Merge tag 'usb-4.8-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133 }
134
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
142 }
143
144 /*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157
158 /*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162 #define MIN_PARTIAL 5
163
164 /*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169 #define MAX_PARTIAL 10
170
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174 /*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182 /*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
196
197 #ifdef CONFIG_SMP
198 static struct notifier_block slab_notifier;
199 #endif
200
201 /*
202 * Tracking user of a slab.
203 */
204 #define TRACK_ADDRS_COUNT 16
205 struct track {
206 unsigned long addr; /* Called from address */
207 #ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209 #endif
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213 };
214
215 enum track_item { TRACK_ALLOC, TRACK_FREE };
216
217 #ifdef CONFIG_SYSFS
218 static int sysfs_slab_add(struct kmem_cache *);
219 static int sysfs_slab_alias(struct kmem_cache *, const char *);
220 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
243 static inline void *get_freepointer(struct kmem_cache *s, void *object)
244 {
245 return *(void **)(object + s->offset);
246 }
247
248 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249 {
250 prefetch(object + s->offset);
251 }
252
253 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254 {
255 void *p;
256
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s, object);
259
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 return p;
262 }
263
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 *(void **)(object + s->offset) = fp;
267 }
268
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
273 __p += (__s)->size)
274
275 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline int order_objects(int order, unsigned long size, int reserved)
287 {
288 return ((PAGE_SIZE << order) - reserved) / size;
289 }
290
291 static inline struct kmem_cache_order_objects oo_make(int order,
292 unsigned long size, int reserved)
293 {
294 struct kmem_cache_order_objects x = {
295 (order << OO_SHIFT) + order_objects(order, size, reserved)
296 };
297
298 return x;
299 }
300
301 static inline int oo_order(struct kmem_cache_order_objects x)
302 {
303 return x.x >> OO_SHIFT;
304 }
305
306 static inline int oo_objects(struct kmem_cache_order_objects x)
307 {
308 return x.x & OO_MASK;
309 }
310
311 /*
312 * Per slab locking using the pagelock
313 */
314 static __always_inline void slab_lock(struct page *page)
315 {
316 VM_BUG_ON_PAGE(PageTail(page), page);
317 bit_spin_lock(PG_locked, &page->flags);
318 }
319
320 static __always_inline void slab_unlock(struct page *page)
321 {
322 VM_BUG_ON_PAGE(PageTail(page), page);
323 __bit_spin_unlock(PG_locked, &page->flags);
324 }
325
326 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327 {
328 struct page tmp;
329 tmp.counters = counters_new;
330 /*
331 * page->counters can cover frozen/inuse/objects as well
332 * as page->_refcount. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_refcount, so
334 * be careful and only assign to the fields we need.
335 */
336 page->frozen = tmp.frozen;
337 page->inuse = tmp.inuse;
338 page->objects = tmp.objects;
339 }
340
341 /* Interrupts must be disabled (for the fallback code to work right) */
342 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 void *freelist_old, unsigned long counters_old,
344 void *freelist_new, unsigned long counters_new,
345 const char *n)
346 {
347 VM_BUG_ON(!irqs_disabled());
348 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
350 if (s->flags & __CMPXCHG_DOUBLE) {
351 if (cmpxchg_double(&page->freelist, &page->counters,
352 freelist_old, counters_old,
353 freelist_new, counters_new))
354 return true;
355 } else
356 #endif
357 {
358 slab_lock(page);
359 if (page->freelist == freelist_old &&
360 page->counters == counters_old) {
361 page->freelist = freelist_new;
362 set_page_slub_counters(page, counters_new);
363 slab_unlock(page);
364 return true;
365 }
366 slab_unlock(page);
367 }
368
369 cpu_relax();
370 stat(s, CMPXCHG_DOUBLE_FAIL);
371
372 #ifdef SLUB_DEBUG_CMPXCHG
373 pr_info("%s %s: cmpxchg double redo ", n, s->name);
374 #endif
375
376 return false;
377 }
378
379 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 void *freelist_old, unsigned long counters_old,
381 void *freelist_new, unsigned long counters_new,
382 const char *n)
383 {
384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
386 if (s->flags & __CMPXCHG_DOUBLE) {
387 if (cmpxchg_double(&page->freelist, &page->counters,
388 freelist_old, counters_old,
389 freelist_new, counters_new))
390 return true;
391 } else
392 #endif
393 {
394 unsigned long flags;
395
396 local_irq_save(flags);
397 slab_lock(page);
398 if (page->freelist == freelist_old &&
399 page->counters == counters_old) {
400 page->freelist = freelist_new;
401 set_page_slub_counters(page, counters_new);
402 slab_unlock(page);
403 local_irq_restore(flags);
404 return true;
405 }
406 slab_unlock(page);
407 local_irq_restore(flags);
408 }
409
410 cpu_relax();
411 stat(s, CMPXCHG_DOUBLE_FAIL);
412
413 #ifdef SLUB_DEBUG_CMPXCHG
414 pr_info("%s %s: cmpxchg double redo ", n, s->name);
415 #endif
416
417 return false;
418 }
419
420 #ifdef CONFIG_SLUB_DEBUG
421 /*
422 * Determine a map of object in use on a page.
423 *
424 * Node listlock must be held to guarantee that the page does
425 * not vanish from under us.
426 */
427 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428 {
429 void *p;
430 void *addr = page_address(page);
431
432 for (p = page->freelist; p; p = get_freepointer(s, p))
433 set_bit(slab_index(p, s, addr), map);
434 }
435
436 static inline int size_from_object(struct kmem_cache *s)
437 {
438 if (s->flags & SLAB_RED_ZONE)
439 return s->size - s->red_left_pad;
440
441 return s->size;
442 }
443
444 static inline void *restore_red_left(struct kmem_cache *s, void *p)
445 {
446 if (s->flags & SLAB_RED_ZONE)
447 p -= s->red_left_pad;
448
449 return p;
450 }
451
452 /*
453 * Debug settings:
454 */
455 #if defined(CONFIG_SLUB_DEBUG_ON)
456 static int slub_debug = DEBUG_DEFAULT_FLAGS;
457 #else
458 static int slub_debug;
459 #endif
460
461 static char *slub_debug_slabs;
462 static int disable_higher_order_debug;
463
464 /*
465 * slub is about to manipulate internal object metadata. This memory lies
466 * outside the range of the allocated object, so accessing it would normally
467 * be reported by kasan as a bounds error. metadata_access_enable() is used
468 * to tell kasan that these accesses are OK.
469 */
470 static inline void metadata_access_enable(void)
471 {
472 kasan_disable_current();
473 }
474
475 static inline void metadata_access_disable(void)
476 {
477 kasan_enable_current();
478 }
479
480 /*
481 * Object debugging
482 */
483
484 /* Verify that a pointer has an address that is valid within a slab page */
485 static inline int check_valid_pointer(struct kmem_cache *s,
486 struct page *page, void *object)
487 {
488 void *base;
489
490 if (!object)
491 return 1;
492
493 base = page_address(page);
494 object = restore_red_left(s, object);
495 if (object < base || object >= base + page->objects * s->size ||
496 (object - base) % s->size) {
497 return 0;
498 }
499
500 return 1;
501 }
502
503 static void print_section(char *text, u8 *addr, unsigned int length)
504 {
505 metadata_access_enable();
506 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
507 length, 1);
508 metadata_access_disable();
509 }
510
511 static struct track *get_track(struct kmem_cache *s, void *object,
512 enum track_item alloc)
513 {
514 struct track *p;
515
516 if (s->offset)
517 p = object + s->offset + sizeof(void *);
518 else
519 p = object + s->inuse;
520
521 return p + alloc;
522 }
523
524 static void set_track(struct kmem_cache *s, void *object,
525 enum track_item alloc, unsigned long addr)
526 {
527 struct track *p = get_track(s, object, alloc);
528
529 if (addr) {
530 #ifdef CONFIG_STACKTRACE
531 struct stack_trace trace;
532 int i;
533
534 trace.nr_entries = 0;
535 trace.max_entries = TRACK_ADDRS_COUNT;
536 trace.entries = p->addrs;
537 trace.skip = 3;
538 metadata_access_enable();
539 save_stack_trace(&trace);
540 metadata_access_disable();
541
542 /* See rant in lockdep.c */
543 if (trace.nr_entries != 0 &&
544 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
545 trace.nr_entries--;
546
547 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 p->addrs[i] = 0;
549 #endif
550 p->addr = addr;
551 p->cpu = smp_processor_id();
552 p->pid = current->pid;
553 p->when = jiffies;
554 } else
555 memset(p, 0, sizeof(struct track));
556 }
557
558 static void init_tracking(struct kmem_cache *s, void *object)
559 {
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
563 set_track(s, object, TRACK_FREE, 0UL);
564 set_track(s, object, TRACK_ALLOC, 0UL);
565 }
566
567 static void print_track(const char *s, struct track *t)
568 {
569 if (!t->addr)
570 return;
571
572 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
573 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
574 #ifdef CONFIG_STACKTRACE
575 {
576 int i;
577 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
578 if (t->addrs[i])
579 pr_err("\t%pS\n", (void *)t->addrs[i]);
580 else
581 break;
582 }
583 #endif
584 }
585
586 static void print_tracking(struct kmem_cache *s, void *object)
587 {
588 if (!(s->flags & SLAB_STORE_USER))
589 return;
590
591 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
592 print_track("Freed", get_track(s, object, TRACK_FREE));
593 }
594
595 static void print_page_info(struct page *page)
596 {
597 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
598 page, page->objects, page->inuse, page->freelist, page->flags);
599
600 }
601
602 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
603 {
604 struct va_format vaf;
605 va_list args;
606
607 va_start(args, fmt);
608 vaf.fmt = fmt;
609 vaf.va = &args;
610 pr_err("=============================================================================\n");
611 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
612 pr_err("-----------------------------------------------------------------------------\n\n");
613
614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 va_end(args);
616 }
617
618 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
619 {
620 struct va_format vaf;
621 va_list args;
622
623 va_start(args, fmt);
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 pr_err("FIX %s: %pV\n", s->name, &vaf);
627 va_end(args);
628 }
629
630 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
631 {
632 unsigned int off; /* Offset of last byte */
633 u8 *addr = page_address(page);
634
635 print_tracking(s, p);
636
637 print_page_info(page);
638
639 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
640 p, p - addr, get_freepointer(s, p));
641
642 if (s->flags & SLAB_RED_ZONE)
643 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
644 else if (p > addr + 16)
645 print_section("Bytes b4 ", p - 16, 16);
646
647 print_section("Object ", p, min_t(unsigned long, s->object_size,
648 PAGE_SIZE));
649 if (s->flags & SLAB_RED_ZONE)
650 print_section("Redzone ", p + s->object_size,
651 s->inuse - s->object_size);
652
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
658 if (s->flags & SLAB_STORE_USER)
659 off += 2 * sizeof(struct track);
660
661 off += kasan_metadata_size(s);
662
663 if (off != size_from_object(s))
664 /* Beginning of the filler is the free pointer */
665 print_section("Padding ", p + off, size_from_object(s) - off);
666
667 dump_stack();
668 }
669
670 void object_err(struct kmem_cache *s, struct page *page,
671 u8 *object, char *reason)
672 {
673 slab_bug(s, "%s", reason);
674 print_trailer(s, page, object);
675 }
676
677 static void slab_err(struct kmem_cache *s, struct page *page,
678 const char *fmt, ...)
679 {
680 va_list args;
681 char buf[100];
682
683 va_start(args, fmt);
684 vsnprintf(buf, sizeof(buf), fmt, args);
685 va_end(args);
686 slab_bug(s, "%s", buf);
687 print_page_info(page);
688 dump_stack();
689 }
690
691 static void init_object(struct kmem_cache *s, void *object, u8 val)
692 {
693 u8 *p = object;
694
695 if (s->flags & SLAB_RED_ZONE)
696 memset(p - s->red_left_pad, val, s->red_left_pad);
697
698 if (s->flags & __OBJECT_POISON) {
699 memset(p, POISON_FREE, s->object_size - 1);
700 p[s->object_size - 1] = POISON_END;
701 }
702
703 if (s->flags & SLAB_RED_ZONE)
704 memset(p + s->object_size, val, s->inuse - s->object_size);
705 }
706
707 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 void *from, void *to)
709 {
710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 memset(from, data, to - from);
712 }
713
714 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 u8 *object, char *what,
716 u8 *start, unsigned int value, unsigned int bytes)
717 {
718 u8 *fault;
719 u8 *end;
720
721 metadata_access_enable();
722 fault = memchr_inv(start, value, bytes);
723 metadata_access_disable();
724 if (!fault)
725 return 1;
726
727 end = start + bytes;
728 while (end > fault && end[-1] == value)
729 end--;
730
731 slab_bug(s, "%s overwritten", what);
732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
733 fault, end - 1, fault[0], value);
734 print_trailer(s, page, object);
735
736 restore_bytes(s, what, value, fault, end);
737 return 0;
738 }
739
740 /*
741 * Object layout:
742 *
743 * object address
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
747 *
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
749 * 0xa5 (POISON_END)
750 *
751 * object + s->object_size
752 * Padding to reach word boundary. This is also used for Redzoning.
753 * Padding is extended by another word if Redzoning is enabled and
754 * object_size == inuse.
755 *
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
758 *
759 * object + s->inuse
760 * Meta data starts here.
761 *
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
764 * C. Padding to reach required alignment boundary or at mininum
765 * one word if debugging is on to be able to detect writes
766 * before the word boundary.
767 *
768 * Padding is done using 0x5a (POISON_INUSE)
769 *
770 * object + s->size
771 * Nothing is used beyond s->size.
772 *
773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
774 * ignored. And therefore no slab options that rely on these boundaries
775 * may be used with merged slabcaches.
776 */
777
778 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779 {
780 unsigned long off = s->inuse; /* The end of info */
781
782 if (s->offset)
783 /* Freepointer is placed after the object. */
784 off += sizeof(void *);
785
786 if (s->flags & SLAB_STORE_USER)
787 /* We also have user information there */
788 off += 2 * sizeof(struct track);
789
790 off += kasan_metadata_size(s);
791
792 if (size_from_object(s) == off)
793 return 1;
794
795 return check_bytes_and_report(s, page, p, "Object padding",
796 p + off, POISON_INUSE, size_from_object(s) - off);
797 }
798
799 /* Check the pad bytes at the end of a slab page */
800 static int slab_pad_check(struct kmem_cache *s, struct page *page)
801 {
802 u8 *start;
803 u8 *fault;
804 u8 *end;
805 int length;
806 int remainder;
807
808 if (!(s->flags & SLAB_POISON))
809 return 1;
810
811 start = page_address(page);
812 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
813 end = start + length;
814 remainder = length % s->size;
815 if (!remainder)
816 return 1;
817
818 metadata_access_enable();
819 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
820 metadata_access_disable();
821 if (!fault)
822 return 1;
823 while (end > fault && end[-1] == POISON_INUSE)
824 end--;
825
826 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
827 print_section("Padding ", end - remainder, remainder);
828
829 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
830 return 0;
831 }
832
833 static int check_object(struct kmem_cache *s, struct page *page,
834 void *object, u8 val)
835 {
836 u8 *p = object;
837 u8 *endobject = object + s->object_size;
838
839 if (s->flags & SLAB_RED_ZONE) {
840 if (!check_bytes_and_report(s, page, object, "Redzone",
841 object - s->red_left_pad, val, s->red_left_pad))
842 return 0;
843
844 if (!check_bytes_and_report(s, page, object, "Redzone",
845 endobject, val, s->inuse - s->object_size))
846 return 0;
847 } else {
848 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
849 check_bytes_and_report(s, page, p, "Alignment padding",
850 endobject, POISON_INUSE,
851 s->inuse - s->object_size);
852 }
853 }
854
855 if (s->flags & SLAB_POISON) {
856 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
857 (!check_bytes_and_report(s, page, p, "Poison", p,
858 POISON_FREE, s->object_size - 1) ||
859 !check_bytes_and_report(s, page, p, "Poison",
860 p + s->object_size - 1, POISON_END, 1)))
861 return 0;
862 /*
863 * check_pad_bytes cleans up on its own.
864 */
865 check_pad_bytes(s, page, p);
866 }
867
868 if (!s->offset && val == SLUB_RED_ACTIVE)
869 /*
870 * Object and freepointer overlap. Cannot check
871 * freepointer while object is allocated.
872 */
873 return 1;
874
875 /* Check free pointer validity */
876 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
877 object_err(s, page, p, "Freepointer corrupt");
878 /*
879 * No choice but to zap it and thus lose the remainder
880 * of the free objects in this slab. May cause
881 * another error because the object count is now wrong.
882 */
883 set_freepointer(s, p, NULL);
884 return 0;
885 }
886 return 1;
887 }
888
889 static int check_slab(struct kmem_cache *s, struct page *page)
890 {
891 int maxobj;
892
893 VM_BUG_ON(!irqs_disabled());
894
895 if (!PageSlab(page)) {
896 slab_err(s, page, "Not a valid slab page");
897 return 0;
898 }
899
900 maxobj = order_objects(compound_order(page), s->size, s->reserved);
901 if (page->objects > maxobj) {
902 slab_err(s, page, "objects %u > max %u",
903 page->objects, maxobj);
904 return 0;
905 }
906 if (page->inuse > page->objects) {
907 slab_err(s, page, "inuse %u > max %u",
908 page->inuse, page->objects);
909 return 0;
910 }
911 /* Slab_pad_check fixes things up after itself */
912 slab_pad_check(s, page);
913 return 1;
914 }
915
916 /*
917 * Determine if a certain object on a page is on the freelist. Must hold the
918 * slab lock to guarantee that the chains are in a consistent state.
919 */
920 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
921 {
922 int nr = 0;
923 void *fp;
924 void *object = NULL;
925 int max_objects;
926
927 fp = page->freelist;
928 while (fp && nr <= page->objects) {
929 if (fp == search)
930 return 1;
931 if (!check_valid_pointer(s, page, fp)) {
932 if (object) {
933 object_err(s, page, object,
934 "Freechain corrupt");
935 set_freepointer(s, object, NULL);
936 } else {
937 slab_err(s, page, "Freepointer corrupt");
938 page->freelist = NULL;
939 page->inuse = page->objects;
940 slab_fix(s, "Freelist cleared");
941 return 0;
942 }
943 break;
944 }
945 object = fp;
946 fp = get_freepointer(s, object);
947 nr++;
948 }
949
950 max_objects = order_objects(compound_order(page), s->size, s->reserved);
951 if (max_objects > MAX_OBJS_PER_PAGE)
952 max_objects = MAX_OBJS_PER_PAGE;
953
954 if (page->objects != max_objects) {
955 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
956 page->objects, max_objects);
957 page->objects = max_objects;
958 slab_fix(s, "Number of objects adjusted.");
959 }
960 if (page->inuse != page->objects - nr) {
961 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
962 page->inuse, page->objects - nr);
963 page->inuse = page->objects - nr;
964 slab_fix(s, "Object count adjusted.");
965 }
966 return search == NULL;
967 }
968
969 static void trace(struct kmem_cache *s, struct page *page, void *object,
970 int alloc)
971 {
972 if (s->flags & SLAB_TRACE) {
973 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 s->name,
975 alloc ? "alloc" : "free",
976 object, page->inuse,
977 page->freelist);
978
979 if (!alloc)
980 print_section("Object ", (void *)object,
981 s->object_size);
982
983 dump_stack();
984 }
985 }
986
987 /*
988 * Tracking of fully allocated slabs for debugging purposes.
989 */
990 static void add_full(struct kmem_cache *s,
991 struct kmem_cache_node *n, struct page *page)
992 {
993 if (!(s->flags & SLAB_STORE_USER))
994 return;
995
996 lockdep_assert_held(&n->list_lock);
997 list_add(&page->lru, &n->full);
998 }
999
1000 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001 {
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
1005 lockdep_assert_held(&n->list_lock);
1006 list_del(&page->lru);
1007 }
1008
1009 /* Tracking of the number of slabs for debugging purposes */
1010 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011 {
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 return atomic_long_read(&n->nr_slabs);
1015 }
1016
1017 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018 {
1019 return atomic_long_read(&n->nr_slabs);
1020 }
1021
1022 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1023 {
1024 struct kmem_cache_node *n = get_node(s, node);
1025
1026 /*
1027 * May be called early in order to allocate a slab for the
1028 * kmem_cache_node structure. Solve the chicken-egg
1029 * dilemma by deferring the increment of the count during
1030 * bootstrap (see early_kmem_cache_node_alloc).
1031 */
1032 if (likely(n)) {
1033 atomic_long_inc(&n->nr_slabs);
1034 atomic_long_add(objects, &n->total_objects);
1035 }
1036 }
1037 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1038 {
1039 struct kmem_cache_node *n = get_node(s, node);
1040
1041 atomic_long_dec(&n->nr_slabs);
1042 atomic_long_sub(objects, &n->total_objects);
1043 }
1044
1045 /* Object debug checks for alloc/free paths */
1046 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1047 void *object)
1048 {
1049 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1050 return;
1051
1052 init_object(s, object, SLUB_RED_INACTIVE);
1053 init_tracking(s, object);
1054 }
1055
1056 static inline int alloc_consistency_checks(struct kmem_cache *s,
1057 struct page *page,
1058 void *object, unsigned long addr)
1059 {
1060 if (!check_slab(s, page))
1061 return 0;
1062
1063 if (!check_valid_pointer(s, page, object)) {
1064 object_err(s, page, object, "Freelist Pointer check fails");
1065 return 0;
1066 }
1067
1068 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1069 return 0;
1070
1071 return 1;
1072 }
1073
1074 static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 struct page *page,
1076 void *object, unsigned long addr)
1077 {
1078 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1079 if (!alloc_consistency_checks(s, page, object, addr))
1080 goto bad;
1081 }
1082
1083 /* Success perform special debug activities for allocs */
1084 if (s->flags & SLAB_STORE_USER)
1085 set_track(s, object, TRACK_ALLOC, addr);
1086 trace(s, page, object, 1);
1087 init_object(s, object, SLUB_RED_ACTIVE);
1088 return 1;
1089
1090 bad:
1091 if (PageSlab(page)) {
1092 /*
1093 * If this is a slab page then lets do the best we can
1094 * to avoid issues in the future. Marking all objects
1095 * as used avoids touching the remaining objects.
1096 */
1097 slab_fix(s, "Marking all objects used");
1098 page->inuse = page->objects;
1099 page->freelist = NULL;
1100 }
1101 return 0;
1102 }
1103
1104 static inline int free_consistency_checks(struct kmem_cache *s,
1105 struct page *page, void *object, unsigned long addr)
1106 {
1107 if (!check_valid_pointer(s, page, object)) {
1108 slab_err(s, page, "Invalid object pointer 0x%p", object);
1109 return 0;
1110 }
1111
1112 if (on_freelist(s, page, object)) {
1113 object_err(s, page, object, "Object already free");
1114 return 0;
1115 }
1116
1117 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1118 return 0;
1119
1120 if (unlikely(s != page->slab_cache)) {
1121 if (!PageSlab(page)) {
1122 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 object);
1124 } else if (!page->slab_cache) {
1125 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1126 object);
1127 dump_stack();
1128 } else
1129 object_err(s, page, object,
1130 "page slab pointer corrupt.");
1131 return 0;
1132 }
1133 return 1;
1134 }
1135
1136 /* Supports checking bulk free of a constructed freelist */
1137 static noinline int free_debug_processing(
1138 struct kmem_cache *s, struct page *page,
1139 void *head, void *tail, int bulk_cnt,
1140 unsigned long addr)
1141 {
1142 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1143 void *object = head;
1144 int cnt = 0;
1145 unsigned long uninitialized_var(flags);
1146 int ret = 0;
1147
1148 spin_lock_irqsave(&n->list_lock, flags);
1149 slab_lock(page);
1150
1151 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1152 if (!check_slab(s, page))
1153 goto out;
1154 }
1155
1156 next_object:
1157 cnt++;
1158
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 if (!free_consistency_checks(s, page, object, addr))
1161 goto out;
1162 }
1163
1164 if (s->flags & SLAB_STORE_USER)
1165 set_track(s, object, TRACK_FREE, addr);
1166 trace(s, page, object, 0);
1167 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1168 init_object(s, object, SLUB_RED_INACTIVE);
1169
1170 /* Reached end of constructed freelist yet? */
1171 if (object != tail) {
1172 object = get_freepointer(s, object);
1173 goto next_object;
1174 }
1175 ret = 1;
1176
1177 out:
1178 if (cnt != bulk_cnt)
1179 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1180 bulk_cnt, cnt);
1181
1182 slab_unlock(page);
1183 spin_unlock_irqrestore(&n->list_lock, flags);
1184 if (!ret)
1185 slab_fix(s, "Object at 0x%p not freed", object);
1186 return ret;
1187 }
1188
1189 static int __init setup_slub_debug(char *str)
1190 {
1191 slub_debug = DEBUG_DEFAULT_FLAGS;
1192 if (*str++ != '=' || !*str)
1193 /*
1194 * No options specified. Switch on full debugging.
1195 */
1196 goto out;
1197
1198 if (*str == ',')
1199 /*
1200 * No options but restriction on slabs. This means full
1201 * debugging for slabs matching a pattern.
1202 */
1203 goto check_slabs;
1204
1205 slub_debug = 0;
1206 if (*str == '-')
1207 /*
1208 * Switch off all debugging measures.
1209 */
1210 goto out;
1211
1212 /*
1213 * Determine which debug features should be switched on
1214 */
1215 for (; *str && *str != ','; str++) {
1216 switch (tolower(*str)) {
1217 case 'f':
1218 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1219 break;
1220 case 'z':
1221 slub_debug |= SLAB_RED_ZONE;
1222 break;
1223 case 'p':
1224 slub_debug |= SLAB_POISON;
1225 break;
1226 case 'u':
1227 slub_debug |= SLAB_STORE_USER;
1228 break;
1229 case 't':
1230 slub_debug |= SLAB_TRACE;
1231 break;
1232 case 'a':
1233 slub_debug |= SLAB_FAILSLAB;
1234 break;
1235 case 'o':
1236 /*
1237 * Avoid enabling debugging on caches if its minimum
1238 * order would increase as a result.
1239 */
1240 disable_higher_order_debug = 1;
1241 break;
1242 default:
1243 pr_err("slub_debug option '%c' unknown. skipped\n",
1244 *str);
1245 }
1246 }
1247
1248 check_slabs:
1249 if (*str == ',')
1250 slub_debug_slabs = str + 1;
1251 out:
1252 return 1;
1253 }
1254
1255 __setup("slub_debug", setup_slub_debug);
1256
1257 unsigned long kmem_cache_flags(unsigned long object_size,
1258 unsigned long flags, const char *name,
1259 void (*ctor)(void *))
1260 {
1261 /*
1262 * Enable debugging if selected on the kernel commandline.
1263 */
1264 if (slub_debug && (!slub_debug_slabs || (name &&
1265 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1266 flags |= slub_debug;
1267
1268 return flags;
1269 }
1270 #else /* !CONFIG_SLUB_DEBUG */
1271 static inline void setup_object_debug(struct kmem_cache *s,
1272 struct page *page, void *object) {}
1273
1274 static inline int alloc_debug_processing(struct kmem_cache *s,
1275 struct page *page, void *object, unsigned long addr) { return 0; }
1276
1277 static inline int free_debug_processing(
1278 struct kmem_cache *s, struct page *page,
1279 void *head, void *tail, int bulk_cnt,
1280 unsigned long addr) { return 0; }
1281
1282 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 { return 1; }
1284 static inline int check_object(struct kmem_cache *s, struct page *page,
1285 void *object, u8 val) { return 1; }
1286 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 struct page *page) {}
1288 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1289 struct page *page) {}
1290 unsigned long kmem_cache_flags(unsigned long object_size,
1291 unsigned long flags, const char *name,
1292 void (*ctor)(void *))
1293 {
1294 return flags;
1295 }
1296 #define slub_debug 0
1297
1298 #define disable_higher_order_debug 0
1299
1300 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 { return 0; }
1302 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 { return 0; }
1304 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 int objects) {}
1306 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1307 int objects) {}
1308
1309 #endif /* CONFIG_SLUB_DEBUG */
1310
1311 /*
1312 * Hooks for other subsystems that check memory allocations. In a typical
1313 * production configuration these hooks all should produce no code at all.
1314 */
1315 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316 {
1317 kmemleak_alloc(ptr, size, 1, flags);
1318 kasan_kmalloc_large(ptr, size, flags);
1319 }
1320
1321 static inline void kfree_hook(const void *x)
1322 {
1323 kmemleak_free(x);
1324 kasan_kfree_large(x);
1325 }
1326
1327 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1328 {
1329 void *freeptr;
1330
1331 kmemleak_free_recursive(x, s->flags);
1332
1333 /*
1334 * Trouble is that we may no longer disable interrupts in the fast path
1335 * So in order to make the debug calls that expect irqs to be
1336 * disabled we need to disable interrupts temporarily.
1337 */
1338 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 {
1340 unsigned long flags;
1341
1342 local_irq_save(flags);
1343 kmemcheck_slab_free(s, x, s->object_size);
1344 debug_check_no_locks_freed(x, s->object_size);
1345 local_irq_restore(flags);
1346 }
1347 #endif
1348 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1349 debug_check_no_obj_freed(x, s->object_size);
1350
1351 freeptr = get_freepointer(s, x);
1352 /*
1353 * kasan_slab_free() may put x into memory quarantine, delaying its
1354 * reuse. In this case the object's freelist pointer is changed.
1355 */
1356 kasan_slab_free(s, x);
1357 return freeptr;
1358 }
1359
1360 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1361 void *head, void *tail)
1362 {
1363 /*
1364 * Compiler cannot detect this function can be removed if slab_free_hook()
1365 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 */
1367 #if defined(CONFIG_KMEMCHECK) || \
1368 defined(CONFIG_LOCKDEP) || \
1369 defined(CONFIG_DEBUG_KMEMLEAK) || \
1370 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1371 defined(CONFIG_KASAN)
1372
1373 void *object = head;
1374 void *tail_obj = tail ? : head;
1375 void *freeptr;
1376
1377 do {
1378 freeptr = slab_free_hook(s, object);
1379 } while ((object != tail_obj) && (object = freeptr));
1380 #endif
1381 }
1382
1383 static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385 {
1386 setup_object_debug(s, page, object);
1387 kasan_init_slab_obj(s, object);
1388 if (unlikely(s->ctor)) {
1389 kasan_unpoison_object_data(s, object);
1390 s->ctor(object);
1391 kasan_poison_object_data(s, object);
1392 }
1393 }
1394
1395 /*
1396 * Slab allocation and freeing
1397 */
1398 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1399 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1400 {
1401 struct page *page;
1402 int order = oo_order(oo);
1403
1404 flags |= __GFP_NOTRACK;
1405
1406 if (node == NUMA_NO_NODE)
1407 page = alloc_pages(flags, order);
1408 else
1409 page = __alloc_pages_node(node, flags, order);
1410
1411 if (page && memcg_charge_slab(page, flags, order, s)) {
1412 __free_pages(page, order);
1413 page = NULL;
1414 }
1415
1416 return page;
1417 }
1418
1419 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1420 /* Pre-initialize the random sequence cache */
1421 static int init_cache_random_seq(struct kmem_cache *s)
1422 {
1423 int err;
1424 unsigned long i, count = oo_objects(s->oo);
1425
1426 err = cache_random_seq_create(s, count, GFP_KERNEL);
1427 if (err) {
1428 pr_err("SLUB: Unable to initialize free list for %s\n",
1429 s->name);
1430 return err;
1431 }
1432
1433 /* Transform to an offset on the set of pages */
1434 if (s->random_seq) {
1435 for (i = 0; i < count; i++)
1436 s->random_seq[i] *= s->size;
1437 }
1438 return 0;
1439 }
1440
1441 /* Initialize each random sequence freelist per cache */
1442 static void __init init_freelist_randomization(void)
1443 {
1444 struct kmem_cache *s;
1445
1446 mutex_lock(&slab_mutex);
1447
1448 list_for_each_entry(s, &slab_caches, list)
1449 init_cache_random_seq(s);
1450
1451 mutex_unlock(&slab_mutex);
1452 }
1453
1454 /* Get the next entry on the pre-computed freelist randomized */
1455 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1456 unsigned long *pos, void *start,
1457 unsigned long page_limit,
1458 unsigned long freelist_count)
1459 {
1460 unsigned int idx;
1461
1462 /*
1463 * If the target page allocation failed, the number of objects on the
1464 * page might be smaller than the usual size defined by the cache.
1465 */
1466 do {
1467 idx = s->random_seq[*pos];
1468 *pos += 1;
1469 if (*pos >= freelist_count)
1470 *pos = 0;
1471 } while (unlikely(idx >= page_limit));
1472
1473 return (char *)start + idx;
1474 }
1475
1476 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1477 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1478 {
1479 void *start;
1480 void *cur;
1481 void *next;
1482 unsigned long idx, pos, page_limit, freelist_count;
1483
1484 if (page->objects < 2 || !s->random_seq)
1485 return false;
1486
1487 freelist_count = oo_objects(s->oo);
1488 pos = get_random_int() % freelist_count;
1489
1490 page_limit = page->objects * s->size;
1491 start = fixup_red_left(s, page_address(page));
1492
1493 /* First entry is used as the base of the freelist */
1494 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1495 freelist_count);
1496 page->freelist = cur;
1497
1498 for (idx = 1; idx < page->objects; idx++) {
1499 setup_object(s, page, cur);
1500 next = next_freelist_entry(s, page, &pos, start, page_limit,
1501 freelist_count);
1502 set_freepointer(s, cur, next);
1503 cur = next;
1504 }
1505 setup_object(s, page, cur);
1506 set_freepointer(s, cur, NULL);
1507
1508 return true;
1509 }
1510 #else
1511 static inline int init_cache_random_seq(struct kmem_cache *s)
1512 {
1513 return 0;
1514 }
1515 static inline void init_freelist_randomization(void) { }
1516 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517 {
1518 return false;
1519 }
1520 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1521
1522 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1523 {
1524 struct page *page;
1525 struct kmem_cache_order_objects oo = s->oo;
1526 gfp_t alloc_gfp;
1527 void *start, *p;
1528 int idx, order;
1529 bool shuffle;
1530
1531 flags &= gfp_allowed_mask;
1532
1533 if (gfpflags_allow_blocking(flags))
1534 local_irq_enable();
1535
1536 flags |= s->allocflags;
1537
1538 /*
1539 * Let the initial higher-order allocation fail under memory pressure
1540 * so we fall-back to the minimum order allocation.
1541 */
1542 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1543 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1544 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1545
1546 page = alloc_slab_page(s, alloc_gfp, node, oo);
1547 if (unlikely(!page)) {
1548 oo = s->min;
1549 alloc_gfp = flags;
1550 /*
1551 * Allocation may have failed due to fragmentation.
1552 * Try a lower order alloc if possible
1553 */
1554 page = alloc_slab_page(s, alloc_gfp, node, oo);
1555 if (unlikely(!page))
1556 goto out;
1557 stat(s, ORDER_FALLBACK);
1558 }
1559
1560 if (kmemcheck_enabled &&
1561 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1562 int pages = 1 << oo_order(oo);
1563
1564 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1565
1566 /*
1567 * Objects from caches that have a constructor don't get
1568 * cleared when they're allocated, so we need to do it here.
1569 */
1570 if (s->ctor)
1571 kmemcheck_mark_uninitialized_pages(page, pages);
1572 else
1573 kmemcheck_mark_unallocated_pages(page, pages);
1574 }
1575
1576 page->objects = oo_objects(oo);
1577
1578 order = compound_order(page);
1579 page->slab_cache = s;
1580 __SetPageSlab(page);
1581 if (page_is_pfmemalloc(page))
1582 SetPageSlabPfmemalloc(page);
1583
1584 start = page_address(page);
1585
1586 if (unlikely(s->flags & SLAB_POISON))
1587 memset(start, POISON_INUSE, PAGE_SIZE << order);
1588
1589 kasan_poison_slab(page);
1590
1591 shuffle = shuffle_freelist(s, page);
1592
1593 if (!shuffle) {
1594 for_each_object_idx(p, idx, s, start, page->objects) {
1595 setup_object(s, page, p);
1596 if (likely(idx < page->objects))
1597 set_freepointer(s, p, p + s->size);
1598 else
1599 set_freepointer(s, p, NULL);
1600 }
1601 page->freelist = fixup_red_left(s, start);
1602 }
1603
1604 page->inuse = page->objects;
1605 page->frozen = 1;
1606
1607 out:
1608 if (gfpflags_allow_blocking(flags))
1609 local_irq_disable();
1610 if (!page)
1611 return NULL;
1612
1613 mod_zone_page_state(page_zone(page),
1614 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1615 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1616 1 << oo_order(oo));
1617
1618 inc_slabs_node(s, page_to_nid(page), page->objects);
1619
1620 return page;
1621 }
1622
1623 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1624 {
1625 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1626 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1627 flags &= ~GFP_SLAB_BUG_MASK;
1628 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1629 invalid_mask, &invalid_mask, flags, &flags);
1630 }
1631
1632 return allocate_slab(s,
1633 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1634 }
1635
1636 static void __free_slab(struct kmem_cache *s, struct page *page)
1637 {
1638 int order = compound_order(page);
1639 int pages = 1 << order;
1640
1641 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1642 void *p;
1643
1644 slab_pad_check(s, page);
1645 for_each_object(p, s, page_address(page),
1646 page->objects)
1647 check_object(s, page, p, SLUB_RED_INACTIVE);
1648 }
1649
1650 kmemcheck_free_shadow(page, compound_order(page));
1651
1652 mod_zone_page_state(page_zone(page),
1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 -pages);
1656
1657 __ClearPageSlabPfmemalloc(page);
1658 __ClearPageSlab(page);
1659
1660 page_mapcount_reset(page);
1661 if (current->reclaim_state)
1662 current->reclaim_state->reclaimed_slab += pages;
1663 memcg_uncharge_slab(page, order, s);
1664 __free_pages(page, order);
1665 }
1666
1667 #define need_reserve_slab_rcu \
1668 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1669
1670 static void rcu_free_slab(struct rcu_head *h)
1671 {
1672 struct page *page;
1673
1674 if (need_reserve_slab_rcu)
1675 page = virt_to_head_page(h);
1676 else
1677 page = container_of((struct list_head *)h, struct page, lru);
1678
1679 __free_slab(page->slab_cache, page);
1680 }
1681
1682 static void free_slab(struct kmem_cache *s, struct page *page)
1683 {
1684 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1685 struct rcu_head *head;
1686
1687 if (need_reserve_slab_rcu) {
1688 int order = compound_order(page);
1689 int offset = (PAGE_SIZE << order) - s->reserved;
1690
1691 VM_BUG_ON(s->reserved != sizeof(*head));
1692 head = page_address(page) + offset;
1693 } else {
1694 head = &page->rcu_head;
1695 }
1696
1697 call_rcu(head, rcu_free_slab);
1698 } else
1699 __free_slab(s, page);
1700 }
1701
1702 static void discard_slab(struct kmem_cache *s, struct page *page)
1703 {
1704 dec_slabs_node(s, page_to_nid(page), page->objects);
1705 free_slab(s, page);
1706 }
1707
1708 /*
1709 * Management of partially allocated slabs.
1710 */
1711 static inline void
1712 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1713 {
1714 n->nr_partial++;
1715 if (tail == DEACTIVATE_TO_TAIL)
1716 list_add_tail(&page->lru, &n->partial);
1717 else
1718 list_add(&page->lru, &n->partial);
1719 }
1720
1721 static inline void add_partial(struct kmem_cache_node *n,
1722 struct page *page, int tail)
1723 {
1724 lockdep_assert_held(&n->list_lock);
1725 __add_partial(n, page, tail);
1726 }
1727
1728 static inline void remove_partial(struct kmem_cache_node *n,
1729 struct page *page)
1730 {
1731 lockdep_assert_held(&n->list_lock);
1732 list_del(&page->lru);
1733 n->nr_partial--;
1734 }
1735
1736 /*
1737 * Remove slab from the partial list, freeze it and
1738 * return the pointer to the freelist.
1739 *
1740 * Returns a list of objects or NULL if it fails.
1741 */
1742 static inline void *acquire_slab(struct kmem_cache *s,
1743 struct kmem_cache_node *n, struct page *page,
1744 int mode, int *objects)
1745 {
1746 void *freelist;
1747 unsigned long counters;
1748 struct page new;
1749
1750 lockdep_assert_held(&n->list_lock);
1751
1752 /*
1753 * Zap the freelist and set the frozen bit.
1754 * The old freelist is the list of objects for the
1755 * per cpu allocation list.
1756 */
1757 freelist = page->freelist;
1758 counters = page->counters;
1759 new.counters = counters;
1760 *objects = new.objects - new.inuse;
1761 if (mode) {
1762 new.inuse = page->objects;
1763 new.freelist = NULL;
1764 } else {
1765 new.freelist = freelist;
1766 }
1767
1768 VM_BUG_ON(new.frozen);
1769 new.frozen = 1;
1770
1771 if (!__cmpxchg_double_slab(s, page,
1772 freelist, counters,
1773 new.freelist, new.counters,
1774 "acquire_slab"))
1775 return NULL;
1776
1777 remove_partial(n, page);
1778 WARN_ON(!freelist);
1779 return freelist;
1780 }
1781
1782 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1783 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1784
1785 /*
1786 * Try to allocate a partial slab from a specific node.
1787 */
1788 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1789 struct kmem_cache_cpu *c, gfp_t flags)
1790 {
1791 struct page *page, *page2;
1792 void *object = NULL;
1793 int available = 0;
1794 int objects;
1795
1796 /*
1797 * Racy check. If we mistakenly see no partial slabs then we
1798 * just allocate an empty slab. If we mistakenly try to get a
1799 * partial slab and there is none available then get_partials()
1800 * will return NULL.
1801 */
1802 if (!n || !n->nr_partial)
1803 return NULL;
1804
1805 spin_lock(&n->list_lock);
1806 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1807 void *t;
1808
1809 if (!pfmemalloc_match(page, flags))
1810 continue;
1811
1812 t = acquire_slab(s, n, page, object == NULL, &objects);
1813 if (!t)
1814 break;
1815
1816 available += objects;
1817 if (!object) {
1818 c->page = page;
1819 stat(s, ALLOC_FROM_PARTIAL);
1820 object = t;
1821 } else {
1822 put_cpu_partial(s, page, 0);
1823 stat(s, CPU_PARTIAL_NODE);
1824 }
1825 if (!kmem_cache_has_cpu_partial(s)
1826 || available > s->cpu_partial / 2)
1827 break;
1828
1829 }
1830 spin_unlock(&n->list_lock);
1831 return object;
1832 }
1833
1834 /*
1835 * Get a page from somewhere. Search in increasing NUMA distances.
1836 */
1837 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1838 struct kmem_cache_cpu *c)
1839 {
1840 #ifdef CONFIG_NUMA
1841 struct zonelist *zonelist;
1842 struct zoneref *z;
1843 struct zone *zone;
1844 enum zone_type high_zoneidx = gfp_zone(flags);
1845 void *object;
1846 unsigned int cpuset_mems_cookie;
1847
1848 /*
1849 * The defrag ratio allows a configuration of the tradeoffs between
1850 * inter node defragmentation and node local allocations. A lower
1851 * defrag_ratio increases the tendency to do local allocations
1852 * instead of attempting to obtain partial slabs from other nodes.
1853 *
1854 * If the defrag_ratio is set to 0 then kmalloc() always
1855 * returns node local objects. If the ratio is higher then kmalloc()
1856 * may return off node objects because partial slabs are obtained
1857 * from other nodes and filled up.
1858 *
1859 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1860 * (which makes defrag_ratio = 1000) then every (well almost)
1861 * allocation will first attempt to defrag slab caches on other nodes.
1862 * This means scanning over all nodes to look for partial slabs which
1863 * may be expensive if we do it every time we are trying to find a slab
1864 * with available objects.
1865 */
1866 if (!s->remote_node_defrag_ratio ||
1867 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1868 return NULL;
1869
1870 do {
1871 cpuset_mems_cookie = read_mems_allowed_begin();
1872 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1873 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1874 struct kmem_cache_node *n;
1875
1876 n = get_node(s, zone_to_nid(zone));
1877
1878 if (n && cpuset_zone_allowed(zone, flags) &&
1879 n->nr_partial > s->min_partial) {
1880 object = get_partial_node(s, n, c, flags);
1881 if (object) {
1882 /*
1883 * Don't check read_mems_allowed_retry()
1884 * here - if mems_allowed was updated in
1885 * parallel, that was a harmless race
1886 * between allocation and the cpuset
1887 * update
1888 */
1889 return object;
1890 }
1891 }
1892 }
1893 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1894 #endif
1895 return NULL;
1896 }
1897
1898 /*
1899 * Get a partial page, lock it and return it.
1900 */
1901 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1902 struct kmem_cache_cpu *c)
1903 {
1904 void *object;
1905 int searchnode = node;
1906
1907 if (node == NUMA_NO_NODE)
1908 searchnode = numa_mem_id();
1909 else if (!node_present_pages(node))
1910 searchnode = node_to_mem_node(node);
1911
1912 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1913 if (object || node != NUMA_NO_NODE)
1914 return object;
1915
1916 return get_any_partial(s, flags, c);
1917 }
1918
1919 #ifdef CONFIG_PREEMPT
1920 /*
1921 * Calculate the next globally unique transaction for disambiguiation
1922 * during cmpxchg. The transactions start with the cpu number and are then
1923 * incremented by CONFIG_NR_CPUS.
1924 */
1925 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1926 #else
1927 /*
1928 * No preemption supported therefore also no need to check for
1929 * different cpus.
1930 */
1931 #define TID_STEP 1
1932 #endif
1933
1934 static inline unsigned long next_tid(unsigned long tid)
1935 {
1936 return tid + TID_STEP;
1937 }
1938
1939 static inline unsigned int tid_to_cpu(unsigned long tid)
1940 {
1941 return tid % TID_STEP;
1942 }
1943
1944 static inline unsigned long tid_to_event(unsigned long tid)
1945 {
1946 return tid / TID_STEP;
1947 }
1948
1949 static inline unsigned int init_tid(int cpu)
1950 {
1951 return cpu;
1952 }
1953
1954 static inline void note_cmpxchg_failure(const char *n,
1955 const struct kmem_cache *s, unsigned long tid)
1956 {
1957 #ifdef SLUB_DEBUG_CMPXCHG
1958 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1959
1960 pr_info("%s %s: cmpxchg redo ", n, s->name);
1961
1962 #ifdef CONFIG_PREEMPT
1963 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1964 pr_warn("due to cpu change %d -> %d\n",
1965 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1966 else
1967 #endif
1968 if (tid_to_event(tid) != tid_to_event(actual_tid))
1969 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1970 tid_to_event(tid), tid_to_event(actual_tid));
1971 else
1972 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1973 actual_tid, tid, next_tid(tid));
1974 #endif
1975 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1976 }
1977
1978 static void init_kmem_cache_cpus(struct kmem_cache *s)
1979 {
1980 int cpu;
1981
1982 for_each_possible_cpu(cpu)
1983 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1984 }
1985
1986 /*
1987 * Remove the cpu slab
1988 */
1989 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990 void *freelist)
1991 {
1992 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1993 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1994 int lock = 0;
1995 enum slab_modes l = M_NONE, m = M_NONE;
1996 void *nextfree;
1997 int tail = DEACTIVATE_TO_HEAD;
1998 struct page new;
1999 struct page old;
2000
2001 if (page->freelist) {
2002 stat(s, DEACTIVATE_REMOTE_FREES);
2003 tail = DEACTIVATE_TO_TAIL;
2004 }
2005
2006 /*
2007 * Stage one: Free all available per cpu objects back
2008 * to the page freelist while it is still frozen. Leave the
2009 * last one.
2010 *
2011 * There is no need to take the list->lock because the page
2012 * is still frozen.
2013 */
2014 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2015 void *prior;
2016 unsigned long counters;
2017
2018 do {
2019 prior = page->freelist;
2020 counters = page->counters;
2021 set_freepointer(s, freelist, prior);
2022 new.counters = counters;
2023 new.inuse--;
2024 VM_BUG_ON(!new.frozen);
2025
2026 } while (!__cmpxchg_double_slab(s, page,
2027 prior, counters,
2028 freelist, new.counters,
2029 "drain percpu freelist"));
2030
2031 freelist = nextfree;
2032 }
2033
2034 /*
2035 * Stage two: Ensure that the page is unfrozen while the
2036 * list presence reflects the actual number of objects
2037 * during unfreeze.
2038 *
2039 * We setup the list membership and then perform a cmpxchg
2040 * with the count. If there is a mismatch then the page
2041 * is not unfrozen but the page is on the wrong list.
2042 *
2043 * Then we restart the process which may have to remove
2044 * the page from the list that we just put it on again
2045 * because the number of objects in the slab may have
2046 * changed.
2047 */
2048 redo:
2049
2050 old.freelist = page->freelist;
2051 old.counters = page->counters;
2052 VM_BUG_ON(!old.frozen);
2053
2054 /* Determine target state of the slab */
2055 new.counters = old.counters;
2056 if (freelist) {
2057 new.inuse--;
2058 set_freepointer(s, freelist, old.freelist);
2059 new.freelist = freelist;
2060 } else
2061 new.freelist = old.freelist;
2062
2063 new.frozen = 0;
2064
2065 if (!new.inuse && n->nr_partial >= s->min_partial)
2066 m = M_FREE;
2067 else if (new.freelist) {
2068 m = M_PARTIAL;
2069 if (!lock) {
2070 lock = 1;
2071 /*
2072 * Taking the spinlock removes the possiblity
2073 * that acquire_slab() will see a slab page that
2074 * is frozen
2075 */
2076 spin_lock(&n->list_lock);
2077 }
2078 } else {
2079 m = M_FULL;
2080 if (kmem_cache_debug(s) && !lock) {
2081 lock = 1;
2082 /*
2083 * This also ensures that the scanning of full
2084 * slabs from diagnostic functions will not see
2085 * any frozen slabs.
2086 */
2087 spin_lock(&n->list_lock);
2088 }
2089 }
2090
2091 if (l != m) {
2092
2093 if (l == M_PARTIAL)
2094
2095 remove_partial(n, page);
2096
2097 else if (l == M_FULL)
2098
2099 remove_full(s, n, page);
2100
2101 if (m == M_PARTIAL) {
2102
2103 add_partial(n, page, tail);
2104 stat(s, tail);
2105
2106 } else if (m == M_FULL) {
2107
2108 stat(s, DEACTIVATE_FULL);
2109 add_full(s, n, page);
2110
2111 }
2112 }
2113
2114 l = m;
2115 if (!__cmpxchg_double_slab(s, page,
2116 old.freelist, old.counters,
2117 new.freelist, new.counters,
2118 "unfreezing slab"))
2119 goto redo;
2120
2121 if (lock)
2122 spin_unlock(&n->list_lock);
2123
2124 if (m == M_FREE) {
2125 stat(s, DEACTIVATE_EMPTY);
2126 discard_slab(s, page);
2127 stat(s, FREE_SLAB);
2128 }
2129 }
2130
2131 /*
2132 * Unfreeze all the cpu partial slabs.
2133 *
2134 * This function must be called with interrupts disabled
2135 * for the cpu using c (or some other guarantee must be there
2136 * to guarantee no concurrent accesses).
2137 */
2138 static void unfreeze_partials(struct kmem_cache *s,
2139 struct kmem_cache_cpu *c)
2140 {
2141 #ifdef CONFIG_SLUB_CPU_PARTIAL
2142 struct kmem_cache_node *n = NULL, *n2 = NULL;
2143 struct page *page, *discard_page = NULL;
2144
2145 while ((page = c->partial)) {
2146 struct page new;
2147 struct page old;
2148
2149 c->partial = page->next;
2150
2151 n2 = get_node(s, page_to_nid(page));
2152 if (n != n2) {
2153 if (n)
2154 spin_unlock(&n->list_lock);
2155
2156 n = n2;
2157 spin_lock(&n->list_lock);
2158 }
2159
2160 do {
2161
2162 old.freelist = page->freelist;
2163 old.counters = page->counters;
2164 VM_BUG_ON(!old.frozen);
2165
2166 new.counters = old.counters;
2167 new.freelist = old.freelist;
2168
2169 new.frozen = 0;
2170
2171 } while (!__cmpxchg_double_slab(s, page,
2172 old.freelist, old.counters,
2173 new.freelist, new.counters,
2174 "unfreezing slab"));
2175
2176 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2177 page->next = discard_page;
2178 discard_page = page;
2179 } else {
2180 add_partial(n, page, DEACTIVATE_TO_TAIL);
2181 stat(s, FREE_ADD_PARTIAL);
2182 }
2183 }
2184
2185 if (n)
2186 spin_unlock(&n->list_lock);
2187
2188 while (discard_page) {
2189 page = discard_page;
2190 discard_page = discard_page->next;
2191
2192 stat(s, DEACTIVATE_EMPTY);
2193 discard_slab(s, page);
2194 stat(s, FREE_SLAB);
2195 }
2196 #endif
2197 }
2198
2199 /*
2200 * Put a page that was just frozen (in __slab_free) into a partial page
2201 * slot if available. This is done without interrupts disabled and without
2202 * preemption disabled. The cmpxchg is racy and may put the partial page
2203 * onto a random cpus partial slot.
2204 *
2205 * If we did not find a slot then simply move all the partials to the
2206 * per node partial list.
2207 */
2208 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2209 {
2210 #ifdef CONFIG_SLUB_CPU_PARTIAL
2211 struct page *oldpage;
2212 int pages;
2213 int pobjects;
2214
2215 preempt_disable();
2216 do {
2217 pages = 0;
2218 pobjects = 0;
2219 oldpage = this_cpu_read(s->cpu_slab->partial);
2220
2221 if (oldpage) {
2222 pobjects = oldpage->pobjects;
2223 pages = oldpage->pages;
2224 if (drain && pobjects > s->cpu_partial) {
2225 unsigned long flags;
2226 /*
2227 * partial array is full. Move the existing
2228 * set to the per node partial list.
2229 */
2230 local_irq_save(flags);
2231 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2232 local_irq_restore(flags);
2233 oldpage = NULL;
2234 pobjects = 0;
2235 pages = 0;
2236 stat(s, CPU_PARTIAL_DRAIN);
2237 }
2238 }
2239
2240 pages++;
2241 pobjects += page->objects - page->inuse;
2242
2243 page->pages = pages;
2244 page->pobjects = pobjects;
2245 page->next = oldpage;
2246
2247 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2248 != oldpage);
2249 if (unlikely(!s->cpu_partial)) {
2250 unsigned long flags;
2251
2252 local_irq_save(flags);
2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 local_irq_restore(flags);
2255 }
2256 preempt_enable();
2257 #endif
2258 }
2259
2260 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2261 {
2262 stat(s, CPUSLAB_FLUSH);
2263 deactivate_slab(s, c->page, c->freelist);
2264
2265 c->tid = next_tid(c->tid);
2266 c->page = NULL;
2267 c->freelist = NULL;
2268 }
2269
2270 /*
2271 * Flush cpu slab.
2272 *
2273 * Called from IPI handler with interrupts disabled.
2274 */
2275 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2276 {
2277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2278
2279 if (likely(c)) {
2280 if (c->page)
2281 flush_slab(s, c);
2282
2283 unfreeze_partials(s, c);
2284 }
2285 }
2286
2287 static void flush_cpu_slab(void *d)
2288 {
2289 struct kmem_cache *s = d;
2290
2291 __flush_cpu_slab(s, smp_processor_id());
2292 }
2293
2294 static bool has_cpu_slab(int cpu, void *info)
2295 {
2296 struct kmem_cache *s = info;
2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298
2299 return c->page || c->partial;
2300 }
2301
2302 static void flush_all(struct kmem_cache *s)
2303 {
2304 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2305 }
2306
2307 /*
2308 * Check if the objects in a per cpu structure fit numa
2309 * locality expectations.
2310 */
2311 static inline int node_match(struct page *page, int node)
2312 {
2313 #ifdef CONFIG_NUMA
2314 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2315 return 0;
2316 #endif
2317 return 1;
2318 }
2319
2320 #ifdef CONFIG_SLUB_DEBUG
2321 static int count_free(struct page *page)
2322 {
2323 return page->objects - page->inuse;
2324 }
2325
2326 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2327 {
2328 return atomic_long_read(&n->total_objects);
2329 }
2330 #endif /* CONFIG_SLUB_DEBUG */
2331
2332 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2333 static unsigned long count_partial(struct kmem_cache_node *n,
2334 int (*get_count)(struct page *))
2335 {
2336 unsigned long flags;
2337 unsigned long x = 0;
2338 struct page *page;
2339
2340 spin_lock_irqsave(&n->list_lock, flags);
2341 list_for_each_entry(page, &n->partial, lru)
2342 x += get_count(page);
2343 spin_unlock_irqrestore(&n->list_lock, flags);
2344 return x;
2345 }
2346 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2347
2348 static noinline void
2349 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2350 {
2351 #ifdef CONFIG_SLUB_DEBUG
2352 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2353 DEFAULT_RATELIMIT_BURST);
2354 int node;
2355 struct kmem_cache_node *n;
2356
2357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2358 return;
2359
2360 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2361 nid, gfpflags, &gfpflags);
2362 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2363 s->name, s->object_size, s->size, oo_order(s->oo),
2364 oo_order(s->min));
2365
2366 if (oo_order(s->min) > get_order(s->object_size))
2367 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2368 s->name);
2369
2370 for_each_kmem_cache_node(s, node, n) {
2371 unsigned long nr_slabs;
2372 unsigned long nr_objs;
2373 unsigned long nr_free;
2374
2375 nr_free = count_partial(n, count_free);
2376 nr_slabs = node_nr_slabs(n);
2377 nr_objs = node_nr_objs(n);
2378
2379 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2380 node, nr_slabs, nr_objs, nr_free);
2381 }
2382 #endif
2383 }
2384
2385 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2386 int node, struct kmem_cache_cpu **pc)
2387 {
2388 void *freelist;
2389 struct kmem_cache_cpu *c = *pc;
2390 struct page *page;
2391
2392 freelist = get_partial(s, flags, node, c);
2393
2394 if (freelist)
2395 return freelist;
2396
2397 page = new_slab(s, flags, node);
2398 if (page) {
2399 c = raw_cpu_ptr(s->cpu_slab);
2400 if (c->page)
2401 flush_slab(s, c);
2402
2403 /*
2404 * No other reference to the page yet so we can
2405 * muck around with it freely without cmpxchg
2406 */
2407 freelist = page->freelist;
2408 page->freelist = NULL;
2409
2410 stat(s, ALLOC_SLAB);
2411 c->page = page;
2412 *pc = c;
2413 } else
2414 freelist = NULL;
2415
2416 return freelist;
2417 }
2418
2419 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2420 {
2421 if (unlikely(PageSlabPfmemalloc(page)))
2422 return gfp_pfmemalloc_allowed(gfpflags);
2423
2424 return true;
2425 }
2426
2427 /*
2428 * Check the page->freelist of a page and either transfer the freelist to the
2429 * per cpu freelist or deactivate the page.
2430 *
2431 * The page is still frozen if the return value is not NULL.
2432 *
2433 * If this function returns NULL then the page has been unfrozen.
2434 *
2435 * This function must be called with interrupt disabled.
2436 */
2437 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2438 {
2439 struct page new;
2440 unsigned long counters;
2441 void *freelist;
2442
2443 do {
2444 freelist = page->freelist;
2445 counters = page->counters;
2446
2447 new.counters = counters;
2448 VM_BUG_ON(!new.frozen);
2449
2450 new.inuse = page->objects;
2451 new.frozen = freelist != NULL;
2452
2453 } while (!__cmpxchg_double_slab(s, page,
2454 freelist, counters,
2455 NULL, new.counters,
2456 "get_freelist"));
2457
2458 return freelist;
2459 }
2460
2461 /*
2462 * Slow path. The lockless freelist is empty or we need to perform
2463 * debugging duties.
2464 *
2465 * Processing is still very fast if new objects have been freed to the
2466 * regular freelist. In that case we simply take over the regular freelist
2467 * as the lockless freelist and zap the regular freelist.
2468 *
2469 * If that is not working then we fall back to the partial lists. We take the
2470 * first element of the freelist as the object to allocate now and move the
2471 * rest of the freelist to the lockless freelist.
2472 *
2473 * And if we were unable to get a new slab from the partial slab lists then
2474 * we need to allocate a new slab. This is the slowest path since it involves
2475 * a call to the page allocator and the setup of a new slab.
2476 *
2477 * Version of __slab_alloc to use when we know that interrupts are
2478 * already disabled (which is the case for bulk allocation).
2479 */
2480 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2481 unsigned long addr, struct kmem_cache_cpu *c)
2482 {
2483 void *freelist;
2484 struct page *page;
2485
2486 page = c->page;
2487 if (!page)
2488 goto new_slab;
2489 redo:
2490
2491 if (unlikely(!node_match(page, node))) {
2492 int searchnode = node;
2493
2494 if (node != NUMA_NO_NODE && !node_present_pages(node))
2495 searchnode = node_to_mem_node(node);
2496
2497 if (unlikely(!node_match(page, searchnode))) {
2498 stat(s, ALLOC_NODE_MISMATCH);
2499 deactivate_slab(s, page, c->freelist);
2500 c->page = NULL;
2501 c->freelist = NULL;
2502 goto new_slab;
2503 }
2504 }
2505
2506 /*
2507 * By rights, we should be searching for a slab page that was
2508 * PFMEMALLOC but right now, we are losing the pfmemalloc
2509 * information when the page leaves the per-cpu allocator
2510 */
2511 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2512 deactivate_slab(s, page, c->freelist);
2513 c->page = NULL;
2514 c->freelist = NULL;
2515 goto new_slab;
2516 }
2517
2518 /* must check again c->freelist in case of cpu migration or IRQ */
2519 freelist = c->freelist;
2520 if (freelist)
2521 goto load_freelist;
2522
2523 freelist = get_freelist(s, page);
2524
2525 if (!freelist) {
2526 c->page = NULL;
2527 stat(s, DEACTIVATE_BYPASS);
2528 goto new_slab;
2529 }
2530
2531 stat(s, ALLOC_REFILL);
2532
2533 load_freelist:
2534 /*
2535 * freelist is pointing to the list of objects to be used.
2536 * page is pointing to the page from which the objects are obtained.
2537 * That page must be frozen for per cpu allocations to work.
2538 */
2539 VM_BUG_ON(!c->page->frozen);
2540 c->freelist = get_freepointer(s, freelist);
2541 c->tid = next_tid(c->tid);
2542 return freelist;
2543
2544 new_slab:
2545
2546 if (c->partial) {
2547 page = c->page = c->partial;
2548 c->partial = page->next;
2549 stat(s, CPU_PARTIAL_ALLOC);
2550 c->freelist = NULL;
2551 goto redo;
2552 }
2553
2554 freelist = new_slab_objects(s, gfpflags, node, &c);
2555
2556 if (unlikely(!freelist)) {
2557 slab_out_of_memory(s, gfpflags, node);
2558 return NULL;
2559 }
2560
2561 page = c->page;
2562 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2563 goto load_freelist;
2564
2565 /* Only entered in the debug case */
2566 if (kmem_cache_debug(s) &&
2567 !alloc_debug_processing(s, page, freelist, addr))
2568 goto new_slab; /* Slab failed checks. Next slab needed */
2569
2570 deactivate_slab(s, page, get_freepointer(s, freelist));
2571 c->page = NULL;
2572 c->freelist = NULL;
2573 return freelist;
2574 }
2575
2576 /*
2577 * Another one that disabled interrupt and compensates for possible
2578 * cpu changes by refetching the per cpu area pointer.
2579 */
2580 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2581 unsigned long addr, struct kmem_cache_cpu *c)
2582 {
2583 void *p;
2584 unsigned long flags;
2585
2586 local_irq_save(flags);
2587 #ifdef CONFIG_PREEMPT
2588 /*
2589 * We may have been preempted and rescheduled on a different
2590 * cpu before disabling interrupts. Need to reload cpu area
2591 * pointer.
2592 */
2593 c = this_cpu_ptr(s->cpu_slab);
2594 #endif
2595
2596 p = ___slab_alloc(s, gfpflags, node, addr, c);
2597 local_irq_restore(flags);
2598 return p;
2599 }
2600
2601 /*
2602 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2603 * have the fastpath folded into their functions. So no function call
2604 * overhead for requests that can be satisfied on the fastpath.
2605 *
2606 * The fastpath works by first checking if the lockless freelist can be used.
2607 * If not then __slab_alloc is called for slow processing.
2608 *
2609 * Otherwise we can simply pick the next object from the lockless free list.
2610 */
2611 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2612 gfp_t gfpflags, int node, unsigned long addr)
2613 {
2614 void *object;
2615 struct kmem_cache_cpu *c;
2616 struct page *page;
2617 unsigned long tid;
2618
2619 s = slab_pre_alloc_hook(s, gfpflags);
2620 if (!s)
2621 return NULL;
2622 redo:
2623 /*
2624 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2625 * enabled. We may switch back and forth between cpus while
2626 * reading from one cpu area. That does not matter as long
2627 * as we end up on the original cpu again when doing the cmpxchg.
2628 *
2629 * We should guarantee that tid and kmem_cache are retrieved on
2630 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2631 * to check if it is matched or not.
2632 */
2633 do {
2634 tid = this_cpu_read(s->cpu_slab->tid);
2635 c = raw_cpu_ptr(s->cpu_slab);
2636 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2637 unlikely(tid != READ_ONCE(c->tid)));
2638
2639 /*
2640 * Irqless object alloc/free algorithm used here depends on sequence
2641 * of fetching cpu_slab's data. tid should be fetched before anything
2642 * on c to guarantee that object and page associated with previous tid
2643 * won't be used with current tid. If we fetch tid first, object and
2644 * page could be one associated with next tid and our alloc/free
2645 * request will be failed. In this case, we will retry. So, no problem.
2646 */
2647 barrier();
2648
2649 /*
2650 * The transaction ids are globally unique per cpu and per operation on
2651 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2652 * occurs on the right processor and that there was no operation on the
2653 * linked list in between.
2654 */
2655
2656 object = c->freelist;
2657 page = c->page;
2658 if (unlikely(!object || !node_match(page, node))) {
2659 object = __slab_alloc(s, gfpflags, node, addr, c);
2660 stat(s, ALLOC_SLOWPATH);
2661 } else {
2662 void *next_object = get_freepointer_safe(s, object);
2663
2664 /*
2665 * The cmpxchg will only match if there was no additional
2666 * operation and if we are on the right processor.
2667 *
2668 * The cmpxchg does the following atomically (without lock
2669 * semantics!)
2670 * 1. Relocate first pointer to the current per cpu area.
2671 * 2. Verify that tid and freelist have not been changed
2672 * 3. If they were not changed replace tid and freelist
2673 *
2674 * Since this is without lock semantics the protection is only
2675 * against code executing on this cpu *not* from access by
2676 * other cpus.
2677 */
2678 if (unlikely(!this_cpu_cmpxchg_double(
2679 s->cpu_slab->freelist, s->cpu_slab->tid,
2680 object, tid,
2681 next_object, next_tid(tid)))) {
2682
2683 note_cmpxchg_failure("slab_alloc", s, tid);
2684 goto redo;
2685 }
2686 prefetch_freepointer(s, next_object);
2687 stat(s, ALLOC_FASTPATH);
2688 }
2689
2690 if (unlikely(gfpflags & __GFP_ZERO) && object)
2691 memset(object, 0, s->object_size);
2692
2693 slab_post_alloc_hook(s, gfpflags, 1, &object);
2694
2695 return object;
2696 }
2697
2698 static __always_inline void *slab_alloc(struct kmem_cache *s,
2699 gfp_t gfpflags, unsigned long addr)
2700 {
2701 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2702 }
2703
2704 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2705 {
2706 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2707
2708 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2709 s->size, gfpflags);
2710
2711 return ret;
2712 }
2713 EXPORT_SYMBOL(kmem_cache_alloc);
2714
2715 #ifdef CONFIG_TRACING
2716 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2717 {
2718 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2719 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2720 kasan_kmalloc(s, ret, size, gfpflags);
2721 return ret;
2722 }
2723 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2724 #endif
2725
2726 #ifdef CONFIG_NUMA
2727 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2728 {
2729 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2730
2731 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2732 s->object_size, s->size, gfpflags, node);
2733
2734 return ret;
2735 }
2736 EXPORT_SYMBOL(kmem_cache_alloc_node);
2737
2738 #ifdef CONFIG_TRACING
2739 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2740 gfp_t gfpflags,
2741 int node, size_t size)
2742 {
2743 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2744
2745 trace_kmalloc_node(_RET_IP_, ret,
2746 size, s->size, gfpflags, node);
2747
2748 kasan_kmalloc(s, ret, size, gfpflags);
2749 return ret;
2750 }
2751 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2752 #endif
2753 #endif
2754
2755 /*
2756 * Slow path handling. This may still be called frequently since objects
2757 * have a longer lifetime than the cpu slabs in most processing loads.
2758 *
2759 * So we still attempt to reduce cache line usage. Just take the slab
2760 * lock and free the item. If there is no additional partial page
2761 * handling required then we can return immediately.
2762 */
2763 static void __slab_free(struct kmem_cache *s, struct page *page,
2764 void *head, void *tail, int cnt,
2765 unsigned long addr)
2766
2767 {
2768 void *prior;
2769 int was_frozen;
2770 struct page new;
2771 unsigned long counters;
2772 struct kmem_cache_node *n = NULL;
2773 unsigned long uninitialized_var(flags);
2774
2775 stat(s, FREE_SLOWPATH);
2776
2777 if (kmem_cache_debug(s) &&
2778 !free_debug_processing(s, page, head, tail, cnt, addr))
2779 return;
2780
2781 do {
2782 if (unlikely(n)) {
2783 spin_unlock_irqrestore(&n->list_lock, flags);
2784 n = NULL;
2785 }
2786 prior = page->freelist;
2787 counters = page->counters;
2788 set_freepointer(s, tail, prior);
2789 new.counters = counters;
2790 was_frozen = new.frozen;
2791 new.inuse -= cnt;
2792 if ((!new.inuse || !prior) && !was_frozen) {
2793
2794 if (kmem_cache_has_cpu_partial(s) && !prior) {
2795
2796 /*
2797 * Slab was on no list before and will be
2798 * partially empty
2799 * We can defer the list move and instead
2800 * freeze it.
2801 */
2802 new.frozen = 1;
2803
2804 } else { /* Needs to be taken off a list */
2805
2806 n = get_node(s, page_to_nid(page));
2807 /*
2808 * Speculatively acquire the list_lock.
2809 * If the cmpxchg does not succeed then we may
2810 * drop the list_lock without any processing.
2811 *
2812 * Otherwise the list_lock will synchronize with
2813 * other processors updating the list of slabs.
2814 */
2815 spin_lock_irqsave(&n->list_lock, flags);
2816
2817 }
2818 }
2819
2820 } while (!cmpxchg_double_slab(s, page,
2821 prior, counters,
2822 head, new.counters,
2823 "__slab_free"));
2824
2825 if (likely(!n)) {
2826
2827 /*
2828 * If we just froze the page then put it onto the
2829 * per cpu partial list.
2830 */
2831 if (new.frozen && !was_frozen) {
2832 put_cpu_partial(s, page, 1);
2833 stat(s, CPU_PARTIAL_FREE);
2834 }
2835 /*
2836 * The list lock was not taken therefore no list
2837 * activity can be necessary.
2838 */
2839 if (was_frozen)
2840 stat(s, FREE_FROZEN);
2841 return;
2842 }
2843
2844 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2845 goto slab_empty;
2846
2847 /*
2848 * Objects left in the slab. If it was not on the partial list before
2849 * then add it.
2850 */
2851 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2852 if (kmem_cache_debug(s))
2853 remove_full(s, n, page);
2854 add_partial(n, page, DEACTIVATE_TO_TAIL);
2855 stat(s, FREE_ADD_PARTIAL);
2856 }
2857 spin_unlock_irqrestore(&n->list_lock, flags);
2858 return;
2859
2860 slab_empty:
2861 if (prior) {
2862 /*
2863 * Slab on the partial list.
2864 */
2865 remove_partial(n, page);
2866 stat(s, FREE_REMOVE_PARTIAL);
2867 } else {
2868 /* Slab must be on the full list */
2869 remove_full(s, n, page);
2870 }
2871
2872 spin_unlock_irqrestore(&n->list_lock, flags);
2873 stat(s, FREE_SLAB);
2874 discard_slab(s, page);
2875 }
2876
2877 /*
2878 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2879 * can perform fastpath freeing without additional function calls.
2880 *
2881 * The fastpath is only possible if we are freeing to the current cpu slab
2882 * of this processor. This typically the case if we have just allocated
2883 * the item before.
2884 *
2885 * If fastpath is not possible then fall back to __slab_free where we deal
2886 * with all sorts of special processing.
2887 *
2888 * Bulk free of a freelist with several objects (all pointing to the
2889 * same page) possible by specifying head and tail ptr, plus objects
2890 * count (cnt). Bulk free indicated by tail pointer being set.
2891 */
2892 static __always_inline void do_slab_free(struct kmem_cache *s,
2893 struct page *page, void *head, void *tail,
2894 int cnt, unsigned long addr)
2895 {
2896 void *tail_obj = tail ? : head;
2897 struct kmem_cache_cpu *c;
2898 unsigned long tid;
2899 redo:
2900 /*
2901 * Determine the currently cpus per cpu slab.
2902 * The cpu may change afterward. However that does not matter since
2903 * data is retrieved via this pointer. If we are on the same cpu
2904 * during the cmpxchg then the free will succeed.
2905 */
2906 do {
2907 tid = this_cpu_read(s->cpu_slab->tid);
2908 c = raw_cpu_ptr(s->cpu_slab);
2909 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2910 unlikely(tid != READ_ONCE(c->tid)));
2911
2912 /* Same with comment on barrier() in slab_alloc_node() */
2913 barrier();
2914
2915 if (likely(page == c->page)) {
2916 set_freepointer(s, tail_obj, c->freelist);
2917
2918 if (unlikely(!this_cpu_cmpxchg_double(
2919 s->cpu_slab->freelist, s->cpu_slab->tid,
2920 c->freelist, tid,
2921 head, next_tid(tid)))) {
2922
2923 note_cmpxchg_failure("slab_free", s, tid);
2924 goto redo;
2925 }
2926 stat(s, FREE_FASTPATH);
2927 } else
2928 __slab_free(s, page, head, tail_obj, cnt, addr);
2929
2930 }
2931
2932 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2933 void *head, void *tail, int cnt,
2934 unsigned long addr)
2935 {
2936 slab_free_freelist_hook(s, head, tail);
2937 /*
2938 * slab_free_freelist_hook() could have put the items into quarantine.
2939 * If so, no need to free them.
2940 */
2941 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2942 return;
2943 do_slab_free(s, page, head, tail, cnt, addr);
2944 }
2945
2946 #ifdef CONFIG_KASAN
2947 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2948 {
2949 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2950 }
2951 #endif
2952
2953 void kmem_cache_free(struct kmem_cache *s, void *x)
2954 {
2955 s = cache_from_obj(s, x);
2956 if (!s)
2957 return;
2958 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2959 trace_kmem_cache_free(_RET_IP_, x);
2960 }
2961 EXPORT_SYMBOL(kmem_cache_free);
2962
2963 struct detached_freelist {
2964 struct page *page;
2965 void *tail;
2966 void *freelist;
2967 int cnt;
2968 struct kmem_cache *s;
2969 };
2970
2971 /*
2972 * This function progressively scans the array with free objects (with
2973 * a limited look ahead) and extract objects belonging to the same
2974 * page. It builds a detached freelist directly within the given
2975 * page/objects. This can happen without any need for
2976 * synchronization, because the objects are owned by running process.
2977 * The freelist is build up as a single linked list in the objects.
2978 * The idea is, that this detached freelist can then be bulk
2979 * transferred to the real freelist(s), but only requiring a single
2980 * synchronization primitive. Look ahead in the array is limited due
2981 * to performance reasons.
2982 */
2983 static inline
2984 int build_detached_freelist(struct kmem_cache *s, size_t size,
2985 void **p, struct detached_freelist *df)
2986 {
2987 size_t first_skipped_index = 0;
2988 int lookahead = 3;
2989 void *object;
2990 struct page *page;
2991
2992 /* Always re-init detached_freelist */
2993 df->page = NULL;
2994
2995 do {
2996 object = p[--size];
2997 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2998 } while (!object && size);
2999
3000 if (!object)
3001 return 0;
3002
3003 page = virt_to_head_page(object);
3004 if (!s) {
3005 /* Handle kalloc'ed objects */
3006 if (unlikely(!PageSlab(page))) {
3007 BUG_ON(!PageCompound(page));
3008 kfree_hook(object);
3009 __free_pages(page, compound_order(page));
3010 p[size] = NULL; /* mark object processed */
3011 return size;
3012 }
3013 /* Derive kmem_cache from object */
3014 df->s = page->slab_cache;
3015 } else {
3016 df->s = cache_from_obj(s, object); /* Support for memcg */
3017 }
3018
3019 /* Start new detached freelist */
3020 df->page = page;
3021 set_freepointer(df->s, object, NULL);
3022 df->tail = object;
3023 df->freelist = object;
3024 p[size] = NULL; /* mark object processed */
3025 df->cnt = 1;
3026
3027 while (size) {
3028 object = p[--size];
3029 if (!object)
3030 continue; /* Skip processed objects */
3031
3032 /* df->page is always set at this point */
3033 if (df->page == virt_to_head_page(object)) {
3034 /* Opportunity build freelist */
3035 set_freepointer(df->s, object, df->freelist);
3036 df->freelist = object;
3037 df->cnt++;
3038 p[size] = NULL; /* mark object processed */
3039
3040 continue;
3041 }
3042
3043 /* Limit look ahead search */
3044 if (!--lookahead)
3045 break;
3046
3047 if (!first_skipped_index)
3048 first_skipped_index = size + 1;
3049 }
3050
3051 return first_skipped_index;
3052 }
3053
3054 /* Note that interrupts must be enabled when calling this function. */
3055 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3056 {
3057 if (WARN_ON(!size))
3058 return;
3059
3060 do {
3061 struct detached_freelist df;
3062
3063 size = build_detached_freelist(s, size, p, &df);
3064 if (unlikely(!df.page))
3065 continue;
3066
3067 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3068 } while (likely(size));
3069 }
3070 EXPORT_SYMBOL(kmem_cache_free_bulk);
3071
3072 /* Note that interrupts must be enabled when calling this function. */
3073 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3074 void **p)
3075 {
3076 struct kmem_cache_cpu *c;
3077 int i;
3078
3079 /* memcg and kmem_cache debug support */
3080 s = slab_pre_alloc_hook(s, flags);
3081 if (unlikely(!s))
3082 return false;
3083 /*
3084 * Drain objects in the per cpu slab, while disabling local
3085 * IRQs, which protects against PREEMPT and interrupts
3086 * handlers invoking normal fastpath.
3087 */
3088 local_irq_disable();
3089 c = this_cpu_ptr(s->cpu_slab);
3090
3091 for (i = 0; i < size; i++) {
3092 void *object = c->freelist;
3093
3094 if (unlikely(!object)) {
3095 /*
3096 * Invoking slow path likely have side-effect
3097 * of re-populating per CPU c->freelist
3098 */
3099 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3100 _RET_IP_, c);
3101 if (unlikely(!p[i]))
3102 goto error;
3103
3104 c = this_cpu_ptr(s->cpu_slab);
3105 continue; /* goto for-loop */
3106 }
3107 c->freelist = get_freepointer(s, object);
3108 p[i] = object;
3109 }
3110 c->tid = next_tid(c->tid);
3111 local_irq_enable();
3112
3113 /* Clear memory outside IRQ disabled fastpath loop */
3114 if (unlikely(flags & __GFP_ZERO)) {
3115 int j;
3116
3117 for (j = 0; j < i; j++)
3118 memset(p[j], 0, s->object_size);
3119 }
3120
3121 /* memcg and kmem_cache debug support */
3122 slab_post_alloc_hook(s, flags, size, p);
3123 return i;
3124 error:
3125 local_irq_enable();
3126 slab_post_alloc_hook(s, flags, i, p);
3127 __kmem_cache_free_bulk(s, i, p);
3128 return 0;
3129 }
3130 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3131
3132
3133 /*
3134 * Object placement in a slab is made very easy because we always start at
3135 * offset 0. If we tune the size of the object to the alignment then we can
3136 * get the required alignment by putting one properly sized object after
3137 * another.
3138 *
3139 * Notice that the allocation order determines the sizes of the per cpu
3140 * caches. Each processor has always one slab available for allocations.
3141 * Increasing the allocation order reduces the number of times that slabs
3142 * must be moved on and off the partial lists and is therefore a factor in
3143 * locking overhead.
3144 */
3145
3146 /*
3147 * Mininum / Maximum order of slab pages. This influences locking overhead
3148 * and slab fragmentation. A higher order reduces the number of partial slabs
3149 * and increases the number of allocations possible without having to
3150 * take the list_lock.
3151 */
3152 static int slub_min_order;
3153 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3154 static int slub_min_objects;
3155
3156 /*
3157 * Calculate the order of allocation given an slab object size.
3158 *
3159 * The order of allocation has significant impact on performance and other
3160 * system components. Generally order 0 allocations should be preferred since
3161 * order 0 does not cause fragmentation in the page allocator. Larger objects
3162 * be problematic to put into order 0 slabs because there may be too much
3163 * unused space left. We go to a higher order if more than 1/16th of the slab
3164 * would be wasted.
3165 *
3166 * In order to reach satisfactory performance we must ensure that a minimum
3167 * number of objects is in one slab. Otherwise we may generate too much
3168 * activity on the partial lists which requires taking the list_lock. This is
3169 * less a concern for large slabs though which are rarely used.
3170 *
3171 * slub_max_order specifies the order where we begin to stop considering the
3172 * number of objects in a slab as critical. If we reach slub_max_order then
3173 * we try to keep the page order as low as possible. So we accept more waste
3174 * of space in favor of a small page order.
3175 *
3176 * Higher order allocations also allow the placement of more objects in a
3177 * slab and thereby reduce object handling overhead. If the user has
3178 * requested a higher mininum order then we start with that one instead of
3179 * the smallest order which will fit the object.
3180 */
3181 static inline int slab_order(int size, int min_objects,
3182 int max_order, int fract_leftover, int reserved)
3183 {
3184 int order;
3185 int rem;
3186 int min_order = slub_min_order;
3187
3188 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3189 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3190
3191 for (order = max(min_order, get_order(min_objects * size + reserved));
3192 order <= max_order; order++) {
3193
3194 unsigned long slab_size = PAGE_SIZE << order;
3195
3196 rem = (slab_size - reserved) % size;
3197
3198 if (rem <= slab_size / fract_leftover)
3199 break;
3200 }
3201
3202 return order;
3203 }
3204
3205 static inline int calculate_order(int size, int reserved)
3206 {
3207 int order;
3208 int min_objects;
3209 int fraction;
3210 int max_objects;
3211
3212 /*
3213 * Attempt to find best configuration for a slab. This
3214 * works by first attempting to generate a layout with
3215 * the best configuration and backing off gradually.
3216 *
3217 * First we increase the acceptable waste in a slab. Then
3218 * we reduce the minimum objects required in a slab.
3219 */
3220 min_objects = slub_min_objects;
3221 if (!min_objects)
3222 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3223 max_objects = order_objects(slub_max_order, size, reserved);
3224 min_objects = min(min_objects, max_objects);
3225
3226 while (min_objects > 1) {
3227 fraction = 16;
3228 while (fraction >= 4) {
3229 order = slab_order(size, min_objects,
3230 slub_max_order, fraction, reserved);
3231 if (order <= slub_max_order)
3232 return order;
3233 fraction /= 2;
3234 }
3235 min_objects--;
3236 }
3237
3238 /*
3239 * We were unable to place multiple objects in a slab. Now
3240 * lets see if we can place a single object there.
3241 */
3242 order = slab_order(size, 1, slub_max_order, 1, reserved);
3243 if (order <= slub_max_order)
3244 return order;
3245
3246 /*
3247 * Doh this slab cannot be placed using slub_max_order.
3248 */
3249 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3250 if (order < MAX_ORDER)
3251 return order;
3252 return -ENOSYS;
3253 }
3254
3255 static void
3256 init_kmem_cache_node(struct kmem_cache_node *n)
3257 {
3258 n->nr_partial = 0;
3259 spin_lock_init(&n->list_lock);
3260 INIT_LIST_HEAD(&n->partial);
3261 #ifdef CONFIG_SLUB_DEBUG
3262 atomic_long_set(&n->nr_slabs, 0);
3263 atomic_long_set(&n->total_objects, 0);
3264 INIT_LIST_HEAD(&n->full);
3265 #endif
3266 }
3267
3268 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3269 {
3270 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3271 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3272
3273 /*
3274 * Must align to double word boundary for the double cmpxchg
3275 * instructions to work; see __pcpu_double_call_return_bool().
3276 */
3277 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3278 2 * sizeof(void *));
3279
3280 if (!s->cpu_slab)
3281 return 0;
3282
3283 init_kmem_cache_cpus(s);
3284
3285 return 1;
3286 }
3287
3288 static struct kmem_cache *kmem_cache_node;
3289
3290 /*
3291 * No kmalloc_node yet so do it by hand. We know that this is the first
3292 * slab on the node for this slabcache. There are no concurrent accesses
3293 * possible.
3294 *
3295 * Note that this function only works on the kmem_cache_node
3296 * when allocating for the kmem_cache_node. This is used for bootstrapping
3297 * memory on a fresh node that has no slab structures yet.
3298 */
3299 static void early_kmem_cache_node_alloc(int node)
3300 {
3301 struct page *page;
3302 struct kmem_cache_node *n;
3303
3304 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3305
3306 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3307
3308 BUG_ON(!page);
3309 if (page_to_nid(page) != node) {
3310 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3311 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3312 }
3313
3314 n = page->freelist;
3315 BUG_ON(!n);
3316 page->freelist = get_freepointer(kmem_cache_node, n);
3317 page->inuse = 1;
3318 page->frozen = 0;
3319 kmem_cache_node->node[node] = n;
3320 #ifdef CONFIG_SLUB_DEBUG
3321 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3322 init_tracking(kmem_cache_node, n);
3323 #endif
3324 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3325 GFP_KERNEL);
3326 init_kmem_cache_node(n);
3327 inc_slabs_node(kmem_cache_node, node, page->objects);
3328
3329 /*
3330 * No locks need to be taken here as it has just been
3331 * initialized and there is no concurrent access.
3332 */
3333 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3334 }
3335
3336 static void free_kmem_cache_nodes(struct kmem_cache *s)
3337 {
3338 int node;
3339 struct kmem_cache_node *n;
3340
3341 for_each_kmem_cache_node(s, node, n) {
3342 kmem_cache_free(kmem_cache_node, n);
3343 s->node[node] = NULL;
3344 }
3345 }
3346
3347 void __kmem_cache_release(struct kmem_cache *s)
3348 {
3349 cache_random_seq_destroy(s);
3350 free_percpu(s->cpu_slab);
3351 free_kmem_cache_nodes(s);
3352 }
3353
3354 static int init_kmem_cache_nodes(struct kmem_cache *s)
3355 {
3356 int node;
3357
3358 for_each_node_state(node, N_NORMAL_MEMORY) {
3359 struct kmem_cache_node *n;
3360
3361 if (slab_state == DOWN) {
3362 early_kmem_cache_node_alloc(node);
3363 continue;
3364 }
3365 n = kmem_cache_alloc_node(kmem_cache_node,
3366 GFP_KERNEL, node);
3367
3368 if (!n) {
3369 free_kmem_cache_nodes(s);
3370 return 0;
3371 }
3372
3373 s->node[node] = n;
3374 init_kmem_cache_node(n);
3375 }
3376 return 1;
3377 }
3378
3379 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3380 {
3381 if (min < MIN_PARTIAL)
3382 min = MIN_PARTIAL;
3383 else if (min > MAX_PARTIAL)
3384 min = MAX_PARTIAL;
3385 s->min_partial = min;
3386 }
3387
3388 /*
3389 * calculate_sizes() determines the order and the distribution of data within
3390 * a slab object.
3391 */
3392 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3393 {
3394 unsigned long flags = s->flags;
3395 size_t size = s->object_size;
3396 int order;
3397
3398 /*
3399 * Round up object size to the next word boundary. We can only
3400 * place the free pointer at word boundaries and this determines
3401 * the possible location of the free pointer.
3402 */
3403 size = ALIGN(size, sizeof(void *));
3404
3405 #ifdef CONFIG_SLUB_DEBUG
3406 /*
3407 * Determine if we can poison the object itself. If the user of
3408 * the slab may touch the object after free or before allocation
3409 * then we should never poison the object itself.
3410 */
3411 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3412 !s->ctor)
3413 s->flags |= __OBJECT_POISON;
3414 else
3415 s->flags &= ~__OBJECT_POISON;
3416
3417
3418 /*
3419 * If we are Redzoning then check if there is some space between the
3420 * end of the object and the free pointer. If not then add an
3421 * additional word to have some bytes to store Redzone information.
3422 */
3423 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3424 size += sizeof(void *);
3425 #endif
3426
3427 /*
3428 * With that we have determined the number of bytes in actual use
3429 * by the object. This is the potential offset to the free pointer.
3430 */
3431 s->inuse = size;
3432
3433 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3434 s->ctor)) {
3435 /*
3436 * Relocate free pointer after the object if it is not
3437 * permitted to overwrite the first word of the object on
3438 * kmem_cache_free.
3439 *
3440 * This is the case if we do RCU, have a constructor or
3441 * destructor or are poisoning the objects.
3442 */
3443 s->offset = size;
3444 size += sizeof(void *);
3445 }
3446
3447 #ifdef CONFIG_SLUB_DEBUG
3448 if (flags & SLAB_STORE_USER)
3449 /*
3450 * Need to store information about allocs and frees after
3451 * the object.
3452 */
3453 size += 2 * sizeof(struct track);
3454 #endif
3455
3456 kasan_cache_create(s, &size, &s->flags);
3457 #ifdef CONFIG_SLUB_DEBUG
3458 if (flags & SLAB_RED_ZONE) {
3459 /*
3460 * Add some empty padding so that we can catch
3461 * overwrites from earlier objects rather than let
3462 * tracking information or the free pointer be
3463 * corrupted if a user writes before the start
3464 * of the object.
3465 */
3466 size += sizeof(void *);
3467
3468 s->red_left_pad = sizeof(void *);
3469 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3470 size += s->red_left_pad;
3471 }
3472 #endif
3473
3474 /*
3475 * SLUB stores one object immediately after another beginning from
3476 * offset 0. In order to align the objects we have to simply size
3477 * each object to conform to the alignment.
3478 */
3479 size = ALIGN(size, s->align);
3480 s->size = size;
3481 if (forced_order >= 0)
3482 order = forced_order;
3483 else
3484 order = calculate_order(size, s->reserved);
3485
3486 if (order < 0)
3487 return 0;
3488
3489 s->allocflags = 0;
3490 if (order)
3491 s->allocflags |= __GFP_COMP;
3492
3493 if (s->flags & SLAB_CACHE_DMA)
3494 s->allocflags |= GFP_DMA;
3495
3496 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3497 s->allocflags |= __GFP_RECLAIMABLE;
3498
3499 /*
3500 * Determine the number of objects per slab
3501 */
3502 s->oo = oo_make(order, size, s->reserved);
3503 s->min = oo_make(get_order(size), size, s->reserved);
3504 if (oo_objects(s->oo) > oo_objects(s->max))
3505 s->max = s->oo;
3506
3507 return !!oo_objects(s->oo);
3508 }
3509
3510 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3511 {
3512 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3513 s->reserved = 0;
3514
3515 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3516 s->reserved = sizeof(struct rcu_head);
3517
3518 if (!calculate_sizes(s, -1))
3519 goto error;
3520 if (disable_higher_order_debug) {
3521 /*
3522 * Disable debugging flags that store metadata if the min slab
3523 * order increased.
3524 */
3525 if (get_order(s->size) > get_order(s->object_size)) {
3526 s->flags &= ~DEBUG_METADATA_FLAGS;
3527 s->offset = 0;
3528 if (!calculate_sizes(s, -1))
3529 goto error;
3530 }
3531 }
3532
3533 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3534 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3535 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3536 /* Enable fast mode */
3537 s->flags |= __CMPXCHG_DOUBLE;
3538 #endif
3539
3540 /*
3541 * The larger the object size is, the more pages we want on the partial
3542 * list to avoid pounding the page allocator excessively.
3543 */
3544 set_min_partial(s, ilog2(s->size) / 2);
3545
3546 /*
3547 * cpu_partial determined the maximum number of objects kept in the
3548 * per cpu partial lists of a processor.
3549 *
3550 * Per cpu partial lists mainly contain slabs that just have one
3551 * object freed. If they are used for allocation then they can be
3552 * filled up again with minimal effort. The slab will never hit the
3553 * per node partial lists and therefore no locking will be required.
3554 *
3555 * This setting also determines
3556 *
3557 * A) The number of objects from per cpu partial slabs dumped to the
3558 * per node list when we reach the limit.
3559 * B) The number of objects in cpu partial slabs to extract from the
3560 * per node list when we run out of per cpu objects. We only fetch
3561 * 50% to keep some capacity around for frees.
3562 */
3563 if (!kmem_cache_has_cpu_partial(s))
3564 s->cpu_partial = 0;
3565 else if (s->size >= PAGE_SIZE)
3566 s->cpu_partial = 2;
3567 else if (s->size >= 1024)
3568 s->cpu_partial = 6;
3569 else if (s->size >= 256)
3570 s->cpu_partial = 13;
3571 else
3572 s->cpu_partial = 30;
3573
3574 #ifdef CONFIG_NUMA
3575 s->remote_node_defrag_ratio = 1000;
3576 #endif
3577
3578 /* Initialize the pre-computed randomized freelist if slab is up */
3579 if (slab_state >= UP) {
3580 if (init_cache_random_seq(s))
3581 goto error;
3582 }
3583
3584 if (!init_kmem_cache_nodes(s))
3585 goto error;
3586
3587 if (alloc_kmem_cache_cpus(s))
3588 return 0;
3589
3590 free_kmem_cache_nodes(s);
3591 error:
3592 if (flags & SLAB_PANIC)
3593 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3594 s->name, (unsigned long)s->size, s->size,
3595 oo_order(s->oo), s->offset, flags);
3596 return -EINVAL;
3597 }
3598
3599 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3600 const char *text)
3601 {
3602 #ifdef CONFIG_SLUB_DEBUG
3603 void *addr = page_address(page);
3604 void *p;
3605 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3606 sizeof(long), GFP_ATOMIC);
3607 if (!map)
3608 return;
3609 slab_err(s, page, text, s->name);
3610 slab_lock(page);
3611
3612 get_map(s, page, map);
3613 for_each_object(p, s, addr, page->objects) {
3614
3615 if (!test_bit(slab_index(p, s, addr), map)) {
3616 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3617 print_tracking(s, p);
3618 }
3619 }
3620 slab_unlock(page);
3621 kfree(map);
3622 #endif
3623 }
3624
3625 /*
3626 * Attempt to free all partial slabs on a node.
3627 * This is called from __kmem_cache_shutdown(). We must take list_lock
3628 * because sysfs file might still access partial list after the shutdowning.
3629 */
3630 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3631 {
3632 LIST_HEAD(discard);
3633 struct page *page, *h;
3634
3635 BUG_ON(irqs_disabled());
3636 spin_lock_irq(&n->list_lock);
3637 list_for_each_entry_safe(page, h, &n->partial, lru) {
3638 if (!page->inuse) {
3639 remove_partial(n, page);
3640 list_add(&page->lru, &discard);
3641 } else {
3642 list_slab_objects(s, page,
3643 "Objects remaining in %s on __kmem_cache_shutdown()");
3644 }
3645 }
3646 spin_unlock_irq(&n->list_lock);
3647
3648 list_for_each_entry_safe(page, h, &discard, lru)
3649 discard_slab(s, page);
3650 }
3651
3652 /*
3653 * Release all resources used by a slab cache.
3654 */
3655 int __kmem_cache_shutdown(struct kmem_cache *s)
3656 {
3657 int node;
3658 struct kmem_cache_node *n;
3659
3660 flush_all(s);
3661 /* Attempt to free all objects */
3662 for_each_kmem_cache_node(s, node, n) {
3663 free_partial(s, n);
3664 if (n->nr_partial || slabs_node(s, node))
3665 return 1;
3666 }
3667 return 0;
3668 }
3669
3670 /********************************************************************
3671 * Kmalloc subsystem
3672 *******************************************************************/
3673
3674 static int __init setup_slub_min_order(char *str)
3675 {
3676 get_option(&str, &slub_min_order);
3677
3678 return 1;
3679 }
3680
3681 __setup("slub_min_order=", setup_slub_min_order);
3682
3683 static int __init setup_slub_max_order(char *str)
3684 {
3685 get_option(&str, &slub_max_order);
3686 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3687
3688 return 1;
3689 }
3690
3691 __setup("slub_max_order=", setup_slub_max_order);
3692
3693 static int __init setup_slub_min_objects(char *str)
3694 {
3695 get_option(&str, &slub_min_objects);
3696
3697 return 1;
3698 }
3699
3700 __setup("slub_min_objects=", setup_slub_min_objects);
3701
3702 void *__kmalloc(size_t size, gfp_t flags)
3703 {
3704 struct kmem_cache *s;
3705 void *ret;
3706
3707 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3708 return kmalloc_large(size, flags);
3709
3710 s = kmalloc_slab(size, flags);
3711
3712 if (unlikely(ZERO_OR_NULL_PTR(s)))
3713 return s;
3714
3715 ret = slab_alloc(s, flags, _RET_IP_);
3716
3717 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3718
3719 kasan_kmalloc(s, ret, size, flags);
3720
3721 return ret;
3722 }
3723 EXPORT_SYMBOL(__kmalloc);
3724
3725 #ifdef CONFIG_NUMA
3726 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3727 {
3728 struct page *page;
3729 void *ptr = NULL;
3730
3731 flags |= __GFP_COMP | __GFP_NOTRACK;
3732 page = alloc_pages_node(node, flags, get_order(size));
3733 if (page)
3734 ptr = page_address(page);
3735
3736 kmalloc_large_node_hook(ptr, size, flags);
3737 return ptr;
3738 }
3739
3740 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3741 {
3742 struct kmem_cache *s;
3743 void *ret;
3744
3745 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3746 ret = kmalloc_large_node(size, flags, node);
3747
3748 trace_kmalloc_node(_RET_IP_, ret,
3749 size, PAGE_SIZE << get_order(size),
3750 flags, node);
3751
3752 return ret;
3753 }
3754
3755 s = kmalloc_slab(size, flags);
3756
3757 if (unlikely(ZERO_OR_NULL_PTR(s)))
3758 return s;
3759
3760 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3761
3762 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3763
3764 kasan_kmalloc(s, ret, size, flags);
3765
3766 return ret;
3767 }
3768 EXPORT_SYMBOL(__kmalloc_node);
3769 #endif
3770
3771 #ifdef CONFIG_HARDENED_USERCOPY
3772 /*
3773 * Rejects objects that are incorrectly sized.
3774 *
3775 * Returns NULL if check passes, otherwise const char * to name of cache
3776 * to indicate an error.
3777 */
3778 const char *__check_heap_object(const void *ptr, unsigned long n,
3779 struct page *page)
3780 {
3781 struct kmem_cache *s;
3782 unsigned long offset;
3783 size_t object_size;
3784
3785 /* Find object and usable object size. */
3786 s = page->slab_cache;
3787 object_size = slab_ksize(s);
3788
3789 /* Reject impossible pointers. */
3790 if (ptr < page_address(page))
3791 return s->name;
3792
3793 /* Find offset within object. */
3794 offset = (ptr - page_address(page)) % s->size;
3795
3796 /* Adjust for redzone and reject if within the redzone. */
3797 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3798 if (offset < s->red_left_pad)
3799 return s->name;
3800 offset -= s->red_left_pad;
3801 }
3802
3803 /* Allow address range falling entirely within object size. */
3804 if (offset <= object_size && n <= object_size - offset)
3805 return NULL;
3806
3807 return s->name;
3808 }
3809 #endif /* CONFIG_HARDENED_USERCOPY */
3810
3811 static size_t __ksize(const void *object)
3812 {
3813 struct page *page;
3814
3815 if (unlikely(object == ZERO_SIZE_PTR))
3816 return 0;
3817
3818 page = virt_to_head_page(object);
3819
3820 if (unlikely(!PageSlab(page))) {
3821 WARN_ON(!PageCompound(page));
3822 return PAGE_SIZE << compound_order(page);
3823 }
3824
3825 return slab_ksize(page->slab_cache);
3826 }
3827
3828 size_t ksize(const void *object)
3829 {
3830 size_t size = __ksize(object);
3831 /* We assume that ksize callers could use whole allocated area,
3832 * so we need to unpoison this area.
3833 */
3834 kasan_unpoison_shadow(object, size);
3835 return size;
3836 }
3837 EXPORT_SYMBOL(ksize);
3838
3839 void kfree(const void *x)
3840 {
3841 struct page *page;
3842 void *object = (void *)x;
3843
3844 trace_kfree(_RET_IP_, x);
3845
3846 if (unlikely(ZERO_OR_NULL_PTR(x)))
3847 return;
3848
3849 page = virt_to_head_page(x);
3850 if (unlikely(!PageSlab(page))) {
3851 BUG_ON(!PageCompound(page));
3852 kfree_hook(x);
3853 __free_pages(page, compound_order(page));
3854 return;
3855 }
3856 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3857 }
3858 EXPORT_SYMBOL(kfree);
3859
3860 #define SHRINK_PROMOTE_MAX 32
3861
3862 /*
3863 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3864 * up most to the head of the partial lists. New allocations will then
3865 * fill those up and thus they can be removed from the partial lists.
3866 *
3867 * The slabs with the least items are placed last. This results in them
3868 * being allocated from last increasing the chance that the last objects
3869 * are freed in them.
3870 */
3871 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3872 {
3873 int node;
3874 int i;
3875 struct kmem_cache_node *n;
3876 struct page *page;
3877 struct page *t;
3878 struct list_head discard;
3879 struct list_head promote[SHRINK_PROMOTE_MAX];
3880 unsigned long flags;
3881 int ret = 0;
3882
3883 if (deactivate) {
3884 /*
3885 * Disable empty slabs caching. Used to avoid pinning offline
3886 * memory cgroups by kmem pages that can be freed.
3887 */
3888 s->cpu_partial = 0;
3889 s->min_partial = 0;
3890
3891 /*
3892 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3893 * so we have to make sure the change is visible.
3894 */
3895 synchronize_sched();
3896 }
3897
3898 flush_all(s);
3899 for_each_kmem_cache_node(s, node, n) {
3900 INIT_LIST_HEAD(&discard);
3901 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3902 INIT_LIST_HEAD(promote + i);
3903
3904 spin_lock_irqsave(&n->list_lock, flags);
3905
3906 /*
3907 * Build lists of slabs to discard or promote.
3908 *
3909 * Note that concurrent frees may occur while we hold the
3910 * list_lock. page->inuse here is the upper limit.
3911 */
3912 list_for_each_entry_safe(page, t, &n->partial, lru) {
3913 int free = page->objects - page->inuse;
3914
3915 /* Do not reread page->inuse */
3916 barrier();
3917
3918 /* We do not keep full slabs on the list */
3919 BUG_ON(free <= 0);
3920
3921 if (free == page->objects) {
3922 list_move(&page->lru, &discard);
3923 n->nr_partial--;
3924 } else if (free <= SHRINK_PROMOTE_MAX)
3925 list_move(&page->lru, promote + free - 1);
3926 }
3927
3928 /*
3929 * Promote the slabs filled up most to the head of the
3930 * partial list.
3931 */
3932 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3933 list_splice(promote + i, &n->partial);
3934
3935 spin_unlock_irqrestore(&n->list_lock, flags);
3936
3937 /* Release empty slabs */
3938 list_for_each_entry_safe(page, t, &discard, lru)
3939 discard_slab(s, page);
3940
3941 if (slabs_node(s, node))
3942 ret = 1;
3943 }
3944
3945 return ret;
3946 }
3947
3948 static int slab_mem_going_offline_callback(void *arg)
3949 {
3950 struct kmem_cache *s;
3951
3952 mutex_lock(&slab_mutex);
3953 list_for_each_entry(s, &slab_caches, list)
3954 __kmem_cache_shrink(s, false);
3955 mutex_unlock(&slab_mutex);
3956
3957 return 0;
3958 }
3959
3960 static void slab_mem_offline_callback(void *arg)
3961 {
3962 struct kmem_cache_node *n;
3963 struct kmem_cache *s;
3964 struct memory_notify *marg = arg;
3965 int offline_node;
3966
3967 offline_node = marg->status_change_nid_normal;
3968
3969 /*
3970 * If the node still has available memory. we need kmem_cache_node
3971 * for it yet.
3972 */
3973 if (offline_node < 0)
3974 return;
3975
3976 mutex_lock(&slab_mutex);
3977 list_for_each_entry(s, &slab_caches, list) {
3978 n = get_node(s, offline_node);
3979 if (n) {
3980 /*
3981 * if n->nr_slabs > 0, slabs still exist on the node
3982 * that is going down. We were unable to free them,
3983 * and offline_pages() function shouldn't call this
3984 * callback. So, we must fail.
3985 */
3986 BUG_ON(slabs_node(s, offline_node));
3987
3988 s->node[offline_node] = NULL;
3989 kmem_cache_free(kmem_cache_node, n);
3990 }
3991 }
3992 mutex_unlock(&slab_mutex);
3993 }
3994
3995 static int slab_mem_going_online_callback(void *arg)
3996 {
3997 struct kmem_cache_node *n;
3998 struct kmem_cache *s;
3999 struct memory_notify *marg = arg;
4000 int nid = marg->status_change_nid_normal;
4001 int ret = 0;
4002
4003 /*
4004 * If the node's memory is already available, then kmem_cache_node is
4005 * already created. Nothing to do.
4006 */
4007 if (nid < 0)
4008 return 0;
4009
4010 /*
4011 * We are bringing a node online. No memory is available yet. We must
4012 * allocate a kmem_cache_node structure in order to bring the node
4013 * online.
4014 */
4015 mutex_lock(&slab_mutex);
4016 list_for_each_entry(s, &slab_caches, list) {
4017 /*
4018 * XXX: kmem_cache_alloc_node will fallback to other nodes
4019 * since memory is not yet available from the node that
4020 * is brought up.
4021 */
4022 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4023 if (!n) {
4024 ret = -ENOMEM;
4025 goto out;
4026 }
4027 init_kmem_cache_node(n);
4028 s->node[nid] = n;
4029 }
4030 out:
4031 mutex_unlock(&slab_mutex);
4032 return ret;
4033 }
4034
4035 static int slab_memory_callback(struct notifier_block *self,
4036 unsigned long action, void *arg)
4037 {
4038 int ret = 0;
4039
4040 switch (action) {
4041 case MEM_GOING_ONLINE:
4042 ret = slab_mem_going_online_callback(arg);
4043 break;
4044 case MEM_GOING_OFFLINE:
4045 ret = slab_mem_going_offline_callback(arg);
4046 break;
4047 case MEM_OFFLINE:
4048 case MEM_CANCEL_ONLINE:
4049 slab_mem_offline_callback(arg);
4050 break;
4051 case MEM_ONLINE:
4052 case MEM_CANCEL_OFFLINE:
4053 break;
4054 }
4055 if (ret)
4056 ret = notifier_from_errno(ret);
4057 else
4058 ret = NOTIFY_OK;
4059 return ret;
4060 }
4061
4062 static struct notifier_block slab_memory_callback_nb = {
4063 .notifier_call = slab_memory_callback,
4064 .priority = SLAB_CALLBACK_PRI,
4065 };
4066
4067 /********************************************************************
4068 * Basic setup of slabs
4069 *******************************************************************/
4070
4071 /*
4072 * Used for early kmem_cache structures that were allocated using
4073 * the page allocator. Allocate them properly then fix up the pointers
4074 * that may be pointing to the wrong kmem_cache structure.
4075 */
4076
4077 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4078 {
4079 int node;
4080 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4081 struct kmem_cache_node *n;
4082
4083 memcpy(s, static_cache, kmem_cache->object_size);
4084
4085 /*
4086 * This runs very early, and only the boot processor is supposed to be
4087 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4088 * IPIs around.
4089 */
4090 __flush_cpu_slab(s, smp_processor_id());
4091 for_each_kmem_cache_node(s, node, n) {
4092 struct page *p;
4093
4094 list_for_each_entry(p, &n->partial, lru)
4095 p->slab_cache = s;
4096
4097 #ifdef CONFIG_SLUB_DEBUG
4098 list_for_each_entry(p, &n->full, lru)
4099 p->slab_cache = s;
4100 #endif
4101 }
4102 slab_init_memcg_params(s);
4103 list_add(&s->list, &slab_caches);
4104 return s;
4105 }
4106
4107 void __init kmem_cache_init(void)
4108 {
4109 static __initdata struct kmem_cache boot_kmem_cache,
4110 boot_kmem_cache_node;
4111
4112 if (debug_guardpage_minorder())
4113 slub_max_order = 0;
4114
4115 kmem_cache_node = &boot_kmem_cache_node;
4116 kmem_cache = &boot_kmem_cache;
4117
4118 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4119 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4120
4121 register_hotmemory_notifier(&slab_memory_callback_nb);
4122
4123 /* Able to allocate the per node structures */
4124 slab_state = PARTIAL;
4125
4126 create_boot_cache(kmem_cache, "kmem_cache",
4127 offsetof(struct kmem_cache, node) +
4128 nr_node_ids * sizeof(struct kmem_cache_node *),
4129 SLAB_HWCACHE_ALIGN);
4130
4131 kmem_cache = bootstrap(&boot_kmem_cache);
4132
4133 /*
4134 * Allocate kmem_cache_node properly from the kmem_cache slab.
4135 * kmem_cache_node is separately allocated so no need to
4136 * update any list pointers.
4137 */
4138 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4139
4140 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4141 setup_kmalloc_cache_index_table();
4142 create_kmalloc_caches(0);
4143
4144 /* Setup random freelists for each cache */
4145 init_freelist_randomization();
4146
4147 #ifdef CONFIG_SMP
4148 register_cpu_notifier(&slab_notifier);
4149 #endif
4150
4151 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4152 cache_line_size(),
4153 slub_min_order, slub_max_order, slub_min_objects,
4154 nr_cpu_ids, nr_node_ids);
4155 }
4156
4157 void __init kmem_cache_init_late(void)
4158 {
4159 }
4160
4161 struct kmem_cache *
4162 __kmem_cache_alias(const char *name, size_t size, size_t align,
4163 unsigned long flags, void (*ctor)(void *))
4164 {
4165 struct kmem_cache *s, *c;
4166
4167 s = find_mergeable(size, align, flags, name, ctor);
4168 if (s) {
4169 s->refcount++;
4170
4171 /*
4172 * Adjust the object sizes so that we clear
4173 * the complete object on kzalloc.
4174 */
4175 s->object_size = max(s->object_size, (int)size);
4176 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4177
4178 for_each_memcg_cache(c, s) {
4179 c->object_size = s->object_size;
4180 c->inuse = max_t(int, c->inuse,
4181 ALIGN(size, sizeof(void *)));
4182 }
4183
4184 if (sysfs_slab_alias(s, name)) {
4185 s->refcount--;
4186 s = NULL;
4187 }
4188 }
4189
4190 return s;
4191 }
4192
4193 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4194 {
4195 int err;
4196
4197 err = kmem_cache_open(s, flags);
4198 if (err)
4199 return err;
4200
4201 /* Mutex is not taken during early boot */
4202 if (slab_state <= UP)
4203 return 0;
4204
4205 memcg_propagate_slab_attrs(s);
4206 err = sysfs_slab_add(s);
4207 if (err)
4208 __kmem_cache_release(s);
4209
4210 return err;
4211 }
4212
4213 #ifdef CONFIG_SMP
4214 /*
4215 * Use the cpu notifier to insure that the cpu slabs are flushed when
4216 * necessary.
4217 */
4218 static int slab_cpuup_callback(struct notifier_block *nfb,
4219 unsigned long action, void *hcpu)
4220 {
4221 long cpu = (long)hcpu;
4222 struct kmem_cache *s;
4223 unsigned long flags;
4224
4225 switch (action) {
4226 case CPU_UP_CANCELED:
4227 case CPU_UP_CANCELED_FROZEN:
4228 case CPU_DEAD:
4229 case CPU_DEAD_FROZEN:
4230 mutex_lock(&slab_mutex);
4231 list_for_each_entry(s, &slab_caches, list) {
4232 local_irq_save(flags);
4233 __flush_cpu_slab(s, cpu);
4234 local_irq_restore(flags);
4235 }
4236 mutex_unlock(&slab_mutex);
4237 break;
4238 default:
4239 break;
4240 }
4241 return NOTIFY_OK;
4242 }
4243
4244 static struct notifier_block slab_notifier = {
4245 .notifier_call = slab_cpuup_callback
4246 };
4247
4248 #endif
4249
4250 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4251 {
4252 struct kmem_cache *s;
4253 void *ret;
4254
4255 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4256 return kmalloc_large(size, gfpflags);
4257
4258 s = kmalloc_slab(size, gfpflags);
4259
4260 if (unlikely(ZERO_OR_NULL_PTR(s)))
4261 return s;
4262
4263 ret = slab_alloc(s, gfpflags, caller);
4264
4265 /* Honor the call site pointer we received. */
4266 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4267
4268 return ret;
4269 }
4270
4271 #ifdef CONFIG_NUMA
4272 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4273 int node, unsigned long caller)
4274 {
4275 struct kmem_cache *s;
4276 void *ret;
4277
4278 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4279 ret = kmalloc_large_node(size, gfpflags, node);
4280
4281 trace_kmalloc_node(caller, ret,
4282 size, PAGE_SIZE << get_order(size),
4283 gfpflags, node);
4284
4285 return ret;
4286 }
4287
4288 s = kmalloc_slab(size, gfpflags);
4289
4290 if (unlikely(ZERO_OR_NULL_PTR(s)))
4291 return s;
4292
4293 ret = slab_alloc_node(s, gfpflags, node, caller);
4294
4295 /* Honor the call site pointer we received. */
4296 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4297
4298 return ret;
4299 }
4300 #endif
4301
4302 #ifdef CONFIG_SYSFS
4303 static int count_inuse(struct page *page)
4304 {
4305 return page->inuse;
4306 }
4307
4308 static int count_total(struct page *page)
4309 {
4310 return page->objects;
4311 }
4312 #endif
4313
4314 #ifdef CONFIG_SLUB_DEBUG
4315 static int validate_slab(struct kmem_cache *s, struct page *page,
4316 unsigned long *map)
4317 {
4318 void *p;
4319 void *addr = page_address(page);
4320
4321 if (!check_slab(s, page) ||
4322 !on_freelist(s, page, NULL))
4323 return 0;
4324
4325 /* Now we know that a valid freelist exists */
4326 bitmap_zero(map, page->objects);
4327
4328 get_map(s, page, map);
4329 for_each_object(p, s, addr, page->objects) {
4330 if (test_bit(slab_index(p, s, addr), map))
4331 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4332 return 0;
4333 }
4334
4335 for_each_object(p, s, addr, page->objects)
4336 if (!test_bit(slab_index(p, s, addr), map))
4337 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4338 return 0;
4339 return 1;
4340 }
4341
4342 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4343 unsigned long *map)
4344 {
4345 slab_lock(page);
4346 validate_slab(s, page, map);
4347 slab_unlock(page);
4348 }
4349
4350 static int validate_slab_node(struct kmem_cache *s,
4351 struct kmem_cache_node *n, unsigned long *map)
4352 {
4353 unsigned long count = 0;
4354 struct page *page;
4355 unsigned long flags;
4356
4357 spin_lock_irqsave(&n->list_lock, flags);
4358
4359 list_for_each_entry(page, &n->partial, lru) {
4360 validate_slab_slab(s, page, map);
4361 count++;
4362 }
4363 if (count != n->nr_partial)
4364 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4365 s->name, count, n->nr_partial);
4366
4367 if (!(s->flags & SLAB_STORE_USER))
4368 goto out;
4369
4370 list_for_each_entry(page, &n->full, lru) {
4371 validate_slab_slab(s, page, map);
4372 count++;
4373 }
4374 if (count != atomic_long_read(&n->nr_slabs))
4375 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4376 s->name, count, atomic_long_read(&n->nr_slabs));
4377
4378 out:
4379 spin_unlock_irqrestore(&n->list_lock, flags);
4380 return count;
4381 }
4382
4383 static long validate_slab_cache(struct kmem_cache *s)
4384 {
4385 int node;
4386 unsigned long count = 0;
4387 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4388 sizeof(unsigned long), GFP_KERNEL);
4389 struct kmem_cache_node *n;
4390
4391 if (!map)
4392 return -ENOMEM;
4393
4394 flush_all(s);
4395 for_each_kmem_cache_node(s, node, n)
4396 count += validate_slab_node(s, n, map);
4397 kfree(map);
4398 return count;
4399 }
4400 /*
4401 * Generate lists of code addresses where slabcache objects are allocated
4402 * and freed.
4403 */
4404
4405 struct location {
4406 unsigned long count;
4407 unsigned long addr;
4408 long long sum_time;
4409 long min_time;
4410 long max_time;
4411 long min_pid;
4412 long max_pid;
4413 DECLARE_BITMAP(cpus, NR_CPUS);
4414 nodemask_t nodes;
4415 };
4416
4417 struct loc_track {
4418 unsigned long max;
4419 unsigned long count;
4420 struct location *loc;
4421 };
4422
4423 static void free_loc_track(struct loc_track *t)
4424 {
4425 if (t->max)
4426 free_pages((unsigned long)t->loc,
4427 get_order(sizeof(struct location) * t->max));
4428 }
4429
4430 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4431 {
4432 struct location *l;
4433 int order;
4434
4435 order = get_order(sizeof(struct location) * max);
4436
4437 l = (void *)__get_free_pages(flags, order);
4438 if (!l)
4439 return 0;
4440
4441 if (t->count) {
4442 memcpy(l, t->loc, sizeof(struct location) * t->count);
4443 free_loc_track(t);
4444 }
4445 t->max = max;
4446 t->loc = l;
4447 return 1;
4448 }
4449
4450 static int add_location(struct loc_track *t, struct kmem_cache *s,
4451 const struct track *track)
4452 {
4453 long start, end, pos;
4454 struct location *l;
4455 unsigned long caddr;
4456 unsigned long age = jiffies - track->when;
4457
4458 start = -1;
4459 end = t->count;
4460
4461 for ( ; ; ) {
4462 pos = start + (end - start + 1) / 2;
4463
4464 /*
4465 * There is nothing at "end". If we end up there
4466 * we need to add something to before end.
4467 */
4468 if (pos == end)
4469 break;
4470
4471 caddr = t->loc[pos].addr;
4472 if (track->addr == caddr) {
4473
4474 l = &t->loc[pos];
4475 l->count++;
4476 if (track->when) {
4477 l->sum_time += age;
4478 if (age < l->min_time)
4479 l->min_time = age;
4480 if (age > l->max_time)
4481 l->max_time = age;
4482
4483 if (track->pid < l->min_pid)
4484 l->min_pid = track->pid;
4485 if (track->pid > l->max_pid)
4486 l->max_pid = track->pid;
4487
4488 cpumask_set_cpu(track->cpu,
4489 to_cpumask(l->cpus));
4490 }
4491 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4492 return 1;
4493 }
4494
4495 if (track->addr < caddr)
4496 end = pos;
4497 else
4498 start = pos;
4499 }
4500
4501 /*
4502 * Not found. Insert new tracking element.
4503 */
4504 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4505 return 0;
4506
4507 l = t->loc + pos;
4508 if (pos < t->count)
4509 memmove(l + 1, l,
4510 (t->count - pos) * sizeof(struct location));
4511 t->count++;
4512 l->count = 1;
4513 l->addr = track->addr;
4514 l->sum_time = age;
4515 l->min_time = age;
4516 l->max_time = age;
4517 l->min_pid = track->pid;
4518 l->max_pid = track->pid;
4519 cpumask_clear(to_cpumask(l->cpus));
4520 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4521 nodes_clear(l->nodes);
4522 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4523 return 1;
4524 }
4525
4526 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4527 struct page *page, enum track_item alloc,
4528 unsigned long *map)
4529 {
4530 void *addr = page_address(page);
4531 void *p;
4532
4533 bitmap_zero(map, page->objects);
4534 get_map(s, page, map);
4535
4536 for_each_object(p, s, addr, page->objects)
4537 if (!test_bit(slab_index(p, s, addr), map))
4538 add_location(t, s, get_track(s, p, alloc));
4539 }
4540
4541 static int list_locations(struct kmem_cache *s, char *buf,
4542 enum track_item alloc)
4543 {
4544 int len = 0;
4545 unsigned long i;
4546 struct loc_track t = { 0, 0, NULL };
4547 int node;
4548 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4549 sizeof(unsigned long), GFP_KERNEL);
4550 struct kmem_cache_node *n;
4551
4552 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4553 GFP_TEMPORARY)) {
4554 kfree(map);
4555 return sprintf(buf, "Out of memory\n");
4556 }
4557 /* Push back cpu slabs */
4558 flush_all(s);
4559
4560 for_each_kmem_cache_node(s, node, n) {
4561 unsigned long flags;
4562 struct page *page;
4563
4564 if (!atomic_long_read(&n->nr_slabs))
4565 continue;
4566
4567 spin_lock_irqsave(&n->list_lock, flags);
4568 list_for_each_entry(page, &n->partial, lru)
4569 process_slab(&t, s, page, alloc, map);
4570 list_for_each_entry(page, &n->full, lru)
4571 process_slab(&t, s, page, alloc, map);
4572 spin_unlock_irqrestore(&n->list_lock, flags);
4573 }
4574
4575 for (i = 0; i < t.count; i++) {
4576 struct location *l = &t.loc[i];
4577
4578 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4579 break;
4580 len += sprintf(buf + len, "%7ld ", l->count);
4581
4582 if (l->addr)
4583 len += sprintf(buf + len, "%pS", (void *)l->addr);
4584 else
4585 len += sprintf(buf + len, "<not-available>");
4586
4587 if (l->sum_time != l->min_time) {
4588 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4589 l->min_time,
4590 (long)div_u64(l->sum_time, l->count),
4591 l->max_time);
4592 } else
4593 len += sprintf(buf + len, " age=%ld",
4594 l->min_time);
4595
4596 if (l->min_pid != l->max_pid)
4597 len += sprintf(buf + len, " pid=%ld-%ld",
4598 l->min_pid, l->max_pid);
4599 else
4600 len += sprintf(buf + len, " pid=%ld",
4601 l->min_pid);
4602
4603 if (num_online_cpus() > 1 &&
4604 !cpumask_empty(to_cpumask(l->cpus)) &&
4605 len < PAGE_SIZE - 60)
4606 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4607 " cpus=%*pbl",
4608 cpumask_pr_args(to_cpumask(l->cpus)));
4609
4610 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4611 len < PAGE_SIZE - 60)
4612 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4613 " nodes=%*pbl",
4614 nodemask_pr_args(&l->nodes));
4615
4616 len += sprintf(buf + len, "\n");
4617 }
4618
4619 free_loc_track(&t);
4620 kfree(map);
4621 if (!t.count)
4622 len += sprintf(buf, "No data\n");
4623 return len;
4624 }
4625 #endif
4626
4627 #ifdef SLUB_RESILIENCY_TEST
4628 static void __init resiliency_test(void)
4629 {
4630 u8 *p;
4631
4632 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4633
4634 pr_err("SLUB resiliency testing\n");
4635 pr_err("-----------------------\n");
4636 pr_err("A. Corruption after allocation\n");
4637
4638 p = kzalloc(16, GFP_KERNEL);
4639 p[16] = 0x12;
4640 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4641 p + 16);
4642
4643 validate_slab_cache(kmalloc_caches[4]);
4644
4645 /* Hmmm... The next two are dangerous */
4646 p = kzalloc(32, GFP_KERNEL);
4647 p[32 + sizeof(void *)] = 0x34;
4648 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4649 p);
4650 pr_err("If allocated object is overwritten then not detectable\n\n");
4651
4652 validate_slab_cache(kmalloc_caches[5]);
4653 p = kzalloc(64, GFP_KERNEL);
4654 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4655 *p = 0x56;
4656 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4657 p);
4658 pr_err("If allocated object is overwritten then not detectable\n\n");
4659 validate_slab_cache(kmalloc_caches[6]);
4660
4661 pr_err("\nB. Corruption after free\n");
4662 p = kzalloc(128, GFP_KERNEL);
4663 kfree(p);
4664 *p = 0x78;
4665 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4666 validate_slab_cache(kmalloc_caches[7]);
4667
4668 p = kzalloc(256, GFP_KERNEL);
4669 kfree(p);
4670 p[50] = 0x9a;
4671 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4672 validate_slab_cache(kmalloc_caches[8]);
4673
4674 p = kzalloc(512, GFP_KERNEL);
4675 kfree(p);
4676 p[512] = 0xab;
4677 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4678 validate_slab_cache(kmalloc_caches[9]);
4679 }
4680 #else
4681 #ifdef CONFIG_SYSFS
4682 static void resiliency_test(void) {};
4683 #endif
4684 #endif
4685
4686 #ifdef CONFIG_SYSFS
4687 enum slab_stat_type {
4688 SL_ALL, /* All slabs */
4689 SL_PARTIAL, /* Only partially allocated slabs */
4690 SL_CPU, /* Only slabs used for cpu caches */
4691 SL_OBJECTS, /* Determine allocated objects not slabs */
4692 SL_TOTAL /* Determine object capacity not slabs */
4693 };
4694
4695 #define SO_ALL (1 << SL_ALL)
4696 #define SO_PARTIAL (1 << SL_PARTIAL)
4697 #define SO_CPU (1 << SL_CPU)
4698 #define SO_OBJECTS (1 << SL_OBJECTS)
4699 #define SO_TOTAL (1 << SL_TOTAL)
4700
4701 static ssize_t show_slab_objects(struct kmem_cache *s,
4702 char *buf, unsigned long flags)
4703 {
4704 unsigned long total = 0;
4705 int node;
4706 int x;
4707 unsigned long *nodes;
4708
4709 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4710 if (!nodes)
4711 return -ENOMEM;
4712
4713 if (flags & SO_CPU) {
4714 int cpu;
4715
4716 for_each_possible_cpu(cpu) {
4717 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4718 cpu);
4719 int node;
4720 struct page *page;
4721
4722 page = READ_ONCE(c->page);
4723 if (!page)
4724 continue;
4725
4726 node = page_to_nid(page);
4727 if (flags & SO_TOTAL)
4728 x = page->objects;
4729 else if (flags & SO_OBJECTS)
4730 x = page->inuse;
4731 else
4732 x = 1;
4733
4734 total += x;
4735 nodes[node] += x;
4736
4737 page = READ_ONCE(c->partial);
4738 if (page) {
4739 node = page_to_nid(page);
4740 if (flags & SO_TOTAL)
4741 WARN_ON_ONCE(1);
4742 else if (flags & SO_OBJECTS)
4743 WARN_ON_ONCE(1);
4744 else
4745 x = page->pages;
4746 total += x;
4747 nodes[node] += x;
4748 }
4749 }
4750 }
4751
4752 get_online_mems();
4753 #ifdef CONFIG_SLUB_DEBUG
4754 if (flags & SO_ALL) {
4755 struct kmem_cache_node *n;
4756
4757 for_each_kmem_cache_node(s, node, n) {
4758
4759 if (flags & SO_TOTAL)
4760 x = atomic_long_read(&n->total_objects);
4761 else if (flags & SO_OBJECTS)
4762 x = atomic_long_read(&n->total_objects) -
4763 count_partial(n, count_free);
4764 else
4765 x = atomic_long_read(&n->nr_slabs);
4766 total += x;
4767 nodes[node] += x;
4768 }
4769
4770 } else
4771 #endif
4772 if (flags & SO_PARTIAL) {
4773 struct kmem_cache_node *n;
4774
4775 for_each_kmem_cache_node(s, node, n) {
4776 if (flags & SO_TOTAL)
4777 x = count_partial(n, count_total);
4778 else if (flags & SO_OBJECTS)
4779 x = count_partial(n, count_inuse);
4780 else
4781 x = n->nr_partial;
4782 total += x;
4783 nodes[node] += x;
4784 }
4785 }
4786 x = sprintf(buf, "%lu", total);
4787 #ifdef CONFIG_NUMA
4788 for (node = 0; node < nr_node_ids; node++)
4789 if (nodes[node])
4790 x += sprintf(buf + x, " N%d=%lu",
4791 node, nodes[node]);
4792 #endif
4793 put_online_mems();
4794 kfree(nodes);
4795 return x + sprintf(buf + x, "\n");
4796 }
4797
4798 #ifdef CONFIG_SLUB_DEBUG
4799 static int any_slab_objects(struct kmem_cache *s)
4800 {
4801 int node;
4802 struct kmem_cache_node *n;
4803
4804 for_each_kmem_cache_node(s, node, n)
4805 if (atomic_long_read(&n->total_objects))
4806 return 1;
4807
4808 return 0;
4809 }
4810 #endif
4811
4812 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4813 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4814
4815 struct slab_attribute {
4816 struct attribute attr;
4817 ssize_t (*show)(struct kmem_cache *s, char *buf);
4818 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4819 };
4820
4821 #define SLAB_ATTR_RO(_name) \
4822 static struct slab_attribute _name##_attr = \
4823 __ATTR(_name, 0400, _name##_show, NULL)
4824
4825 #define SLAB_ATTR(_name) \
4826 static struct slab_attribute _name##_attr = \
4827 __ATTR(_name, 0600, _name##_show, _name##_store)
4828
4829 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4830 {
4831 return sprintf(buf, "%d\n", s->size);
4832 }
4833 SLAB_ATTR_RO(slab_size);
4834
4835 static ssize_t align_show(struct kmem_cache *s, char *buf)
4836 {
4837 return sprintf(buf, "%d\n", s->align);
4838 }
4839 SLAB_ATTR_RO(align);
4840
4841 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4842 {
4843 return sprintf(buf, "%d\n", s->object_size);
4844 }
4845 SLAB_ATTR_RO(object_size);
4846
4847 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4848 {
4849 return sprintf(buf, "%d\n", oo_objects(s->oo));
4850 }
4851 SLAB_ATTR_RO(objs_per_slab);
4852
4853 static ssize_t order_store(struct kmem_cache *s,
4854 const char *buf, size_t length)
4855 {
4856 unsigned long order;
4857 int err;
4858
4859 err = kstrtoul(buf, 10, &order);
4860 if (err)
4861 return err;
4862
4863 if (order > slub_max_order || order < slub_min_order)
4864 return -EINVAL;
4865
4866 calculate_sizes(s, order);
4867 return length;
4868 }
4869
4870 static ssize_t order_show(struct kmem_cache *s, char *buf)
4871 {
4872 return sprintf(buf, "%d\n", oo_order(s->oo));
4873 }
4874 SLAB_ATTR(order);
4875
4876 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4877 {
4878 return sprintf(buf, "%lu\n", s->min_partial);
4879 }
4880
4881 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4882 size_t length)
4883 {
4884 unsigned long min;
4885 int err;
4886
4887 err = kstrtoul(buf, 10, &min);
4888 if (err)
4889 return err;
4890
4891 set_min_partial(s, min);
4892 return length;
4893 }
4894 SLAB_ATTR(min_partial);
4895
4896 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4897 {
4898 return sprintf(buf, "%u\n", s->cpu_partial);
4899 }
4900
4901 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4902 size_t length)
4903 {
4904 unsigned long objects;
4905 int err;
4906
4907 err = kstrtoul(buf, 10, &objects);
4908 if (err)
4909 return err;
4910 if (objects && !kmem_cache_has_cpu_partial(s))
4911 return -EINVAL;
4912
4913 s->cpu_partial = objects;
4914 flush_all(s);
4915 return length;
4916 }
4917 SLAB_ATTR(cpu_partial);
4918
4919 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4920 {
4921 if (!s->ctor)
4922 return 0;
4923 return sprintf(buf, "%pS\n", s->ctor);
4924 }
4925 SLAB_ATTR_RO(ctor);
4926
4927 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4928 {
4929 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4930 }
4931 SLAB_ATTR_RO(aliases);
4932
4933 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4934 {
4935 return show_slab_objects(s, buf, SO_PARTIAL);
4936 }
4937 SLAB_ATTR_RO(partial);
4938
4939 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4940 {
4941 return show_slab_objects(s, buf, SO_CPU);
4942 }
4943 SLAB_ATTR_RO(cpu_slabs);
4944
4945 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4946 {
4947 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4948 }
4949 SLAB_ATTR_RO(objects);
4950
4951 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4952 {
4953 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4954 }
4955 SLAB_ATTR_RO(objects_partial);
4956
4957 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4958 {
4959 int objects = 0;
4960 int pages = 0;
4961 int cpu;
4962 int len;
4963
4964 for_each_online_cpu(cpu) {
4965 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4966
4967 if (page) {
4968 pages += page->pages;
4969 objects += page->pobjects;
4970 }
4971 }
4972
4973 len = sprintf(buf, "%d(%d)", objects, pages);
4974
4975 #ifdef CONFIG_SMP
4976 for_each_online_cpu(cpu) {
4977 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4978
4979 if (page && len < PAGE_SIZE - 20)
4980 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4981 page->pobjects, page->pages);
4982 }
4983 #endif
4984 return len + sprintf(buf + len, "\n");
4985 }
4986 SLAB_ATTR_RO(slabs_cpu_partial);
4987
4988 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4989 {
4990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4991 }
4992
4993 static ssize_t reclaim_account_store(struct kmem_cache *s,
4994 const char *buf, size_t length)
4995 {
4996 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4997 if (buf[0] == '1')
4998 s->flags |= SLAB_RECLAIM_ACCOUNT;
4999 return length;
5000 }
5001 SLAB_ATTR(reclaim_account);
5002
5003 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5004 {
5005 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5006 }
5007 SLAB_ATTR_RO(hwcache_align);
5008
5009 #ifdef CONFIG_ZONE_DMA
5010 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5011 {
5012 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5013 }
5014 SLAB_ATTR_RO(cache_dma);
5015 #endif
5016
5017 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5018 {
5019 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
5020 }
5021 SLAB_ATTR_RO(destroy_by_rcu);
5022
5023 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5024 {
5025 return sprintf(buf, "%d\n", s->reserved);
5026 }
5027 SLAB_ATTR_RO(reserved);
5028
5029 #ifdef CONFIG_SLUB_DEBUG
5030 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5031 {
5032 return show_slab_objects(s, buf, SO_ALL);
5033 }
5034 SLAB_ATTR_RO(slabs);
5035
5036 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5037 {
5038 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5039 }
5040 SLAB_ATTR_RO(total_objects);
5041
5042 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5043 {
5044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5045 }
5046
5047 static ssize_t sanity_checks_store(struct kmem_cache *s,
5048 const char *buf, size_t length)
5049 {
5050 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5051 if (buf[0] == '1') {
5052 s->flags &= ~__CMPXCHG_DOUBLE;
5053 s->flags |= SLAB_CONSISTENCY_CHECKS;
5054 }
5055 return length;
5056 }
5057 SLAB_ATTR(sanity_checks);
5058
5059 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5060 {
5061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5062 }
5063
5064 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5065 size_t length)
5066 {
5067 /*
5068 * Tracing a merged cache is going to give confusing results
5069 * as well as cause other issues like converting a mergeable
5070 * cache into an umergeable one.
5071 */
5072 if (s->refcount > 1)
5073 return -EINVAL;
5074
5075 s->flags &= ~SLAB_TRACE;
5076 if (buf[0] == '1') {
5077 s->flags &= ~__CMPXCHG_DOUBLE;
5078 s->flags |= SLAB_TRACE;
5079 }
5080 return length;
5081 }
5082 SLAB_ATTR(trace);
5083
5084 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5085 {
5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5087 }
5088
5089 static ssize_t red_zone_store(struct kmem_cache *s,
5090 const char *buf, size_t length)
5091 {
5092 if (any_slab_objects(s))
5093 return -EBUSY;
5094
5095 s->flags &= ~SLAB_RED_ZONE;
5096 if (buf[0] == '1') {
5097 s->flags |= SLAB_RED_ZONE;
5098 }
5099 calculate_sizes(s, -1);
5100 return length;
5101 }
5102 SLAB_ATTR(red_zone);
5103
5104 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5105 {
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5107 }
5108
5109 static ssize_t poison_store(struct kmem_cache *s,
5110 const char *buf, size_t length)
5111 {
5112 if (any_slab_objects(s))
5113 return -EBUSY;
5114
5115 s->flags &= ~SLAB_POISON;
5116 if (buf[0] == '1') {
5117 s->flags |= SLAB_POISON;
5118 }
5119 calculate_sizes(s, -1);
5120 return length;
5121 }
5122 SLAB_ATTR(poison);
5123
5124 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5125 {
5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5127 }
5128
5129 static ssize_t store_user_store(struct kmem_cache *s,
5130 const char *buf, size_t length)
5131 {
5132 if (any_slab_objects(s))
5133 return -EBUSY;
5134
5135 s->flags &= ~SLAB_STORE_USER;
5136 if (buf[0] == '1') {
5137 s->flags &= ~__CMPXCHG_DOUBLE;
5138 s->flags |= SLAB_STORE_USER;
5139 }
5140 calculate_sizes(s, -1);
5141 return length;
5142 }
5143 SLAB_ATTR(store_user);
5144
5145 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5146 {
5147 return 0;
5148 }
5149
5150 static ssize_t validate_store(struct kmem_cache *s,
5151 const char *buf, size_t length)
5152 {
5153 int ret = -EINVAL;
5154
5155 if (buf[0] == '1') {
5156 ret = validate_slab_cache(s);
5157 if (ret >= 0)
5158 ret = length;
5159 }
5160 return ret;
5161 }
5162 SLAB_ATTR(validate);
5163
5164 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5165 {
5166 if (!(s->flags & SLAB_STORE_USER))
5167 return -ENOSYS;
5168 return list_locations(s, buf, TRACK_ALLOC);
5169 }
5170 SLAB_ATTR_RO(alloc_calls);
5171
5172 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5173 {
5174 if (!(s->flags & SLAB_STORE_USER))
5175 return -ENOSYS;
5176 return list_locations(s, buf, TRACK_FREE);
5177 }
5178 SLAB_ATTR_RO(free_calls);
5179 #endif /* CONFIG_SLUB_DEBUG */
5180
5181 #ifdef CONFIG_FAILSLAB
5182 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5183 {
5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5185 }
5186
5187 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5188 size_t length)
5189 {
5190 if (s->refcount > 1)
5191 return -EINVAL;
5192
5193 s->flags &= ~SLAB_FAILSLAB;
5194 if (buf[0] == '1')
5195 s->flags |= SLAB_FAILSLAB;
5196 return length;
5197 }
5198 SLAB_ATTR(failslab);
5199 #endif
5200
5201 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5202 {
5203 return 0;
5204 }
5205
5206 static ssize_t shrink_store(struct kmem_cache *s,
5207 const char *buf, size_t length)
5208 {
5209 if (buf[0] == '1')
5210 kmem_cache_shrink(s);
5211 else
5212 return -EINVAL;
5213 return length;
5214 }
5215 SLAB_ATTR(shrink);
5216
5217 #ifdef CONFIG_NUMA
5218 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5219 {
5220 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5221 }
5222
5223 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5224 const char *buf, size_t length)
5225 {
5226 unsigned long ratio;
5227 int err;
5228
5229 err = kstrtoul(buf, 10, &ratio);
5230 if (err)
5231 return err;
5232
5233 if (ratio <= 100)
5234 s->remote_node_defrag_ratio = ratio * 10;
5235
5236 return length;
5237 }
5238 SLAB_ATTR(remote_node_defrag_ratio);
5239 #endif
5240
5241 #ifdef CONFIG_SLUB_STATS
5242 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5243 {
5244 unsigned long sum = 0;
5245 int cpu;
5246 int len;
5247 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5248
5249 if (!data)
5250 return -ENOMEM;
5251
5252 for_each_online_cpu(cpu) {
5253 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5254
5255 data[cpu] = x;
5256 sum += x;
5257 }
5258
5259 len = sprintf(buf, "%lu", sum);
5260
5261 #ifdef CONFIG_SMP
5262 for_each_online_cpu(cpu) {
5263 if (data[cpu] && len < PAGE_SIZE - 20)
5264 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5265 }
5266 #endif
5267 kfree(data);
5268 return len + sprintf(buf + len, "\n");
5269 }
5270
5271 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5272 {
5273 int cpu;
5274
5275 for_each_online_cpu(cpu)
5276 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5277 }
5278
5279 #define STAT_ATTR(si, text) \
5280 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5281 { \
5282 return show_stat(s, buf, si); \
5283 } \
5284 static ssize_t text##_store(struct kmem_cache *s, \
5285 const char *buf, size_t length) \
5286 { \
5287 if (buf[0] != '0') \
5288 return -EINVAL; \
5289 clear_stat(s, si); \
5290 return length; \
5291 } \
5292 SLAB_ATTR(text); \
5293
5294 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5295 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5296 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5297 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5298 STAT_ATTR(FREE_FROZEN, free_frozen);
5299 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5300 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5301 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5302 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5303 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5304 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5305 STAT_ATTR(FREE_SLAB, free_slab);
5306 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5307 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5308 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5309 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5310 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5311 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5312 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5313 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5314 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5315 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5316 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5317 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5318 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5319 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5320 #endif
5321
5322 static struct attribute *slab_attrs[] = {
5323 &slab_size_attr.attr,
5324 &object_size_attr.attr,
5325 &objs_per_slab_attr.attr,
5326 &order_attr.attr,
5327 &min_partial_attr.attr,
5328 &cpu_partial_attr.attr,
5329 &objects_attr.attr,
5330 &objects_partial_attr.attr,
5331 &partial_attr.attr,
5332 &cpu_slabs_attr.attr,
5333 &ctor_attr.attr,
5334 &aliases_attr.attr,
5335 &align_attr.attr,
5336 &hwcache_align_attr.attr,
5337 &reclaim_account_attr.attr,
5338 &destroy_by_rcu_attr.attr,
5339 &shrink_attr.attr,
5340 &reserved_attr.attr,
5341 &slabs_cpu_partial_attr.attr,
5342 #ifdef CONFIG_SLUB_DEBUG
5343 &total_objects_attr.attr,
5344 &slabs_attr.attr,
5345 &sanity_checks_attr.attr,
5346 &trace_attr.attr,
5347 &red_zone_attr.attr,
5348 &poison_attr.attr,
5349 &store_user_attr.attr,
5350 &validate_attr.attr,
5351 &alloc_calls_attr.attr,
5352 &free_calls_attr.attr,
5353 #endif
5354 #ifdef CONFIG_ZONE_DMA
5355 &cache_dma_attr.attr,
5356 #endif
5357 #ifdef CONFIG_NUMA
5358 &remote_node_defrag_ratio_attr.attr,
5359 #endif
5360 #ifdef CONFIG_SLUB_STATS
5361 &alloc_fastpath_attr.attr,
5362 &alloc_slowpath_attr.attr,
5363 &free_fastpath_attr.attr,
5364 &free_slowpath_attr.attr,
5365 &free_frozen_attr.attr,
5366 &free_add_partial_attr.attr,
5367 &free_remove_partial_attr.attr,
5368 &alloc_from_partial_attr.attr,
5369 &alloc_slab_attr.attr,
5370 &alloc_refill_attr.attr,
5371 &alloc_node_mismatch_attr.attr,
5372 &free_slab_attr.attr,
5373 &cpuslab_flush_attr.attr,
5374 &deactivate_full_attr.attr,
5375 &deactivate_empty_attr.attr,
5376 &deactivate_to_head_attr.attr,
5377 &deactivate_to_tail_attr.attr,
5378 &deactivate_remote_frees_attr.attr,
5379 &deactivate_bypass_attr.attr,
5380 &order_fallback_attr.attr,
5381 &cmpxchg_double_fail_attr.attr,
5382 &cmpxchg_double_cpu_fail_attr.attr,
5383 &cpu_partial_alloc_attr.attr,
5384 &cpu_partial_free_attr.attr,
5385 &cpu_partial_node_attr.attr,
5386 &cpu_partial_drain_attr.attr,
5387 #endif
5388 #ifdef CONFIG_FAILSLAB
5389 &failslab_attr.attr,
5390 #endif
5391
5392 NULL
5393 };
5394
5395 static struct attribute_group slab_attr_group = {
5396 .attrs = slab_attrs,
5397 };
5398
5399 static ssize_t slab_attr_show(struct kobject *kobj,
5400 struct attribute *attr,
5401 char *buf)
5402 {
5403 struct slab_attribute *attribute;
5404 struct kmem_cache *s;
5405 int err;
5406
5407 attribute = to_slab_attr(attr);
5408 s = to_slab(kobj);
5409
5410 if (!attribute->show)
5411 return -EIO;
5412
5413 err = attribute->show(s, buf);
5414
5415 return err;
5416 }
5417
5418 static ssize_t slab_attr_store(struct kobject *kobj,
5419 struct attribute *attr,
5420 const char *buf, size_t len)
5421 {
5422 struct slab_attribute *attribute;
5423 struct kmem_cache *s;
5424 int err;
5425
5426 attribute = to_slab_attr(attr);
5427 s = to_slab(kobj);
5428
5429 if (!attribute->store)
5430 return -EIO;
5431
5432 err = attribute->store(s, buf, len);
5433 #ifdef CONFIG_MEMCG
5434 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5435 struct kmem_cache *c;
5436
5437 mutex_lock(&slab_mutex);
5438 if (s->max_attr_size < len)
5439 s->max_attr_size = len;
5440
5441 /*
5442 * This is a best effort propagation, so this function's return
5443 * value will be determined by the parent cache only. This is
5444 * basically because not all attributes will have a well
5445 * defined semantics for rollbacks - most of the actions will
5446 * have permanent effects.
5447 *
5448 * Returning the error value of any of the children that fail
5449 * is not 100 % defined, in the sense that users seeing the
5450 * error code won't be able to know anything about the state of
5451 * the cache.
5452 *
5453 * Only returning the error code for the parent cache at least
5454 * has well defined semantics. The cache being written to
5455 * directly either failed or succeeded, in which case we loop
5456 * through the descendants with best-effort propagation.
5457 */
5458 for_each_memcg_cache(c, s)
5459 attribute->store(c, buf, len);
5460 mutex_unlock(&slab_mutex);
5461 }
5462 #endif
5463 return err;
5464 }
5465
5466 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5467 {
5468 #ifdef CONFIG_MEMCG
5469 int i;
5470 char *buffer = NULL;
5471 struct kmem_cache *root_cache;
5472
5473 if (is_root_cache(s))
5474 return;
5475
5476 root_cache = s->memcg_params.root_cache;
5477
5478 /*
5479 * This mean this cache had no attribute written. Therefore, no point
5480 * in copying default values around
5481 */
5482 if (!root_cache->max_attr_size)
5483 return;
5484
5485 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5486 char mbuf[64];
5487 char *buf;
5488 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5489
5490 if (!attr || !attr->store || !attr->show)
5491 continue;
5492
5493 /*
5494 * It is really bad that we have to allocate here, so we will
5495 * do it only as a fallback. If we actually allocate, though,
5496 * we can just use the allocated buffer until the end.
5497 *
5498 * Most of the slub attributes will tend to be very small in
5499 * size, but sysfs allows buffers up to a page, so they can
5500 * theoretically happen.
5501 */
5502 if (buffer)
5503 buf = buffer;
5504 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5505 buf = mbuf;
5506 else {
5507 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5508 if (WARN_ON(!buffer))
5509 continue;
5510 buf = buffer;
5511 }
5512
5513 attr->show(root_cache, buf);
5514 attr->store(s, buf, strlen(buf));
5515 }
5516
5517 if (buffer)
5518 free_page((unsigned long)buffer);
5519 #endif
5520 }
5521
5522 static void kmem_cache_release(struct kobject *k)
5523 {
5524 slab_kmem_cache_release(to_slab(k));
5525 }
5526
5527 static const struct sysfs_ops slab_sysfs_ops = {
5528 .show = slab_attr_show,
5529 .store = slab_attr_store,
5530 };
5531
5532 static struct kobj_type slab_ktype = {
5533 .sysfs_ops = &slab_sysfs_ops,
5534 .release = kmem_cache_release,
5535 };
5536
5537 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5538 {
5539 struct kobj_type *ktype = get_ktype(kobj);
5540
5541 if (ktype == &slab_ktype)
5542 return 1;
5543 return 0;
5544 }
5545
5546 static const struct kset_uevent_ops slab_uevent_ops = {
5547 .filter = uevent_filter,
5548 };
5549
5550 static struct kset *slab_kset;
5551
5552 static inline struct kset *cache_kset(struct kmem_cache *s)
5553 {
5554 #ifdef CONFIG_MEMCG
5555 if (!is_root_cache(s))
5556 return s->memcg_params.root_cache->memcg_kset;
5557 #endif
5558 return slab_kset;
5559 }
5560
5561 #define ID_STR_LENGTH 64
5562
5563 /* Create a unique string id for a slab cache:
5564 *
5565 * Format :[flags-]size
5566 */
5567 static char *create_unique_id(struct kmem_cache *s)
5568 {
5569 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5570 char *p = name;
5571
5572 BUG_ON(!name);
5573
5574 *p++ = ':';
5575 /*
5576 * First flags affecting slabcache operations. We will only
5577 * get here for aliasable slabs so we do not need to support
5578 * too many flags. The flags here must cover all flags that
5579 * are matched during merging to guarantee that the id is
5580 * unique.
5581 */
5582 if (s->flags & SLAB_CACHE_DMA)
5583 *p++ = 'd';
5584 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5585 *p++ = 'a';
5586 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5587 *p++ = 'F';
5588 if (!(s->flags & SLAB_NOTRACK))
5589 *p++ = 't';
5590 if (s->flags & SLAB_ACCOUNT)
5591 *p++ = 'A';
5592 if (p != name + 1)
5593 *p++ = '-';
5594 p += sprintf(p, "%07d", s->size);
5595
5596 BUG_ON(p > name + ID_STR_LENGTH - 1);
5597 return name;
5598 }
5599
5600 static int sysfs_slab_add(struct kmem_cache *s)
5601 {
5602 int err;
5603 const char *name;
5604 int unmergeable = slab_unmergeable(s);
5605
5606 if (unmergeable) {
5607 /*
5608 * Slabcache can never be merged so we can use the name proper.
5609 * This is typically the case for debug situations. In that
5610 * case we can catch duplicate names easily.
5611 */
5612 sysfs_remove_link(&slab_kset->kobj, s->name);
5613 name = s->name;
5614 } else {
5615 /*
5616 * Create a unique name for the slab as a target
5617 * for the symlinks.
5618 */
5619 name = create_unique_id(s);
5620 }
5621
5622 s->kobj.kset = cache_kset(s);
5623 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5624 if (err)
5625 goto out;
5626
5627 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5628 if (err)
5629 goto out_del_kobj;
5630
5631 #ifdef CONFIG_MEMCG
5632 if (is_root_cache(s)) {
5633 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5634 if (!s->memcg_kset) {
5635 err = -ENOMEM;
5636 goto out_del_kobj;
5637 }
5638 }
5639 #endif
5640
5641 kobject_uevent(&s->kobj, KOBJ_ADD);
5642 if (!unmergeable) {
5643 /* Setup first alias */
5644 sysfs_slab_alias(s, s->name);
5645 }
5646 out:
5647 if (!unmergeable)
5648 kfree(name);
5649 return err;
5650 out_del_kobj:
5651 kobject_del(&s->kobj);
5652 goto out;
5653 }
5654
5655 void sysfs_slab_remove(struct kmem_cache *s)
5656 {
5657 if (slab_state < FULL)
5658 /*
5659 * Sysfs has not been setup yet so no need to remove the
5660 * cache from sysfs.
5661 */
5662 return;
5663
5664 #ifdef CONFIG_MEMCG
5665 kset_unregister(s->memcg_kset);
5666 #endif
5667 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5668 kobject_del(&s->kobj);
5669 kobject_put(&s->kobj);
5670 }
5671
5672 /*
5673 * Need to buffer aliases during bootup until sysfs becomes
5674 * available lest we lose that information.
5675 */
5676 struct saved_alias {
5677 struct kmem_cache *s;
5678 const char *name;
5679 struct saved_alias *next;
5680 };
5681
5682 static struct saved_alias *alias_list;
5683
5684 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5685 {
5686 struct saved_alias *al;
5687
5688 if (slab_state == FULL) {
5689 /*
5690 * If we have a leftover link then remove it.
5691 */
5692 sysfs_remove_link(&slab_kset->kobj, name);
5693 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5694 }
5695
5696 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5697 if (!al)
5698 return -ENOMEM;
5699
5700 al->s = s;
5701 al->name = name;
5702 al->next = alias_list;
5703 alias_list = al;
5704 return 0;
5705 }
5706
5707 static int __init slab_sysfs_init(void)
5708 {
5709 struct kmem_cache *s;
5710 int err;
5711
5712 mutex_lock(&slab_mutex);
5713
5714 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5715 if (!slab_kset) {
5716 mutex_unlock(&slab_mutex);
5717 pr_err("Cannot register slab subsystem.\n");
5718 return -ENOSYS;
5719 }
5720
5721 slab_state = FULL;
5722
5723 list_for_each_entry(s, &slab_caches, list) {
5724 err = sysfs_slab_add(s);
5725 if (err)
5726 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5727 s->name);
5728 }
5729
5730 while (alias_list) {
5731 struct saved_alias *al = alias_list;
5732
5733 alias_list = alias_list->next;
5734 err = sysfs_slab_alias(al->s, al->name);
5735 if (err)
5736 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5737 al->name);
5738 kfree(al);
5739 }
5740
5741 mutex_unlock(&slab_mutex);
5742 resiliency_test();
5743 return 0;
5744 }
5745
5746 __initcall(slab_sysfs_init);
5747 #endif /* CONFIG_SYSFS */
5748
5749 /*
5750 * The /proc/slabinfo ABI
5751 */
5752 #ifdef CONFIG_SLABINFO
5753 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5754 {
5755 unsigned long nr_slabs = 0;
5756 unsigned long nr_objs = 0;
5757 unsigned long nr_free = 0;
5758 int node;
5759 struct kmem_cache_node *n;
5760
5761 for_each_kmem_cache_node(s, node, n) {
5762 nr_slabs += node_nr_slabs(n);
5763 nr_objs += node_nr_objs(n);
5764 nr_free += count_partial(n, count_free);
5765 }
5766
5767 sinfo->active_objs = nr_objs - nr_free;
5768 sinfo->num_objs = nr_objs;
5769 sinfo->active_slabs = nr_slabs;
5770 sinfo->num_slabs = nr_slabs;
5771 sinfo->objects_per_slab = oo_objects(s->oo);
5772 sinfo->cache_order = oo_order(s->oo);
5773 }
5774
5775 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5776 {
5777 }
5778
5779 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5780 size_t count, loff_t *ppos)
5781 {
5782 return -EIO;
5783 }
5784 #endif /* CONFIG_SLABINFO */
This page took 0.150507 seconds and 6 git commands to generate.