swap: make cluster allocation per-cpu
[deliverable/linux.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60
61 struct swap_list_t swap_list = {-1, -1};
62
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64
65 static DEFINE_MUTEX(swapon_mutex);
66
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
74 }
75
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80 swp_entry_t entry = swp_entry(si->type, offset);
81 struct page *page;
82 int ret = 0;
83
84 page = find_get_page(swap_address_space(entry), entry.val);
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100 }
101
102 /*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108 struct swap_extent *se;
109 sector_t start_block;
110 sector_t nr_blocks;
111 int err = 0;
112
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
119 nr_blocks, GFP_KERNEL, 0);
120 if (err)
121 return err;
122 cond_resched();
123 }
124
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128
129 err = blkdev_issue_discard(si->bdev, start_block,
130 nr_blocks, GFP_KERNEL, 0);
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137 }
138
139 /*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145 {
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
156 sector_t nr_blocks = se->nr_pages - offset;
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
169 nr_blocks, GFP_NOIO, 0))
170 break;
171 }
172
173 lh = se->list.next;
174 se = list_entry(lh, struct swap_extent, list);
175 }
176 }
177
178 #define SWAPFILE_CLUSTER 256
179 #define LATENCY_LIMIT 256
180
181 static inline void cluster_set_flag(struct swap_cluster_info *info,
182 unsigned int flag)
183 {
184 info->flags = flag;
185 }
186
187 static inline unsigned int cluster_count(struct swap_cluster_info *info)
188 {
189 return info->data;
190 }
191
192 static inline void cluster_set_count(struct swap_cluster_info *info,
193 unsigned int c)
194 {
195 info->data = c;
196 }
197
198 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199 unsigned int c, unsigned int f)
200 {
201 info->flags = f;
202 info->data = c;
203 }
204
205 static inline unsigned int cluster_next(struct swap_cluster_info *info)
206 {
207 return info->data;
208 }
209
210 static inline void cluster_set_next(struct swap_cluster_info *info,
211 unsigned int n)
212 {
213 info->data = n;
214 }
215
216 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217 unsigned int n, unsigned int f)
218 {
219 info->flags = f;
220 info->data = n;
221 }
222
223 static inline bool cluster_is_free(struct swap_cluster_info *info)
224 {
225 return info->flags & CLUSTER_FLAG_FREE;
226 }
227
228 static inline bool cluster_is_null(struct swap_cluster_info *info)
229 {
230 return info->flags & CLUSTER_FLAG_NEXT_NULL;
231 }
232
233 static inline void cluster_set_null(struct swap_cluster_info *info)
234 {
235 info->flags = CLUSTER_FLAG_NEXT_NULL;
236 info->data = 0;
237 }
238
239 /* Add a cluster to discard list and schedule it to do discard */
240 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
241 unsigned int idx)
242 {
243 /*
244 * If scan_swap_map() can't find a free cluster, it will check
245 * si->swap_map directly. To make sure the discarding cluster isn't
246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247 * will be cleared after discard
248 */
249 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
251
252 if (cluster_is_null(&si->discard_cluster_head)) {
253 cluster_set_next_flag(&si->discard_cluster_head,
254 idx, 0);
255 cluster_set_next_flag(&si->discard_cluster_tail,
256 idx, 0);
257 } else {
258 unsigned int tail = cluster_next(&si->discard_cluster_tail);
259 cluster_set_next(&si->cluster_info[tail], idx);
260 cluster_set_next_flag(&si->discard_cluster_tail,
261 idx, 0);
262 }
263
264 schedule_work(&si->discard_work);
265 }
266
267 /*
268 * Doing discard actually. After a cluster discard is finished, the cluster
269 * will be added to free cluster list. caller should hold si->lock.
270 */
271 static void swap_do_scheduled_discard(struct swap_info_struct *si)
272 {
273 struct swap_cluster_info *info;
274 unsigned int idx;
275
276 info = si->cluster_info;
277
278 while (!cluster_is_null(&si->discard_cluster_head)) {
279 idx = cluster_next(&si->discard_cluster_head);
280
281 cluster_set_next_flag(&si->discard_cluster_head,
282 cluster_next(&info[idx]), 0);
283 if (cluster_next(&si->discard_cluster_tail) == idx) {
284 cluster_set_null(&si->discard_cluster_head);
285 cluster_set_null(&si->discard_cluster_tail);
286 }
287 spin_unlock(&si->lock);
288
289 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
290 SWAPFILE_CLUSTER);
291
292 spin_lock(&si->lock);
293 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294 if (cluster_is_null(&si->free_cluster_head)) {
295 cluster_set_next_flag(&si->free_cluster_head,
296 idx, 0);
297 cluster_set_next_flag(&si->free_cluster_tail,
298 idx, 0);
299 } else {
300 unsigned int tail;
301
302 tail = cluster_next(&si->free_cluster_tail);
303 cluster_set_next(&info[tail], idx);
304 cluster_set_next_flag(&si->free_cluster_tail,
305 idx, 0);
306 }
307 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308 0, SWAPFILE_CLUSTER);
309 }
310 }
311
312 static void swap_discard_work(struct work_struct *work)
313 {
314 struct swap_info_struct *si;
315
316 si = container_of(work, struct swap_info_struct, discard_work);
317
318 spin_lock(&si->lock);
319 swap_do_scheduled_discard(si);
320 spin_unlock(&si->lock);
321 }
322
323 /*
324 * The cluster corresponding to page_nr will be used. The cluster will be
325 * removed from free cluster list and its usage counter will be increased.
326 */
327 static void inc_cluster_info_page(struct swap_info_struct *p,
328 struct swap_cluster_info *cluster_info, unsigned long page_nr)
329 {
330 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
331
332 if (!cluster_info)
333 return;
334 if (cluster_is_free(&cluster_info[idx])) {
335 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336 cluster_set_next_flag(&p->free_cluster_head,
337 cluster_next(&cluster_info[idx]), 0);
338 if (cluster_next(&p->free_cluster_tail) == idx) {
339 cluster_set_null(&p->free_cluster_tail);
340 cluster_set_null(&p->free_cluster_head);
341 }
342 cluster_set_count_flag(&cluster_info[idx], 0, 0);
343 }
344
345 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346 cluster_set_count(&cluster_info[idx],
347 cluster_count(&cluster_info[idx]) + 1);
348 }
349
350 /*
351 * The cluster corresponding to page_nr decreases one usage. If the usage
352 * counter becomes 0, which means no page in the cluster is in using, we can
353 * optionally discard the cluster and add it to free cluster list.
354 */
355 static void dec_cluster_info_page(struct swap_info_struct *p,
356 struct swap_cluster_info *cluster_info, unsigned long page_nr)
357 {
358 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
359
360 if (!cluster_info)
361 return;
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) - 1);
366
367 if (cluster_count(&cluster_info[idx]) == 0) {
368 /*
369 * If the swap is discardable, prepare discard the cluster
370 * instead of free it immediately. The cluster will be freed
371 * after discard.
372 */
373 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
375 swap_cluster_schedule_discard(p, idx);
376 return;
377 }
378
379 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380 if (cluster_is_null(&p->free_cluster_head)) {
381 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
383 } else {
384 unsigned int tail = cluster_next(&p->free_cluster_tail);
385 cluster_set_next(&cluster_info[tail], idx);
386 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
387 }
388 }
389 }
390
391 /*
392 * It's possible scan_swap_map() uses a free cluster in the middle of free
393 * cluster list. Avoiding such abuse to avoid list corruption.
394 */
395 static bool
396 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
397 unsigned long offset)
398 {
399 struct percpu_cluster *percpu_cluster;
400 bool conflict;
401
402 offset /= SWAPFILE_CLUSTER;
403 conflict = !cluster_is_null(&si->free_cluster_head) &&
404 offset != cluster_next(&si->free_cluster_head) &&
405 cluster_is_free(&si->cluster_info[offset]);
406
407 if (!conflict)
408 return false;
409
410 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
411 cluster_set_null(&percpu_cluster->index);
412 return true;
413 }
414
415 /*
416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
417 * might involve allocating a new cluster for current CPU too.
418 */
419 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
420 unsigned long *offset, unsigned long *scan_base)
421 {
422 struct percpu_cluster *cluster;
423 bool found_free;
424 unsigned long tmp;
425
426 new_cluster:
427 cluster = this_cpu_ptr(si->percpu_cluster);
428 if (cluster_is_null(&cluster->index)) {
429 if (!cluster_is_null(&si->free_cluster_head)) {
430 cluster->index = si->free_cluster_head;
431 cluster->next = cluster_next(&cluster->index) *
432 SWAPFILE_CLUSTER;
433 } else if (!cluster_is_null(&si->discard_cluster_head)) {
434 /*
435 * we don't have free cluster but have some clusters in
436 * discarding, do discard now and reclaim them
437 */
438 swap_do_scheduled_discard(si);
439 *scan_base = *offset = si->cluster_next;
440 goto new_cluster;
441 } else
442 return;
443 }
444
445 found_free = false;
446
447 /*
448 * Other CPUs can use our cluster if they can't find a free cluster,
449 * check if there is still free entry in the cluster
450 */
451 tmp = cluster->next;
452 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
453 SWAPFILE_CLUSTER) {
454 if (!si->swap_map[tmp]) {
455 found_free = true;
456 break;
457 }
458 tmp++;
459 }
460 if (!found_free) {
461 cluster_set_null(&cluster->index);
462 goto new_cluster;
463 }
464 cluster->next = tmp + 1;
465 *offset = tmp;
466 *scan_base = tmp;
467 }
468
469 static unsigned long scan_swap_map(struct swap_info_struct *si,
470 unsigned char usage)
471 {
472 unsigned long offset;
473 unsigned long scan_base;
474 unsigned long last_in_cluster = 0;
475 int latency_ration = LATENCY_LIMIT;
476
477 /*
478 * We try to cluster swap pages by allocating them sequentially
479 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
480 * way, however, we resort to first-free allocation, starting
481 * a new cluster. This prevents us from scattering swap pages
482 * all over the entire swap partition, so that we reduce
483 * overall disk seek times between swap pages. -- sct
484 * But we do now try to find an empty cluster. -Andrea
485 * And we let swap pages go all over an SSD partition. Hugh
486 */
487
488 si->flags += SWP_SCANNING;
489 scan_base = offset = si->cluster_next;
490
491 /* SSD algorithm */
492 if (si->cluster_info) {
493 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
494 goto checks;
495 }
496
497 if (unlikely(!si->cluster_nr--)) {
498 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
499 si->cluster_nr = SWAPFILE_CLUSTER - 1;
500 goto checks;
501 }
502
503 spin_unlock(&si->lock);
504
505 /*
506 * If seek is expensive, start searching for new cluster from
507 * start of partition, to minimize the span of allocated swap.
508 * But if seek is cheap, search from our current position, so
509 * that swap is allocated from all over the partition: if the
510 * Flash Translation Layer only remaps within limited zones,
511 * we don't want to wear out the first zone too quickly.
512 */
513 if (!(si->flags & SWP_SOLIDSTATE))
514 scan_base = offset = si->lowest_bit;
515 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
516
517 /* Locate the first empty (unaligned) cluster */
518 for (; last_in_cluster <= si->highest_bit; offset++) {
519 if (si->swap_map[offset])
520 last_in_cluster = offset + SWAPFILE_CLUSTER;
521 else if (offset == last_in_cluster) {
522 spin_lock(&si->lock);
523 offset -= SWAPFILE_CLUSTER - 1;
524 si->cluster_next = offset;
525 si->cluster_nr = SWAPFILE_CLUSTER - 1;
526 goto checks;
527 }
528 if (unlikely(--latency_ration < 0)) {
529 cond_resched();
530 latency_ration = LATENCY_LIMIT;
531 }
532 }
533
534 offset = si->lowest_bit;
535 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
536
537 /* Locate the first empty (unaligned) cluster */
538 for (; last_in_cluster < scan_base; offset++) {
539 if (si->swap_map[offset])
540 last_in_cluster = offset + SWAPFILE_CLUSTER;
541 else if (offset == last_in_cluster) {
542 spin_lock(&si->lock);
543 offset -= SWAPFILE_CLUSTER - 1;
544 si->cluster_next = offset;
545 si->cluster_nr = SWAPFILE_CLUSTER - 1;
546 goto checks;
547 }
548 if (unlikely(--latency_ration < 0)) {
549 cond_resched();
550 latency_ration = LATENCY_LIMIT;
551 }
552 }
553
554 offset = scan_base;
555 spin_lock(&si->lock);
556 si->cluster_nr = SWAPFILE_CLUSTER - 1;
557 }
558
559 checks:
560 if (si->cluster_info) {
561 while (scan_swap_map_ssd_cluster_conflict(si, offset))
562 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
563 }
564 if (!(si->flags & SWP_WRITEOK))
565 goto no_page;
566 if (!si->highest_bit)
567 goto no_page;
568 if (offset > si->highest_bit)
569 scan_base = offset = si->lowest_bit;
570
571 /* reuse swap entry of cache-only swap if not busy. */
572 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
573 int swap_was_freed;
574 spin_unlock(&si->lock);
575 swap_was_freed = __try_to_reclaim_swap(si, offset);
576 spin_lock(&si->lock);
577 /* entry was freed successfully, try to use this again */
578 if (swap_was_freed)
579 goto checks;
580 goto scan; /* check next one */
581 }
582
583 if (si->swap_map[offset])
584 goto scan;
585
586 if (offset == si->lowest_bit)
587 si->lowest_bit++;
588 if (offset == si->highest_bit)
589 si->highest_bit--;
590 si->inuse_pages++;
591 if (si->inuse_pages == si->pages) {
592 si->lowest_bit = si->max;
593 si->highest_bit = 0;
594 }
595 si->swap_map[offset] = usage;
596 inc_cluster_info_page(si, si->cluster_info, offset);
597 si->cluster_next = offset + 1;
598 si->flags -= SWP_SCANNING;
599
600 return offset;
601
602 scan:
603 spin_unlock(&si->lock);
604 while (++offset <= si->highest_bit) {
605 if (!si->swap_map[offset]) {
606 spin_lock(&si->lock);
607 goto checks;
608 }
609 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
610 spin_lock(&si->lock);
611 goto checks;
612 }
613 if (unlikely(--latency_ration < 0)) {
614 cond_resched();
615 latency_ration = LATENCY_LIMIT;
616 }
617 }
618 offset = si->lowest_bit;
619 while (++offset < scan_base) {
620 if (!si->swap_map[offset]) {
621 spin_lock(&si->lock);
622 goto checks;
623 }
624 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
625 spin_lock(&si->lock);
626 goto checks;
627 }
628 if (unlikely(--latency_ration < 0)) {
629 cond_resched();
630 latency_ration = LATENCY_LIMIT;
631 }
632 }
633 spin_lock(&si->lock);
634
635 no_page:
636 si->flags -= SWP_SCANNING;
637 return 0;
638 }
639
640 swp_entry_t get_swap_page(void)
641 {
642 struct swap_info_struct *si;
643 pgoff_t offset;
644 int type, next;
645 int wrapped = 0;
646 int hp_index;
647
648 spin_lock(&swap_lock);
649 if (atomic_long_read(&nr_swap_pages) <= 0)
650 goto noswap;
651 atomic_long_dec(&nr_swap_pages);
652
653 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
654 hp_index = atomic_xchg(&highest_priority_index, -1);
655 /*
656 * highest_priority_index records current highest priority swap
657 * type which just frees swap entries. If its priority is
658 * higher than that of swap_list.next swap type, we use it. It
659 * isn't protected by swap_lock, so it can be an invalid value
660 * if the corresponding swap type is swapoff. We double check
661 * the flags here. It's even possible the swap type is swapoff
662 * and swapon again and its priority is changed. In such rare
663 * case, low prority swap type might be used, but eventually
664 * high priority swap will be used after several rounds of
665 * swap.
666 */
667 if (hp_index != -1 && hp_index != type &&
668 swap_info[type]->prio < swap_info[hp_index]->prio &&
669 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
670 type = hp_index;
671 swap_list.next = type;
672 }
673
674 si = swap_info[type];
675 next = si->next;
676 if (next < 0 ||
677 (!wrapped && si->prio != swap_info[next]->prio)) {
678 next = swap_list.head;
679 wrapped++;
680 }
681
682 spin_lock(&si->lock);
683 if (!si->highest_bit) {
684 spin_unlock(&si->lock);
685 continue;
686 }
687 if (!(si->flags & SWP_WRITEOK)) {
688 spin_unlock(&si->lock);
689 continue;
690 }
691
692 swap_list.next = next;
693
694 spin_unlock(&swap_lock);
695 /* This is called for allocating swap entry for cache */
696 offset = scan_swap_map(si, SWAP_HAS_CACHE);
697 spin_unlock(&si->lock);
698 if (offset)
699 return swp_entry(type, offset);
700 spin_lock(&swap_lock);
701 next = swap_list.next;
702 }
703
704 atomic_long_inc(&nr_swap_pages);
705 noswap:
706 spin_unlock(&swap_lock);
707 return (swp_entry_t) {0};
708 }
709
710 /* The only caller of this function is now susupend routine */
711 swp_entry_t get_swap_page_of_type(int type)
712 {
713 struct swap_info_struct *si;
714 pgoff_t offset;
715
716 si = swap_info[type];
717 spin_lock(&si->lock);
718 if (si && (si->flags & SWP_WRITEOK)) {
719 atomic_long_dec(&nr_swap_pages);
720 /* This is called for allocating swap entry, not cache */
721 offset = scan_swap_map(si, 1);
722 if (offset) {
723 spin_unlock(&si->lock);
724 return swp_entry(type, offset);
725 }
726 atomic_long_inc(&nr_swap_pages);
727 }
728 spin_unlock(&si->lock);
729 return (swp_entry_t) {0};
730 }
731
732 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
733 {
734 struct swap_info_struct *p;
735 unsigned long offset, type;
736
737 if (!entry.val)
738 goto out;
739 type = swp_type(entry);
740 if (type >= nr_swapfiles)
741 goto bad_nofile;
742 p = swap_info[type];
743 if (!(p->flags & SWP_USED))
744 goto bad_device;
745 offset = swp_offset(entry);
746 if (offset >= p->max)
747 goto bad_offset;
748 if (!p->swap_map[offset])
749 goto bad_free;
750 spin_lock(&p->lock);
751 return p;
752
753 bad_free:
754 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
755 goto out;
756 bad_offset:
757 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
758 goto out;
759 bad_device:
760 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
761 goto out;
762 bad_nofile:
763 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
764 out:
765 return NULL;
766 }
767
768 /*
769 * This swap type frees swap entry, check if it is the highest priority swap
770 * type which just frees swap entry. get_swap_page() uses
771 * highest_priority_index to search highest priority swap type. The
772 * swap_info_struct.lock can't protect us if there are multiple swap types
773 * active, so we use atomic_cmpxchg.
774 */
775 static void set_highest_priority_index(int type)
776 {
777 int old_hp_index, new_hp_index;
778
779 do {
780 old_hp_index = atomic_read(&highest_priority_index);
781 if (old_hp_index != -1 &&
782 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
783 break;
784 new_hp_index = type;
785 } while (atomic_cmpxchg(&highest_priority_index,
786 old_hp_index, new_hp_index) != old_hp_index);
787 }
788
789 static unsigned char swap_entry_free(struct swap_info_struct *p,
790 swp_entry_t entry, unsigned char usage)
791 {
792 unsigned long offset = swp_offset(entry);
793 unsigned char count;
794 unsigned char has_cache;
795
796 count = p->swap_map[offset];
797 has_cache = count & SWAP_HAS_CACHE;
798 count &= ~SWAP_HAS_CACHE;
799
800 if (usage == SWAP_HAS_CACHE) {
801 VM_BUG_ON(!has_cache);
802 has_cache = 0;
803 } else if (count == SWAP_MAP_SHMEM) {
804 /*
805 * Or we could insist on shmem.c using a special
806 * swap_shmem_free() and free_shmem_swap_and_cache()...
807 */
808 count = 0;
809 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
810 if (count == COUNT_CONTINUED) {
811 if (swap_count_continued(p, offset, count))
812 count = SWAP_MAP_MAX | COUNT_CONTINUED;
813 else
814 count = SWAP_MAP_MAX;
815 } else
816 count--;
817 }
818
819 if (!count)
820 mem_cgroup_uncharge_swap(entry);
821
822 usage = count | has_cache;
823 p->swap_map[offset] = usage;
824
825 /* free if no reference */
826 if (!usage) {
827 dec_cluster_info_page(p, p->cluster_info, offset);
828 if (offset < p->lowest_bit)
829 p->lowest_bit = offset;
830 if (offset > p->highest_bit)
831 p->highest_bit = offset;
832 set_highest_priority_index(p->type);
833 atomic_long_inc(&nr_swap_pages);
834 p->inuse_pages--;
835 frontswap_invalidate_page(p->type, offset);
836 if (p->flags & SWP_BLKDEV) {
837 struct gendisk *disk = p->bdev->bd_disk;
838 if (disk->fops->swap_slot_free_notify)
839 disk->fops->swap_slot_free_notify(p->bdev,
840 offset);
841 }
842 }
843
844 return usage;
845 }
846
847 /*
848 * Caller has made sure that the swapdevice corresponding to entry
849 * is still around or has not been recycled.
850 */
851 void swap_free(swp_entry_t entry)
852 {
853 struct swap_info_struct *p;
854
855 p = swap_info_get(entry);
856 if (p) {
857 swap_entry_free(p, entry, 1);
858 spin_unlock(&p->lock);
859 }
860 }
861
862 /*
863 * Called after dropping swapcache to decrease refcnt to swap entries.
864 */
865 void swapcache_free(swp_entry_t entry, struct page *page)
866 {
867 struct swap_info_struct *p;
868 unsigned char count;
869
870 p = swap_info_get(entry);
871 if (p) {
872 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
873 if (page)
874 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
875 spin_unlock(&p->lock);
876 }
877 }
878
879 /*
880 * How many references to page are currently swapped out?
881 * This does not give an exact answer when swap count is continued,
882 * but does include the high COUNT_CONTINUED flag to allow for that.
883 */
884 int page_swapcount(struct page *page)
885 {
886 int count = 0;
887 struct swap_info_struct *p;
888 swp_entry_t entry;
889
890 entry.val = page_private(page);
891 p = swap_info_get(entry);
892 if (p) {
893 count = swap_count(p->swap_map[swp_offset(entry)]);
894 spin_unlock(&p->lock);
895 }
896 return count;
897 }
898
899 /*
900 * We can write to an anon page without COW if there are no other references
901 * to it. And as a side-effect, free up its swap: because the old content
902 * on disk will never be read, and seeking back there to write new content
903 * later would only waste time away from clustering.
904 */
905 int reuse_swap_page(struct page *page)
906 {
907 int count;
908
909 VM_BUG_ON(!PageLocked(page));
910 if (unlikely(PageKsm(page)))
911 return 0;
912 count = page_mapcount(page);
913 if (count <= 1 && PageSwapCache(page)) {
914 count += page_swapcount(page);
915 if (count == 1 && !PageWriteback(page)) {
916 delete_from_swap_cache(page);
917 SetPageDirty(page);
918 }
919 }
920 return count <= 1;
921 }
922
923 /*
924 * If swap is getting full, or if there are no more mappings of this page,
925 * then try_to_free_swap is called to free its swap space.
926 */
927 int try_to_free_swap(struct page *page)
928 {
929 VM_BUG_ON(!PageLocked(page));
930
931 if (!PageSwapCache(page))
932 return 0;
933 if (PageWriteback(page))
934 return 0;
935 if (page_swapcount(page))
936 return 0;
937
938 /*
939 * Once hibernation has begun to create its image of memory,
940 * there's a danger that one of the calls to try_to_free_swap()
941 * - most probably a call from __try_to_reclaim_swap() while
942 * hibernation is allocating its own swap pages for the image,
943 * but conceivably even a call from memory reclaim - will free
944 * the swap from a page which has already been recorded in the
945 * image as a clean swapcache page, and then reuse its swap for
946 * another page of the image. On waking from hibernation, the
947 * original page might be freed under memory pressure, then
948 * later read back in from swap, now with the wrong data.
949 *
950 * Hibration suspends storage while it is writing the image
951 * to disk so check that here.
952 */
953 if (pm_suspended_storage())
954 return 0;
955
956 delete_from_swap_cache(page);
957 SetPageDirty(page);
958 return 1;
959 }
960
961 /*
962 * Free the swap entry like above, but also try to
963 * free the page cache entry if it is the last user.
964 */
965 int free_swap_and_cache(swp_entry_t entry)
966 {
967 struct swap_info_struct *p;
968 struct page *page = NULL;
969
970 if (non_swap_entry(entry))
971 return 1;
972
973 p = swap_info_get(entry);
974 if (p) {
975 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
976 page = find_get_page(swap_address_space(entry),
977 entry.val);
978 if (page && !trylock_page(page)) {
979 page_cache_release(page);
980 page = NULL;
981 }
982 }
983 spin_unlock(&p->lock);
984 }
985 if (page) {
986 /*
987 * Not mapped elsewhere, or swap space full? Free it!
988 * Also recheck PageSwapCache now page is locked (above).
989 */
990 if (PageSwapCache(page) && !PageWriteback(page) &&
991 (!page_mapped(page) || vm_swap_full())) {
992 delete_from_swap_cache(page);
993 SetPageDirty(page);
994 }
995 unlock_page(page);
996 page_cache_release(page);
997 }
998 return p != NULL;
999 }
1000
1001 #ifdef CONFIG_HIBERNATION
1002 /*
1003 * Find the swap type that corresponds to given device (if any).
1004 *
1005 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1006 * from 0, in which the swap header is expected to be located.
1007 *
1008 * This is needed for the suspend to disk (aka swsusp).
1009 */
1010 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1011 {
1012 struct block_device *bdev = NULL;
1013 int type;
1014
1015 if (device)
1016 bdev = bdget(device);
1017
1018 spin_lock(&swap_lock);
1019 for (type = 0; type < nr_swapfiles; type++) {
1020 struct swap_info_struct *sis = swap_info[type];
1021
1022 if (!(sis->flags & SWP_WRITEOK))
1023 continue;
1024
1025 if (!bdev) {
1026 if (bdev_p)
1027 *bdev_p = bdgrab(sis->bdev);
1028
1029 spin_unlock(&swap_lock);
1030 return type;
1031 }
1032 if (bdev == sis->bdev) {
1033 struct swap_extent *se = &sis->first_swap_extent;
1034
1035 if (se->start_block == offset) {
1036 if (bdev_p)
1037 *bdev_p = bdgrab(sis->bdev);
1038
1039 spin_unlock(&swap_lock);
1040 bdput(bdev);
1041 return type;
1042 }
1043 }
1044 }
1045 spin_unlock(&swap_lock);
1046 if (bdev)
1047 bdput(bdev);
1048
1049 return -ENODEV;
1050 }
1051
1052 /*
1053 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1054 * corresponding to given index in swap_info (swap type).
1055 */
1056 sector_t swapdev_block(int type, pgoff_t offset)
1057 {
1058 struct block_device *bdev;
1059
1060 if ((unsigned int)type >= nr_swapfiles)
1061 return 0;
1062 if (!(swap_info[type]->flags & SWP_WRITEOK))
1063 return 0;
1064 return map_swap_entry(swp_entry(type, offset), &bdev);
1065 }
1066
1067 /*
1068 * Return either the total number of swap pages of given type, or the number
1069 * of free pages of that type (depending on @free)
1070 *
1071 * This is needed for software suspend
1072 */
1073 unsigned int count_swap_pages(int type, int free)
1074 {
1075 unsigned int n = 0;
1076
1077 spin_lock(&swap_lock);
1078 if ((unsigned int)type < nr_swapfiles) {
1079 struct swap_info_struct *sis = swap_info[type];
1080
1081 spin_lock(&sis->lock);
1082 if (sis->flags & SWP_WRITEOK) {
1083 n = sis->pages;
1084 if (free)
1085 n -= sis->inuse_pages;
1086 }
1087 spin_unlock(&sis->lock);
1088 }
1089 spin_unlock(&swap_lock);
1090 return n;
1091 }
1092 #endif /* CONFIG_HIBERNATION */
1093
1094 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1095 {
1096 #ifdef CONFIG_MEM_SOFT_DIRTY
1097 /*
1098 * When pte keeps soft dirty bit the pte generated
1099 * from swap entry does not has it, still it's same
1100 * pte from logical point of view.
1101 */
1102 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1103 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1104 #else
1105 return pte_same(pte, swp_pte);
1106 #endif
1107 }
1108
1109 /*
1110 * No need to decide whether this PTE shares the swap entry with others,
1111 * just let do_wp_page work it out if a write is requested later - to
1112 * force COW, vm_page_prot omits write permission from any private vma.
1113 */
1114 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1115 unsigned long addr, swp_entry_t entry, struct page *page)
1116 {
1117 struct page *swapcache;
1118 struct mem_cgroup *memcg;
1119 spinlock_t *ptl;
1120 pte_t *pte;
1121 int ret = 1;
1122
1123 swapcache = page;
1124 page = ksm_might_need_to_copy(page, vma, addr);
1125 if (unlikely(!page))
1126 return -ENOMEM;
1127
1128 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1129 GFP_KERNEL, &memcg)) {
1130 ret = -ENOMEM;
1131 goto out_nolock;
1132 }
1133
1134 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1135 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1136 mem_cgroup_cancel_charge_swapin(memcg);
1137 ret = 0;
1138 goto out;
1139 }
1140
1141 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1142 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1143 get_page(page);
1144 set_pte_at(vma->vm_mm, addr, pte,
1145 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1146 if (page == swapcache)
1147 page_add_anon_rmap(page, vma, addr);
1148 else /* ksm created a completely new copy */
1149 page_add_new_anon_rmap(page, vma, addr);
1150 mem_cgroup_commit_charge_swapin(page, memcg);
1151 swap_free(entry);
1152 /*
1153 * Move the page to the active list so it is not
1154 * immediately swapped out again after swapon.
1155 */
1156 activate_page(page);
1157 out:
1158 pte_unmap_unlock(pte, ptl);
1159 out_nolock:
1160 if (page != swapcache) {
1161 unlock_page(page);
1162 put_page(page);
1163 }
1164 return ret;
1165 }
1166
1167 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1168 unsigned long addr, unsigned long end,
1169 swp_entry_t entry, struct page *page)
1170 {
1171 pte_t swp_pte = swp_entry_to_pte(entry);
1172 pte_t *pte;
1173 int ret = 0;
1174
1175 /*
1176 * We don't actually need pte lock while scanning for swp_pte: since
1177 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1178 * page table while we're scanning; though it could get zapped, and on
1179 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1180 * of unmatched parts which look like swp_pte, so unuse_pte must
1181 * recheck under pte lock. Scanning without pte lock lets it be
1182 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1183 */
1184 pte = pte_offset_map(pmd, addr);
1185 do {
1186 /*
1187 * swapoff spends a _lot_ of time in this loop!
1188 * Test inline before going to call unuse_pte.
1189 */
1190 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1191 pte_unmap(pte);
1192 ret = unuse_pte(vma, pmd, addr, entry, page);
1193 if (ret)
1194 goto out;
1195 pte = pte_offset_map(pmd, addr);
1196 }
1197 } while (pte++, addr += PAGE_SIZE, addr != end);
1198 pte_unmap(pte - 1);
1199 out:
1200 return ret;
1201 }
1202
1203 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1204 unsigned long addr, unsigned long end,
1205 swp_entry_t entry, struct page *page)
1206 {
1207 pmd_t *pmd;
1208 unsigned long next;
1209 int ret;
1210
1211 pmd = pmd_offset(pud, addr);
1212 do {
1213 next = pmd_addr_end(addr, end);
1214 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1215 continue;
1216 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1217 if (ret)
1218 return ret;
1219 } while (pmd++, addr = next, addr != end);
1220 return 0;
1221 }
1222
1223 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1224 unsigned long addr, unsigned long end,
1225 swp_entry_t entry, struct page *page)
1226 {
1227 pud_t *pud;
1228 unsigned long next;
1229 int ret;
1230
1231 pud = pud_offset(pgd, addr);
1232 do {
1233 next = pud_addr_end(addr, end);
1234 if (pud_none_or_clear_bad(pud))
1235 continue;
1236 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1237 if (ret)
1238 return ret;
1239 } while (pud++, addr = next, addr != end);
1240 return 0;
1241 }
1242
1243 static int unuse_vma(struct vm_area_struct *vma,
1244 swp_entry_t entry, struct page *page)
1245 {
1246 pgd_t *pgd;
1247 unsigned long addr, end, next;
1248 int ret;
1249
1250 if (page_anon_vma(page)) {
1251 addr = page_address_in_vma(page, vma);
1252 if (addr == -EFAULT)
1253 return 0;
1254 else
1255 end = addr + PAGE_SIZE;
1256 } else {
1257 addr = vma->vm_start;
1258 end = vma->vm_end;
1259 }
1260
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1267 if (ret)
1268 return ret;
1269 } while (pgd++, addr = next, addr != end);
1270 return 0;
1271 }
1272
1273 static int unuse_mm(struct mm_struct *mm,
1274 swp_entry_t entry, struct page *page)
1275 {
1276 struct vm_area_struct *vma;
1277 int ret = 0;
1278
1279 if (!down_read_trylock(&mm->mmap_sem)) {
1280 /*
1281 * Activate page so shrink_inactive_list is unlikely to unmap
1282 * its ptes while lock is dropped, so swapoff can make progress.
1283 */
1284 activate_page(page);
1285 unlock_page(page);
1286 down_read(&mm->mmap_sem);
1287 lock_page(page);
1288 }
1289 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1290 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1291 break;
1292 }
1293 up_read(&mm->mmap_sem);
1294 return (ret < 0)? ret: 0;
1295 }
1296
1297 /*
1298 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1299 * from current position to next entry still in use.
1300 * Recycle to start on reaching the end, returning 0 when empty.
1301 */
1302 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1303 unsigned int prev, bool frontswap)
1304 {
1305 unsigned int max = si->max;
1306 unsigned int i = prev;
1307 unsigned char count;
1308
1309 /*
1310 * No need for swap_lock here: we're just looking
1311 * for whether an entry is in use, not modifying it; false
1312 * hits are okay, and sys_swapoff() has already prevented new
1313 * allocations from this area (while holding swap_lock).
1314 */
1315 for (;;) {
1316 if (++i >= max) {
1317 if (!prev) {
1318 i = 0;
1319 break;
1320 }
1321 /*
1322 * No entries in use at top of swap_map,
1323 * loop back to start and recheck there.
1324 */
1325 max = prev + 1;
1326 prev = 0;
1327 i = 1;
1328 }
1329 if (frontswap) {
1330 if (frontswap_test(si, i))
1331 break;
1332 else
1333 continue;
1334 }
1335 count = ACCESS_ONCE(si->swap_map[i]);
1336 if (count && swap_count(count) != SWAP_MAP_BAD)
1337 break;
1338 }
1339 return i;
1340 }
1341
1342 /*
1343 * We completely avoid races by reading each swap page in advance,
1344 * and then search for the process using it. All the necessary
1345 * page table adjustments can then be made atomically.
1346 *
1347 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1348 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1349 */
1350 int try_to_unuse(unsigned int type, bool frontswap,
1351 unsigned long pages_to_unuse)
1352 {
1353 struct swap_info_struct *si = swap_info[type];
1354 struct mm_struct *start_mm;
1355 volatile unsigned char *swap_map; /* swap_map is accessed without
1356 * locking. Mark it as volatile
1357 * to prevent compiler doing
1358 * something odd.
1359 */
1360 unsigned char swcount;
1361 struct page *page;
1362 swp_entry_t entry;
1363 unsigned int i = 0;
1364 int retval = 0;
1365
1366 /*
1367 * When searching mms for an entry, a good strategy is to
1368 * start at the first mm we freed the previous entry from
1369 * (though actually we don't notice whether we or coincidence
1370 * freed the entry). Initialize this start_mm with a hold.
1371 *
1372 * A simpler strategy would be to start at the last mm we
1373 * freed the previous entry from; but that would take less
1374 * advantage of mmlist ordering, which clusters forked mms
1375 * together, child after parent. If we race with dup_mmap(), we
1376 * prefer to resolve parent before child, lest we miss entries
1377 * duplicated after we scanned child: using last mm would invert
1378 * that.
1379 */
1380 start_mm = &init_mm;
1381 atomic_inc(&init_mm.mm_users);
1382
1383 /*
1384 * Keep on scanning until all entries have gone. Usually,
1385 * one pass through swap_map is enough, but not necessarily:
1386 * there are races when an instance of an entry might be missed.
1387 */
1388 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1389 if (signal_pending(current)) {
1390 retval = -EINTR;
1391 break;
1392 }
1393
1394 /*
1395 * Get a page for the entry, using the existing swap
1396 * cache page if there is one. Otherwise, get a clean
1397 * page and read the swap into it.
1398 */
1399 swap_map = &si->swap_map[i];
1400 entry = swp_entry(type, i);
1401 page = read_swap_cache_async(entry,
1402 GFP_HIGHUSER_MOVABLE, NULL, 0);
1403 if (!page) {
1404 /*
1405 * Either swap_duplicate() failed because entry
1406 * has been freed independently, and will not be
1407 * reused since sys_swapoff() already disabled
1408 * allocation from here, or alloc_page() failed.
1409 */
1410 swcount = *swap_map;
1411 /*
1412 * We don't hold lock here, so the swap entry could be
1413 * SWAP_MAP_BAD (when the cluster is discarding).
1414 * Instead of fail out, We can just skip the swap
1415 * entry because swapoff will wait for discarding
1416 * finish anyway.
1417 */
1418 if (!swcount || swcount == SWAP_MAP_BAD)
1419 continue;
1420 retval = -ENOMEM;
1421 break;
1422 }
1423
1424 /*
1425 * Don't hold on to start_mm if it looks like exiting.
1426 */
1427 if (atomic_read(&start_mm->mm_users) == 1) {
1428 mmput(start_mm);
1429 start_mm = &init_mm;
1430 atomic_inc(&init_mm.mm_users);
1431 }
1432
1433 /*
1434 * Wait for and lock page. When do_swap_page races with
1435 * try_to_unuse, do_swap_page can handle the fault much
1436 * faster than try_to_unuse can locate the entry. This
1437 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1438 * defer to do_swap_page in such a case - in some tests,
1439 * do_swap_page and try_to_unuse repeatedly compete.
1440 */
1441 wait_on_page_locked(page);
1442 wait_on_page_writeback(page);
1443 lock_page(page);
1444 wait_on_page_writeback(page);
1445
1446 /*
1447 * Remove all references to entry.
1448 */
1449 swcount = *swap_map;
1450 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1451 retval = shmem_unuse(entry, page);
1452 /* page has already been unlocked and released */
1453 if (retval < 0)
1454 break;
1455 continue;
1456 }
1457 if (swap_count(swcount) && start_mm != &init_mm)
1458 retval = unuse_mm(start_mm, entry, page);
1459
1460 if (swap_count(*swap_map)) {
1461 int set_start_mm = (*swap_map >= swcount);
1462 struct list_head *p = &start_mm->mmlist;
1463 struct mm_struct *new_start_mm = start_mm;
1464 struct mm_struct *prev_mm = start_mm;
1465 struct mm_struct *mm;
1466
1467 atomic_inc(&new_start_mm->mm_users);
1468 atomic_inc(&prev_mm->mm_users);
1469 spin_lock(&mmlist_lock);
1470 while (swap_count(*swap_map) && !retval &&
1471 (p = p->next) != &start_mm->mmlist) {
1472 mm = list_entry(p, struct mm_struct, mmlist);
1473 if (!atomic_inc_not_zero(&mm->mm_users))
1474 continue;
1475 spin_unlock(&mmlist_lock);
1476 mmput(prev_mm);
1477 prev_mm = mm;
1478
1479 cond_resched();
1480
1481 swcount = *swap_map;
1482 if (!swap_count(swcount)) /* any usage ? */
1483 ;
1484 else if (mm == &init_mm)
1485 set_start_mm = 1;
1486 else
1487 retval = unuse_mm(mm, entry, page);
1488
1489 if (set_start_mm && *swap_map < swcount) {
1490 mmput(new_start_mm);
1491 atomic_inc(&mm->mm_users);
1492 new_start_mm = mm;
1493 set_start_mm = 0;
1494 }
1495 spin_lock(&mmlist_lock);
1496 }
1497 spin_unlock(&mmlist_lock);
1498 mmput(prev_mm);
1499 mmput(start_mm);
1500 start_mm = new_start_mm;
1501 }
1502 if (retval) {
1503 unlock_page(page);
1504 page_cache_release(page);
1505 break;
1506 }
1507
1508 /*
1509 * If a reference remains (rare), we would like to leave
1510 * the page in the swap cache; but try_to_unmap could
1511 * then re-duplicate the entry once we drop page lock,
1512 * so we might loop indefinitely; also, that page could
1513 * not be swapped out to other storage meanwhile. So:
1514 * delete from cache even if there's another reference,
1515 * after ensuring that the data has been saved to disk -
1516 * since if the reference remains (rarer), it will be
1517 * read from disk into another page. Splitting into two
1518 * pages would be incorrect if swap supported "shared
1519 * private" pages, but they are handled by tmpfs files.
1520 *
1521 * Given how unuse_vma() targets one particular offset
1522 * in an anon_vma, once the anon_vma has been determined,
1523 * this splitting happens to be just what is needed to
1524 * handle where KSM pages have been swapped out: re-reading
1525 * is unnecessarily slow, but we can fix that later on.
1526 */
1527 if (swap_count(*swap_map) &&
1528 PageDirty(page) && PageSwapCache(page)) {
1529 struct writeback_control wbc = {
1530 .sync_mode = WB_SYNC_NONE,
1531 };
1532
1533 swap_writepage(page, &wbc);
1534 lock_page(page);
1535 wait_on_page_writeback(page);
1536 }
1537
1538 /*
1539 * It is conceivable that a racing task removed this page from
1540 * swap cache just before we acquired the page lock at the top,
1541 * or while we dropped it in unuse_mm(). The page might even
1542 * be back in swap cache on another swap area: that we must not
1543 * delete, since it may not have been written out to swap yet.
1544 */
1545 if (PageSwapCache(page) &&
1546 likely(page_private(page) == entry.val))
1547 delete_from_swap_cache(page);
1548
1549 /*
1550 * So we could skip searching mms once swap count went
1551 * to 1, we did not mark any present ptes as dirty: must
1552 * mark page dirty so shrink_page_list will preserve it.
1553 */
1554 SetPageDirty(page);
1555 unlock_page(page);
1556 page_cache_release(page);
1557
1558 /*
1559 * Make sure that we aren't completely killing
1560 * interactive performance.
1561 */
1562 cond_resched();
1563 if (frontswap && pages_to_unuse > 0) {
1564 if (!--pages_to_unuse)
1565 break;
1566 }
1567 }
1568
1569 mmput(start_mm);
1570 return retval;
1571 }
1572
1573 /*
1574 * After a successful try_to_unuse, if no swap is now in use, we know
1575 * we can empty the mmlist. swap_lock must be held on entry and exit.
1576 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1577 * added to the mmlist just after page_duplicate - before would be racy.
1578 */
1579 static void drain_mmlist(void)
1580 {
1581 struct list_head *p, *next;
1582 unsigned int type;
1583
1584 for (type = 0; type < nr_swapfiles; type++)
1585 if (swap_info[type]->inuse_pages)
1586 return;
1587 spin_lock(&mmlist_lock);
1588 list_for_each_safe(p, next, &init_mm.mmlist)
1589 list_del_init(p);
1590 spin_unlock(&mmlist_lock);
1591 }
1592
1593 /*
1594 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1595 * corresponds to page offset for the specified swap entry.
1596 * Note that the type of this function is sector_t, but it returns page offset
1597 * into the bdev, not sector offset.
1598 */
1599 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1600 {
1601 struct swap_info_struct *sis;
1602 struct swap_extent *start_se;
1603 struct swap_extent *se;
1604 pgoff_t offset;
1605
1606 sis = swap_info[swp_type(entry)];
1607 *bdev = sis->bdev;
1608
1609 offset = swp_offset(entry);
1610 start_se = sis->curr_swap_extent;
1611 se = start_se;
1612
1613 for ( ; ; ) {
1614 struct list_head *lh;
1615
1616 if (se->start_page <= offset &&
1617 offset < (se->start_page + se->nr_pages)) {
1618 return se->start_block + (offset - se->start_page);
1619 }
1620 lh = se->list.next;
1621 se = list_entry(lh, struct swap_extent, list);
1622 sis->curr_swap_extent = se;
1623 BUG_ON(se == start_se); /* It *must* be present */
1624 }
1625 }
1626
1627 /*
1628 * Returns the page offset into bdev for the specified page's swap entry.
1629 */
1630 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1631 {
1632 swp_entry_t entry;
1633 entry.val = page_private(page);
1634 return map_swap_entry(entry, bdev);
1635 }
1636
1637 /*
1638 * Free all of a swapdev's extent information
1639 */
1640 static void destroy_swap_extents(struct swap_info_struct *sis)
1641 {
1642 while (!list_empty(&sis->first_swap_extent.list)) {
1643 struct swap_extent *se;
1644
1645 se = list_entry(sis->first_swap_extent.list.next,
1646 struct swap_extent, list);
1647 list_del(&se->list);
1648 kfree(se);
1649 }
1650
1651 if (sis->flags & SWP_FILE) {
1652 struct file *swap_file = sis->swap_file;
1653 struct address_space *mapping = swap_file->f_mapping;
1654
1655 sis->flags &= ~SWP_FILE;
1656 mapping->a_ops->swap_deactivate(swap_file);
1657 }
1658 }
1659
1660 /*
1661 * Add a block range (and the corresponding page range) into this swapdev's
1662 * extent list. The extent list is kept sorted in page order.
1663 *
1664 * This function rather assumes that it is called in ascending page order.
1665 */
1666 int
1667 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1668 unsigned long nr_pages, sector_t start_block)
1669 {
1670 struct swap_extent *se;
1671 struct swap_extent *new_se;
1672 struct list_head *lh;
1673
1674 if (start_page == 0) {
1675 se = &sis->first_swap_extent;
1676 sis->curr_swap_extent = se;
1677 se->start_page = 0;
1678 se->nr_pages = nr_pages;
1679 se->start_block = start_block;
1680 return 1;
1681 } else {
1682 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1683 se = list_entry(lh, struct swap_extent, list);
1684 BUG_ON(se->start_page + se->nr_pages != start_page);
1685 if (se->start_block + se->nr_pages == start_block) {
1686 /* Merge it */
1687 se->nr_pages += nr_pages;
1688 return 0;
1689 }
1690 }
1691
1692 /*
1693 * No merge. Insert a new extent, preserving ordering.
1694 */
1695 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1696 if (new_se == NULL)
1697 return -ENOMEM;
1698 new_se->start_page = start_page;
1699 new_se->nr_pages = nr_pages;
1700 new_se->start_block = start_block;
1701
1702 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1703 return 1;
1704 }
1705
1706 /*
1707 * A `swap extent' is a simple thing which maps a contiguous range of pages
1708 * onto a contiguous range of disk blocks. An ordered list of swap extents
1709 * is built at swapon time and is then used at swap_writepage/swap_readpage
1710 * time for locating where on disk a page belongs.
1711 *
1712 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1713 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1714 * swap files identically.
1715 *
1716 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1717 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1718 * swapfiles are handled *identically* after swapon time.
1719 *
1720 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1721 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1722 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1723 * requirements, they are simply tossed out - we will never use those blocks
1724 * for swapping.
1725 *
1726 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1727 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1728 * which will scribble on the fs.
1729 *
1730 * The amount of disk space which a single swap extent represents varies.
1731 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1732 * extents in the list. To avoid much list walking, we cache the previous
1733 * search location in `curr_swap_extent', and start new searches from there.
1734 * This is extremely effective. The average number of iterations in
1735 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1736 */
1737 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1738 {
1739 struct file *swap_file = sis->swap_file;
1740 struct address_space *mapping = swap_file->f_mapping;
1741 struct inode *inode = mapping->host;
1742 int ret;
1743
1744 if (S_ISBLK(inode->i_mode)) {
1745 ret = add_swap_extent(sis, 0, sis->max, 0);
1746 *span = sis->pages;
1747 return ret;
1748 }
1749
1750 if (mapping->a_ops->swap_activate) {
1751 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1752 if (!ret) {
1753 sis->flags |= SWP_FILE;
1754 ret = add_swap_extent(sis, 0, sis->max, 0);
1755 *span = sis->pages;
1756 }
1757 return ret;
1758 }
1759
1760 return generic_swapfile_activate(sis, swap_file, span);
1761 }
1762
1763 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1764 unsigned char *swap_map,
1765 struct swap_cluster_info *cluster_info)
1766 {
1767 int i, prev;
1768
1769 if (prio >= 0)
1770 p->prio = prio;
1771 else
1772 p->prio = --least_priority;
1773 p->swap_map = swap_map;
1774 p->cluster_info = cluster_info;
1775 p->flags |= SWP_WRITEOK;
1776 atomic_long_add(p->pages, &nr_swap_pages);
1777 total_swap_pages += p->pages;
1778
1779 /* insert swap space into swap_list: */
1780 prev = -1;
1781 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1782 if (p->prio >= swap_info[i]->prio)
1783 break;
1784 prev = i;
1785 }
1786 p->next = i;
1787 if (prev < 0)
1788 swap_list.head = swap_list.next = p->type;
1789 else
1790 swap_info[prev]->next = p->type;
1791 }
1792
1793 static void enable_swap_info(struct swap_info_struct *p, int prio,
1794 unsigned char *swap_map,
1795 struct swap_cluster_info *cluster_info,
1796 unsigned long *frontswap_map)
1797 {
1798 frontswap_init(p->type, frontswap_map);
1799 spin_lock(&swap_lock);
1800 spin_lock(&p->lock);
1801 _enable_swap_info(p, prio, swap_map, cluster_info);
1802 spin_unlock(&p->lock);
1803 spin_unlock(&swap_lock);
1804 }
1805
1806 static void reinsert_swap_info(struct swap_info_struct *p)
1807 {
1808 spin_lock(&swap_lock);
1809 spin_lock(&p->lock);
1810 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1811 spin_unlock(&p->lock);
1812 spin_unlock(&swap_lock);
1813 }
1814
1815 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1816 {
1817 struct swap_info_struct *p = NULL;
1818 unsigned char *swap_map;
1819 struct swap_cluster_info *cluster_info;
1820 unsigned long *frontswap_map;
1821 struct file *swap_file, *victim;
1822 struct address_space *mapping;
1823 struct inode *inode;
1824 struct filename *pathname;
1825 int i, type, prev;
1826 int err;
1827
1828 if (!capable(CAP_SYS_ADMIN))
1829 return -EPERM;
1830
1831 BUG_ON(!current->mm);
1832
1833 pathname = getname(specialfile);
1834 if (IS_ERR(pathname))
1835 return PTR_ERR(pathname);
1836
1837 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1838 err = PTR_ERR(victim);
1839 if (IS_ERR(victim))
1840 goto out;
1841
1842 mapping = victim->f_mapping;
1843 prev = -1;
1844 spin_lock(&swap_lock);
1845 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1846 p = swap_info[type];
1847 if (p->flags & SWP_WRITEOK) {
1848 if (p->swap_file->f_mapping == mapping)
1849 break;
1850 }
1851 prev = type;
1852 }
1853 if (type < 0) {
1854 err = -EINVAL;
1855 spin_unlock(&swap_lock);
1856 goto out_dput;
1857 }
1858 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1859 vm_unacct_memory(p->pages);
1860 else {
1861 err = -ENOMEM;
1862 spin_unlock(&swap_lock);
1863 goto out_dput;
1864 }
1865 if (prev < 0)
1866 swap_list.head = p->next;
1867 else
1868 swap_info[prev]->next = p->next;
1869 if (type == swap_list.next) {
1870 /* just pick something that's safe... */
1871 swap_list.next = swap_list.head;
1872 }
1873 spin_lock(&p->lock);
1874 if (p->prio < 0) {
1875 for (i = p->next; i >= 0; i = swap_info[i]->next)
1876 swap_info[i]->prio = p->prio--;
1877 least_priority++;
1878 }
1879 atomic_long_sub(p->pages, &nr_swap_pages);
1880 total_swap_pages -= p->pages;
1881 p->flags &= ~SWP_WRITEOK;
1882 spin_unlock(&p->lock);
1883 spin_unlock(&swap_lock);
1884
1885 set_current_oom_origin();
1886 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1887 clear_current_oom_origin();
1888
1889 if (err) {
1890 /* re-insert swap space back into swap_list */
1891 reinsert_swap_info(p);
1892 goto out_dput;
1893 }
1894
1895 flush_work(&p->discard_work);
1896
1897 destroy_swap_extents(p);
1898 if (p->flags & SWP_CONTINUED)
1899 free_swap_count_continuations(p);
1900
1901 mutex_lock(&swapon_mutex);
1902 spin_lock(&swap_lock);
1903 spin_lock(&p->lock);
1904 drain_mmlist();
1905
1906 /* wait for anyone still in scan_swap_map */
1907 p->highest_bit = 0; /* cuts scans short */
1908 while (p->flags >= SWP_SCANNING) {
1909 spin_unlock(&p->lock);
1910 spin_unlock(&swap_lock);
1911 schedule_timeout_uninterruptible(1);
1912 spin_lock(&swap_lock);
1913 spin_lock(&p->lock);
1914 }
1915
1916 swap_file = p->swap_file;
1917 p->swap_file = NULL;
1918 p->max = 0;
1919 swap_map = p->swap_map;
1920 p->swap_map = NULL;
1921 cluster_info = p->cluster_info;
1922 p->cluster_info = NULL;
1923 p->flags = 0;
1924 frontswap_map = frontswap_map_get(p);
1925 frontswap_map_set(p, NULL);
1926 spin_unlock(&p->lock);
1927 spin_unlock(&swap_lock);
1928 frontswap_invalidate_area(type);
1929 mutex_unlock(&swapon_mutex);
1930 free_percpu(p->percpu_cluster);
1931 p->percpu_cluster = NULL;
1932 vfree(swap_map);
1933 vfree(cluster_info);
1934 vfree(frontswap_map);
1935 /* Destroy swap account informatin */
1936 swap_cgroup_swapoff(type);
1937
1938 inode = mapping->host;
1939 if (S_ISBLK(inode->i_mode)) {
1940 struct block_device *bdev = I_BDEV(inode);
1941 set_blocksize(bdev, p->old_block_size);
1942 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1943 } else {
1944 mutex_lock(&inode->i_mutex);
1945 inode->i_flags &= ~S_SWAPFILE;
1946 mutex_unlock(&inode->i_mutex);
1947 }
1948 filp_close(swap_file, NULL);
1949 err = 0;
1950 atomic_inc(&proc_poll_event);
1951 wake_up_interruptible(&proc_poll_wait);
1952
1953 out_dput:
1954 filp_close(victim, NULL);
1955 out:
1956 putname(pathname);
1957 return err;
1958 }
1959
1960 #ifdef CONFIG_PROC_FS
1961 static unsigned swaps_poll(struct file *file, poll_table *wait)
1962 {
1963 struct seq_file *seq = file->private_data;
1964
1965 poll_wait(file, &proc_poll_wait, wait);
1966
1967 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1968 seq->poll_event = atomic_read(&proc_poll_event);
1969 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1970 }
1971
1972 return POLLIN | POLLRDNORM;
1973 }
1974
1975 /* iterator */
1976 static void *swap_start(struct seq_file *swap, loff_t *pos)
1977 {
1978 struct swap_info_struct *si;
1979 int type;
1980 loff_t l = *pos;
1981
1982 mutex_lock(&swapon_mutex);
1983
1984 if (!l)
1985 return SEQ_START_TOKEN;
1986
1987 for (type = 0; type < nr_swapfiles; type++) {
1988 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1989 si = swap_info[type];
1990 if (!(si->flags & SWP_USED) || !si->swap_map)
1991 continue;
1992 if (!--l)
1993 return si;
1994 }
1995
1996 return NULL;
1997 }
1998
1999 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2000 {
2001 struct swap_info_struct *si = v;
2002 int type;
2003
2004 if (v == SEQ_START_TOKEN)
2005 type = 0;
2006 else
2007 type = si->type + 1;
2008
2009 for (; type < nr_swapfiles; type++) {
2010 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2011 si = swap_info[type];
2012 if (!(si->flags & SWP_USED) || !si->swap_map)
2013 continue;
2014 ++*pos;
2015 return si;
2016 }
2017
2018 return NULL;
2019 }
2020
2021 static void swap_stop(struct seq_file *swap, void *v)
2022 {
2023 mutex_unlock(&swapon_mutex);
2024 }
2025
2026 static int swap_show(struct seq_file *swap, void *v)
2027 {
2028 struct swap_info_struct *si = v;
2029 struct file *file;
2030 int len;
2031
2032 if (si == SEQ_START_TOKEN) {
2033 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2034 return 0;
2035 }
2036
2037 file = si->swap_file;
2038 len = seq_path(swap, &file->f_path, " \t\n\\");
2039 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2040 len < 40 ? 40 - len : 1, " ",
2041 S_ISBLK(file_inode(file)->i_mode) ?
2042 "partition" : "file\t",
2043 si->pages << (PAGE_SHIFT - 10),
2044 si->inuse_pages << (PAGE_SHIFT - 10),
2045 si->prio);
2046 return 0;
2047 }
2048
2049 static const struct seq_operations swaps_op = {
2050 .start = swap_start,
2051 .next = swap_next,
2052 .stop = swap_stop,
2053 .show = swap_show
2054 };
2055
2056 static int swaps_open(struct inode *inode, struct file *file)
2057 {
2058 struct seq_file *seq;
2059 int ret;
2060
2061 ret = seq_open(file, &swaps_op);
2062 if (ret)
2063 return ret;
2064
2065 seq = file->private_data;
2066 seq->poll_event = atomic_read(&proc_poll_event);
2067 return 0;
2068 }
2069
2070 static const struct file_operations proc_swaps_operations = {
2071 .open = swaps_open,
2072 .read = seq_read,
2073 .llseek = seq_lseek,
2074 .release = seq_release,
2075 .poll = swaps_poll,
2076 };
2077
2078 static int __init procswaps_init(void)
2079 {
2080 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2081 return 0;
2082 }
2083 __initcall(procswaps_init);
2084 #endif /* CONFIG_PROC_FS */
2085
2086 #ifdef MAX_SWAPFILES_CHECK
2087 static int __init max_swapfiles_check(void)
2088 {
2089 MAX_SWAPFILES_CHECK();
2090 return 0;
2091 }
2092 late_initcall(max_swapfiles_check);
2093 #endif
2094
2095 static struct swap_info_struct *alloc_swap_info(void)
2096 {
2097 struct swap_info_struct *p;
2098 unsigned int type;
2099
2100 p = kzalloc(sizeof(*p), GFP_KERNEL);
2101 if (!p)
2102 return ERR_PTR(-ENOMEM);
2103
2104 spin_lock(&swap_lock);
2105 for (type = 0; type < nr_swapfiles; type++) {
2106 if (!(swap_info[type]->flags & SWP_USED))
2107 break;
2108 }
2109 if (type >= MAX_SWAPFILES) {
2110 spin_unlock(&swap_lock);
2111 kfree(p);
2112 return ERR_PTR(-EPERM);
2113 }
2114 if (type >= nr_swapfiles) {
2115 p->type = type;
2116 swap_info[type] = p;
2117 /*
2118 * Write swap_info[type] before nr_swapfiles, in case a
2119 * racing procfs swap_start() or swap_next() is reading them.
2120 * (We never shrink nr_swapfiles, we never free this entry.)
2121 */
2122 smp_wmb();
2123 nr_swapfiles++;
2124 } else {
2125 kfree(p);
2126 p = swap_info[type];
2127 /*
2128 * Do not memset this entry: a racing procfs swap_next()
2129 * would be relying on p->type to remain valid.
2130 */
2131 }
2132 INIT_LIST_HEAD(&p->first_swap_extent.list);
2133 p->flags = SWP_USED;
2134 p->next = -1;
2135 spin_unlock(&swap_lock);
2136 spin_lock_init(&p->lock);
2137
2138 return p;
2139 }
2140
2141 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2142 {
2143 int error;
2144
2145 if (S_ISBLK(inode->i_mode)) {
2146 p->bdev = bdgrab(I_BDEV(inode));
2147 error = blkdev_get(p->bdev,
2148 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2149 sys_swapon);
2150 if (error < 0) {
2151 p->bdev = NULL;
2152 return -EINVAL;
2153 }
2154 p->old_block_size = block_size(p->bdev);
2155 error = set_blocksize(p->bdev, PAGE_SIZE);
2156 if (error < 0)
2157 return error;
2158 p->flags |= SWP_BLKDEV;
2159 } else if (S_ISREG(inode->i_mode)) {
2160 p->bdev = inode->i_sb->s_bdev;
2161 mutex_lock(&inode->i_mutex);
2162 if (IS_SWAPFILE(inode))
2163 return -EBUSY;
2164 } else
2165 return -EINVAL;
2166
2167 return 0;
2168 }
2169
2170 static unsigned long read_swap_header(struct swap_info_struct *p,
2171 union swap_header *swap_header,
2172 struct inode *inode)
2173 {
2174 int i;
2175 unsigned long maxpages;
2176 unsigned long swapfilepages;
2177 unsigned long last_page;
2178
2179 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2180 pr_err("Unable to find swap-space signature\n");
2181 return 0;
2182 }
2183
2184 /* swap partition endianess hack... */
2185 if (swab32(swap_header->info.version) == 1) {
2186 swab32s(&swap_header->info.version);
2187 swab32s(&swap_header->info.last_page);
2188 swab32s(&swap_header->info.nr_badpages);
2189 for (i = 0; i < swap_header->info.nr_badpages; i++)
2190 swab32s(&swap_header->info.badpages[i]);
2191 }
2192 /* Check the swap header's sub-version */
2193 if (swap_header->info.version != 1) {
2194 pr_warn("Unable to handle swap header version %d\n",
2195 swap_header->info.version);
2196 return 0;
2197 }
2198
2199 p->lowest_bit = 1;
2200 p->cluster_next = 1;
2201 p->cluster_nr = 0;
2202
2203 /*
2204 * Find out how many pages are allowed for a single swap
2205 * device. There are two limiting factors: 1) the number
2206 * of bits for the swap offset in the swp_entry_t type, and
2207 * 2) the number of bits in the swap pte as defined by the
2208 * different architectures. In order to find the
2209 * largest possible bit mask, a swap entry with swap type 0
2210 * and swap offset ~0UL is created, encoded to a swap pte,
2211 * decoded to a swp_entry_t again, and finally the swap
2212 * offset is extracted. This will mask all the bits from
2213 * the initial ~0UL mask that can't be encoded in either
2214 * the swp_entry_t or the architecture definition of a
2215 * swap pte.
2216 */
2217 maxpages = swp_offset(pte_to_swp_entry(
2218 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2219 last_page = swap_header->info.last_page;
2220 if (last_page > maxpages) {
2221 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2222 maxpages << (PAGE_SHIFT - 10),
2223 last_page << (PAGE_SHIFT - 10));
2224 }
2225 if (maxpages > last_page) {
2226 maxpages = last_page + 1;
2227 /* p->max is an unsigned int: don't overflow it */
2228 if ((unsigned int)maxpages == 0)
2229 maxpages = UINT_MAX;
2230 }
2231 p->highest_bit = maxpages - 1;
2232
2233 if (!maxpages)
2234 return 0;
2235 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2236 if (swapfilepages && maxpages > swapfilepages) {
2237 pr_warn("Swap area shorter than signature indicates\n");
2238 return 0;
2239 }
2240 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2241 return 0;
2242 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2243 return 0;
2244
2245 return maxpages;
2246 }
2247
2248 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2249 union swap_header *swap_header,
2250 unsigned char *swap_map,
2251 struct swap_cluster_info *cluster_info,
2252 unsigned long maxpages,
2253 sector_t *span)
2254 {
2255 int i;
2256 unsigned int nr_good_pages;
2257 int nr_extents;
2258 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2259 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2260
2261 nr_good_pages = maxpages - 1; /* omit header page */
2262
2263 cluster_set_null(&p->free_cluster_head);
2264 cluster_set_null(&p->free_cluster_tail);
2265 cluster_set_null(&p->discard_cluster_head);
2266 cluster_set_null(&p->discard_cluster_tail);
2267
2268 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2269 unsigned int page_nr = swap_header->info.badpages[i];
2270 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2271 return -EINVAL;
2272 if (page_nr < maxpages) {
2273 swap_map[page_nr] = SWAP_MAP_BAD;
2274 nr_good_pages--;
2275 /*
2276 * Haven't marked the cluster free yet, no list
2277 * operation involved
2278 */
2279 inc_cluster_info_page(p, cluster_info, page_nr);
2280 }
2281 }
2282
2283 /* Haven't marked the cluster free yet, no list operation involved */
2284 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2285 inc_cluster_info_page(p, cluster_info, i);
2286
2287 if (nr_good_pages) {
2288 swap_map[0] = SWAP_MAP_BAD;
2289 /*
2290 * Not mark the cluster free yet, no list
2291 * operation involved
2292 */
2293 inc_cluster_info_page(p, cluster_info, 0);
2294 p->max = maxpages;
2295 p->pages = nr_good_pages;
2296 nr_extents = setup_swap_extents(p, span);
2297 if (nr_extents < 0)
2298 return nr_extents;
2299 nr_good_pages = p->pages;
2300 }
2301 if (!nr_good_pages) {
2302 pr_warn("Empty swap-file\n");
2303 return -EINVAL;
2304 }
2305
2306 if (!cluster_info)
2307 return nr_extents;
2308
2309 for (i = 0; i < nr_clusters; i++) {
2310 if (!cluster_count(&cluster_info[idx])) {
2311 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2312 if (cluster_is_null(&p->free_cluster_head)) {
2313 cluster_set_next_flag(&p->free_cluster_head,
2314 idx, 0);
2315 cluster_set_next_flag(&p->free_cluster_tail,
2316 idx, 0);
2317 } else {
2318 unsigned int tail;
2319
2320 tail = cluster_next(&p->free_cluster_tail);
2321 cluster_set_next(&cluster_info[tail], idx);
2322 cluster_set_next_flag(&p->free_cluster_tail,
2323 idx, 0);
2324 }
2325 }
2326 idx++;
2327 if (idx == nr_clusters)
2328 idx = 0;
2329 }
2330 return nr_extents;
2331 }
2332
2333 /*
2334 * Helper to sys_swapon determining if a given swap
2335 * backing device queue supports DISCARD operations.
2336 */
2337 static bool swap_discardable(struct swap_info_struct *si)
2338 {
2339 struct request_queue *q = bdev_get_queue(si->bdev);
2340
2341 if (!q || !blk_queue_discard(q))
2342 return false;
2343
2344 return true;
2345 }
2346
2347 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2348 {
2349 struct swap_info_struct *p;
2350 struct filename *name;
2351 struct file *swap_file = NULL;
2352 struct address_space *mapping;
2353 int i;
2354 int prio;
2355 int error;
2356 union swap_header *swap_header;
2357 int nr_extents;
2358 sector_t span;
2359 unsigned long maxpages;
2360 unsigned char *swap_map = NULL;
2361 struct swap_cluster_info *cluster_info = NULL;
2362 unsigned long *frontswap_map = NULL;
2363 struct page *page = NULL;
2364 struct inode *inode = NULL;
2365
2366 if (swap_flags & ~SWAP_FLAGS_VALID)
2367 return -EINVAL;
2368
2369 if (!capable(CAP_SYS_ADMIN))
2370 return -EPERM;
2371
2372 p = alloc_swap_info();
2373 if (IS_ERR(p))
2374 return PTR_ERR(p);
2375
2376 INIT_WORK(&p->discard_work, swap_discard_work);
2377
2378 name = getname(specialfile);
2379 if (IS_ERR(name)) {
2380 error = PTR_ERR(name);
2381 name = NULL;
2382 goto bad_swap;
2383 }
2384 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2385 if (IS_ERR(swap_file)) {
2386 error = PTR_ERR(swap_file);
2387 swap_file = NULL;
2388 goto bad_swap;
2389 }
2390
2391 p->swap_file = swap_file;
2392 mapping = swap_file->f_mapping;
2393
2394 for (i = 0; i < nr_swapfiles; i++) {
2395 struct swap_info_struct *q = swap_info[i];
2396
2397 if (q == p || !q->swap_file)
2398 continue;
2399 if (mapping == q->swap_file->f_mapping) {
2400 error = -EBUSY;
2401 goto bad_swap;
2402 }
2403 }
2404
2405 inode = mapping->host;
2406 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2407 error = claim_swapfile(p, inode);
2408 if (unlikely(error))
2409 goto bad_swap;
2410
2411 /*
2412 * Read the swap header.
2413 */
2414 if (!mapping->a_ops->readpage) {
2415 error = -EINVAL;
2416 goto bad_swap;
2417 }
2418 page = read_mapping_page(mapping, 0, swap_file);
2419 if (IS_ERR(page)) {
2420 error = PTR_ERR(page);
2421 goto bad_swap;
2422 }
2423 swap_header = kmap(page);
2424
2425 maxpages = read_swap_header(p, swap_header, inode);
2426 if (unlikely(!maxpages)) {
2427 error = -EINVAL;
2428 goto bad_swap;
2429 }
2430
2431 /* OK, set up the swap map and apply the bad block list */
2432 swap_map = vzalloc(maxpages);
2433 if (!swap_map) {
2434 error = -ENOMEM;
2435 goto bad_swap;
2436 }
2437 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2438 p->flags |= SWP_SOLIDSTATE;
2439 /*
2440 * select a random position to start with to help wear leveling
2441 * SSD
2442 */
2443 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2444
2445 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2446 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2447 if (!cluster_info) {
2448 error = -ENOMEM;
2449 goto bad_swap;
2450 }
2451 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2452 if (!p->percpu_cluster) {
2453 error = -ENOMEM;
2454 goto bad_swap;
2455 }
2456 for_each_possible_cpu(i) {
2457 struct percpu_cluster *cluster;
2458 cluster = per_cpu_ptr(p->percpu_cluster, i);
2459 cluster_set_null(&cluster->index);
2460 }
2461 }
2462
2463 error = swap_cgroup_swapon(p->type, maxpages);
2464 if (error)
2465 goto bad_swap;
2466
2467 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2468 cluster_info, maxpages, &span);
2469 if (unlikely(nr_extents < 0)) {
2470 error = nr_extents;
2471 goto bad_swap;
2472 }
2473 /* frontswap enabled? set up bit-per-page map for frontswap */
2474 if (frontswap_enabled)
2475 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2476
2477 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2478 /*
2479 * When discard is enabled for swap with no particular
2480 * policy flagged, we set all swap discard flags here in
2481 * order to sustain backward compatibility with older
2482 * swapon(8) releases.
2483 */
2484 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2485 SWP_PAGE_DISCARD);
2486
2487 /*
2488 * By flagging sys_swapon, a sysadmin can tell us to
2489 * either do single-time area discards only, or to just
2490 * perform discards for released swap page-clusters.
2491 * Now it's time to adjust the p->flags accordingly.
2492 */
2493 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2494 p->flags &= ~SWP_PAGE_DISCARD;
2495 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2496 p->flags &= ~SWP_AREA_DISCARD;
2497
2498 /* issue a swapon-time discard if it's still required */
2499 if (p->flags & SWP_AREA_DISCARD) {
2500 int err = discard_swap(p);
2501 if (unlikely(err))
2502 pr_err("swapon: discard_swap(%p): %d\n",
2503 p, err);
2504 }
2505 }
2506
2507 mutex_lock(&swapon_mutex);
2508 prio = -1;
2509 if (swap_flags & SWAP_FLAG_PREFER)
2510 prio =
2511 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2512 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2513
2514 pr_info("Adding %uk swap on %s. "
2515 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2516 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2517 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2518 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2519 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2520 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2521 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2522 (frontswap_map) ? "FS" : "");
2523
2524 mutex_unlock(&swapon_mutex);
2525 atomic_inc(&proc_poll_event);
2526 wake_up_interruptible(&proc_poll_wait);
2527
2528 if (S_ISREG(inode->i_mode))
2529 inode->i_flags |= S_SWAPFILE;
2530 error = 0;
2531 goto out;
2532 bad_swap:
2533 free_percpu(p->percpu_cluster);
2534 p->percpu_cluster = NULL;
2535 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2536 set_blocksize(p->bdev, p->old_block_size);
2537 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2538 }
2539 destroy_swap_extents(p);
2540 swap_cgroup_swapoff(p->type);
2541 spin_lock(&swap_lock);
2542 p->swap_file = NULL;
2543 p->flags = 0;
2544 spin_unlock(&swap_lock);
2545 vfree(swap_map);
2546 vfree(cluster_info);
2547 if (swap_file) {
2548 if (inode && S_ISREG(inode->i_mode)) {
2549 mutex_unlock(&inode->i_mutex);
2550 inode = NULL;
2551 }
2552 filp_close(swap_file, NULL);
2553 }
2554 out:
2555 if (page && !IS_ERR(page)) {
2556 kunmap(page);
2557 page_cache_release(page);
2558 }
2559 if (name)
2560 putname(name);
2561 if (inode && S_ISREG(inode->i_mode))
2562 mutex_unlock(&inode->i_mutex);
2563 return error;
2564 }
2565
2566 void si_swapinfo(struct sysinfo *val)
2567 {
2568 unsigned int type;
2569 unsigned long nr_to_be_unused = 0;
2570
2571 spin_lock(&swap_lock);
2572 for (type = 0; type < nr_swapfiles; type++) {
2573 struct swap_info_struct *si = swap_info[type];
2574
2575 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2576 nr_to_be_unused += si->inuse_pages;
2577 }
2578 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2579 val->totalswap = total_swap_pages + nr_to_be_unused;
2580 spin_unlock(&swap_lock);
2581 }
2582
2583 /*
2584 * Verify that a swap entry is valid and increment its swap map count.
2585 *
2586 * Returns error code in following case.
2587 * - success -> 0
2588 * - swp_entry is invalid -> EINVAL
2589 * - swp_entry is migration entry -> EINVAL
2590 * - swap-cache reference is requested but there is already one. -> EEXIST
2591 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2592 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2593 */
2594 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2595 {
2596 struct swap_info_struct *p;
2597 unsigned long offset, type;
2598 unsigned char count;
2599 unsigned char has_cache;
2600 int err = -EINVAL;
2601
2602 if (non_swap_entry(entry))
2603 goto out;
2604
2605 type = swp_type(entry);
2606 if (type >= nr_swapfiles)
2607 goto bad_file;
2608 p = swap_info[type];
2609 offset = swp_offset(entry);
2610
2611 spin_lock(&p->lock);
2612 if (unlikely(offset >= p->max))
2613 goto unlock_out;
2614
2615 count = p->swap_map[offset];
2616
2617 /*
2618 * swapin_readahead() doesn't check if a swap entry is valid, so the
2619 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2620 */
2621 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2622 err = -ENOENT;
2623 goto unlock_out;
2624 }
2625
2626 has_cache = count & SWAP_HAS_CACHE;
2627 count &= ~SWAP_HAS_CACHE;
2628 err = 0;
2629
2630 if (usage == SWAP_HAS_CACHE) {
2631
2632 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2633 if (!has_cache && count)
2634 has_cache = SWAP_HAS_CACHE;
2635 else if (has_cache) /* someone else added cache */
2636 err = -EEXIST;
2637 else /* no users remaining */
2638 err = -ENOENT;
2639
2640 } else if (count || has_cache) {
2641
2642 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2643 count += usage;
2644 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2645 err = -EINVAL;
2646 else if (swap_count_continued(p, offset, count))
2647 count = COUNT_CONTINUED;
2648 else
2649 err = -ENOMEM;
2650 } else
2651 err = -ENOENT; /* unused swap entry */
2652
2653 p->swap_map[offset] = count | has_cache;
2654
2655 unlock_out:
2656 spin_unlock(&p->lock);
2657 out:
2658 return err;
2659
2660 bad_file:
2661 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2662 goto out;
2663 }
2664
2665 /*
2666 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2667 * (in which case its reference count is never incremented).
2668 */
2669 void swap_shmem_alloc(swp_entry_t entry)
2670 {
2671 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2672 }
2673
2674 /*
2675 * Increase reference count of swap entry by 1.
2676 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2677 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2678 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2679 * might occur if a page table entry has got corrupted.
2680 */
2681 int swap_duplicate(swp_entry_t entry)
2682 {
2683 int err = 0;
2684
2685 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2686 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2687 return err;
2688 }
2689
2690 /*
2691 * @entry: swap entry for which we allocate swap cache.
2692 *
2693 * Called when allocating swap cache for existing swap entry,
2694 * This can return error codes. Returns 0 at success.
2695 * -EBUSY means there is a swap cache.
2696 * Note: return code is different from swap_duplicate().
2697 */
2698 int swapcache_prepare(swp_entry_t entry)
2699 {
2700 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2701 }
2702
2703 struct swap_info_struct *page_swap_info(struct page *page)
2704 {
2705 swp_entry_t swap = { .val = page_private(page) };
2706 BUG_ON(!PageSwapCache(page));
2707 return swap_info[swp_type(swap)];
2708 }
2709
2710 /*
2711 * out-of-line __page_file_ methods to avoid include hell.
2712 */
2713 struct address_space *__page_file_mapping(struct page *page)
2714 {
2715 VM_BUG_ON(!PageSwapCache(page));
2716 return page_swap_info(page)->swap_file->f_mapping;
2717 }
2718 EXPORT_SYMBOL_GPL(__page_file_mapping);
2719
2720 pgoff_t __page_file_index(struct page *page)
2721 {
2722 swp_entry_t swap = { .val = page_private(page) };
2723 VM_BUG_ON(!PageSwapCache(page));
2724 return swp_offset(swap);
2725 }
2726 EXPORT_SYMBOL_GPL(__page_file_index);
2727
2728 /*
2729 * add_swap_count_continuation - called when a swap count is duplicated
2730 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2731 * page of the original vmalloc'ed swap_map, to hold the continuation count
2732 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2733 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2734 *
2735 * These continuation pages are seldom referenced: the common paths all work
2736 * on the original swap_map, only referring to a continuation page when the
2737 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2738 *
2739 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2740 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2741 * can be called after dropping locks.
2742 */
2743 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2744 {
2745 struct swap_info_struct *si;
2746 struct page *head;
2747 struct page *page;
2748 struct page *list_page;
2749 pgoff_t offset;
2750 unsigned char count;
2751
2752 /*
2753 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2754 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2755 */
2756 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2757
2758 si = swap_info_get(entry);
2759 if (!si) {
2760 /*
2761 * An acceptable race has occurred since the failing
2762 * __swap_duplicate(): the swap entry has been freed,
2763 * perhaps even the whole swap_map cleared for swapoff.
2764 */
2765 goto outer;
2766 }
2767
2768 offset = swp_offset(entry);
2769 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2770
2771 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2772 /*
2773 * The higher the swap count, the more likely it is that tasks
2774 * will race to add swap count continuation: we need to avoid
2775 * over-provisioning.
2776 */
2777 goto out;
2778 }
2779
2780 if (!page) {
2781 spin_unlock(&si->lock);
2782 return -ENOMEM;
2783 }
2784
2785 /*
2786 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2787 * no architecture is using highmem pages for kernel pagetables: so it
2788 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2789 */
2790 head = vmalloc_to_page(si->swap_map + offset);
2791 offset &= ~PAGE_MASK;
2792
2793 /*
2794 * Page allocation does not initialize the page's lru field,
2795 * but it does always reset its private field.
2796 */
2797 if (!page_private(head)) {
2798 BUG_ON(count & COUNT_CONTINUED);
2799 INIT_LIST_HEAD(&head->lru);
2800 set_page_private(head, SWP_CONTINUED);
2801 si->flags |= SWP_CONTINUED;
2802 }
2803
2804 list_for_each_entry(list_page, &head->lru, lru) {
2805 unsigned char *map;
2806
2807 /*
2808 * If the previous map said no continuation, but we've found
2809 * a continuation page, free our allocation and use this one.
2810 */
2811 if (!(count & COUNT_CONTINUED))
2812 goto out;
2813
2814 map = kmap_atomic(list_page) + offset;
2815 count = *map;
2816 kunmap_atomic(map);
2817
2818 /*
2819 * If this continuation count now has some space in it,
2820 * free our allocation and use this one.
2821 */
2822 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2823 goto out;
2824 }
2825
2826 list_add_tail(&page->lru, &head->lru);
2827 page = NULL; /* now it's attached, don't free it */
2828 out:
2829 spin_unlock(&si->lock);
2830 outer:
2831 if (page)
2832 __free_page(page);
2833 return 0;
2834 }
2835
2836 /*
2837 * swap_count_continued - when the original swap_map count is incremented
2838 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2839 * into, carry if so, or else fail until a new continuation page is allocated;
2840 * when the original swap_map count is decremented from 0 with continuation,
2841 * borrow from the continuation and report whether it still holds more.
2842 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2843 */
2844 static bool swap_count_continued(struct swap_info_struct *si,
2845 pgoff_t offset, unsigned char count)
2846 {
2847 struct page *head;
2848 struct page *page;
2849 unsigned char *map;
2850
2851 head = vmalloc_to_page(si->swap_map + offset);
2852 if (page_private(head) != SWP_CONTINUED) {
2853 BUG_ON(count & COUNT_CONTINUED);
2854 return false; /* need to add count continuation */
2855 }
2856
2857 offset &= ~PAGE_MASK;
2858 page = list_entry(head->lru.next, struct page, lru);
2859 map = kmap_atomic(page) + offset;
2860
2861 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2862 goto init_map; /* jump over SWAP_CONT_MAX checks */
2863
2864 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2865 /*
2866 * Think of how you add 1 to 999
2867 */
2868 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2869 kunmap_atomic(map);
2870 page = list_entry(page->lru.next, struct page, lru);
2871 BUG_ON(page == head);
2872 map = kmap_atomic(page) + offset;
2873 }
2874 if (*map == SWAP_CONT_MAX) {
2875 kunmap_atomic(map);
2876 page = list_entry(page->lru.next, struct page, lru);
2877 if (page == head)
2878 return false; /* add count continuation */
2879 map = kmap_atomic(page) + offset;
2880 init_map: *map = 0; /* we didn't zero the page */
2881 }
2882 *map += 1;
2883 kunmap_atomic(map);
2884 page = list_entry(page->lru.prev, struct page, lru);
2885 while (page != head) {
2886 map = kmap_atomic(page) + offset;
2887 *map = COUNT_CONTINUED;
2888 kunmap_atomic(map);
2889 page = list_entry(page->lru.prev, struct page, lru);
2890 }
2891 return true; /* incremented */
2892
2893 } else { /* decrementing */
2894 /*
2895 * Think of how you subtract 1 from 1000
2896 */
2897 BUG_ON(count != COUNT_CONTINUED);
2898 while (*map == COUNT_CONTINUED) {
2899 kunmap_atomic(map);
2900 page = list_entry(page->lru.next, struct page, lru);
2901 BUG_ON(page == head);
2902 map = kmap_atomic(page) + offset;
2903 }
2904 BUG_ON(*map == 0);
2905 *map -= 1;
2906 if (*map == 0)
2907 count = 0;
2908 kunmap_atomic(map);
2909 page = list_entry(page->lru.prev, struct page, lru);
2910 while (page != head) {
2911 map = kmap_atomic(page) + offset;
2912 *map = SWAP_CONT_MAX | count;
2913 count = COUNT_CONTINUED;
2914 kunmap_atomic(map);
2915 page = list_entry(page->lru.prev, struct page, lru);
2916 }
2917 return count == COUNT_CONTINUED;
2918 }
2919 }
2920
2921 /*
2922 * free_swap_count_continuations - swapoff free all the continuation pages
2923 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2924 */
2925 static void free_swap_count_continuations(struct swap_info_struct *si)
2926 {
2927 pgoff_t offset;
2928
2929 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2930 struct page *head;
2931 head = vmalloc_to_page(si->swap_map + offset);
2932 if (page_private(head)) {
2933 struct list_head *this, *next;
2934 list_for_each_safe(this, next, &head->lru) {
2935 struct page *page;
2936 page = list_entry(this, struct page, lru);
2937 list_del(this);
2938 __free_page(page);
2939 }
2940 }
2941 }
2942 }
This page took 0.093888 seconds and 5 git commands to generate.