ipvs: Pass ipvs not net to ip_vs_sync_net_cleanup
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470
471 /*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477 static inline void metadata_access_enable(void)
478 {
479 kasan_disable_current();
480 }
481
482 static inline void metadata_access_disable(void)
483 {
484 kasan_enable_current();
485 }
486
487 /*
488 * Object debugging
489 */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 metadata_access_enable();
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
495 metadata_access_disable();
496 }
497
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500 {
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509 }
510
511 static void set_track(struct kmem_cache *s, void *object,
512 enum track_item alloc, unsigned long addr)
513 {
514 struct track *p = get_track(s, object, alloc);
515
516 if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
525 metadata_access_enable();
526 save_stack_trace(&trace);
527 metadata_access_disable();
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536 #endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543 }
544
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553
554 static void print_track(const char *s, struct track *t)
555 {
556 if (!t->addr)
557 return;
558
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 pr_err("\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570 #endif
571 }
572
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581
582 static void print_page_info(struct page *page)
583 {
584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
586
587 }
588
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 struct va_format vaf;
592 va_list args;
593
594 va_start(args, fmt);
595 vaf.fmt = fmt;
596 vaf.va = &args;
597 pr_err("=============================================================================\n");
598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 pr_err("-----------------------------------------------------------------------------\n\n");
600
601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 va_end(args);
603 }
604
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
614 va_end(args);
615 }
616
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 unsigned int off; /* Offset of last byte */
620 u8 *addr = page_address(page);
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
628
629 if (p > addr + 16)
630 print_section("Bytes b4 ", p - 16, 16);
631
632 print_section("Object ", p, min_t(unsigned long, s->object_size,
633 PAGE_SIZE));
634 if (s->flags & SLAB_RED_ZONE)
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
637
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
643 if (s->flags & SLAB_STORE_USER)
644 off += 2 * sizeof(struct track);
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
648 print_section("Padding ", p + off, s->size - off);
649
650 dump_stack();
651 }
652
653 void object_err(struct kmem_cache *s, struct page *page,
654 u8 *object, char *reason)
655 {
656 slab_bug(s, "%s", reason);
657 print_trailer(s, page, object);
658 }
659
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
662 {
663 va_list args;
664 char buf[100];
665
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
668 va_end(args);
669 slab_bug(s, "%s", buf);
670 print_page_info(page);
671 dump_stack();
672 }
673
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
684 memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689 {
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692 }
693
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
696 u8 *start, unsigned int value, unsigned int bytes)
697 {
698 u8 *fault;
699 u8 *end;
700
701 metadata_access_enable();
702 fault = memchr_inv(start, value, bytes);
703 metadata_access_disable();
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
718 }
719
720 /*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
727 *
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
731 * object + s->object_size
732 * Padding to reach word boundary. This is also used for Redzoning.
733 * Padding is extended by another word if Redzoning is enabled and
734 * object_size == inuse.
735 *
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
740 * Meta data starts here.
741 *
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
744 * C. Padding to reach required alignment boundary or at mininum
745 * one word if debugging is on to be able to detect writes
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
749 *
750 * object + s->size
751 * Nothing is used beyond s->size.
752 *
753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
754 * ignored. And therefore no slab options that rely on these boundaries
755 * may be used with merged slabcaches.
756 */
757
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
775 }
776
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
789 start = page_address(page);
790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 end = start + length;
792 remainder = length % s->size;
793 if (!remainder)
794 return 1;
795
796 metadata_access_enable();
797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 metadata_access_disable();
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 print_section("Padding ", end - remainder, remainder);
806
807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 return 0;
809 }
810
811 static int check_object(struct kmem_cache *s, struct page *page,
812 void *object, u8 val)
813 {
814 u8 *p = object;
815 u8 *endobject = object + s->object_size;
816
817 if (s->flags & SLAB_RED_ZONE) {
818 if (!check_bytes_and_report(s, page, object, "Redzone",
819 endobject, val, s->inuse - s->object_size))
820 return 0;
821 } else {
822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 check_bytes_and_report(s, page, p, "Alignment padding",
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
826 }
827 }
828
829 if (s->flags & SLAB_POISON) {
830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 (!check_bytes_and_report(s, page, p, "Poison", p,
832 POISON_FREE, s->object_size - 1) ||
833 !check_bytes_and_report(s, page, p, "Poison",
834 p + s->object_size - 1, POISON_END, 1)))
835 return 0;
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
842 if (!s->offset && val == SLUB_RED_ACTIVE)
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
853 * No choice but to zap it and thus lose the remainder
854 * of the free objects in this slab. May cause
855 * another error because the object count is now wrong.
856 */
857 set_freepointer(s, p, NULL);
858 return 0;
859 }
860 return 1;
861 }
862
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 int maxobj;
866
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
870 slab_err(s, page, "Not a valid slab page");
871 return 0;
872 }
873
874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
877 page->objects, maxobj);
878 return 0;
879 }
880 if (page->inuse > page->objects) {
881 slab_err(s, page, "inuse %u > max %u",
882 page->inuse, page->objects);
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888 }
889
890 /*
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
893 */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 int nr = 0;
897 void *fp;
898 void *object = NULL;
899 int max_objects;
900
901 fp = page->freelist;
902 while (fp && nr <= page->objects) {
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
909 set_freepointer(s, object, NULL);
910 } else {
911 slab_err(s, page, "Freepointer corrupt");
912 page->freelist = NULL;
913 page->inuse = page->objects;
914 slab_fix(s, "Freelist cleared");
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
934 if (page->inuse != page->objects - nr) {
935 slab_err(s, page, "Wrong object count. Counter is %d but "
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
938 slab_fix(s, "Object count adjusted.");
939 }
940 return search == NULL;
941 }
942
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
945 {
946 if (s->flags & SLAB_TRACE) {
947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
954 print_section("Object ", (void *)object,
955 s->object_size);
956
957 dump_stack();
958 }
959 }
960
961 /*
962 * Tracking of fully allocated slabs for debugging purposes.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 lockdep_assert_held(&n->list_lock);
971 list_add(&page->lru, &n->full);
972 }
973
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
979 lockdep_assert_held(&n->list_lock);
980 list_del(&page->lru);
981 }
982
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989 }
990
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 return atomic_long_read(&n->nr_slabs);
994 }
995
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
1006 if (likely(n)) {
1007 atomic_long_inc(&n->nr_slabs);
1008 atomic_long_add(objects, &n->total_objects);
1009 }
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
1016 atomic_long_sub(objects, &n->total_objects);
1017 }
1018
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022 {
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
1026 init_object(s, object, SLUB_RED_INACTIVE);
1027 init_tracking(s, object);
1028 }
1029
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
1098 dump_stack();
1099 } else
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
1102 goto fail;
1103 }
1104
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
1108 init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 slab_unlock(page);
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
1116
1117 fail:
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
1120 slab_fix(s, "Object at 0x%p not freed", object);
1121 return NULL;
1122 }
1123
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
1150 for (; *str && *str != ','; str++) {
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
1177 default:
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
1180 }
1181 }
1182
1183 check_slabs:
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
1186 out:
1187 return 1;
1188 }
1189
1190 __setup("slub_debug", setup_slub_debug);
1191
1192 unsigned long kmem_cache_flags(unsigned long object_size,
1193 unsigned long flags, const char *name,
1194 void (*ctor)(void *))
1195 {
1196 /*
1197 * Enable debugging if selected on the kernel commandline.
1198 */
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201 flags |= slub_debug;
1202
1203 return flags;
1204 }
1205 #else
1206 static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
1208
1209 static inline int alloc_debug_processing(struct kmem_cache *s,
1210 struct page *page, void *object, unsigned long addr) { return 0; }
1211
1212 static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
1215
1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218 static inline int check_object(struct kmem_cache *s, struct page *page,
1219 void *object, u8 val) { return 1; }
1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 unsigned long kmem_cache_flags(unsigned long object_size,
1225 unsigned long flags, const char *name,
1226 void (*ctor)(void *))
1227 {
1228 return flags;
1229 }
1230 #define slub_debug 0
1231
1232 #define disable_higher_order_debug 0
1233
1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
1238 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242
1243 #endif /* CONFIG_SLUB_DEBUG */
1244
1245 /*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250 {
1251 kmemleak_alloc(ptr, size, 1, flags);
1252 kasan_kmalloc_large(ptr, size);
1253 }
1254
1255 static inline void kfree_hook(const void *x)
1256 {
1257 kmemleak_free(x);
1258 kasan_kfree_large(x);
1259 }
1260
1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
1263 {
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
1267
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
1272 }
1273
1274 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
1276 {
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280 memcg_kmem_put_cache(s);
1281 kasan_slab_alloc(s, object);
1282 }
1283
1284 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285 {
1286 kmemleak_free_recursive(x, s->flags);
1287
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302 #endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
1305
1306 kasan_slab_free(s, x);
1307 }
1308
1309 static void setup_object(struct kmem_cache *s, struct page *page,
1310 void *object)
1311 {
1312 setup_object_debug(s, page, object);
1313 if (unlikely(s->ctor)) {
1314 kasan_unpoison_object_data(s, object);
1315 s->ctor(object);
1316 kasan_poison_object_data(s, object);
1317 }
1318 }
1319
1320 /*
1321 * Slab allocation and freeing
1322 */
1323 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1324 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1325 {
1326 struct page *page;
1327 int order = oo_order(oo);
1328
1329 flags |= __GFP_NOTRACK;
1330
1331 if (memcg_charge_slab(s, flags, order))
1332 return NULL;
1333
1334 if (node == NUMA_NO_NODE)
1335 page = alloc_pages(flags, order);
1336 else
1337 page = __alloc_pages_node(node, flags, order);
1338
1339 if (!page)
1340 memcg_uncharge_slab(s, order);
1341
1342 return page;
1343 }
1344
1345 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 struct page *page;
1348 struct kmem_cache_order_objects oo = s->oo;
1349 gfp_t alloc_gfp;
1350 void *start, *p;
1351 int idx, order;
1352
1353 flags &= gfp_allowed_mask;
1354
1355 if (flags & __GFP_WAIT)
1356 local_irq_enable();
1357
1358 flags |= s->allocflags;
1359
1360 /*
1361 * Let the initial higher-order allocation fail under memory pressure
1362 * so we fall-back to the minimum order allocation.
1363 */
1364 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1365 if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min))
1366 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT;
1367
1368 page = alloc_slab_page(s, alloc_gfp, node, oo);
1369 if (unlikely(!page)) {
1370 oo = s->min;
1371 alloc_gfp = flags;
1372 /*
1373 * Allocation may have failed due to fragmentation.
1374 * Try a lower order alloc if possible
1375 */
1376 page = alloc_slab_page(s, alloc_gfp, node, oo);
1377 if (unlikely(!page))
1378 goto out;
1379 stat(s, ORDER_FALLBACK);
1380 }
1381
1382 if (kmemcheck_enabled &&
1383 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1384 int pages = 1 << oo_order(oo);
1385
1386 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1387
1388 /*
1389 * Objects from caches that have a constructor don't get
1390 * cleared when they're allocated, so we need to do it here.
1391 */
1392 if (s->ctor)
1393 kmemcheck_mark_uninitialized_pages(page, pages);
1394 else
1395 kmemcheck_mark_unallocated_pages(page, pages);
1396 }
1397
1398 page->objects = oo_objects(oo);
1399
1400 order = compound_order(page);
1401 page->slab_cache = s;
1402 __SetPageSlab(page);
1403 if (page_is_pfmemalloc(page))
1404 SetPageSlabPfmemalloc(page);
1405
1406 start = page_address(page);
1407
1408 if (unlikely(s->flags & SLAB_POISON))
1409 memset(start, POISON_INUSE, PAGE_SIZE << order);
1410
1411 kasan_poison_slab(page);
1412
1413 for_each_object_idx(p, idx, s, start, page->objects) {
1414 setup_object(s, page, p);
1415 if (likely(idx < page->objects))
1416 set_freepointer(s, p, p + s->size);
1417 else
1418 set_freepointer(s, p, NULL);
1419 }
1420
1421 page->freelist = start;
1422 page->inuse = page->objects;
1423 page->frozen = 1;
1424
1425 out:
1426 if (flags & __GFP_WAIT)
1427 local_irq_disable();
1428 if (!page)
1429 return NULL;
1430
1431 mod_zone_page_state(page_zone(page),
1432 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1433 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1434 1 << oo_order(oo));
1435
1436 inc_slabs_node(s, page_to_nid(page), page->objects);
1437
1438 return page;
1439 }
1440
1441 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1442 {
1443 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1444 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1445 BUG();
1446 }
1447
1448 return allocate_slab(s,
1449 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1450 }
1451
1452 static void __free_slab(struct kmem_cache *s, struct page *page)
1453 {
1454 int order = compound_order(page);
1455 int pages = 1 << order;
1456
1457 if (kmem_cache_debug(s)) {
1458 void *p;
1459
1460 slab_pad_check(s, page);
1461 for_each_object(p, s, page_address(page),
1462 page->objects)
1463 check_object(s, page, p, SLUB_RED_INACTIVE);
1464 }
1465
1466 kmemcheck_free_shadow(page, compound_order(page));
1467
1468 mod_zone_page_state(page_zone(page),
1469 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1470 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1471 -pages);
1472
1473 __ClearPageSlabPfmemalloc(page);
1474 __ClearPageSlab(page);
1475
1476 page_mapcount_reset(page);
1477 if (current->reclaim_state)
1478 current->reclaim_state->reclaimed_slab += pages;
1479 __free_pages(page, order);
1480 memcg_uncharge_slab(s, order);
1481 }
1482
1483 #define need_reserve_slab_rcu \
1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485
1486 static void rcu_free_slab(struct rcu_head *h)
1487 {
1488 struct page *page;
1489
1490 if (need_reserve_slab_rcu)
1491 page = virt_to_head_page(h);
1492 else
1493 page = container_of((struct list_head *)h, struct page, lru);
1494
1495 __free_slab(page->slab_cache, page);
1496 }
1497
1498 static void free_slab(struct kmem_cache *s, struct page *page)
1499 {
1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1501 struct rcu_head *head;
1502
1503 if (need_reserve_slab_rcu) {
1504 int order = compound_order(page);
1505 int offset = (PAGE_SIZE << order) - s->reserved;
1506
1507 VM_BUG_ON(s->reserved != sizeof(*head));
1508 head = page_address(page) + offset;
1509 } else {
1510 /*
1511 * RCU free overloads the RCU head over the LRU
1512 */
1513 head = (void *)&page->lru;
1514 }
1515
1516 call_rcu(head, rcu_free_slab);
1517 } else
1518 __free_slab(s, page);
1519 }
1520
1521 static void discard_slab(struct kmem_cache *s, struct page *page)
1522 {
1523 dec_slabs_node(s, page_to_nid(page), page->objects);
1524 free_slab(s, page);
1525 }
1526
1527 /*
1528 * Management of partially allocated slabs.
1529 */
1530 static inline void
1531 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1532 {
1533 n->nr_partial++;
1534 if (tail == DEACTIVATE_TO_TAIL)
1535 list_add_tail(&page->lru, &n->partial);
1536 else
1537 list_add(&page->lru, &n->partial);
1538 }
1539
1540 static inline void add_partial(struct kmem_cache_node *n,
1541 struct page *page, int tail)
1542 {
1543 lockdep_assert_held(&n->list_lock);
1544 __add_partial(n, page, tail);
1545 }
1546
1547 static inline void
1548 __remove_partial(struct kmem_cache_node *n, struct page *page)
1549 {
1550 list_del(&page->lru);
1551 n->nr_partial--;
1552 }
1553
1554 static inline void remove_partial(struct kmem_cache_node *n,
1555 struct page *page)
1556 {
1557 lockdep_assert_held(&n->list_lock);
1558 __remove_partial(n, page);
1559 }
1560
1561 /*
1562 * Remove slab from the partial list, freeze it and
1563 * return the pointer to the freelist.
1564 *
1565 * Returns a list of objects or NULL if it fails.
1566 */
1567 static inline void *acquire_slab(struct kmem_cache *s,
1568 struct kmem_cache_node *n, struct page *page,
1569 int mode, int *objects)
1570 {
1571 void *freelist;
1572 unsigned long counters;
1573 struct page new;
1574
1575 lockdep_assert_held(&n->list_lock);
1576
1577 /*
1578 * Zap the freelist and set the frozen bit.
1579 * The old freelist is the list of objects for the
1580 * per cpu allocation list.
1581 */
1582 freelist = page->freelist;
1583 counters = page->counters;
1584 new.counters = counters;
1585 *objects = new.objects - new.inuse;
1586 if (mode) {
1587 new.inuse = page->objects;
1588 new.freelist = NULL;
1589 } else {
1590 new.freelist = freelist;
1591 }
1592
1593 VM_BUG_ON(new.frozen);
1594 new.frozen = 1;
1595
1596 if (!__cmpxchg_double_slab(s, page,
1597 freelist, counters,
1598 new.freelist, new.counters,
1599 "acquire_slab"))
1600 return NULL;
1601
1602 remove_partial(n, page);
1603 WARN_ON(!freelist);
1604 return freelist;
1605 }
1606
1607 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1608 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1609
1610 /*
1611 * Try to allocate a partial slab from a specific node.
1612 */
1613 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1614 struct kmem_cache_cpu *c, gfp_t flags)
1615 {
1616 struct page *page, *page2;
1617 void *object = NULL;
1618 int available = 0;
1619 int objects;
1620
1621 /*
1622 * Racy check. If we mistakenly see no partial slabs then we
1623 * just allocate an empty slab. If we mistakenly try to get a
1624 * partial slab and there is none available then get_partials()
1625 * will return NULL.
1626 */
1627 if (!n || !n->nr_partial)
1628 return NULL;
1629
1630 spin_lock(&n->list_lock);
1631 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1632 void *t;
1633
1634 if (!pfmemalloc_match(page, flags))
1635 continue;
1636
1637 t = acquire_slab(s, n, page, object == NULL, &objects);
1638 if (!t)
1639 break;
1640
1641 available += objects;
1642 if (!object) {
1643 c->page = page;
1644 stat(s, ALLOC_FROM_PARTIAL);
1645 object = t;
1646 } else {
1647 put_cpu_partial(s, page, 0);
1648 stat(s, CPU_PARTIAL_NODE);
1649 }
1650 if (!kmem_cache_has_cpu_partial(s)
1651 || available > s->cpu_partial / 2)
1652 break;
1653
1654 }
1655 spin_unlock(&n->list_lock);
1656 return object;
1657 }
1658
1659 /*
1660 * Get a page from somewhere. Search in increasing NUMA distances.
1661 */
1662 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1663 struct kmem_cache_cpu *c)
1664 {
1665 #ifdef CONFIG_NUMA
1666 struct zonelist *zonelist;
1667 struct zoneref *z;
1668 struct zone *zone;
1669 enum zone_type high_zoneidx = gfp_zone(flags);
1670 void *object;
1671 unsigned int cpuset_mems_cookie;
1672
1673 /*
1674 * The defrag ratio allows a configuration of the tradeoffs between
1675 * inter node defragmentation and node local allocations. A lower
1676 * defrag_ratio increases the tendency to do local allocations
1677 * instead of attempting to obtain partial slabs from other nodes.
1678 *
1679 * If the defrag_ratio is set to 0 then kmalloc() always
1680 * returns node local objects. If the ratio is higher then kmalloc()
1681 * may return off node objects because partial slabs are obtained
1682 * from other nodes and filled up.
1683 *
1684 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1685 * defrag_ratio = 1000) then every (well almost) allocation will
1686 * first attempt to defrag slab caches on other nodes. This means
1687 * scanning over all nodes to look for partial slabs which may be
1688 * expensive if we do it every time we are trying to find a slab
1689 * with available objects.
1690 */
1691 if (!s->remote_node_defrag_ratio ||
1692 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1693 return NULL;
1694
1695 do {
1696 cpuset_mems_cookie = read_mems_allowed_begin();
1697 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1698 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1699 struct kmem_cache_node *n;
1700
1701 n = get_node(s, zone_to_nid(zone));
1702
1703 if (n && cpuset_zone_allowed(zone, flags) &&
1704 n->nr_partial > s->min_partial) {
1705 object = get_partial_node(s, n, c, flags);
1706 if (object) {
1707 /*
1708 * Don't check read_mems_allowed_retry()
1709 * here - if mems_allowed was updated in
1710 * parallel, that was a harmless race
1711 * between allocation and the cpuset
1712 * update
1713 */
1714 return object;
1715 }
1716 }
1717 }
1718 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1719 #endif
1720 return NULL;
1721 }
1722
1723 /*
1724 * Get a partial page, lock it and return it.
1725 */
1726 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1727 struct kmem_cache_cpu *c)
1728 {
1729 void *object;
1730 int searchnode = node;
1731
1732 if (node == NUMA_NO_NODE)
1733 searchnode = numa_mem_id();
1734 else if (!node_present_pages(node))
1735 searchnode = node_to_mem_node(node);
1736
1737 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1738 if (object || node != NUMA_NO_NODE)
1739 return object;
1740
1741 return get_any_partial(s, flags, c);
1742 }
1743
1744 #ifdef CONFIG_PREEMPT
1745 /*
1746 * Calculate the next globally unique transaction for disambiguiation
1747 * during cmpxchg. The transactions start with the cpu number and are then
1748 * incremented by CONFIG_NR_CPUS.
1749 */
1750 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1751 #else
1752 /*
1753 * No preemption supported therefore also no need to check for
1754 * different cpus.
1755 */
1756 #define TID_STEP 1
1757 #endif
1758
1759 static inline unsigned long next_tid(unsigned long tid)
1760 {
1761 return tid + TID_STEP;
1762 }
1763
1764 static inline unsigned int tid_to_cpu(unsigned long tid)
1765 {
1766 return tid % TID_STEP;
1767 }
1768
1769 static inline unsigned long tid_to_event(unsigned long tid)
1770 {
1771 return tid / TID_STEP;
1772 }
1773
1774 static inline unsigned int init_tid(int cpu)
1775 {
1776 return cpu;
1777 }
1778
1779 static inline void note_cmpxchg_failure(const char *n,
1780 const struct kmem_cache *s, unsigned long tid)
1781 {
1782 #ifdef SLUB_DEBUG_CMPXCHG
1783 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1784
1785 pr_info("%s %s: cmpxchg redo ", n, s->name);
1786
1787 #ifdef CONFIG_PREEMPT
1788 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1789 pr_warn("due to cpu change %d -> %d\n",
1790 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1791 else
1792 #endif
1793 if (tid_to_event(tid) != tid_to_event(actual_tid))
1794 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1795 tid_to_event(tid), tid_to_event(actual_tid));
1796 else
1797 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1798 actual_tid, tid, next_tid(tid));
1799 #endif
1800 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1801 }
1802
1803 static void init_kmem_cache_cpus(struct kmem_cache *s)
1804 {
1805 int cpu;
1806
1807 for_each_possible_cpu(cpu)
1808 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1809 }
1810
1811 /*
1812 * Remove the cpu slab
1813 */
1814 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1815 void *freelist)
1816 {
1817 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1818 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1819 int lock = 0;
1820 enum slab_modes l = M_NONE, m = M_NONE;
1821 void *nextfree;
1822 int tail = DEACTIVATE_TO_HEAD;
1823 struct page new;
1824 struct page old;
1825
1826 if (page->freelist) {
1827 stat(s, DEACTIVATE_REMOTE_FREES);
1828 tail = DEACTIVATE_TO_TAIL;
1829 }
1830
1831 /*
1832 * Stage one: Free all available per cpu objects back
1833 * to the page freelist while it is still frozen. Leave the
1834 * last one.
1835 *
1836 * There is no need to take the list->lock because the page
1837 * is still frozen.
1838 */
1839 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1840 void *prior;
1841 unsigned long counters;
1842
1843 do {
1844 prior = page->freelist;
1845 counters = page->counters;
1846 set_freepointer(s, freelist, prior);
1847 new.counters = counters;
1848 new.inuse--;
1849 VM_BUG_ON(!new.frozen);
1850
1851 } while (!__cmpxchg_double_slab(s, page,
1852 prior, counters,
1853 freelist, new.counters,
1854 "drain percpu freelist"));
1855
1856 freelist = nextfree;
1857 }
1858
1859 /*
1860 * Stage two: Ensure that the page is unfrozen while the
1861 * list presence reflects the actual number of objects
1862 * during unfreeze.
1863 *
1864 * We setup the list membership and then perform a cmpxchg
1865 * with the count. If there is a mismatch then the page
1866 * is not unfrozen but the page is on the wrong list.
1867 *
1868 * Then we restart the process which may have to remove
1869 * the page from the list that we just put it on again
1870 * because the number of objects in the slab may have
1871 * changed.
1872 */
1873 redo:
1874
1875 old.freelist = page->freelist;
1876 old.counters = page->counters;
1877 VM_BUG_ON(!old.frozen);
1878
1879 /* Determine target state of the slab */
1880 new.counters = old.counters;
1881 if (freelist) {
1882 new.inuse--;
1883 set_freepointer(s, freelist, old.freelist);
1884 new.freelist = freelist;
1885 } else
1886 new.freelist = old.freelist;
1887
1888 new.frozen = 0;
1889
1890 if (!new.inuse && n->nr_partial >= s->min_partial)
1891 m = M_FREE;
1892 else if (new.freelist) {
1893 m = M_PARTIAL;
1894 if (!lock) {
1895 lock = 1;
1896 /*
1897 * Taking the spinlock removes the possiblity
1898 * that acquire_slab() will see a slab page that
1899 * is frozen
1900 */
1901 spin_lock(&n->list_lock);
1902 }
1903 } else {
1904 m = M_FULL;
1905 if (kmem_cache_debug(s) && !lock) {
1906 lock = 1;
1907 /*
1908 * This also ensures that the scanning of full
1909 * slabs from diagnostic functions will not see
1910 * any frozen slabs.
1911 */
1912 spin_lock(&n->list_lock);
1913 }
1914 }
1915
1916 if (l != m) {
1917
1918 if (l == M_PARTIAL)
1919
1920 remove_partial(n, page);
1921
1922 else if (l == M_FULL)
1923
1924 remove_full(s, n, page);
1925
1926 if (m == M_PARTIAL) {
1927
1928 add_partial(n, page, tail);
1929 stat(s, tail);
1930
1931 } else if (m == M_FULL) {
1932
1933 stat(s, DEACTIVATE_FULL);
1934 add_full(s, n, page);
1935
1936 }
1937 }
1938
1939 l = m;
1940 if (!__cmpxchg_double_slab(s, page,
1941 old.freelist, old.counters,
1942 new.freelist, new.counters,
1943 "unfreezing slab"))
1944 goto redo;
1945
1946 if (lock)
1947 spin_unlock(&n->list_lock);
1948
1949 if (m == M_FREE) {
1950 stat(s, DEACTIVATE_EMPTY);
1951 discard_slab(s, page);
1952 stat(s, FREE_SLAB);
1953 }
1954 }
1955
1956 /*
1957 * Unfreeze all the cpu partial slabs.
1958 *
1959 * This function must be called with interrupts disabled
1960 * for the cpu using c (or some other guarantee must be there
1961 * to guarantee no concurrent accesses).
1962 */
1963 static void unfreeze_partials(struct kmem_cache *s,
1964 struct kmem_cache_cpu *c)
1965 {
1966 #ifdef CONFIG_SLUB_CPU_PARTIAL
1967 struct kmem_cache_node *n = NULL, *n2 = NULL;
1968 struct page *page, *discard_page = NULL;
1969
1970 while ((page = c->partial)) {
1971 struct page new;
1972 struct page old;
1973
1974 c->partial = page->next;
1975
1976 n2 = get_node(s, page_to_nid(page));
1977 if (n != n2) {
1978 if (n)
1979 spin_unlock(&n->list_lock);
1980
1981 n = n2;
1982 spin_lock(&n->list_lock);
1983 }
1984
1985 do {
1986
1987 old.freelist = page->freelist;
1988 old.counters = page->counters;
1989 VM_BUG_ON(!old.frozen);
1990
1991 new.counters = old.counters;
1992 new.freelist = old.freelist;
1993
1994 new.frozen = 0;
1995
1996 } while (!__cmpxchg_double_slab(s, page,
1997 old.freelist, old.counters,
1998 new.freelist, new.counters,
1999 "unfreezing slab"));
2000
2001 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2002 page->next = discard_page;
2003 discard_page = page;
2004 } else {
2005 add_partial(n, page, DEACTIVATE_TO_TAIL);
2006 stat(s, FREE_ADD_PARTIAL);
2007 }
2008 }
2009
2010 if (n)
2011 spin_unlock(&n->list_lock);
2012
2013 while (discard_page) {
2014 page = discard_page;
2015 discard_page = discard_page->next;
2016
2017 stat(s, DEACTIVATE_EMPTY);
2018 discard_slab(s, page);
2019 stat(s, FREE_SLAB);
2020 }
2021 #endif
2022 }
2023
2024 /*
2025 * Put a page that was just frozen (in __slab_free) into a partial page
2026 * slot if available. This is done without interrupts disabled and without
2027 * preemption disabled. The cmpxchg is racy and may put the partial page
2028 * onto a random cpus partial slot.
2029 *
2030 * If we did not find a slot then simply move all the partials to the
2031 * per node partial list.
2032 */
2033 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2034 {
2035 #ifdef CONFIG_SLUB_CPU_PARTIAL
2036 struct page *oldpage;
2037 int pages;
2038 int pobjects;
2039
2040 preempt_disable();
2041 do {
2042 pages = 0;
2043 pobjects = 0;
2044 oldpage = this_cpu_read(s->cpu_slab->partial);
2045
2046 if (oldpage) {
2047 pobjects = oldpage->pobjects;
2048 pages = oldpage->pages;
2049 if (drain && pobjects > s->cpu_partial) {
2050 unsigned long flags;
2051 /*
2052 * partial array is full. Move the existing
2053 * set to the per node partial list.
2054 */
2055 local_irq_save(flags);
2056 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2057 local_irq_restore(flags);
2058 oldpage = NULL;
2059 pobjects = 0;
2060 pages = 0;
2061 stat(s, CPU_PARTIAL_DRAIN);
2062 }
2063 }
2064
2065 pages++;
2066 pobjects += page->objects - page->inuse;
2067
2068 page->pages = pages;
2069 page->pobjects = pobjects;
2070 page->next = oldpage;
2071
2072 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2073 != oldpage);
2074 if (unlikely(!s->cpu_partial)) {
2075 unsigned long flags;
2076
2077 local_irq_save(flags);
2078 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2079 local_irq_restore(flags);
2080 }
2081 preempt_enable();
2082 #endif
2083 }
2084
2085 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2086 {
2087 stat(s, CPUSLAB_FLUSH);
2088 deactivate_slab(s, c->page, c->freelist);
2089
2090 c->tid = next_tid(c->tid);
2091 c->page = NULL;
2092 c->freelist = NULL;
2093 }
2094
2095 /*
2096 * Flush cpu slab.
2097 *
2098 * Called from IPI handler with interrupts disabled.
2099 */
2100 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2101 {
2102 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2103
2104 if (likely(c)) {
2105 if (c->page)
2106 flush_slab(s, c);
2107
2108 unfreeze_partials(s, c);
2109 }
2110 }
2111
2112 static void flush_cpu_slab(void *d)
2113 {
2114 struct kmem_cache *s = d;
2115
2116 __flush_cpu_slab(s, smp_processor_id());
2117 }
2118
2119 static bool has_cpu_slab(int cpu, void *info)
2120 {
2121 struct kmem_cache *s = info;
2122 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2123
2124 return c->page || c->partial;
2125 }
2126
2127 static void flush_all(struct kmem_cache *s)
2128 {
2129 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2130 }
2131
2132 /*
2133 * Check if the objects in a per cpu structure fit numa
2134 * locality expectations.
2135 */
2136 static inline int node_match(struct page *page, int node)
2137 {
2138 #ifdef CONFIG_NUMA
2139 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2140 return 0;
2141 #endif
2142 return 1;
2143 }
2144
2145 #ifdef CONFIG_SLUB_DEBUG
2146 static int count_free(struct page *page)
2147 {
2148 return page->objects - page->inuse;
2149 }
2150
2151 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2152 {
2153 return atomic_long_read(&n->total_objects);
2154 }
2155 #endif /* CONFIG_SLUB_DEBUG */
2156
2157 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2158 static unsigned long count_partial(struct kmem_cache_node *n,
2159 int (*get_count)(struct page *))
2160 {
2161 unsigned long flags;
2162 unsigned long x = 0;
2163 struct page *page;
2164
2165 spin_lock_irqsave(&n->list_lock, flags);
2166 list_for_each_entry(page, &n->partial, lru)
2167 x += get_count(page);
2168 spin_unlock_irqrestore(&n->list_lock, flags);
2169 return x;
2170 }
2171 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2172
2173 static noinline void
2174 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2175 {
2176 #ifdef CONFIG_SLUB_DEBUG
2177 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2178 DEFAULT_RATELIMIT_BURST);
2179 int node;
2180 struct kmem_cache_node *n;
2181
2182 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2183 return;
2184
2185 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2186 nid, gfpflags);
2187 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2188 s->name, s->object_size, s->size, oo_order(s->oo),
2189 oo_order(s->min));
2190
2191 if (oo_order(s->min) > get_order(s->object_size))
2192 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2193 s->name);
2194
2195 for_each_kmem_cache_node(s, node, n) {
2196 unsigned long nr_slabs;
2197 unsigned long nr_objs;
2198 unsigned long nr_free;
2199
2200 nr_free = count_partial(n, count_free);
2201 nr_slabs = node_nr_slabs(n);
2202 nr_objs = node_nr_objs(n);
2203
2204 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2205 node, nr_slabs, nr_objs, nr_free);
2206 }
2207 #endif
2208 }
2209
2210 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2211 int node, struct kmem_cache_cpu **pc)
2212 {
2213 void *freelist;
2214 struct kmem_cache_cpu *c = *pc;
2215 struct page *page;
2216
2217 freelist = get_partial(s, flags, node, c);
2218
2219 if (freelist)
2220 return freelist;
2221
2222 page = new_slab(s, flags, node);
2223 if (page) {
2224 c = raw_cpu_ptr(s->cpu_slab);
2225 if (c->page)
2226 flush_slab(s, c);
2227
2228 /*
2229 * No other reference to the page yet so we can
2230 * muck around with it freely without cmpxchg
2231 */
2232 freelist = page->freelist;
2233 page->freelist = NULL;
2234
2235 stat(s, ALLOC_SLAB);
2236 c->page = page;
2237 *pc = c;
2238 } else
2239 freelist = NULL;
2240
2241 return freelist;
2242 }
2243
2244 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2245 {
2246 if (unlikely(PageSlabPfmemalloc(page)))
2247 return gfp_pfmemalloc_allowed(gfpflags);
2248
2249 return true;
2250 }
2251
2252 /*
2253 * Check the page->freelist of a page and either transfer the freelist to the
2254 * per cpu freelist or deactivate the page.
2255 *
2256 * The page is still frozen if the return value is not NULL.
2257 *
2258 * If this function returns NULL then the page has been unfrozen.
2259 *
2260 * This function must be called with interrupt disabled.
2261 */
2262 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2263 {
2264 struct page new;
2265 unsigned long counters;
2266 void *freelist;
2267
2268 do {
2269 freelist = page->freelist;
2270 counters = page->counters;
2271
2272 new.counters = counters;
2273 VM_BUG_ON(!new.frozen);
2274
2275 new.inuse = page->objects;
2276 new.frozen = freelist != NULL;
2277
2278 } while (!__cmpxchg_double_slab(s, page,
2279 freelist, counters,
2280 NULL, new.counters,
2281 "get_freelist"));
2282
2283 return freelist;
2284 }
2285
2286 /*
2287 * Slow path. The lockless freelist is empty or we need to perform
2288 * debugging duties.
2289 *
2290 * Processing is still very fast if new objects have been freed to the
2291 * regular freelist. In that case we simply take over the regular freelist
2292 * as the lockless freelist and zap the regular freelist.
2293 *
2294 * If that is not working then we fall back to the partial lists. We take the
2295 * first element of the freelist as the object to allocate now and move the
2296 * rest of the freelist to the lockless freelist.
2297 *
2298 * And if we were unable to get a new slab from the partial slab lists then
2299 * we need to allocate a new slab. This is the slowest path since it involves
2300 * a call to the page allocator and the setup of a new slab.
2301 */
2302 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2303 unsigned long addr, struct kmem_cache_cpu *c)
2304 {
2305 void *freelist;
2306 struct page *page;
2307 unsigned long flags;
2308
2309 local_irq_save(flags);
2310 #ifdef CONFIG_PREEMPT
2311 /*
2312 * We may have been preempted and rescheduled on a different
2313 * cpu before disabling interrupts. Need to reload cpu area
2314 * pointer.
2315 */
2316 c = this_cpu_ptr(s->cpu_slab);
2317 #endif
2318
2319 page = c->page;
2320 if (!page)
2321 goto new_slab;
2322 redo:
2323
2324 if (unlikely(!node_match(page, node))) {
2325 int searchnode = node;
2326
2327 if (node != NUMA_NO_NODE && !node_present_pages(node))
2328 searchnode = node_to_mem_node(node);
2329
2330 if (unlikely(!node_match(page, searchnode))) {
2331 stat(s, ALLOC_NODE_MISMATCH);
2332 deactivate_slab(s, page, c->freelist);
2333 c->page = NULL;
2334 c->freelist = NULL;
2335 goto new_slab;
2336 }
2337 }
2338
2339 /*
2340 * By rights, we should be searching for a slab page that was
2341 * PFMEMALLOC but right now, we are losing the pfmemalloc
2342 * information when the page leaves the per-cpu allocator
2343 */
2344 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2345 deactivate_slab(s, page, c->freelist);
2346 c->page = NULL;
2347 c->freelist = NULL;
2348 goto new_slab;
2349 }
2350
2351 /* must check again c->freelist in case of cpu migration or IRQ */
2352 freelist = c->freelist;
2353 if (freelist)
2354 goto load_freelist;
2355
2356 freelist = get_freelist(s, page);
2357
2358 if (!freelist) {
2359 c->page = NULL;
2360 stat(s, DEACTIVATE_BYPASS);
2361 goto new_slab;
2362 }
2363
2364 stat(s, ALLOC_REFILL);
2365
2366 load_freelist:
2367 /*
2368 * freelist is pointing to the list of objects to be used.
2369 * page is pointing to the page from which the objects are obtained.
2370 * That page must be frozen for per cpu allocations to work.
2371 */
2372 VM_BUG_ON(!c->page->frozen);
2373 c->freelist = get_freepointer(s, freelist);
2374 c->tid = next_tid(c->tid);
2375 local_irq_restore(flags);
2376 return freelist;
2377
2378 new_slab:
2379
2380 if (c->partial) {
2381 page = c->page = c->partial;
2382 c->partial = page->next;
2383 stat(s, CPU_PARTIAL_ALLOC);
2384 c->freelist = NULL;
2385 goto redo;
2386 }
2387
2388 freelist = new_slab_objects(s, gfpflags, node, &c);
2389
2390 if (unlikely(!freelist)) {
2391 slab_out_of_memory(s, gfpflags, node);
2392 local_irq_restore(flags);
2393 return NULL;
2394 }
2395
2396 page = c->page;
2397 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2398 goto load_freelist;
2399
2400 /* Only entered in the debug case */
2401 if (kmem_cache_debug(s) &&
2402 !alloc_debug_processing(s, page, freelist, addr))
2403 goto new_slab; /* Slab failed checks. Next slab needed */
2404
2405 deactivate_slab(s, page, get_freepointer(s, freelist));
2406 c->page = NULL;
2407 c->freelist = NULL;
2408 local_irq_restore(flags);
2409 return freelist;
2410 }
2411
2412 /*
2413 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2414 * have the fastpath folded into their functions. So no function call
2415 * overhead for requests that can be satisfied on the fastpath.
2416 *
2417 * The fastpath works by first checking if the lockless freelist can be used.
2418 * If not then __slab_alloc is called for slow processing.
2419 *
2420 * Otherwise we can simply pick the next object from the lockless free list.
2421 */
2422 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2423 gfp_t gfpflags, int node, unsigned long addr)
2424 {
2425 void **object;
2426 struct kmem_cache_cpu *c;
2427 struct page *page;
2428 unsigned long tid;
2429
2430 s = slab_pre_alloc_hook(s, gfpflags);
2431 if (!s)
2432 return NULL;
2433 redo:
2434 /*
2435 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2436 * enabled. We may switch back and forth between cpus while
2437 * reading from one cpu area. That does not matter as long
2438 * as we end up on the original cpu again when doing the cmpxchg.
2439 *
2440 * We should guarantee that tid and kmem_cache are retrieved on
2441 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2442 * to check if it is matched or not.
2443 */
2444 do {
2445 tid = this_cpu_read(s->cpu_slab->tid);
2446 c = raw_cpu_ptr(s->cpu_slab);
2447 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2448 unlikely(tid != READ_ONCE(c->tid)));
2449
2450 /*
2451 * Irqless object alloc/free algorithm used here depends on sequence
2452 * of fetching cpu_slab's data. tid should be fetched before anything
2453 * on c to guarantee that object and page associated with previous tid
2454 * won't be used with current tid. If we fetch tid first, object and
2455 * page could be one associated with next tid and our alloc/free
2456 * request will be failed. In this case, we will retry. So, no problem.
2457 */
2458 barrier();
2459
2460 /*
2461 * The transaction ids are globally unique per cpu and per operation on
2462 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2463 * occurs on the right processor and that there was no operation on the
2464 * linked list in between.
2465 */
2466
2467 object = c->freelist;
2468 page = c->page;
2469 if (unlikely(!object || !node_match(page, node))) {
2470 object = __slab_alloc(s, gfpflags, node, addr, c);
2471 stat(s, ALLOC_SLOWPATH);
2472 } else {
2473 void *next_object = get_freepointer_safe(s, object);
2474
2475 /*
2476 * The cmpxchg will only match if there was no additional
2477 * operation and if we are on the right processor.
2478 *
2479 * The cmpxchg does the following atomically (without lock
2480 * semantics!)
2481 * 1. Relocate first pointer to the current per cpu area.
2482 * 2. Verify that tid and freelist have not been changed
2483 * 3. If they were not changed replace tid and freelist
2484 *
2485 * Since this is without lock semantics the protection is only
2486 * against code executing on this cpu *not* from access by
2487 * other cpus.
2488 */
2489 if (unlikely(!this_cpu_cmpxchg_double(
2490 s->cpu_slab->freelist, s->cpu_slab->tid,
2491 object, tid,
2492 next_object, next_tid(tid)))) {
2493
2494 note_cmpxchg_failure("slab_alloc", s, tid);
2495 goto redo;
2496 }
2497 prefetch_freepointer(s, next_object);
2498 stat(s, ALLOC_FASTPATH);
2499 }
2500
2501 if (unlikely(gfpflags & __GFP_ZERO) && object)
2502 memset(object, 0, s->object_size);
2503
2504 slab_post_alloc_hook(s, gfpflags, object);
2505
2506 return object;
2507 }
2508
2509 static __always_inline void *slab_alloc(struct kmem_cache *s,
2510 gfp_t gfpflags, unsigned long addr)
2511 {
2512 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2513 }
2514
2515 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2516 {
2517 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2518
2519 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2520 s->size, gfpflags);
2521
2522 return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc);
2525
2526 #ifdef CONFIG_TRACING
2527 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2528 {
2529 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2530 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2531 kasan_kmalloc(s, ret, size);
2532 return ret;
2533 }
2534 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2535 #endif
2536
2537 #ifdef CONFIG_NUMA
2538 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2539 {
2540 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2541
2542 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2543 s->object_size, s->size, gfpflags, node);
2544
2545 return ret;
2546 }
2547 EXPORT_SYMBOL(kmem_cache_alloc_node);
2548
2549 #ifdef CONFIG_TRACING
2550 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2551 gfp_t gfpflags,
2552 int node, size_t size)
2553 {
2554 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2555
2556 trace_kmalloc_node(_RET_IP_, ret,
2557 size, s->size, gfpflags, node);
2558
2559 kasan_kmalloc(s, ret, size);
2560 return ret;
2561 }
2562 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2563 #endif
2564 #endif
2565
2566 /*
2567 * Slow path handling. This may still be called frequently since objects
2568 * have a longer lifetime than the cpu slabs in most processing loads.
2569 *
2570 * So we still attempt to reduce cache line usage. Just take the slab
2571 * lock and free the item. If there is no additional partial page
2572 * handling required then we can return immediately.
2573 */
2574 static void __slab_free(struct kmem_cache *s, struct page *page,
2575 void *x, unsigned long addr)
2576 {
2577 void *prior;
2578 void **object = (void *)x;
2579 int was_frozen;
2580 struct page new;
2581 unsigned long counters;
2582 struct kmem_cache_node *n = NULL;
2583 unsigned long uninitialized_var(flags);
2584
2585 stat(s, FREE_SLOWPATH);
2586
2587 if (kmem_cache_debug(s) &&
2588 !(n = free_debug_processing(s, page, x, addr, &flags)))
2589 return;
2590
2591 do {
2592 if (unlikely(n)) {
2593 spin_unlock_irqrestore(&n->list_lock, flags);
2594 n = NULL;
2595 }
2596 prior = page->freelist;
2597 counters = page->counters;
2598 set_freepointer(s, object, prior);
2599 new.counters = counters;
2600 was_frozen = new.frozen;
2601 new.inuse--;
2602 if ((!new.inuse || !prior) && !was_frozen) {
2603
2604 if (kmem_cache_has_cpu_partial(s) && !prior) {
2605
2606 /*
2607 * Slab was on no list before and will be
2608 * partially empty
2609 * We can defer the list move and instead
2610 * freeze it.
2611 */
2612 new.frozen = 1;
2613
2614 } else { /* Needs to be taken off a list */
2615
2616 n = get_node(s, page_to_nid(page));
2617 /*
2618 * Speculatively acquire the list_lock.
2619 * If the cmpxchg does not succeed then we may
2620 * drop the list_lock without any processing.
2621 *
2622 * Otherwise the list_lock will synchronize with
2623 * other processors updating the list of slabs.
2624 */
2625 spin_lock_irqsave(&n->list_lock, flags);
2626
2627 }
2628 }
2629
2630 } while (!cmpxchg_double_slab(s, page,
2631 prior, counters,
2632 object, new.counters,
2633 "__slab_free"));
2634
2635 if (likely(!n)) {
2636
2637 /*
2638 * If we just froze the page then put it onto the
2639 * per cpu partial list.
2640 */
2641 if (new.frozen && !was_frozen) {
2642 put_cpu_partial(s, page, 1);
2643 stat(s, CPU_PARTIAL_FREE);
2644 }
2645 /*
2646 * The list lock was not taken therefore no list
2647 * activity can be necessary.
2648 */
2649 if (was_frozen)
2650 stat(s, FREE_FROZEN);
2651 return;
2652 }
2653
2654 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2655 goto slab_empty;
2656
2657 /*
2658 * Objects left in the slab. If it was not on the partial list before
2659 * then add it.
2660 */
2661 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2662 if (kmem_cache_debug(s))
2663 remove_full(s, n, page);
2664 add_partial(n, page, DEACTIVATE_TO_TAIL);
2665 stat(s, FREE_ADD_PARTIAL);
2666 }
2667 spin_unlock_irqrestore(&n->list_lock, flags);
2668 return;
2669
2670 slab_empty:
2671 if (prior) {
2672 /*
2673 * Slab on the partial list.
2674 */
2675 remove_partial(n, page);
2676 stat(s, FREE_REMOVE_PARTIAL);
2677 } else {
2678 /* Slab must be on the full list */
2679 remove_full(s, n, page);
2680 }
2681
2682 spin_unlock_irqrestore(&n->list_lock, flags);
2683 stat(s, FREE_SLAB);
2684 discard_slab(s, page);
2685 }
2686
2687 /*
2688 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2689 * can perform fastpath freeing without additional function calls.
2690 *
2691 * The fastpath is only possible if we are freeing to the current cpu slab
2692 * of this processor. This typically the case if we have just allocated
2693 * the item before.
2694 *
2695 * If fastpath is not possible then fall back to __slab_free where we deal
2696 * with all sorts of special processing.
2697 */
2698 static __always_inline void slab_free(struct kmem_cache *s,
2699 struct page *page, void *x, unsigned long addr)
2700 {
2701 void **object = (void *)x;
2702 struct kmem_cache_cpu *c;
2703 unsigned long tid;
2704
2705 slab_free_hook(s, x);
2706
2707 redo:
2708 /*
2709 * Determine the currently cpus per cpu slab.
2710 * The cpu may change afterward. However that does not matter since
2711 * data is retrieved via this pointer. If we are on the same cpu
2712 * during the cmpxchg then the free will succeed.
2713 */
2714 do {
2715 tid = this_cpu_read(s->cpu_slab->tid);
2716 c = raw_cpu_ptr(s->cpu_slab);
2717 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2718 unlikely(tid != READ_ONCE(c->tid)));
2719
2720 /* Same with comment on barrier() in slab_alloc_node() */
2721 barrier();
2722
2723 if (likely(page == c->page)) {
2724 set_freepointer(s, object, c->freelist);
2725
2726 if (unlikely(!this_cpu_cmpxchg_double(
2727 s->cpu_slab->freelist, s->cpu_slab->tid,
2728 c->freelist, tid,
2729 object, next_tid(tid)))) {
2730
2731 note_cmpxchg_failure("slab_free", s, tid);
2732 goto redo;
2733 }
2734 stat(s, FREE_FASTPATH);
2735 } else
2736 __slab_free(s, page, x, addr);
2737
2738 }
2739
2740 void kmem_cache_free(struct kmem_cache *s, void *x)
2741 {
2742 s = cache_from_obj(s, x);
2743 if (!s)
2744 return;
2745 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2746 trace_kmem_cache_free(_RET_IP_, x);
2747 }
2748 EXPORT_SYMBOL(kmem_cache_free);
2749
2750 /* Note that interrupts must be enabled when calling this function. */
2751 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2752 {
2753 struct kmem_cache_cpu *c;
2754 struct page *page;
2755 int i;
2756
2757 local_irq_disable();
2758 c = this_cpu_ptr(s->cpu_slab);
2759
2760 for (i = 0; i < size; i++) {
2761 void *object = p[i];
2762
2763 BUG_ON(!object);
2764 /* kmem cache debug support */
2765 s = cache_from_obj(s, object);
2766 if (unlikely(!s))
2767 goto exit;
2768 slab_free_hook(s, object);
2769
2770 page = virt_to_head_page(object);
2771
2772 if (c->page == page) {
2773 /* Fastpath: local CPU free */
2774 set_freepointer(s, object, c->freelist);
2775 c->freelist = object;
2776 } else {
2777 c->tid = next_tid(c->tid);
2778 local_irq_enable();
2779 /* Slowpath: overhead locked cmpxchg_double_slab */
2780 __slab_free(s, page, object, _RET_IP_);
2781 local_irq_disable();
2782 c = this_cpu_ptr(s->cpu_slab);
2783 }
2784 }
2785 exit:
2786 c->tid = next_tid(c->tid);
2787 local_irq_enable();
2788 }
2789 EXPORT_SYMBOL(kmem_cache_free_bulk);
2790
2791 /* Note that interrupts must be enabled when calling this function. */
2792 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2793 void **p)
2794 {
2795 struct kmem_cache_cpu *c;
2796 int i;
2797
2798 /*
2799 * Drain objects in the per cpu slab, while disabling local
2800 * IRQs, which protects against PREEMPT and interrupts
2801 * handlers invoking normal fastpath.
2802 */
2803 local_irq_disable();
2804 c = this_cpu_ptr(s->cpu_slab);
2805
2806 for (i = 0; i < size; i++) {
2807 void *object = c->freelist;
2808
2809 if (unlikely(!object)) {
2810 local_irq_enable();
2811 /*
2812 * Invoking slow path likely have side-effect
2813 * of re-populating per CPU c->freelist
2814 */
2815 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2816 _RET_IP_, c);
2817 if (unlikely(!p[i])) {
2818 __kmem_cache_free_bulk(s, i, p);
2819 return false;
2820 }
2821 local_irq_disable();
2822 c = this_cpu_ptr(s->cpu_slab);
2823 continue; /* goto for-loop */
2824 }
2825
2826 /* kmem_cache debug support */
2827 s = slab_pre_alloc_hook(s, flags);
2828 if (unlikely(!s)) {
2829 __kmem_cache_free_bulk(s, i, p);
2830 c->tid = next_tid(c->tid);
2831 local_irq_enable();
2832 return false;
2833 }
2834
2835 c->freelist = get_freepointer(s, object);
2836 p[i] = object;
2837
2838 /* kmem_cache debug support */
2839 slab_post_alloc_hook(s, flags, object);
2840 }
2841 c->tid = next_tid(c->tid);
2842 local_irq_enable();
2843
2844 /* Clear memory outside IRQ disabled fastpath loop */
2845 if (unlikely(flags & __GFP_ZERO)) {
2846 int j;
2847
2848 for (j = 0; j < i; j++)
2849 memset(p[j], 0, s->object_size);
2850 }
2851
2852 return true;
2853 }
2854 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2855
2856
2857 /*
2858 * Object placement in a slab is made very easy because we always start at
2859 * offset 0. If we tune the size of the object to the alignment then we can
2860 * get the required alignment by putting one properly sized object after
2861 * another.
2862 *
2863 * Notice that the allocation order determines the sizes of the per cpu
2864 * caches. Each processor has always one slab available for allocations.
2865 * Increasing the allocation order reduces the number of times that slabs
2866 * must be moved on and off the partial lists and is therefore a factor in
2867 * locking overhead.
2868 */
2869
2870 /*
2871 * Mininum / Maximum order of slab pages. This influences locking overhead
2872 * and slab fragmentation. A higher order reduces the number of partial slabs
2873 * and increases the number of allocations possible without having to
2874 * take the list_lock.
2875 */
2876 static int slub_min_order;
2877 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2878 static int slub_min_objects;
2879
2880 /*
2881 * Calculate the order of allocation given an slab object size.
2882 *
2883 * The order of allocation has significant impact on performance and other
2884 * system components. Generally order 0 allocations should be preferred since
2885 * order 0 does not cause fragmentation in the page allocator. Larger objects
2886 * be problematic to put into order 0 slabs because there may be too much
2887 * unused space left. We go to a higher order if more than 1/16th of the slab
2888 * would be wasted.
2889 *
2890 * In order to reach satisfactory performance we must ensure that a minimum
2891 * number of objects is in one slab. Otherwise we may generate too much
2892 * activity on the partial lists which requires taking the list_lock. This is
2893 * less a concern for large slabs though which are rarely used.
2894 *
2895 * slub_max_order specifies the order where we begin to stop considering the
2896 * number of objects in a slab as critical. If we reach slub_max_order then
2897 * we try to keep the page order as low as possible. So we accept more waste
2898 * of space in favor of a small page order.
2899 *
2900 * Higher order allocations also allow the placement of more objects in a
2901 * slab and thereby reduce object handling overhead. If the user has
2902 * requested a higher mininum order then we start with that one instead of
2903 * the smallest order which will fit the object.
2904 */
2905 static inline int slab_order(int size, int min_objects,
2906 int max_order, int fract_leftover, int reserved)
2907 {
2908 int order;
2909 int rem;
2910 int min_order = slub_min_order;
2911
2912 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2913 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2914
2915 for (order = max(min_order,
2916 fls(min_objects * size - 1) - PAGE_SHIFT);
2917 order <= max_order; order++) {
2918
2919 unsigned long slab_size = PAGE_SIZE << order;
2920
2921 if (slab_size < min_objects * size + reserved)
2922 continue;
2923
2924 rem = (slab_size - reserved) % size;
2925
2926 if (rem <= slab_size / fract_leftover)
2927 break;
2928
2929 }
2930
2931 return order;
2932 }
2933
2934 static inline int calculate_order(int size, int reserved)
2935 {
2936 int order;
2937 int min_objects;
2938 int fraction;
2939 int max_objects;
2940
2941 /*
2942 * Attempt to find best configuration for a slab. This
2943 * works by first attempting to generate a layout with
2944 * the best configuration and backing off gradually.
2945 *
2946 * First we reduce the acceptable waste in a slab. Then
2947 * we reduce the minimum objects required in a slab.
2948 */
2949 min_objects = slub_min_objects;
2950 if (!min_objects)
2951 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2952 max_objects = order_objects(slub_max_order, size, reserved);
2953 min_objects = min(min_objects, max_objects);
2954
2955 while (min_objects > 1) {
2956 fraction = 16;
2957 while (fraction >= 4) {
2958 order = slab_order(size, min_objects,
2959 slub_max_order, fraction, reserved);
2960 if (order <= slub_max_order)
2961 return order;
2962 fraction /= 2;
2963 }
2964 min_objects--;
2965 }
2966
2967 /*
2968 * We were unable to place multiple objects in a slab. Now
2969 * lets see if we can place a single object there.
2970 */
2971 order = slab_order(size, 1, slub_max_order, 1, reserved);
2972 if (order <= slub_max_order)
2973 return order;
2974
2975 /*
2976 * Doh this slab cannot be placed using slub_max_order.
2977 */
2978 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2979 if (order < MAX_ORDER)
2980 return order;
2981 return -ENOSYS;
2982 }
2983
2984 static void
2985 init_kmem_cache_node(struct kmem_cache_node *n)
2986 {
2987 n->nr_partial = 0;
2988 spin_lock_init(&n->list_lock);
2989 INIT_LIST_HEAD(&n->partial);
2990 #ifdef CONFIG_SLUB_DEBUG
2991 atomic_long_set(&n->nr_slabs, 0);
2992 atomic_long_set(&n->total_objects, 0);
2993 INIT_LIST_HEAD(&n->full);
2994 #endif
2995 }
2996
2997 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2998 {
2999 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3000 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3001
3002 /*
3003 * Must align to double word boundary for the double cmpxchg
3004 * instructions to work; see __pcpu_double_call_return_bool().
3005 */
3006 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3007 2 * sizeof(void *));
3008
3009 if (!s->cpu_slab)
3010 return 0;
3011
3012 init_kmem_cache_cpus(s);
3013
3014 return 1;
3015 }
3016
3017 static struct kmem_cache *kmem_cache_node;
3018
3019 /*
3020 * No kmalloc_node yet so do it by hand. We know that this is the first
3021 * slab on the node for this slabcache. There are no concurrent accesses
3022 * possible.
3023 *
3024 * Note that this function only works on the kmem_cache_node
3025 * when allocating for the kmem_cache_node. This is used for bootstrapping
3026 * memory on a fresh node that has no slab structures yet.
3027 */
3028 static void early_kmem_cache_node_alloc(int node)
3029 {
3030 struct page *page;
3031 struct kmem_cache_node *n;
3032
3033 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3034
3035 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3036
3037 BUG_ON(!page);
3038 if (page_to_nid(page) != node) {
3039 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3040 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3041 }
3042
3043 n = page->freelist;
3044 BUG_ON(!n);
3045 page->freelist = get_freepointer(kmem_cache_node, n);
3046 page->inuse = 1;
3047 page->frozen = 0;
3048 kmem_cache_node->node[node] = n;
3049 #ifdef CONFIG_SLUB_DEBUG
3050 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3051 init_tracking(kmem_cache_node, n);
3052 #endif
3053 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3054 init_kmem_cache_node(n);
3055 inc_slabs_node(kmem_cache_node, node, page->objects);
3056
3057 /*
3058 * No locks need to be taken here as it has just been
3059 * initialized and there is no concurrent access.
3060 */
3061 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3062 }
3063
3064 static void free_kmem_cache_nodes(struct kmem_cache *s)
3065 {
3066 int node;
3067 struct kmem_cache_node *n;
3068
3069 for_each_kmem_cache_node(s, node, n) {
3070 kmem_cache_free(kmem_cache_node, n);
3071 s->node[node] = NULL;
3072 }
3073 }
3074
3075 static int init_kmem_cache_nodes(struct kmem_cache *s)
3076 {
3077 int node;
3078
3079 for_each_node_state(node, N_NORMAL_MEMORY) {
3080 struct kmem_cache_node *n;
3081
3082 if (slab_state == DOWN) {
3083 early_kmem_cache_node_alloc(node);
3084 continue;
3085 }
3086 n = kmem_cache_alloc_node(kmem_cache_node,
3087 GFP_KERNEL, node);
3088
3089 if (!n) {
3090 free_kmem_cache_nodes(s);
3091 return 0;
3092 }
3093
3094 s->node[node] = n;
3095 init_kmem_cache_node(n);
3096 }
3097 return 1;
3098 }
3099
3100 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3101 {
3102 if (min < MIN_PARTIAL)
3103 min = MIN_PARTIAL;
3104 else if (min > MAX_PARTIAL)
3105 min = MAX_PARTIAL;
3106 s->min_partial = min;
3107 }
3108
3109 /*
3110 * calculate_sizes() determines the order and the distribution of data within
3111 * a slab object.
3112 */
3113 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3114 {
3115 unsigned long flags = s->flags;
3116 unsigned long size = s->object_size;
3117 int order;
3118
3119 /*
3120 * Round up object size to the next word boundary. We can only
3121 * place the free pointer at word boundaries and this determines
3122 * the possible location of the free pointer.
3123 */
3124 size = ALIGN(size, sizeof(void *));
3125
3126 #ifdef CONFIG_SLUB_DEBUG
3127 /*
3128 * Determine if we can poison the object itself. If the user of
3129 * the slab may touch the object after free or before allocation
3130 * then we should never poison the object itself.
3131 */
3132 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3133 !s->ctor)
3134 s->flags |= __OBJECT_POISON;
3135 else
3136 s->flags &= ~__OBJECT_POISON;
3137
3138
3139 /*
3140 * If we are Redzoning then check if there is some space between the
3141 * end of the object and the free pointer. If not then add an
3142 * additional word to have some bytes to store Redzone information.
3143 */
3144 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3145 size += sizeof(void *);
3146 #endif
3147
3148 /*
3149 * With that we have determined the number of bytes in actual use
3150 * by the object. This is the potential offset to the free pointer.
3151 */
3152 s->inuse = size;
3153
3154 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3155 s->ctor)) {
3156 /*
3157 * Relocate free pointer after the object if it is not
3158 * permitted to overwrite the first word of the object on
3159 * kmem_cache_free.
3160 *
3161 * This is the case if we do RCU, have a constructor or
3162 * destructor or are poisoning the objects.
3163 */
3164 s->offset = size;
3165 size += sizeof(void *);
3166 }
3167
3168 #ifdef CONFIG_SLUB_DEBUG
3169 if (flags & SLAB_STORE_USER)
3170 /*
3171 * Need to store information about allocs and frees after
3172 * the object.
3173 */
3174 size += 2 * sizeof(struct track);
3175
3176 if (flags & SLAB_RED_ZONE)
3177 /*
3178 * Add some empty padding so that we can catch
3179 * overwrites from earlier objects rather than let
3180 * tracking information or the free pointer be
3181 * corrupted if a user writes before the start
3182 * of the object.
3183 */
3184 size += sizeof(void *);
3185 #endif
3186
3187 /*
3188 * SLUB stores one object immediately after another beginning from
3189 * offset 0. In order to align the objects we have to simply size
3190 * each object to conform to the alignment.
3191 */
3192 size = ALIGN(size, s->align);
3193 s->size = size;
3194 if (forced_order >= 0)
3195 order = forced_order;
3196 else
3197 order = calculate_order(size, s->reserved);
3198
3199 if (order < 0)
3200 return 0;
3201
3202 s->allocflags = 0;
3203 if (order)
3204 s->allocflags |= __GFP_COMP;
3205
3206 if (s->flags & SLAB_CACHE_DMA)
3207 s->allocflags |= GFP_DMA;
3208
3209 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3210 s->allocflags |= __GFP_RECLAIMABLE;
3211
3212 /*
3213 * Determine the number of objects per slab
3214 */
3215 s->oo = oo_make(order, size, s->reserved);
3216 s->min = oo_make(get_order(size), size, s->reserved);
3217 if (oo_objects(s->oo) > oo_objects(s->max))
3218 s->max = s->oo;
3219
3220 return !!oo_objects(s->oo);
3221 }
3222
3223 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3224 {
3225 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3226 s->reserved = 0;
3227
3228 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3229 s->reserved = sizeof(struct rcu_head);
3230
3231 if (!calculate_sizes(s, -1))
3232 goto error;
3233 if (disable_higher_order_debug) {
3234 /*
3235 * Disable debugging flags that store metadata if the min slab
3236 * order increased.
3237 */
3238 if (get_order(s->size) > get_order(s->object_size)) {
3239 s->flags &= ~DEBUG_METADATA_FLAGS;
3240 s->offset = 0;
3241 if (!calculate_sizes(s, -1))
3242 goto error;
3243 }
3244 }
3245
3246 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3247 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3248 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3249 /* Enable fast mode */
3250 s->flags |= __CMPXCHG_DOUBLE;
3251 #endif
3252
3253 /*
3254 * The larger the object size is, the more pages we want on the partial
3255 * list to avoid pounding the page allocator excessively.
3256 */
3257 set_min_partial(s, ilog2(s->size) / 2);
3258
3259 /*
3260 * cpu_partial determined the maximum number of objects kept in the
3261 * per cpu partial lists of a processor.
3262 *
3263 * Per cpu partial lists mainly contain slabs that just have one
3264 * object freed. If they are used for allocation then they can be
3265 * filled up again with minimal effort. The slab will never hit the
3266 * per node partial lists and therefore no locking will be required.
3267 *
3268 * This setting also determines
3269 *
3270 * A) The number of objects from per cpu partial slabs dumped to the
3271 * per node list when we reach the limit.
3272 * B) The number of objects in cpu partial slabs to extract from the
3273 * per node list when we run out of per cpu objects. We only fetch
3274 * 50% to keep some capacity around for frees.
3275 */
3276 if (!kmem_cache_has_cpu_partial(s))
3277 s->cpu_partial = 0;
3278 else if (s->size >= PAGE_SIZE)
3279 s->cpu_partial = 2;
3280 else if (s->size >= 1024)
3281 s->cpu_partial = 6;
3282 else if (s->size >= 256)
3283 s->cpu_partial = 13;
3284 else
3285 s->cpu_partial = 30;
3286
3287 #ifdef CONFIG_NUMA
3288 s->remote_node_defrag_ratio = 1000;
3289 #endif
3290 if (!init_kmem_cache_nodes(s))
3291 goto error;
3292
3293 if (alloc_kmem_cache_cpus(s))
3294 return 0;
3295
3296 free_kmem_cache_nodes(s);
3297 error:
3298 if (flags & SLAB_PANIC)
3299 panic("Cannot create slab %s size=%lu realsize=%u "
3300 "order=%u offset=%u flags=%lx\n",
3301 s->name, (unsigned long)s->size, s->size,
3302 oo_order(s->oo), s->offset, flags);
3303 return -EINVAL;
3304 }
3305
3306 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3307 const char *text)
3308 {
3309 #ifdef CONFIG_SLUB_DEBUG
3310 void *addr = page_address(page);
3311 void *p;
3312 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3313 sizeof(long), GFP_ATOMIC);
3314 if (!map)
3315 return;
3316 slab_err(s, page, text, s->name);
3317 slab_lock(page);
3318
3319 get_map(s, page, map);
3320 for_each_object(p, s, addr, page->objects) {
3321
3322 if (!test_bit(slab_index(p, s, addr), map)) {
3323 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3324 print_tracking(s, p);
3325 }
3326 }
3327 slab_unlock(page);
3328 kfree(map);
3329 #endif
3330 }
3331
3332 /*
3333 * Attempt to free all partial slabs on a node.
3334 * This is called from kmem_cache_close(). We must be the last thread
3335 * using the cache and therefore we do not need to lock anymore.
3336 */
3337 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3338 {
3339 struct page *page, *h;
3340
3341 list_for_each_entry_safe(page, h, &n->partial, lru) {
3342 if (!page->inuse) {
3343 __remove_partial(n, page);
3344 discard_slab(s, page);
3345 } else {
3346 list_slab_objects(s, page,
3347 "Objects remaining in %s on kmem_cache_close()");
3348 }
3349 }
3350 }
3351
3352 /*
3353 * Release all resources used by a slab cache.
3354 */
3355 static inline int kmem_cache_close(struct kmem_cache *s)
3356 {
3357 int node;
3358 struct kmem_cache_node *n;
3359
3360 flush_all(s);
3361 /* Attempt to free all objects */
3362 for_each_kmem_cache_node(s, node, n) {
3363 free_partial(s, n);
3364 if (n->nr_partial || slabs_node(s, node))
3365 return 1;
3366 }
3367 free_percpu(s->cpu_slab);
3368 free_kmem_cache_nodes(s);
3369 return 0;
3370 }
3371
3372 int __kmem_cache_shutdown(struct kmem_cache *s)
3373 {
3374 return kmem_cache_close(s);
3375 }
3376
3377 /********************************************************************
3378 * Kmalloc subsystem
3379 *******************************************************************/
3380
3381 static int __init setup_slub_min_order(char *str)
3382 {
3383 get_option(&str, &slub_min_order);
3384
3385 return 1;
3386 }
3387
3388 __setup("slub_min_order=", setup_slub_min_order);
3389
3390 static int __init setup_slub_max_order(char *str)
3391 {
3392 get_option(&str, &slub_max_order);
3393 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3394
3395 return 1;
3396 }
3397
3398 __setup("slub_max_order=", setup_slub_max_order);
3399
3400 static int __init setup_slub_min_objects(char *str)
3401 {
3402 get_option(&str, &slub_min_objects);
3403
3404 return 1;
3405 }
3406
3407 __setup("slub_min_objects=", setup_slub_min_objects);
3408
3409 void *__kmalloc(size_t size, gfp_t flags)
3410 {
3411 struct kmem_cache *s;
3412 void *ret;
3413
3414 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3415 return kmalloc_large(size, flags);
3416
3417 s = kmalloc_slab(size, flags);
3418
3419 if (unlikely(ZERO_OR_NULL_PTR(s)))
3420 return s;
3421
3422 ret = slab_alloc(s, flags, _RET_IP_);
3423
3424 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3425
3426 kasan_kmalloc(s, ret, size);
3427
3428 return ret;
3429 }
3430 EXPORT_SYMBOL(__kmalloc);
3431
3432 #ifdef CONFIG_NUMA
3433 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3434 {
3435 struct page *page;
3436 void *ptr = NULL;
3437
3438 flags |= __GFP_COMP | __GFP_NOTRACK;
3439 page = alloc_kmem_pages_node(node, flags, get_order(size));
3440 if (page)
3441 ptr = page_address(page);
3442
3443 kmalloc_large_node_hook(ptr, size, flags);
3444 return ptr;
3445 }
3446
3447 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3448 {
3449 struct kmem_cache *s;
3450 void *ret;
3451
3452 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3453 ret = kmalloc_large_node(size, flags, node);
3454
3455 trace_kmalloc_node(_RET_IP_, ret,
3456 size, PAGE_SIZE << get_order(size),
3457 flags, node);
3458
3459 return ret;
3460 }
3461
3462 s = kmalloc_slab(size, flags);
3463
3464 if (unlikely(ZERO_OR_NULL_PTR(s)))
3465 return s;
3466
3467 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3468
3469 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3470
3471 kasan_kmalloc(s, ret, size);
3472
3473 return ret;
3474 }
3475 EXPORT_SYMBOL(__kmalloc_node);
3476 #endif
3477
3478 static size_t __ksize(const void *object)
3479 {
3480 struct page *page;
3481
3482 if (unlikely(object == ZERO_SIZE_PTR))
3483 return 0;
3484
3485 page = virt_to_head_page(object);
3486
3487 if (unlikely(!PageSlab(page))) {
3488 WARN_ON(!PageCompound(page));
3489 return PAGE_SIZE << compound_order(page);
3490 }
3491
3492 return slab_ksize(page->slab_cache);
3493 }
3494
3495 size_t ksize(const void *object)
3496 {
3497 size_t size = __ksize(object);
3498 /* We assume that ksize callers could use whole allocated area,
3499 so we need unpoison this area. */
3500 kasan_krealloc(object, size);
3501 return size;
3502 }
3503 EXPORT_SYMBOL(ksize);
3504
3505 void kfree(const void *x)
3506 {
3507 struct page *page;
3508 void *object = (void *)x;
3509
3510 trace_kfree(_RET_IP_, x);
3511
3512 if (unlikely(ZERO_OR_NULL_PTR(x)))
3513 return;
3514
3515 page = virt_to_head_page(x);
3516 if (unlikely(!PageSlab(page))) {
3517 BUG_ON(!PageCompound(page));
3518 kfree_hook(x);
3519 __free_kmem_pages(page, compound_order(page));
3520 return;
3521 }
3522 slab_free(page->slab_cache, page, object, _RET_IP_);
3523 }
3524 EXPORT_SYMBOL(kfree);
3525
3526 #define SHRINK_PROMOTE_MAX 32
3527
3528 /*
3529 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3530 * up most to the head of the partial lists. New allocations will then
3531 * fill those up and thus they can be removed from the partial lists.
3532 *
3533 * The slabs with the least items are placed last. This results in them
3534 * being allocated from last increasing the chance that the last objects
3535 * are freed in them.
3536 */
3537 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3538 {
3539 int node;
3540 int i;
3541 struct kmem_cache_node *n;
3542 struct page *page;
3543 struct page *t;
3544 struct list_head discard;
3545 struct list_head promote[SHRINK_PROMOTE_MAX];
3546 unsigned long flags;
3547 int ret = 0;
3548
3549 if (deactivate) {
3550 /*
3551 * Disable empty slabs caching. Used to avoid pinning offline
3552 * memory cgroups by kmem pages that can be freed.
3553 */
3554 s->cpu_partial = 0;
3555 s->min_partial = 0;
3556
3557 /*
3558 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3559 * so we have to make sure the change is visible.
3560 */
3561 kick_all_cpus_sync();
3562 }
3563
3564 flush_all(s);
3565 for_each_kmem_cache_node(s, node, n) {
3566 INIT_LIST_HEAD(&discard);
3567 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3568 INIT_LIST_HEAD(promote + i);
3569
3570 spin_lock_irqsave(&n->list_lock, flags);
3571
3572 /*
3573 * Build lists of slabs to discard or promote.
3574 *
3575 * Note that concurrent frees may occur while we hold the
3576 * list_lock. page->inuse here is the upper limit.
3577 */
3578 list_for_each_entry_safe(page, t, &n->partial, lru) {
3579 int free = page->objects - page->inuse;
3580
3581 /* Do not reread page->inuse */
3582 barrier();
3583
3584 /* We do not keep full slabs on the list */
3585 BUG_ON(free <= 0);
3586
3587 if (free == page->objects) {
3588 list_move(&page->lru, &discard);
3589 n->nr_partial--;
3590 } else if (free <= SHRINK_PROMOTE_MAX)
3591 list_move(&page->lru, promote + free - 1);
3592 }
3593
3594 /*
3595 * Promote the slabs filled up most to the head of the
3596 * partial list.
3597 */
3598 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3599 list_splice(promote + i, &n->partial);
3600
3601 spin_unlock_irqrestore(&n->list_lock, flags);
3602
3603 /* Release empty slabs */
3604 list_for_each_entry_safe(page, t, &discard, lru)
3605 discard_slab(s, page);
3606
3607 if (slabs_node(s, node))
3608 ret = 1;
3609 }
3610
3611 return ret;
3612 }
3613
3614 static int slab_mem_going_offline_callback(void *arg)
3615 {
3616 struct kmem_cache *s;
3617
3618 mutex_lock(&slab_mutex);
3619 list_for_each_entry(s, &slab_caches, list)
3620 __kmem_cache_shrink(s, false);
3621 mutex_unlock(&slab_mutex);
3622
3623 return 0;
3624 }
3625
3626 static void slab_mem_offline_callback(void *arg)
3627 {
3628 struct kmem_cache_node *n;
3629 struct kmem_cache *s;
3630 struct memory_notify *marg = arg;
3631 int offline_node;
3632
3633 offline_node = marg->status_change_nid_normal;
3634
3635 /*
3636 * If the node still has available memory. we need kmem_cache_node
3637 * for it yet.
3638 */
3639 if (offline_node < 0)
3640 return;
3641
3642 mutex_lock(&slab_mutex);
3643 list_for_each_entry(s, &slab_caches, list) {
3644 n = get_node(s, offline_node);
3645 if (n) {
3646 /*
3647 * if n->nr_slabs > 0, slabs still exist on the node
3648 * that is going down. We were unable to free them,
3649 * and offline_pages() function shouldn't call this
3650 * callback. So, we must fail.
3651 */
3652 BUG_ON(slabs_node(s, offline_node));
3653
3654 s->node[offline_node] = NULL;
3655 kmem_cache_free(kmem_cache_node, n);
3656 }
3657 }
3658 mutex_unlock(&slab_mutex);
3659 }
3660
3661 static int slab_mem_going_online_callback(void *arg)
3662 {
3663 struct kmem_cache_node *n;
3664 struct kmem_cache *s;
3665 struct memory_notify *marg = arg;
3666 int nid = marg->status_change_nid_normal;
3667 int ret = 0;
3668
3669 /*
3670 * If the node's memory is already available, then kmem_cache_node is
3671 * already created. Nothing to do.
3672 */
3673 if (nid < 0)
3674 return 0;
3675
3676 /*
3677 * We are bringing a node online. No memory is available yet. We must
3678 * allocate a kmem_cache_node structure in order to bring the node
3679 * online.
3680 */
3681 mutex_lock(&slab_mutex);
3682 list_for_each_entry(s, &slab_caches, list) {
3683 /*
3684 * XXX: kmem_cache_alloc_node will fallback to other nodes
3685 * since memory is not yet available from the node that
3686 * is brought up.
3687 */
3688 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3689 if (!n) {
3690 ret = -ENOMEM;
3691 goto out;
3692 }
3693 init_kmem_cache_node(n);
3694 s->node[nid] = n;
3695 }
3696 out:
3697 mutex_unlock(&slab_mutex);
3698 return ret;
3699 }
3700
3701 static int slab_memory_callback(struct notifier_block *self,
3702 unsigned long action, void *arg)
3703 {
3704 int ret = 0;
3705
3706 switch (action) {
3707 case MEM_GOING_ONLINE:
3708 ret = slab_mem_going_online_callback(arg);
3709 break;
3710 case MEM_GOING_OFFLINE:
3711 ret = slab_mem_going_offline_callback(arg);
3712 break;
3713 case MEM_OFFLINE:
3714 case MEM_CANCEL_ONLINE:
3715 slab_mem_offline_callback(arg);
3716 break;
3717 case MEM_ONLINE:
3718 case MEM_CANCEL_OFFLINE:
3719 break;
3720 }
3721 if (ret)
3722 ret = notifier_from_errno(ret);
3723 else
3724 ret = NOTIFY_OK;
3725 return ret;
3726 }
3727
3728 static struct notifier_block slab_memory_callback_nb = {
3729 .notifier_call = slab_memory_callback,
3730 .priority = SLAB_CALLBACK_PRI,
3731 };
3732
3733 /********************************************************************
3734 * Basic setup of slabs
3735 *******************************************************************/
3736
3737 /*
3738 * Used for early kmem_cache structures that were allocated using
3739 * the page allocator. Allocate them properly then fix up the pointers
3740 * that may be pointing to the wrong kmem_cache structure.
3741 */
3742
3743 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3744 {
3745 int node;
3746 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3747 struct kmem_cache_node *n;
3748
3749 memcpy(s, static_cache, kmem_cache->object_size);
3750
3751 /*
3752 * This runs very early, and only the boot processor is supposed to be
3753 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3754 * IPIs around.
3755 */
3756 __flush_cpu_slab(s, smp_processor_id());
3757 for_each_kmem_cache_node(s, node, n) {
3758 struct page *p;
3759
3760 list_for_each_entry(p, &n->partial, lru)
3761 p->slab_cache = s;
3762
3763 #ifdef CONFIG_SLUB_DEBUG
3764 list_for_each_entry(p, &n->full, lru)
3765 p->slab_cache = s;
3766 #endif
3767 }
3768 slab_init_memcg_params(s);
3769 list_add(&s->list, &slab_caches);
3770 return s;
3771 }
3772
3773 void __init kmem_cache_init(void)
3774 {
3775 static __initdata struct kmem_cache boot_kmem_cache,
3776 boot_kmem_cache_node;
3777
3778 if (debug_guardpage_minorder())
3779 slub_max_order = 0;
3780
3781 kmem_cache_node = &boot_kmem_cache_node;
3782 kmem_cache = &boot_kmem_cache;
3783
3784 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3785 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3786
3787 register_hotmemory_notifier(&slab_memory_callback_nb);
3788
3789 /* Able to allocate the per node structures */
3790 slab_state = PARTIAL;
3791
3792 create_boot_cache(kmem_cache, "kmem_cache",
3793 offsetof(struct kmem_cache, node) +
3794 nr_node_ids * sizeof(struct kmem_cache_node *),
3795 SLAB_HWCACHE_ALIGN);
3796
3797 kmem_cache = bootstrap(&boot_kmem_cache);
3798
3799 /*
3800 * Allocate kmem_cache_node properly from the kmem_cache slab.
3801 * kmem_cache_node is separately allocated so no need to
3802 * update any list pointers.
3803 */
3804 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3805
3806 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3807 setup_kmalloc_cache_index_table();
3808 create_kmalloc_caches(0);
3809
3810 #ifdef CONFIG_SMP
3811 register_cpu_notifier(&slab_notifier);
3812 #endif
3813
3814 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3815 cache_line_size(),
3816 slub_min_order, slub_max_order, slub_min_objects,
3817 nr_cpu_ids, nr_node_ids);
3818 }
3819
3820 void __init kmem_cache_init_late(void)
3821 {
3822 }
3823
3824 struct kmem_cache *
3825 __kmem_cache_alias(const char *name, size_t size, size_t align,
3826 unsigned long flags, void (*ctor)(void *))
3827 {
3828 struct kmem_cache *s, *c;
3829
3830 s = find_mergeable(size, align, flags, name, ctor);
3831 if (s) {
3832 s->refcount++;
3833
3834 /*
3835 * Adjust the object sizes so that we clear
3836 * the complete object on kzalloc.
3837 */
3838 s->object_size = max(s->object_size, (int)size);
3839 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3840
3841 for_each_memcg_cache(c, s) {
3842 c->object_size = s->object_size;
3843 c->inuse = max_t(int, c->inuse,
3844 ALIGN(size, sizeof(void *)));
3845 }
3846
3847 if (sysfs_slab_alias(s, name)) {
3848 s->refcount--;
3849 s = NULL;
3850 }
3851 }
3852
3853 return s;
3854 }
3855
3856 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3857 {
3858 int err;
3859
3860 err = kmem_cache_open(s, flags);
3861 if (err)
3862 return err;
3863
3864 /* Mutex is not taken during early boot */
3865 if (slab_state <= UP)
3866 return 0;
3867
3868 memcg_propagate_slab_attrs(s);
3869 err = sysfs_slab_add(s);
3870 if (err)
3871 kmem_cache_close(s);
3872
3873 return err;
3874 }
3875
3876 #ifdef CONFIG_SMP
3877 /*
3878 * Use the cpu notifier to insure that the cpu slabs are flushed when
3879 * necessary.
3880 */
3881 static int slab_cpuup_callback(struct notifier_block *nfb,
3882 unsigned long action, void *hcpu)
3883 {
3884 long cpu = (long)hcpu;
3885 struct kmem_cache *s;
3886 unsigned long flags;
3887
3888 switch (action) {
3889 case CPU_UP_CANCELED:
3890 case CPU_UP_CANCELED_FROZEN:
3891 case CPU_DEAD:
3892 case CPU_DEAD_FROZEN:
3893 mutex_lock(&slab_mutex);
3894 list_for_each_entry(s, &slab_caches, list) {
3895 local_irq_save(flags);
3896 __flush_cpu_slab(s, cpu);
3897 local_irq_restore(flags);
3898 }
3899 mutex_unlock(&slab_mutex);
3900 break;
3901 default:
3902 break;
3903 }
3904 return NOTIFY_OK;
3905 }
3906
3907 static struct notifier_block slab_notifier = {
3908 .notifier_call = slab_cpuup_callback
3909 };
3910
3911 #endif
3912
3913 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3914 {
3915 struct kmem_cache *s;
3916 void *ret;
3917
3918 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3919 return kmalloc_large(size, gfpflags);
3920
3921 s = kmalloc_slab(size, gfpflags);
3922
3923 if (unlikely(ZERO_OR_NULL_PTR(s)))
3924 return s;
3925
3926 ret = slab_alloc(s, gfpflags, caller);
3927
3928 /* Honor the call site pointer we received. */
3929 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3930
3931 return ret;
3932 }
3933
3934 #ifdef CONFIG_NUMA
3935 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3936 int node, unsigned long caller)
3937 {
3938 struct kmem_cache *s;
3939 void *ret;
3940
3941 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3942 ret = kmalloc_large_node(size, gfpflags, node);
3943
3944 trace_kmalloc_node(caller, ret,
3945 size, PAGE_SIZE << get_order(size),
3946 gfpflags, node);
3947
3948 return ret;
3949 }
3950
3951 s = kmalloc_slab(size, gfpflags);
3952
3953 if (unlikely(ZERO_OR_NULL_PTR(s)))
3954 return s;
3955
3956 ret = slab_alloc_node(s, gfpflags, node, caller);
3957
3958 /* Honor the call site pointer we received. */
3959 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3960
3961 return ret;
3962 }
3963 #endif
3964
3965 #ifdef CONFIG_SYSFS
3966 static int count_inuse(struct page *page)
3967 {
3968 return page->inuse;
3969 }
3970
3971 static int count_total(struct page *page)
3972 {
3973 return page->objects;
3974 }
3975 #endif
3976
3977 #ifdef CONFIG_SLUB_DEBUG
3978 static int validate_slab(struct kmem_cache *s, struct page *page,
3979 unsigned long *map)
3980 {
3981 void *p;
3982 void *addr = page_address(page);
3983
3984 if (!check_slab(s, page) ||
3985 !on_freelist(s, page, NULL))
3986 return 0;
3987
3988 /* Now we know that a valid freelist exists */
3989 bitmap_zero(map, page->objects);
3990
3991 get_map(s, page, map);
3992 for_each_object(p, s, addr, page->objects) {
3993 if (test_bit(slab_index(p, s, addr), map))
3994 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3995 return 0;
3996 }
3997
3998 for_each_object(p, s, addr, page->objects)
3999 if (!test_bit(slab_index(p, s, addr), map))
4000 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4001 return 0;
4002 return 1;
4003 }
4004
4005 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4006 unsigned long *map)
4007 {
4008 slab_lock(page);
4009 validate_slab(s, page, map);
4010 slab_unlock(page);
4011 }
4012
4013 static int validate_slab_node(struct kmem_cache *s,
4014 struct kmem_cache_node *n, unsigned long *map)
4015 {
4016 unsigned long count = 0;
4017 struct page *page;
4018 unsigned long flags;
4019
4020 spin_lock_irqsave(&n->list_lock, flags);
4021
4022 list_for_each_entry(page, &n->partial, lru) {
4023 validate_slab_slab(s, page, map);
4024 count++;
4025 }
4026 if (count != n->nr_partial)
4027 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4028 s->name, count, n->nr_partial);
4029
4030 if (!(s->flags & SLAB_STORE_USER))
4031 goto out;
4032
4033 list_for_each_entry(page, &n->full, lru) {
4034 validate_slab_slab(s, page, map);
4035 count++;
4036 }
4037 if (count != atomic_long_read(&n->nr_slabs))
4038 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4039 s->name, count, atomic_long_read(&n->nr_slabs));
4040
4041 out:
4042 spin_unlock_irqrestore(&n->list_lock, flags);
4043 return count;
4044 }
4045
4046 static long validate_slab_cache(struct kmem_cache *s)
4047 {
4048 int node;
4049 unsigned long count = 0;
4050 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4051 sizeof(unsigned long), GFP_KERNEL);
4052 struct kmem_cache_node *n;
4053
4054 if (!map)
4055 return -ENOMEM;
4056
4057 flush_all(s);
4058 for_each_kmem_cache_node(s, node, n)
4059 count += validate_slab_node(s, n, map);
4060 kfree(map);
4061 return count;
4062 }
4063 /*
4064 * Generate lists of code addresses where slabcache objects are allocated
4065 * and freed.
4066 */
4067
4068 struct location {
4069 unsigned long count;
4070 unsigned long addr;
4071 long long sum_time;
4072 long min_time;
4073 long max_time;
4074 long min_pid;
4075 long max_pid;
4076 DECLARE_BITMAP(cpus, NR_CPUS);
4077 nodemask_t nodes;
4078 };
4079
4080 struct loc_track {
4081 unsigned long max;
4082 unsigned long count;
4083 struct location *loc;
4084 };
4085
4086 static void free_loc_track(struct loc_track *t)
4087 {
4088 if (t->max)
4089 free_pages((unsigned long)t->loc,
4090 get_order(sizeof(struct location) * t->max));
4091 }
4092
4093 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4094 {
4095 struct location *l;
4096 int order;
4097
4098 order = get_order(sizeof(struct location) * max);
4099
4100 l = (void *)__get_free_pages(flags, order);
4101 if (!l)
4102 return 0;
4103
4104 if (t->count) {
4105 memcpy(l, t->loc, sizeof(struct location) * t->count);
4106 free_loc_track(t);
4107 }
4108 t->max = max;
4109 t->loc = l;
4110 return 1;
4111 }
4112
4113 static int add_location(struct loc_track *t, struct kmem_cache *s,
4114 const struct track *track)
4115 {
4116 long start, end, pos;
4117 struct location *l;
4118 unsigned long caddr;
4119 unsigned long age = jiffies - track->when;
4120
4121 start = -1;
4122 end = t->count;
4123
4124 for ( ; ; ) {
4125 pos = start + (end - start + 1) / 2;
4126
4127 /*
4128 * There is nothing at "end". If we end up there
4129 * we need to add something to before end.
4130 */
4131 if (pos == end)
4132 break;
4133
4134 caddr = t->loc[pos].addr;
4135 if (track->addr == caddr) {
4136
4137 l = &t->loc[pos];
4138 l->count++;
4139 if (track->when) {
4140 l->sum_time += age;
4141 if (age < l->min_time)
4142 l->min_time = age;
4143 if (age > l->max_time)
4144 l->max_time = age;
4145
4146 if (track->pid < l->min_pid)
4147 l->min_pid = track->pid;
4148 if (track->pid > l->max_pid)
4149 l->max_pid = track->pid;
4150
4151 cpumask_set_cpu(track->cpu,
4152 to_cpumask(l->cpus));
4153 }
4154 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4155 return 1;
4156 }
4157
4158 if (track->addr < caddr)
4159 end = pos;
4160 else
4161 start = pos;
4162 }
4163
4164 /*
4165 * Not found. Insert new tracking element.
4166 */
4167 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4168 return 0;
4169
4170 l = t->loc + pos;
4171 if (pos < t->count)
4172 memmove(l + 1, l,
4173 (t->count - pos) * sizeof(struct location));
4174 t->count++;
4175 l->count = 1;
4176 l->addr = track->addr;
4177 l->sum_time = age;
4178 l->min_time = age;
4179 l->max_time = age;
4180 l->min_pid = track->pid;
4181 l->max_pid = track->pid;
4182 cpumask_clear(to_cpumask(l->cpus));
4183 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4184 nodes_clear(l->nodes);
4185 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4186 return 1;
4187 }
4188
4189 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4190 struct page *page, enum track_item alloc,
4191 unsigned long *map)
4192 {
4193 void *addr = page_address(page);
4194 void *p;
4195
4196 bitmap_zero(map, page->objects);
4197 get_map(s, page, map);
4198
4199 for_each_object(p, s, addr, page->objects)
4200 if (!test_bit(slab_index(p, s, addr), map))
4201 add_location(t, s, get_track(s, p, alloc));
4202 }
4203
4204 static int list_locations(struct kmem_cache *s, char *buf,
4205 enum track_item alloc)
4206 {
4207 int len = 0;
4208 unsigned long i;
4209 struct loc_track t = { 0, 0, NULL };
4210 int node;
4211 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4212 sizeof(unsigned long), GFP_KERNEL);
4213 struct kmem_cache_node *n;
4214
4215 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4216 GFP_TEMPORARY)) {
4217 kfree(map);
4218 return sprintf(buf, "Out of memory\n");
4219 }
4220 /* Push back cpu slabs */
4221 flush_all(s);
4222
4223 for_each_kmem_cache_node(s, node, n) {
4224 unsigned long flags;
4225 struct page *page;
4226
4227 if (!atomic_long_read(&n->nr_slabs))
4228 continue;
4229
4230 spin_lock_irqsave(&n->list_lock, flags);
4231 list_for_each_entry(page, &n->partial, lru)
4232 process_slab(&t, s, page, alloc, map);
4233 list_for_each_entry(page, &n->full, lru)
4234 process_slab(&t, s, page, alloc, map);
4235 spin_unlock_irqrestore(&n->list_lock, flags);
4236 }
4237
4238 for (i = 0; i < t.count; i++) {
4239 struct location *l = &t.loc[i];
4240
4241 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4242 break;
4243 len += sprintf(buf + len, "%7ld ", l->count);
4244
4245 if (l->addr)
4246 len += sprintf(buf + len, "%pS", (void *)l->addr);
4247 else
4248 len += sprintf(buf + len, "<not-available>");
4249
4250 if (l->sum_time != l->min_time) {
4251 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4252 l->min_time,
4253 (long)div_u64(l->sum_time, l->count),
4254 l->max_time);
4255 } else
4256 len += sprintf(buf + len, " age=%ld",
4257 l->min_time);
4258
4259 if (l->min_pid != l->max_pid)
4260 len += sprintf(buf + len, " pid=%ld-%ld",
4261 l->min_pid, l->max_pid);
4262 else
4263 len += sprintf(buf + len, " pid=%ld",
4264 l->min_pid);
4265
4266 if (num_online_cpus() > 1 &&
4267 !cpumask_empty(to_cpumask(l->cpus)) &&
4268 len < PAGE_SIZE - 60)
4269 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4270 " cpus=%*pbl",
4271 cpumask_pr_args(to_cpumask(l->cpus)));
4272
4273 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4274 len < PAGE_SIZE - 60)
4275 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4276 " nodes=%*pbl",
4277 nodemask_pr_args(&l->nodes));
4278
4279 len += sprintf(buf + len, "\n");
4280 }
4281
4282 free_loc_track(&t);
4283 kfree(map);
4284 if (!t.count)
4285 len += sprintf(buf, "No data\n");
4286 return len;
4287 }
4288 #endif
4289
4290 #ifdef SLUB_RESILIENCY_TEST
4291 static void __init resiliency_test(void)
4292 {
4293 u8 *p;
4294
4295 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4296
4297 pr_err("SLUB resiliency testing\n");
4298 pr_err("-----------------------\n");
4299 pr_err("A. Corruption after allocation\n");
4300
4301 p = kzalloc(16, GFP_KERNEL);
4302 p[16] = 0x12;
4303 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4304 p + 16);
4305
4306 validate_slab_cache(kmalloc_caches[4]);
4307
4308 /* Hmmm... The next two are dangerous */
4309 p = kzalloc(32, GFP_KERNEL);
4310 p[32 + sizeof(void *)] = 0x34;
4311 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4312 p);
4313 pr_err("If allocated object is overwritten then not detectable\n\n");
4314
4315 validate_slab_cache(kmalloc_caches[5]);
4316 p = kzalloc(64, GFP_KERNEL);
4317 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4318 *p = 0x56;
4319 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4320 p);
4321 pr_err("If allocated object is overwritten then not detectable\n\n");
4322 validate_slab_cache(kmalloc_caches[6]);
4323
4324 pr_err("\nB. Corruption after free\n");
4325 p = kzalloc(128, GFP_KERNEL);
4326 kfree(p);
4327 *p = 0x78;
4328 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4329 validate_slab_cache(kmalloc_caches[7]);
4330
4331 p = kzalloc(256, GFP_KERNEL);
4332 kfree(p);
4333 p[50] = 0x9a;
4334 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4335 validate_slab_cache(kmalloc_caches[8]);
4336
4337 p = kzalloc(512, GFP_KERNEL);
4338 kfree(p);
4339 p[512] = 0xab;
4340 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4341 validate_slab_cache(kmalloc_caches[9]);
4342 }
4343 #else
4344 #ifdef CONFIG_SYSFS
4345 static void resiliency_test(void) {};
4346 #endif
4347 #endif
4348
4349 #ifdef CONFIG_SYSFS
4350 enum slab_stat_type {
4351 SL_ALL, /* All slabs */
4352 SL_PARTIAL, /* Only partially allocated slabs */
4353 SL_CPU, /* Only slabs used for cpu caches */
4354 SL_OBJECTS, /* Determine allocated objects not slabs */
4355 SL_TOTAL /* Determine object capacity not slabs */
4356 };
4357
4358 #define SO_ALL (1 << SL_ALL)
4359 #define SO_PARTIAL (1 << SL_PARTIAL)
4360 #define SO_CPU (1 << SL_CPU)
4361 #define SO_OBJECTS (1 << SL_OBJECTS)
4362 #define SO_TOTAL (1 << SL_TOTAL)
4363
4364 static ssize_t show_slab_objects(struct kmem_cache *s,
4365 char *buf, unsigned long flags)
4366 {
4367 unsigned long total = 0;
4368 int node;
4369 int x;
4370 unsigned long *nodes;
4371
4372 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4373 if (!nodes)
4374 return -ENOMEM;
4375
4376 if (flags & SO_CPU) {
4377 int cpu;
4378
4379 for_each_possible_cpu(cpu) {
4380 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4381 cpu);
4382 int node;
4383 struct page *page;
4384
4385 page = READ_ONCE(c->page);
4386 if (!page)
4387 continue;
4388
4389 node = page_to_nid(page);
4390 if (flags & SO_TOTAL)
4391 x = page->objects;
4392 else if (flags & SO_OBJECTS)
4393 x = page->inuse;
4394 else
4395 x = 1;
4396
4397 total += x;
4398 nodes[node] += x;
4399
4400 page = READ_ONCE(c->partial);
4401 if (page) {
4402 node = page_to_nid(page);
4403 if (flags & SO_TOTAL)
4404 WARN_ON_ONCE(1);
4405 else if (flags & SO_OBJECTS)
4406 WARN_ON_ONCE(1);
4407 else
4408 x = page->pages;
4409 total += x;
4410 nodes[node] += x;
4411 }
4412 }
4413 }
4414
4415 get_online_mems();
4416 #ifdef CONFIG_SLUB_DEBUG
4417 if (flags & SO_ALL) {
4418 struct kmem_cache_node *n;
4419
4420 for_each_kmem_cache_node(s, node, n) {
4421
4422 if (flags & SO_TOTAL)
4423 x = atomic_long_read(&n->total_objects);
4424 else if (flags & SO_OBJECTS)
4425 x = atomic_long_read(&n->total_objects) -
4426 count_partial(n, count_free);
4427 else
4428 x = atomic_long_read(&n->nr_slabs);
4429 total += x;
4430 nodes[node] += x;
4431 }
4432
4433 } else
4434 #endif
4435 if (flags & SO_PARTIAL) {
4436 struct kmem_cache_node *n;
4437
4438 for_each_kmem_cache_node(s, node, n) {
4439 if (flags & SO_TOTAL)
4440 x = count_partial(n, count_total);
4441 else if (flags & SO_OBJECTS)
4442 x = count_partial(n, count_inuse);
4443 else
4444 x = n->nr_partial;
4445 total += x;
4446 nodes[node] += x;
4447 }
4448 }
4449 x = sprintf(buf, "%lu", total);
4450 #ifdef CONFIG_NUMA
4451 for (node = 0; node < nr_node_ids; node++)
4452 if (nodes[node])
4453 x += sprintf(buf + x, " N%d=%lu",
4454 node, nodes[node]);
4455 #endif
4456 put_online_mems();
4457 kfree(nodes);
4458 return x + sprintf(buf + x, "\n");
4459 }
4460
4461 #ifdef CONFIG_SLUB_DEBUG
4462 static int any_slab_objects(struct kmem_cache *s)
4463 {
4464 int node;
4465 struct kmem_cache_node *n;
4466
4467 for_each_kmem_cache_node(s, node, n)
4468 if (atomic_long_read(&n->total_objects))
4469 return 1;
4470
4471 return 0;
4472 }
4473 #endif
4474
4475 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4476 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4477
4478 struct slab_attribute {
4479 struct attribute attr;
4480 ssize_t (*show)(struct kmem_cache *s, char *buf);
4481 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4482 };
4483
4484 #define SLAB_ATTR_RO(_name) \
4485 static struct slab_attribute _name##_attr = \
4486 __ATTR(_name, 0400, _name##_show, NULL)
4487
4488 #define SLAB_ATTR(_name) \
4489 static struct slab_attribute _name##_attr = \
4490 __ATTR(_name, 0600, _name##_show, _name##_store)
4491
4492 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4493 {
4494 return sprintf(buf, "%d\n", s->size);
4495 }
4496 SLAB_ATTR_RO(slab_size);
4497
4498 static ssize_t align_show(struct kmem_cache *s, char *buf)
4499 {
4500 return sprintf(buf, "%d\n", s->align);
4501 }
4502 SLAB_ATTR_RO(align);
4503
4504 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4505 {
4506 return sprintf(buf, "%d\n", s->object_size);
4507 }
4508 SLAB_ATTR_RO(object_size);
4509
4510 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4511 {
4512 return sprintf(buf, "%d\n", oo_objects(s->oo));
4513 }
4514 SLAB_ATTR_RO(objs_per_slab);
4515
4516 static ssize_t order_store(struct kmem_cache *s,
4517 const char *buf, size_t length)
4518 {
4519 unsigned long order;
4520 int err;
4521
4522 err = kstrtoul(buf, 10, &order);
4523 if (err)
4524 return err;
4525
4526 if (order > slub_max_order || order < slub_min_order)
4527 return -EINVAL;
4528
4529 calculate_sizes(s, order);
4530 return length;
4531 }
4532
4533 static ssize_t order_show(struct kmem_cache *s, char *buf)
4534 {
4535 return sprintf(buf, "%d\n", oo_order(s->oo));
4536 }
4537 SLAB_ATTR(order);
4538
4539 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4540 {
4541 return sprintf(buf, "%lu\n", s->min_partial);
4542 }
4543
4544 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4545 size_t length)
4546 {
4547 unsigned long min;
4548 int err;
4549
4550 err = kstrtoul(buf, 10, &min);
4551 if (err)
4552 return err;
4553
4554 set_min_partial(s, min);
4555 return length;
4556 }
4557 SLAB_ATTR(min_partial);
4558
4559 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4560 {
4561 return sprintf(buf, "%u\n", s->cpu_partial);
4562 }
4563
4564 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4565 size_t length)
4566 {
4567 unsigned long objects;
4568 int err;
4569
4570 err = kstrtoul(buf, 10, &objects);
4571 if (err)
4572 return err;
4573 if (objects && !kmem_cache_has_cpu_partial(s))
4574 return -EINVAL;
4575
4576 s->cpu_partial = objects;
4577 flush_all(s);
4578 return length;
4579 }
4580 SLAB_ATTR(cpu_partial);
4581
4582 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4583 {
4584 if (!s->ctor)
4585 return 0;
4586 return sprintf(buf, "%pS\n", s->ctor);
4587 }
4588 SLAB_ATTR_RO(ctor);
4589
4590 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4591 {
4592 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4593 }
4594 SLAB_ATTR_RO(aliases);
4595
4596 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4597 {
4598 return show_slab_objects(s, buf, SO_PARTIAL);
4599 }
4600 SLAB_ATTR_RO(partial);
4601
4602 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4603 {
4604 return show_slab_objects(s, buf, SO_CPU);
4605 }
4606 SLAB_ATTR_RO(cpu_slabs);
4607
4608 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4609 {
4610 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4611 }
4612 SLAB_ATTR_RO(objects);
4613
4614 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4615 {
4616 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4617 }
4618 SLAB_ATTR_RO(objects_partial);
4619
4620 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4621 {
4622 int objects = 0;
4623 int pages = 0;
4624 int cpu;
4625 int len;
4626
4627 for_each_online_cpu(cpu) {
4628 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4629
4630 if (page) {
4631 pages += page->pages;
4632 objects += page->pobjects;
4633 }
4634 }
4635
4636 len = sprintf(buf, "%d(%d)", objects, pages);
4637
4638 #ifdef CONFIG_SMP
4639 for_each_online_cpu(cpu) {
4640 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4641
4642 if (page && len < PAGE_SIZE - 20)
4643 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4644 page->pobjects, page->pages);
4645 }
4646 #endif
4647 return len + sprintf(buf + len, "\n");
4648 }
4649 SLAB_ATTR_RO(slabs_cpu_partial);
4650
4651 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4652 {
4653 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4654 }
4655
4656 static ssize_t reclaim_account_store(struct kmem_cache *s,
4657 const char *buf, size_t length)
4658 {
4659 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4660 if (buf[0] == '1')
4661 s->flags |= SLAB_RECLAIM_ACCOUNT;
4662 return length;
4663 }
4664 SLAB_ATTR(reclaim_account);
4665
4666 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4667 {
4668 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4669 }
4670 SLAB_ATTR_RO(hwcache_align);
4671
4672 #ifdef CONFIG_ZONE_DMA
4673 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4674 {
4675 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4676 }
4677 SLAB_ATTR_RO(cache_dma);
4678 #endif
4679
4680 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4681 {
4682 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4683 }
4684 SLAB_ATTR_RO(destroy_by_rcu);
4685
4686 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4687 {
4688 return sprintf(buf, "%d\n", s->reserved);
4689 }
4690 SLAB_ATTR_RO(reserved);
4691
4692 #ifdef CONFIG_SLUB_DEBUG
4693 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4694 {
4695 return show_slab_objects(s, buf, SO_ALL);
4696 }
4697 SLAB_ATTR_RO(slabs);
4698
4699 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4700 {
4701 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4702 }
4703 SLAB_ATTR_RO(total_objects);
4704
4705 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4706 {
4707 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4708 }
4709
4710 static ssize_t sanity_checks_store(struct kmem_cache *s,
4711 const char *buf, size_t length)
4712 {
4713 s->flags &= ~SLAB_DEBUG_FREE;
4714 if (buf[0] == '1') {
4715 s->flags &= ~__CMPXCHG_DOUBLE;
4716 s->flags |= SLAB_DEBUG_FREE;
4717 }
4718 return length;
4719 }
4720 SLAB_ATTR(sanity_checks);
4721
4722 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4723 {
4724 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4725 }
4726
4727 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4728 size_t length)
4729 {
4730 /*
4731 * Tracing a merged cache is going to give confusing results
4732 * as well as cause other issues like converting a mergeable
4733 * cache into an umergeable one.
4734 */
4735 if (s->refcount > 1)
4736 return -EINVAL;
4737
4738 s->flags &= ~SLAB_TRACE;
4739 if (buf[0] == '1') {
4740 s->flags &= ~__CMPXCHG_DOUBLE;
4741 s->flags |= SLAB_TRACE;
4742 }
4743 return length;
4744 }
4745 SLAB_ATTR(trace);
4746
4747 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4748 {
4749 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4750 }
4751
4752 static ssize_t red_zone_store(struct kmem_cache *s,
4753 const char *buf, size_t length)
4754 {
4755 if (any_slab_objects(s))
4756 return -EBUSY;
4757
4758 s->flags &= ~SLAB_RED_ZONE;
4759 if (buf[0] == '1') {
4760 s->flags &= ~__CMPXCHG_DOUBLE;
4761 s->flags |= SLAB_RED_ZONE;
4762 }
4763 calculate_sizes(s, -1);
4764 return length;
4765 }
4766 SLAB_ATTR(red_zone);
4767
4768 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4769 {
4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4771 }
4772
4773 static ssize_t poison_store(struct kmem_cache *s,
4774 const char *buf, size_t length)
4775 {
4776 if (any_slab_objects(s))
4777 return -EBUSY;
4778
4779 s->flags &= ~SLAB_POISON;
4780 if (buf[0] == '1') {
4781 s->flags &= ~__CMPXCHG_DOUBLE;
4782 s->flags |= SLAB_POISON;
4783 }
4784 calculate_sizes(s, -1);
4785 return length;
4786 }
4787 SLAB_ATTR(poison);
4788
4789 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4790 {
4791 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4792 }
4793
4794 static ssize_t store_user_store(struct kmem_cache *s,
4795 const char *buf, size_t length)
4796 {
4797 if (any_slab_objects(s))
4798 return -EBUSY;
4799
4800 s->flags &= ~SLAB_STORE_USER;
4801 if (buf[0] == '1') {
4802 s->flags &= ~__CMPXCHG_DOUBLE;
4803 s->flags |= SLAB_STORE_USER;
4804 }
4805 calculate_sizes(s, -1);
4806 return length;
4807 }
4808 SLAB_ATTR(store_user);
4809
4810 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4811 {
4812 return 0;
4813 }
4814
4815 static ssize_t validate_store(struct kmem_cache *s,
4816 const char *buf, size_t length)
4817 {
4818 int ret = -EINVAL;
4819
4820 if (buf[0] == '1') {
4821 ret = validate_slab_cache(s);
4822 if (ret >= 0)
4823 ret = length;
4824 }
4825 return ret;
4826 }
4827 SLAB_ATTR(validate);
4828
4829 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4830 {
4831 if (!(s->flags & SLAB_STORE_USER))
4832 return -ENOSYS;
4833 return list_locations(s, buf, TRACK_ALLOC);
4834 }
4835 SLAB_ATTR_RO(alloc_calls);
4836
4837 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4838 {
4839 if (!(s->flags & SLAB_STORE_USER))
4840 return -ENOSYS;
4841 return list_locations(s, buf, TRACK_FREE);
4842 }
4843 SLAB_ATTR_RO(free_calls);
4844 #endif /* CONFIG_SLUB_DEBUG */
4845
4846 #ifdef CONFIG_FAILSLAB
4847 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4848 {
4849 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4850 }
4851
4852 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4853 size_t length)
4854 {
4855 if (s->refcount > 1)
4856 return -EINVAL;
4857
4858 s->flags &= ~SLAB_FAILSLAB;
4859 if (buf[0] == '1')
4860 s->flags |= SLAB_FAILSLAB;
4861 return length;
4862 }
4863 SLAB_ATTR(failslab);
4864 #endif
4865
4866 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4867 {
4868 return 0;
4869 }
4870
4871 static ssize_t shrink_store(struct kmem_cache *s,
4872 const char *buf, size_t length)
4873 {
4874 if (buf[0] == '1')
4875 kmem_cache_shrink(s);
4876 else
4877 return -EINVAL;
4878 return length;
4879 }
4880 SLAB_ATTR(shrink);
4881
4882 #ifdef CONFIG_NUMA
4883 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4884 {
4885 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4886 }
4887
4888 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4889 const char *buf, size_t length)
4890 {
4891 unsigned long ratio;
4892 int err;
4893
4894 err = kstrtoul(buf, 10, &ratio);
4895 if (err)
4896 return err;
4897
4898 if (ratio <= 100)
4899 s->remote_node_defrag_ratio = ratio * 10;
4900
4901 return length;
4902 }
4903 SLAB_ATTR(remote_node_defrag_ratio);
4904 #endif
4905
4906 #ifdef CONFIG_SLUB_STATS
4907 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4908 {
4909 unsigned long sum = 0;
4910 int cpu;
4911 int len;
4912 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4913
4914 if (!data)
4915 return -ENOMEM;
4916
4917 for_each_online_cpu(cpu) {
4918 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4919
4920 data[cpu] = x;
4921 sum += x;
4922 }
4923
4924 len = sprintf(buf, "%lu", sum);
4925
4926 #ifdef CONFIG_SMP
4927 for_each_online_cpu(cpu) {
4928 if (data[cpu] && len < PAGE_SIZE - 20)
4929 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4930 }
4931 #endif
4932 kfree(data);
4933 return len + sprintf(buf + len, "\n");
4934 }
4935
4936 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4937 {
4938 int cpu;
4939
4940 for_each_online_cpu(cpu)
4941 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4942 }
4943
4944 #define STAT_ATTR(si, text) \
4945 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4946 { \
4947 return show_stat(s, buf, si); \
4948 } \
4949 static ssize_t text##_store(struct kmem_cache *s, \
4950 const char *buf, size_t length) \
4951 { \
4952 if (buf[0] != '0') \
4953 return -EINVAL; \
4954 clear_stat(s, si); \
4955 return length; \
4956 } \
4957 SLAB_ATTR(text); \
4958
4959 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4960 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4961 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4962 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4963 STAT_ATTR(FREE_FROZEN, free_frozen);
4964 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4965 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4966 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4967 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4968 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4969 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4970 STAT_ATTR(FREE_SLAB, free_slab);
4971 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4972 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4973 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4974 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4975 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4976 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4977 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4978 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4979 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4980 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4981 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4982 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4983 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4984 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4985 #endif
4986
4987 static struct attribute *slab_attrs[] = {
4988 &slab_size_attr.attr,
4989 &object_size_attr.attr,
4990 &objs_per_slab_attr.attr,
4991 &order_attr.attr,
4992 &min_partial_attr.attr,
4993 &cpu_partial_attr.attr,
4994 &objects_attr.attr,
4995 &objects_partial_attr.attr,
4996 &partial_attr.attr,
4997 &cpu_slabs_attr.attr,
4998 &ctor_attr.attr,
4999 &aliases_attr.attr,
5000 &align_attr.attr,
5001 &hwcache_align_attr.attr,
5002 &reclaim_account_attr.attr,
5003 &destroy_by_rcu_attr.attr,
5004 &shrink_attr.attr,
5005 &reserved_attr.attr,
5006 &slabs_cpu_partial_attr.attr,
5007 #ifdef CONFIG_SLUB_DEBUG
5008 &total_objects_attr.attr,
5009 &slabs_attr.attr,
5010 &sanity_checks_attr.attr,
5011 &trace_attr.attr,
5012 &red_zone_attr.attr,
5013 &poison_attr.attr,
5014 &store_user_attr.attr,
5015 &validate_attr.attr,
5016 &alloc_calls_attr.attr,
5017 &free_calls_attr.attr,
5018 #endif
5019 #ifdef CONFIG_ZONE_DMA
5020 &cache_dma_attr.attr,
5021 #endif
5022 #ifdef CONFIG_NUMA
5023 &remote_node_defrag_ratio_attr.attr,
5024 #endif
5025 #ifdef CONFIG_SLUB_STATS
5026 &alloc_fastpath_attr.attr,
5027 &alloc_slowpath_attr.attr,
5028 &free_fastpath_attr.attr,
5029 &free_slowpath_attr.attr,
5030 &free_frozen_attr.attr,
5031 &free_add_partial_attr.attr,
5032 &free_remove_partial_attr.attr,
5033 &alloc_from_partial_attr.attr,
5034 &alloc_slab_attr.attr,
5035 &alloc_refill_attr.attr,
5036 &alloc_node_mismatch_attr.attr,
5037 &free_slab_attr.attr,
5038 &cpuslab_flush_attr.attr,
5039 &deactivate_full_attr.attr,
5040 &deactivate_empty_attr.attr,
5041 &deactivate_to_head_attr.attr,
5042 &deactivate_to_tail_attr.attr,
5043 &deactivate_remote_frees_attr.attr,
5044 &deactivate_bypass_attr.attr,
5045 &order_fallback_attr.attr,
5046 &cmpxchg_double_fail_attr.attr,
5047 &cmpxchg_double_cpu_fail_attr.attr,
5048 &cpu_partial_alloc_attr.attr,
5049 &cpu_partial_free_attr.attr,
5050 &cpu_partial_node_attr.attr,
5051 &cpu_partial_drain_attr.attr,
5052 #endif
5053 #ifdef CONFIG_FAILSLAB
5054 &failslab_attr.attr,
5055 #endif
5056
5057 NULL
5058 };
5059
5060 static struct attribute_group slab_attr_group = {
5061 .attrs = slab_attrs,
5062 };
5063
5064 static ssize_t slab_attr_show(struct kobject *kobj,
5065 struct attribute *attr,
5066 char *buf)
5067 {
5068 struct slab_attribute *attribute;
5069 struct kmem_cache *s;
5070 int err;
5071
5072 attribute = to_slab_attr(attr);
5073 s = to_slab(kobj);
5074
5075 if (!attribute->show)
5076 return -EIO;
5077
5078 err = attribute->show(s, buf);
5079
5080 return err;
5081 }
5082
5083 static ssize_t slab_attr_store(struct kobject *kobj,
5084 struct attribute *attr,
5085 const char *buf, size_t len)
5086 {
5087 struct slab_attribute *attribute;
5088 struct kmem_cache *s;
5089 int err;
5090
5091 attribute = to_slab_attr(attr);
5092 s = to_slab(kobj);
5093
5094 if (!attribute->store)
5095 return -EIO;
5096
5097 err = attribute->store(s, buf, len);
5098 #ifdef CONFIG_MEMCG_KMEM
5099 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5100 struct kmem_cache *c;
5101
5102 mutex_lock(&slab_mutex);
5103 if (s->max_attr_size < len)
5104 s->max_attr_size = len;
5105
5106 /*
5107 * This is a best effort propagation, so this function's return
5108 * value will be determined by the parent cache only. This is
5109 * basically because not all attributes will have a well
5110 * defined semantics for rollbacks - most of the actions will
5111 * have permanent effects.
5112 *
5113 * Returning the error value of any of the children that fail
5114 * is not 100 % defined, in the sense that users seeing the
5115 * error code won't be able to know anything about the state of
5116 * the cache.
5117 *
5118 * Only returning the error code for the parent cache at least
5119 * has well defined semantics. The cache being written to
5120 * directly either failed or succeeded, in which case we loop
5121 * through the descendants with best-effort propagation.
5122 */
5123 for_each_memcg_cache(c, s)
5124 attribute->store(c, buf, len);
5125 mutex_unlock(&slab_mutex);
5126 }
5127 #endif
5128 return err;
5129 }
5130
5131 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5132 {
5133 #ifdef CONFIG_MEMCG_KMEM
5134 int i;
5135 char *buffer = NULL;
5136 struct kmem_cache *root_cache;
5137
5138 if (is_root_cache(s))
5139 return;
5140
5141 root_cache = s->memcg_params.root_cache;
5142
5143 /*
5144 * This mean this cache had no attribute written. Therefore, no point
5145 * in copying default values around
5146 */
5147 if (!root_cache->max_attr_size)
5148 return;
5149
5150 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5151 char mbuf[64];
5152 char *buf;
5153 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5154
5155 if (!attr || !attr->store || !attr->show)
5156 continue;
5157
5158 /*
5159 * It is really bad that we have to allocate here, so we will
5160 * do it only as a fallback. If we actually allocate, though,
5161 * we can just use the allocated buffer until the end.
5162 *
5163 * Most of the slub attributes will tend to be very small in
5164 * size, but sysfs allows buffers up to a page, so they can
5165 * theoretically happen.
5166 */
5167 if (buffer)
5168 buf = buffer;
5169 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5170 buf = mbuf;
5171 else {
5172 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5173 if (WARN_ON(!buffer))
5174 continue;
5175 buf = buffer;
5176 }
5177
5178 attr->show(root_cache, buf);
5179 attr->store(s, buf, strlen(buf));
5180 }
5181
5182 if (buffer)
5183 free_page((unsigned long)buffer);
5184 #endif
5185 }
5186
5187 static void kmem_cache_release(struct kobject *k)
5188 {
5189 slab_kmem_cache_release(to_slab(k));
5190 }
5191
5192 static const struct sysfs_ops slab_sysfs_ops = {
5193 .show = slab_attr_show,
5194 .store = slab_attr_store,
5195 };
5196
5197 static struct kobj_type slab_ktype = {
5198 .sysfs_ops = &slab_sysfs_ops,
5199 .release = kmem_cache_release,
5200 };
5201
5202 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5203 {
5204 struct kobj_type *ktype = get_ktype(kobj);
5205
5206 if (ktype == &slab_ktype)
5207 return 1;
5208 return 0;
5209 }
5210
5211 static const struct kset_uevent_ops slab_uevent_ops = {
5212 .filter = uevent_filter,
5213 };
5214
5215 static struct kset *slab_kset;
5216
5217 static inline struct kset *cache_kset(struct kmem_cache *s)
5218 {
5219 #ifdef CONFIG_MEMCG_KMEM
5220 if (!is_root_cache(s))
5221 return s->memcg_params.root_cache->memcg_kset;
5222 #endif
5223 return slab_kset;
5224 }
5225
5226 #define ID_STR_LENGTH 64
5227
5228 /* Create a unique string id for a slab cache:
5229 *
5230 * Format :[flags-]size
5231 */
5232 static char *create_unique_id(struct kmem_cache *s)
5233 {
5234 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5235 char *p = name;
5236
5237 BUG_ON(!name);
5238
5239 *p++ = ':';
5240 /*
5241 * First flags affecting slabcache operations. We will only
5242 * get here for aliasable slabs so we do not need to support
5243 * too many flags. The flags here must cover all flags that
5244 * are matched during merging to guarantee that the id is
5245 * unique.
5246 */
5247 if (s->flags & SLAB_CACHE_DMA)
5248 *p++ = 'd';
5249 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5250 *p++ = 'a';
5251 if (s->flags & SLAB_DEBUG_FREE)
5252 *p++ = 'F';
5253 if (!(s->flags & SLAB_NOTRACK))
5254 *p++ = 't';
5255 if (p != name + 1)
5256 *p++ = '-';
5257 p += sprintf(p, "%07d", s->size);
5258
5259 BUG_ON(p > name + ID_STR_LENGTH - 1);
5260 return name;
5261 }
5262
5263 static int sysfs_slab_add(struct kmem_cache *s)
5264 {
5265 int err;
5266 const char *name;
5267 int unmergeable = slab_unmergeable(s);
5268
5269 if (unmergeable) {
5270 /*
5271 * Slabcache can never be merged so we can use the name proper.
5272 * This is typically the case for debug situations. In that
5273 * case we can catch duplicate names easily.
5274 */
5275 sysfs_remove_link(&slab_kset->kobj, s->name);
5276 name = s->name;
5277 } else {
5278 /*
5279 * Create a unique name for the slab as a target
5280 * for the symlinks.
5281 */
5282 name = create_unique_id(s);
5283 }
5284
5285 s->kobj.kset = cache_kset(s);
5286 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5287 if (err)
5288 goto out;
5289
5290 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5291 if (err)
5292 goto out_del_kobj;
5293
5294 #ifdef CONFIG_MEMCG_KMEM
5295 if (is_root_cache(s)) {
5296 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5297 if (!s->memcg_kset) {
5298 err = -ENOMEM;
5299 goto out_del_kobj;
5300 }
5301 }
5302 #endif
5303
5304 kobject_uevent(&s->kobj, KOBJ_ADD);
5305 if (!unmergeable) {
5306 /* Setup first alias */
5307 sysfs_slab_alias(s, s->name);
5308 }
5309 out:
5310 if (!unmergeable)
5311 kfree(name);
5312 return err;
5313 out_del_kobj:
5314 kobject_del(&s->kobj);
5315 goto out;
5316 }
5317
5318 void sysfs_slab_remove(struct kmem_cache *s)
5319 {
5320 if (slab_state < FULL)
5321 /*
5322 * Sysfs has not been setup yet so no need to remove the
5323 * cache from sysfs.
5324 */
5325 return;
5326
5327 #ifdef CONFIG_MEMCG_KMEM
5328 kset_unregister(s->memcg_kset);
5329 #endif
5330 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5331 kobject_del(&s->kobj);
5332 kobject_put(&s->kobj);
5333 }
5334
5335 /*
5336 * Need to buffer aliases during bootup until sysfs becomes
5337 * available lest we lose that information.
5338 */
5339 struct saved_alias {
5340 struct kmem_cache *s;
5341 const char *name;
5342 struct saved_alias *next;
5343 };
5344
5345 static struct saved_alias *alias_list;
5346
5347 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5348 {
5349 struct saved_alias *al;
5350
5351 if (slab_state == FULL) {
5352 /*
5353 * If we have a leftover link then remove it.
5354 */
5355 sysfs_remove_link(&slab_kset->kobj, name);
5356 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5357 }
5358
5359 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5360 if (!al)
5361 return -ENOMEM;
5362
5363 al->s = s;
5364 al->name = name;
5365 al->next = alias_list;
5366 alias_list = al;
5367 return 0;
5368 }
5369
5370 static int __init slab_sysfs_init(void)
5371 {
5372 struct kmem_cache *s;
5373 int err;
5374
5375 mutex_lock(&slab_mutex);
5376
5377 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5378 if (!slab_kset) {
5379 mutex_unlock(&slab_mutex);
5380 pr_err("Cannot register slab subsystem.\n");
5381 return -ENOSYS;
5382 }
5383
5384 slab_state = FULL;
5385
5386 list_for_each_entry(s, &slab_caches, list) {
5387 err = sysfs_slab_add(s);
5388 if (err)
5389 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5390 s->name);
5391 }
5392
5393 while (alias_list) {
5394 struct saved_alias *al = alias_list;
5395
5396 alias_list = alias_list->next;
5397 err = sysfs_slab_alias(al->s, al->name);
5398 if (err)
5399 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5400 al->name);
5401 kfree(al);
5402 }
5403
5404 mutex_unlock(&slab_mutex);
5405 resiliency_test();
5406 return 0;
5407 }
5408
5409 __initcall(slab_sysfs_init);
5410 #endif /* CONFIG_SYSFS */
5411
5412 /*
5413 * The /proc/slabinfo ABI
5414 */
5415 #ifdef CONFIG_SLABINFO
5416 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5417 {
5418 unsigned long nr_slabs = 0;
5419 unsigned long nr_objs = 0;
5420 unsigned long nr_free = 0;
5421 int node;
5422 struct kmem_cache_node *n;
5423
5424 for_each_kmem_cache_node(s, node, n) {
5425 nr_slabs += node_nr_slabs(n);
5426 nr_objs += node_nr_objs(n);
5427 nr_free += count_partial(n, count_free);
5428 }
5429
5430 sinfo->active_objs = nr_objs - nr_free;
5431 sinfo->num_objs = nr_objs;
5432 sinfo->active_slabs = nr_slabs;
5433 sinfo->num_slabs = nr_slabs;
5434 sinfo->objects_per_slab = oo_objects(s->oo);
5435 sinfo->cache_order = oo_order(s->oo);
5436 }
5437
5438 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5439 {
5440 }
5441
5442 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5443 size_t count, loff_t *ppos)
5444 {
5445 return -EIO;
5446 }
5447 #endif /* CONFIG_SLABINFO */
This page took 0.1485 seconds and 5 git commands to generate.