mm: thp: tail page refcounting fix
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32
33 #include <trace/events/kmem.h>
34
35 /*
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136
137 /*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141 #define MIN_PARTIAL 5
142
143 /*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148 #define MAX_PARTIAL 10
149
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
152
153 /*
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160 /*
161 * Set of flags that will prevent slab merging
162 */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
166
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177
178 static int kmem_size = sizeof(struct kmem_cache);
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
190
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194
195 /*
196 * Tracking user of a slab.
197 */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207 };
208
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 kfree(s->name);
223 kfree(s);
224 }
225
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239 int slab_is_available(void)
240 {
241 return slab_state >= UP;
242 }
243
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 return s->node[node];
247 }
248
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252 {
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return *(void **)(object + s->offset);
270 }
271
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 void *p;
275
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
282 }
283
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 *(void **)(object + s->offset) = fp;
287 }
288
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 return (p - addr) / s->size;
298 }
299
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310 #endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322 }
323
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 return ((PAGE_SIZE << order) - reserved) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 };
335
336 return x;
337 }
338
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 bit_spin_lock(PG_locked, &page->flags);
355 }
356
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 __bit_spin_unlock(PG_locked, &page->flags);
360 }
361
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367 {
368 VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376 #endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391 #ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393 #endif
394
395 return 0;
396 }
397
398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402 {
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410 #endif
411 {
412 unsigned long flags;
413
414 local_irq_save(flags);
415 slab_lock(page);
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433
434 return 0;
435 }
436
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451 }
452
453 /*
454 * Debug settings:
455 */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464
465 /*
466 * Object debugging
467 */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
472 }
473
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476 {
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485 }
486
487 static void set_track(struct kmem_cache *s, void *object,
488 enum track_item alloc, unsigned long addr)
489 {
490 struct track *p = get_track(s, object, alloc);
491
492 if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510 #endif
511 p->addr = addr;
512 p->cpu = smp_processor_id();
513 p->pid = current->pid;
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517 }
518
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527
528 static void print_track(const char *s, struct track *t)
529 {
530 if (!t->addr)
531 return;
532
533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544 #endif
545 }
546
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555
556 static void print_page_info(struct page *page)
557 {
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
560
561 }
562
563 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564 {
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
576 }
577
578 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579 {
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587 }
588
589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
590 {
591 unsigned int off; /* Offset of last byte */
592 u8 *addr = page_address(page);
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
602 print_section("Bytes b4 ", p - 16, 16);
603
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
606 if (s->flags & SLAB_RED_ZONE)
607 print_section("Redzone ", p + s->objsize,
608 s->inuse - s->objsize);
609
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
615 if (s->flags & SLAB_STORE_USER)
616 off += 2 * sizeof(struct track);
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
620 print_section("Padding ", p + off, s->size - off);
621
622 dump_stack();
623 }
624
625 static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627 {
628 slab_bug(s, "%s", reason);
629 print_trailer(s, page, object);
630 }
631
632 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
633 {
634 va_list args;
635 char buf[100];
636
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
639 va_end(args);
640 slab_bug(s, "%s", buf);
641 print_page_info(page);
642 dump_stack();
643 }
644
645 static void init_object(struct kmem_cache *s, void *object, u8 val)
646 {
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
651 p[s->objsize - 1] = POISON_END;
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
655 memset(p + s->objsize, val, s->inuse - s->objsize);
656 }
657
658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 void *from, void *to)
660 {
661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 memset(from, data, to - from);
663 }
664
665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 u8 *object, char *what,
667 u8 *start, unsigned int value, unsigned int bytes)
668 {
669 u8 *fault;
670 u8 *end;
671
672 fault = memchr_inv(start, value, bytes);
673 if (!fault)
674 return 1;
675
676 end = start + bytes;
677 while (end > fault && end[-1] == value)
678 end--;
679
680 slab_bug(s, "%s overwritten", what);
681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault, end - 1, fault[0], value);
683 print_trailer(s, page, object);
684
685 restore_bytes(s, what, value, fault, end);
686 return 0;
687 }
688
689 /*
690 * Object layout:
691 *
692 * object address
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
696 *
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
698 * 0xa5 (POISON_END)
699 *
700 * object + s->objsize
701 * Padding to reach word boundary. This is also used for Redzoning.
702 * Padding is extended by another word if Redzoning is enabled and
703 * objsize == inuse.
704 *
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
707 *
708 * object + s->inuse
709 * Meta data starts here.
710 *
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
713 * C. Padding to reach required alignment boundary or at mininum
714 * one word if debugging is on to be able to detect writes
715 * before the word boundary.
716 *
717 * Padding is done using 0x5a (POISON_INUSE)
718 *
719 * object + s->size
720 * Nothing is used beyond s->size.
721 *
722 * If slabcaches are merged then the objsize and inuse boundaries are mostly
723 * ignored. And therefore no slab options that rely on these boundaries
724 * may be used with merged slabcaches.
725 */
726
727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728 {
729 unsigned long off = s->inuse; /* The end of info */
730
731 if (s->offset)
732 /* Freepointer is placed after the object. */
733 off += sizeof(void *);
734
735 if (s->flags & SLAB_STORE_USER)
736 /* We also have user information there */
737 off += 2 * sizeof(struct track);
738
739 if (s->size == off)
740 return 1;
741
742 return check_bytes_and_report(s, page, p, "Object padding",
743 p + off, POISON_INUSE, s->size - off);
744 }
745
746 /* Check the pad bytes at the end of a slab page */
747 static int slab_pad_check(struct kmem_cache *s, struct page *page)
748 {
749 u8 *start;
750 u8 *fault;
751 u8 *end;
752 int length;
753 int remainder;
754
755 if (!(s->flags & SLAB_POISON))
756 return 1;
757
758 start = page_address(page);
759 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 end = start + length;
761 remainder = length % s->size;
762 if (!remainder)
763 return 1;
764
765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 if (!fault)
767 return 1;
768 while (end > fault && end[-1] == POISON_INUSE)
769 end--;
770
771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772 print_section("Padding ", end - remainder, remainder);
773
774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775 return 0;
776 }
777
778 static int check_object(struct kmem_cache *s, struct page *page,
779 void *object, u8 val)
780 {
781 u8 *p = object;
782 u8 *endobject = object + s->objsize;
783
784 if (s->flags & SLAB_RED_ZONE) {
785 if (!check_bytes_and_report(s, page, object, "Redzone",
786 endobject, val, s->inuse - s->objsize))
787 return 0;
788 } else {
789 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
790 check_bytes_and_report(s, page, p, "Alignment padding",
791 endobject, POISON_INUSE, s->inuse - s->objsize);
792 }
793 }
794
795 if (s->flags & SLAB_POISON) {
796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797 (!check_bytes_and_report(s, page, p, "Poison", p,
798 POISON_FREE, s->objsize - 1) ||
799 !check_bytes_and_report(s, page, p, "Poison",
800 p + s->objsize - 1, POISON_END, 1)))
801 return 0;
802 /*
803 * check_pad_bytes cleans up on its own.
804 */
805 check_pad_bytes(s, page, p);
806 }
807
808 if (!s->offset && val == SLUB_RED_ACTIVE)
809 /*
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
812 */
813 return 1;
814
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 object_err(s, page, p, "Freepointer corrupt");
818 /*
819 * No choice but to zap it and thus lose the remainder
820 * of the free objects in this slab. May cause
821 * another error because the object count is now wrong.
822 */
823 set_freepointer(s, p, NULL);
824 return 0;
825 }
826 return 1;
827 }
828
829 static int check_slab(struct kmem_cache *s, struct page *page)
830 {
831 int maxobj;
832
833 VM_BUG_ON(!irqs_disabled());
834
835 if (!PageSlab(page)) {
836 slab_err(s, page, "Not a valid slab page");
837 return 0;
838 }
839
840 maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 if (page->objects > maxobj) {
842 slab_err(s, page, "objects %u > max %u",
843 s->name, page->objects, maxobj);
844 return 0;
845 }
846 if (page->inuse > page->objects) {
847 slab_err(s, page, "inuse %u > max %u",
848 s->name, page->inuse, page->objects);
849 return 0;
850 }
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s, page);
853 return 1;
854 }
855
856 /*
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
859 */
860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861 {
862 int nr = 0;
863 void *fp;
864 void *object = NULL;
865 unsigned long max_objects;
866
867 fp = page->freelist;
868 while (fp && nr <= page->objects) {
869 if (fp == search)
870 return 1;
871 if (!check_valid_pointer(s, page, fp)) {
872 if (object) {
873 object_err(s, page, object,
874 "Freechain corrupt");
875 set_freepointer(s, object, NULL);
876 break;
877 } else {
878 slab_err(s, page, "Freepointer corrupt");
879 page->freelist = NULL;
880 page->inuse = page->objects;
881 slab_fix(s, "Freelist cleared");
882 return 0;
883 }
884 break;
885 }
886 object = fp;
887 fp = get_freepointer(s, object);
888 nr++;
889 }
890
891 max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 if (max_objects > MAX_OBJS_PER_PAGE)
893 max_objects = MAX_OBJS_PER_PAGE;
894
895 if (page->objects != max_objects) {
896 slab_err(s, page, "Wrong number of objects. Found %d but "
897 "should be %d", page->objects, max_objects);
898 page->objects = max_objects;
899 slab_fix(s, "Number of objects adjusted.");
900 }
901 if (page->inuse != page->objects - nr) {
902 slab_err(s, page, "Wrong object count. Counter is %d but "
903 "counted were %d", page->inuse, page->objects - nr);
904 page->inuse = page->objects - nr;
905 slab_fix(s, "Object count adjusted.");
906 }
907 return search == NULL;
908 }
909
910 static void trace(struct kmem_cache *s, struct page *page, void *object,
911 int alloc)
912 {
913 if (s->flags & SLAB_TRACE) {
914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 s->name,
916 alloc ? "alloc" : "free",
917 object, page->inuse,
918 page->freelist);
919
920 if (!alloc)
921 print_section("Object ", (void *)object, s->objsize);
922
923 dump_stack();
924 }
925 }
926
927 /*
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
930 */
931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932 {
933 flags &= gfp_allowed_mask;
934 lockdep_trace_alloc(flags);
935 might_sleep_if(flags & __GFP_WAIT);
936
937 return should_failslab(s->objsize, flags, s->flags);
938 }
939
940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941 {
942 flags &= gfp_allowed_mask;
943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
945 }
946
947 static inline void slab_free_hook(struct kmem_cache *s, void *x)
948 {
949 kmemleak_free_recursive(x, s->flags);
950
951 /*
952 * Trouble is that we may no longer disable interupts in the fast path
953 * So in order to make the debug calls that expect irqs to be
954 * disabled we need to disable interrupts temporarily.
955 */
956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 {
958 unsigned long flags;
959
960 local_irq_save(flags);
961 kmemcheck_slab_free(s, x, s->objsize);
962 debug_check_no_locks_freed(x, s->objsize);
963 local_irq_restore(flags);
964 }
965 #endif
966 if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 debug_check_no_obj_freed(x, s->objsize);
968 }
969
970 /*
971 * Tracking of fully allocated slabs for debugging purposes.
972 *
973 * list_lock must be held.
974 */
975 static void add_full(struct kmem_cache *s,
976 struct kmem_cache_node *n, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 list_add(&page->lru, &n->full);
982 }
983
984 /*
985 * list_lock must be held.
986 */
987 static void remove_full(struct kmem_cache *s, struct page *page)
988 {
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
991
992 list_del(&page->lru);
993 }
994
995 /* Tracking of the number of slabs for debugging purposes */
996 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 return atomic_long_read(&n->nr_slabs);
1001 }
1002
1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004 {
1005 return atomic_long_read(&n->nr_slabs);
1006 }
1007
1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 {
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 /*
1013 * May be called early in order to allocate a slab for the
1014 * kmem_cache_node structure. Solve the chicken-egg
1015 * dilemma by deferring the increment of the count during
1016 * bootstrap (see early_kmem_cache_node_alloc).
1017 */
1018 if (n) {
1019 atomic_long_inc(&n->nr_slabs);
1020 atomic_long_add(objects, &n->total_objects);
1021 }
1022 }
1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 atomic_long_dec(&n->nr_slabs);
1028 atomic_long_sub(objects, &n->total_objects);
1029 }
1030
1031 /* Object debug checks for alloc/free paths */
1032 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 void *object)
1034 {
1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 return;
1037
1038 init_object(s, object, SLUB_RED_INACTIVE);
1039 init_tracking(s, object);
1040 }
1041
1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043 void *object, unsigned long addr)
1044 {
1045 if (!check_slab(s, page))
1046 goto bad;
1047
1048 if (!check_valid_pointer(s, page, object)) {
1049 object_err(s, page, object, "Freelist Pointer check fails");
1050 goto bad;
1051 }
1052
1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1054 goto bad;
1055
1056 /* Success perform special debug activities for allocs */
1057 if (s->flags & SLAB_STORE_USER)
1058 set_track(s, object, TRACK_ALLOC, addr);
1059 trace(s, page, object, 1);
1060 init_object(s, object, SLUB_RED_ACTIVE);
1061 return 1;
1062
1063 bad:
1064 if (PageSlab(page)) {
1065 /*
1066 * If this is a slab page then lets do the best we can
1067 * to avoid issues in the future. Marking all objects
1068 * as used avoids touching the remaining objects.
1069 */
1070 slab_fix(s, "Marking all objects used");
1071 page->inuse = page->objects;
1072 page->freelist = NULL;
1073 }
1074 return 0;
1075 }
1076
1077 static noinline int free_debug_processing(struct kmem_cache *s,
1078 struct page *page, void *object, unsigned long addr)
1079 {
1080 unsigned long flags;
1081 int rc = 0;
1082
1083 local_irq_save(flags);
1084 slab_lock(page);
1085
1086 if (!check_slab(s, page))
1087 goto fail;
1088
1089 if (!check_valid_pointer(s, page, object)) {
1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
1095 object_err(s, page, object, "Object already free");
1096 goto fail;
1097 }
1098
1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 goto out;
1101
1102 if (unlikely(s != page->slab)) {
1103 if (!PageSlab(page)) {
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
1106 } else if (!page->slab) {
1107 printk(KERN_ERR
1108 "SLUB <none>: no slab for object 0x%p.\n",
1109 object);
1110 dump_stack();
1111 } else
1112 object_err(s, page, object,
1113 "page slab pointer corrupt.");
1114 goto fail;
1115 }
1116
1117 if (s->flags & SLAB_STORE_USER)
1118 set_track(s, object, TRACK_FREE, addr);
1119 trace(s, page, object, 0);
1120 init_object(s, object, SLUB_RED_INACTIVE);
1121 rc = 1;
1122 out:
1123 slab_unlock(page);
1124 local_irq_restore(flags);
1125 return rc;
1126
1127 fail:
1128 slab_fix(s, "Object at 0x%p not freed", object);
1129 goto out;
1130 }
1131
1132 static int __init setup_slub_debug(char *str)
1133 {
1134 slub_debug = DEBUG_DEFAULT_FLAGS;
1135 if (*str++ != '=' || !*str)
1136 /*
1137 * No options specified. Switch on full debugging.
1138 */
1139 goto out;
1140
1141 if (*str == ',')
1142 /*
1143 * No options but restriction on slabs. This means full
1144 * debugging for slabs matching a pattern.
1145 */
1146 goto check_slabs;
1147
1148 if (tolower(*str) == 'o') {
1149 /*
1150 * Avoid enabling debugging on caches if its minimum order
1151 * would increase as a result.
1152 */
1153 disable_higher_order_debug = 1;
1154 goto out;
1155 }
1156
1157 slub_debug = 0;
1158 if (*str == '-')
1159 /*
1160 * Switch off all debugging measures.
1161 */
1162 goto out;
1163
1164 /*
1165 * Determine which debug features should be switched on
1166 */
1167 for (; *str && *str != ','; str++) {
1168 switch (tolower(*str)) {
1169 case 'f':
1170 slub_debug |= SLAB_DEBUG_FREE;
1171 break;
1172 case 'z':
1173 slub_debug |= SLAB_RED_ZONE;
1174 break;
1175 case 'p':
1176 slub_debug |= SLAB_POISON;
1177 break;
1178 case 'u':
1179 slub_debug |= SLAB_STORE_USER;
1180 break;
1181 case 't':
1182 slub_debug |= SLAB_TRACE;
1183 break;
1184 case 'a':
1185 slub_debug |= SLAB_FAILSLAB;
1186 break;
1187 default:
1188 printk(KERN_ERR "slub_debug option '%c' "
1189 "unknown. skipped\n", *str);
1190 }
1191 }
1192
1193 check_slabs:
1194 if (*str == ',')
1195 slub_debug_slabs = str + 1;
1196 out:
1197 return 1;
1198 }
1199
1200 __setup("slub_debug", setup_slub_debug);
1201
1202 static unsigned long kmem_cache_flags(unsigned long objsize,
1203 unsigned long flags, const char *name,
1204 void (*ctor)(void *))
1205 {
1206 /*
1207 * Enable debugging if selected on the kernel commandline.
1208 */
1209 if (slub_debug && (!slub_debug_slabs ||
1210 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1211 flags |= slub_debug;
1212
1213 return flags;
1214 }
1215 #else
1216 static inline void setup_object_debug(struct kmem_cache *s,
1217 struct page *page, void *object) {}
1218
1219 static inline int alloc_debug_processing(struct kmem_cache *s,
1220 struct page *page, void *object, unsigned long addr) { return 0; }
1221
1222 static inline int free_debug_processing(struct kmem_cache *s,
1223 struct page *page, void *object, unsigned long addr) { return 0; }
1224
1225 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 { return 1; }
1227 static inline int check_object(struct kmem_cache *s, struct page *page,
1228 void *object, u8 val) { return 1; }
1229 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 struct page *page) {}
1231 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1232 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1233 unsigned long flags, const char *name,
1234 void (*ctor)(void *))
1235 {
1236 return flags;
1237 }
1238 #define slub_debug 0
1239
1240 #define disable_higher_order_debug 0
1241
1242 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 { return 0; }
1244 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 { return 0; }
1246 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1248 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250
1251 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 { return 0; }
1253
1254 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 void *object) {}
1256
1257 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258
1259 #endif /* CONFIG_SLUB_DEBUG */
1260
1261 /*
1262 * Slab allocation and freeing
1263 */
1264 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 struct kmem_cache_order_objects oo)
1266 {
1267 int order = oo_order(oo);
1268
1269 flags |= __GFP_NOTRACK;
1270
1271 if (node == NUMA_NO_NODE)
1272 return alloc_pages(flags, order);
1273 else
1274 return alloc_pages_exact_node(node, flags, order);
1275 }
1276
1277 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278 {
1279 struct page *page;
1280 struct kmem_cache_order_objects oo = s->oo;
1281 gfp_t alloc_gfp;
1282
1283 flags &= gfp_allowed_mask;
1284
1285 if (flags & __GFP_WAIT)
1286 local_irq_enable();
1287
1288 flags |= s->allocflags;
1289
1290 /*
1291 * Let the initial higher-order allocation fail under memory pressure
1292 * so we fall-back to the minimum order allocation.
1293 */
1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295
1296 page = alloc_slab_page(alloc_gfp, node, oo);
1297 if (unlikely(!page)) {
1298 oo = s->min;
1299 /*
1300 * Allocation may have failed due to fragmentation.
1301 * Try a lower order alloc if possible
1302 */
1303 page = alloc_slab_page(flags, node, oo);
1304
1305 if (page)
1306 stat(s, ORDER_FALLBACK);
1307 }
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_disable();
1311
1312 if (!page)
1313 return NULL;
1314
1315 if (kmemcheck_enabled
1316 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1317 int pages = 1 << oo_order(oo);
1318
1319 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1320
1321 /*
1322 * Objects from caches that have a constructor don't get
1323 * cleared when they're allocated, so we need to do it here.
1324 */
1325 if (s->ctor)
1326 kmemcheck_mark_uninitialized_pages(page, pages);
1327 else
1328 kmemcheck_mark_unallocated_pages(page, pages);
1329 }
1330
1331 page->objects = oo_objects(oo);
1332 mod_zone_page_state(page_zone(page),
1333 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1334 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1335 1 << oo_order(oo));
1336
1337 return page;
1338 }
1339
1340 static void setup_object(struct kmem_cache *s, struct page *page,
1341 void *object)
1342 {
1343 setup_object_debug(s, page, object);
1344 if (unlikely(s->ctor))
1345 s->ctor(object);
1346 }
1347
1348 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1349 {
1350 struct page *page;
1351 void *start;
1352 void *last;
1353 void *p;
1354
1355 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1356
1357 page = allocate_slab(s,
1358 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1359 if (!page)
1360 goto out;
1361
1362 inc_slabs_node(s, page_to_nid(page), page->objects);
1363 page->slab = s;
1364 page->flags |= 1 << PG_slab;
1365
1366 start = page_address(page);
1367
1368 if (unlikely(s->flags & SLAB_POISON))
1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1370
1371 last = start;
1372 for_each_object(p, s, start, page->objects) {
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1376 }
1377 setup_object(s, page, last);
1378 set_freepointer(s, last, NULL);
1379
1380 page->freelist = start;
1381 page->inuse = page->objects;
1382 page->frozen = 1;
1383 out:
1384 return page;
1385 }
1386
1387 static void __free_slab(struct kmem_cache *s, struct page *page)
1388 {
1389 int order = compound_order(page);
1390 int pages = 1 << order;
1391
1392 if (kmem_cache_debug(s)) {
1393 void *p;
1394
1395 slab_pad_check(s, page);
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
1398 check_object(s, page, p, SLUB_RED_INACTIVE);
1399 }
1400
1401 kmemcheck_free_shadow(page, compound_order(page));
1402
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406 -pages);
1407
1408 __ClearPageSlab(page);
1409 reset_page_mapcount(page);
1410 if (current->reclaim_state)
1411 current->reclaim_state->reclaimed_slab += pages;
1412 __free_pages(page, order);
1413 }
1414
1415 #define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1417
1418 static void rcu_free_slab(struct rcu_head *h)
1419 {
1420 struct page *page;
1421
1422 if (need_reserve_slab_rcu)
1423 page = virt_to_head_page(h);
1424 else
1425 page = container_of((struct list_head *)h, struct page, lru);
1426
1427 __free_slab(page->slab, page);
1428 }
1429
1430 static void free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1433 struct rcu_head *head;
1434
1435 if (need_reserve_slab_rcu) {
1436 int order = compound_order(page);
1437 int offset = (PAGE_SIZE << order) - s->reserved;
1438
1439 VM_BUG_ON(s->reserved != sizeof(*head));
1440 head = page_address(page) + offset;
1441 } else {
1442 /*
1443 * RCU free overloads the RCU head over the LRU
1444 */
1445 head = (void *)&page->lru;
1446 }
1447
1448 call_rcu(head, rcu_free_slab);
1449 } else
1450 __free_slab(s, page);
1451 }
1452
1453 static void discard_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 dec_slabs_node(s, page_to_nid(page), page->objects);
1456 free_slab(s, page);
1457 }
1458
1459 /*
1460 * Management of partially allocated slabs.
1461 *
1462 * list_lock must be held.
1463 */
1464 static inline void add_partial(struct kmem_cache_node *n,
1465 struct page *page, int tail)
1466 {
1467 n->nr_partial++;
1468 if (tail == DEACTIVATE_TO_TAIL)
1469 list_add_tail(&page->lru, &n->partial);
1470 else
1471 list_add(&page->lru, &n->partial);
1472 }
1473
1474 /*
1475 * list_lock must be held.
1476 */
1477 static inline void remove_partial(struct kmem_cache_node *n,
1478 struct page *page)
1479 {
1480 list_del(&page->lru);
1481 n->nr_partial--;
1482 }
1483
1484 /*
1485 * Lock slab, remove from the partial list and put the object into the
1486 * per cpu freelist.
1487 *
1488 * Returns a list of objects or NULL if it fails.
1489 *
1490 * Must hold list_lock.
1491 */
1492 static inline void *acquire_slab(struct kmem_cache *s,
1493 struct kmem_cache_node *n, struct page *page,
1494 int mode)
1495 {
1496 void *freelist;
1497 unsigned long counters;
1498 struct page new;
1499
1500 /*
1501 * Zap the freelist and set the frozen bit.
1502 * The old freelist is the list of objects for the
1503 * per cpu allocation list.
1504 */
1505 do {
1506 freelist = page->freelist;
1507 counters = page->counters;
1508 new.counters = counters;
1509 if (mode)
1510 new.inuse = page->objects;
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1515 } while (!__cmpxchg_double_slab(s, page,
1516 freelist, counters,
1517 NULL, new.counters,
1518 "lock and freeze"));
1519
1520 remove_partial(n, page);
1521 return freelist;
1522 }
1523
1524 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1525
1526 /*
1527 * Try to allocate a partial slab from a specific node.
1528 */
1529 static void *get_partial_node(struct kmem_cache *s,
1530 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1531 {
1532 struct page *page, *page2;
1533 void *object = NULL;
1534
1535 /*
1536 * Racy check. If we mistakenly see no partial slabs then we
1537 * just allocate an empty slab. If we mistakenly try to get a
1538 * partial slab and there is none available then get_partials()
1539 * will return NULL.
1540 */
1541 if (!n || !n->nr_partial)
1542 return NULL;
1543
1544 spin_lock(&n->list_lock);
1545 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1546 void *t = acquire_slab(s, n, page, object == NULL);
1547 int available;
1548
1549 if (!t)
1550 break;
1551
1552 if (!object) {
1553 c->page = page;
1554 c->node = page_to_nid(page);
1555 stat(s, ALLOC_FROM_PARTIAL);
1556 object = t;
1557 available = page->objects - page->inuse;
1558 } else {
1559 page->freelist = t;
1560 available = put_cpu_partial(s, page, 0);
1561 }
1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 break;
1564
1565 }
1566 spin_unlock(&n->list_lock);
1567 return object;
1568 }
1569
1570 /*
1571 * Get a page from somewhere. Search in increasing NUMA distances.
1572 */
1573 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1574 struct kmem_cache_cpu *c)
1575 {
1576 #ifdef CONFIG_NUMA
1577 struct zonelist *zonelist;
1578 struct zoneref *z;
1579 struct zone *zone;
1580 enum zone_type high_zoneidx = gfp_zone(flags);
1581 void *object;
1582
1583 /*
1584 * The defrag ratio allows a configuration of the tradeoffs between
1585 * inter node defragmentation and node local allocations. A lower
1586 * defrag_ratio increases the tendency to do local allocations
1587 * instead of attempting to obtain partial slabs from other nodes.
1588 *
1589 * If the defrag_ratio is set to 0 then kmalloc() always
1590 * returns node local objects. If the ratio is higher then kmalloc()
1591 * may return off node objects because partial slabs are obtained
1592 * from other nodes and filled up.
1593 *
1594 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1595 * defrag_ratio = 1000) then every (well almost) allocation will
1596 * first attempt to defrag slab caches on other nodes. This means
1597 * scanning over all nodes to look for partial slabs which may be
1598 * expensive if we do it every time we are trying to find a slab
1599 * with available objects.
1600 */
1601 if (!s->remote_node_defrag_ratio ||
1602 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1603 return NULL;
1604
1605 get_mems_allowed();
1606 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1608 struct kmem_cache_node *n;
1609
1610 n = get_node(s, zone_to_nid(zone));
1611
1612 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1613 n->nr_partial > s->min_partial) {
1614 object = get_partial_node(s, n, c);
1615 if (object) {
1616 put_mems_allowed();
1617 return object;
1618 }
1619 }
1620 }
1621 put_mems_allowed();
1622 #endif
1623 return NULL;
1624 }
1625
1626 /*
1627 * Get a partial page, lock it and return it.
1628 */
1629 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1630 struct kmem_cache_cpu *c)
1631 {
1632 void *object;
1633 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1634
1635 object = get_partial_node(s, get_node(s, searchnode), c);
1636 if (object || node != NUMA_NO_NODE)
1637 return object;
1638
1639 return get_any_partial(s, flags, c);
1640 }
1641
1642 #ifdef CONFIG_PREEMPT
1643 /*
1644 * Calculate the next globally unique transaction for disambiguiation
1645 * during cmpxchg. The transactions start with the cpu number and are then
1646 * incremented by CONFIG_NR_CPUS.
1647 */
1648 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1649 #else
1650 /*
1651 * No preemption supported therefore also no need to check for
1652 * different cpus.
1653 */
1654 #define TID_STEP 1
1655 #endif
1656
1657 static inline unsigned long next_tid(unsigned long tid)
1658 {
1659 return tid + TID_STEP;
1660 }
1661
1662 static inline unsigned int tid_to_cpu(unsigned long tid)
1663 {
1664 return tid % TID_STEP;
1665 }
1666
1667 static inline unsigned long tid_to_event(unsigned long tid)
1668 {
1669 return tid / TID_STEP;
1670 }
1671
1672 static inline unsigned int init_tid(int cpu)
1673 {
1674 return cpu;
1675 }
1676
1677 static inline void note_cmpxchg_failure(const char *n,
1678 const struct kmem_cache *s, unsigned long tid)
1679 {
1680 #ifdef SLUB_DEBUG_CMPXCHG
1681 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1682
1683 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1684
1685 #ifdef CONFIG_PREEMPT
1686 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1687 printk("due to cpu change %d -> %d\n",
1688 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1689 else
1690 #endif
1691 if (tid_to_event(tid) != tid_to_event(actual_tid))
1692 printk("due to cpu running other code. Event %ld->%ld\n",
1693 tid_to_event(tid), tid_to_event(actual_tid));
1694 else
1695 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1696 actual_tid, tid, next_tid(tid));
1697 #endif
1698 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1699 }
1700
1701 void init_kmem_cache_cpus(struct kmem_cache *s)
1702 {
1703 int cpu;
1704
1705 for_each_possible_cpu(cpu)
1706 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1707 }
1708
1709 /*
1710 * Remove the cpu slab
1711 */
1712 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1713 {
1714 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1715 struct page *page = c->page;
1716 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1717 int lock = 0;
1718 enum slab_modes l = M_NONE, m = M_NONE;
1719 void *freelist;
1720 void *nextfree;
1721 int tail = DEACTIVATE_TO_HEAD;
1722 struct page new;
1723 struct page old;
1724
1725 if (page->freelist) {
1726 stat(s, DEACTIVATE_REMOTE_FREES);
1727 tail = DEACTIVATE_TO_TAIL;
1728 }
1729
1730 c->tid = next_tid(c->tid);
1731 c->page = NULL;
1732 freelist = c->freelist;
1733 c->freelist = NULL;
1734
1735 /*
1736 * Stage one: Free all available per cpu objects back
1737 * to the page freelist while it is still frozen. Leave the
1738 * last one.
1739 *
1740 * There is no need to take the list->lock because the page
1741 * is still frozen.
1742 */
1743 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1744 void *prior;
1745 unsigned long counters;
1746
1747 do {
1748 prior = page->freelist;
1749 counters = page->counters;
1750 set_freepointer(s, freelist, prior);
1751 new.counters = counters;
1752 new.inuse--;
1753 VM_BUG_ON(!new.frozen);
1754
1755 } while (!__cmpxchg_double_slab(s, page,
1756 prior, counters,
1757 freelist, new.counters,
1758 "drain percpu freelist"));
1759
1760 freelist = nextfree;
1761 }
1762
1763 /*
1764 * Stage two: Ensure that the page is unfrozen while the
1765 * list presence reflects the actual number of objects
1766 * during unfreeze.
1767 *
1768 * We setup the list membership and then perform a cmpxchg
1769 * with the count. If there is a mismatch then the page
1770 * is not unfrozen but the page is on the wrong list.
1771 *
1772 * Then we restart the process which may have to remove
1773 * the page from the list that we just put it on again
1774 * because the number of objects in the slab may have
1775 * changed.
1776 */
1777 redo:
1778
1779 old.freelist = page->freelist;
1780 old.counters = page->counters;
1781 VM_BUG_ON(!old.frozen);
1782
1783 /* Determine target state of the slab */
1784 new.counters = old.counters;
1785 if (freelist) {
1786 new.inuse--;
1787 set_freepointer(s, freelist, old.freelist);
1788 new.freelist = freelist;
1789 } else
1790 new.freelist = old.freelist;
1791
1792 new.frozen = 0;
1793
1794 if (!new.inuse && n->nr_partial > s->min_partial)
1795 m = M_FREE;
1796 else if (new.freelist) {
1797 m = M_PARTIAL;
1798 if (!lock) {
1799 lock = 1;
1800 /*
1801 * Taking the spinlock removes the possiblity
1802 * that acquire_slab() will see a slab page that
1803 * is frozen
1804 */
1805 spin_lock(&n->list_lock);
1806 }
1807 } else {
1808 m = M_FULL;
1809 if (kmem_cache_debug(s) && !lock) {
1810 lock = 1;
1811 /*
1812 * This also ensures that the scanning of full
1813 * slabs from diagnostic functions will not see
1814 * any frozen slabs.
1815 */
1816 spin_lock(&n->list_lock);
1817 }
1818 }
1819
1820 if (l != m) {
1821
1822 if (l == M_PARTIAL)
1823
1824 remove_partial(n, page);
1825
1826 else if (l == M_FULL)
1827
1828 remove_full(s, page);
1829
1830 if (m == M_PARTIAL) {
1831
1832 add_partial(n, page, tail);
1833 stat(s, tail);
1834
1835 } else if (m == M_FULL) {
1836
1837 stat(s, DEACTIVATE_FULL);
1838 add_full(s, n, page);
1839
1840 }
1841 }
1842
1843 l = m;
1844 if (!__cmpxchg_double_slab(s, page,
1845 old.freelist, old.counters,
1846 new.freelist, new.counters,
1847 "unfreezing slab"))
1848 goto redo;
1849
1850 if (lock)
1851 spin_unlock(&n->list_lock);
1852
1853 if (m == M_FREE) {
1854 stat(s, DEACTIVATE_EMPTY);
1855 discard_slab(s, page);
1856 stat(s, FREE_SLAB);
1857 }
1858 }
1859
1860 /* Unfreeze all the cpu partial slabs */
1861 static void unfreeze_partials(struct kmem_cache *s)
1862 {
1863 struct kmem_cache_node *n = NULL;
1864 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1865 struct page *page;
1866
1867 while ((page = c->partial)) {
1868 enum slab_modes { M_PARTIAL, M_FREE };
1869 enum slab_modes l, m;
1870 struct page new;
1871 struct page old;
1872
1873 c->partial = page->next;
1874 l = M_FREE;
1875
1876 do {
1877
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
1880 VM_BUG_ON(!old.frozen);
1881
1882 new.counters = old.counters;
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
1887 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1888 m = M_FREE;
1889 else {
1890 struct kmem_cache_node *n2 = get_node(s,
1891 page_to_nid(page));
1892
1893 m = M_PARTIAL;
1894 if (n != n2) {
1895 if (n)
1896 spin_unlock(&n->list_lock);
1897
1898 n = n2;
1899 spin_lock(&n->list_lock);
1900 }
1901 }
1902
1903 if (l != m) {
1904 if (l == M_PARTIAL)
1905 remove_partial(n, page);
1906 else
1907 add_partial(n, page, 1);
1908
1909 l = m;
1910 }
1911
1912 } while (!cmpxchg_double_slab(s, page,
1913 old.freelist, old.counters,
1914 new.freelist, new.counters,
1915 "unfreezing slab"));
1916
1917 if (m == M_FREE) {
1918 stat(s, DEACTIVATE_EMPTY);
1919 discard_slab(s, page);
1920 stat(s, FREE_SLAB);
1921 }
1922 }
1923
1924 if (n)
1925 spin_unlock(&n->list_lock);
1926 }
1927
1928 /*
1929 * Put a page that was just frozen (in __slab_free) into a partial page
1930 * slot if available. This is done without interrupts disabled and without
1931 * preemption disabled. The cmpxchg is racy and may put the partial page
1932 * onto a random cpus partial slot.
1933 *
1934 * If we did not find a slot then simply move all the partials to the
1935 * per node partial list.
1936 */
1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1938 {
1939 struct page *oldpage;
1940 int pages;
1941 int pobjects;
1942
1943 do {
1944 pages = 0;
1945 pobjects = 0;
1946 oldpage = this_cpu_read(s->cpu_slab->partial);
1947
1948 if (oldpage) {
1949 pobjects = oldpage->pobjects;
1950 pages = oldpage->pages;
1951 if (drain && pobjects > s->cpu_partial) {
1952 unsigned long flags;
1953 /*
1954 * partial array is full. Move the existing
1955 * set to the per node partial list.
1956 */
1957 local_irq_save(flags);
1958 unfreeze_partials(s);
1959 local_irq_restore(flags);
1960 pobjects = 0;
1961 pages = 0;
1962 }
1963 }
1964
1965 pages++;
1966 pobjects += page->objects - page->inuse;
1967
1968 page->pages = pages;
1969 page->pobjects = pobjects;
1970 page->next = oldpage;
1971
1972 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1973 stat(s, CPU_PARTIAL_FREE);
1974 return pobjects;
1975 }
1976
1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1978 {
1979 stat(s, CPUSLAB_FLUSH);
1980 deactivate_slab(s, c);
1981 }
1982
1983 /*
1984 * Flush cpu slab.
1985 *
1986 * Called from IPI handler with interrupts disabled.
1987 */
1988 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1989 {
1990 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1991
1992 if (likely(c)) {
1993 if (c->page)
1994 flush_slab(s, c);
1995
1996 unfreeze_partials(s);
1997 }
1998 }
1999
2000 static void flush_cpu_slab(void *d)
2001 {
2002 struct kmem_cache *s = d;
2003
2004 __flush_cpu_slab(s, smp_processor_id());
2005 }
2006
2007 static void flush_all(struct kmem_cache *s)
2008 {
2009 on_each_cpu(flush_cpu_slab, s, 1);
2010 }
2011
2012 /*
2013 * Check if the objects in a per cpu structure fit numa
2014 * locality expectations.
2015 */
2016 static inline int node_match(struct kmem_cache_cpu *c, int node)
2017 {
2018 #ifdef CONFIG_NUMA
2019 if (node != NUMA_NO_NODE && c->node != node)
2020 return 0;
2021 #endif
2022 return 1;
2023 }
2024
2025 static int count_free(struct page *page)
2026 {
2027 return page->objects - page->inuse;
2028 }
2029
2030 static unsigned long count_partial(struct kmem_cache_node *n,
2031 int (*get_count)(struct page *))
2032 {
2033 unsigned long flags;
2034 unsigned long x = 0;
2035 struct page *page;
2036
2037 spin_lock_irqsave(&n->list_lock, flags);
2038 list_for_each_entry(page, &n->partial, lru)
2039 x += get_count(page);
2040 spin_unlock_irqrestore(&n->list_lock, flags);
2041 return x;
2042 }
2043
2044 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2045 {
2046 #ifdef CONFIG_SLUB_DEBUG
2047 return atomic_long_read(&n->total_objects);
2048 #else
2049 return 0;
2050 #endif
2051 }
2052
2053 static noinline void
2054 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2055 {
2056 int node;
2057
2058 printk(KERN_WARNING
2059 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2060 nid, gfpflags);
2061 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2062 "default order: %d, min order: %d\n", s->name, s->objsize,
2063 s->size, oo_order(s->oo), oo_order(s->min));
2064
2065 if (oo_order(s->min) > get_order(s->objsize))
2066 printk(KERN_WARNING " %s debugging increased min order, use "
2067 "slub_debug=O to disable.\n", s->name);
2068
2069 for_each_online_node(node) {
2070 struct kmem_cache_node *n = get_node(s, node);
2071 unsigned long nr_slabs;
2072 unsigned long nr_objs;
2073 unsigned long nr_free;
2074
2075 if (!n)
2076 continue;
2077
2078 nr_free = count_partial(n, count_free);
2079 nr_slabs = node_nr_slabs(n);
2080 nr_objs = node_nr_objs(n);
2081
2082 printk(KERN_WARNING
2083 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2084 node, nr_slabs, nr_objs, nr_free);
2085 }
2086 }
2087
2088 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2089 int node, struct kmem_cache_cpu **pc)
2090 {
2091 void *object;
2092 struct kmem_cache_cpu *c;
2093 struct page *page = new_slab(s, flags, node);
2094
2095 if (page) {
2096 c = __this_cpu_ptr(s->cpu_slab);
2097 if (c->page)
2098 flush_slab(s, c);
2099
2100 /*
2101 * No other reference to the page yet so we can
2102 * muck around with it freely without cmpxchg
2103 */
2104 object = page->freelist;
2105 page->freelist = NULL;
2106
2107 stat(s, ALLOC_SLAB);
2108 c->node = page_to_nid(page);
2109 c->page = page;
2110 *pc = c;
2111 } else
2112 object = NULL;
2113
2114 return object;
2115 }
2116
2117 /*
2118 * Slow path. The lockless freelist is empty or we need to perform
2119 * debugging duties.
2120 *
2121 * Processing is still very fast if new objects have been freed to the
2122 * regular freelist. In that case we simply take over the regular freelist
2123 * as the lockless freelist and zap the regular freelist.
2124 *
2125 * If that is not working then we fall back to the partial lists. We take the
2126 * first element of the freelist as the object to allocate now and move the
2127 * rest of the freelist to the lockless freelist.
2128 *
2129 * And if we were unable to get a new slab from the partial slab lists then
2130 * we need to allocate a new slab. This is the slowest path since it involves
2131 * a call to the page allocator and the setup of a new slab.
2132 */
2133 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2134 unsigned long addr, struct kmem_cache_cpu *c)
2135 {
2136 void **object;
2137 unsigned long flags;
2138 struct page new;
2139 unsigned long counters;
2140
2141 local_irq_save(flags);
2142 #ifdef CONFIG_PREEMPT
2143 /*
2144 * We may have been preempted and rescheduled on a different
2145 * cpu before disabling interrupts. Need to reload cpu area
2146 * pointer.
2147 */
2148 c = this_cpu_ptr(s->cpu_slab);
2149 #endif
2150
2151 if (!c->page)
2152 goto new_slab;
2153 redo:
2154 if (unlikely(!node_match(c, node))) {
2155 stat(s, ALLOC_NODE_MISMATCH);
2156 deactivate_slab(s, c);
2157 goto new_slab;
2158 }
2159
2160 stat(s, ALLOC_SLOWPATH);
2161
2162 do {
2163 object = c->page->freelist;
2164 counters = c->page->counters;
2165 new.counters = counters;
2166 VM_BUG_ON(!new.frozen);
2167
2168 /*
2169 * If there is no object left then we use this loop to
2170 * deactivate the slab which is simple since no objects
2171 * are left in the slab and therefore we do not need to
2172 * put the page back onto the partial list.
2173 *
2174 * If there are objects left then we retrieve them
2175 * and use them to refill the per cpu queue.
2176 */
2177
2178 new.inuse = c->page->objects;
2179 new.frozen = object != NULL;
2180
2181 } while (!__cmpxchg_double_slab(s, c->page,
2182 object, counters,
2183 NULL, new.counters,
2184 "__slab_alloc"));
2185
2186 if (!object) {
2187 c->page = NULL;
2188 stat(s, DEACTIVATE_BYPASS);
2189 goto new_slab;
2190 }
2191
2192 stat(s, ALLOC_REFILL);
2193
2194 load_freelist:
2195 c->freelist = get_freepointer(s, object);
2196 c->tid = next_tid(c->tid);
2197 local_irq_restore(flags);
2198 return object;
2199
2200 new_slab:
2201
2202 if (c->partial) {
2203 c->page = c->partial;
2204 c->partial = c->page->next;
2205 c->node = page_to_nid(c->page);
2206 stat(s, CPU_PARTIAL_ALLOC);
2207 c->freelist = NULL;
2208 goto redo;
2209 }
2210
2211 /* Then do expensive stuff like retrieving pages from the partial lists */
2212 object = get_partial(s, gfpflags, node, c);
2213
2214 if (unlikely(!object)) {
2215
2216 object = new_slab_objects(s, gfpflags, node, &c);
2217
2218 if (unlikely(!object)) {
2219 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2220 slab_out_of_memory(s, gfpflags, node);
2221
2222 local_irq_restore(flags);
2223 return NULL;
2224 }
2225 }
2226
2227 if (likely(!kmem_cache_debug(s)))
2228 goto load_freelist;
2229
2230 /* Only entered in the debug case */
2231 if (!alloc_debug_processing(s, c->page, object, addr))
2232 goto new_slab; /* Slab failed checks. Next slab needed */
2233
2234 c->freelist = get_freepointer(s, object);
2235 deactivate_slab(s, c);
2236 c->node = NUMA_NO_NODE;
2237 local_irq_restore(flags);
2238 return object;
2239 }
2240
2241 /*
2242 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2243 * have the fastpath folded into their functions. So no function call
2244 * overhead for requests that can be satisfied on the fastpath.
2245 *
2246 * The fastpath works by first checking if the lockless freelist can be used.
2247 * If not then __slab_alloc is called for slow processing.
2248 *
2249 * Otherwise we can simply pick the next object from the lockless free list.
2250 */
2251 static __always_inline void *slab_alloc(struct kmem_cache *s,
2252 gfp_t gfpflags, int node, unsigned long addr)
2253 {
2254 void **object;
2255 struct kmem_cache_cpu *c;
2256 unsigned long tid;
2257
2258 if (slab_pre_alloc_hook(s, gfpflags))
2259 return NULL;
2260
2261 redo:
2262
2263 /*
2264 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2265 * enabled. We may switch back and forth between cpus while
2266 * reading from one cpu area. That does not matter as long
2267 * as we end up on the original cpu again when doing the cmpxchg.
2268 */
2269 c = __this_cpu_ptr(s->cpu_slab);
2270
2271 /*
2272 * The transaction ids are globally unique per cpu and per operation on
2273 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2274 * occurs on the right processor and that there was no operation on the
2275 * linked list in between.
2276 */
2277 tid = c->tid;
2278 barrier();
2279
2280 object = c->freelist;
2281 if (unlikely(!object || !node_match(c, node)))
2282
2283 object = __slab_alloc(s, gfpflags, node, addr, c);
2284
2285 else {
2286 /*
2287 * The cmpxchg will only match if there was no additional
2288 * operation and if we are on the right processor.
2289 *
2290 * The cmpxchg does the following atomically (without lock semantics!)
2291 * 1. Relocate first pointer to the current per cpu area.
2292 * 2. Verify that tid and freelist have not been changed
2293 * 3. If they were not changed replace tid and freelist
2294 *
2295 * Since this is without lock semantics the protection is only against
2296 * code executing on this cpu *not* from access by other cpus.
2297 */
2298 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2299 s->cpu_slab->freelist, s->cpu_slab->tid,
2300 object, tid,
2301 get_freepointer_safe(s, object), next_tid(tid)))) {
2302
2303 note_cmpxchg_failure("slab_alloc", s, tid);
2304 goto redo;
2305 }
2306 stat(s, ALLOC_FASTPATH);
2307 }
2308
2309 if (unlikely(gfpflags & __GFP_ZERO) && object)
2310 memset(object, 0, s->objsize);
2311
2312 slab_post_alloc_hook(s, gfpflags, object);
2313
2314 return object;
2315 }
2316
2317 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2318 {
2319 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2320
2321 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2322
2323 return ret;
2324 }
2325 EXPORT_SYMBOL(kmem_cache_alloc);
2326
2327 #ifdef CONFIG_TRACING
2328 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2329 {
2330 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2331 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2332 return ret;
2333 }
2334 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2335
2336 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2337 {
2338 void *ret = kmalloc_order(size, flags, order);
2339 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2340 return ret;
2341 }
2342 EXPORT_SYMBOL(kmalloc_order_trace);
2343 #endif
2344
2345 #ifdef CONFIG_NUMA
2346 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2347 {
2348 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2349
2350 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2351 s->objsize, s->size, gfpflags, node);
2352
2353 return ret;
2354 }
2355 EXPORT_SYMBOL(kmem_cache_alloc_node);
2356
2357 #ifdef CONFIG_TRACING
2358 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2359 gfp_t gfpflags,
2360 int node, size_t size)
2361 {
2362 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2363
2364 trace_kmalloc_node(_RET_IP_, ret,
2365 size, s->size, gfpflags, node);
2366 return ret;
2367 }
2368 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2369 #endif
2370 #endif
2371
2372 /*
2373 * Slow patch handling. This may still be called frequently since objects
2374 * have a longer lifetime than the cpu slabs in most processing loads.
2375 *
2376 * So we still attempt to reduce cache line usage. Just take the slab
2377 * lock and free the item. If there is no additional partial page
2378 * handling required then we can return immediately.
2379 */
2380 static void __slab_free(struct kmem_cache *s, struct page *page,
2381 void *x, unsigned long addr)
2382 {
2383 void *prior;
2384 void **object = (void *)x;
2385 int was_frozen;
2386 int inuse;
2387 struct page new;
2388 unsigned long counters;
2389 struct kmem_cache_node *n = NULL;
2390 unsigned long uninitialized_var(flags);
2391
2392 stat(s, FREE_SLOWPATH);
2393
2394 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2395 return;
2396
2397 do {
2398 prior = page->freelist;
2399 counters = page->counters;
2400 set_freepointer(s, object, prior);
2401 new.counters = counters;
2402 was_frozen = new.frozen;
2403 new.inuse--;
2404 if ((!new.inuse || !prior) && !was_frozen && !n) {
2405
2406 if (!kmem_cache_debug(s) && !prior)
2407
2408 /*
2409 * Slab was on no list before and will be partially empty
2410 * We can defer the list move and instead freeze it.
2411 */
2412 new.frozen = 1;
2413
2414 else { /* Needs to be taken off a list */
2415
2416 n = get_node(s, page_to_nid(page));
2417 /*
2418 * Speculatively acquire the list_lock.
2419 * If the cmpxchg does not succeed then we may
2420 * drop the list_lock without any processing.
2421 *
2422 * Otherwise the list_lock will synchronize with
2423 * other processors updating the list of slabs.
2424 */
2425 spin_lock_irqsave(&n->list_lock, flags);
2426
2427 }
2428 }
2429 inuse = new.inuse;
2430
2431 } while (!cmpxchg_double_slab(s, page,
2432 prior, counters,
2433 object, new.counters,
2434 "__slab_free"));
2435
2436 if (likely(!n)) {
2437
2438 /*
2439 * If we just froze the page then put it onto the
2440 * per cpu partial list.
2441 */
2442 if (new.frozen && !was_frozen)
2443 put_cpu_partial(s, page, 1);
2444
2445 /*
2446 * The list lock was not taken therefore no list
2447 * activity can be necessary.
2448 */
2449 if (was_frozen)
2450 stat(s, FREE_FROZEN);
2451 return;
2452 }
2453
2454 /*
2455 * was_frozen may have been set after we acquired the list_lock in
2456 * an earlier loop. So we need to check it here again.
2457 */
2458 if (was_frozen)
2459 stat(s, FREE_FROZEN);
2460 else {
2461 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2462 goto slab_empty;
2463
2464 /*
2465 * Objects left in the slab. If it was not on the partial list before
2466 * then add it.
2467 */
2468 if (unlikely(!prior)) {
2469 remove_full(s, page);
2470 add_partial(n, page, DEACTIVATE_TO_TAIL);
2471 stat(s, FREE_ADD_PARTIAL);
2472 }
2473 }
2474 spin_unlock_irqrestore(&n->list_lock, flags);
2475 return;
2476
2477 slab_empty:
2478 if (prior) {
2479 /*
2480 * Slab on the partial list.
2481 */
2482 remove_partial(n, page);
2483 stat(s, FREE_REMOVE_PARTIAL);
2484 } else
2485 /* Slab must be on the full list */
2486 remove_full(s, page);
2487
2488 spin_unlock_irqrestore(&n->list_lock, flags);
2489 stat(s, FREE_SLAB);
2490 discard_slab(s, page);
2491 }
2492
2493 /*
2494 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2495 * can perform fastpath freeing without additional function calls.
2496 *
2497 * The fastpath is only possible if we are freeing to the current cpu slab
2498 * of this processor. This typically the case if we have just allocated
2499 * the item before.
2500 *
2501 * If fastpath is not possible then fall back to __slab_free where we deal
2502 * with all sorts of special processing.
2503 */
2504 static __always_inline void slab_free(struct kmem_cache *s,
2505 struct page *page, void *x, unsigned long addr)
2506 {
2507 void **object = (void *)x;
2508 struct kmem_cache_cpu *c;
2509 unsigned long tid;
2510
2511 slab_free_hook(s, x);
2512
2513 redo:
2514 /*
2515 * Determine the currently cpus per cpu slab.
2516 * The cpu may change afterward. However that does not matter since
2517 * data is retrieved via this pointer. If we are on the same cpu
2518 * during the cmpxchg then the free will succedd.
2519 */
2520 c = __this_cpu_ptr(s->cpu_slab);
2521
2522 tid = c->tid;
2523 barrier();
2524
2525 if (likely(page == c->page)) {
2526 set_freepointer(s, object, c->freelist);
2527
2528 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2529 s->cpu_slab->freelist, s->cpu_slab->tid,
2530 c->freelist, tid,
2531 object, next_tid(tid)))) {
2532
2533 note_cmpxchg_failure("slab_free", s, tid);
2534 goto redo;
2535 }
2536 stat(s, FREE_FASTPATH);
2537 } else
2538 __slab_free(s, page, x, addr);
2539
2540 }
2541
2542 void kmem_cache_free(struct kmem_cache *s, void *x)
2543 {
2544 struct page *page;
2545
2546 page = virt_to_head_page(x);
2547
2548 slab_free(s, page, x, _RET_IP_);
2549
2550 trace_kmem_cache_free(_RET_IP_, x);
2551 }
2552 EXPORT_SYMBOL(kmem_cache_free);
2553
2554 /*
2555 * Object placement in a slab is made very easy because we always start at
2556 * offset 0. If we tune the size of the object to the alignment then we can
2557 * get the required alignment by putting one properly sized object after
2558 * another.
2559 *
2560 * Notice that the allocation order determines the sizes of the per cpu
2561 * caches. Each processor has always one slab available for allocations.
2562 * Increasing the allocation order reduces the number of times that slabs
2563 * must be moved on and off the partial lists and is therefore a factor in
2564 * locking overhead.
2565 */
2566
2567 /*
2568 * Mininum / Maximum order of slab pages. This influences locking overhead
2569 * and slab fragmentation. A higher order reduces the number of partial slabs
2570 * and increases the number of allocations possible without having to
2571 * take the list_lock.
2572 */
2573 static int slub_min_order;
2574 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2575 static int slub_min_objects;
2576
2577 /*
2578 * Merge control. If this is set then no merging of slab caches will occur.
2579 * (Could be removed. This was introduced to pacify the merge skeptics.)
2580 */
2581 static int slub_nomerge;
2582
2583 /*
2584 * Calculate the order of allocation given an slab object size.
2585 *
2586 * The order of allocation has significant impact on performance and other
2587 * system components. Generally order 0 allocations should be preferred since
2588 * order 0 does not cause fragmentation in the page allocator. Larger objects
2589 * be problematic to put into order 0 slabs because there may be too much
2590 * unused space left. We go to a higher order if more than 1/16th of the slab
2591 * would be wasted.
2592 *
2593 * In order to reach satisfactory performance we must ensure that a minimum
2594 * number of objects is in one slab. Otherwise we may generate too much
2595 * activity on the partial lists which requires taking the list_lock. This is
2596 * less a concern for large slabs though which are rarely used.
2597 *
2598 * slub_max_order specifies the order where we begin to stop considering the
2599 * number of objects in a slab as critical. If we reach slub_max_order then
2600 * we try to keep the page order as low as possible. So we accept more waste
2601 * of space in favor of a small page order.
2602 *
2603 * Higher order allocations also allow the placement of more objects in a
2604 * slab and thereby reduce object handling overhead. If the user has
2605 * requested a higher mininum order then we start with that one instead of
2606 * the smallest order which will fit the object.
2607 */
2608 static inline int slab_order(int size, int min_objects,
2609 int max_order, int fract_leftover, int reserved)
2610 {
2611 int order;
2612 int rem;
2613 int min_order = slub_min_order;
2614
2615 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2616 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2617
2618 for (order = max(min_order,
2619 fls(min_objects * size - 1) - PAGE_SHIFT);
2620 order <= max_order; order++) {
2621
2622 unsigned long slab_size = PAGE_SIZE << order;
2623
2624 if (slab_size < min_objects * size + reserved)
2625 continue;
2626
2627 rem = (slab_size - reserved) % size;
2628
2629 if (rem <= slab_size / fract_leftover)
2630 break;
2631
2632 }
2633
2634 return order;
2635 }
2636
2637 static inline int calculate_order(int size, int reserved)
2638 {
2639 int order;
2640 int min_objects;
2641 int fraction;
2642 int max_objects;
2643
2644 /*
2645 * Attempt to find best configuration for a slab. This
2646 * works by first attempting to generate a layout with
2647 * the best configuration and backing off gradually.
2648 *
2649 * First we reduce the acceptable waste in a slab. Then
2650 * we reduce the minimum objects required in a slab.
2651 */
2652 min_objects = slub_min_objects;
2653 if (!min_objects)
2654 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2655 max_objects = order_objects(slub_max_order, size, reserved);
2656 min_objects = min(min_objects, max_objects);
2657
2658 while (min_objects > 1) {
2659 fraction = 16;
2660 while (fraction >= 4) {
2661 order = slab_order(size, min_objects,
2662 slub_max_order, fraction, reserved);
2663 if (order <= slub_max_order)
2664 return order;
2665 fraction /= 2;
2666 }
2667 min_objects--;
2668 }
2669
2670 /*
2671 * We were unable to place multiple objects in a slab. Now
2672 * lets see if we can place a single object there.
2673 */
2674 order = slab_order(size, 1, slub_max_order, 1, reserved);
2675 if (order <= slub_max_order)
2676 return order;
2677
2678 /*
2679 * Doh this slab cannot be placed using slub_max_order.
2680 */
2681 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2682 if (order < MAX_ORDER)
2683 return order;
2684 return -ENOSYS;
2685 }
2686
2687 /*
2688 * Figure out what the alignment of the objects will be.
2689 */
2690 static unsigned long calculate_alignment(unsigned long flags,
2691 unsigned long align, unsigned long size)
2692 {
2693 /*
2694 * If the user wants hardware cache aligned objects then follow that
2695 * suggestion if the object is sufficiently large.
2696 *
2697 * The hardware cache alignment cannot override the specified
2698 * alignment though. If that is greater then use it.
2699 */
2700 if (flags & SLAB_HWCACHE_ALIGN) {
2701 unsigned long ralign = cache_line_size();
2702 while (size <= ralign / 2)
2703 ralign /= 2;
2704 align = max(align, ralign);
2705 }
2706
2707 if (align < ARCH_SLAB_MINALIGN)
2708 align = ARCH_SLAB_MINALIGN;
2709
2710 return ALIGN(align, sizeof(void *));
2711 }
2712
2713 static void
2714 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2715 {
2716 n->nr_partial = 0;
2717 spin_lock_init(&n->list_lock);
2718 INIT_LIST_HEAD(&n->partial);
2719 #ifdef CONFIG_SLUB_DEBUG
2720 atomic_long_set(&n->nr_slabs, 0);
2721 atomic_long_set(&n->total_objects, 0);
2722 INIT_LIST_HEAD(&n->full);
2723 #endif
2724 }
2725
2726 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2727 {
2728 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2729 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2730
2731 /*
2732 * Must align to double word boundary for the double cmpxchg
2733 * instructions to work; see __pcpu_double_call_return_bool().
2734 */
2735 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2736 2 * sizeof(void *));
2737
2738 if (!s->cpu_slab)
2739 return 0;
2740
2741 init_kmem_cache_cpus(s);
2742
2743 return 1;
2744 }
2745
2746 static struct kmem_cache *kmem_cache_node;
2747
2748 /*
2749 * No kmalloc_node yet so do it by hand. We know that this is the first
2750 * slab on the node for this slabcache. There are no concurrent accesses
2751 * possible.
2752 *
2753 * Note that this function only works on the kmalloc_node_cache
2754 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2755 * memory on a fresh node that has no slab structures yet.
2756 */
2757 static void early_kmem_cache_node_alloc(int node)
2758 {
2759 struct page *page;
2760 struct kmem_cache_node *n;
2761
2762 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2763
2764 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2765
2766 BUG_ON(!page);
2767 if (page_to_nid(page) != node) {
2768 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2769 "node %d\n", node);
2770 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2771 "in order to be able to continue\n");
2772 }
2773
2774 n = page->freelist;
2775 BUG_ON(!n);
2776 page->freelist = get_freepointer(kmem_cache_node, n);
2777 page->inuse = 1;
2778 page->frozen = 0;
2779 kmem_cache_node->node[node] = n;
2780 #ifdef CONFIG_SLUB_DEBUG
2781 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2782 init_tracking(kmem_cache_node, n);
2783 #endif
2784 init_kmem_cache_node(n, kmem_cache_node);
2785 inc_slabs_node(kmem_cache_node, node, page->objects);
2786
2787 add_partial(n, page, DEACTIVATE_TO_HEAD);
2788 }
2789
2790 static void free_kmem_cache_nodes(struct kmem_cache *s)
2791 {
2792 int node;
2793
2794 for_each_node_state(node, N_NORMAL_MEMORY) {
2795 struct kmem_cache_node *n = s->node[node];
2796
2797 if (n)
2798 kmem_cache_free(kmem_cache_node, n);
2799
2800 s->node[node] = NULL;
2801 }
2802 }
2803
2804 static int init_kmem_cache_nodes(struct kmem_cache *s)
2805 {
2806 int node;
2807
2808 for_each_node_state(node, N_NORMAL_MEMORY) {
2809 struct kmem_cache_node *n;
2810
2811 if (slab_state == DOWN) {
2812 early_kmem_cache_node_alloc(node);
2813 continue;
2814 }
2815 n = kmem_cache_alloc_node(kmem_cache_node,
2816 GFP_KERNEL, node);
2817
2818 if (!n) {
2819 free_kmem_cache_nodes(s);
2820 return 0;
2821 }
2822
2823 s->node[node] = n;
2824 init_kmem_cache_node(n, s);
2825 }
2826 return 1;
2827 }
2828
2829 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2830 {
2831 if (min < MIN_PARTIAL)
2832 min = MIN_PARTIAL;
2833 else if (min > MAX_PARTIAL)
2834 min = MAX_PARTIAL;
2835 s->min_partial = min;
2836 }
2837
2838 /*
2839 * calculate_sizes() determines the order and the distribution of data within
2840 * a slab object.
2841 */
2842 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2843 {
2844 unsigned long flags = s->flags;
2845 unsigned long size = s->objsize;
2846 unsigned long align = s->align;
2847 int order;
2848
2849 /*
2850 * Round up object size to the next word boundary. We can only
2851 * place the free pointer at word boundaries and this determines
2852 * the possible location of the free pointer.
2853 */
2854 size = ALIGN(size, sizeof(void *));
2855
2856 #ifdef CONFIG_SLUB_DEBUG
2857 /*
2858 * Determine if we can poison the object itself. If the user of
2859 * the slab may touch the object after free or before allocation
2860 * then we should never poison the object itself.
2861 */
2862 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2863 !s->ctor)
2864 s->flags |= __OBJECT_POISON;
2865 else
2866 s->flags &= ~__OBJECT_POISON;
2867
2868
2869 /*
2870 * If we are Redzoning then check if there is some space between the
2871 * end of the object and the free pointer. If not then add an
2872 * additional word to have some bytes to store Redzone information.
2873 */
2874 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2875 size += sizeof(void *);
2876 #endif
2877
2878 /*
2879 * With that we have determined the number of bytes in actual use
2880 * by the object. This is the potential offset to the free pointer.
2881 */
2882 s->inuse = size;
2883
2884 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2885 s->ctor)) {
2886 /*
2887 * Relocate free pointer after the object if it is not
2888 * permitted to overwrite the first word of the object on
2889 * kmem_cache_free.
2890 *
2891 * This is the case if we do RCU, have a constructor or
2892 * destructor or are poisoning the objects.
2893 */
2894 s->offset = size;
2895 size += sizeof(void *);
2896 }
2897
2898 #ifdef CONFIG_SLUB_DEBUG
2899 if (flags & SLAB_STORE_USER)
2900 /*
2901 * Need to store information about allocs and frees after
2902 * the object.
2903 */
2904 size += 2 * sizeof(struct track);
2905
2906 if (flags & SLAB_RED_ZONE)
2907 /*
2908 * Add some empty padding so that we can catch
2909 * overwrites from earlier objects rather than let
2910 * tracking information or the free pointer be
2911 * corrupted if a user writes before the start
2912 * of the object.
2913 */
2914 size += sizeof(void *);
2915 #endif
2916
2917 /*
2918 * Determine the alignment based on various parameters that the
2919 * user specified and the dynamic determination of cache line size
2920 * on bootup.
2921 */
2922 align = calculate_alignment(flags, align, s->objsize);
2923 s->align = align;
2924
2925 /*
2926 * SLUB stores one object immediately after another beginning from
2927 * offset 0. In order to align the objects we have to simply size
2928 * each object to conform to the alignment.
2929 */
2930 size = ALIGN(size, align);
2931 s->size = size;
2932 if (forced_order >= 0)
2933 order = forced_order;
2934 else
2935 order = calculate_order(size, s->reserved);
2936
2937 if (order < 0)
2938 return 0;
2939
2940 s->allocflags = 0;
2941 if (order)
2942 s->allocflags |= __GFP_COMP;
2943
2944 if (s->flags & SLAB_CACHE_DMA)
2945 s->allocflags |= SLUB_DMA;
2946
2947 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2948 s->allocflags |= __GFP_RECLAIMABLE;
2949
2950 /*
2951 * Determine the number of objects per slab
2952 */
2953 s->oo = oo_make(order, size, s->reserved);
2954 s->min = oo_make(get_order(size), size, s->reserved);
2955 if (oo_objects(s->oo) > oo_objects(s->max))
2956 s->max = s->oo;
2957
2958 return !!oo_objects(s->oo);
2959
2960 }
2961
2962 static int kmem_cache_open(struct kmem_cache *s,
2963 const char *name, size_t size,
2964 size_t align, unsigned long flags,
2965 void (*ctor)(void *))
2966 {
2967 memset(s, 0, kmem_size);
2968 s->name = name;
2969 s->ctor = ctor;
2970 s->objsize = size;
2971 s->align = align;
2972 s->flags = kmem_cache_flags(size, flags, name, ctor);
2973 s->reserved = 0;
2974
2975 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2976 s->reserved = sizeof(struct rcu_head);
2977
2978 if (!calculate_sizes(s, -1))
2979 goto error;
2980 if (disable_higher_order_debug) {
2981 /*
2982 * Disable debugging flags that store metadata if the min slab
2983 * order increased.
2984 */
2985 if (get_order(s->size) > get_order(s->objsize)) {
2986 s->flags &= ~DEBUG_METADATA_FLAGS;
2987 s->offset = 0;
2988 if (!calculate_sizes(s, -1))
2989 goto error;
2990 }
2991 }
2992
2993 #ifdef CONFIG_CMPXCHG_DOUBLE
2994 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2995 /* Enable fast mode */
2996 s->flags |= __CMPXCHG_DOUBLE;
2997 #endif
2998
2999 /*
3000 * The larger the object size is, the more pages we want on the partial
3001 * list to avoid pounding the page allocator excessively.
3002 */
3003 set_min_partial(s, ilog2(s->size) / 2);
3004
3005 /*
3006 * cpu_partial determined the maximum number of objects kept in the
3007 * per cpu partial lists of a processor.
3008 *
3009 * Per cpu partial lists mainly contain slabs that just have one
3010 * object freed. If they are used for allocation then they can be
3011 * filled up again with minimal effort. The slab will never hit the
3012 * per node partial lists and therefore no locking will be required.
3013 *
3014 * This setting also determines
3015 *
3016 * A) The number of objects from per cpu partial slabs dumped to the
3017 * per node list when we reach the limit.
3018 * B) The number of objects in cpu partial slabs to extract from the
3019 * per node list when we run out of per cpu objects. We only fetch 50%
3020 * to keep some capacity around for frees.
3021 */
3022 if (s->size >= PAGE_SIZE)
3023 s->cpu_partial = 2;
3024 else if (s->size >= 1024)
3025 s->cpu_partial = 6;
3026 else if (s->size >= 256)
3027 s->cpu_partial = 13;
3028 else
3029 s->cpu_partial = 30;
3030
3031 s->refcount = 1;
3032 #ifdef CONFIG_NUMA
3033 s->remote_node_defrag_ratio = 1000;
3034 #endif
3035 if (!init_kmem_cache_nodes(s))
3036 goto error;
3037
3038 if (alloc_kmem_cache_cpus(s))
3039 return 1;
3040
3041 free_kmem_cache_nodes(s);
3042 error:
3043 if (flags & SLAB_PANIC)
3044 panic("Cannot create slab %s size=%lu realsize=%u "
3045 "order=%u offset=%u flags=%lx\n",
3046 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3047 s->offset, flags);
3048 return 0;
3049 }
3050
3051 /*
3052 * Determine the size of a slab object
3053 */
3054 unsigned int kmem_cache_size(struct kmem_cache *s)
3055 {
3056 return s->objsize;
3057 }
3058 EXPORT_SYMBOL(kmem_cache_size);
3059
3060 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3061 const char *text)
3062 {
3063 #ifdef CONFIG_SLUB_DEBUG
3064 void *addr = page_address(page);
3065 void *p;
3066 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3067 sizeof(long), GFP_ATOMIC);
3068 if (!map)
3069 return;
3070 slab_err(s, page, "%s", text);
3071 slab_lock(page);
3072
3073 get_map(s, page, map);
3074 for_each_object(p, s, addr, page->objects) {
3075
3076 if (!test_bit(slab_index(p, s, addr), map)) {
3077 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3078 p, p - addr);
3079 print_tracking(s, p);
3080 }
3081 }
3082 slab_unlock(page);
3083 kfree(map);
3084 #endif
3085 }
3086
3087 /*
3088 * Attempt to free all partial slabs on a node.
3089 * This is called from kmem_cache_close(). We must be the last thread
3090 * using the cache and therefore we do not need to lock anymore.
3091 */
3092 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3093 {
3094 struct page *page, *h;
3095
3096 list_for_each_entry_safe(page, h, &n->partial, lru) {
3097 if (!page->inuse) {
3098 remove_partial(n, page);
3099 discard_slab(s, page);
3100 } else {
3101 list_slab_objects(s, page,
3102 "Objects remaining on kmem_cache_close()");
3103 }
3104 }
3105 }
3106
3107 /*
3108 * Release all resources used by a slab cache.
3109 */
3110 static inline int kmem_cache_close(struct kmem_cache *s)
3111 {
3112 int node;
3113
3114 flush_all(s);
3115 free_percpu(s->cpu_slab);
3116 /* Attempt to free all objects */
3117 for_each_node_state(node, N_NORMAL_MEMORY) {
3118 struct kmem_cache_node *n = get_node(s, node);
3119
3120 free_partial(s, n);
3121 if (n->nr_partial || slabs_node(s, node))
3122 return 1;
3123 }
3124 free_kmem_cache_nodes(s);
3125 return 0;
3126 }
3127
3128 /*
3129 * Close a cache and release the kmem_cache structure
3130 * (must be used for caches created using kmem_cache_create)
3131 */
3132 void kmem_cache_destroy(struct kmem_cache *s)
3133 {
3134 down_write(&slub_lock);
3135 s->refcount--;
3136 if (!s->refcount) {
3137 list_del(&s->list);
3138 up_write(&slub_lock);
3139 if (kmem_cache_close(s)) {
3140 printk(KERN_ERR "SLUB %s: %s called for cache that "
3141 "still has objects.\n", s->name, __func__);
3142 dump_stack();
3143 }
3144 if (s->flags & SLAB_DESTROY_BY_RCU)
3145 rcu_barrier();
3146 sysfs_slab_remove(s);
3147 } else
3148 up_write(&slub_lock);
3149 }
3150 EXPORT_SYMBOL(kmem_cache_destroy);
3151
3152 /********************************************************************
3153 * Kmalloc subsystem
3154 *******************************************************************/
3155
3156 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3157 EXPORT_SYMBOL(kmalloc_caches);
3158
3159 static struct kmem_cache *kmem_cache;
3160
3161 #ifdef CONFIG_ZONE_DMA
3162 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3163 #endif
3164
3165 static int __init setup_slub_min_order(char *str)
3166 {
3167 get_option(&str, &slub_min_order);
3168
3169 return 1;
3170 }
3171
3172 __setup("slub_min_order=", setup_slub_min_order);
3173
3174 static int __init setup_slub_max_order(char *str)
3175 {
3176 get_option(&str, &slub_max_order);
3177 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3178
3179 return 1;
3180 }
3181
3182 __setup("slub_max_order=", setup_slub_max_order);
3183
3184 static int __init setup_slub_min_objects(char *str)
3185 {
3186 get_option(&str, &slub_min_objects);
3187
3188 return 1;
3189 }
3190
3191 __setup("slub_min_objects=", setup_slub_min_objects);
3192
3193 static int __init setup_slub_nomerge(char *str)
3194 {
3195 slub_nomerge = 1;
3196 return 1;
3197 }
3198
3199 __setup("slub_nomerge", setup_slub_nomerge);
3200
3201 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3202 int size, unsigned int flags)
3203 {
3204 struct kmem_cache *s;
3205
3206 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3207
3208 /*
3209 * This function is called with IRQs disabled during early-boot on
3210 * single CPU so there's no need to take slub_lock here.
3211 */
3212 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3213 flags, NULL))
3214 goto panic;
3215
3216 list_add(&s->list, &slab_caches);
3217 return s;
3218
3219 panic:
3220 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3221 return NULL;
3222 }
3223
3224 /*
3225 * Conversion table for small slabs sizes / 8 to the index in the
3226 * kmalloc array. This is necessary for slabs < 192 since we have non power
3227 * of two cache sizes there. The size of larger slabs can be determined using
3228 * fls.
3229 */
3230 static s8 size_index[24] = {
3231 3, /* 8 */
3232 4, /* 16 */
3233 5, /* 24 */
3234 5, /* 32 */
3235 6, /* 40 */
3236 6, /* 48 */
3237 6, /* 56 */
3238 6, /* 64 */
3239 1, /* 72 */
3240 1, /* 80 */
3241 1, /* 88 */
3242 1, /* 96 */
3243 7, /* 104 */
3244 7, /* 112 */
3245 7, /* 120 */
3246 7, /* 128 */
3247 2, /* 136 */
3248 2, /* 144 */
3249 2, /* 152 */
3250 2, /* 160 */
3251 2, /* 168 */
3252 2, /* 176 */
3253 2, /* 184 */
3254 2 /* 192 */
3255 };
3256
3257 static inline int size_index_elem(size_t bytes)
3258 {
3259 return (bytes - 1) / 8;
3260 }
3261
3262 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3263 {
3264 int index;
3265
3266 if (size <= 192) {
3267 if (!size)
3268 return ZERO_SIZE_PTR;
3269
3270 index = size_index[size_index_elem(size)];
3271 } else
3272 index = fls(size - 1);
3273
3274 #ifdef CONFIG_ZONE_DMA
3275 if (unlikely((flags & SLUB_DMA)))
3276 return kmalloc_dma_caches[index];
3277
3278 #endif
3279 return kmalloc_caches[index];
3280 }
3281
3282 void *__kmalloc(size_t size, gfp_t flags)
3283 {
3284 struct kmem_cache *s;
3285 void *ret;
3286
3287 if (unlikely(size > SLUB_MAX_SIZE))
3288 return kmalloc_large(size, flags);
3289
3290 s = get_slab(size, flags);
3291
3292 if (unlikely(ZERO_OR_NULL_PTR(s)))
3293 return s;
3294
3295 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3296
3297 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3298
3299 return ret;
3300 }
3301 EXPORT_SYMBOL(__kmalloc);
3302
3303 #ifdef CONFIG_NUMA
3304 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3305 {
3306 struct page *page;
3307 void *ptr = NULL;
3308
3309 flags |= __GFP_COMP | __GFP_NOTRACK;
3310 page = alloc_pages_node(node, flags, get_order(size));
3311 if (page)
3312 ptr = page_address(page);
3313
3314 kmemleak_alloc(ptr, size, 1, flags);
3315 return ptr;
3316 }
3317
3318 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3319 {
3320 struct kmem_cache *s;
3321 void *ret;
3322
3323 if (unlikely(size > SLUB_MAX_SIZE)) {
3324 ret = kmalloc_large_node(size, flags, node);
3325
3326 trace_kmalloc_node(_RET_IP_, ret,
3327 size, PAGE_SIZE << get_order(size),
3328 flags, node);
3329
3330 return ret;
3331 }
3332
3333 s = get_slab(size, flags);
3334
3335 if (unlikely(ZERO_OR_NULL_PTR(s)))
3336 return s;
3337
3338 ret = slab_alloc(s, flags, node, _RET_IP_);
3339
3340 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3341
3342 return ret;
3343 }
3344 EXPORT_SYMBOL(__kmalloc_node);
3345 #endif
3346
3347 size_t ksize(const void *object)
3348 {
3349 struct page *page;
3350
3351 if (unlikely(object == ZERO_SIZE_PTR))
3352 return 0;
3353
3354 page = virt_to_head_page(object);
3355
3356 if (unlikely(!PageSlab(page))) {
3357 WARN_ON(!PageCompound(page));
3358 return PAGE_SIZE << compound_order(page);
3359 }
3360
3361 return slab_ksize(page->slab);
3362 }
3363 EXPORT_SYMBOL(ksize);
3364
3365 #ifdef CONFIG_SLUB_DEBUG
3366 bool verify_mem_not_deleted(const void *x)
3367 {
3368 struct page *page;
3369 void *object = (void *)x;
3370 unsigned long flags;
3371 bool rv;
3372
3373 if (unlikely(ZERO_OR_NULL_PTR(x)))
3374 return false;
3375
3376 local_irq_save(flags);
3377
3378 page = virt_to_head_page(x);
3379 if (unlikely(!PageSlab(page))) {
3380 /* maybe it was from stack? */
3381 rv = true;
3382 goto out_unlock;
3383 }
3384
3385 slab_lock(page);
3386 if (on_freelist(page->slab, page, object)) {
3387 object_err(page->slab, page, object, "Object is on free-list");
3388 rv = false;
3389 } else {
3390 rv = true;
3391 }
3392 slab_unlock(page);
3393
3394 out_unlock:
3395 local_irq_restore(flags);
3396 return rv;
3397 }
3398 EXPORT_SYMBOL(verify_mem_not_deleted);
3399 #endif
3400
3401 void kfree(const void *x)
3402 {
3403 struct page *page;
3404 void *object = (void *)x;
3405
3406 trace_kfree(_RET_IP_, x);
3407
3408 if (unlikely(ZERO_OR_NULL_PTR(x)))
3409 return;
3410
3411 page = virt_to_head_page(x);
3412 if (unlikely(!PageSlab(page))) {
3413 BUG_ON(!PageCompound(page));
3414 kmemleak_free(x);
3415 put_page(page);
3416 return;
3417 }
3418 slab_free(page->slab, page, object, _RET_IP_);
3419 }
3420 EXPORT_SYMBOL(kfree);
3421
3422 /*
3423 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3424 * the remaining slabs by the number of items in use. The slabs with the
3425 * most items in use come first. New allocations will then fill those up
3426 * and thus they can be removed from the partial lists.
3427 *
3428 * The slabs with the least items are placed last. This results in them
3429 * being allocated from last increasing the chance that the last objects
3430 * are freed in them.
3431 */
3432 int kmem_cache_shrink(struct kmem_cache *s)
3433 {
3434 int node;
3435 int i;
3436 struct kmem_cache_node *n;
3437 struct page *page;
3438 struct page *t;
3439 int objects = oo_objects(s->max);
3440 struct list_head *slabs_by_inuse =
3441 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3442 unsigned long flags;
3443
3444 if (!slabs_by_inuse)
3445 return -ENOMEM;
3446
3447 flush_all(s);
3448 for_each_node_state(node, N_NORMAL_MEMORY) {
3449 n = get_node(s, node);
3450
3451 if (!n->nr_partial)
3452 continue;
3453
3454 for (i = 0; i < objects; i++)
3455 INIT_LIST_HEAD(slabs_by_inuse + i);
3456
3457 spin_lock_irqsave(&n->list_lock, flags);
3458
3459 /*
3460 * Build lists indexed by the items in use in each slab.
3461 *
3462 * Note that concurrent frees may occur while we hold the
3463 * list_lock. page->inuse here is the upper limit.
3464 */
3465 list_for_each_entry_safe(page, t, &n->partial, lru) {
3466 list_move(&page->lru, slabs_by_inuse + page->inuse);
3467 if (!page->inuse)
3468 n->nr_partial--;
3469 }
3470
3471 /*
3472 * Rebuild the partial list with the slabs filled up most
3473 * first and the least used slabs at the end.
3474 */
3475 for (i = objects - 1; i > 0; i--)
3476 list_splice(slabs_by_inuse + i, n->partial.prev);
3477
3478 spin_unlock_irqrestore(&n->list_lock, flags);
3479
3480 /* Release empty slabs */
3481 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3482 discard_slab(s, page);
3483 }
3484
3485 kfree(slabs_by_inuse);
3486 return 0;
3487 }
3488 EXPORT_SYMBOL(kmem_cache_shrink);
3489
3490 #if defined(CONFIG_MEMORY_HOTPLUG)
3491 static int slab_mem_going_offline_callback(void *arg)
3492 {
3493 struct kmem_cache *s;
3494
3495 down_read(&slub_lock);
3496 list_for_each_entry(s, &slab_caches, list)
3497 kmem_cache_shrink(s);
3498 up_read(&slub_lock);
3499
3500 return 0;
3501 }
3502
3503 static void slab_mem_offline_callback(void *arg)
3504 {
3505 struct kmem_cache_node *n;
3506 struct kmem_cache *s;
3507 struct memory_notify *marg = arg;
3508 int offline_node;
3509
3510 offline_node = marg->status_change_nid;
3511
3512 /*
3513 * If the node still has available memory. we need kmem_cache_node
3514 * for it yet.
3515 */
3516 if (offline_node < 0)
3517 return;
3518
3519 down_read(&slub_lock);
3520 list_for_each_entry(s, &slab_caches, list) {
3521 n = get_node(s, offline_node);
3522 if (n) {
3523 /*
3524 * if n->nr_slabs > 0, slabs still exist on the node
3525 * that is going down. We were unable to free them,
3526 * and offline_pages() function shouldn't call this
3527 * callback. So, we must fail.
3528 */
3529 BUG_ON(slabs_node(s, offline_node));
3530
3531 s->node[offline_node] = NULL;
3532 kmem_cache_free(kmem_cache_node, n);
3533 }
3534 }
3535 up_read(&slub_lock);
3536 }
3537
3538 static int slab_mem_going_online_callback(void *arg)
3539 {
3540 struct kmem_cache_node *n;
3541 struct kmem_cache *s;
3542 struct memory_notify *marg = arg;
3543 int nid = marg->status_change_nid;
3544 int ret = 0;
3545
3546 /*
3547 * If the node's memory is already available, then kmem_cache_node is
3548 * already created. Nothing to do.
3549 */
3550 if (nid < 0)
3551 return 0;
3552
3553 /*
3554 * We are bringing a node online. No memory is available yet. We must
3555 * allocate a kmem_cache_node structure in order to bring the node
3556 * online.
3557 */
3558 down_read(&slub_lock);
3559 list_for_each_entry(s, &slab_caches, list) {
3560 /*
3561 * XXX: kmem_cache_alloc_node will fallback to other nodes
3562 * since memory is not yet available from the node that
3563 * is brought up.
3564 */
3565 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3566 if (!n) {
3567 ret = -ENOMEM;
3568 goto out;
3569 }
3570 init_kmem_cache_node(n, s);
3571 s->node[nid] = n;
3572 }
3573 out:
3574 up_read(&slub_lock);
3575 return ret;
3576 }
3577
3578 static int slab_memory_callback(struct notifier_block *self,
3579 unsigned long action, void *arg)
3580 {
3581 int ret = 0;
3582
3583 switch (action) {
3584 case MEM_GOING_ONLINE:
3585 ret = slab_mem_going_online_callback(arg);
3586 break;
3587 case MEM_GOING_OFFLINE:
3588 ret = slab_mem_going_offline_callback(arg);
3589 break;
3590 case MEM_OFFLINE:
3591 case MEM_CANCEL_ONLINE:
3592 slab_mem_offline_callback(arg);
3593 break;
3594 case MEM_ONLINE:
3595 case MEM_CANCEL_OFFLINE:
3596 break;
3597 }
3598 if (ret)
3599 ret = notifier_from_errno(ret);
3600 else
3601 ret = NOTIFY_OK;
3602 return ret;
3603 }
3604
3605 #endif /* CONFIG_MEMORY_HOTPLUG */
3606
3607 /********************************************************************
3608 * Basic setup of slabs
3609 *******************************************************************/
3610
3611 /*
3612 * Used for early kmem_cache structures that were allocated using
3613 * the page allocator
3614 */
3615
3616 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3617 {
3618 int node;
3619
3620 list_add(&s->list, &slab_caches);
3621 s->refcount = -1;
3622
3623 for_each_node_state(node, N_NORMAL_MEMORY) {
3624 struct kmem_cache_node *n = get_node(s, node);
3625 struct page *p;
3626
3627 if (n) {
3628 list_for_each_entry(p, &n->partial, lru)
3629 p->slab = s;
3630
3631 #ifdef CONFIG_SLUB_DEBUG
3632 list_for_each_entry(p, &n->full, lru)
3633 p->slab = s;
3634 #endif
3635 }
3636 }
3637 }
3638
3639 void __init kmem_cache_init(void)
3640 {
3641 int i;
3642 int caches = 0;
3643 struct kmem_cache *temp_kmem_cache;
3644 int order;
3645 struct kmem_cache *temp_kmem_cache_node;
3646 unsigned long kmalloc_size;
3647
3648 kmem_size = offsetof(struct kmem_cache, node) +
3649 nr_node_ids * sizeof(struct kmem_cache_node *);
3650
3651 /* Allocate two kmem_caches from the page allocator */
3652 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3653 order = get_order(2 * kmalloc_size);
3654 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3655
3656 /*
3657 * Must first have the slab cache available for the allocations of the
3658 * struct kmem_cache_node's. There is special bootstrap code in
3659 * kmem_cache_open for slab_state == DOWN.
3660 */
3661 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3662
3663 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3664 sizeof(struct kmem_cache_node),
3665 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3666
3667 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3668
3669 /* Able to allocate the per node structures */
3670 slab_state = PARTIAL;
3671
3672 temp_kmem_cache = kmem_cache;
3673 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3674 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3675 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3676 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3677
3678 /*
3679 * Allocate kmem_cache_node properly from the kmem_cache slab.
3680 * kmem_cache_node is separately allocated so no need to
3681 * update any list pointers.
3682 */
3683 temp_kmem_cache_node = kmem_cache_node;
3684
3685 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3686 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3687
3688 kmem_cache_bootstrap_fixup(kmem_cache_node);
3689
3690 caches++;
3691 kmem_cache_bootstrap_fixup(kmem_cache);
3692 caches++;
3693 /* Free temporary boot structure */
3694 free_pages((unsigned long)temp_kmem_cache, order);
3695
3696 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3697
3698 /*
3699 * Patch up the size_index table if we have strange large alignment
3700 * requirements for the kmalloc array. This is only the case for
3701 * MIPS it seems. The standard arches will not generate any code here.
3702 *
3703 * Largest permitted alignment is 256 bytes due to the way we
3704 * handle the index determination for the smaller caches.
3705 *
3706 * Make sure that nothing crazy happens if someone starts tinkering
3707 * around with ARCH_KMALLOC_MINALIGN
3708 */
3709 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3710 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3711
3712 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3713 int elem = size_index_elem(i);
3714 if (elem >= ARRAY_SIZE(size_index))
3715 break;
3716 size_index[elem] = KMALLOC_SHIFT_LOW;
3717 }
3718
3719 if (KMALLOC_MIN_SIZE == 64) {
3720 /*
3721 * The 96 byte size cache is not used if the alignment
3722 * is 64 byte.
3723 */
3724 for (i = 64 + 8; i <= 96; i += 8)
3725 size_index[size_index_elem(i)] = 7;
3726 } else if (KMALLOC_MIN_SIZE == 128) {
3727 /*
3728 * The 192 byte sized cache is not used if the alignment
3729 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3730 * instead.
3731 */
3732 for (i = 128 + 8; i <= 192; i += 8)
3733 size_index[size_index_elem(i)] = 8;
3734 }
3735
3736 /* Caches that are not of the two-to-the-power-of size */
3737 if (KMALLOC_MIN_SIZE <= 32) {
3738 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3739 caches++;
3740 }
3741
3742 if (KMALLOC_MIN_SIZE <= 64) {
3743 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3744 caches++;
3745 }
3746
3747 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3748 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3749 caches++;
3750 }
3751
3752 slab_state = UP;
3753
3754 /* Provide the correct kmalloc names now that the caches are up */
3755 if (KMALLOC_MIN_SIZE <= 32) {
3756 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3757 BUG_ON(!kmalloc_caches[1]->name);
3758 }
3759
3760 if (KMALLOC_MIN_SIZE <= 64) {
3761 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3762 BUG_ON(!kmalloc_caches[2]->name);
3763 }
3764
3765 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3766 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3767
3768 BUG_ON(!s);
3769 kmalloc_caches[i]->name = s;
3770 }
3771
3772 #ifdef CONFIG_SMP
3773 register_cpu_notifier(&slab_notifier);
3774 #endif
3775
3776 #ifdef CONFIG_ZONE_DMA
3777 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3778 struct kmem_cache *s = kmalloc_caches[i];
3779
3780 if (s && s->size) {
3781 char *name = kasprintf(GFP_NOWAIT,
3782 "dma-kmalloc-%d", s->objsize);
3783
3784 BUG_ON(!name);
3785 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3786 s->objsize, SLAB_CACHE_DMA);
3787 }
3788 }
3789 #endif
3790 printk(KERN_INFO
3791 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3792 " CPUs=%d, Nodes=%d\n",
3793 caches, cache_line_size(),
3794 slub_min_order, slub_max_order, slub_min_objects,
3795 nr_cpu_ids, nr_node_ids);
3796 }
3797
3798 void __init kmem_cache_init_late(void)
3799 {
3800 }
3801
3802 /*
3803 * Find a mergeable slab cache
3804 */
3805 static int slab_unmergeable(struct kmem_cache *s)
3806 {
3807 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3808 return 1;
3809
3810 if (s->ctor)
3811 return 1;
3812
3813 /*
3814 * We may have set a slab to be unmergeable during bootstrap.
3815 */
3816 if (s->refcount < 0)
3817 return 1;
3818
3819 return 0;
3820 }
3821
3822 static struct kmem_cache *find_mergeable(size_t size,
3823 size_t align, unsigned long flags, const char *name,
3824 void (*ctor)(void *))
3825 {
3826 struct kmem_cache *s;
3827
3828 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3829 return NULL;
3830
3831 if (ctor)
3832 return NULL;
3833
3834 size = ALIGN(size, sizeof(void *));
3835 align = calculate_alignment(flags, align, size);
3836 size = ALIGN(size, align);
3837 flags = kmem_cache_flags(size, flags, name, NULL);
3838
3839 list_for_each_entry(s, &slab_caches, list) {
3840 if (slab_unmergeable(s))
3841 continue;
3842
3843 if (size > s->size)
3844 continue;
3845
3846 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3847 continue;
3848 /*
3849 * Check if alignment is compatible.
3850 * Courtesy of Adrian Drzewiecki
3851 */
3852 if ((s->size & ~(align - 1)) != s->size)
3853 continue;
3854
3855 if (s->size - size >= sizeof(void *))
3856 continue;
3857
3858 return s;
3859 }
3860 return NULL;
3861 }
3862
3863 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3864 size_t align, unsigned long flags, void (*ctor)(void *))
3865 {
3866 struct kmem_cache *s;
3867 char *n;
3868
3869 if (WARN_ON(!name))
3870 return NULL;
3871
3872 down_write(&slub_lock);
3873 s = find_mergeable(size, align, flags, name, ctor);
3874 if (s) {
3875 s->refcount++;
3876 /*
3877 * Adjust the object sizes so that we clear
3878 * the complete object on kzalloc.
3879 */
3880 s->objsize = max(s->objsize, (int)size);
3881 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3882
3883 if (sysfs_slab_alias(s, name)) {
3884 s->refcount--;
3885 goto err;
3886 }
3887 up_write(&slub_lock);
3888 return s;
3889 }
3890
3891 n = kstrdup(name, GFP_KERNEL);
3892 if (!n)
3893 goto err;
3894
3895 s = kmalloc(kmem_size, GFP_KERNEL);
3896 if (s) {
3897 if (kmem_cache_open(s, n,
3898 size, align, flags, ctor)) {
3899 list_add(&s->list, &slab_caches);
3900 if (sysfs_slab_add(s)) {
3901 list_del(&s->list);
3902 kfree(n);
3903 kfree(s);
3904 goto err;
3905 }
3906 up_write(&slub_lock);
3907 return s;
3908 }
3909 kfree(n);
3910 kfree(s);
3911 }
3912 err:
3913 up_write(&slub_lock);
3914
3915 if (flags & SLAB_PANIC)
3916 panic("Cannot create slabcache %s\n", name);
3917 else
3918 s = NULL;
3919 return s;
3920 }
3921 EXPORT_SYMBOL(kmem_cache_create);
3922
3923 #ifdef CONFIG_SMP
3924 /*
3925 * Use the cpu notifier to insure that the cpu slabs are flushed when
3926 * necessary.
3927 */
3928 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3929 unsigned long action, void *hcpu)
3930 {
3931 long cpu = (long)hcpu;
3932 struct kmem_cache *s;
3933 unsigned long flags;
3934
3935 switch (action) {
3936 case CPU_UP_CANCELED:
3937 case CPU_UP_CANCELED_FROZEN:
3938 case CPU_DEAD:
3939 case CPU_DEAD_FROZEN:
3940 down_read(&slub_lock);
3941 list_for_each_entry(s, &slab_caches, list) {
3942 local_irq_save(flags);
3943 __flush_cpu_slab(s, cpu);
3944 local_irq_restore(flags);
3945 }
3946 up_read(&slub_lock);
3947 break;
3948 default:
3949 break;
3950 }
3951 return NOTIFY_OK;
3952 }
3953
3954 static struct notifier_block __cpuinitdata slab_notifier = {
3955 .notifier_call = slab_cpuup_callback
3956 };
3957
3958 #endif
3959
3960 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3961 {
3962 struct kmem_cache *s;
3963 void *ret;
3964
3965 if (unlikely(size > SLUB_MAX_SIZE))
3966 return kmalloc_large(size, gfpflags);
3967
3968 s = get_slab(size, gfpflags);
3969
3970 if (unlikely(ZERO_OR_NULL_PTR(s)))
3971 return s;
3972
3973 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3974
3975 /* Honor the call site pointer we received. */
3976 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3977
3978 return ret;
3979 }
3980
3981 #ifdef CONFIG_NUMA
3982 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3983 int node, unsigned long caller)
3984 {
3985 struct kmem_cache *s;
3986 void *ret;
3987
3988 if (unlikely(size > SLUB_MAX_SIZE)) {
3989 ret = kmalloc_large_node(size, gfpflags, node);
3990
3991 trace_kmalloc_node(caller, ret,
3992 size, PAGE_SIZE << get_order(size),
3993 gfpflags, node);
3994
3995 return ret;
3996 }
3997
3998 s = get_slab(size, gfpflags);
3999
4000 if (unlikely(ZERO_OR_NULL_PTR(s)))
4001 return s;
4002
4003 ret = slab_alloc(s, gfpflags, node, caller);
4004
4005 /* Honor the call site pointer we received. */
4006 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4007
4008 return ret;
4009 }
4010 #endif
4011
4012 #ifdef CONFIG_SYSFS
4013 static int count_inuse(struct page *page)
4014 {
4015 return page->inuse;
4016 }
4017
4018 static int count_total(struct page *page)
4019 {
4020 return page->objects;
4021 }
4022 #endif
4023
4024 #ifdef CONFIG_SLUB_DEBUG
4025 static int validate_slab(struct kmem_cache *s, struct page *page,
4026 unsigned long *map)
4027 {
4028 void *p;
4029 void *addr = page_address(page);
4030
4031 if (!check_slab(s, page) ||
4032 !on_freelist(s, page, NULL))
4033 return 0;
4034
4035 /* Now we know that a valid freelist exists */
4036 bitmap_zero(map, page->objects);
4037
4038 get_map(s, page, map);
4039 for_each_object(p, s, addr, page->objects) {
4040 if (test_bit(slab_index(p, s, addr), map))
4041 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4042 return 0;
4043 }
4044
4045 for_each_object(p, s, addr, page->objects)
4046 if (!test_bit(slab_index(p, s, addr), map))
4047 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4048 return 0;
4049 return 1;
4050 }
4051
4052 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4053 unsigned long *map)
4054 {
4055 slab_lock(page);
4056 validate_slab(s, page, map);
4057 slab_unlock(page);
4058 }
4059
4060 static int validate_slab_node(struct kmem_cache *s,
4061 struct kmem_cache_node *n, unsigned long *map)
4062 {
4063 unsigned long count = 0;
4064 struct page *page;
4065 unsigned long flags;
4066
4067 spin_lock_irqsave(&n->list_lock, flags);
4068
4069 list_for_each_entry(page, &n->partial, lru) {
4070 validate_slab_slab(s, page, map);
4071 count++;
4072 }
4073 if (count != n->nr_partial)
4074 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4075 "counter=%ld\n", s->name, count, n->nr_partial);
4076
4077 if (!(s->flags & SLAB_STORE_USER))
4078 goto out;
4079
4080 list_for_each_entry(page, &n->full, lru) {
4081 validate_slab_slab(s, page, map);
4082 count++;
4083 }
4084 if (count != atomic_long_read(&n->nr_slabs))
4085 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4086 "counter=%ld\n", s->name, count,
4087 atomic_long_read(&n->nr_slabs));
4088
4089 out:
4090 spin_unlock_irqrestore(&n->list_lock, flags);
4091 return count;
4092 }
4093
4094 static long validate_slab_cache(struct kmem_cache *s)
4095 {
4096 int node;
4097 unsigned long count = 0;
4098 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4099 sizeof(unsigned long), GFP_KERNEL);
4100
4101 if (!map)
4102 return -ENOMEM;
4103
4104 flush_all(s);
4105 for_each_node_state(node, N_NORMAL_MEMORY) {
4106 struct kmem_cache_node *n = get_node(s, node);
4107
4108 count += validate_slab_node(s, n, map);
4109 }
4110 kfree(map);
4111 return count;
4112 }
4113 /*
4114 * Generate lists of code addresses where slabcache objects are allocated
4115 * and freed.
4116 */
4117
4118 struct location {
4119 unsigned long count;
4120 unsigned long addr;
4121 long long sum_time;
4122 long min_time;
4123 long max_time;
4124 long min_pid;
4125 long max_pid;
4126 DECLARE_BITMAP(cpus, NR_CPUS);
4127 nodemask_t nodes;
4128 };
4129
4130 struct loc_track {
4131 unsigned long max;
4132 unsigned long count;
4133 struct location *loc;
4134 };
4135
4136 static void free_loc_track(struct loc_track *t)
4137 {
4138 if (t->max)
4139 free_pages((unsigned long)t->loc,
4140 get_order(sizeof(struct location) * t->max));
4141 }
4142
4143 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4144 {
4145 struct location *l;
4146 int order;
4147
4148 order = get_order(sizeof(struct location) * max);
4149
4150 l = (void *)__get_free_pages(flags, order);
4151 if (!l)
4152 return 0;
4153
4154 if (t->count) {
4155 memcpy(l, t->loc, sizeof(struct location) * t->count);
4156 free_loc_track(t);
4157 }
4158 t->max = max;
4159 t->loc = l;
4160 return 1;
4161 }
4162
4163 static int add_location(struct loc_track *t, struct kmem_cache *s,
4164 const struct track *track)
4165 {
4166 long start, end, pos;
4167 struct location *l;
4168 unsigned long caddr;
4169 unsigned long age = jiffies - track->when;
4170
4171 start = -1;
4172 end = t->count;
4173
4174 for ( ; ; ) {
4175 pos = start + (end - start + 1) / 2;
4176
4177 /*
4178 * There is nothing at "end". If we end up there
4179 * we need to add something to before end.
4180 */
4181 if (pos == end)
4182 break;
4183
4184 caddr = t->loc[pos].addr;
4185 if (track->addr == caddr) {
4186
4187 l = &t->loc[pos];
4188 l->count++;
4189 if (track->when) {
4190 l->sum_time += age;
4191 if (age < l->min_time)
4192 l->min_time = age;
4193 if (age > l->max_time)
4194 l->max_time = age;
4195
4196 if (track->pid < l->min_pid)
4197 l->min_pid = track->pid;
4198 if (track->pid > l->max_pid)
4199 l->max_pid = track->pid;
4200
4201 cpumask_set_cpu(track->cpu,
4202 to_cpumask(l->cpus));
4203 }
4204 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4205 return 1;
4206 }
4207
4208 if (track->addr < caddr)
4209 end = pos;
4210 else
4211 start = pos;
4212 }
4213
4214 /*
4215 * Not found. Insert new tracking element.
4216 */
4217 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4218 return 0;
4219
4220 l = t->loc + pos;
4221 if (pos < t->count)
4222 memmove(l + 1, l,
4223 (t->count - pos) * sizeof(struct location));
4224 t->count++;
4225 l->count = 1;
4226 l->addr = track->addr;
4227 l->sum_time = age;
4228 l->min_time = age;
4229 l->max_time = age;
4230 l->min_pid = track->pid;
4231 l->max_pid = track->pid;
4232 cpumask_clear(to_cpumask(l->cpus));
4233 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4234 nodes_clear(l->nodes);
4235 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4236 return 1;
4237 }
4238
4239 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4240 struct page *page, enum track_item alloc,
4241 unsigned long *map)
4242 {
4243 void *addr = page_address(page);
4244 void *p;
4245
4246 bitmap_zero(map, page->objects);
4247 get_map(s, page, map);
4248
4249 for_each_object(p, s, addr, page->objects)
4250 if (!test_bit(slab_index(p, s, addr), map))
4251 add_location(t, s, get_track(s, p, alloc));
4252 }
4253
4254 static int list_locations(struct kmem_cache *s, char *buf,
4255 enum track_item alloc)
4256 {
4257 int len = 0;
4258 unsigned long i;
4259 struct loc_track t = { 0, 0, NULL };
4260 int node;
4261 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4262 sizeof(unsigned long), GFP_KERNEL);
4263
4264 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4265 GFP_TEMPORARY)) {
4266 kfree(map);
4267 return sprintf(buf, "Out of memory\n");
4268 }
4269 /* Push back cpu slabs */
4270 flush_all(s);
4271
4272 for_each_node_state(node, N_NORMAL_MEMORY) {
4273 struct kmem_cache_node *n = get_node(s, node);
4274 unsigned long flags;
4275 struct page *page;
4276
4277 if (!atomic_long_read(&n->nr_slabs))
4278 continue;
4279
4280 spin_lock_irqsave(&n->list_lock, flags);
4281 list_for_each_entry(page, &n->partial, lru)
4282 process_slab(&t, s, page, alloc, map);
4283 list_for_each_entry(page, &n->full, lru)
4284 process_slab(&t, s, page, alloc, map);
4285 spin_unlock_irqrestore(&n->list_lock, flags);
4286 }
4287
4288 for (i = 0; i < t.count; i++) {
4289 struct location *l = &t.loc[i];
4290
4291 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4292 break;
4293 len += sprintf(buf + len, "%7ld ", l->count);
4294
4295 if (l->addr)
4296 len += sprintf(buf + len, "%pS", (void *)l->addr);
4297 else
4298 len += sprintf(buf + len, "<not-available>");
4299
4300 if (l->sum_time != l->min_time) {
4301 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4302 l->min_time,
4303 (long)div_u64(l->sum_time, l->count),
4304 l->max_time);
4305 } else
4306 len += sprintf(buf + len, " age=%ld",
4307 l->min_time);
4308
4309 if (l->min_pid != l->max_pid)
4310 len += sprintf(buf + len, " pid=%ld-%ld",
4311 l->min_pid, l->max_pid);
4312 else
4313 len += sprintf(buf + len, " pid=%ld",
4314 l->min_pid);
4315
4316 if (num_online_cpus() > 1 &&
4317 !cpumask_empty(to_cpumask(l->cpus)) &&
4318 len < PAGE_SIZE - 60) {
4319 len += sprintf(buf + len, " cpus=");
4320 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4321 to_cpumask(l->cpus));
4322 }
4323
4324 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4325 len < PAGE_SIZE - 60) {
4326 len += sprintf(buf + len, " nodes=");
4327 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4328 l->nodes);
4329 }
4330
4331 len += sprintf(buf + len, "\n");
4332 }
4333
4334 free_loc_track(&t);
4335 kfree(map);
4336 if (!t.count)
4337 len += sprintf(buf, "No data\n");
4338 return len;
4339 }
4340 #endif
4341
4342 #ifdef SLUB_RESILIENCY_TEST
4343 static void resiliency_test(void)
4344 {
4345 u8 *p;
4346
4347 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4348
4349 printk(KERN_ERR "SLUB resiliency testing\n");
4350 printk(KERN_ERR "-----------------------\n");
4351 printk(KERN_ERR "A. Corruption after allocation\n");
4352
4353 p = kzalloc(16, GFP_KERNEL);
4354 p[16] = 0x12;
4355 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4356 " 0x12->0x%p\n\n", p + 16);
4357
4358 validate_slab_cache(kmalloc_caches[4]);
4359
4360 /* Hmmm... The next two are dangerous */
4361 p = kzalloc(32, GFP_KERNEL);
4362 p[32 + sizeof(void *)] = 0x34;
4363 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4364 " 0x34 -> -0x%p\n", p);
4365 printk(KERN_ERR
4366 "If allocated object is overwritten then not detectable\n\n");
4367
4368 validate_slab_cache(kmalloc_caches[5]);
4369 p = kzalloc(64, GFP_KERNEL);
4370 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4371 *p = 0x56;
4372 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4373 p);
4374 printk(KERN_ERR
4375 "If allocated object is overwritten then not detectable\n\n");
4376 validate_slab_cache(kmalloc_caches[6]);
4377
4378 printk(KERN_ERR "\nB. Corruption after free\n");
4379 p = kzalloc(128, GFP_KERNEL);
4380 kfree(p);
4381 *p = 0x78;
4382 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4383 validate_slab_cache(kmalloc_caches[7]);
4384
4385 p = kzalloc(256, GFP_KERNEL);
4386 kfree(p);
4387 p[50] = 0x9a;
4388 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4389 p);
4390 validate_slab_cache(kmalloc_caches[8]);
4391
4392 p = kzalloc(512, GFP_KERNEL);
4393 kfree(p);
4394 p[512] = 0xab;
4395 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4396 validate_slab_cache(kmalloc_caches[9]);
4397 }
4398 #else
4399 #ifdef CONFIG_SYSFS
4400 static void resiliency_test(void) {};
4401 #endif
4402 #endif
4403
4404 #ifdef CONFIG_SYSFS
4405 enum slab_stat_type {
4406 SL_ALL, /* All slabs */
4407 SL_PARTIAL, /* Only partially allocated slabs */
4408 SL_CPU, /* Only slabs used for cpu caches */
4409 SL_OBJECTS, /* Determine allocated objects not slabs */
4410 SL_TOTAL /* Determine object capacity not slabs */
4411 };
4412
4413 #define SO_ALL (1 << SL_ALL)
4414 #define SO_PARTIAL (1 << SL_PARTIAL)
4415 #define SO_CPU (1 << SL_CPU)
4416 #define SO_OBJECTS (1 << SL_OBJECTS)
4417 #define SO_TOTAL (1 << SL_TOTAL)
4418
4419 static ssize_t show_slab_objects(struct kmem_cache *s,
4420 char *buf, unsigned long flags)
4421 {
4422 unsigned long total = 0;
4423 int node;
4424 int x;
4425 unsigned long *nodes;
4426 unsigned long *per_cpu;
4427
4428 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4429 if (!nodes)
4430 return -ENOMEM;
4431 per_cpu = nodes + nr_node_ids;
4432
4433 if (flags & SO_CPU) {
4434 int cpu;
4435
4436 for_each_possible_cpu(cpu) {
4437 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4438 struct page *page;
4439
4440 if (!c || c->node < 0)
4441 continue;
4442
4443 if (c->page) {
4444 if (flags & SO_TOTAL)
4445 x = c->page->objects;
4446 else if (flags & SO_OBJECTS)
4447 x = c->page->inuse;
4448 else
4449 x = 1;
4450
4451 total += x;
4452 nodes[c->node] += x;
4453 }
4454 page = c->partial;
4455
4456 if (page) {
4457 x = page->pobjects;
4458 total += x;
4459 nodes[c->node] += x;
4460 }
4461 per_cpu[c->node]++;
4462 }
4463 }
4464
4465 lock_memory_hotplug();
4466 #ifdef CONFIG_SLUB_DEBUG
4467 if (flags & SO_ALL) {
4468 for_each_node_state(node, N_NORMAL_MEMORY) {
4469 struct kmem_cache_node *n = get_node(s, node);
4470
4471 if (flags & SO_TOTAL)
4472 x = atomic_long_read(&n->total_objects);
4473 else if (flags & SO_OBJECTS)
4474 x = atomic_long_read(&n->total_objects) -
4475 count_partial(n, count_free);
4476
4477 else
4478 x = atomic_long_read(&n->nr_slabs);
4479 total += x;
4480 nodes[node] += x;
4481 }
4482
4483 } else
4484 #endif
4485 if (flags & SO_PARTIAL) {
4486 for_each_node_state(node, N_NORMAL_MEMORY) {
4487 struct kmem_cache_node *n = get_node(s, node);
4488
4489 if (flags & SO_TOTAL)
4490 x = count_partial(n, count_total);
4491 else if (flags & SO_OBJECTS)
4492 x = count_partial(n, count_inuse);
4493 else
4494 x = n->nr_partial;
4495 total += x;
4496 nodes[node] += x;
4497 }
4498 }
4499 x = sprintf(buf, "%lu", total);
4500 #ifdef CONFIG_NUMA
4501 for_each_node_state(node, N_NORMAL_MEMORY)
4502 if (nodes[node])
4503 x += sprintf(buf + x, " N%d=%lu",
4504 node, nodes[node]);
4505 #endif
4506 unlock_memory_hotplug();
4507 kfree(nodes);
4508 return x + sprintf(buf + x, "\n");
4509 }
4510
4511 #ifdef CONFIG_SLUB_DEBUG
4512 static int any_slab_objects(struct kmem_cache *s)
4513 {
4514 int node;
4515
4516 for_each_online_node(node) {
4517 struct kmem_cache_node *n = get_node(s, node);
4518
4519 if (!n)
4520 continue;
4521
4522 if (atomic_long_read(&n->total_objects))
4523 return 1;
4524 }
4525 return 0;
4526 }
4527 #endif
4528
4529 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4530 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4531
4532 struct slab_attribute {
4533 struct attribute attr;
4534 ssize_t (*show)(struct kmem_cache *s, char *buf);
4535 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4536 };
4537
4538 #define SLAB_ATTR_RO(_name) \
4539 static struct slab_attribute _name##_attr = \
4540 __ATTR(_name, 0400, _name##_show, NULL)
4541
4542 #define SLAB_ATTR(_name) \
4543 static struct slab_attribute _name##_attr = \
4544 __ATTR(_name, 0600, _name##_show, _name##_store)
4545
4546 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4547 {
4548 return sprintf(buf, "%d\n", s->size);
4549 }
4550 SLAB_ATTR_RO(slab_size);
4551
4552 static ssize_t align_show(struct kmem_cache *s, char *buf)
4553 {
4554 return sprintf(buf, "%d\n", s->align);
4555 }
4556 SLAB_ATTR_RO(align);
4557
4558 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4559 {
4560 return sprintf(buf, "%d\n", s->objsize);
4561 }
4562 SLAB_ATTR_RO(object_size);
4563
4564 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4565 {
4566 return sprintf(buf, "%d\n", oo_objects(s->oo));
4567 }
4568 SLAB_ATTR_RO(objs_per_slab);
4569
4570 static ssize_t order_store(struct kmem_cache *s,
4571 const char *buf, size_t length)
4572 {
4573 unsigned long order;
4574 int err;
4575
4576 err = strict_strtoul(buf, 10, &order);
4577 if (err)
4578 return err;
4579
4580 if (order > slub_max_order || order < slub_min_order)
4581 return -EINVAL;
4582
4583 calculate_sizes(s, order);
4584 return length;
4585 }
4586
4587 static ssize_t order_show(struct kmem_cache *s, char *buf)
4588 {
4589 return sprintf(buf, "%d\n", oo_order(s->oo));
4590 }
4591 SLAB_ATTR(order);
4592
4593 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4594 {
4595 return sprintf(buf, "%lu\n", s->min_partial);
4596 }
4597
4598 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4599 size_t length)
4600 {
4601 unsigned long min;
4602 int err;
4603
4604 err = strict_strtoul(buf, 10, &min);
4605 if (err)
4606 return err;
4607
4608 set_min_partial(s, min);
4609 return length;
4610 }
4611 SLAB_ATTR(min_partial);
4612
4613 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4614 {
4615 return sprintf(buf, "%u\n", s->cpu_partial);
4616 }
4617
4618 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4619 size_t length)
4620 {
4621 unsigned long objects;
4622 int err;
4623
4624 err = strict_strtoul(buf, 10, &objects);
4625 if (err)
4626 return err;
4627
4628 s->cpu_partial = objects;
4629 flush_all(s);
4630 return length;
4631 }
4632 SLAB_ATTR(cpu_partial);
4633
4634 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4635 {
4636 if (!s->ctor)
4637 return 0;
4638 return sprintf(buf, "%pS\n", s->ctor);
4639 }
4640 SLAB_ATTR_RO(ctor);
4641
4642 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4643 {
4644 return sprintf(buf, "%d\n", s->refcount - 1);
4645 }
4646 SLAB_ATTR_RO(aliases);
4647
4648 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4649 {
4650 return show_slab_objects(s, buf, SO_PARTIAL);
4651 }
4652 SLAB_ATTR_RO(partial);
4653
4654 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4655 {
4656 return show_slab_objects(s, buf, SO_CPU);
4657 }
4658 SLAB_ATTR_RO(cpu_slabs);
4659
4660 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4661 {
4662 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4663 }
4664 SLAB_ATTR_RO(objects);
4665
4666 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4667 {
4668 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4669 }
4670 SLAB_ATTR_RO(objects_partial);
4671
4672 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4673 {
4674 int objects = 0;
4675 int pages = 0;
4676 int cpu;
4677 int len;
4678
4679 for_each_online_cpu(cpu) {
4680 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4681
4682 if (page) {
4683 pages += page->pages;
4684 objects += page->pobjects;
4685 }
4686 }
4687
4688 len = sprintf(buf, "%d(%d)", objects, pages);
4689
4690 #ifdef CONFIG_SMP
4691 for_each_online_cpu(cpu) {
4692 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4693
4694 if (page && len < PAGE_SIZE - 20)
4695 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4696 page->pobjects, page->pages);
4697 }
4698 #endif
4699 return len + sprintf(buf + len, "\n");
4700 }
4701 SLAB_ATTR_RO(slabs_cpu_partial);
4702
4703 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4704 {
4705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4706 }
4707
4708 static ssize_t reclaim_account_store(struct kmem_cache *s,
4709 const char *buf, size_t length)
4710 {
4711 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4712 if (buf[0] == '1')
4713 s->flags |= SLAB_RECLAIM_ACCOUNT;
4714 return length;
4715 }
4716 SLAB_ATTR(reclaim_account);
4717
4718 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4719 {
4720 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4721 }
4722 SLAB_ATTR_RO(hwcache_align);
4723
4724 #ifdef CONFIG_ZONE_DMA
4725 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4726 {
4727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4728 }
4729 SLAB_ATTR_RO(cache_dma);
4730 #endif
4731
4732 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4733 {
4734 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4735 }
4736 SLAB_ATTR_RO(destroy_by_rcu);
4737
4738 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4739 {
4740 return sprintf(buf, "%d\n", s->reserved);
4741 }
4742 SLAB_ATTR_RO(reserved);
4743
4744 #ifdef CONFIG_SLUB_DEBUG
4745 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4746 {
4747 return show_slab_objects(s, buf, SO_ALL);
4748 }
4749 SLAB_ATTR_RO(slabs);
4750
4751 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4752 {
4753 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4754 }
4755 SLAB_ATTR_RO(total_objects);
4756
4757 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4758 {
4759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4760 }
4761
4762 static ssize_t sanity_checks_store(struct kmem_cache *s,
4763 const char *buf, size_t length)
4764 {
4765 s->flags &= ~SLAB_DEBUG_FREE;
4766 if (buf[0] == '1') {
4767 s->flags &= ~__CMPXCHG_DOUBLE;
4768 s->flags |= SLAB_DEBUG_FREE;
4769 }
4770 return length;
4771 }
4772 SLAB_ATTR(sanity_checks);
4773
4774 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4775 {
4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4777 }
4778
4779 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4780 size_t length)
4781 {
4782 s->flags &= ~SLAB_TRACE;
4783 if (buf[0] == '1') {
4784 s->flags &= ~__CMPXCHG_DOUBLE;
4785 s->flags |= SLAB_TRACE;
4786 }
4787 return length;
4788 }
4789 SLAB_ATTR(trace);
4790
4791 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4792 {
4793 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4794 }
4795
4796 static ssize_t red_zone_store(struct kmem_cache *s,
4797 const char *buf, size_t length)
4798 {
4799 if (any_slab_objects(s))
4800 return -EBUSY;
4801
4802 s->flags &= ~SLAB_RED_ZONE;
4803 if (buf[0] == '1') {
4804 s->flags &= ~__CMPXCHG_DOUBLE;
4805 s->flags |= SLAB_RED_ZONE;
4806 }
4807 calculate_sizes(s, -1);
4808 return length;
4809 }
4810 SLAB_ATTR(red_zone);
4811
4812 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4813 {
4814 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4815 }
4816
4817 static ssize_t poison_store(struct kmem_cache *s,
4818 const char *buf, size_t length)
4819 {
4820 if (any_slab_objects(s))
4821 return -EBUSY;
4822
4823 s->flags &= ~SLAB_POISON;
4824 if (buf[0] == '1') {
4825 s->flags &= ~__CMPXCHG_DOUBLE;
4826 s->flags |= SLAB_POISON;
4827 }
4828 calculate_sizes(s, -1);
4829 return length;
4830 }
4831 SLAB_ATTR(poison);
4832
4833 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4834 {
4835 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4836 }
4837
4838 static ssize_t store_user_store(struct kmem_cache *s,
4839 const char *buf, size_t length)
4840 {
4841 if (any_slab_objects(s))
4842 return -EBUSY;
4843
4844 s->flags &= ~SLAB_STORE_USER;
4845 if (buf[0] == '1') {
4846 s->flags &= ~__CMPXCHG_DOUBLE;
4847 s->flags |= SLAB_STORE_USER;
4848 }
4849 calculate_sizes(s, -1);
4850 return length;
4851 }
4852 SLAB_ATTR(store_user);
4853
4854 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4855 {
4856 return 0;
4857 }
4858
4859 static ssize_t validate_store(struct kmem_cache *s,
4860 const char *buf, size_t length)
4861 {
4862 int ret = -EINVAL;
4863
4864 if (buf[0] == '1') {
4865 ret = validate_slab_cache(s);
4866 if (ret >= 0)
4867 ret = length;
4868 }
4869 return ret;
4870 }
4871 SLAB_ATTR(validate);
4872
4873 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4874 {
4875 if (!(s->flags & SLAB_STORE_USER))
4876 return -ENOSYS;
4877 return list_locations(s, buf, TRACK_ALLOC);
4878 }
4879 SLAB_ATTR_RO(alloc_calls);
4880
4881 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4882 {
4883 if (!(s->flags & SLAB_STORE_USER))
4884 return -ENOSYS;
4885 return list_locations(s, buf, TRACK_FREE);
4886 }
4887 SLAB_ATTR_RO(free_calls);
4888 #endif /* CONFIG_SLUB_DEBUG */
4889
4890 #ifdef CONFIG_FAILSLAB
4891 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4892 {
4893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4894 }
4895
4896 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4897 size_t length)
4898 {
4899 s->flags &= ~SLAB_FAILSLAB;
4900 if (buf[0] == '1')
4901 s->flags |= SLAB_FAILSLAB;
4902 return length;
4903 }
4904 SLAB_ATTR(failslab);
4905 #endif
4906
4907 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4908 {
4909 return 0;
4910 }
4911
4912 static ssize_t shrink_store(struct kmem_cache *s,
4913 const char *buf, size_t length)
4914 {
4915 if (buf[0] == '1') {
4916 int rc = kmem_cache_shrink(s);
4917
4918 if (rc)
4919 return rc;
4920 } else
4921 return -EINVAL;
4922 return length;
4923 }
4924 SLAB_ATTR(shrink);
4925
4926 #ifdef CONFIG_NUMA
4927 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4928 {
4929 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4930 }
4931
4932 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4933 const char *buf, size_t length)
4934 {
4935 unsigned long ratio;
4936 int err;
4937
4938 err = strict_strtoul(buf, 10, &ratio);
4939 if (err)
4940 return err;
4941
4942 if (ratio <= 100)
4943 s->remote_node_defrag_ratio = ratio * 10;
4944
4945 return length;
4946 }
4947 SLAB_ATTR(remote_node_defrag_ratio);
4948 #endif
4949
4950 #ifdef CONFIG_SLUB_STATS
4951 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4952 {
4953 unsigned long sum = 0;
4954 int cpu;
4955 int len;
4956 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4957
4958 if (!data)
4959 return -ENOMEM;
4960
4961 for_each_online_cpu(cpu) {
4962 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4963
4964 data[cpu] = x;
4965 sum += x;
4966 }
4967
4968 len = sprintf(buf, "%lu", sum);
4969
4970 #ifdef CONFIG_SMP
4971 for_each_online_cpu(cpu) {
4972 if (data[cpu] && len < PAGE_SIZE - 20)
4973 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4974 }
4975 #endif
4976 kfree(data);
4977 return len + sprintf(buf + len, "\n");
4978 }
4979
4980 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4981 {
4982 int cpu;
4983
4984 for_each_online_cpu(cpu)
4985 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4986 }
4987
4988 #define STAT_ATTR(si, text) \
4989 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4990 { \
4991 return show_stat(s, buf, si); \
4992 } \
4993 static ssize_t text##_store(struct kmem_cache *s, \
4994 const char *buf, size_t length) \
4995 { \
4996 if (buf[0] != '0') \
4997 return -EINVAL; \
4998 clear_stat(s, si); \
4999 return length; \
5000 } \
5001 SLAB_ATTR(text); \
5002
5003 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5004 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5005 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5006 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5007 STAT_ATTR(FREE_FROZEN, free_frozen);
5008 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5009 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5010 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5011 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5012 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5013 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5014 STAT_ATTR(FREE_SLAB, free_slab);
5015 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5016 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5017 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5018 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5019 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5020 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5021 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5022 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5023 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5024 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5025 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5026 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5027 #endif
5028
5029 static struct attribute *slab_attrs[] = {
5030 &slab_size_attr.attr,
5031 &object_size_attr.attr,
5032 &objs_per_slab_attr.attr,
5033 &order_attr.attr,
5034 &min_partial_attr.attr,
5035 &cpu_partial_attr.attr,
5036 &objects_attr.attr,
5037 &objects_partial_attr.attr,
5038 &partial_attr.attr,
5039 &cpu_slabs_attr.attr,
5040 &ctor_attr.attr,
5041 &aliases_attr.attr,
5042 &align_attr.attr,
5043 &hwcache_align_attr.attr,
5044 &reclaim_account_attr.attr,
5045 &destroy_by_rcu_attr.attr,
5046 &shrink_attr.attr,
5047 &reserved_attr.attr,
5048 &slabs_cpu_partial_attr.attr,
5049 #ifdef CONFIG_SLUB_DEBUG
5050 &total_objects_attr.attr,
5051 &slabs_attr.attr,
5052 &sanity_checks_attr.attr,
5053 &trace_attr.attr,
5054 &red_zone_attr.attr,
5055 &poison_attr.attr,
5056 &store_user_attr.attr,
5057 &validate_attr.attr,
5058 &alloc_calls_attr.attr,
5059 &free_calls_attr.attr,
5060 #endif
5061 #ifdef CONFIG_ZONE_DMA
5062 &cache_dma_attr.attr,
5063 #endif
5064 #ifdef CONFIG_NUMA
5065 &remote_node_defrag_ratio_attr.attr,
5066 #endif
5067 #ifdef CONFIG_SLUB_STATS
5068 &alloc_fastpath_attr.attr,
5069 &alloc_slowpath_attr.attr,
5070 &free_fastpath_attr.attr,
5071 &free_slowpath_attr.attr,
5072 &free_frozen_attr.attr,
5073 &free_add_partial_attr.attr,
5074 &free_remove_partial_attr.attr,
5075 &alloc_from_partial_attr.attr,
5076 &alloc_slab_attr.attr,
5077 &alloc_refill_attr.attr,
5078 &alloc_node_mismatch_attr.attr,
5079 &free_slab_attr.attr,
5080 &cpuslab_flush_attr.attr,
5081 &deactivate_full_attr.attr,
5082 &deactivate_empty_attr.attr,
5083 &deactivate_to_head_attr.attr,
5084 &deactivate_to_tail_attr.attr,
5085 &deactivate_remote_frees_attr.attr,
5086 &deactivate_bypass_attr.attr,
5087 &order_fallback_attr.attr,
5088 &cmpxchg_double_fail_attr.attr,
5089 &cmpxchg_double_cpu_fail_attr.attr,
5090 &cpu_partial_alloc_attr.attr,
5091 &cpu_partial_free_attr.attr,
5092 #endif
5093 #ifdef CONFIG_FAILSLAB
5094 &failslab_attr.attr,
5095 #endif
5096
5097 NULL
5098 };
5099
5100 static struct attribute_group slab_attr_group = {
5101 .attrs = slab_attrs,
5102 };
5103
5104 static ssize_t slab_attr_show(struct kobject *kobj,
5105 struct attribute *attr,
5106 char *buf)
5107 {
5108 struct slab_attribute *attribute;
5109 struct kmem_cache *s;
5110 int err;
5111
5112 attribute = to_slab_attr(attr);
5113 s = to_slab(kobj);
5114
5115 if (!attribute->show)
5116 return -EIO;
5117
5118 err = attribute->show(s, buf);
5119
5120 return err;
5121 }
5122
5123 static ssize_t slab_attr_store(struct kobject *kobj,
5124 struct attribute *attr,
5125 const char *buf, size_t len)
5126 {
5127 struct slab_attribute *attribute;
5128 struct kmem_cache *s;
5129 int err;
5130
5131 attribute = to_slab_attr(attr);
5132 s = to_slab(kobj);
5133
5134 if (!attribute->store)
5135 return -EIO;
5136
5137 err = attribute->store(s, buf, len);
5138
5139 return err;
5140 }
5141
5142 static void kmem_cache_release(struct kobject *kobj)
5143 {
5144 struct kmem_cache *s = to_slab(kobj);
5145
5146 kfree(s->name);
5147 kfree(s);
5148 }
5149
5150 static const struct sysfs_ops slab_sysfs_ops = {
5151 .show = slab_attr_show,
5152 .store = slab_attr_store,
5153 };
5154
5155 static struct kobj_type slab_ktype = {
5156 .sysfs_ops = &slab_sysfs_ops,
5157 .release = kmem_cache_release
5158 };
5159
5160 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5161 {
5162 struct kobj_type *ktype = get_ktype(kobj);
5163
5164 if (ktype == &slab_ktype)
5165 return 1;
5166 return 0;
5167 }
5168
5169 static const struct kset_uevent_ops slab_uevent_ops = {
5170 .filter = uevent_filter,
5171 };
5172
5173 static struct kset *slab_kset;
5174
5175 #define ID_STR_LENGTH 64
5176
5177 /* Create a unique string id for a slab cache:
5178 *
5179 * Format :[flags-]size
5180 */
5181 static char *create_unique_id(struct kmem_cache *s)
5182 {
5183 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5184 char *p = name;
5185
5186 BUG_ON(!name);
5187
5188 *p++ = ':';
5189 /*
5190 * First flags affecting slabcache operations. We will only
5191 * get here for aliasable slabs so we do not need to support
5192 * too many flags. The flags here must cover all flags that
5193 * are matched during merging to guarantee that the id is
5194 * unique.
5195 */
5196 if (s->flags & SLAB_CACHE_DMA)
5197 *p++ = 'd';
5198 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5199 *p++ = 'a';
5200 if (s->flags & SLAB_DEBUG_FREE)
5201 *p++ = 'F';
5202 if (!(s->flags & SLAB_NOTRACK))
5203 *p++ = 't';
5204 if (p != name + 1)
5205 *p++ = '-';
5206 p += sprintf(p, "%07d", s->size);
5207 BUG_ON(p > name + ID_STR_LENGTH - 1);
5208 return name;
5209 }
5210
5211 static int sysfs_slab_add(struct kmem_cache *s)
5212 {
5213 int err;
5214 const char *name;
5215 int unmergeable;
5216
5217 if (slab_state < SYSFS)
5218 /* Defer until later */
5219 return 0;
5220
5221 unmergeable = slab_unmergeable(s);
5222 if (unmergeable) {
5223 /*
5224 * Slabcache can never be merged so we can use the name proper.
5225 * This is typically the case for debug situations. In that
5226 * case we can catch duplicate names easily.
5227 */
5228 sysfs_remove_link(&slab_kset->kobj, s->name);
5229 name = s->name;
5230 } else {
5231 /*
5232 * Create a unique name for the slab as a target
5233 * for the symlinks.
5234 */
5235 name = create_unique_id(s);
5236 }
5237
5238 s->kobj.kset = slab_kset;
5239 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5240 if (err) {
5241 kobject_put(&s->kobj);
5242 return err;
5243 }
5244
5245 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5246 if (err) {
5247 kobject_del(&s->kobj);
5248 kobject_put(&s->kobj);
5249 return err;
5250 }
5251 kobject_uevent(&s->kobj, KOBJ_ADD);
5252 if (!unmergeable) {
5253 /* Setup first alias */
5254 sysfs_slab_alias(s, s->name);
5255 kfree(name);
5256 }
5257 return 0;
5258 }
5259
5260 static void sysfs_slab_remove(struct kmem_cache *s)
5261 {
5262 if (slab_state < SYSFS)
5263 /*
5264 * Sysfs has not been setup yet so no need to remove the
5265 * cache from sysfs.
5266 */
5267 return;
5268
5269 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5270 kobject_del(&s->kobj);
5271 kobject_put(&s->kobj);
5272 }
5273
5274 /*
5275 * Need to buffer aliases during bootup until sysfs becomes
5276 * available lest we lose that information.
5277 */
5278 struct saved_alias {
5279 struct kmem_cache *s;
5280 const char *name;
5281 struct saved_alias *next;
5282 };
5283
5284 static struct saved_alias *alias_list;
5285
5286 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5287 {
5288 struct saved_alias *al;
5289
5290 if (slab_state == SYSFS) {
5291 /*
5292 * If we have a leftover link then remove it.
5293 */
5294 sysfs_remove_link(&slab_kset->kobj, name);
5295 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5296 }
5297
5298 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5299 if (!al)
5300 return -ENOMEM;
5301
5302 al->s = s;
5303 al->name = name;
5304 al->next = alias_list;
5305 alias_list = al;
5306 return 0;
5307 }
5308
5309 static int __init slab_sysfs_init(void)
5310 {
5311 struct kmem_cache *s;
5312 int err;
5313
5314 down_write(&slub_lock);
5315
5316 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5317 if (!slab_kset) {
5318 up_write(&slub_lock);
5319 printk(KERN_ERR "Cannot register slab subsystem.\n");
5320 return -ENOSYS;
5321 }
5322
5323 slab_state = SYSFS;
5324
5325 list_for_each_entry(s, &slab_caches, list) {
5326 err = sysfs_slab_add(s);
5327 if (err)
5328 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5329 " to sysfs\n", s->name);
5330 }
5331
5332 while (alias_list) {
5333 struct saved_alias *al = alias_list;
5334
5335 alias_list = alias_list->next;
5336 err = sysfs_slab_alias(al->s, al->name);
5337 if (err)
5338 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5339 " %s to sysfs\n", s->name);
5340 kfree(al);
5341 }
5342
5343 up_write(&slub_lock);
5344 resiliency_test();
5345 return 0;
5346 }
5347
5348 __initcall(slab_sysfs_init);
5349 #endif /* CONFIG_SYSFS */
5350
5351 /*
5352 * The /proc/slabinfo ABI
5353 */
5354 #ifdef CONFIG_SLABINFO
5355 static void print_slabinfo_header(struct seq_file *m)
5356 {
5357 seq_puts(m, "slabinfo - version: 2.1\n");
5358 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5359 "<objperslab> <pagesperslab>");
5360 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5361 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5362 seq_putc(m, '\n');
5363 }
5364
5365 static void *s_start(struct seq_file *m, loff_t *pos)
5366 {
5367 loff_t n = *pos;
5368
5369 down_read(&slub_lock);
5370 if (!n)
5371 print_slabinfo_header(m);
5372
5373 return seq_list_start(&slab_caches, *pos);
5374 }
5375
5376 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5377 {
5378 return seq_list_next(p, &slab_caches, pos);
5379 }
5380
5381 static void s_stop(struct seq_file *m, void *p)
5382 {
5383 up_read(&slub_lock);
5384 }
5385
5386 static int s_show(struct seq_file *m, void *p)
5387 {
5388 unsigned long nr_partials = 0;
5389 unsigned long nr_slabs = 0;
5390 unsigned long nr_inuse = 0;
5391 unsigned long nr_objs = 0;
5392 unsigned long nr_free = 0;
5393 struct kmem_cache *s;
5394 int node;
5395
5396 s = list_entry(p, struct kmem_cache, list);
5397
5398 for_each_online_node(node) {
5399 struct kmem_cache_node *n = get_node(s, node);
5400
5401 if (!n)
5402 continue;
5403
5404 nr_partials += n->nr_partial;
5405 nr_slabs += atomic_long_read(&n->nr_slabs);
5406 nr_objs += atomic_long_read(&n->total_objects);
5407 nr_free += count_partial(n, count_free);
5408 }
5409
5410 nr_inuse = nr_objs - nr_free;
5411
5412 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5413 nr_objs, s->size, oo_objects(s->oo),
5414 (1 << oo_order(s->oo)));
5415 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5416 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5417 0UL);
5418 seq_putc(m, '\n');
5419 return 0;
5420 }
5421
5422 static const struct seq_operations slabinfo_op = {
5423 .start = s_start,
5424 .next = s_next,
5425 .stop = s_stop,
5426 .show = s_show,
5427 };
5428
5429 static int slabinfo_open(struct inode *inode, struct file *file)
5430 {
5431 return seq_open(file, &slabinfo_op);
5432 }
5433
5434 static const struct file_operations proc_slabinfo_operations = {
5435 .open = slabinfo_open,
5436 .read = seq_read,
5437 .llseek = seq_lseek,
5438 .release = seq_release,
5439 };
5440
5441 static int __init slab_proc_init(void)
5442 {
5443 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5444 return 0;
5445 }
5446 module_init(slab_proc_init);
5447 #endif /* CONFIG_SLABINFO */
This page took 0.177607 seconds and 5 git commands to generate.