
3105 }
3106
3107 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3108 const char *text)
3109 {
3110 #ifdef CONFIG_SLUB_DEBUG
3111 void *addr = page_address(page);
3112 void *p;
3113 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3114 sizeof(long), GFP_ATOMIC);
3115 if (!map)
3116 return;
3117 slab_err(s, page, text, s->name);
3118 slab_lock(page);
3119
3120 get_map(s, page, map);
3121 for_each_object(p, s, addr, page->objects) {
3122
3123 if (!test_bit(slab_index(p, s, addr), map)) {
3124 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3125 p, p - addr);
3126 print_tracking(s, p);
3127 }
3128 }
3129 slab_unlock(page);
3130 kfree(map);
3131 #endif
3132 }
3133
3134 /*
3135 * Attempt to free all partial slabs on a node.
3136 * This is called from kmem_cache_close(). We must be the last thread
3137 * using the cache and therefore we do not need to lock anymore.
3138 */
3139 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3140 {
3141 struct page *page, *h;
3142
3143 list_for_each_entry_safe(page, h, &n->partial, lru) {
3144 if (!page->inuse) {
3145 remove_partial(n, page);
3146 discard_slab(s, page);
3147 } else {
3148 list_slab_objects(s, page,
3149 "Objects remaining in %s on kmem_cache_close()");
3150 }
3151 }
3152 }
3153
3154 /*
3155 * Release all resources used by a slab cache.
3156 */
3157 static inline int kmem_cache_close(struct kmem_cache *s)
3158 {
3159 int node;
3160
3161 flush_all(s);
3162 /* Attempt to free all objects */
3163 for_each_node_state(node, N_NORMAL_MEMORY) {
3164 struct kmem_cache_node *n = get_node(s, node);
3165
3166 free_partial(s, n);
3167 if (n->nr_partial || slabs_node(s, node))
3168 return 1;
3169 }
3170 free_percpu(s->cpu_slab);
3171 free_kmem_cache_nodes(s);
3172 return 0;
3173 }
3174
3175 int __kmem_cache_shutdown(struct kmem_cache *s)
3176 {
3177 int rc = kmem_cache_close(s);
3178
3179 if (!rc) {
3180 /*
3181 * We do the same lock strategy around sysfs_slab_add, see
3182 * __kmem_cache_create. Because this is pretty much the last
3183 * operation we do and the lock will be released shortly after
3184 * that in slab_common.c, we could just move sysfs_slab_remove
3185 * to a later point in common code. We should do that when we
3186 * have a common sysfs framework for all allocators.
3187 */
3188 mutex_unlock(&slab_mutex);
3189 sysfs_slab_remove(s);
3190 mutex_lock(&slab_mutex);
3191 }
3192
3193 return rc;
3194 }
3195
3196 /********************************************************************
3197 * Kmalloc subsystem
3198 *******************************************************************/
3199
3200 static int __init setup_slub_min_order(char *str)
3201 {
3202 get_option(&str, &slub_min_order);
3203
3204 return 1;
3205 }
3206
3207 __setup("slub_min_order=", setup_slub_min_order);
3208
3209 static int __init setup_slub_max_order(char *str)
3210 {
3211 get_option(&str, &slub_max_order);
3212 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3213
3214 return 1;
3215 }
3216
3217 __setup("slub_max_order=", setup_slub_max_order);
3218
3219 static int __init setup_slub_min_objects(char *str)
3220 {
3221 get_option(&str, &slub_min_objects);
3222
3223 return 1;
3224 }
3225
3226 __setup("slub_min_objects=", setup_slub_min_objects);
3227
3228 static int __init setup_slub_nomerge(char *str)
3229 {
3230 slub_nomerge = 1;
3231 return 1;
3232 }
3233
3234 __setup("slub_nomerge", setup_slub_nomerge);
3235
3236 void *__kmalloc(size_t size, gfp_t flags)
3237 {
3238 struct kmem_cache *s;
3239 void *ret;
3240
3241 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3242 return kmalloc_large(size, flags);
3243
3244 s = kmalloc_slab(size, flags);
3245
3246 if (unlikely(ZERO_OR_NULL_PTR(s)))
3247 return s;
3248
3249 ret = slab_alloc(s, flags, _RET_IP_);
3250
3251 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3252
3253 return ret;
3254 }
3255 EXPORT_SYMBOL(__kmalloc);
3256
3257 #ifdef CONFIG_NUMA
3258 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3259 {
3260 struct page *page;
3261 void *ptr = NULL;
3262
3263 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3264 page = alloc_pages_node(node, flags, get_order(size));
3265 if (page)
3266 ptr = page_address(page);
3267
3268 kmemleak_alloc(ptr, size, 1, flags);
3269 return ptr;
3270 }
3271
3272 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3273 {
3274 struct kmem_cache *s;
3275 void *ret;
3276
3277 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3278 ret = kmalloc_large_node(size, flags, node);
3279
3280 trace_kmalloc_node(_RET_IP_, ret,
3281 size, PAGE_SIZE << get_order(size),
3282 flags, node);
3283
3284 return ret;
3285 }
3286
3287 s = kmalloc_slab(size, flags);
3288
3289 if (unlikely(ZERO_OR_NULL_PTR(s)))
3290 return s;
3291
3292 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3293
3294 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3295
3296 return ret;
3297 }
3298 EXPORT_SYMBOL(__kmalloc_node);
3299 #endif
3300
3301 size_t ksize(const void *object)
3302 {
3303 struct page *page;
3304
3305 if (unlikely(object == ZERO_SIZE_PTR))
3306 return 0;
3307
3308 page = virt_to_head_page(object);
3309
3310 if (unlikely(!PageSlab(page))) {
3311 WARN_ON(!PageCompound(page));
3312 return PAGE_SIZE << compound_order(page);
3313 }
3314
3315 return slab_ksize(page->slab_cache);
3316 }
3317 EXPORT_SYMBOL(ksize);
3318
3319 #ifdef CONFIG_SLUB_DEBUG
3320 bool verify_mem_not_deleted(const void *x)
3321 {
3322 struct page *page;
3323 void *object = (void *)x;
3324 unsigned long flags;
3325 bool rv;
3326
3327 if (unlikely(ZERO_OR_NULL_PTR(x)))
3328 return false;
3329
3330 local_irq_save(flags);
3331
3332 page = virt_to_head_page(x);
3333 if (unlikely(!PageSlab(page))) {
3334 /* maybe it was from stack? */
3335 rv = true;
3336 goto out_unlock;
3337 }
3338
3339 slab_lock(page);
3340 if (on_freelist(page->slab_cache, page, object)) {
3341 object_err(page->slab_cache, page, object, "Object is on free-list");
3342 rv = false;
3343 } else {
3344 rv = true;
3345 }
3346 slab_unlock(page);
3347
3348 out_unlock:
3349 local_irq_restore(flags);
3350 return rv;
3351 }
3352 EXPORT_SYMBOL(verify_mem_not_deleted);
3353 #endif
3354
3355 void kfree(const void *x)
3356 {
3357 struct page *page;
3358 void *object = (void *)x;
3359
3360 trace_kfree(_RET_IP_, x);
3361
3362 if (unlikely(ZERO_OR_NULL_PTR(x)))
3363 return;
3364
3365 page = virt_to_head_page(x);
3366 if (unlikely(!PageSlab(page))) {
3367 BUG_ON(!PageCompound(page));
3368 kmemleak_free(x);
3369 __free_memcg_kmem_pages(page, compound_order(page));
3370 return;
3371 }
3372 slab_free(page->slab_cache, page, object, _RET_IP_);
3373 }
3374 EXPORT_SYMBOL(kfree);
3375
3376 /*
3377 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3378 * the remaining slabs by the number of items in use. The slabs with the
3379 * most items in use come first. New allocations will then fill those up
3380 * and thus they can be removed from the partial lists.
3381 *
3382 * The slabs with the least items are placed last. This results in them
3383 * being allocated from last increasing the chance that the last objects
3384 * are freed in them.
3385 */
3386 int kmem_cache_shrink(struct kmem_cache *s)
3387 {
3388 int node;
3389 int i;
3390 struct kmem_cache_node *n;
3391 struct page *page;
3392 struct page *t;
3393 int objects = oo_objects(s->max);
3394 struct list_head *slabs_by_inuse =
3395 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3396 unsigned long flags;
3397
3398 if (!slabs_by_inuse)
3399 return -ENOMEM;
3400
3401 flush_all(s);
3402 for_each_node_state(node, N_NORMAL_MEMORY) {
3403 n = get_node(s, node);
3404
3405 if (!n->nr_partial)
3406 continue;
3407
3408 for (i = 0; i < objects; i++)
3409 INIT_LIST_HEAD(slabs_by_inuse + i);
3410
3411 spin_lock_irqsave(&n->list_lock, flags);
3412
3413 /*
3414 * Build lists indexed by the items in use in each slab.
3415 *
3416 * Note that concurrent frees may occur while we hold the
3417 * list_lock. page->inuse here is the upper limit.
3418 */
3419 list_for_each_entry_safe(page, t, &n->partial, lru) {
3420 list_move(&page->lru, slabs_by_inuse + page->inuse);
3421 if (!page->inuse)
3422 n->nr_partial--;
3423 }
3424
3425 /*
3426 * Rebuild the partial list with the slabs filled up most
3427 * first and the least used slabs at the end.
3428 */
3429 for (i = objects - 1; i > 0; i--)
3430 list_splice(slabs_by_inuse + i, n->partial.prev);
3431
3432 spin_unlock_irqrestore(&n->list_lock, flags);
3433
3434 /* Release empty slabs */
3435 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3436 discard_slab(s, page);
3437 }
3438
3439 kfree(slabs_by_inuse);
3440 return 0;
3441 }
3442 EXPORT_SYMBOL(kmem_cache_shrink);
3443
3444 static int slab_mem_going_offline_callback(void *arg)
3445 {
3446 struct kmem_cache *s;
3447
3448 mutex_lock(&slab_mutex);
3449 list_for_each_entry(s, &slab_caches, list)
3450 kmem_cache_shrink(s);
3451 mutex_unlock(&slab_mutex);
3452
3453 return 0;
3454 }
3455
3456 static void slab_mem_offline_callback(void *arg)
3457 {
3458 struct kmem_cache_node *n;
3459 struct kmem_cache *s;
3460 struct memory_notify *marg = arg;
3461 int offline_node;
3462
3463 offline_node = marg->status_change_nid_normal;
3464
3465 /*
3466 * If the node still has available memory. we need kmem_cache_node
3467 * for it yet.
3468 */
3469 if (offline_node < 0)
3470 return;
3471
3472 mutex_lock(&slab_mutex);
3473 list_for_each_entry(s, &slab_caches, list) {
3474 n = get_node(s, offline_node);
3475 if (n) {
3476 /*
3477 * if n->nr_slabs > 0, slabs still exist on the node
3478 * that is going down. We were unable to free them,
3479 * and offline_pages() function shouldn't call this
3480 * callback. So, we must fail.
3481 */
3482 BUG_ON(slabs_node(s, offline_node));
3483
3484 s->node[offline_node] = NULL;
3485 kmem_cache_free(kmem_cache_node, n);
3486 }
3487 }
3488 mutex_unlock(&slab_mutex);
3489 }
3490
3491 static int slab_mem_going_online_callback(void *arg)
3492 {
3493 struct kmem_cache_node *n;
3494 struct kmem_cache *s;
3495 struct memory_notify *marg = arg;
3496 int nid = marg->status_change_nid_normal;
3497 int ret = 0;
3498
3499 /*
3500 * If the node's memory is already available, then kmem_cache_node is
3501 * already created. Nothing to do.
3502 */
3503 if (nid < 0)
3504 return 0;
3505
3506 /*
3507 * We are bringing a node online. No memory is available yet. We must
3508 * allocate a kmem_cache_node structure in order to bring the node
3509 * online.
3510 */
3511 mutex_lock(&slab_mutex);
3512 list_for_each_entry(s, &slab_caches, list) {
3513 /*
3514 * XXX: kmem_cache_alloc_node will fallback to other nodes
3515 * since memory is not yet available from the node that
3516 * is brought up.
3517 */
3518 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3519 if (!n) {
3520 ret = -ENOMEM;
3521 goto out;
3522 }
3523 init_kmem_cache_node(n);
3524 s->node[nid] = n;
3525 }
3526 out:
3527 mutex_unlock(&slab_mutex);
3528 return ret;
3529 }
3530
3531 static int slab_memory_callback(struct notifier_block *self,
3532 unsigned long action, void *arg)
3533 {
3534 int ret = 0;
3535
3536 switch (action) {
3537 case MEM_GOING_ONLINE:
3538 ret = slab_mem_going_online_callback(arg);
3539 break;
3540 case MEM_GOING_OFFLINE:
3541 ret = slab_mem_going_offline_callback(arg);
3542 break;
3543 case MEM_OFFLINE:
3544 case MEM_CANCEL_ONLINE:
3545 slab_mem_offline_callback(arg);
3546 break;
3547 case MEM_ONLINE:
3548 case MEM_CANCEL_OFFLINE:
3549 break;
3550 }
3551 if (ret)
3552 ret = notifier_from_errno(ret);
3553 else
3554 ret = NOTIFY_OK;
3555 return ret;
3556 }
3557
3558 static struct notifier_block slab_memory_callback_nb = {
3559 .notifier_call = slab_memory_callback,
3560 .priority = SLAB_CALLBACK_PRI,
3561 };
3562
3563 /********************************************************************
3564 * Basic setup of slabs
3565 *******************************************************************/
3566
3567 /*
3568 * Used for early kmem_cache structures that were allocated using
3569 * the page allocator. Allocate them properly then fix up the pointers
3570 * that may be pointing to the wrong kmem_cache structure.
3571 */
3572
3573 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3574 {
3575 int node;
3576 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3577
3578 memcpy(s, static_cache, kmem_cache->object_size);
3579
3580 /*
3581 * This runs very early, and only the boot processor is supposed to be
3582 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3583 * IPIs around.
3584 */
3585 __flush_cpu_slab(s, smp_processor_id());
3586 for_each_node_state(node, N_NORMAL_MEMORY) {
3587 struct kmem_cache_node *n = get_node(s, node);
3588 struct page *p;
3589
3590 if (n) {
3591 list_for_each_entry(p, &n->partial, lru)
3592 p->slab_cache = s;
3593
3594 #ifdef CONFIG_SLUB_DEBUG
3595 list_for_each_entry(p, &n->full, lru)
3596 p->slab_cache = s;
3597 #endif
3598 }
3599 }
3600 list_add(&s->list, &slab_caches);
3601 return s;
3602 }
3603
3604 void __init kmem_cache_init(void)
3605 {
3606 static __initdata struct kmem_cache boot_kmem_cache,
3607 boot_kmem_cache_node;
3608
3609 if (debug_guardpage_minorder())
3610 slub_max_order = 0;
3611
3612 kmem_cache_node = &boot_kmem_cache_node;
3613 kmem_cache = &boot_kmem_cache;
3614
3615 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3616 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3617
3618 register_hotmemory_notifier(&slab_memory_callback_nb);
3619
3620 /* Able to allocate the per node structures */
3621 slab_state = PARTIAL;
3622
3623 create_boot_cache(kmem_cache, "kmem_cache",
3624 offsetof(struct kmem_cache, node) +
3625 nr_node_ids * sizeof(struct kmem_cache_node *),
3626 SLAB_HWCACHE_ALIGN);
3627
3628 kmem_cache = bootstrap(&boot_kmem_cache);
3629
3630 /*
3631 * Allocate kmem_cache_node properly from the kmem_cache slab.
3632 * kmem_cache_node is separately allocated so no need to
3633 * update any list pointers.
3634 */
3635 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3636
3637 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3638 create_kmalloc_caches(0);
3639
3640 #ifdef CONFIG_SMP
3641 register_cpu_notifier(&slab_notifier);
3642 #endif
3643
3644 printk(KERN_INFO
3645 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3646 " CPUs=%d, Nodes=%d\n",
3647 cache_line_size(),
3648 slub_min_order, slub_max_order, slub_min_objects,
3649 nr_cpu_ids, nr_node_ids);
3650 }
3651
3652 void __init kmem_cache_init_late(void)
3653 {
3654 }
3655
3656 /*
3657 * Find a mergeable slab cache
3658 */
3659 static int slab_unmergeable(struct kmem_cache *s)
3660 {
3661 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3662 return 1;
3663
3664 if (s->ctor)
3665 return 1;
3666
3667 /*
3668 * We may have set a slab to be unmergeable during bootstrap.
3669 */
3670 if (s->refcount < 0)
3671 return 1;
3672
3673 return 0;
3674 }
3675
3676 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3677 size_t align, unsigned long flags, const char *name,
3678 void (*ctor)(void *))
3679 {
3680 struct kmem_cache *s;
3681
3682 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3683 return NULL;
3684
3685 if (ctor)
3686 return NULL;
3687
3688 size = ALIGN(size, sizeof(void *));
3689 align = calculate_alignment(flags, align, size);
3690 size = ALIGN(size, align);
3691 flags = kmem_cache_flags(size, flags, name, NULL);
3692
3693 list_for_each_entry(s, &slab_caches, list) {
3694 if (slab_unmergeable(s))
3695 continue;
3696
3697 if (size > s->size)
3698 continue;
3699
3700 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3701 continue;
3702 /*
3703 * Check if alignment is compatible.
3704 * Courtesy of Adrian Drzewiecki
3705 */
3706 if ((s->size & ~(align - 1)) != s->size)
3707 continue;
3708
3709 if (s->size - size >= sizeof(void *))
3710 continue;
3711
3712 if (!cache_match_memcg(s, memcg))
3713 continue;
3714
3715 return s;
3716 }
3717 return NULL;
3718 }
3719
3720 struct kmem_cache *
3721 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3722 size_t align, unsigned long flags, void (*ctor)(void *))
3723 {
3724 struct kmem_cache *s;
3725
3726 s = find_mergeable(memcg, size, align, flags, name, ctor);
3727 if (s) {
3728 s->refcount++;
3729 /*
3730 * Adjust the object sizes so that we clear
3731 * the complete object on kzalloc.
3732 */
3733 s->object_size = max(s->object_size, (int)size);
3734 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3735
3736 if (sysfs_slab_alias(s, name)) {
3737 s->refcount--;
3738 s = NULL;
3739 }
3740 }
3741
3742 return s;
3743 }
3744
3745 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3746 {
3747 int err;
3748
3749 err = kmem_cache_open(s, flags);
3750 if (err)
3751 return err;
3752
3753 /* Mutex is not taken during early boot */
3754 if (slab_state <= UP)
3755 return 0;
3756
3757 memcg_propagate_slab_attrs(s);
3758 mutex_unlock(&slab_mutex);
3759 err = sysfs_slab_add(s);
3760 mutex_lock(&slab_mutex);
3761
3762 if (err)
3763 kmem_cache_close(s);
3764
3765 return err;
3766 }
3767
3768 #ifdef CONFIG_SMP
3769 /*
3770 * Use the cpu notifier to insure that the cpu slabs are flushed when
3771 * necessary.
3772 */
3773 static int slab_cpuup_callback(struct notifier_block *nfb,
3774 unsigned long action, void *hcpu)
3775 {
3776 long cpu = (long)hcpu;
3777 struct kmem_cache *s;
3778 unsigned long flags;
3779
3780 switch (action) {
3781 case CPU_UP_CANCELED:
3782 case CPU_UP_CANCELED_FROZEN:
3783 case CPU_DEAD:
3784 case CPU_DEAD_FROZEN:
3785 mutex_lock(&slab_mutex);
3786 list_for_each_entry(s, &slab_caches, list) {
3787 local_irq_save(flags);
3788 __flush_cpu_slab(s, cpu);
3789 local_irq_restore(flags);
3790 }
3791 mutex_unlock(&slab_mutex);
3792 break;
3793 default:
3794 break;
3795 }
3796 return NOTIFY_OK;
3797 }
3798
3799 static struct notifier_block slab_notifier = {
3800 .notifier_call = slab_cpuup_callback
3801 };
3802
3803 #endif
3804
3805 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3806 {
3807 struct kmem_cache *s;
3808 void *ret;
3809
3810 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3811 return kmalloc_large(size, gfpflags);
3812
3813 s = kmalloc_slab(size, gfpflags);
3814
3815 if (unlikely(ZERO_OR_NULL_PTR(s)))
3816 return s;
3817
3818 ret = slab_alloc(s, gfpflags, caller);
3819
3820 /* Honor the call site pointer we received. */
3821 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3822
3823 return ret;
3824 }
3825
3826 #ifdef CONFIG_NUMA
3827 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3828 int node, unsigned long caller)
3829 {
3830 struct kmem_cache *s;
3831 void *ret;
3832
3833 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3834 ret = kmalloc_large_node(size, gfpflags, node);
3835
3836 trace_kmalloc_node(caller, ret,
3837 size, PAGE_SIZE << get_order(size),
3838 gfpflags, node);
3839
3840 return ret;
3841 }
3842
3843 s = kmalloc_slab(size, gfpflags);
3844
3845 if (unlikely(ZERO_OR_NULL_PTR(s)))
3846 return s;
3847
3848 ret = slab_alloc_node(s, gfpflags, node, caller);
3849
3850 /* Honor the call site pointer we received. */
3851 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3852
3853 return ret;
3854 }
3855 #endif
3856
3857 #ifdef CONFIG_SYSFS
3858 static int count_inuse(struct page *page)
3859 {
3860 return page->inuse;
3861 }
3862
3863 static int count_total(struct page *page)
3864 {
3865 return page->objects;
3866 }
3867 #endif
3868
3869 #ifdef CONFIG_SLUB_DEBUG
3870 static int validate_slab(struct kmem_cache *s, struct page *page,
3871 unsigned long *map)
3872 {
3873 void *p;
3874 void *addr = page_address(page);
3875
3876 if (!check_slab(s, page) ||
3877 !on_freelist(s, page, NULL))
3878 return 0;
3879
3880 /* Now we know that a valid freelist exists */
3881 bitmap_zero(map, page->objects);
3882
3883 get_map(s, page, map);
3884 for_each_object(p, s, addr, page->objects) {
3885 if (test_bit(slab_index(p, s, addr), map))
3886 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3887 return 0;
3888 }
3889
3890 for_each_object(p, s, addr, page->objects)
3891 if (!test_bit(slab_index(p, s, addr), map))
3892 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3893 return 0;
3894 return 1;
3895 }
3896
3897 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3898 unsigned long *map)
3899 {
3900 slab_lock(page);
3901 validate_slab(s, page, map);
3902 slab_unlock(page);
3903 }
3904
3905 static int validate_slab_node(struct kmem_cache *s,
3906 struct kmem_cache_node *n, unsigned long *map)
3907 {
3908 unsigned long count = 0;
3909 struct page *page;
3910 unsigned long flags;
3911
3912 spin_lock_irqsave(&n->list_lock, flags);
3913
3914 list_for_each_entry(page, &n->partial, lru) {
3915 validate_slab_slab(s, page, map);
3916 count++;
3917 }
3918 if (count != n->nr_partial)
3919 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3920 "counter=%ld\n", s->name, count, n->nr_partial);
3921
3922 if (!(s->flags & SLAB_STORE_USER))
3923 goto out;
3924
3925 list_for_each_entry(page, &n->full, lru) {
3926 validate_slab_slab(s, page, map);
3927 count++;
3928 }
3929 if (count != atomic_long_read(&n->nr_slabs))
3930 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3931 "counter=%ld\n", s->name, count,
3932 atomic_long_read(&n->nr_slabs));
3933
3934 out:
3935 spin_unlock_irqrestore(&n->list_lock, flags);
3936 return count;
3937 }
3938
3939 static long validate_slab_cache(struct kmem_cache *s)
3940 {
3941 int node;
3942 unsigned long count = 0;
3943 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3944 sizeof(unsigned long), GFP_KERNEL);
3945
3946 if (!map)
3947 return -ENOMEM;
3948
3949 flush_all(s);
3950 for_each_node_state(node, N_NORMAL_MEMORY) {
3951 struct kmem_cache_node *n = get_node(s, node);
3952
3953 count += validate_slab_node(s, n, map);
3954 }
3955 kfree(map);
3956 return count;
3957 }
3958 /*
3959 * Generate lists of code addresses where slabcache objects are allocated
3960 * and freed.
3961 */
3962
3963 struct location {
3964 unsigned long count;
3965 unsigned long addr;
3966 long long sum_time;
3967 long min_time;
3968 long max_time;
3969 long min_pid;
3970 long max_pid;
3971 DECLARE_BITMAP(cpus, NR_CPUS);
3972 nodemask_t nodes;
3973 };
3974
3975 struct loc_track {
3976 unsigned long max;
3977 unsigned long count;
3978 struct location *loc;
3979 };
3980
3981 static void free_loc_track(struct loc_track *t)
3982 {
3983 if (t->max)
3984 free_pages((unsigned long)t->loc,
3985 get_order(sizeof(struct location) * t->max));
3986 }
3987
3988 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3989 {
3990 struct location *l;
3991 int order;
3992
3993 order = get_order(sizeof(struct location) * max);
3994
3995 l = (void *)__get_free_pages(flags, order);
3996 if (!l)
3997 return 0;
3998
3999 if (t->count) {
4000 memcpy(l, t->loc, sizeof(struct location) * t->count);
4001 free_loc_track(t);
4002 }
4003 t->max = max;
4004 t->loc = l;
4005 return 1;
4006 }
4007
4008 static int add_location(struct loc_track *t, struct kmem_cache *s,
4009 const struct track *track)
4010 {
4011 long start, end, pos;
4012 struct location *l;
4013 unsigned long caddr;
4014 unsigned long age = jiffies - track->when;
4015
4016 start = -1;
4017 end = t->count;
4018
4019 for ( ; ; ) {
4020 pos = start + (end - start + 1) / 2;
4021
4022 /*
4023 * There is nothing at "end". If we end up there
4024 * we need to add something to before end.
4025 */
4026 if (pos == end)
4027 break;
4028
4029 caddr = t->loc[pos].addr;
4030 if (track->addr == caddr) {
4031
4032 l = &t->loc[pos];
4033 l->count++;
4034 if (track->when) {
4035 l->sum_time += age;
4036 if (age < l->min_time)
4037 l->min_time = age;
4038 if (age > l->max_time)
4039 l->max_time = age;
4040
4041 if (track->pid < l->min_pid)
4042 l->min_pid = track->pid;
4043 if (track->pid > l->max_pid)
4044 l->max_pid = track->pid;
4045
4046 cpumask_set_cpu(track->cpu,
4047 to_cpumask(l->cpus));
4048 }
4049 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4050 return 1;
4051 }
4052
4053 if (track->addr < caddr)
4054 end = pos;
4055 else
4056 start = pos;
4057 }
4058
4059 /*
4060 * Not found. Insert new tracking element.
4061 */
4062 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4063 return 0;
4064
4065 l = t->loc + pos;
4066 if (pos < t->count)
4067 memmove(l + 1, l,
4068 (t->count - pos) * sizeof(struct location));
4069 t->count++;
4070 l->count = 1;
4071 l->addr = track->addr;
4072 l->sum_time = age;
4073 l->min_time = age;
4074 l->max_time = age;
4075 l->min_pid = track->pid;
4076 l->max_pid = track->pid;
4077 cpumask_clear(to_cpumask(l->cpus));
4078 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4079 nodes_clear(l->nodes);
4080 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4081 return 1;
4082 }
4083
4084 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4085 struct page *page, enum track_item alloc,
4086 unsigned long *map)
4087 {
4088 void *addr = page_address(page);
4089 void *p;
4090
4091 bitmap_zero(map, page->objects);
4092 get_map(s, page, map);
4093
4094 for_each_object(p, s, addr, page->objects)
4095 if (!test_bit(slab_index(p, s, addr), map))
4096 add_location(t, s, get_track(s, p, alloc));
4097 }
4098
4099 static int list_locations(struct kmem_cache *s, char *buf,
4100 enum track_item alloc)
4101 {
4102 int len = 0;
4103 unsigned long i;
4104 struct loc_track t = { 0, 0, NULL };
4105 int node;
4106 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4107 sizeof(unsigned long), GFP_KERNEL);
4108
4109 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4110 GFP_TEMPORARY)) {
4111 kfree(map);
4112 return sprintf(buf, "Out of memory\n");
4113 }
4114 /* Push back cpu slabs */
4115 flush_all(s);
4116
4117 for_each_node_state(node, N_NORMAL_MEMORY) {
4118 struct kmem_cache_node *n = get_node(s, node);
4119 unsigned long flags;
4120 struct page *page;
4121
4122 if (!atomic_long_read(&n->nr_slabs))
4123 continue;
4124
4125 spin_lock_irqsave(&n->list_lock, flags);
4126 list_for_each_entry(page, &n->partial, lru)
4127 process_slab(&t, s, page, alloc, map);
4128 list_for_each_entry(page, &n->full, lru)
4129 process_slab(&t, s, page, alloc, map);
4130 spin_unlock_irqrestore(&n->list_lock, flags);
4131 }
4132
4133 for (i = 0; i < t.count; i++) {
4134 struct location *l = &t.loc[i];
4135
4136 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4137 break;
4138 len += sprintf(buf + len, "%7ld ", l->count);
4139
4140 if (l->addr)
4141 len += sprintf(buf + len, "%pS", (void *)l->addr);
4142 else
4143 len += sprintf(buf + len, "<not-available>");
4144
4145 if (l->sum_time != l->min_time) {
4146 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4147 l->min_time,
4148 (long)div_u64(l->sum_time, l->count),
4149 l->max_time);
4150 } else
4151 len += sprintf(buf + len, " age=%ld",
4152 l->min_time);
4153
4154 if (l->min_pid != l->max_pid)
4155 len += sprintf(buf + len, " pid=%ld-%ld",
4156 l->min_pid, l->max_pid);
4157 else
4158 len += sprintf(buf + len, " pid=%ld",
4159 l->min_pid);
4160
4161 if (num_online_cpus() > 1 &&
4162 !cpumask_empty(to_cpumask(l->cpus)) &&
4163 len < PAGE_SIZE - 60) {
4164 len += sprintf(buf + len, " cpus=");
4165 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4166 to_cpumask(l->cpus));
4167 }
4168
4169 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4170 len < PAGE_SIZE - 60) {
4171 len += sprintf(buf + len, " nodes=");
4172 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4173 l->nodes);
4174 }
4175
4176 len += sprintf(buf + len, "\n");
4177 }
4178
4179 free_loc_track(&t);
4180 kfree(map);
4181 if (!t.count)
4182 len += sprintf(buf, "No data\n");
4183 return len;
4184 }
4185 #endif
4186
4187 #ifdef SLUB_RESILIENCY_TEST
4188 static void resiliency_test(void)
4189 {
4190 u8 *p;
4191
4192 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4193
4194 printk(KERN_ERR "SLUB resiliency testing\n");
4195 printk(KERN_ERR "-----------------------\n");
4196 printk(KERN_ERR "A. Corruption after allocation\n");
4197
4198 p = kzalloc(16, GFP_KERNEL);
4199 p[16] = 0x12;
4200 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4201 " 0x12->0x%p\n\n", p + 16);
4202
4203 validate_slab_cache(kmalloc_caches[4]);
4204
4205 /* Hmmm... The next two are dangerous */
4206 p = kzalloc(32, GFP_KERNEL);
4207 p[32 + sizeof(void *)] = 0x34;
4208 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4209 " 0x34 -> -0x%p\n", p);
4210 printk(KERN_ERR
4211 "If allocated object is overwritten then not detectable\n\n");
4212
4213 validate_slab_cache(kmalloc_caches[5]);
4214 p = kzalloc(64, GFP_KERNEL);
4215 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4216 *p = 0x56;
4217 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4218 p);
4219 printk(KERN_ERR
4220 "If allocated object is overwritten then not detectable\n\n");
4221 validate_slab_cache(kmalloc_caches[6]);
4222
4223 printk(KERN_ERR "\nB. Corruption after free\n");
4224 p = kzalloc(128, GFP_KERNEL);
4225 kfree(p);
4226 *p = 0x78;
4227 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4228 validate_slab_cache(kmalloc_caches[7]);
4229
4230 p = kzalloc(256, GFP_KERNEL);
4231 kfree(p);
4232 p[50] = 0x9a;
4233 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4234 p);
4235 validate_slab_cache(kmalloc_caches[8]);
4236
4237 p = kzalloc(512, GFP_KERNEL);
4238 kfree(p);
4239 p[512] = 0xab;
4240 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4241 validate_slab_cache(kmalloc_caches[9]);
4242 }
4243 #else
4244 #ifdef CONFIG_SYSFS
4245 static void resiliency_test(void) {};
4246 #endif
4247 #endif
4248
4249 #ifdef CONFIG_SYSFS
4250 enum slab_stat_type {
4251 SL_ALL, /* All slabs */
4252 SL_PARTIAL, /* Only partially allocated slabs */
4253 SL_CPU, /* Only slabs used for cpu caches */
4254 SL_OBJECTS, /* Determine allocated objects not slabs */
4255 SL_TOTAL /* Determine object capacity not slabs */
4256 };
4257
4258 #define SO_ALL (1 << SL_ALL)
4259 #define SO_PARTIAL (1 << SL_PARTIAL)
4260 #define SO_CPU (1 << SL_CPU)
4261 #define SO_OBJECTS (1 << SL_OBJECTS)
4262 #define SO_TOTAL (1 << SL_TOTAL)
4263
4264 static ssize_t show_slab_objects(struct kmem_cache *s,
4265 char *buf, unsigned long flags)
4266 {
4267 unsigned long total = 0;
4268 int node;
4269 int x;
4270 unsigned long *nodes;
4271 unsigned long *per_cpu;
4272
4273 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4274 if (!nodes)
4275 return -ENOMEM;
4276 per_cpu = nodes + nr_node_ids;
4277
4278 if (flags & SO_CPU) {
4279 int cpu;
4280
4281 for_each_possible_cpu(cpu) {
4282 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4283 int node;
4284 struct page *page;
4285
4286 page = ACCESS_ONCE(c->page);
4287 if (!page)
4288 continue;
4289
4290 node = page_to_nid(page);
4291 if (flags & SO_TOTAL)
4292 x = page->objects;
4293 else if (flags & SO_OBJECTS)
4294 x = page->inuse;
4295 else
4296 x = 1;
4297
4298 total += x;
4299 nodes[node] += x;
4300
4301 page = ACCESS_ONCE(c->partial);
4302 if (page) {
4303 x = page->pobjects;
4304 total += x;
4305 nodes[node] += x;
4306 }
4307
4308 per_cpu[node]++;
4309 }
4310 }
4311
4312 lock_memory_hotplug();
4313 #ifdef CONFIG_SLUB_DEBUG
4314 if (flags & SO_ALL) {
4315 for_each_node_state(node, N_NORMAL_MEMORY) {
4316 struct kmem_cache_node *n = get_node(s, node);
4317
4318 if (flags & SO_TOTAL)
4319 x = atomic_long_read(&n->total_objects);
4320 else if (flags & SO_OBJECTS)
4321 x = atomic_long_read(&n->total_objects) -
4322 count_partial(n, count_free);
4323
4324 else
4325 x = atomic_long_read(&n->nr_slabs);
4326 total += x;
4327 nodes[node] += x;
4328 }
4329
4330 } else
4331 #endif
4332 if (flags & SO_PARTIAL) {
4333 for_each_node_state(node, N_NORMAL_MEMORY) {
4334 struct kmem_cache_node *n = get_node(s, node);
4335
4336 if (flags & SO_TOTAL)
4337 x = count_partial(n, count_total);
4338 else if (flags & SO_OBJECTS)
4339 x = count_partial(n, count_inuse);
4340 else
4341 x = n->nr_partial;
4342 total += x;
4343 nodes[node] += x;
4344 }
4345 }
4346 x = sprintf(buf, "%lu", total);
4347 #ifdef CONFIG_NUMA
4348 for_each_node_state(node, N_NORMAL_MEMORY)
4349 if (nodes[node])
4350 x += sprintf(buf + x, " N%d=%lu",
4351 node, nodes[node]);
4352 #endif
4353 unlock_memory_hotplug();
4354 kfree(nodes);
4355 return x + sprintf(buf + x, "\n");
4356 }
4357
4358 #ifdef CONFIG_SLUB_DEBUG
4359 static int any_slab_objects(struct kmem_cache *s)
4360 {
4361 int node;
4362
4363 for_each_online_node(node) {
4364 struct kmem_cache_node *n = get_node(s, node);
4365
4366 if (!n)
4367 continue;
4368
4369 if (atomic_long_read(&n->total_objects))
4370 return 1;
4371 }
4372 return 0;
4373 }
4374 #endif
4375
4376 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4377 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4378
4379 struct slab_attribute {
4380 struct attribute attr;
4381 ssize_t (*show)(struct kmem_cache *s, char *buf);
4382 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4383 };
4384
4385 #define SLAB_ATTR_RO(_name) \
4386 static struct slab_attribute _name##_attr = \
4387 __ATTR(_name, 0400, _name##_show, NULL)
4388
4389 #define SLAB_ATTR(_name) \
4390 static struct slab_attribute _name##_attr = \
4391 __ATTR(_name, 0600, _name##_show, _name##_store)
4392
4393 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4394 {
4395 return sprintf(buf, "%d\n", s->size);
4396 }
4397 SLAB_ATTR_RO(slab_size);
4398
4399 static ssize_t align_show(struct kmem_cache *s, char *buf)
4400 {
4401 return sprintf(buf, "%d\n", s->align);
4402 }
4403 SLAB_ATTR_RO(align);
4404
4405 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4406 {
4407 return sprintf(buf, "%d\n", s->object_size);
4408 }
4409 SLAB_ATTR_RO(object_size);
4410
4411 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4412 {
4413 return sprintf(buf, "%d\n", oo_objects(s->oo));
4414 }
4415 SLAB_ATTR_RO(objs_per_slab);
4416
4417 static ssize_t order_store(struct kmem_cache *s,
4418 const char *buf, size_t length)
4419 {
4420 unsigned long order;
4421 int err;
4422
4423 err = kstrtoul(buf, 10, &order);
4424 if (err)
4425 return err;
4426
4427 if (order > slub_max_order || order < slub_min_order)
4428 return -EINVAL;
4429
4430 calculate_sizes(s, order);
4431 return length;
4432 }
4433
4434 static ssize_t order_show(struct kmem_cache *s, char *buf)
4435 {
4436 return sprintf(buf, "%d\n", oo_order(s->oo));
4437 }
4438 SLAB_ATTR(order);
4439
4440 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4441 {
4442 return sprintf(buf, "%lu\n", s->min_partial);
4443 }
4444
4445 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4446 size_t length)
4447 {
4448 unsigned long min;
4449 int err;
4450
4451 err = kstrtoul(buf, 10, &min);
4452 if (err)
4453 return err;
4454
4455 set_min_partial(s, min);
4456 return length;
4457 }
4458 SLAB_ATTR(min_partial);
4459
4460 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4461 {
4462 return sprintf(buf, "%u\n", s->cpu_partial);
4463 }
4464
4465 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4466 size_t length)
4467 {
4468 unsigned long objects;
4469 int err;
4470
4471 err = kstrtoul(buf, 10, &objects);
4472 if (err)
4473 return err;
4474 if (objects && !kmem_cache_has_cpu_partial(s))
4475 return -EINVAL;
4476
4477 s->cpu_partial = objects;
4478 flush_all(s);
4479 return length;
4480 }
4481 SLAB_ATTR(cpu_partial);
4482
4483 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4484 {
4485 if (!s->ctor)
4486 return 0;
4487 return sprintf(buf, "%pS\n", s->ctor);
4488 }
4489 SLAB_ATTR_RO(ctor);
4490
4491 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4492 {
4493 return sprintf(buf, "%d\n", s->refcount - 1);
4494 }
4495 SLAB_ATTR_RO(aliases);
4496
4497 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4498 {
4499 return show_slab_objects(s, buf, SO_PARTIAL);
4500 }
4501 SLAB_ATTR_RO(partial);
4502
4503 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4504 {
4505 return show_slab_objects(s, buf, SO_CPU);
4506 }
4507 SLAB_ATTR_RO(cpu_slabs);
4508
4509 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4510 {
4511 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4512 }
4513 SLAB_ATTR_RO(objects);
4514
4515 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4516 {
4517 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4518 }
4519 SLAB_ATTR_RO(objects_partial);
4520
4521 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4522 {
4523 int objects = 0;
4524 int pages = 0;
4525 int cpu;
4526 int len;
4527
4528 for_each_online_cpu(cpu) {
4529 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4530
4531 if (page) {
4532 pages += page->pages;
4533 objects += page->pobjects;
4534 }
4535 }
4536
4537 len = sprintf(buf, "%d(%d)", objects, pages);
4538
4539 #ifdef CONFIG_SMP
4540 for_each_online_cpu(cpu) {
4541 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4542
4543 if (page && len < PAGE_SIZE - 20)
4544 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4545 page->pobjects, page->pages);
4546 }
4547 #endif
4548 return len + sprintf(buf + len, "\n");
4549 }
4550 SLAB_ATTR_RO(slabs_cpu_partial);
4551
4552 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4553 {
4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4555 }
4556
4557 static ssize_t reclaim_account_store(struct kmem_cache *s,
4558 const char *buf, size_t length)
4559 {
4560 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4561 if (buf[0] == '1')
4562 s->flags |= SLAB_RECLAIM_ACCOUNT;
4563 return length;
4564 }
4565 SLAB_ATTR(reclaim_account);
4566
4567 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4568 {
4569 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4570 }
4571 SLAB_ATTR_RO(hwcache_align);
4572
4573 #ifdef CONFIG_ZONE_DMA
4574 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4575 {
4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4577 }
4578 SLAB_ATTR_RO(cache_dma);
4579 #endif
4580
4581 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4582 {
4583 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4584 }
4585 SLAB_ATTR_RO(destroy_by_rcu);
4586
4587 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4588 {
4589 return sprintf(buf, "%d\n", s->reserved);
4590 }
4591 SLAB_ATTR_RO(reserved);
4592
4593 #ifdef CONFIG_SLUB_DEBUG
4594 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4595 {
4596 return show_slab_objects(s, buf, SO_ALL);
4597 }
4598 SLAB_ATTR_RO(slabs);
4599
4600 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4601 {
4602 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4603 }
4604 SLAB_ATTR_RO(total_objects);
4605
4606 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4607 {
4608 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4609 }
4610
4611 static ssize_t sanity_checks_store(struct kmem_cache *s,
4612 const char *buf, size_t length)
4613 {
4614 s->flags &= ~SLAB_DEBUG_FREE;
4615 if (buf[0] == '1') {
4616 s->flags &= ~__CMPXCHG_DOUBLE;
4617 s->flags |= SLAB_DEBUG_FREE;
4618 }
4619 return length;
4620 }
4621 SLAB_ATTR(sanity_checks);
4622
4623 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4624 {
4625 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4626 }
4627
4628 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4629 size_t length)
4630 {
4631 s->flags &= ~SLAB_TRACE;
4632 if (buf[0] == '1') {
4633 s->flags &= ~__CMPXCHG_DOUBLE;
4634 s->flags |= SLAB_TRACE;
4635 }
4636 return length;
4637 }
4638 SLAB_ATTR(trace);
4639
4640 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4641 {
4642 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4643 }
4644
4645 static ssize_t red_zone_store(struct kmem_cache *s,
4646 const char *buf, size_t length)
4647 {
4648 if (any_slab_objects(s))
4649 return -EBUSY;
4650
4651 s->flags &= ~SLAB_RED_ZONE;
4652 if (buf[0] == '1') {
4653 s->flags &= ~__CMPXCHG_DOUBLE;
4654 s->flags |= SLAB_RED_ZONE;
4655 }
4656 calculate_sizes(s, -1);
4657 return length;
4658 }
4659 SLAB_ATTR(red_zone);
4660
4661 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4662 {
4663 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4664 }
4665
4666 static ssize_t poison_store(struct kmem_cache *s,
4667 const char *buf, size_t length)
4668 {
4669 if (any_slab_objects(s))
4670 return -EBUSY;
4671
4672 s->flags &= ~SLAB_POISON;
4673 if (buf[0] == '1') {
4674 s->flags &= ~__CMPXCHG_DOUBLE;
4675 s->flags |= SLAB_POISON;
4676 }
4677 calculate_sizes(s, -1);
4678 return length;
4679 }
4680 SLAB_ATTR(poison);
4681
4682 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4683 {
4684 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4685 }
4686
4687 static ssize_t store_user_store(struct kmem_cache *s,
4688 const char *buf, size_t length)
4689 {
4690 if (any_slab_objects(s))
4691 return -EBUSY;
4692
4693 s->flags &= ~SLAB_STORE_USER;
4694 if (buf[0] == '1') {
4695 s->flags &= ~__CMPXCHG_DOUBLE;
4696 s->flags |= SLAB_STORE_USER;
4697 }
4698 calculate_sizes(s, -1);
4699 return length;
4700 }
4701 SLAB_ATTR(store_user);
4702
4703 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4704 {
4705 return 0;
4706 }
4707
4708 static ssize_t validate_store(struct kmem_cache *s,
4709 const char *buf, size_t length)
4710 {
4711 int ret = -EINVAL;
4712
4713 if (buf[0] == '1') {
4714 ret = validate_slab_cache(s);
4715 if (ret >= 0)
4716 ret = length;
4717 }
4718 return ret;
4719 }
4720 SLAB_ATTR(validate);
4721
4722 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4723 {
4724 if (!(s->flags & SLAB_STORE_USER))
4725 return -ENOSYS;
4726 return list_locations(s, buf, TRACK_ALLOC);
4727 }
4728 SLAB_ATTR_RO(alloc_calls);
4729
4730 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4731 {
4732 if (!(s->flags & SLAB_STORE_USER))
4733 return -ENOSYS;
4734 return list_locations(s, buf, TRACK_FREE);
4735 }
4736 SLAB_ATTR_RO(free_calls);
4737 #endif /* CONFIG_SLUB_DEBUG */
4738
4739 #ifdef CONFIG_FAILSLAB
4740 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4741 {
4742 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4743 }
4744
4745 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4746 size_t length)
4747 {
4748 s->flags &= ~SLAB_FAILSLAB;
4749 if (buf[0] == '1')
4750 s->flags |= SLAB_FAILSLAB;
4751 return length;
4752 }
4753 SLAB_ATTR(failslab);
4754 #endif
4755
4756 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4757 {
4758 return 0;
4759 }
4760
4761 static ssize_t shrink_store(struct kmem_cache *s,
4762 const char *buf, size_t length)
4763 {
4764 if (buf[0] == '1') {
4765 int rc = kmem_cache_shrink(s);
4766
4767 if (rc)
4768 return rc;
4769 } else
4770 return -EINVAL;
4771 return length;
4772 }
4773 SLAB_ATTR(shrink);
4774
4775 #ifdef CONFIG_NUMA
4776 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4777 {
4778 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4779 }
4780
4781 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4782 const char *buf, size_t length)
4783 {
4784 unsigned long ratio;
4785 int err;
4786
4787 err = kstrtoul(buf, 10, &ratio);
4788 if (err)
4789 return err;
4790
4791 if (ratio <= 100)
4792 s->remote_node_defrag_ratio = ratio * 10;
4793
4794 return length;
4795 }
4796 SLAB_ATTR(remote_node_defrag_ratio);
4797 #endif
4798
4799 #ifdef CONFIG_SLUB_STATS
4800 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4801 {
4802 unsigned long sum = 0;
4803 int cpu;
4804 int len;
4805 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4806
4807 if (!data)
4808 return -ENOMEM;
4809
4810 for_each_online_cpu(cpu) {
4811 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4812
4813 data[cpu] = x;
4814 sum += x;
4815 }
4816
4817 len = sprintf(buf, "%lu", sum);
4818
4819 #ifdef CONFIG_SMP
4820 for_each_online_cpu(cpu) {
4821 if (data[cpu] && len < PAGE_SIZE - 20)
4822 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4823 }
4824 #endif
4825 kfree(data);
4826 return len + sprintf(buf + len, "\n");
4827 }
4828
4829 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4830 {
4831 int cpu;
4832
4833 for_each_online_cpu(cpu)
4834 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4835 }
4836
4837 #define STAT_ATTR(si, text) \
4838 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4839 { \
4840 return show_stat(s, buf, si); \
4841 } \
4842 static ssize_t text##_store(struct kmem_cache *s, \
4843 const char *buf, size_t length) \
4844 { \
4845 if (buf[0] != '0') \
4846 return -EINVAL; \
4847 clear_stat(s, si); \
4848 return length; \
4849 } \
4850 SLAB_ATTR(text); \
4851
4852 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4853 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4854 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4855 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4856 STAT_ATTR(FREE_FROZEN, free_frozen);
4857 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4858 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4859 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4860 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4861 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4862 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4863 STAT_ATTR(FREE_SLAB, free_slab);
4864 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4865 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4866 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4867 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4868 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4869 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4870 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4871 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4872 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4873 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4874 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4875 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4876 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4877 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4878 #endif
4879
4880 static struct attribute *slab_attrs[] = {
4881 &slab_size_attr.attr,
4882 &object_size_attr.attr,
4883 &objs_per_slab_attr.attr,
4884 &order_attr.attr,
4885 &min_partial_attr.attr,
4886 &cpu_partial_attr.attr,
4887 &objects_attr.attr,
4888 &objects_partial_attr.attr,
4889 &partial_attr.attr,
4890 &cpu_slabs_attr.attr,
4891 &ctor_attr.attr,
4892 &aliases_attr.attr,
4893 &align_attr.attr,
4894 &hwcache_align_attr.attr,
4895 &reclaim_account_attr.attr,
4896 &destroy_by_rcu_attr.attr,
4897 &shrink_attr.attr,
4898 &reserved_attr.attr,
4899 &slabs_cpu_partial_attr.attr,
4900 #ifdef CONFIG_SLUB_DEBUG
4901 &total_objects_attr.attr,
4902 &slabs_attr.attr,
4903 &sanity_checks_attr.attr,
4904 &trace_attr.attr,
4905 &red_zone_attr.attr,
4906 &poison_attr.attr,
4907 &store_user_attr.attr,
4908 &validate_attr.attr,
4909 &alloc_calls_attr.attr,
4910 &free_calls_attr.attr,
4911 #endif
4912 #ifdef CONFIG_ZONE_DMA
4913 &cache_dma_attr.attr,
4914 #endif
4915 #ifdef CONFIG_NUMA
4916 &remote_node_defrag_ratio_attr.attr,
4917 #endif
4918 #ifdef CONFIG_SLUB_STATS
4919 &alloc_fastpath_attr.attr,
4920 &alloc_slowpath_attr.attr,
4921 &free_fastpath_attr.attr,
4922 &free_slowpath_attr.attr,
4923 &free_frozen_attr.attr,
4924 &free_add_partial_attr.attr,
4925 &free_remove_partial_attr.attr,
4926 &alloc_from_partial_attr.attr,
4927 &alloc_slab_attr.attr,
4928 &alloc_refill_attr.attr,
4929 &alloc_node_mismatch_attr.attr,
4930 &free_slab_attr.attr,
4931 &cpuslab_flush_attr.attr,
4932 &deactivate_full_attr.attr,
4933 &deactivate_empty_attr.attr,
4934 &deactivate_to_head_attr.attr,
4935 &deactivate_to_tail_attr.attr,
4936 &deactivate_remote_frees_attr.attr,
4937 &deactivate_bypass_attr.attr,
4938 &order_fallback_attr.attr,
4939 &cmpxchg_double_fail_attr.attr,
4940 &cmpxchg_double_cpu_fail_attr.attr,
4941 &cpu_partial_alloc_attr.attr,
4942 &cpu_partial_free_attr.attr,
4943 &cpu_partial_node_attr.attr,
4944 &cpu_partial_drain_attr.attr,
4945 #endif
4946 #ifdef CONFIG_FAILSLAB
4947 &failslab_attr.attr,
4948 #endif
4949
4950 NULL
4951 };
4952
4953 static struct attribute_group slab_attr_group = {
4954 .attrs = slab_attrs,
4955 };
4956
4957 static ssize_t slab_attr_show(struct kobject *kobj,
4958 struct attribute *attr,
4959 char *buf)
4960 {
4961 struct slab_attribute *attribute;
4962 struct kmem_cache *s;
4963 int err;
4964
4965 attribute = to_slab_attr(attr);
4966 s = to_slab(kobj);
4967
4968 if (!attribute->show)
4969 return -EIO;
4970
4971 err = attribute->show(s, buf);
4972
4973 return err;
4974 }
4975
4976 static ssize_t slab_attr_store(struct kobject *kobj,
4977 struct attribute *attr,
4978 const char *buf, size_t len)
4979 {
4980 struct slab_attribute *attribute;
4981 struct kmem_cache *s;
4982 int err;
4983
4984 attribute = to_slab_attr(attr);
4985 s = to_slab(kobj);
4986
4987 if (!attribute->store)
4988 return -EIO;
4989
4990 err = attribute->store(s, buf, len);
4991 #ifdef CONFIG_MEMCG_KMEM
4992 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4993 int i;
4994
4995 mutex_lock(&slab_mutex);
4996 if (s->max_attr_size < len)
4997 s->max_attr_size = len;
4998
4999 /*
5000 * This is a best effort propagation, so this function's return
5001 * value will be determined by the parent cache only. This is
5002 * basically because not all attributes will have a well
5003 * defined semantics for rollbacks - most of the actions will
5004 * have permanent effects.
5005 *
5006 * Returning the error value of any of the children that fail
5007 * is not 100 % defined, in the sense that users seeing the
5008 * error code won't be able to know anything about the state of
5009 * the cache.
5010 *
5011 * Only returning the error code for the parent cache at least
5012 * has well defined semantics. The cache being written to
5013 * directly either failed or succeeded, in which case we loop
5014 * through the descendants with best-effort propagation.
5015 */
5016 for_each_memcg_cache_index(i) {
5017 struct kmem_cache *c = cache_from_memcg(s, i);
5018 if (c)
5019 attribute->store(c, buf, len);
5020 }
5021 mutex_unlock(&slab_mutex);
5022 }
5023 #endif
5024 return err;
5025 }
5026
5027 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5028 {
5029 #ifdef CONFIG_MEMCG_KMEM
5030 int i;
5031 char *buffer = NULL;
5032
5033 if (!is_root_cache(s))
5034 return;
5035
5036 /*
5037 * This mean this cache had no attribute written. Therefore, no point
5038 * in copying default values around
5039 */
5040 if (!s->max_attr_size)
5041 return;
5042
5043 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5044 char mbuf[64];
5045 char *buf;
5046 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5047
5048 if (!attr || !attr->store || !attr->show)
5049 continue;
5050
5051 /*
5052 * It is really bad that we have to allocate here, so we will
5053 * do it only as a fallback. If we actually allocate, though,
5054 * we can just use the allocated buffer until the end.
5055 *
5056 * Most of the slub attributes will tend to be very small in
5057 * size, but sysfs allows buffers up to a page, so they can
5058 * theoretically happen.
5059 */
5060 if (buffer)
5061 buf = buffer;
5062 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5063 buf = mbuf;
5064 else {
5065 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5066 if (WARN_ON(!buffer))
5067 continue;
5068 buf = buffer;
5069 }
5070
5071 attr->show(s->memcg_params->root_cache, buf);
5072 attr->store(s, buf, strlen(buf));
5073 }
5074
5075 if (buffer)
5076 free_page((unsigned long)buffer);
5077 #endif
5078 }
5079
5080 static const struct sysfs_ops slab_sysfs_ops = {
5081 .show = slab_attr_show,
5082 .store = slab_attr_store,
5083 };
5084
5085 static struct kobj_type slab_ktype = {
5086 .sysfs_ops = &slab_sysfs_ops,
5087 };
5088
5089 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5090 {
5091 struct kobj_type *ktype = get_ktype(kobj);
5092
5093 if (ktype == &slab_ktype)
5094 return 1;
5095 return 0;
5096 }
5097
5098 static const struct kset_uevent_ops slab_uevent_ops = {
5099 .filter = uevent_filter,
5100 };
5101
5102 static struct kset *slab_kset;
5103
5104 #define ID_STR_LENGTH 64
5105
5106 /* Create a unique string id for a slab cache:
5107 *
5108 * Format :[flags-]size
5109 */
5110 static char *create_unique_id(struct kmem_cache *s)
5111 {
5112 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5113 char *p = name;
5114
5115 BUG_ON(!name);
5116
5117 *p++ = ':';
5118 /*
5119 * First flags affecting slabcache operations. We will only
5120 * get here for aliasable slabs so we do not need to support
5121 * too many flags. The flags here must cover all flags that
5122 * are matched during merging to guarantee that the id is
5123 * unique.
5124 */
5125 if (s->flags & SLAB_CACHE_DMA)
5126 *p++ = 'd';
5127 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5128 *p++ = 'a';
5129 if (s->flags & SLAB_DEBUG_FREE)
5130 *p++ = 'F';
5131 if (!(s->flags & SLAB_NOTRACK))
5132 *p++ = 't';
5133 if (p != name + 1)
5134 *p++ = '-';
5135 p += sprintf(p, "%07d", s->size);
5136
5137 #ifdef CONFIG_MEMCG_KMEM
5138 if (!is_root_cache(s))
5139 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5140 #endif
5141
5142 BUG_ON(p > name + ID_STR_LENGTH - 1);
5143 return name;
5144 }
5145
5146 static int sysfs_slab_add(struct kmem_cache *s)
5147 {
5148 int err;
5149 const char *name;
5150 int unmergeable = slab_unmergeable(s);
5151
5152 if (unmergeable) {
5153 /*
5154 * Slabcache can never be merged so we can use the name proper.
5155 * This is typically the case for debug situations. In that
5156 * case we can catch duplicate names easily.
5157 */
5158 sysfs_remove_link(&slab_kset->kobj, s->name);
5159 name = s->name;
5160 } else {
5161 /*
5162 * Create a unique name for the slab as a target
5163 * for the symlinks.
5164 */
5165 name = create_unique_id(s);
5166 }
5167
5168 s->kobj.kset = slab_kset;
5169 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5170 if (err) {
5171 kobject_put(&s->kobj);
5172 return err;
5173 }
5174
5175 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5176 if (err) {
5177 kobject_del(&s->kobj);
5178 kobject_put(&s->kobj);
5179 return err;
5180 }
5181 kobject_uevent(&s->kobj, KOBJ_ADD);
5182 if (!unmergeable) {
5183 /* Setup first alias */
5184 sysfs_slab_alias(s, s->name);
5185 kfree(name);
5186 }
5187 return 0;
5188 }
5189
5190 static void sysfs_slab_remove(struct kmem_cache *s)
5191 {
5192 if (slab_state < FULL)
5193 /*
5194 * Sysfs has not been setup yet so no need to remove the
5195 * cache from sysfs.
5196 */
5197 return;
5198
5199 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5200 kobject_del(&s->kobj);
5201 kobject_put(&s->kobj);
5202 }
5203
5204 /*
5205 * Need to buffer aliases during bootup until sysfs becomes
5206 * available lest we lose that information.
5207 */
5208 struct saved_alias {
5209 struct kmem_cache *s;
5210 const char *name;
5211 struct saved_alias *next;
5212 };
5213
5214 static struct saved_alias *alias_list;
5215
5216 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5217 {
5218 struct saved_alias *al;
5219
5220 if (slab_state == FULL) {
5221 /*
5222 * If we have a leftover link then remove it.
5223 */
5224 sysfs_remove_link(&slab_kset->kobj, name);
5225 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5226 }
5227
5228 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5229 if (!al)
5230 return -ENOMEM;
5231
5232 al->s = s;
5233 al->name = name;
5234 al->next = alias_list;
5235 alias_list = al;
5236 return 0;
5237 }
5238
5239 static int __init slab_sysfs_init(void)
5240 {
5241 struct kmem_cache *s;
5242 int err;
5243
5244 mutex_lock(&slab_mutex);
5245
5246 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5247 if (!slab_kset) {
5248 mutex_unlock(&slab_mutex);
5249 printk(KERN_ERR "Cannot register slab subsystem.\n");
5250 return -ENOSYS;
5251 }
5252
5253 slab_state = FULL;
5254
5255 list_for_each_entry(s, &slab_caches, list) {
5256 err = sysfs_slab_add(s);
5257 if (err)
5258 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5259 " to sysfs\n", s->name);
5260 }
5261
5262 while (alias_list) {
5263 struct saved_alias *al = alias_list;
5264
5265 alias_list = alias_list->next;
5266 err = sysfs_slab_alias(al->s, al->name);
5267 if (err)
5268 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5269 " %s to sysfs\n", al->name);
5270 kfree(al);
5271 }
5272
5273 mutex_unlock(&slab_mutex);
5274 resiliency_test();
5275 return 0;
5276 }
5277
5278 __initcall(slab_sysfs_init);
5279 #endif /* CONFIG_SYSFS */
5280
5281 /*
5282 * The /proc/slabinfo ABI
5283 */
5284 #ifdef CONFIG_SLABINFO
5285 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5286 {
5287 unsigned long nr_slabs = 0;
5288 unsigned long nr_objs = 0;
5289 unsigned long nr_free = 0;
5290 int node;
5291
5292 for_each_online_node(node) {
5293 struct kmem_cache_node *n = get_node(s, node);
5294
5295 if (!n)
5296 continue;
5297
5298 nr_slabs += node_nr_slabs(n);
5299 nr_objs += node_nr_objs(n);
5300 nr_free += count_partial(n, count_free);
5301 }
5302
5303 sinfo->active_objs = nr_objs - nr_free;
5304 sinfo->num_objs = nr_objs;
5305 sinfo->active_slabs = nr_slabs;
5306 sinfo->num_slabs = nr_slabs;
5307 sinfo->objects_per_slab = oo_objects(s->oo);
5308 sinfo->cache_order = oo_order(s->oo);
5309 }
5310
5311 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5312 {
5313 }
5314
5315 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5316 size_t count, loff_t *ppos)
5317 {
5318 return -EIO;
5319 }
5320 #endif /* CONFIG_SLABINFO */
This page took 0.139239 seconds and 5 git commands to generate.