mm: munlock: remove unnecessary call to lru_add_drain()
[deliverable/linux.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29 int cpu;
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40 }
41
42 /*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 /*
56 * Fold the foreign cpu events into our own.
57 *
58 * This is adding to the events on one processor
59 * but keeps the global counts constant.
60 */
61 void vm_events_fold_cpu(int cpu)
62 {
63 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64 int i;
65
66 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67 count_vm_events(i, fold_state->event[i]);
68 fold_state->event[i] = 0;
69 }
70 }
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75 * Manage combined zone based / global counters
76 *
77 * vm_stat contains the global counters
78 */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 int calculate_pressure_threshold(struct zone *zone)
85 {
86 int threshold;
87 int watermark_distance;
88
89 /*
90 * As vmstats are not up to date, there is drift between the estimated
91 * and real values. For high thresholds and a high number of CPUs, it
92 * is possible for the min watermark to be breached while the estimated
93 * value looks fine. The pressure threshold is a reduced value such
94 * that even the maximum amount of drift will not accidentally breach
95 * the min watermark
96 */
97 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100 /*
101 * Maximum threshold is 125
102 */
103 threshold = min(125, threshold);
104
105 return threshold;
106 }
107
108 int calculate_normal_threshold(struct zone *zone)
109 {
110 int threshold;
111 int mem; /* memory in 128 MB units */
112
113 /*
114 * The threshold scales with the number of processors and the amount
115 * of memory per zone. More memory means that we can defer updates for
116 * longer, more processors could lead to more contention.
117 * fls() is used to have a cheap way of logarithmic scaling.
118 *
119 * Some sample thresholds:
120 *
121 * Threshold Processors (fls) Zonesize fls(mem+1)
122 * ------------------------------------------------------------------
123 * 8 1 1 0.9-1 GB 4
124 * 16 2 2 0.9-1 GB 4
125 * 20 2 2 1-2 GB 5
126 * 24 2 2 2-4 GB 6
127 * 28 2 2 4-8 GB 7
128 * 32 2 2 8-16 GB 8
129 * 4 2 2 <128M 1
130 * 30 4 3 2-4 GB 5
131 * 48 4 3 8-16 GB 8
132 * 32 8 4 1-2 GB 4
133 * 32 8 4 0.9-1GB 4
134 * 10 16 5 <128M 1
135 * 40 16 5 900M 4
136 * 70 64 7 2-4 GB 5
137 * 84 64 7 4-8 GB 6
138 * 108 512 9 4-8 GB 6
139 * 125 1024 10 8-16 GB 8
140 * 125 1024 10 16-32 GB 9
141 */
142
143 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
144
145 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147 /*
148 * Maximum threshold is 125
149 */
150 threshold = min(125, threshold);
151
152 return threshold;
153 }
154
155 /*
156 * Refresh the thresholds for each zone.
157 */
158 void refresh_zone_stat_thresholds(void)
159 {
160 struct zone *zone;
161 int cpu;
162 int threshold;
163
164 for_each_populated_zone(zone) {
165 unsigned long max_drift, tolerate_drift;
166
167 threshold = calculate_normal_threshold(zone);
168
169 for_each_online_cpu(cpu)
170 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171 = threshold;
172
173 /*
174 * Only set percpu_drift_mark if there is a danger that
175 * NR_FREE_PAGES reports the low watermark is ok when in fact
176 * the min watermark could be breached by an allocation
177 */
178 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179 max_drift = num_online_cpus() * threshold;
180 if (max_drift > tolerate_drift)
181 zone->percpu_drift_mark = high_wmark_pages(zone) +
182 max_drift;
183 }
184 }
185
186 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187 int (*calculate_pressure)(struct zone *))
188 {
189 struct zone *zone;
190 int cpu;
191 int threshold;
192 int i;
193
194 for (i = 0; i < pgdat->nr_zones; i++) {
195 zone = &pgdat->node_zones[i];
196 if (!zone->percpu_drift_mark)
197 continue;
198
199 threshold = (*calculate_pressure)(zone);
200 for_each_possible_cpu(cpu)
201 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202 = threshold;
203 }
204 }
205
206 /*
207 * For use when we know that interrupts are disabled.
208 */
209 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210 int delta)
211 {
212 struct per_cpu_pageset __percpu *pcp = zone->pageset;
213 s8 __percpu *p = pcp->vm_stat_diff + item;
214 long x;
215 long t;
216
217 x = delta + __this_cpu_read(*p);
218
219 t = __this_cpu_read(pcp->stat_threshold);
220
221 if (unlikely(x > t || x < -t)) {
222 zone_page_state_add(x, zone, item);
223 x = 0;
224 }
225 __this_cpu_write(*p, x);
226 }
227 EXPORT_SYMBOL(__mod_zone_page_state);
228
229 /*
230 * Optimized increment and decrement functions.
231 *
232 * These are only for a single page and therefore can take a struct page *
233 * argument instead of struct zone *. This allows the inclusion of the code
234 * generated for page_zone(page) into the optimized functions.
235 *
236 * No overflow check is necessary and therefore the differential can be
237 * incremented or decremented in place which may allow the compilers to
238 * generate better code.
239 * The increment or decrement is known and therefore one boundary check can
240 * be omitted.
241 *
242 * NOTE: These functions are very performance sensitive. Change only
243 * with care.
244 *
245 * Some processors have inc/dec instructions that are atomic vs an interrupt.
246 * However, the code must first determine the differential location in a zone
247 * based on the processor number and then inc/dec the counter. There is no
248 * guarantee without disabling preemption that the processor will not change
249 * in between and therefore the atomicity vs. interrupt cannot be exploited
250 * in a useful way here.
251 */
252 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
253 {
254 struct per_cpu_pageset __percpu *pcp = zone->pageset;
255 s8 __percpu *p = pcp->vm_stat_diff + item;
256 s8 v, t;
257
258 v = __this_cpu_inc_return(*p);
259 t = __this_cpu_read(pcp->stat_threshold);
260 if (unlikely(v > t)) {
261 s8 overstep = t >> 1;
262
263 zone_page_state_add(v + overstep, zone, item);
264 __this_cpu_write(*p, -overstep);
265 }
266 }
267
268 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270 __inc_zone_state(page_zone(page), item);
271 }
272 EXPORT_SYMBOL(__inc_zone_page_state);
273
274 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
275 {
276 struct per_cpu_pageset __percpu *pcp = zone->pageset;
277 s8 __percpu *p = pcp->vm_stat_diff + item;
278 s8 v, t;
279
280 v = __this_cpu_dec_return(*p);
281 t = __this_cpu_read(pcp->stat_threshold);
282 if (unlikely(v < - t)) {
283 s8 overstep = t >> 1;
284
285 zone_page_state_add(v - overstep, zone, item);
286 __this_cpu_write(*p, overstep);
287 }
288 }
289
290 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291 {
292 __dec_zone_state(page_zone(page), item);
293 }
294 EXPORT_SYMBOL(__dec_zone_page_state);
295
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
297 /*
298 * If we have cmpxchg_local support then we do not need to incur the overhead
299 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300 *
301 * mod_state() modifies the zone counter state through atomic per cpu
302 * operations.
303 *
304 * Overstep mode specifies how overstep should handled:
305 * 0 No overstepping
306 * 1 Overstepping half of threshold
307 * -1 Overstepping minus half of threshold
308 */
309 static inline void mod_state(struct zone *zone,
310 enum zone_stat_item item, int delta, int overstep_mode)
311 {
312 struct per_cpu_pageset __percpu *pcp = zone->pageset;
313 s8 __percpu *p = pcp->vm_stat_diff + item;
314 long o, n, t, z;
315
316 do {
317 z = 0; /* overflow to zone counters */
318
319 /*
320 * The fetching of the stat_threshold is racy. We may apply
321 * a counter threshold to the wrong the cpu if we get
322 * rescheduled while executing here. However, the next
323 * counter update will apply the threshold again and
324 * therefore bring the counter under the threshold again.
325 *
326 * Most of the time the thresholds are the same anyways
327 * for all cpus in a zone.
328 */
329 t = this_cpu_read(pcp->stat_threshold);
330
331 o = this_cpu_read(*p);
332 n = delta + o;
333
334 if (n > t || n < -t) {
335 int os = overstep_mode * (t >> 1) ;
336
337 /* Overflow must be added to zone counters */
338 z = n + os;
339 n = -os;
340 }
341 } while (this_cpu_cmpxchg(*p, o, n) != o);
342
343 if (z)
344 zone_page_state_add(z, zone, item);
345 }
346
347 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348 int delta)
349 {
350 mod_state(zone, item, delta, 0);
351 }
352 EXPORT_SYMBOL(mod_zone_page_state);
353
354 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 {
356 mod_state(zone, item, 1, 1);
357 }
358
359 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 {
361 mod_state(page_zone(page), item, 1, 1);
362 }
363 EXPORT_SYMBOL(inc_zone_page_state);
364
365 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 {
367 mod_state(page_zone(page), item, -1, -1);
368 }
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #else
371 /*
372 * Use interrupt disable to serialize counter updates
373 */
374 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375 int delta)
376 {
377 unsigned long flags;
378
379 local_irq_save(flags);
380 __mod_zone_page_state(zone, item, delta);
381 local_irq_restore(flags);
382 }
383 EXPORT_SYMBOL(mod_zone_page_state);
384
385 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 {
387 unsigned long flags;
388
389 local_irq_save(flags);
390 __inc_zone_state(zone, item);
391 local_irq_restore(flags);
392 }
393
394 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 {
396 unsigned long flags;
397 struct zone *zone;
398
399 zone = page_zone(page);
400 local_irq_save(flags);
401 __inc_zone_state(zone, item);
402 local_irq_restore(flags);
403 }
404 EXPORT_SYMBOL(inc_zone_page_state);
405
406 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409
410 local_irq_save(flags);
411 __dec_zone_page_state(page, item);
412 local_irq_restore(flags);
413 }
414 EXPORT_SYMBOL(dec_zone_page_state);
415 #endif
416
417 static inline void fold_diff(int *diff)
418 {
419 int i;
420
421 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
422 if (diff[i])
423 atomic_long_add(diff[i], &vm_stat[i]);
424 }
425
426 /*
427 * Update the zone counters for the current cpu.
428 *
429 * Note that refresh_cpu_vm_stats strives to only access
430 * node local memory. The per cpu pagesets on remote zones are placed
431 * in the memory local to the processor using that pageset. So the
432 * loop over all zones will access a series of cachelines local to
433 * the processor.
434 *
435 * The call to zone_page_state_add updates the cachelines with the
436 * statistics in the remote zone struct as well as the global cachelines
437 * with the global counters. These could cause remote node cache line
438 * bouncing and will have to be only done when necessary.
439 */
440 static void refresh_cpu_vm_stats(void)
441 {
442 struct zone *zone;
443 int i;
444 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
445
446 for_each_populated_zone(zone) {
447 struct per_cpu_pageset __percpu *p = zone->pageset;
448
449 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
450 int v;
451
452 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
453 if (v) {
454
455 atomic_long_add(v, &zone->vm_stat[i]);
456 global_diff[i] += v;
457 #ifdef CONFIG_NUMA
458 /* 3 seconds idle till flush */
459 __this_cpu_write(p->expire, 3);
460 #endif
461 }
462 }
463 cond_resched();
464 #ifdef CONFIG_NUMA
465 /*
466 * Deal with draining the remote pageset of this
467 * processor
468 *
469 * Check if there are pages remaining in this pageset
470 * if not then there is nothing to expire.
471 */
472 if (!__this_cpu_read(p->expire) ||
473 !__this_cpu_read(p->pcp.count))
474 continue;
475
476 /*
477 * We never drain zones local to this processor.
478 */
479 if (zone_to_nid(zone) == numa_node_id()) {
480 __this_cpu_write(p->expire, 0);
481 continue;
482 }
483
484
485 if (__this_cpu_dec_return(p->expire))
486 continue;
487
488 if (__this_cpu_read(p->pcp.count))
489 drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
490 #endif
491 }
492 fold_diff(global_diff);
493 }
494
495 /*
496 * Fold the data for an offline cpu into the global array.
497 * There cannot be any access by the offline cpu and therefore
498 * synchronization is simplified.
499 */
500 void cpu_vm_stats_fold(int cpu)
501 {
502 struct zone *zone;
503 int i;
504 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
505
506 for_each_populated_zone(zone) {
507 struct per_cpu_pageset *p;
508
509 p = per_cpu_ptr(zone->pageset, cpu);
510
511 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
512 if (p->vm_stat_diff[i]) {
513 int v;
514
515 v = p->vm_stat_diff[i];
516 p->vm_stat_diff[i] = 0;
517 atomic_long_add(v, &zone->vm_stat[i]);
518 global_diff[i] += v;
519 }
520 }
521
522 fold_diff(global_diff);
523 }
524
525 /*
526 * this is only called if !populated_zone(zone), which implies no other users of
527 * pset->vm_stat_diff[] exsist.
528 */
529 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
530 {
531 int i;
532
533 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
534 if (pset->vm_stat_diff[i]) {
535 int v = pset->vm_stat_diff[i];
536 pset->vm_stat_diff[i] = 0;
537 atomic_long_add(v, &zone->vm_stat[i]);
538 atomic_long_add(v, &vm_stat[i]);
539 }
540 }
541 #endif
542
543 #ifdef CONFIG_NUMA
544 /*
545 * zonelist = the list of zones passed to the allocator
546 * z = the zone from which the allocation occurred.
547 *
548 * Must be called with interrupts disabled.
549 *
550 * When __GFP_OTHER_NODE is set assume the node of the preferred
551 * zone is the local node. This is useful for daemons who allocate
552 * memory on behalf of other processes.
553 */
554 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
555 {
556 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
557 __inc_zone_state(z, NUMA_HIT);
558 } else {
559 __inc_zone_state(z, NUMA_MISS);
560 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
561 }
562 if (z->node == ((flags & __GFP_OTHER_NODE) ?
563 preferred_zone->node : numa_node_id()))
564 __inc_zone_state(z, NUMA_LOCAL);
565 else
566 __inc_zone_state(z, NUMA_OTHER);
567 }
568 #endif
569
570 #ifdef CONFIG_COMPACTION
571
572 struct contig_page_info {
573 unsigned long free_pages;
574 unsigned long free_blocks_total;
575 unsigned long free_blocks_suitable;
576 };
577
578 /*
579 * Calculate the number of free pages in a zone, how many contiguous
580 * pages are free and how many are large enough to satisfy an allocation of
581 * the target size. Note that this function makes no attempt to estimate
582 * how many suitable free blocks there *might* be if MOVABLE pages were
583 * migrated. Calculating that is possible, but expensive and can be
584 * figured out from userspace
585 */
586 static void fill_contig_page_info(struct zone *zone,
587 unsigned int suitable_order,
588 struct contig_page_info *info)
589 {
590 unsigned int order;
591
592 info->free_pages = 0;
593 info->free_blocks_total = 0;
594 info->free_blocks_suitable = 0;
595
596 for (order = 0; order < MAX_ORDER; order++) {
597 unsigned long blocks;
598
599 /* Count number of free blocks */
600 blocks = zone->free_area[order].nr_free;
601 info->free_blocks_total += blocks;
602
603 /* Count free base pages */
604 info->free_pages += blocks << order;
605
606 /* Count the suitable free blocks */
607 if (order >= suitable_order)
608 info->free_blocks_suitable += blocks <<
609 (order - suitable_order);
610 }
611 }
612
613 /*
614 * A fragmentation index only makes sense if an allocation of a requested
615 * size would fail. If that is true, the fragmentation index indicates
616 * whether external fragmentation or a lack of memory was the problem.
617 * The value can be used to determine if page reclaim or compaction
618 * should be used
619 */
620 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
621 {
622 unsigned long requested = 1UL << order;
623
624 if (!info->free_blocks_total)
625 return 0;
626
627 /* Fragmentation index only makes sense when a request would fail */
628 if (info->free_blocks_suitable)
629 return -1000;
630
631 /*
632 * Index is between 0 and 1 so return within 3 decimal places
633 *
634 * 0 => allocation would fail due to lack of memory
635 * 1 => allocation would fail due to fragmentation
636 */
637 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
638 }
639
640 /* Same as __fragmentation index but allocs contig_page_info on stack */
641 int fragmentation_index(struct zone *zone, unsigned int order)
642 {
643 struct contig_page_info info;
644
645 fill_contig_page_info(zone, order, &info);
646 return __fragmentation_index(order, &info);
647 }
648 #endif
649
650 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
651 #include <linux/proc_fs.h>
652 #include <linux/seq_file.h>
653
654 static char * const migratetype_names[MIGRATE_TYPES] = {
655 "Unmovable",
656 "Reclaimable",
657 "Movable",
658 "Reserve",
659 #ifdef CONFIG_CMA
660 "CMA",
661 #endif
662 #ifdef CONFIG_MEMORY_ISOLATION
663 "Isolate",
664 #endif
665 };
666
667 static void *frag_start(struct seq_file *m, loff_t *pos)
668 {
669 pg_data_t *pgdat;
670 loff_t node = *pos;
671 for (pgdat = first_online_pgdat();
672 pgdat && node;
673 pgdat = next_online_pgdat(pgdat))
674 --node;
675
676 return pgdat;
677 }
678
679 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
680 {
681 pg_data_t *pgdat = (pg_data_t *)arg;
682
683 (*pos)++;
684 return next_online_pgdat(pgdat);
685 }
686
687 static void frag_stop(struct seq_file *m, void *arg)
688 {
689 }
690
691 /* Walk all the zones in a node and print using a callback */
692 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
693 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
694 {
695 struct zone *zone;
696 struct zone *node_zones = pgdat->node_zones;
697 unsigned long flags;
698
699 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
700 if (!populated_zone(zone))
701 continue;
702
703 spin_lock_irqsave(&zone->lock, flags);
704 print(m, pgdat, zone);
705 spin_unlock_irqrestore(&zone->lock, flags);
706 }
707 }
708 #endif
709
710 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
711 #ifdef CONFIG_ZONE_DMA
712 #define TEXT_FOR_DMA(xx) xx "_dma",
713 #else
714 #define TEXT_FOR_DMA(xx)
715 #endif
716
717 #ifdef CONFIG_ZONE_DMA32
718 #define TEXT_FOR_DMA32(xx) xx "_dma32",
719 #else
720 #define TEXT_FOR_DMA32(xx)
721 #endif
722
723 #ifdef CONFIG_HIGHMEM
724 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
725 #else
726 #define TEXT_FOR_HIGHMEM(xx)
727 #endif
728
729 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
730 TEXT_FOR_HIGHMEM(xx) xx "_movable",
731
732 const char * const vmstat_text[] = {
733 /* Zoned VM counters */
734 "nr_free_pages",
735 "nr_alloc_batch",
736 "nr_inactive_anon",
737 "nr_active_anon",
738 "nr_inactive_file",
739 "nr_active_file",
740 "nr_unevictable",
741 "nr_mlock",
742 "nr_anon_pages",
743 "nr_mapped",
744 "nr_file_pages",
745 "nr_dirty",
746 "nr_writeback",
747 "nr_slab_reclaimable",
748 "nr_slab_unreclaimable",
749 "nr_page_table_pages",
750 "nr_kernel_stack",
751 "nr_unstable",
752 "nr_bounce",
753 "nr_vmscan_write",
754 "nr_vmscan_immediate_reclaim",
755 "nr_writeback_temp",
756 "nr_isolated_anon",
757 "nr_isolated_file",
758 "nr_shmem",
759 "nr_dirtied",
760 "nr_written",
761
762 #ifdef CONFIG_NUMA
763 "numa_hit",
764 "numa_miss",
765 "numa_foreign",
766 "numa_interleave",
767 "numa_local",
768 "numa_other",
769 #endif
770 "nr_anon_transparent_hugepages",
771 "nr_free_cma",
772 "nr_dirty_threshold",
773 "nr_dirty_background_threshold",
774
775 #ifdef CONFIG_VM_EVENT_COUNTERS
776 "pgpgin",
777 "pgpgout",
778 "pswpin",
779 "pswpout",
780
781 TEXTS_FOR_ZONES("pgalloc")
782
783 "pgfree",
784 "pgactivate",
785 "pgdeactivate",
786
787 "pgfault",
788 "pgmajfault",
789
790 TEXTS_FOR_ZONES("pgrefill")
791 TEXTS_FOR_ZONES("pgsteal_kswapd")
792 TEXTS_FOR_ZONES("pgsteal_direct")
793 TEXTS_FOR_ZONES("pgscan_kswapd")
794 TEXTS_FOR_ZONES("pgscan_direct")
795 "pgscan_direct_throttle",
796
797 #ifdef CONFIG_NUMA
798 "zone_reclaim_failed",
799 #endif
800 "pginodesteal",
801 "slabs_scanned",
802 "kswapd_inodesteal",
803 "kswapd_low_wmark_hit_quickly",
804 "kswapd_high_wmark_hit_quickly",
805 "pageoutrun",
806 "allocstall",
807
808 "pgrotated",
809
810 #ifdef CONFIG_NUMA_BALANCING
811 "numa_pte_updates",
812 "numa_hint_faults",
813 "numa_hint_faults_local",
814 "numa_pages_migrated",
815 #endif
816 #ifdef CONFIG_MIGRATION
817 "pgmigrate_success",
818 "pgmigrate_fail",
819 #endif
820 #ifdef CONFIG_COMPACTION
821 "compact_migrate_scanned",
822 "compact_free_scanned",
823 "compact_isolated",
824 "compact_stall",
825 "compact_fail",
826 "compact_success",
827 #endif
828
829 #ifdef CONFIG_HUGETLB_PAGE
830 "htlb_buddy_alloc_success",
831 "htlb_buddy_alloc_fail",
832 #endif
833 "unevictable_pgs_culled",
834 "unevictable_pgs_scanned",
835 "unevictable_pgs_rescued",
836 "unevictable_pgs_mlocked",
837 "unevictable_pgs_munlocked",
838 "unevictable_pgs_cleared",
839 "unevictable_pgs_stranded",
840
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 "thp_fault_alloc",
843 "thp_fault_fallback",
844 "thp_collapse_alloc",
845 "thp_collapse_alloc_failed",
846 "thp_split",
847 "thp_zero_page_alloc",
848 "thp_zero_page_alloc_failed",
849 #endif
850 #ifdef CONFIG_SMP
851 "nr_tlb_remote_flush",
852 "nr_tlb_remote_flush_received",
853 #endif
854 "nr_tlb_local_flush_all",
855 "nr_tlb_local_flush_one",
856
857 #endif /* CONFIG_VM_EVENTS_COUNTERS */
858 };
859 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
860
861
862 #ifdef CONFIG_PROC_FS
863 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
864 struct zone *zone)
865 {
866 int order;
867
868 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
869 for (order = 0; order < MAX_ORDER; ++order)
870 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
871 seq_putc(m, '\n');
872 }
873
874 /*
875 * This walks the free areas for each zone.
876 */
877 static int frag_show(struct seq_file *m, void *arg)
878 {
879 pg_data_t *pgdat = (pg_data_t *)arg;
880 walk_zones_in_node(m, pgdat, frag_show_print);
881 return 0;
882 }
883
884 static void pagetypeinfo_showfree_print(struct seq_file *m,
885 pg_data_t *pgdat, struct zone *zone)
886 {
887 int order, mtype;
888
889 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
890 seq_printf(m, "Node %4d, zone %8s, type %12s ",
891 pgdat->node_id,
892 zone->name,
893 migratetype_names[mtype]);
894 for (order = 0; order < MAX_ORDER; ++order) {
895 unsigned long freecount = 0;
896 struct free_area *area;
897 struct list_head *curr;
898
899 area = &(zone->free_area[order]);
900
901 list_for_each(curr, &area->free_list[mtype])
902 freecount++;
903 seq_printf(m, "%6lu ", freecount);
904 }
905 seq_putc(m, '\n');
906 }
907 }
908
909 /* Print out the free pages at each order for each migatetype */
910 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
911 {
912 int order;
913 pg_data_t *pgdat = (pg_data_t *)arg;
914
915 /* Print header */
916 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
917 for (order = 0; order < MAX_ORDER; ++order)
918 seq_printf(m, "%6d ", order);
919 seq_putc(m, '\n');
920
921 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
922
923 return 0;
924 }
925
926 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
927 pg_data_t *pgdat, struct zone *zone)
928 {
929 int mtype;
930 unsigned long pfn;
931 unsigned long start_pfn = zone->zone_start_pfn;
932 unsigned long end_pfn = zone_end_pfn(zone);
933 unsigned long count[MIGRATE_TYPES] = { 0, };
934
935 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
936 struct page *page;
937
938 if (!pfn_valid(pfn))
939 continue;
940
941 page = pfn_to_page(pfn);
942
943 /* Watch for unexpected holes punched in the memmap */
944 if (!memmap_valid_within(pfn, page, zone))
945 continue;
946
947 mtype = get_pageblock_migratetype(page);
948
949 if (mtype < MIGRATE_TYPES)
950 count[mtype]++;
951 }
952
953 /* Print counts */
954 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
955 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
956 seq_printf(m, "%12lu ", count[mtype]);
957 seq_putc(m, '\n');
958 }
959
960 /* Print out the free pages at each order for each migratetype */
961 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
962 {
963 int mtype;
964 pg_data_t *pgdat = (pg_data_t *)arg;
965
966 seq_printf(m, "\n%-23s", "Number of blocks type ");
967 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
968 seq_printf(m, "%12s ", migratetype_names[mtype]);
969 seq_putc(m, '\n');
970 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
971
972 return 0;
973 }
974
975 /*
976 * This prints out statistics in relation to grouping pages by mobility.
977 * It is expensive to collect so do not constantly read the file.
978 */
979 static int pagetypeinfo_show(struct seq_file *m, void *arg)
980 {
981 pg_data_t *pgdat = (pg_data_t *)arg;
982
983 /* check memoryless node */
984 if (!node_state(pgdat->node_id, N_MEMORY))
985 return 0;
986
987 seq_printf(m, "Page block order: %d\n", pageblock_order);
988 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
989 seq_putc(m, '\n');
990 pagetypeinfo_showfree(m, pgdat);
991 pagetypeinfo_showblockcount(m, pgdat);
992
993 return 0;
994 }
995
996 static const struct seq_operations fragmentation_op = {
997 .start = frag_start,
998 .next = frag_next,
999 .stop = frag_stop,
1000 .show = frag_show,
1001 };
1002
1003 static int fragmentation_open(struct inode *inode, struct file *file)
1004 {
1005 return seq_open(file, &fragmentation_op);
1006 }
1007
1008 static const struct file_operations fragmentation_file_operations = {
1009 .open = fragmentation_open,
1010 .read = seq_read,
1011 .llseek = seq_lseek,
1012 .release = seq_release,
1013 };
1014
1015 static const struct seq_operations pagetypeinfo_op = {
1016 .start = frag_start,
1017 .next = frag_next,
1018 .stop = frag_stop,
1019 .show = pagetypeinfo_show,
1020 };
1021
1022 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1023 {
1024 return seq_open(file, &pagetypeinfo_op);
1025 }
1026
1027 static const struct file_operations pagetypeinfo_file_ops = {
1028 .open = pagetypeinfo_open,
1029 .read = seq_read,
1030 .llseek = seq_lseek,
1031 .release = seq_release,
1032 };
1033
1034 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1035 struct zone *zone)
1036 {
1037 int i;
1038 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1039 seq_printf(m,
1040 "\n pages free %lu"
1041 "\n min %lu"
1042 "\n low %lu"
1043 "\n high %lu"
1044 "\n scanned %lu"
1045 "\n spanned %lu"
1046 "\n present %lu"
1047 "\n managed %lu",
1048 zone_page_state(zone, NR_FREE_PAGES),
1049 min_wmark_pages(zone),
1050 low_wmark_pages(zone),
1051 high_wmark_pages(zone),
1052 zone->pages_scanned,
1053 zone->spanned_pages,
1054 zone->present_pages,
1055 zone->managed_pages);
1056
1057 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1058 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1059 zone_page_state(zone, i));
1060
1061 seq_printf(m,
1062 "\n protection: (%lu",
1063 zone->lowmem_reserve[0]);
1064 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1065 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1066 seq_printf(m,
1067 ")"
1068 "\n pagesets");
1069 for_each_online_cpu(i) {
1070 struct per_cpu_pageset *pageset;
1071
1072 pageset = per_cpu_ptr(zone->pageset, i);
1073 seq_printf(m,
1074 "\n cpu: %i"
1075 "\n count: %i"
1076 "\n high: %i"
1077 "\n batch: %i",
1078 i,
1079 pageset->pcp.count,
1080 pageset->pcp.high,
1081 pageset->pcp.batch);
1082 #ifdef CONFIG_SMP
1083 seq_printf(m, "\n vm stats threshold: %d",
1084 pageset->stat_threshold);
1085 #endif
1086 }
1087 seq_printf(m,
1088 "\n all_unreclaimable: %u"
1089 "\n start_pfn: %lu"
1090 "\n inactive_ratio: %u",
1091 zone->all_unreclaimable,
1092 zone->zone_start_pfn,
1093 zone->inactive_ratio);
1094 seq_putc(m, '\n');
1095 }
1096
1097 /*
1098 * Output information about zones in @pgdat.
1099 */
1100 static int zoneinfo_show(struct seq_file *m, void *arg)
1101 {
1102 pg_data_t *pgdat = (pg_data_t *)arg;
1103 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1104 return 0;
1105 }
1106
1107 static const struct seq_operations zoneinfo_op = {
1108 .start = frag_start, /* iterate over all zones. The same as in
1109 * fragmentation. */
1110 .next = frag_next,
1111 .stop = frag_stop,
1112 .show = zoneinfo_show,
1113 };
1114
1115 static int zoneinfo_open(struct inode *inode, struct file *file)
1116 {
1117 return seq_open(file, &zoneinfo_op);
1118 }
1119
1120 static const struct file_operations proc_zoneinfo_file_operations = {
1121 .open = zoneinfo_open,
1122 .read = seq_read,
1123 .llseek = seq_lseek,
1124 .release = seq_release,
1125 };
1126
1127 enum writeback_stat_item {
1128 NR_DIRTY_THRESHOLD,
1129 NR_DIRTY_BG_THRESHOLD,
1130 NR_VM_WRITEBACK_STAT_ITEMS,
1131 };
1132
1133 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1134 {
1135 unsigned long *v;
1136 int i, stat_items_size;
1137
1138 if (*pos >= ARRAY_SIZE(vmstat_text))
1139 return NULL;
1140 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1141 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1142
1143 #ifdef CONFIG_VM_EVENT_COUNTERS
1144 stat_items_size += sizeof(struct vm_event_state);
1145 #endif
1146
1147 v = kmalloc(stat_items_size, GFP_KERNEL);
1148 m->private = v;
1149 if (!v)
1150 return ERR_PTR(-ENOMEM);
1151 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1152 v[i] = global_page_state(i);
1153 v += NR_VM_ZONE_STAT_ITEMS;
1154
1155 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1156 v + NR_DIRTY_THRESHOLD);
1157 v += NR_VM_WRITEBACK_STAT_ITEMS;
1158
1159 #ifdef CONFIG_VM_EVENT_COUNTERS
1160 all_vm_events(v);
1161 v[PGPGIN] /= 2; /* sectors -> kbytes */
1162 v[PGPGOUT] /= 2;
1163 #endif
1164 return (unsigned long *)m->private + *pos;
1165 }
1166
1167 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1168 {
1169 (*pos)++;
1170 if (*pos >= ARRAY_SIZE(vmstat_text))
1171 return NULL;
1172 return (unsigned long *)m->private + *pos;
1173 }
1174
1175 static int vmstat_show(struct seq_file *m, void *arg)
1176 {
1177 unsigned long *l = arg;
1178 unsigned long off = l - (unsigned long *)m->private;
1179
1180 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1181 return 0;
1182 }
1183
1184 static void vmstat_stop(struct seq_file *m, void *arg)
1185 {
1186 kfree(m->private);
1187 m->private = NULL;
1188 }
1189
1190 static const struct seq_operations vmstat_op = {
1191 .start = vmstat_start,
1192 .next = vmstat_next,
1193 .stop = vmstat_stop,
1194 .show = vmstat_show,
1195 };
1196
1197 static int vmstat_open(struct inode *inode, struct file *file)
1198 {
1199 return seq_open(file, &vmstat_op);
1200 }
1201
1202 static const struct file_operations proc_vmstat_file_operations = {
1203 .open = vmstat_open,
1204 .read = seq_read,
1205 .llseek = seq_lseek,
1206 .release = seq_release,
1207 };
1208 #endif /* CONFIG_PROC_FS */
1209
1210 #ifdef CONFIG_SMP
1211 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1212 int sysctl_stat_interval __read_mostly = HZ;
1213
1214 static void vmstat_update(struct work_struct *w)
1215 {
1216 refresh_cpu_vm_stats();
1217 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1218 round_jiffies_relative(sysctl_stat_interval));
1219 }
1220
1221 static void start_cpu_timer(int cpu)
1222 {
1223 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1224
1225 INIT_DEFERRABLE_WORK(work, vmstat_update);
1226 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1227 }
1228
1229 /*
1230 * Use the cpu notifier to insure that the thresholds are recalculated
1231 * when necessary.
1232 */
1233 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1234 unsigned long action,
1235 void *hcpu)
1236 {
1237 long cpu = (long)hcpu;
1238
1239 switch (action) {
1240 case CPU_ONLINE:
1241 case CPU_ONLINE_FROZEN:
1242 refresh_zone_stat_thresholds();
1243 start_cpu_timer(cpu);
1244 node_set_state(cpu_to_node(cpu), N_CPU);
1245 break;
1246 case CPU_DOWN_PREPARE:
1247 case CPU_DOWN_PREPARE_FROZEN:
1248 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1249 per_cpu(vmstat_work, cpu).work.func = NULL;
1250 break;
1251 case CPU_DOWN_FAILED:
1252 case CPU_DOWN_FAILED_FROZEN:
1253 start_cpu_timer(cpu);
1254 break;
1255 case CPU_DEAD:
1256 case CPU_DEAD_FROZEN:
1257 refresh_zone_stat_thresholds();
1258 break;
1259 default:
1260 break;
1261 }
1262 return NOTIFY_OK;
1263 }
1264
1265 static struct notifier_block vmstat_notifier =
1266 { &vmstat_cpuup_callback, NULL, 0 };
1267 #endif
1268
1269 static int __init setup_vmstat(void)
1270 {
1271 #ifdef CONFIG_SMP
1272 int cpu;
1273
1274 register_cpu_notifier(&vmstat_notifier);
1275
1276 for_each_online_cpu(cpu)
1277 start_cpu_timer(cpu);
1278 #endif
1279 #ifdef CONFIG_PROC_FS
1280 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1281 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1282 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1283 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1284 #endif
1285 return 0;
1286 }
1287 module_init(setup_vmstat)
1288
1289 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1290 #include <linux/debugfs.h>
1291
1292
1293 /*
1294 * Return an index indicating how much of the available free memory is
1295 * unusable for an allocation of the requested size.
1296 */
1297 static int unusable_free_index(unsigned int order,
1298 struct contig_page_info *info)
1299 {
1300 /* No free memory is interpreted as all free memory is unusable */
1301 if (info->free_pages == 0)
1302 return 1000;
1303
1304 /*
1305 * Index should be a value between 0 and 1. Return a value to 3
1306 * decimal places.
1307 *
1308 * 0 => no fragmentation
1309 * 1 => high fragmentation
1310 */
1311 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1312
1313 }
1314
1315 static void unusable_show_print(struct seq_file *m,
1316 pg_data_t *pgdat, struct zone *zone)
1317 {
1318 unsigned int order;
1319 int index;
1320 struct contig_page_info info;
1321
1322 seq_printf(m, "Node %d, zone %8s ",
1323 pgdat->node_id,
1324 zone->name);
1325 for (order = 0; order < MAX_ORDER; ++order) {
1326 fill_contig_page_info(zone, order, &info);
1327 index = unusable_free_index(order, &info);
1328 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1329 }
1330
1331 seq_putc(m, '\n');
1332 }
1333
1334 /*
1335 * Display unusable free space index
1336 *
1337 * The unusable free space index measures how much of the available free
1338 * memory cannot be used to satisfy an allocation of a given size and is a
1339 * value between 0 and 1. The higher the value, the more of free memory is
1340 * unusable and by implication, the worse the external fragmentation is. This
1341 * can be expressed as a percentage by multiplying by 100.
1342 */
1343 static int unusable_show(struct seq_file *m, void *arg)
1344 {
1345 pg_data_t *pgdat = (pg_data_t *)arg;
1346
1347 /* check memoryless node */
1348 if (!node_state(pgdat->node_id, N_MEMORY))
1349 return 0;
1350
1351 walk_zones_in_node(m, pgdat, unusable_show_print);
1352
1353 return 0;
1354 }
1355
1356 static const struct seq_operations unusable_op = {
1357 .start = frag_start,
1358 .next = frag_next,
1359 .stop = frag_stop,
1360 .show = unusable_show,
1361 };
1362
1363 static int unusable_open(struct inode *inode, struct file *file)
1364 {
1365 return seq_open(file, &unusable_op);
1366 }
1367
1368 static const struct file_operations unusable_file_ops = {
1369 .open = unusable_open,
1370 .read = seq_read,
1371 .llseek = seq_lseek,
1372 .release = seq_release,
1373 };
1374
1375 static void extfrag_show_print(struct seq_file *m,
1376 pg_data_t *pgdat, struct zone *zone)
1377 {
1378 unsigned int order;
1379 int index;
1380
1381 /* Alloc on stack as interrupts are disabled for zone walk */
1382 struct contig_page_info info;
1383
1384 seq_printf(m, "Node %d, zone %8s ",
1385 pgdat->node_id,
1386 zone->name);
1387 for (order = 0; order < MAX_ORDER; ++order) {
1388 fill_contig_page_info(zone, order, &info);
1389 index = __fragmentation_index(order, &info);
1390 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1391 }
1392
1393 seq_putc(m, '\n');
1394 }
1395
1396 /*
1397 * Display fragmentation index for orders that allocations would fail for
1398 */
1399 static int extfrag_show(struct seq_file *m, void *arg)
1400 {
1401 pg_data_t *pgdat = (pg_data_t *)arg;
1402
1403 walk_zones_in_node(m, pgdat, extfrag_show_print);
1404
1405 return 0;
1406 }
1407
1408 static const struct seq_operations extfrag_op = {
1409 .start = frag_start,
1410 .next = frag_next,
1411 .stop = frag_stop,
1412 .show = extfrag_show,
1413 };
1414
1415 static int extfrag_open(struct inode *inode, struct file *file)
1416 {
1417 return seq_open(file, &extfrag_op);
1418 }
1419
1420 static const struct file_operations extfrag_file_ops = {
1421 .open = extfrag_open,
1422 .read = seq_read,
1423 .llseek = seq_lseek,
1424 .release = seq_release,
1425 };
1426
1427 static int __init extfrag_debug_init(void)
1428 {
1429 struct dentry *extfrag_debug_root;
1430
1431 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1432 if (!extfrag_debug_root)
1433 return -ENOMEM;
1434
1435 if (!debugfs_create_file("unusable_index", 0444,
1436 extfrag_debug_root, NULL, &unusable_file_ops))
1437 goto fail;
1438
1439 if (!debugfs_create_file("extfrag_index", 0444,
1440 extfrag_debug_root, NULL, &extfrag_file_ops))
1441 goto fail;
1442
1443 return 0;
1444 fail:
1445 debugfs_remove_recursive(extfrag_debug_root);
1446 return -ENOMEM;
1447 }
1448
1449 module_init(extfrag_debug_init);
1450 #endif
This page took 0.060858 seconds and 5 git commands to generate.