shmem: fix splicing from a hole while it's punched
[deliverable/linux.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlbflush.h>
35 #include <asm/shmparam.h>
36
37 struct vfree_deferred {
38 struct llist_head list;
39 struct work_struct wq;
40 };
41 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
42
43 static void __vunmap(const void *, int);
44
45 static void free_work(struct work_struct *w)
46 {
47 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
48 struct llist_node *llnode = llist_del_all(&p->list);
49 while (llnode) {
50 void *p = llnode;
51 llnode = llist_next(llnode);
52 __vunmap(p, 1);
53 }
54 }
55
56 /*** Page table manipulation functions ***/
57
58 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
59 {
60 pte_t *pte;
61
62 pte = pte_offset_kernel(pmd, addr);
63 do {
64 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
65 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
66 } while (pte++, addr += PAGE_SIZE, addr != end);
67 }
68
69 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
70 {
71 pmd_t *pmd;
72 unsigned long next;
73
74 pmd = pmd_offset(pud, addr);
75 do {
76 next = pmd_addr_end(addr, end);
77 if (pmd_none_or_clear_bad(pmd))
78 continue;
79 vunmap_pte_range(pmd, addr, next);
80 } while (pmd++, addr = next, addr != end);
81 }
82
83 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
84 {
85 pud_t *pud;
86 unsigned long next;
87
88 pud = pud_offset(pgd, addr);
89 do {
90 next = pud_addr_end(addr, end);
91 if (pud_none_or_clear_bad(pud))
92 continue;
93 vunmap_pmd_range(pud, addr, next);
94 } while (pud++, addr = next, addr != end);
95 }
96
97 static void vunmap_page_range(unsigned long addr, unsigned long end)
98 {
99 pgd_t *pgd;
100 unsigned long next;
101
102 BUG_ON(addr >= end);
103 pgd = pgd_offset_k(addr);
104 do {
105 next = pgd_addr_end(addr, end);
106 if (pgd_none_or_clear_bad(pgd))
107 continue;
108 vunmap_pud_range(pgd, addr, next);
109 } while (pgd++, addr = next, addr != end);
110 }
111
112 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
113 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
114 {
115 pte_t *pte;
116
117 /*
118 * nr is a running index into the array which helps higher level
119 * callers keep track of where we're up to.
120 */
121
122 pte = pte_alloc_kernel(pmd, addr);
123 if (!pte)
124 return -ENOMEM;
125 do {
126 struct page *page = pages[*nr];
127
128 if (WARN_ON(!pte_none(*pte)))
129 return -EBUSY;
130 if (WARN_ON(!page))
131 return -ENOMEM;
132 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
133 (*nr)++;
134 } while (pte++, addr += PAGE_SIZE, addr != end);
135 return 0;
136 }
137
138 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
139 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
140 {
141 pmd_t *pmd;
142 unsigned long next;
143
144 pmd = pmd_alloc(&init_mm, pud, addr);
145 if (!pmd)
146 return -ENOMEM;
147 do {
148 next = pmd_addr_end(addr, end);
149 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
150 return -ENOMEM;
151 } while (pmd++, addr = next, addr != end);
152 return 0;
153 }
154
155 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
156 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
157 {
158 pud_t *pud;
159 unsigned long next;
160
161 pud = pud_alloc(&init_mm, pgd, addr);
162 if (!pud)
163 return -ENOMEM;
164 do {
165 next = pud_addr_end(addr, end);
166 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
167 return -ENOMEM;
168 } while (pud++, addr = next, addr != end);
169 return 0;
170 }
171
172 /*
173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
174 * will have pfns corresponding to the "pages" array.
175 *
176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
177 */
178 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
180 {
181 pgd_t *pgd;
182 unsigned long next;
183 unsigned long addr = start;
184 int err = 0;
185 int nr = 0;
186
187 BUG_ON(addr >= end);
188 pgd = pgd_offset_k(addr);
189 do {
190 next = pgd_addr_end(addr, end);
191 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
192 if (err)
193 return err;
194 } while (pgd++, addr = next, addr != end);
195
196 return nr;
197 }
198
199 static int vmap_page_range(unsigned long start, unsigned long end,
200 pgprot_t prot, struct page **pages)
201 {
202 int ret;
203
204 ret = vmap_page_range_noflush(start, end, prot, pages);
205 flush_cache_vmap(start, end);
206 return ret;
207 }
208
209 int is_vmalloc_or_module_addr(const void *x)
210 {
211 /*
212 * ARM, x86-64 and sparc64 put modules in a special place,
213 * and fall back on vmalloc() if that fails. Others
214 * just put it in the vmalloc space.
215 */
216 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
217 unsigned long addr = (unsigned long)x;
218 if (addr >= MODULES_VADDR && addr < MODULES_END)
219 return 1;
220 #endif
221 return is_vmalloc_addr(x);
222 }
223
224 /*
225 * Walk a vmap address to the struct page it maps.
226 */
227 struct page *vmalloc_to_page(const void *vmalloc_addr)
228 {
229 unsigned long addr = (unsigned long) vmalloc_addr;
230 struct page *page = NULL;
231 pgd_t *pgd = pgd_offset_k(addr);
232
233 /*
234 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
235 * architectures that do not vmalloc module space
236 */
237 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
238
239 if (!pgd_none(*pgd)) {
240 pud_t *pud = pud_offset(pgd, addr);
241 if (!pud_none(*pud)) {
242 pmd_t *pmd = pmd_offset(pud, addr);
243 if (!pmd_none(*pmd)) {
244 pte_t *ptep, pte;
245
246 ptep = pte_offset_map(pmd, addr);
247 pte = *ptep;
248 if (pte_present(pte))
249 page = pte_page(pte);
250 pte_unmap(ptep);
251 }
252 }
253 }
254 return page;
255 }
256 EXPORT_SYMBOL(vmalloc_to_page);
257
258 /*
259 * Map a vmalloc()-space virtual address to the physical page frame number.
260 */
261 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
262 {
263 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
264 }
265 EXPORT_SYMBOL(vmalloc_to_pfn);
266
267
268 /*** Global kva allocator ***/
269
270 #define VM_LAZY_FREE 0x01
271 #define VM_LAZY_FREEING 0x02
272 #define VM_VM_AREA 0x04
273
274 static DEFINE_SPINLOCK(vmap_area_lock);
275 /* Export for kexec only */
276 LIST_HEAD(vmap_area_list);
277 static struct rb_root vmap_area_root = RB_ROOT;
278
279 /* The vmap cache globals are protected by vmap_area_lock */
280 static struct rb_node *free_vmap_cache;
281 static unsigned long cached_hole_size;
282 static unsigned long cached_vstart;
283 static unsigned long cached_align;
284
285 static unsigned long vmap_area_pcpu_hole;
286
287 static struct vmap_area *__find_vmap_area(unsigned long addr)
288 {
289 struct rb_node *n = vmap_area_root.rb_node;
290
291 while (n) {
292 struct vmap_area *va;
293
294 va = rb_entry(n, struct vmap_area, rb_node);
295 if (addr < va->va_start)
296 n = n->rb_left;
297 else if (addr >= va->va_end)
298 n = n->rb_right;
299 else
300 return va;
301 }
302
303 return NULL;
304 }
305
306 static void __insert_vmap_area(struct vmap_area *va)
307 {
308 struct rb_node **p = &vmap_area_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct rb_node *tmp;
311
312 while (*p) {
313 struct vmap_area *tmp_va;
314
315 parent = *p;
316 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
317 if (va->va_start < tmp_va->va_end)
318 p = &(*p)->rb_left;
319 else if (va->va_end > tmp_va->va_start)
320 p = &(*p)->rb_right;
321 else
322 BUG();
323 }
324
325 rb_link_node(&va->rb_node, parent, p);
326 rb_insert_color(&va->rb_node, &vmap_area_root);
327
328 /* address-sort this list */
329 tmp = rb_prev(&va->rb_node);
330 if (tmp) {
331 struct vmap_area *prev;
332 prev = rb_entry(tmp, struct vmap_area, rb_node);
333 list_add_rcu(&va->list, &prev->list);
334 } else
335 list_add_rcu(&va->list, &vmap_area_list);
336 }
337
338 static void purge_vmap_area_lazy(void);
339
340 /*
341 * Allocate a region of KVA of the specified size and alignment, within the
342 * vstart and vend.
343 */
344 static struct vmap_area *alloc_vmap_area(unsigned long size,
345 unsigned long align,
346 unsigned long vstart, unsigned long vend,
347 int node, gfp_t gfp_mask)
348 {
349 struct vmap_area *va;
350 struct rb_node *n;
351 unsigned long addr;
352 int purged = 0;
353 struct vmap_area *first;
354
355 BUG_ON(!size);
356 BUG_ON(size & ~PAGE_MASK);
357 BUG_ON(!is_power_of_2(align));
358
359 va = kmalloc_node(sizeof(struct vmap_area),
360 gfp_mask & GFP_RECLAIM_MASK, node);
361 if (unlikely(!va))
362 return ERR_PTR(-ENOMEM);
363
364 /*
365 * Only scan the relevant parts containing pointers to other objects
366 * to avoid false negatives.
367 */
368 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
369
370 retry:
371 spin_lock(&vmap_area_lock);
372 /*
373 * Invalidate cache if we have more permissive parameters.
374 * cached_hole_size notes the largest hole noticed _below_
375 * the vmap_area cached in free_vmap_cache: if size fits
376 * into that hole, we want to scan from vstart to reuse
377 * the hole instead of allocating above free_vmap_cache.
378 * Note that __free_vmap_area may update free_vmap_cache
379 * without updating cached_hole_size or cached_align.
380 */
381 if (!free_vmap_cache ||
382 size < cached_hole_size ||
383 vstart < cached_vstart ||
384 align < cached_align) {
385 nocache:
386 cached_hole_size = 0;
387 free_vmap_cache = NULL;
388 }
389 /* record if we encounter less permissive parameters */
390 cached_vstart = vstart;
391 cached_align = align;
392
393 /* find starting point for our search */
394 if (free_vmap_cache) {
395 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
396 addr = ALIGN(first->va_end, align);
397 if (addr < vstart)
398 goto nocache;
399 if (addr + size < addr)
400 goto overflow;
401
402 } else {
403 addr = ALIGN(vstart, align);
404 if (addr + size < addr)
405 goto overflow;
406
407 n = vmap_area_root.rb_node;
408 first = NULL;
409
410 while (n) {
411 struct vmap_area *tmp;
412 tmp = rb_entry(n, struct vmap_area, rb_node);
413 if (tmp->va_end >= addr) {
414 first = tmp;
415 if (tmp->va_start <= addr)
416 break;
417 n = n->rb_left;
418 } else
419 n = n->rb_right;
420 }
421
422 if (!first)
423 goto found;
424 }
425
426 /* from the starting point, walk areas until a suitable hole is found */
427 while (addr + size > first->va_start && addr + size <= vend) {
428 if (addr + cached_hole_size < first->va_start)
429 cached_hole_size = first->va_start - addr;
430 addr = ALIGN(first->va_end, align);
431 if (addr + size < addr)
432 goto overflow;
433
434 if (list_is_last(&first->list, &vmap_area_list))
435 goto found;
436
437 first = list_entry(first->list.next,
438 struct vmap_area, list);
439 }
440
441 found:
442 if (addr + size > vend)
443 goto overflow;
444
445 va->va_start = addr;
446 va->va_end = addr + size;
447 va->flags = 0;
448 __insert_vmap_area(va);
449 free_vmap_cache = &va->rb_node;
450 spin_unlock(&vmap_area_lock);
451
452 BUG_ON(va->va_start & (align-1));
453 BUG_ON(va->va_start < vstart);
454 BUG_ON(va->va_end > vend);
455
456 return va;
457
458 overflow:
459 spin_unlock(&vmap_area_lock);
460 if (!purged) {
461 purge_vmap_area_lazy();
462 purged = 1;
463 goto retry;
464 }
465 if (printk_ratelimit())
466 printk(KERN_WARNING
467 "vmap allocation for size %lu failed: "
468 "use vmalloc=<size> to increase size.\n", size);
469 kfree(va);
470 return ERR_PTR(-EBUSY);
471 }
472
473 static void __free_vmap_area(struct vmap_area *va)
474 {
475 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
476
477 if (free_vmap_cache) {
478 if (va->va_end < cached_vstart) {
479 free_vmap_cache = NULL;
480 } else {
481 struct vmap_area *cache;
482 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
483 if (va->va_start <= cache->va_start) {
484 free_vmap_cache = rb_prev(&va->rb_node);
485 /*
486 * We don't try to update cached_hole_size or
487 * cached_align, but it won't go very wrong.
488 */
489 }
490 }
491 }
492 rb_erase(&va->rb_node, &vmap_area_root);
493 RB_CLEAR_NODE(&va->rb_node);
494 list_del_rcu(&va->list);
495
496 /*
497 * Track the highest possible candidate for pcpu area
498 * allocation. Areas outside of vmalloc area can be returned
499 * here too, consider only end addresses which fall inside
500 * vmalloc area proper.
501 */
502 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
503 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
504
505 kfree_rcu(va, rcu_head);
506 }
507
508 /*
509 * Free a region of KVA allocated by alloc_vmap_area
510 */
511 static void free_vmap_area(struct vmap_area *va)
512 {
513 spin_lock(&vmap_area_lock);
514 __free_vmap_area(va);
515 spin_unlock(&vmap_area_lock);
516 }
517
518 /*
519 * Clear the pagetable entries of a given vmap_area
520 */
521 static void unmap_vmap_area(struct vmap_area *va)
522 {
523 vunmap_page_range(va->va_start, va->va_end);
524 }
525
526 static void vmap_debug_free_range(unsigned long start, unsigned long end)
527 {
528 /*
529 * Unmap page tables and force a TLB flush immediately if
530 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
531 * bugs similarly to those in linear kernel virtual address
532 * space after a page has been freed.
533 *
534 * All the lazy freeing logic is still retained, in order to
535 * minimise intrusiveness of this debugging feature.
536 *
537 * This is going to be *slow* (linear kernel virtual address
538 * debugging doesn't do a broadcast TLB flush so it is a lot
539 * faster).
540 */
541 #ifdef CONFIG_DEBUG_PAGEALLOC
542 vunmap_page_range(start, end);
543 flush_tlb_kernel_range(start, end);
544 #endif
545 }
546
547 /*
548 * lazy_max_pages is the maximum amount of virtual address space we gather up
549 * before attempting to purge with a TLB flush.
550 *
551 * There is a tradeoff here: a larger number will cover more kernel page tables
552 * and take slightly longer to purge, but it will linearly reduce the number of
553 * global TLB flushes that must be performed. It would seem natural to scale
554 * this number up linearly with the number of CPUs (because vmapping activity
555 * could also scale linearly with the number of CPUs), however it is likely
556 * that in practice, workloads might be constrained in other ways that mean
557 * vmap activity will not scale linearly with CPUs. Also, I want to be
558 * conservative and not introduce a big latency on huge systems, so go with
559 * a less aggressive log scale. It will still be an improvement over the old
560 * code, and it will be simple to change the scale factor if we find that it
561 * becomes a problem on bigger systems.
562 */
563 static unsigned long lazy_max_pages(void)
564 {
565 unsigned int log;
566
567 log = fls(num_online_cpus());
568
569 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
570 }
571
572 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
573
574 /* for per-CPU blocks */
575 static void purge_fragmented_blocks_allcpus(void);
576
577 /*
578 * called before a call to iounmap() if the caller wants vm_area_struct's
579 * immediately freed.
580 */
581 void set_iounmap_nonlazy(void)
582 {
583 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
584 }
585
586 /*
587 * Purges all lazily-freed vmap areas.
588 *
589 * If sync is 0 then don't purge if there is already a purge in progress.
590 * If force_flush is 1, then flush kernel TLBs between *start and *end even
591 * if we found no lazy vmap areas to unmap (callers can use this to optimise
592 * their own TLB flushing).
593 * Returns with *start = min(*start, lowest purged address)
594 * *end = max(*end, highest purged address)
595 */
596 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
597 int sync, int force_flush)
598 {
599 static DEFINE_SPINLOCK(purge_lock);
600 LIST_HEAD(valist);
601 struct vmap_area *va;
602 struct vmap_area *n_va;
603 int nr = 0;
604
605 /*
606 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
607 * should not expect such behaviour. This just simplifies locking for
608 * the case that isn't actually used at the moment anyway.
609 */
610 if (!sync && !force_flush) {
611 if (!spin_trylock(&purge_lock))
612 return;
613 } else
614 spin_lock(&purge_lock);
615
616 if (sync)
617 purge_fragmented_blocks_allcpus();
618
619 rcu_read_lock();
620 list_for_each_entry_rcu(va, &vmap_area_list, list) {
621 if (va->flags & VM_LAZY_FREE) {
622 if (va->va_start < *start)
623 *start = va->va_start;
624 if (va->va_end > *end)
625 *end = va->va_end;
626 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
627 list_add_tail(&va->purge_list, &valist);
628 va->flags |= VM_LAZY_FREEING;
629 va->flags &= ~VM_LAZY_FREE;
630 }
631 }
632 rcu_read_unlock();
633
634 if (nr)
635 atomic_sub(nr, &vmap_lazy_nr);
636
637 if (nr || force_flush)
638 flush_tlb_kernel_range(*start, *end);
639
640 if (nr) {
641 spin_lock(&vmap_area_lock);
642 list_for_each_entry_safe(va, n_va, &valist, purge_list)
643 __free_vmap_area(va);
644 spin_unlock(&vmap_area_lock);
645 }
646 spin_unlock(&purge_lock);
647 }
648
649 /*
650 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
651 * is already purging.
652 */
653 static void try_purge_vmap_area_lazy(void)
654 {
655 unsigned long start = ULONG_MAX, end = 0;
656
657 __purge_vmap_area_lazy(&start, &end, 0, 0);
658 }
659
660 /*
661 * Kick off a purge of the outstanding lazy areas.
662 */
663 static void purge_vmap_area_lazy(void)
664 {
665 unsigned long start = ULONG_MAX, end = 0;
666
667 __purge_vmap_area_lazy(&start, &end, 1, 0);
668 }
669
670 /*
671 * Free a vmap area, caller ensuring that the area has been unmapped
672 * and flush_cache_vunmap had been called for the correct range
673 * previously.
674 */
675 static void free_vmap_area_noflush(struct vmap_area *va)
676 {
677 va->flags |= VM_LAZY_FREE;
678 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
679 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
680 try_purge_vmap_area_lazy();
681 }
682
683 /*
684 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
685 * called for the correct range previously.
686 */
687 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
688 {
689 unmap_vmap_area(va);
690 free_vmap_area_noflush(va);
691 }
692
693 /*
694 * Free and unmap a vmap area
695 */
696 static void free_unmap_vmap_area(struct vmap_area *va)
697 {
698 flush_cache_vunmap(va->va_start, va->va_end);
699 free_unmap_vmap_area_noflush(va);
700 }
701
702 static struct vmap_area *find_vmap_area(unsigned long addr)
703 {
704 struct vmap_area *va;
705
706 spin_lock(&vmap_area_lock);
707 va = __find_vmap_area(addr);
708 spin_unlock(&vmap_area_lock);
709
710 return va;
711 }
712
713 static void free_unmap_vmap_area_addr(unsigned long addr)
714 {
715 struct vmap_area *va;
716
717 va = find_vmap_area(addr);
718 BUG_ON(!va);
719 free_unmap_vmap_area(va);
720 }
721
722
723 /*** Per cpu kva allocator ***/
724
725 /*
726 * vmap space is limited especially on 32 bit architectures. Ensure there is
727 * room for at least 16 percpu vmap blocks per CPU.
728 */
729 /*
730 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
731 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
732 * instead (we just need a rough idea)
733 */
734 #if BITS_PER_LONG == 32
735 #define VMALLOC_SPACE (128UL*1024*1024)
736 #else
737 #define VMALLOC_SPACE (128UL*1024*1024*1024)
738 #endif
739
740 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
741 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
742 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
743 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
744 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
745 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
746 #define VMAP_BBMAP_BITS \
747 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
748 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
749 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
750
751 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
752
753 static bool vmap_initialized __read_mostly = false;
754
755 struct vmap_block_queue {
756 spinlock_t lock;
757 struct list_head free;
758 };
759
760 struct vmap_block {
761 spinlock_t lock;
762 struct vmap_area *va;
763 unsigned long free, dirty;
764 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
765 struct list_head free_list;
766 struct rcu_head rcu_head;
767 struct list_head purge;
768 };
769
770 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
771 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
772
773 /*
774 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
775 * in the free path. Could get rid of this if we change the API to return a
776 * "cookie" from alloc, to be passed to free. But no big deal yet.
777 */
778 static DEFINE_SPINLOCK(vmap_block_tree_lock);
779 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
780
781 /*
782 * We should probably have a fallback mechanism to allocate virtual memory
783 * out of partially filled vmap blocks. However vmap block sizing should be
784 * fairly reasonable according to the vmalloc size, so it shouldn't be a
785 * big problem.
786 */
787
788 static unsigned long addr_to_vb_idx(unsigned long addr)
789 {
790 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
791 addr /= VMAP_BLOCK_SIZE;
792 return addr;
793 }
794
795 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
796 {
797 struct vmap_block_queue *vbq;
798 struct vmap_block *vb;
799 struct vmap_area *va;
800 unsigned long vb_idx;
801 int node, err;
802
803 node = numa_node_id();
804
805 vb = kmalloc_node(sizeof(struct vmap_block),
806 gfp_mask & GFP_RECLAIM_MASK, node);
807 if (unlikely(!vb))
808 return ERR_PTR(-ENOMEM);
809
810 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
811 VMALLOC_START, VMALLOC_END,
812 node, gfp_mask);
813 if (IS_ERR(va)) {
814 kfree(vb);
815 return ERR_CAST(va);
816 }
817
818 err = radix_tree_preload(gfp_mask);
819 if (unlikely(err)) {
820 kfree(vb);
821 free_vmap_area(va);
822 return ERR_PTR(err);
823 }
824
825 spin_lock_init(&vb->lock);
826 vb->va = va;
827 vb->free = VMAP_BBMAP_BITS;
828 vb->dirty = 0;
829 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
830 INIT_LIST_HEAD(&vb->free_list);
831
832 vb_idx = addr_to_vb_idx(va->va_start);
833 spin_lock(&vmap_block_tree_lock);
834 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
835 spin_unlock(&vmap_block_tree_lock);
836 BUG_ON(err);
837 radix_tree_preload_end();
838
839 vbq = &get_cpu_var(vmap_block_queue);
840 spin_lock(&vbq->lock);
841 list_add_rcu(&vb->free_list, &vbq->free);
842 spin_unlock(&vbq->lock);
843 put_cpu_var(vmap_block_queue);
844
845 return vb;
846 }
847
848 static void free_vmap_block(struct vmap_block *vb)
849 {
850 struct vmap_block *tmp;
851 unsigned long vb_idx;
852
853 vb_idx = addr_to_vb_idx(vb->va->va_start);
854 spin_lock(&vmap_block_tree_lock);
855 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
856 spin_unlock(&vmap_block_tree_lock);
857 BUG_ON(tmp != vb);
858
859 free_vmap_area_noflush(vb->va);
860 kfree_rcu(vb, rcu_head);
861 }
862
863 static void purge_fragmented_blocks(int cpu)
864 {
865 LIST_HEAD(purge);
866 struct vmap_block *vb;
867 struct vmap_block *n_vb;
868 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
869
870 rcu_read_lock();
871 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
872
873 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
874 continue;
875
876 spin_lock(&vb->lock);
877 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
878 vb->free = 0; /* prevent further allocs after releasing lock */
879 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
880 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
881 spin_lock(&vbq->lock);
882 list_del_rcu(&vb->free_list);
883 spin_unlock(&vbq->lock);
884 spin_unlock(&vb->lock);
885 list_add_tail(&vb->purge, &purge);
886 } else
887 spin_unlock(&vb->lock);
888 }
889 rcu_read_unlock();
890
891 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
892 list_del(&vb->purge);
893 free_vmap_block(vb);
894 }
895 }
896
897 static void purge_fragmented_blocks_allcpus(void)
898 {
899 int cpu;
900
901 for_each_possible_cpu(cpu)
902 purge_fragmented_blocks(cpu);
903 }
904
905 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
906 {
907 struct vmap_block_queue *vbq;
908 struct vmap_block *vb;
909 unsigned long addr = 0;
910 unsigned int order;
911
912 BUG_ON(size & ~PAGE_MASK);
913 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
914 if (WARN_ON(size == 0)) {
915 /*
916 * Allocating 0 bytes isn't what caller wants since
917 * get_order(0) returns funny result. Just warn and terminate
918 * early.
919 */
920 return NULL;
921 }
922 order = get_order(size);
923
924 again:
925 rcu_read_lock();
926 vbq = &get_cpu_var(vmap_block_queue);
927 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
928 int i;
929
930 spin_lock(&vb->lock);
931 if (vb->free < 1UL << order)
932 goto next;
933
934 i = VMAP_BBMAP_BITS - vb->free;
935 addr = vb->va->va_start + (i << PAGE_SHIFT);
936 BUG_ON(addr_to_vb_idx(addr) !=
937 addr_to_vb_idx(vb->va->va_start));
938 vb->free -= 1UL << order;
939 if (vb->free == 0) {
940 spin_lock(&vbq->lock);
941 list_del_rcu(&vb->free_list);
942 spin_unlock(&vbq->lock);
943 }
944 spin_unlock(&vb->lock);
945 break;
946 next:
947 spin_unlock(&vb->lock);
948 }
949
950 put_cpu_var(vmap_block_queue);
951 rcu_read_unlock();
952
953 if (!addr) {
954 vb = new_vmap_block(gfp_mask);
955 if (IS_ERR(vb))
956 return vb;
957 goto again;
958 }
959
960 return (void *)addr;
961 }
962
963 static void vb_free(const void *addr, unsigned long size)
964 {
965 unsigned long offset;
966 unsigned long vb_idx;
967 unsigned int order;
968 struct vmap_block *vb;
969
970 BUG_ON(size & ~PAGE_MASK);
971 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
972
973 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
974
975 order = get_order(size);
976
977 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
978
979 vb_idx = addr_to_vb_idx((unsigned long)addr);
980 rcu_read_lock();
981 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
982 rcu_read_unlock();
983 BUG_ON(!vb);
984
985 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
986
987 spin_lock(&vb->lock);
988 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
989
990 vb->dirty += 1UL << order;
991 if (vb->dirty == VMAP_BBMAP_BITS) {
992 BUG_ON(vb->free);
993 spin_unlock(&vb->lock);
994 free_vmap_block(vb);
995 } else
996 spin_unlock(&vb->lock);
997 }
998
999 /**
1000 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1001 *
1002 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1003 * to amortize TLB flushing overheads. What this means is that any page you
1004 * have now, may, in a former life, have been mapped into kernel virtual
1005 * address by the vmap layer and so there might be some CPUs with TLB entries
1006 * still referencing that page (additional to the regular 1:1 kernel mapping).
1007 *
1008 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1009 * be sure that none of the pages we have control over will have any aliases
1010 * from the vmap layer.
1011 */
1012 void vm_unmap_aliases(void)
1013 {
1014 unsigned long start = ULONG_MAX, end = 0;
1015 int cpu;
1016 int flush = 0;
1017
1018 if (unlikely(!vmap_initialized))
1019 return;
1020
1021 for_each_possible_cpu(cpu) {
1022 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1023 struct vmap_block *vb;
1024
1025 rcu_read_lock();
1026 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1027 int i, j;
1028
1029 spin_lock(&vb->lock);
1030 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1031 if (i < VMAP_BBMAP_BITS) {
1032 unsigned long s, e;
1033
1034 j = find_last_bit(vb->dirty_map,
1035 VMAP_BBMAP_BITS);
1036 j = j + 1; /* need exclusive index */
1037
1038 s = vb->va->va_start + (i << PAGE_SHIFT);
1039 e = vb->va->va_start + (j << PAGE_SHIFT);
1040 flush = 1;
1041
1042 if (s < start)
1043 start = s;
1044 if (e > end)
1045 end = e;
1046 }
1047 spin_unlock(&vb->lock);
1048 }
1049 rcu_read_unlock();
1050 }
1051
1052 __purge_vmap_area_lazy(&start, &end, 1, flush);
1053 }
1054 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1055
1056 /**
1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1058 * @mem: the pointer returned by vm_map_ram
1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1060 */
1061 void vm_unmap_ram(const void *mem, unsigned int count)
1062 {
1063 unsigned long size = count << PAGE_SHIFT;
1064 unsigned long addr = (unsigned long)mem;
1065
1066 BUG_ON(!addr);
1067 BUG_ON(addr < VMALLOC_START);
1068 BUG_ON(addr > VMALLOC_END);
1069 BUG_ON(addr & (PAGE_SIZE-1));
1070
1071 debug_check_no_locks_freed(mem, size);
1072 vmap_debug_free_range(addr, addr+size);
1073
1074 if (likely(count <= VMAP_MAX_ALLOC))
1075 vb_free(mem, size);
1076 else
1077 free_unmap_vmap_area_addr(addr);
1078 }
1079 EXPORT_SYMBOL(vm_unmap_ram);
1080
1081 /**
1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1083 * @pages: an array of pointers to the pages to be mapped
1084 * @count: number of pages
1085 * @node: prefer to allocate data structures on this node
1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087 *
1088 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1089 * faster than vmap so it's good. But if you mix long-life and short-life
1090 * objects with vm_map_ram(), it could consume lots of address space through
1091 * fragmentation (especially on a 32bit machine). You could see failures in
1092 * the end. Please use this function for short-lived objects.
1093 *
1094 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1095 */
1096 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1097 {
1098 unsigned long size = count << PAGE_SHIFT;
1099 unsigned long addr;
1100 void *mem;
1101
1102 if (likely(count <= VMAP_MAX_ALLOC)) {
1103 mem = vb_alloc(size, GFP_KERNEL);
1104 if (IS_ERR(mem))
1105 return NULL;
1106 addr = (unsigned long)mem;
1107 } else {
1108 struct vmap_area *va;
1109 va = alloc_vmap_area(size, PAGE_SIZE,
1110 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1111 if (IS_ERR(va))
1112 return NULL;
1113
1114 addr = va->va_start;
1115 mem = (void *)addr;
1116 }
1117 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1118 vm_unmap_ram(mem, count);
1119 return NULL;
1120 }
1121 return mem;
1122 }
1123 EXPORT_SYMBOL(vm_map_ram);
1124
1125 static struct vm_struct *vmlist __initdata;
1126 /**
1127 * vm_area_add_early - add vmap area early during boot
1128 * @vm: vm_struct to add
1129 *
1130 * This function is used to add fixed kernel vm area to vmlist before
1131 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1132 * should contain proper values and the other fields should be zero.
1133 *
1134 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1135 */
1136 void __init vm_area_add_early(struct vm_struct *vm)
1137 {
1138 struct vm_struct *tmp, **p;
1139
1140 BUG_ON(vmap_initialized);
1141 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1142 if (tmp->addr >= vm->addr) {
1143 BUG_ON(tmp->addr < vm->addr + vm->size);
1144 break;
1145 } else
1146 BUG_ON(tmp->addr + tmp->size > vm->addr);
1147 }
1148 vm->next = *p;
1149 *p = vm;
1150 }
1151
1152 /**
1153 * vm_area_register_early - register vmap area early during boot
1154 * @vm: vm_struct to register
1155 * @align: requested alignment
1156 *
1157 * This function is used to register kernel vm area before
1158 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1159 * proper values on entry and other fields should be zero. On return,
1160 * vm->addr contains the allocated address.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1165 {
1166 static size_t vm_init_off __initdata;
1167 unsigned long addr;
1168
1169 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1170 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1171
1172 vm->addr = (void *)addr;
1173
1174 vm_area_add_early(vm);
1175 }
1176
1177 void __init vmalloc_init(void)
1178 {
1179 struct vmap_area *va;
1180 struct vm_struct *tmp;
1181 int i;
1182
1183 for_each_possible_cpu(i) {
1184 struct vmap_block_queue *vbq;
1185 struct vfree_deferred *p;
1186
1187 vbq = &per_cpu(vmap_block_queue, i);
1188 spin_lock_init(&vbq->lock);
1189 INIT_LIST_HEAD(&vbq->free);
1190 p = &per_cpu(vfree_deferred, i);
1191 init_llist_head(&p->list);
1192 INIT_WORK(&p->wq, free_work);
1193 }
1194
1195 /* Import existing vmlist entries. */
1196 for (tmp = vmlist; tmp; tmp = tmp->next) {
1197 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1198 va->flags = VM_VM_AREA;
1199 va->va_start = (unsigned long)tmp->addr;
1200 va->va_end = va->va_start + tmp->size;
1201 va->vm = tmp;
1202 __insert_vmap_area(va);
1203 }
1204
1205 vmap_area_pcpu_hole = VMALLOC_END;
1206
1207 vmap_initialized = true;
1208 }
1209
1210 /**
1211 * map_kernel_range_noflush - map kernel VM area with the specified pages
1212 * @addr: start of the VM area to map
1213 * @size: size of the VM area to map
1214 * @prot: page protection flags to use
1215 * @pages: pages to map
1216 *
1217 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1219 * friends.
1220 *
1221 * NOTE:
1222 * This function does NOT do any cache flushing. The caller is
1223 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1224 * before calling this function.
1225 *
1226 * RETURNS:
1227 * The number of pages mapped on success, -errno on failure.
1228 */
1229 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1230 pgprot_t prot, struct page **pages)
1231 {
1232 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1233 }
1234
1235 /**
1236 * unmap_kernel_range_noflush - unmap kernel VM area
1237 * @addr: start of the VM area to unmap
1238 * @size: size of the VM area to unmap
1239 *
1240 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1241 * specify should have been allocated using get_vm_area() and its
1242 * friends.
1243 *
1244 * NOTE:
1245 * This function does NOT do any cache flushing. The caller is
1246 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1247 * before calling this function and flush_tlb_kernel_range() after.
1248 */
1249 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1250 {
1251 vunmap_page_range(addr, addr + size);
1252 }
1253 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1254
1255 /**
1256 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1261 * the unmapping and tlb after.
1262 */
1263 void unmap_kernel_range(unsigned long addr, unsigned long size)
1264 {
1265 unsigned long end = addr + size;
1266
1267 flush_cache_vunmap(addr, end);
1268 vunmap_page_range(addr, end);
1269 flush_tlb_kernel_range(addr, end);
1270 }
1271 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1272
1273 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1274 {
1275 unsigned long addr = (unsigned long)area->addr;
1276 unsigned long end = addr + get_vm_area_size(area);
1277 int err;
1278
1279 err = vmap_page_range(addr, end, prot, *pages);
1280 if (err > 0) {
1281 *pages += err;
1282 err = 0;
1283 }
1284
1285 return err;
1286 }
1287 EXPORT_SYMBOL_GPL(map_vm_area);
1288
1289 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1290 unsigned long flags, const void *caller)
1291 {
1292 spin_lock(&vmap_area_lock);
1293 vm->flags = flags;
1294 vm->addr = (void *)va->va_start;
1295 vm->size = va->va_end - va->va_start;
1296 vm->caller = caller;
1297 va->vm = vm;
1298 va->flags |= VM_VM_AREA;
1299 spin_unlock(&vmap_area_lock);
1300 }
1301
1302 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1303 {
1304 /*
1305 * Before removing VM_UNINITIALIZED,
1306 * we should make sure that vm has proper values.
1307 * Pair with smp_rmb() in show_numa_info().
1308 */
1309 smp_wmb();
1310 vm->flags &= ~VM_UNINITIALIZED;
1311 }
1312
1313 static struct vm_struct *__get_vm_area_node(unsigned long size,
1314 unsigned long align, unsigned long flags, unsigned long start,
1315 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1316 {
1317 struct vmap_area *va;
1318 struct vm_struct *area;
1319
1320 BUG_ON(in_interrupt());
1321 if (flags & VM_IOREMAP)
1322 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1323
1324 size = PAGE_ALIGN(size);
1325 if (unlikely(!size))
1326 return NULL;
1327
1328 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1329 if (unlikely(!area))
1330 return NULL;
1331
1332 /*
1333 * We always allocate a guard page.
1334 */
1335 size += PAGE_SIZE;
1336
1337 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1338 if (IS_ERR(va)) {
1339 kfree(area);
1340 return NULL;
1341 }
1342
1343 setup_vmalloc_vm(area, va, flags, caller);
1344
1345 return area;
1346 }
1347
1348 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1349 unsigned long start, unsigned long end)
1350 {
1351 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1352 GFP_KERNEL, __builtin_return_address(0));
1353 }
1354 EXPORT_SYMBOL_GPL(__get_vm_area);
1355
1356 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1357 unsigned long start, unsigned long end,
1358 const void *caller)
1359 {
1360 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1361 GFP_KERNEL, caller);
1362 }
1363
1364 /**
1365 * get_vm_area - reserve a contiguous kernel virtual area
1366 * @size: size of the area
1367 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1368 *
1369 * Search an area of @size in the kernel virtual mapping area,
1370 * and reserved it for out purposes. Returns the area descriptor
1371 * on success or %NULL on failure.
1372 */
1373 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1374 {
1375 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1376 NUMA_NO_NODE, GFP_KERNEL,
1377 __builtin_return_address(0));
1378 }
1379
1380 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1381 const void *caller)
1382 {
1383 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1384 NUMA_NO_NODE, GFP_KERNEL, caller);
1385 }
1386
1387 /**
1388 * find_vm_area - find a continuous kernel virtual area
1389 * @addr: base address
1390 *
1391 * Search for the kernel VM area starting at @addr, and return it.
1392 * It is up to the caller to do all required locking to keep the returned
1393 * pointer valid.
1394 */
1395 struct vm_struct *find_vm_area(const void *addr)
1396 {
1397 struct vmap_area *va;
1398
1399 va = find_vmap_area((unsigned long)addr);
1400 if (va && va->flags & VM_VM_AREA)
1401 return va->vm;
1402
1403 return NULL;
1404 }
1405
1406 /**
1407 * remove_vm_area - find and remove a continuous kernel virtual area
1408 * @addr: base address
1409 *
1410 * Search for the kernel VM area starting at @addr, and remove it.
1411 * This function returns the found VM area, but using it is NOT safe
1412 * on SMP machines, except for its size or flags.
1413 */
1414 struct vm_struct *remove_vm_area(const void *addr)
1415 {
1416 struct vmap_area *va;
1417
1418 va = find_vmap_area((unsigned long)addr);
1419 if (va && va->flags & VM_VM_AREA) {
1420 struct vm_struct *vm = va->vm;
1421
1422 spin_lock(&vmap_area_lock);
1423 va->vm = NULL;
1424 va->flags &= ~VM_VM_AREA;
1425 spin_unlock(&vmap_area_lock);
1426
1427 vmap_debug_free_range(va->va_start, va->va_end);
1428 free_unmap_vmap_area(va);
1429 vm->size -= PAGE_SIZE;
1430
1431 return vm;
1432 }
1433 return NULL;
1434 }
1435
1436 static void __vunmap(const void *addr, int deallocate_pages)
1437 {
1438 struct vm_struct *area;
1439
1440 if (!addr)
1441 return;
1442
1443 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1444 addr))
1445 return;
1446
1447 area = remove_vm_area(addr);
1448 if (unlikely(!area)) {
1449 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1450 addr);
1451 return;
1452 }
1453
1454 debug_check_no_locks_freed(addr, area->size);
1455 debug_check_no_obj_freed(addr, area->size);
1456
1457 if (deallocate_pages) {
1458 int i;
1459
1460 for (i = 0; i < area->nr_pages; i++) {
1461 struct page *page = area->pages[i];
1462
1463 BUG_ON(!page);
1464 __free_page(page);
1465 }
1466
1467 if (area->flags & VM_VPAGES)
1468 vfree(area->pages);
1469 else
1470 kfree(area->pages);
1471 }
1472
1473 kfree(area);
1474 return;
1475 }
1476
1477 /**
1478 * vfree - release memory allocated by vmalloc()
1479 * @addr: memory base address
1480 *
1481 * Free the virtually continuous memory area starting at @addr, as
1482 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1483 * NULL, no operation is performed.
1484 *
1485 * Must not be called in NMI context (strictly speaking, only if we don't
1486 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1487 * conventions for vfree() arch-depenedent would be a really bad idea)
1488 *
1489 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1490 */
1491 void vfree(const void *addr)
1492 {
1493 BUG_ON(in_nmi());
1494
1495 kmemleak_free(addr);
1496
1497 if (!addr)
1498 return;
1499 if (unlikely(in_interrupt())) {
1500 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1501 if (llist_add((struct llist_node *)addr, &p->list))
1502 schedule_work(&p->wq);
1503 } else
1504 __vunmap(addr, 1);
1505 }
1506 EXPORT_SYMBOL(vfree);
1507
1508 /**
1509 * vunmap - release virtual mapping obtained by vmap()
1510 * @addr: memory base address
1511 *
1512 * Free the virtually contiguous memory area starting at @addr,
1513 * which was created from the page array passed to vmap().
1514 *
1515 * Must not be called in interrupt context.
1516 */
1517 void vunmap(const void *addr)
1518 {
1519 BUG_ON(in_interrupt());
1520 might_sleep();
1521 if (addr)
1522 __vunmap(addr, 0);
1523 }
1524 EXPORT_SYMBOL(vunmap);
1525
1526 /**
1527 * vmap - map an array of pages into virtually contiguous space
1528 * @pages: array of page pointers
1529 * @count: number of pages to map
1530 * @flags: vm_area->flags
1531 * @prot: page protection for the mapping
1532 *
1533 * Maps @count pages from @pages into contiguous kernel virtual
1534 * space.
1535 */
1536 void *vmap(struct page **pages, unsigned int count,
1537 unsigned long flags, pgprot_t prot)
1538 {
1539 struct vm_struct *area;
1540
1541 might_sleep();
1542
1543 if (count > totalram_pages)
1544 return NULL;
1545
1546 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1547 __builtin_return_address(0));
1548 if (!area)
1549 return NULL;
1550
1551 if (map_vm_area(area, prot, &pages)) {
1552 vunmap(area->addr);
1553 return NULL;
1554 }
1555
1556 return area->addr;
1557 }
1558 EXPORT_SYMBOL(vmap);
1559
1560 static void *__vmalloc_node(unsigned long size, unsigned long align,
1561 gfp_t gfp_mask, pgprot_t prot,
1562 int node, const void *caller);
1563 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1564 pgprot_t prot, int node)
1565 {
1566 const int order = 0;
1567 struct page **pages;
1568 unsigned int nr_pages, array_size, i;
1569 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1570
1571 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1572 array_size = (nr_pages * sizeof(struct page *));
1573
1574 area->nr_pages = nr_pages;
1575 /* Please note that the recursion is strictly bounded. */
1576 if (array_size > PAGE_SIZE) {
1577 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1578 PAGE_KERNEL, node, area->caller);
1579 area->flags |= VM_VPAGES;
1580 } else {
1581 pages = kmalloc_node(array_size, nested_gfp, node);
1582 }
1583 area->pages = pages;
1584 if (!area->pages) {
1585 remove_vm_area(area->addr);
1586 kfree(area);
1587 return NULL;
1588 }
1589
1590 for (i = 0; i < area->nr_pages; i++) {
1591 struct page *page;
1592 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1593
1594 if (node == NUMA_NO_NODE)
1595 page = alloc_page(tmp_mask);
1596 else
1597 page = alloc_pages_node(node, tmp_mask, order);
1598
1599 if (unlikely(!page)) {
1600 /* Successfully allocated i pages, free them in __vunmap() */
1601 area->nr_pages = i;
1602 goto fail;
1603 }
1604 area->pages[i] = page;
1605 }
1606
1607 if (map_vm_area(area, prot, &pages))
1608 goto fail;
1609 return area->addr;
1610
1611 fail:
1612 warn_alloc_failed(gfp_mask, order,
1613 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1614 (area->nr_pages*PAGE_SIZE), area->size);
1615 vfree(area->addr);
1616 return NULL;
1617 }
1618
1619 /**
1620 * __vmalloc_node_range - allocate virtually contiguous memory
1621 * @size: allocation size
1622 * @align: desired alignment
1623 * @start: vm area range start
1624 * @end: vm area range end
1625 * @gfp_mask: flags for the page level allocator
1626 * @prot: protection mask for the allocated pages
1627 * @node: node to use for allocation or NUMA_NO_NODE
1628 * @caller: caller's return address
1629 *
1630 * Allocate enough pages to cover @size from the page level
1631 * allocator with @gfp_mask flags. Map them into contiguous
1632 * kernel virtual space, using a pagetable protection of @prot.
1633 */
1634 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1635 unsigned long start, unsigned long end, gfp_t gfp_mask,
1636 pgprot_t prot, int node, const void *caller)
1637 {
1638 struct vm_struct *area;
1639 void *addr;
1640 unsigned long real_size = size;
1641
1642 size = PAGE_ALIGN(size);
1643 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1644 goto fail;
1645
1646 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1647 start, end, node, gfp_mask, caller);
1648 if (!area)
1649 goto fail;
1650
1651 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1652 if (!addr)
1653 return NULL;
1654
1655 /*
1656 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1657 * flag. It means that vm_struct is not fully initialized.
1658 * Now, it is fully initialized, so remove this flag here.
1659 */
1660 clear_vm_uninitialized_flag(area);
1661
1662 /*
1663 * A ref_count = 2 is needed because vm_struct allocated in
1664 * __get_vm_area_node() contains a reference to the virtual address of
1665 * the vmalloc'ed block.
1666 */
1667 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1668
1669 return addr;
1670
1671 fail:
1672 warn_alloc_failed(gfp_mask, 0,
1673 "vmalloc: allocation failure: %lu bytes\n",
1674 real_size);
1675 return NULL;
1676 }
1677
1678 /**
1679 * __vmalloc_node - allocate virtually contiguous memory
1680 * @size: allocation size
1681 * @align: desired alignment
1682 * @gfp_mask: flags for the page level allocator
1683 * @prot: protection mask for the allocated pages
1684 * @node: node to use for allocation or NUMA_NO_NODE
1685 * @caller: caller's return address
1686 *
1687 * Allocate enough pages to cover @size from the page level
1688 * allocator with @gfp_mask flags. Map them into contiguous
1689 * kernel virtual space, using a pagetable protection of @prot.
1690 */
1691 static void *__vmalloc_node(unsigned long size, unsigned long align,
1692 gfp_t gfp_mask, pgprot_t prot,
1693 int node, const void *caller)
1694 {
1695 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1696 gfp_mask, prot, node, caller);
1697 }
1698
1699 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1700 {
1701 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1702 __builtin_return_address(0));
1703 }
1704 EXPORT_SYMBOL(__vmalloc);
1705
1706 static inline void *__vmalloc_node_flags(unsigned long size,
1707 int node, gfp_t flags)
1708 {
1709 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1710 node, __builtin_return_address(0));
1711 }
1712
1713 /**
1714 * vmalloc - allocate virtually contiguous memory
1715 * @size: allocation size
1716 * Allocate enough pages to cover @size from the page level
1717 * allocator and map them into contiguous kernel virtual space.
1718 *
1719 * For tight control over page level allocator and protection flags
1720 * use __vmalloc() instead.
1721 */
1722 void *vmalloc(unsigned long size)
1723 {
1724 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1725 GFP_KERNEL | __GFP_HIGHMEM);
1726 }
1727 EXPORT_SYMBOL(vmalloc);
1728
1729 /**
1730 * vzalloc - allocate virtually contiguous memory with zero fill
1731 * @size: allocation size
1732 * Allocate enough pages to cover @size from the page level
1733 * allocator and map them into contiguous kernel virtual space.
1734 * The memory allocated is set to zero.
1735 *
1736 * For tight control over page level allocator and protection flags
1737 * use __vmalloc() instead.
1738 */
1739 void *vzalloc(unsigned long size)
1740 {
1741 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1742 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1743 }
1744 EXPORT_SYMBOL(vzalloc);
1745
1746 /**
1747 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1748 * @size: allocation size
1749 *
1750 * The resulting memory area is zeroed so it can be mapped to userspace
1751 * without leaking data.
1752 */
1753 void *vmalloc_user(unsigned long size)
1754 {
1755 struct vm_struct *area;
1756 void *ret;
1757
1758 ret = __vmalloc_node(size, SHMLBA,
1759 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1760 PAGE_KERNEL, NUMA_NO_NODE,
1761 __builtin_return_address(0));
1762 if (ret) {
1763 area = find_vm_area(ret);
1764 area->flags |= VM_USERMAP;
1765 }
1766 return ret;
1767 }
1768 EXPORT_SYMBOL(vmalloc_user);
1769
1770 /**
1771 * vmalloc_node - allocate memory on a specific node
1772 * @size: allocation size
1773 * @node: numa node
1774 *
1775 * Allocate enough pages to cover @size from the page level
1776 * allocator and map them into contiguous kernel virtual space.
1777 *
1778 * For tight control over page level allocator and protection flags
1779 * use __vmalloc() instead.
1780 */
1781 void *vmalloc_node(unsigned long size, int node)
1782 {
1783 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1784 node, __builtin_return_address(0));
1785 }
1786 EXPORT_SYMBOL(vmalloc_node);
1787
1788 /**
1789 * vzalloc_node - allocate memory on a specific node with zero fill
1790 * @size: allocation size
1791 * @node: numa node
1792 *
1793 * Allocate enough pages to cover @size from the page level
1794 * allocator and map them into contiguous kernel virtual space.
1795 * The memory allocated is set to zero.
1796 *
1797 * For tight control over page level allocator and protection flags
1798 * use __vmalloc_node() instead.
1799 */
1800 void *vzalloc_node(unsigned long size, int node)
1801 {
1802 return __vmalloc_node_flags(size, node,
1803 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1804 }
1805 EXPORT_SYMBOL(vzalloc_node);
1806
1807 #ifndef PAGE_KERNEL_EXEC
1808 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1809 #endif
1810
1811 /**
1812 * vmalloc_exec - allocate virtually contiguous, executable memory
1813 * @size: allocation size
1814 *
1815 * Kernel-internal function to allocate enough pages to cover @size
1816 * the page level allocator and map them into contiguous and
1817 * executable kernel virtual space.
1818 *
1819 * For tight control over page level allocator and protection flags
1820 * use __vmalloc() instead.
1821 */
1822
1823 void *vmalloc_exec(unsigned long size)
1824 {
1825 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1826 NUMA_NO_NODE, __builtin_return_address(0));
1827 }
1828
1829 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1830 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1831 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1832 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1833 #else
1834 #define GFP_VMALLOC32 GFP_KERNEL
1835 #endif
1836
1837 /**
1838 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1839 * @size: allocation size
1840 *
1841 * Allocate enough 32bit PA addressable pages to cover @size from the
1842 * page level allocator and map them into contiguous kernel virtual space.
1843 */
1844 void *vmalloc_32(unsigned long size)
1845 {
1846 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1847 NUMA_NO_NODE, __builtin_return_address(0));
1848 }
1849 EXPORT_SYMBOL(vmalloc_32);
1850
1851 /**
1852 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1853 * @size: allocation size
1854 *
1855 * The resulting memory area is 32bit addressable and zeroed so it can be
1856 * mapped to userspace without leaking data.
1857 */
1858 void *vmalloc_32_user(unsigned long size)
1859 {
1860 struct vm_struct *area;
1861 void *ret;
1862
1863 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1864 NUMA_NO_NODE, __builtin_return_address(0));
1865 if (ret) {
1866 area = find_vm_area(ret);
1867 area->flags |= VM_USERMAP;
1868 }
1869 return ret;
1870 }
1871 EXPORT_SYMBOL(vmalloc_32_user);
1872
1873 /*
1874 * small helper routine , copy contents to buf from addr.
1875 * If the page is not present, fill zero.
1876 */
1877
1878 static int aligned_vread(char *buf, char *addr, unsigned long count)
1879 {
1880 struct page *p;
1881 int copied = 0;
1882
1883 while (count) {
1884 unsigned long offset, length;
1885
1886 offset = (unsigned long)addr & ~PAGE_MASK;
1887 length = PAGE_SIZE - offset;
1888 if (length > count)
1889 length = count;
1890 p = vmalloc_to_page(addr);
1891 /*
1892 * To do safe access to this _mapped_ area, we need
1893 * lock. But adding lock here means that we need to add
1894 * overhead of vmalloc()/vfree() calles for this _debug_
1895 * interface, rarely used. Instead of that, we'll use
1896 * kmap() and get small overhead in this access function.
1897 */
1898 if (p) {
1899 /*
1900 * we can expect USER0 is not used (see vread/vwrite's
1901 * function description)
1902 */
1903 void *map = kmap_atomic(p);
1904 memcpy(buf, map + offset, length);
1905 kunmap_atomic(map);
1906 } else
1907 memset(buf, 0, length);
1908
1909 addr += length;
1910 buf += length;
1911 copied += length;
1912 count -= length;
1913 }
1914 return copied;
1915 }
1916
1917 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1918 {
1919 struct page *p;
1920 int copied = 0;
1921
1922 while (count) {
1923 unsigned long offset, length;
1924
1925 offset = (unsigned long)addr & ~PAGE_MASK;
1926 length = PAGE_SIZE - offset;
1927 if (length > count)
1928 length = count;
1929 p = vmalloc_to_page(addr);
1930 /*
1931 * To do safe access to this _mapped_ area, we need
1932 * lock. But adding lock here means that we need to add
1933 * overhead of vmalloc()/vfree() calles for this _debug_
1934 * interface, rarely used. Instead of that, we'll use
1935 * kmap() and get small overhead in this access function.
1936 */
1937 if (p) {
1938 /*
1939 * we can expect USER0 is not used (see vread/vwrite's
1940 * function description)
1941 */
1942 void *map = kmap_atomic(p);
1943 memcpy(map + offset, buf, length);
1944 kunmap_atomic(map);
1945 }
1946 addr += length;
1947 buf += length;
1948 copied += length;
1949 count -= length;
1950 }
1951 return copied;
1952 }
1953
1954 /**
1955 * vread() - read vmalloc area in a safe way.
1956 * @buf: buffer for reading data
1957 * @addr: vm address.
1958 * @count: number of bytes to be read.
1959 *
1960 * Returns # of bytes which addr and buf should be increased.
1961 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1962 * includes any intersect with alive vmalloc area.
1963 *
1964 * This function checks that addr is a valid vmalloc'ed area, and
1965 * copy data from that area to a given buffer. If the given memory range
1966 * of [addr...addr+count) includes some valid address, data is copied to
1967 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1968 * IOREMAP area is treated as memory hole and no copy is done.
1969 *
1970 * If [addr...addr+count) doesn't includes any intersects with alive
1971 * vm_struct area, returns 0. @buf should be kernel's buffer.
1972 *
1973 * Note: In usual ops, vread() is never necessary because the caller
1974 * should know vmalloc() area is valid and can use memcpy().
1975 * This is for routines which have to access vmalloc area without
1976 * any informaion, as /dev/kmem.
1977 *
1978 */
1979
1980 long vread(char *buf, char *addr, unsigned long count)
1981 {
1982 struct vmap_area *va;
1983 struct vm_struct *vm;
1984 char *vaddr, *buf_start = buf;
1985 unsigned long buflen = count;
1986 unsigned long n;
1987
1988 /* Don't allow overflow */
1989 if ((unsigned long) addr + count < count)
1990 count = -(unsigned long) addr;
1991
1992 spin_lock(&vmap_area_lock);
1993 list_for_each_entry(va, &vmap_area_list, list) {
1994 if (!count)
1995 break;
1996
1997 if (!(va->flags & VM_VM_AREA))
1998 continue;
1999
2000 vm = va->vm;
2001 vaddr = (char *) vm->addr;
2002 if (addr >= vaddr + get_vm_area_size(vm))
2003 continue;
2004 while (addr < vaddr) {
2005 if (count == 0)
2006 goto finished;
2007 *buf = '\0';
2008 buf++;
2009 addr++;
2010 count--;
2011 }
2012 n = vaddr + get_vm_area_size(vm) - addr;
2013 if (n > count)
2014 n = count;
2015 if (!(vm->flags & VM_IOREMAP))
2016 aligned_vread(buf, addr, n);
2017 else /* IOREMAP area is treated as memory hole */
2018 memset(buf, 0, n);
2019 buf += n;
2020 addr += n;
2021 count -= n;
2022 }
2023 finished:
2024 spin_unlock(&vmap_area_lock);
2025
2026 if (buf == buf_start)
2027 return 0;
2028 /* zero-fill memory holes */
2029 if (buf != buf_start + buflen)
2030 memset(buf, 0, buflen - (buf - buf_start));
2031
2032 return buflen;
2033 }
2034
2035 /**
2036 * vwrite() - write vmalloc area in a safe way.
2037 * @buf: buffer for source data
2038 * @addr: vm address.
2039 * @count: number of bytes to be read.
2040 *
2041 * Returns # of bytes which addr and buf should be incresed.
2042 * (same number to @count).
2043 * If [addr...addr+count) doesn't includes any intersect with valid
2044 * vmalloc area, returns 0.
2045 *
2046 * This function checks that addr is a valid vmalloc'ed area, and
2047 * copy data from a buffer to the given addr. If specified range of
2048 * [addr...addr+count) includes some valid address, data is copied from
2049 * proper area of @buf. If there are memory holes, no copy to hole.
2050 * IOREMAP area is treated as memory hole and no copy is done.
2051 *
2052 * If [addr...addr+count) doesn't includes any intersects with alive
2053 * vm_struct area, returns 0. @buf should be kernel's buffer.
2054 *
2055 * Note: In usual ops, vwrite() is never necessary because the caller
2056 * should know vmalloc() area is valid and can use memcpy().
2057 * This is for routines which have to access vmalloc area without
2058 * any informaion, as /dev/kmem.
2059 */
2060
2061 long vwrite(char *buf, char *addr, unsigned long count)
2062 {
2063 struct vmap_area *va;
2064 struct vm_struct *vm;
2065 char *vaddr;
2066 unsigned long n, buflen;
2067 int copied = 0;
2068
2069 /* Don't allow overflow */
2070 if ((unsigned long) addr + count < count)
2071 count = -(unsigned long) addr;
2072 buflen = count;
2073
2074 spin_lock(&vmap_area_lock);
2075 list_for_each_entry(va, &vmap_area_list, list) {
2076 if (!count)
2077 break;
2078
2079 if (!(va->flags & VM_VM_AREA))
2080 continue;
2081
2082 vm = va->vm;
2083 vaddr = (char *) vm->addr;
2084 if (addr >= vaddr + get_vm_area_size(vm))
2085 continue;
2086 while (addr < vaddr) {
2087 if (count == 0)
2088 goto finished;
2089 buf++;
2090 addr++;
2091 count--;
2092 }
2093 n = vaddr + get_vm_area_size(vm) - addr;
2094 if (n > count)
2095 n = count;
2096 if (!(vm->flags & VM_IOREMAP)) {
2097 aligned_vwrite(buf, addr, n);
2098 copied++;
2099 }
2100 buf += n;
2101 addr += n;
2102 count -= n;
2103 }
2104 finished:
2105 spin_unlock(&vmap_area_lock);
2106 if (!copied)
2107 return 0;
2108 return buflen;
2109 }
2110
2111 /**
2112 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2113 * @vma: vma to cover
2114 * @uaddr: target user address to start at
2115 * @kaddr: virtual address of vmalloc kernel memory
2116 * @size: size of map area
2117 *
2118 * Returns: 0 for success, -Exxx on failure
2119 *
2120 * This function checks that @kaddr is a valid vmalloc'ed area,
2121 * and that it is big enough to cover the range starting at
2122 * @uaddr in @vma. Will return failure if that criteria isn't
2123 * met.
2124 *
2125 * Similar to remap_pfn_range() (see mm/memory.c)
2126 */
2127 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2128 void *kaddr, unsigned long size)
2129 {
2130 struct vm_struct *area;
2131
2132 size = PAGE_ALIGN(size);
2133
2134 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2135 return -EINVAL;
2136
2137 area = find_vm_area(kaddr);
2138 if (!area)
2139 return -EINVAL;
2140
2141 if (!(area->flags & VM_USERMAP))
2142 return -EINVAL;
2143
2144 if (kaddr + size > area->addr + area->size)
2145 return -EINVAL;
2146
2147 do {
2148 struct page *page = vmalloc_to_page(kaddr);
2149 int ret;
2150
2151 ret = vm_insert_page(vma, uaddr, page);
2152 if (ret)
2153 return ret;
2154
2155 uaddr += PAGE_SIZE;
2156 kaddr += PAGE_SIZE;
2157 size -= PAGE_SIZE;
2158 } while (size > 0);
2159
2160 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2161
2162 return 0;
2163 }
2164 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2165
2166 /**
2167 * remap_vmalloc_range - map vmalloc pages to userspace
2168 * @vma: vma to cover (map full range of vma)
2169 * @addr: vmalloc memory
2170 * @pgoff: number of pages into addr before first page to map
2171 *
2172 * Returns: 0 for success, -Exxx on failure
2173 *
2174 * This function checks that addr is a valid vmalloc'ed area, and
2175 * that it is big enough to cover the vma. Will return failure if
2176 * that criteria isn't met.
2177 *
2178 * Similar to remap_pfn_range() (see mm/memory.c)
2179 */
2180 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2181 unsigned long pgoff)
2182 {
2183 return remap_vmalloc_range_partial(vma, vma->vm_start,
2184 addr + (pgoff << PAGE_SHIFT),
2185 vma->vm_end - vma->vm_start);
2186 }
2187 EXPORT_SYMBOL(remap_vmalloc_range);
2188
2189 /*
2190 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2191 * have one.
2192 */
2193 void __weak vmalloc_sync_all(void)
2194 {
2195 }
2196
2197
2198 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2199 {
2200 pte_t ***p = data;
2201
2202 if (p) {
2203 *(*p) = pte;
2204 (*p)++;
2205 }
2206 return 0;
2207 }
2208
2209 /**
2210 * alloc_vm_area - allocate a range of kernel address space
2211 * @size: size of the area
2212 * @ptes: returns the PTEs for the address space
2213 *
2214 * Returns: NULL on failure, vm_struct on success
2215 *
2216 * This function reserves a range of kernel address space, and
2217 * allocates pagetables to map that range. No actual mappings
2218 * are created.
2219 *
2220 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2221 * allocated for the VM area are returned.
2222 */
2223 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2224 {
2225 struct vm_struct *area;
2226
2227 area = get_vm_area_caller(size, VM_IOREMAP,
2228 __builtin_return_address(0));
2229 if (area == NULL)
2230 return NULL;
2231
2232 /*
2233 * This ensures that page tables are constructed for this region
2234 * of kernel virtual address space and mapped into init_mm.
2235 */
2236 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2237 size, f, ptes ? &ptes : NULL)) {
2238 free_vm_area(area);
2239 return NULL;
2240 }
2241
2242 return area;
2243 }
2244 EXPORT_SYMBOL_GPL(alloc_vm_area);
2245
2246 void free_vm_area(struct vm_struct *area)
2247 {
2248 struct vm_struct *ret;
2249 ret = remove_vm_area(area->addr);
2250 BUG_ON(ret != area);
2251 kfree(area);
2252 }
2253 EXPORT_SYMBOL_GPL(free_vm_area);
2254
2255 #ifdef CONFIG_SMP
2256 static struct vmap_area *node_to_va(struct rb_node *n)
2257 {
2258 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2259 }
2260
2261 /**
2262 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2263 * @end: target address
2264 * @pnext: out arg for the next vmap_area
2265 * @pprev: out arg for the previous vmap_area
2266 *
2267 * Returns: %true if either or both of next and prev are found,
2268 * %false if no vmap_area exists
2269 *
2270 * Find vmap_areas end addresses of which enclose @end. ie. if not
2271 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2272 */
2273 static bool pvm_find_next_prev(unsigned long end,
2274 struct vmap_area **pnext,
2275 struct vmap_area **pprev)
2276 {
2277 struct rb_node *n = vmap_area_root.rb_node;
2278 struct vmap_area *va = NULL;
2279
2280 while (n) {
2281 va = rb_entry(n, struct vmap_area, rb_node);
2282 if (end < va->va_end)
2283 n = n->rb_left;
2284 else if (end > va->va_end)
2285 n = n->rb_right;
2286 else
2287 break;
2288 }
2289
2290 if (!va)
2291 return false;
2292
2293 if (va->va_end > end) {
2294 *pnext = va;
2295 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2296 } else {
2297 *pprev = va;
2298 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2299 }
2300 return true;
2301 }
2302
2303 /**
2304 * pvm_determine_end - find the highest aligned address between two vmap_areas
2305 * @pnext: in/out arg for the next vmap_area
2306 * @pprev: in/out arg for the previous vmap_area
2307 * @align: alignment
2308 *
2309 * Returns: determined end address
2310 *
2311 * Find the highest aligned address between *@pnext and *@pprev below
2312 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2313 * down address is between the end addresses of the two vmap_areas.
2314 *
2315 * Please note that the address returned by this function may fall
2316 * inside *@pnext vmap_area. The caller is responsible for checking
2317 * that.
2318 */
2319 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2320 struct vmap_area **pprev,
2321 unsigned long align)
2322 {
2323 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2324 unsigned long addr;
2325
2326 if (*pnext)
2327 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2328 else
2329 addr = vmalloc_end;
2330
2331 while (*pprev && (*pprev)->va_end > addr) {
2332 *pnext = *pprev;
2333 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2334 }
2335
2336 return addr;
2337 }
2338
2339 /**
2340 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2341 * @offsets: array containing offset of each area
2342 * @sizes: array containing size of each area
2343 * @nr_vms: the number of areas to allocate
2344 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2345 *
2346 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2347 * vm_structs on success, %NULL on failure
2348 *
2349 * Percpu allocator wants to use congruent vm areas so that it can
2350 * maintain the offsets among percpu areas. This function allocates
2351 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2352 * be scattered pretty far, distance between two areas easily going up
2353 * to gigabytes. To avoid interacting with regular vmallocs, these
2354 * areas are allocated from top.
2355 *
2356 * Despite its complicated look, this allocator is rather simple. It
2357 * does everything top-down and scans areas from the end looking for
2358 * matching slot. While scanning, if any of the areas overlaps with
2359 * existing vmap_area, the base address is pulled down to fit the
2360 * area. Scanning is repeated till all the areas fit and then all
2361 * necessary data structres are inserted and the result is returned.
2362 */
2363 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2364 const size_t *sizes, int nr_vms,
2365 size_t align)
2366 {
2367 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2368 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2369 struct vmap_area **vas, *prev, *next;
2370 struct vm_struct **vms;
2371 int area, area2, last_area, term_area;
2372 unsigned long base, start, end, last_end;
2373 bool purged = false;
2374
2375 /* verify parameters and allocate data structures */
2376 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2377 for (last_area = 0, area = 0; area < nr_vms; area++) {
2378 start = offsets[area];
2379 end = start + sizes[area];
2380
2381 /* is everything aligned properly? */
2382 BUG_ON(!IS_ALIGNED(offsets[area], align));
2383 BUG_ON(!IS_ALIGNED(sizes[area], align));
2384
2385 /* detect the area with the highest address */
2386 if (start > offsets[last_area])
2387 last_area = area;
2388
2389 for (area2 = 0; area2 < nr_vms; area2++) {
2390 unsigned long start2 = offsets[area2];
2391 unsigned long end2 = start2 + sizes[area2];
2392
2393 if (area2 == area)
2394 continue;
2395
2396 BUG_ON(start2 >= start && start2 < end);
2397 BUG_ON(end2 <= end && end2 > start);
2398 }
2399 }
2400 last_end = offsets[last_area] + sizes[last_area];
2401
2402 if (vmalloc_end - vmalloc_start < last_end) {
2403 WARN_ON(true);
2404 return NULL;
2405 }
2406
2407 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2408 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2409 if (!vas || !vms)
2410 goto err_free2;
2411
2412 for (area = 0; area < nr_vms; area++) {
2413 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2414 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2415 if (!vas[area] || !vms[area])
2416 goto err_free;
2417 }
2418 retry:
2419 spin_lock(&vmap_area_lock);
2420
2421 /* start scanning - we scan from the top, begin with the last area */
2422 area = term_area = last_area;
2423 start = offsets[area];
2424 end = start + sizes[area];
2425
2426 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2427 base = vmalloc_end - last_end;
2428 goto found;
2429 }
2430 base = pvm_determine_end(&next, &prev, align) - end;
2431
2432 while (true) {
2433 BUG_ON(next && next->va_end <= base + end);
2434 BUG_ON(prev && prev->va_end > base + end);
2435
2436 /*
2437 * base might have underflowed, add last_end before
2438 * comparing.
2439 */
2440 if (base + last_end < vmalloc_start + last_end) {
2441 spin_unlock(&vmap_area_lock);
2442 if (!purged) {
2443 purge_vmap_area_lazy();
2444 purged = true;
2445 goto retry;
2446 }
2447 goto err_free;
2448 }
2449
2450 /*
2451 * If next overlaps, move base downwards so that it's
2452 * right below next and then recheck.
2453 */
2454 if (next && next->va_start < base + end) {
2455 base = pvm_determine_end(&next, &prev, align) - end;
2456 term_area = area;
2457 continue;
2458 }
2459
2460 /*
2461 * If prev overlaps, shift down next and prev and move
2462 * base so that it's right below new next and then
2463 * recheck.
2464 */
2465 if (prev && prev->va_end > base + start) {
2466 next = prev;
2467 prev = node_to_va(rb_prev(&next->rb_node));
2468 base = pvm_determine_end(&next, &prev, align) - end;
2469 term_area = area;
2470 continue;
2471 }
2472
2473 /*
2474 * This area fits, move on to the previous one. If
2475 * the previous one is the terminal one, we're done.
2476 */
2477 area = (area + nr_vms - 1) % nr_vms;
2478 if (area == term_area)
2479 break;
2480 start = offsets[area];
2481 end = start + sizes[area];
2482 pvm_find_next_prev(base + end, &next, &prev);
2483 }
2484 found:
2485 /* we've found a fitting base, insert all va's */
2486 for (area = 0; area < nr_vms; area++) {
2487 struct vmap_area *va = vas[area];
2488
2489 va->va_start = base + offsets[area];
2490 va->va_end = va->va_start + sizes[area];
2491 __insert_vmap_area(va);
2492 }
2493
2494 vmap_area_pcpu_hole = base + offsets[last_area];
2495
2496 spin_unlock(&vmap_area_lock);
2497
2498 /* insert all vm's */
2499 for (area = 0; area < nr_vms; area++)
2500 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2501 pcpu_get_vm_areas);
2502
2503 kfree(vas);
2504 return vms;
2505
2506 err_free:
2507 for (area = 0; area < nr_vms; area++) {
2508 kfree(vas[area]);
2509 kfree(vms[area]);
2510 }
2511 err_free2:
2512 kfree(vas);
2513 kfree(vms);
2514 return NULL;
2515 }
2516
2517 /**
2518 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2519 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2520 * @nr_vms: the number of allocated areas
2521 *
2522 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2523 */
2524 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2525 {
2526 int i;
2527
2528 for (i = 0; i < nr_vms; i++)
2529 free_vm_area(vms[i]);
2530 kfree(vms);
2531 }
2532 #endif /* CONFIG_SMP */
2533
2534 #ifdef CONFIG_PROC_FS
2535 static void *s_start(struct seq_file *m, loff_t *pos)
2536 __acquires(&vmap_area_lock)
2537 {
2538 loff_t n = *pos;
2539 struct vmap_area *va;
2540
2541 spin_lock(&vmap_area_lock);
2542 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2543 while (n > 0 && &va->list != &vmap_area_list) {
2544 n--;
2545 va = list_entry(va->list.next, typeof(*va), list);
2546 }
2547 if (!n && &va->list != &vmap_area_list)
2548 return va;
2549
2550 return NULL;
2551
2552 }
2553
2554 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2555 {
2556 struct vmap_area *va = p, *next;
2557
2558 ++*pos;
2559 next = list_entry(va->list.next, typeof(*va), list);
2560 if (&next->list != &vmap_area_list)
2561 return next;
2562
2563 return NULL;
2564 }
2565
2566 static void s_stop(struct seq_file *m, void *p)
2567 __releases(&vmap_area_lock)
2568 {
2569 spin_unlock(&vmap_area_lock);
2570 }
2571
2572 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2573 {
2574 if (IS_ENABLED(CONFIG_NUMA)) {
2575 unsigned int nr, *counters = m->private;
2576
2577 if (!counters)
2578 return;
2579
2580 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2581 smp_rmb();
2582 if (v->flags & VM_UNINITIALIZED)
2583 return;
2584
2585 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2586
2587 for (nr = 0; nr < v->nr_pages; nr++)
2588 counters[page_to_nid(v->pages[nr])]++;
2589
2590 for_each_node_state(nr, N_HIGH_MEMORY)
2591 if (counters[nr])
2592 seq_printf(m, " N%u=%u", nr, counters[nr]);
2593 }
2594 }
2595
2596 static int s_show(struct seq_file *m, void *p)
2597 {
2598 struct vmap_area *va = p;
2599 struct vm_struct *v;
2600
2601 /*
2602 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2603 * behalf of vmap area is being tear down or vm_map_ram allocation.
2604 */
2605 if (!(va->flags & VM_VM_AREA))
2606 return 0;
2607
2608 v = va->vm;
2609
2610 seq_printf(m, "0x%pK-0x%pK %7ld",
2611 v->addr, v->addr + v->size, v->size);
2612
2613 if (v->caller)
2614 seq_printf(m, " %pS", v->caller);
2615
2616 if (v->nr_pages)
2617 seq_printf(m, " pages=%d", v->nr_pages);
2618
2619 if (v->phys_addr)
2620 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2621
2622 if (v->flags & VM_IOREMAP)
2623 seq_puts(m, " ioremap");
2624
2625 if (v->flags & VM_ALLOC)
2626 seq_puts(m, " vmalloc");
2627
2628 if (v->flags & VM_MAP)
2629 seq_puts(m, " vmap");
2630
2631 if (v->flags & VM_USERMAP)
2632 seq_puts(m, " user");
2633
2634 if (v->flags & VM_VPAGES)
2635 seq_puts(m, " vpages");
2636
2637 show_numa_info(m, v);
2638 seq_putc(m, '\n');
2639 return 0;
2640 }
2641
2642 static const struct seq_operations vmalloc_op = {
2643 .start = s_start,
2644 .next = s_next,
2645 .stop = s_stop,
2646 .show = s_show,
2647 };
2648
2649 static int vmalloc_open(struct inode *inode, struct file *file)
2650 {
2651 unsigned int *ptr = NULL;
2652 int ret;
2653
2654 if (IS_ENABLED(CONFIG_NUMA)) {
2655 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2656 if (ptr == NULL)
2657 return -ENOMEM;
2658 }
2659 ret = seq_open(file, &vmalloc_op);
2660 if (!ret) {
2661 struct seq_file *m = file->private_data;
2662 m->private = ptr;
2663 } else
2664 kfree(ptr);
2665 return ret;
2666 }
2667
2668 static const struct file_operations proc_vmalloc_operations = {
2669 .open = vmalloc_open,
2670 .read = seq_read,
2671 .llseek = seq_lseek,
2672 .release = seq_release_private,
2673 };
2674
2675 static int __init proc_vmalloc_init(void)
2676 {
2677 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2678 return 0;
2679 }
2680 module_init(proc_vmalloc_init);
2681
2682 void get_vmalloc_info(struct vmalloc_info *vmi)
2683 {
2684 struct vmap_area *va;
2685 unsigned long free_area_size;
2686 unsigned long prev_end;
2687
2688 vmi->used = 0;
2689 vmi->largest_chunk = 0;
2690
2691 prev_end = VMALLOC_START;
2692
2693 spin_lock(&vmap_area_lock);
2694
2695 if (list_empty(&vmap_area_list)) {
2696 vmi->largest_chunk = VMALLOC_TOTAL;
2697 goto out;
2698 }
2699
2700 list_for_each_entry(va, &vmap_area_list, list) {
2701 unsigned long addr = va->va_start;
2702
2703 /*
2704 * Some archs keep another range for modules in vmalloc space
2705 */
2706 if (addr < VMALLOC_START)
2707 continue;
2708 if (addr >= VMALLOC_END)
2709 break;
2710
2711 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2712 continue;
2713
2714 vmi->used += (va->va_end - va->va_start);
2715
2716 free_area_size = addr - prev_end;
2717 if (vmi->largest_chunk < free_area_size)
2718 vmi->largest_chunk = free_area_size;
2719
2720 prev_end = va->va_end;
2721 }
2722
2723 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2724 vmi->largest_chunk = VMALLOC_END - prev_end;
2725
2726 out:
2727 spin_unlock(&vmap_area_lock);
2728 }
2729 #endif
2730
This page took 0.085369 seconds and 5 git commands to generate.