Merge branch 'linux-4.7' of git://github.com/skeggsb/linux into drm-fixes
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
40 * page->inuse: the number of objects that are used in this zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/module.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/bitops.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 #include <linux/cpumask.h>
61 #include <linux/cpu.h>
62 #include <linux/vmalloc.h>
63 #include <linux/preempt.h>
64 #include <linux/spinlock.h>
65 #include <linux/types.h>
66 #include <linux/debugfs.h>
67 #include <linux/zsmalloc.h>
68 #include <linux/zpool.h>
69
70 /*
71 * This must be power of 2 and greater than of equal to sizeof(link_free).
72 * These two conditions ensure that any 'struct link_free' itself doesn't
73 * span more than 1 page which avoids complex case of mapping 2 pages simply
74 * to restore link_free pointer values.
75 */
76 #define ZS_ALIGN 8
77
78 /*
79 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
80 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
81 */
82 #define ZS_MAX_ZSPAGE_ORDER 2
83 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
84
85 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86
87 /*
88 * Object location (<PFN>, <obj_idx>) is encoded as
89 * as single (unsigned long) handle value.
90 *
91 * Note that object index <obj_idx> is relative to system
92 * page <PFN> it is stored in, so for each sub-page belonging
93 * to a zspage, obj_idx starts with 0.
94 *
95 * This is made more complicated by various memory models and PAE.
96 */
97
98 #ifndef MAX_PHYSMEM_BITS
99 #ifdef CONFIG_HIGHMEM64G
100 #define MAX_PHYSMEM_BITS 36
101 #else /* !CONFIG_HIGHMEM64G */
102 /*
103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104 * be PAGE_SHIFT
105 */
106 #define MAX_PHYSMEM_BITS BITS_PER_LONG
107 #endif
108 #endif
109 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
110
111 /*
112 * Memory for allocating for handle keeps object position by
113 * encoding <page, obj_idx> and the encoded value has a room
114 * in least bit(ie, look at obj_to_location).
115 * We use the bit to synchronize between object access by
116 * user and migration.
117 */
118 #define HANDLE_PIN_BIT 0
119
120 /*
121 * Head in allocated object should have OBJ_ALLOCATED_TAG
122 * to identify the object was allocated or not.
123 * It's okay to add the status bit in the least bit because
124 * header keeps handle which is 4byte-aligned address so we
125 * have room for two bit at least.
126 */
127 #define OBJ_ALLOCATED_TAG 1
128 #define OBJ_TAG_BITS 1
129 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
130 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
131
132 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
133 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
134 #define ZS_MIN_ALLOC_SIZE \
135 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
136 /* each chunk includes extra space to keep handle */
137 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
138
139 /*
140 * On systems with 4K page size, this gives 255 size classes! There is a
141 * trader-off here:
142 * - Large number of size classes is potentially wasteful as free page are
143 * spread across these classes
144 * - Small number of size classes causes large internal fragmentation
145 * - Probably its better to use specific size classes (empirically
146 * determined). NOTE: all those class sizes must be set as multiple of
147 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
148 *
149 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
150 * (reason above)
151 */
152 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
153
154 /*
155 * We do not maintain any list for completely empty or full pages
156 */
157 enum fullness_group {
158 ZS_ALMOST_FULL,
159 ZS_ALMOST_EMPTY,
160 _ZS_NR_FULLNESS_GROUPS,
161
162 ZS_EMPTY,
163 ZS_FULL
164 };
165
166 enum zs_stat_type {
167 OBJ_ALLOCATED,
168 OBJ_USED,
169 CLASS_ALMOST_FULL,
170 CLASS_ALMOST_EMPTY,
171 };
172
173 #ifdef CONFIG_ZSMALLOC_STAT
174 #define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
175 #else
176 #define NR_ZS_STAT_TYPE (OBJ_USED + 1)
177 #endif
178
179 struct zs_size_stat {
180 unsigned long objs[NR_ZS_STAT_TYPE];
181 };
182
183 #ifdef CONFIG_ZSMALLOC_STAT
184 static struct dentry *zs_stat_root;
185 #endif
186
187 /*
188 * number of size_classes
189 */
190 static int zs_size_classes;
191
192 /*
193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194 * n <= N / f, where
195 * n = number of allocated objects
196 * N = total number of objects zspage can store
197 * f = fullness_threshold_frac
198 *
199 * Similarly, we assign zspage to:
200 * ZS_ALMOST_FULL when n > N / f
201 * ZS_EMPTY when n == 0
202 * ZS_FULL when n == N
203 *
204 * (see: fix_fullness_group())
205 */
206 static const int fullness_threshold_frac = 4;
207
208 struct size_class {
209 spinlock_t lock;
210 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
211 /*
212 * Size of objects stored in this class. Must be multiple
213 * of ZS_ALIGN.
214 */
215 int size;
216 unsigned int index;
217
218 struct zs_size_stat stats;
219
220 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
221 int pages_per_zspage;
222 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
223 bool huge;
224 };
225
226 /*
227 * Placed within free objects to form a singly linked list.
228 * For every zspage, first_page->freelist gives head of this list.
229 *
230 * This must be power of 2 and less than or equal to ZS_ALIGN
231 */
232 struct link_free {
233 union {
234 /*
235 * Position of next free chunk (encodes <PFN, obj_idx>)
236 * It's valid for non-allocated object
237 */
238 void *next;
239 /*
240 * Handle of allocated object.
241 */
242 unsigned long handle;
243 };
244 };
245
246 struct zs_pool {
247 const char *name;
248
249 struct size_class **size_class;
250 struct kmem_cache *handle_cachep;
251
252 atomic_long_t pages_allocated;
253
254 struct zs_pool_stats stats;
255
256 /* Compact classes */
257 struct shrinker shrinker;
258 /*
259 * To signify that register_shrinker() was successful
260 * and unregister_shrinker() will not Oops.
261 */
262 bool shrinker_enabled;
263 #ifdef CONFIG_ZSMALLOC_STAT
264 struct dentry *stat_dentry;
265 #endif
266 };
267
268 /*
269 * A zspage's class index and fullness group
270 * are encoded in its (first)page->mapping
271 */
272 #define CLASS_IDX_BITS 28
273 #define FULLNESS_BITS 4
274 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
275 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
276
277 struct mapping_area {
278 #ifdef CONFIG_PGTABLE_MAPPING
279 struct vm_struct *vm; /* vm area for mapping object that span pages */
280 #else
281 char *vm_buf; /* copy buffer for objects that span pages */
282 #endif
283 char *vm_addr; /* address of kmap_atomic()'ed pages */
284 enum zs_mapmode vm_mm; /* mapping mode */
285 };
286
287 static int create_handle_cache(struct zs_pool *pool)
288 {
289 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
290 0, 0, NULL);
291 return pool->handle_cachep ? 0 : 1;
292 }
293
294 static void destroy_handle_cache(struct zs_pool *pool)
295 {
296 kmem_cache_destroy(pool->handle_cachep);
297 }
298
299 static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
300 {
301 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
302 gfp & ~__GFP_HIGHMEM);
303 }
304
305 static void free_handle(struct zs_pool *pool, unsigned long handle)
306 {
307 kmem_cache_free(pool->handle_cachep, (void *)handle);
308 }
309
310 static void record_obj(unsigned long handle, unsigned long obj)
311 {
312 /*
313 * lsb of @obj represents handle lock while other bits
314 * represent object value the handle is pointing so
315 * updating shouldn't do store tearing.
316 */
317 WRITE_ONCE(*(unsigned long *)handle, obj);
318 }
319
320 /* zpool driver */
321
322 #ifdef CONFIG_ZPOOL
323
324 static void *zs_zpool_create(const char *name, gfp_t gfp,
325 const struct zpool_ops *zpool_ops,
326 struct zpool *zpool)
327 {
328 /*
329 * Ignore global gfp flags: zs_malloc() may be invoked from
330 * different contexts and its caller must provide a valid
331 * gfp mask.
332 */
333 return zs_create_pool(name);
334 }
335
336 static void zs_zpool_destroy(void *pool)
337 {
338 zs_destroy_pool(pool);
339 }
340
341 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
342 unsigned long *handle)
343 {
344 *handle = zs_malloc(pool, size, gfp);
345 return *handle ? 0 : -1;
346 }
347 static void zs_zpool_free(void *pool, unsigned long handle)
348 {
349 zs_free(pool, handle);
350 }
351
352 static int zs_zpool_shrink(void *pool, unsigned int pages,
353 unsigned int *reclaimed)
354 {
355 return -EINVAL;
356 }
357
358 static void *zs_zpool_map(void *pool, unsigned long handle,
359 enum zpool_mapmode mm)
360 {
361 enum zs_mapmode zs_mm;
362
363 switch (mm) {
364 case ZPOOL_MM_RO:
365 zs_mm = ZS_MM_RO;
366 break;
367 case ZPOOL_MM_WO:
368 zs_mm = ZS_MM_WO;
369 break;
370 case ZPOOL_MM_RW: /* fallthru */
371 default:
372 zs_mm = ZS_MM_RW;
373 break;
374 }
375
376 return zs_map_object(pool, handle, zs_mm);
377 }
378 static void zs_zpool_unmap(void *pool, unsigned long handle)
379 {
380 zs_unmap_object(pool, handle);
381 }
382
383 static u64 zs_zpool_total_size(void *pool)
384 {
385 return zs_get_total_pages(pool) << PAGE_SHIFT;
386 }
387
388 static struct zpool_driver zs_zpool_driver = {
389 .type = "zsmalloc",
390 .owner = THIS_MODULE,
391 .create = zs_zpool_create,
392 .destroy = zs_zpool_destroy,
393 .malloc = zs_zpool_malloc,
394 .free = zs_zpool_free,
395 .shrink = zs_zpool_shrink,
396 .map = zs_zpool_map,
397 .unmap = zs_zpool_unmap,
398 .total_size = zs_zpool_total_size,
399 };
400
401 MODULE_ALIAS("zpool-zsmalloc");
402 #endif /* CONFIG_ZPOOL */
403
404 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
405 {
406 return pages_per_zspage * PAGE_SIZE / size;
407 }
408
409 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
410 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
411
412 static int is_first_page(struct page *page)
413 {
414 return PagePrivate(page);
415 }
416
417 static int is_last_page(struct page *page)
418 {
419 return PagePrivate2(page);
420 }
421
422 static void get_zspage_mapping(struct page *first_page,
423 unsigned int *class_idx,
424 enum fullness_group *fullness)
425 {
426 unsigned long m;
427 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
428
429 m = (unsigned long)first_page->mapping;
430 *fullness = m & FULLNESS_MASK;
431 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
432 }
433
434 static void set_zspage_mapping(struct page *first_page,
435 unsigned int class_idx,
436 enum fullness_group fullness)
437 {
438 unsigned long m;
439 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
440
441 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
442 (fullness & FULLNESS_MASK);
443 first_page->mapping = (struct address_space *)m;
444 }
445
446 /*
447 * zsmalloc divides the pool into various size classes where each
448 * class maintains a list of zspages where each zspage is divided
449 * into equal sized chunks. Each allocation falls into one of these
450 * classes depending on its size. This function returns index of the
451 * size class which has chunk size big enough to hold the give size.
452 */
453 static int get_size_class_index(int size)
454 {
455 int idx = 0;
456
457 if (likely(size > ZS_MIN_ALLOC_SIZE))
458 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
459 ZS_SIZE_CLASS_DELTA);
460
461 return min(zs_size_classes - 1, idx);
462 }
463
464 static inline void zs_stat_inc(struct size_class *class,
465 enum zs_stat_type type, unsigned long cnt)
466 {
467 if (type < NR_ZS_STAT_TYPE)
468 class->stats.objs[type] += cnt;
469 }
470
471 static inline void zs_stat_dec(struct size_class *class,
472 enum zs_stat_type type, unsigned long cnt)
473 {
474 if (type < NR_ZS_STAT_TYPE)
475 class->stats.objs[type] -= cnt;
476 }
477
478 static inline unsigned long zs_stat_get(struct size_class *class,
479 enum zs_stat_type type)
480 {
481 if (type < NR_ZS_STAT_TYPE)
482 return class->stats.objs[type];
483 return 0;
484 }
485
486 #ifdef CONFIG_ZSMALLOC_STAT
487
488 static void __init zs_stat_init(void)
489 {
490 if (!debugfs_initialized()) {
491 pr_warn("debugfs not available, stat dir not created\n");
492 return;
493 }
494
495 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
496 if (!zs_stat_root)
497 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
498 }
499
500 static void __exit zs_stat_exit(void)
501 {
502 debugfs_remove_recursive(zs_stat_root);
503 }
504
505 static unsigned long zs_can_compact(struct size_class *class);
506
507 static int zs_stats_size_show(struct seq_file *s, void *v)
508 {
509 int i;
510 struct zs_pool *pool = s->private;
511 struct size_class *class;
512 int objs_per_zspage;
513 unsigned long class_almost_full, class_almost_empty;
514 unsigned long obj_allocated, obj_used, pages_used, freeable;
515 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
516 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
517 unsigned long total_freeable = 0;
518
519 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
520 "class", "size", "almost_full", "almost_empty",
521 "obj_allocated", "obj_used", "pages_used",
522 "pages_per_zspage", "freeable");
523
524 for (i = 0; i < zs_size_classes; i++) {
525 class = pool->size_class[i];
526
527 if (class->index != i)
528 continue;
529
530 spin_lock(&class->lock);
531 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
532 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
533 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
534 obj_used = zs_stat_get(class, OBJ_USED);
535 freeable = zs_can_compact(class);
536 spin_unlock(&class->lock);
537
538 objs_per_zspage = get_maxobj_per_zspage(class->size,
539 class->pages_per_zspage);
540 pages_used = obj_allocated / objs_per_zspage *
541 class->pages_per_zspage;
542
543 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
544 " %10lu %10lu %16d %8lu\n",
545 i, class->size, class_almost_full, class_almost_empty,
546 obj_allocated, obj_used, pages_used,
547 class->pages_per_zspage, freeable);
548
549 total_class_almost_full += class_almost_full;
550 total_class_almost_empty += class_almost_empty;
551 total_objs += obj_allocated;
552 total_used_objs += obj_used;
553 total_pages += pages_used;
554 total_freeable += freeable;
555 }
556
557 seq_puts(s, "\n");
558 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
559 "Total", "", total_class_almost_full,
560 total_class_almost_empty, total_objs,
561 total_used_objs, total_pages, "", total_freeable);
562
563 return 0;
564 }
565
566 static int zs_stats_size_open(struct inode *inode, struct file *file)
567 {
568 return single_open(file, zs_stats_size_show, inode->i_private);
569 }
570
571 static const struct file_operations zs_stat_size_ops = {
572 .open = zs_stats_size_open,
573 .read = seq_read,
574 .llseek = seq_lseek,
575 .release = single_release,
576 };
577
578 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
579 {
580 struct dentry *entry;
581
582 if (!zs_stat_root) {
583 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
584 return;
585 }
586
587 entry = debugfs_create_dir(name, zs_stat_root);
588 if (!entry) {
589 pr_warn("debugfs dir <%s> creation failed\n", name);
590 return;
591 }
592 pool->stat_dentry = entry;
593
594 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
595 pool->stat_dentry, pool, &zs_stat_size_ops);
596 if (!entry) {
597 pr_warn("%s: debugfs file entry <%s> creation failed\n",
598 name, "classes");
599 debugfs_remove_recursive(pool->stat_dentry);
600 pool->stat_dentry = NULL;
601 }
602 }
603
604 static void zs_pool_stat_destroy(struct zs_pool *pool)
605 {
606 debugfs_remove_recursive(pool->stat_dentry);
607 }
608
609 #else /* CONFIG_ZSMALLOC_STAT */
610 static void __init zs_stat_init(void)
611 {
612 }
613
614 static void __exit zs_stat_exit(void)
615 {
616 }
617
618 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
619 {
620 }
621
622 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
623 {
624 }
625 #endif
626
627 /*
628 * For each size class, zspages are divided into different groups
629 * depending on how "full" they are. This was done so that we could
630 * easily find empty or nearly empty zspages when we try to shrink
631 * the pool (not yet implemented). This function returns fullness
632 * status of the given page.
633 */
634 static enum fullness_group get_fullness_group(struct page *first_page)
635 {
636 int inuse, max_objects;
637 enum fullness_group fg;
638
639 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
640
641 inuse = first_page->inuse;
642 max_objects = first_page->objects;
643
644 if (inuse == 0)
645 fg = ZS_EMPTY;
646 else if (inuse == max_objects)
647 fg = ZS_FULL;
648 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
649 fg = ZS_ALMOST_EMPTY;
650 else
651 fg = ZS_ALMOST_FULL;
652
653 return fg;
654 }
655
656 /*
657 * Each size class maintains various freelists and zspages are assigned
658 * to one of these freelists based on the number of live objects they
659 * have. This functions inserts the given zspage into the freelist
660 * identified by <class, fullness_group>.
661 */
662 static void insert_zspage(struct size_class *class,
663 enum fullness_group fullness,
664 struct page *first_page)
665 {
666 struct page **head;
667
668 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
669
670 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
671 return;
672
673 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
674 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
675
676 head = &class->fullness_list[fullness];
677 if (!*head) {
678 *head = first_page;
679 return;
680 }
681
682 /*
683 * We want to see more ZS_FULL pages and less almost
684 * empty/full. Put pages with higher ->inuse first.
685 */
686 list_add_tail(&first_page->lru, &(*head)->lru);
687 if (first_page->inuse >= (*head)->inuse)
688 *head = first_page;
689 }
690
691 /*
692 * This function removes the given zspage from the freelist identified
693 * by <class, fullness_group>.
694 */
695 static void remove_zspage(struct size_class *class,
696 enum fullness_group fullness,
697 struct page *first_page)
698 {
699 struct page **head;
700
701 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
702
703 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
704 return;
705
706 head = &class->fullness_list[fullness];
707 VM_BUG_ON_PAGE(!*head, first_page);
708 if (list_empty(&(*head)->lru))
709 *head = NULL;
710 else if (*head == first_page)
711 *head = (struct page *)list_entry((*head)->lru.next,
712 struct page, lru);
713
714 list_del_init(&first_page->lru);
715 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
716 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
717 }
718
719 /*
720 * Each size class maintains zspages in different fullness groups depending
721 * on the number of live objects they contain. When allocating or freeing
722 * objects, the fullness status of the page can change, say, from ALMOST_FULL
723 * to ALMOST_EMPTY when freeing an object. This function checks if such
724 * a status change has occurred for the given page and accordingly moves the
725 * page from the freelist of the old fullness group to that of the new
726 * fullness group.
727 */
728 static enum fullness_group fix_fullness_group(struct size_class *class,
729 struct page *first_page)
730 {
731 int class_idx;
732 enum fullness_group currfg, newfg;
733
734 get_zspage_mapping(first_page, &class_idx, &currfg);
735 newfg = get_fullness_group(first_page);
736 if (newfg == currfg)
737 goto out;
738
739 remove_zspage(class, currfg, first_page);
740 insert_zspage(class, newfg, first_page);
741 set_zspage_mapping(first_page, class_idx, newfg);
742
743 out:
744 return newfg;
745 }
746
747 /*
748 * We have to decide on how many pages to link together
749 * to form a zspage for each size class. This is important
750 * to reduce wastage due to unusable space left at end of
751 * each zspage which is given as:
752 * wastage = Zp % class_size
753 * usage = Zp - wastage
754 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
755 *
756 * For example, for size class of 3/8 * PAGE_SIZE, we should
757 * link together 3 PAGE_SIZE sized pages to form a zspage
758 * since then we can perfectly fit in 8 such objects.
759 */
760 static int get_pages_per_zspage(int class_size)
761 {
762 int i, max_usedpc = 0;
763 /* zspage order which gives maximum used size per KB */
764 int max_usedpc_order = 1;
765
766 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
767 int zspage_size;
768 int waste, usedpc;
769
770 zspage_size = i * PAGE_SIZE;
771 waste = zspage_size % class_size;
772 usedpc = (zspage_size - waste) * 100 / zspage_size;
773
774 if (usedpc > max_usedpc) {
775 max_usedpc = usedpc;
776 max_usedpc_order = i;
777 }
778 }
779
780 return max_usedpc_order;
781 }
782
783 /*
784 * A single 'zspage' is composed of many system pages which are
785 * linked together using fields in struct page. This function finds
786 * the first/head page, given any component page of a zspage.
787 */
788 static struct page *get_first_page(struct page *page)
789 {
790 if (is_first_page(page))
791 return page;
792 else
793 return (struct page *)page_private(page);
794 }
795
796 static struct page *get_next_page(struct page *page)
797 {
798 struct page *next;
799
800 if (is_last_page(page))
801 next = NULL;
802 else if (is_first_page(page))
803 next = (struct page *)page_private(page);
804 else
805 next = list_entry(page->lru.next, struct page, lru);
806
807 return next;
808 }
809
810 /*
811 * Encode <page, obj_idx> as a single handle value.
812 * We use the least bit of handle for tagging.
813 */
814 static void *location_to_obj(struct page *page, unsigned long obj_idx)
815 {
816 unsigned long obj;
817
818 if (!page) {
819 VM_BUG_ON(obj_idx);
820 return NULL;
821 }
822
823 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
824 obj |= ((obj_idx) & OBJ_INDEX_MASK);
825 obj <<= OBJ_TAG_BITS;
826
827 return (void *)obj;
828 }
829
830 /*
831 * Decode <page, obj_idx> pair from the given object handle. We adjust the
832 * decoded obj_idx back to its original value since it was adjusted in
833 * location_to_obj().
834 */
835 static void obj_to_location(unsigned long obj, struct page **page,
836 unsigned long *obj_idx)
837 {
838 obj >>= OBJ_TAG_BITS;
839 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
840 *obj_idx = (obj & OBJ_INDEX_MASK);
841 }
842
843 static unsigned long handle_to_obj(unsigned long handle)
844 {
845 return *(unsigned long *)handle;
846 }
847
848 static unsigned long obj_to_head(struct size_class *class, struct page *page,
849 void *obj)
850 {
851 if (class->huge) {
852 VM_BUG_ON_PAGE(!is_first_page(page), page);
853 return page_private(page);
854 } else
855 return *(unsigned long *)obj;
856 }
857
858 static unsigned long obj_idx_to_offset(struct page *page,
859 unsigned long obj_idx, int class_size)
860 {
861 unsigned long off = 0;
862
863 if (!is_first_page(page))
864 off = page->index;
865
866 return off + obj_idx * class_size;
867 }
868
869 static inline int trypin_tag(unsigned long handle)
870 {
871 unsigned long *ptr = (unsigned long *)handle;
872
873 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
874 }
875
876 static void pin_tag(unsigned long handle)
877 {
878 while (!trypin_tag(handle));
879 }
880
881 static void unpin_tag(unsigned long handle)
882 {
883 unsigned long *ptr = (unsigned long *)handle;
884
885 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
886 }
887
888 static void reset_page(struct page *page)
889 {
890 clear_bit(PG_private, &page->flags);
891 clear_bit(PG_private_2, &page->flags);
892 set_page_private(page, 0);
893 page->mapping = NULL;
894 page->freelist = NULL;
895 page_mapcount_reset(page);
896 }
897
898 static void free_zspage(struct page *first_page)
899 {
900 struct page *nextp, *tmp, *head_extra;
901
902 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
903 VM_BUG_ON_PAGE(first_page->inuse, first_page);
904
905 head_extra = (struct page *)page_private(first_page);
906
907 reset_page(first_page);
908 __free_page(first_page);
909
910 /* zspage with only 1 system page */
911 if (!head_extra)
912 return;
913
914 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
915 list_del(&nextp->lru);
916 reset_page(nextp);
917 __free_page(nextp);
918 }
919 reset_page(head_extra);
920 __free_page(head_extra);
921 }
922
923 /* Initialize a newly allocated zspage */
924 static void init_zspage(struct size_class *class, struct page *first_page)
925 {
926 unsigned long off = 0;
927 struct page *page = first_page;
928
929 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
930
931 while (page) {
932 struct page *next_page;
933 struct link_free *link;
934 unsigned int i = 1;
935 void *vaddr;
936
937 /*
938 * page->index stores offset of first object starting
939 * in the page. For the first page, this is always 0,
940 * so we use first_page->index (aka ->freelist) to store
941 * head of corresponding zspage's freelist.
942 */
943 if (page != first_page)
944 page->index = off;
945
946 vaddr = kmap_atomic(page);
947 link = (struct link_free *)vaddr + off / sizeof(*link);
948
949 while ((off += class->size) < PAGE_SIZE) {
950 link->next = location_to_obj(page, i++);
951 link += class->size / sizeof(*link);
952 }
953
954 /*
955 * We now come to the last (full or partial) object on this
956 * page, which must point to the first object on the next
957 * page (if present)
958 */
959 next_page = get_next_page(page);
960 link->next = location_to_obj(next_page, 0);
961 kunmap_atomic(vaddr);
962 page = next_page;
963 off %= PAGE_SIZE;
964 }
965 }
966
967 /*
968 * Allocate a zspage for the given size class
969 */
970 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
971 {
972 int i, error;
973 struct page *first_page = NULL, *uninitialized_var(prev_page);
974
975 /*
976 * Allocate individual pages and link them together as:
977 * 1. first page->private = first sub-page
978 * 2. all sub-pages are linked together using page->lru
979 * 3. each sub-page is linked to the first page using page->private
980 *
981 * For each size class, First/Head pages are linked together using
982 * page->lru. Also, we set PG_private to identify the first page
983 * (i.e. no other sub-page has this flag set) and PG_private_2 to
984 * identify the last page.
985 */
986 error = -ENOMEM;
987 for (i = 0; i < class->pages_per_zspage; i++) {
988 struct page *page;
989
990 page = alloc_page(flags);
991 if (!page)
992 goto cleanup;
993
994 INIT_LIST_HEAD(&page->lru);
995 if (i == 0) { /* first page */
996 SetPagePrivate(page);
997 set_page_private(page, 0);
998 first_page = page;
999 first_page->inuse = 0;
1000 }
1001 if (i == 1)
1002 set_page_private(first_page, (unsigned long)page);
1003 if (i >= 1)
1004 set_page_private(page, (unsigned long)first_page);
1005 if (i >= 2)
1006 list_add(&page->lru, &prev_page->lru);
1007 if (i == class->pages_per_zspage - 1) /* last page */
1008 SetPagePrivate2(page);
1009 prev_page = page;
1010 }
1011
1012 init_zspage(class, first_page);
1013
1014 first_page->freelist = location_to_obj(first_page, 0);
1015 /* Maximum number of objects we can store in this zspage */
1016 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1017
1018 error = 0; /* Success */
1019
1020 cleanup:
1021 if (unlikely(error) && first_page) {
1022 free_zspage(first_page);
1023 first_page = NULL;
1024 }
1025
1026 return first_page;
1027 }
1028
1029 static struct page *find_get_zspage(struct size_class *class)
1030 {
1031 int i;
1032 struct page *page;
1033
1034 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1035 page = class->fullness_list[i];
1036 if (page)
1037 break;
1038 }
1039
1040 return page;
1041 }
1042
1043 #ifdef CONFIG_PGTABLE_MAPPING
1044 static inline int __zs_cpu_up(struct mapping_area *area)
1045 {
1046 /*
1047 * Make sure we don't leak memory if a cpu UP notification
1048 * and zs_init() race and both call zs_cpu_up() on the same cpu
1049 */
1050 if (area->vm)
1051 return 0;
1052 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1053 if (!area->vm)
1054 return -ENOMEM;
1055 return 0;
1056 }
1057
1058 static inline void __zs_cpu_down(struct mapping_area *area)
1059 {
1060 if (area->vm)
1061 free_vm_area(area->vm);
1062 area->vm = NULL;
1063 }
1064
1065 static inline void *__zs_map_object(struct mapping_area *area,
1066 struct page *pages[2], int off, int size)
1067 {
1068 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1069 area->vm_addr = area->vm->addr;
1070 return area->vm_addr + off;
1071 }
1072
1073 static inline void __zs_unmap_object(struct mapping_area *area,
1074 struct page *pages[2], int off, int size)
1075 {
1076 unsigned long addr = (unsigned long)area->vm_addr;
1077
1078 unmap_kernel_range(addr, PAGE_SIZE * 2);
1079 }
1080
1081 #else /* CONFIG_PGTABLE_MAPPING */
1082
1083 static inline int __zs_cpu_up(struct mapping_area *area)
1084 {
1085 /*
1086 * Make sure we don't leak memory if a cpu UP notification
1087 * and zs_init() race and both call zs_cpu_up() on the same cpu
1088 */
1089 if (area->vm_buf)
1090 return 0;
1091 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1092 if (!area->vm_buf)
1093 return -ENOMEM;
1094 return 0;
1095 }
1096
1097 static inline void __zs_cpu_down(struct mapping_area *area)
1098 {
1099 kfree(area->vm_buf);
1100 area->vm_buf = NULL;
1101 }
1102
1103 static void *__zs_map_object(struct mapping_area *area,
1104 struct page *pages[2], int off, int size)
1105 {
1106 int sizes[2];
1107 void *addr;
1108 char *buf = area->vm_buf;
1109
1110 /* disable page faults to match kmap_atomic() return conditions */
1111 pagefault_disable();
1112
1113 /* no read fastpath */
1114 if (area->vm_mm == ZS_MM_WO)
1115 goto out;
1116
1117 sizes[0] = PAGE_SIZE - off;
1118 sizes[1] = size - sizes[0];
1119
1120 /* copy object to per-cpu buffer */
1121 addr = kmap_atomic(pages[0]);
1122 memcpy(buf, addr + off, sizes[0]);
1123 kunmap_atomic(addr);
1124 addr = kmap_atomic(pages[1]);
1125 memcpy(buf + sizes[0], addr, sizes[1]);
1126 kunmap_atomic(addr);
1127 out:
1128 return area->vm_buf;
1129 }
1130
1131 static void __zs_unmap_object(struct mapping_area *area,
1132 struct page *pages[2], int off, int size)
1133 {
1134 int sizes[2];
1135 void *addr;
1136 char *buf;
1137
1138 /* no write fastpath */
1139 if (area->vm_mm == ZS_MM_RO)
1140 goto out;
1141
1142 buf = area->vm_buf;
1143 buf = buf + ZS_HANDLE_SIZE;
1144 size -= ZS_HANDLE_SIZE;
1145 off += ZS_HANDLE_SIZE;
1146
1147 sizes[0] = PAGE_SIZE - off;
1148 sizes[1] = size - sizes[0];
1149
1150 /* copy per-cpu buffer to object */
1151 addr = kmap_atomic(pages[0]);
1152 memcpy(addr + off, buf, sizes[0]);
1153 kunmap_atomic(addr);
1154 addr = kmap_atomic(pages[1]);
1155 memcpy(addr, buf + sizes[0], sizes[1]);
1156 kunmap_atomic(addr);
1157
1158 out:
1159 /* enable page faults to match kunmap_atomic() return conditions */
1160 pagefault_enable();
1161 }
1162
1163 #endif /* CONFIG_PGTABLE_MAPPING */
1164
1165 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1166 void *pcpu)
1167 {
1168 int ret, cpu = (long)pcpu;
1169 struct mapping_area *area;
1170
1171 switch (action) {
1172 case CPU_UP_PREPARE:
1173 area = &per_cpu(zs_map_area, cpu);
1174 ret = __zs_cpu_up(area);
1175 if (ret)
1176 return notifier_from_errno(ret);
1177 break;
1178 case CPU_DEAD:
1179 case CPU_UP_CANCELED:
1180 area = &per_cpu(zs_map_area, cpu);
1181 __zs_cpu_down(area);
1182 break;
1183 }
1184
1185 return NOTIFY_OK;
1186 }
1187
1188 static struct notifier_block zs_cpu_nb = {
1189 .notifier_call = zs_cpu_notifier
1190 };
1191
1192 static int zs_register_cpu_notifier(void)
1193 {
1194 int cpu, uninitialized_var(ret);
1195
1196 cpu_notifier_register_begin();
1197
1198 __register_cpu_notifier(&zs_cpu_nb);
1199 for_each_online_cpu(cpu) {
1200 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1201 if (notifier_to_errno(ret))
1202 break;
1203 }
1204
1205 cpu_notifier_register_done();
1206 return notifier_to_errno(ret);
1207 }
1208
1209 static void zs_unregister_cpu_notifier(void)
1210 {
1211 int cpu;
1212
1213 cpu_notifier_register_begin();
1214
1215 for_each_online_cpu(cpu)
1216 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1217 __unregister_cpu_notifier(&zs_cpu_nb);
1218
1219 cpu_notifier_register_done();
1220 }
1221
1222 static void init_zs_size_classes(void)
1223 {
1224 int nr;
1225
1226 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1227 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1228 nr += 1;
1229
1230 zs_size_classes = nr;
1231 }
1232
1233 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1234 {
1235 if (prev->pages_per_zspage != pages_per_zspage)
1236 return false;
1237
1238 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1239 != get_maxobj_per_zspage(size, pages_per_zspage))
1240 return false;
1241
1242 return true;
1243 }
1244
1245 static bool zspage_full(struct page *first_page)
1246 {
1247 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
1248
1249 return first_page->inuse == first_page->objects;
1250 }
1251
1252 unsigned long zs_get_total_pages(struct zs_pool *pool)
1253 {
1254 return atomic_long_read(&pool->pages_allocated);
1255 }
1256 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1257
1258 /**
1259 * zs_map_object - get address of allocated object from handle.
1260 * @pool: pool from which the object was allocated
1261 * @handle: handle returned from zs_malloc
1262 *
1263 * Before using an object allocated from zs_malloc, it must be mapped using
1264 * this function. When done with the object, it must be unmapped using
1265 * zs_unmap_object.
1266 *
1267 * Only one object can be mapped per cpu at a time. There is no protection
1268 * against nested mappings.
1269 *
1270 * This function returns with preemption and page faults disabled.
1271 */
1272 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1273 enum zs_mapmode mm)
1274 {
1275 struct page *page;
1276 unsigned long obj, obj_idx, off;
1277
1278 unsigned int class_idx;
1279 enum fullness_group fg;
1280 struct size_class *class;
1281 struct mapping_area *area;
1282 struct page *pages[2];
1283 void *ret;
1284
1285 /*
1286 * Because we use per-cpu mapping areas shared among the
1287 * pools/users, we can't allow mapping in interrupt context
1288 * because it can corrupt another users mappings.
1289 */
1290 WARN_ON_ONCE(in_interrupt());
1291
1292 /* From now on, migration cannot move the object */
1293 pin_tag(handle);
1294
1295 obj = handle_to_obj(handle);
1296 obj_to_location(obj, &page, &obj_idx);
1297 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1298 class = pool->size_class[class_idx];
1299 off = obj_idx_to_offset(page, obj_idx, class->size);
1300
1301 area = &get_cpu_var(zs_map_area);
1302 area->vm_mm = mm;
1303 if (off + class->size <= PAGE_SIZE) {
1304 /* this object is contained entirely within a page */
1305 area->vm_addr = kmap_atomic(page);
1306 ret = area->vm_addr + off;
1307 goto out;
1308 }
1309
1310 /* this object spans two pages */
1311 pages[0] = page;
1312 pages[1] = get_next_page(page);
1313 BUG_ON(!pages[1]);
1314
1315 ret = __zs_map_object(area, pages, off, class->size);
1316 out:
1317 if (!class->huge)
1318 ret += ZS_HANDLE_SIZE;
1319
1320 return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(zs_map_object);
1323
1324 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1325 {
1326 struct page *page;
1327 unsigned long obj, obj_idx, off;
1328
1329 unsigned int class_idx;
1330 enum fullness_group fg;
1331 struct size_class *class;
1332 struct mapping_area *area;
1333
1334 obj = handle_to_obj(handle);
1335 obj_to_location(obj, &page, &obj_idx);
1336 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1337 class = pool->size_class[class_idx];
1338 off = obj_idx_to_offset(page, obj_idx, class->size);
1339
1340 area = this_cpu_ptr(&zs_map_area);
1341 if (off + class->size <= PAGE_SIZE)
1342 kunmap_atomic(area->vm_addr);
1343 else {
1344 struct page *pages[2];
1345
1346 pages[0] = page;
1347 pages[1] = get_next_page(page);
1348 BUG_ON(!pages[1]);
1349
1350 __zs_unmap_object(area, pages, off, class->size);
1351 }
1352 put_cpu_var(zs_map_area);
1353 unpin_tag(handle);
1354 }
1355 EXPORT_SYMBOL_GPL(zs_unmap_object);
1356
1357 static unsigned long obj_malloc(struct size_class *class,
1358 struct page *first_page, unsigned long handle)
1359 {
1360 unsigned long obj;
1361 struct link_free *link;
1362
1363 struct page *m_page;
1364 unsigned long m_objidx, m_offset;
1365 void *vaddr;
1366
1367 handle |= OBJ_ALLOCATED_TAG;
1368 obj = (unsigned long)first_page->freelist;
1369 obj_to_location(obj, &m_page, &m_objidx);
1370 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1371
1372 vaddr = kmap_atomic(m_page);
1373 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1374 first_page->freelist = link->next;
1375 if (!class->huge)
1376 /* record handle in the header of allocated chunk */
1377 link->handle = handle;
1378 else
1379 /* record handle in first_page->private */
1380 set_page_private(first_page, handle);
1381 kunmap_atomic(vaddr);
1382 first_page->inuse++;
1383 zs_stat_inc(class, OBJ_USED, 1);
1384
1385 return obj;
1386 }
1387
1388
1389 /**
1390 * zs_malloc - Allocate block of given size from pool.
1391 * @pool: pool to allocate from
1392 * @size: size of block to allocate
1393 *
1394 * On success, handle to the allocated object is returned,
1395 * otherwise 0.
1396 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1397 */
1398 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1399 {
1400 unsigned long handle, obj;
1401 struct size_class *class;
1402 struct page *first_page;
1403
1404 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1405 return 0;
1406
1407 handle = alloc_handle(pool, gfp);
1408 if (!handle)
1409 return 0;
1410
1411 /* extra space in chunk to keep the handle */
1412 size += ZS_HANDLE_SIZE;
1413 class = pool->size_class[get_size_class_index(size)];
1414
1415 spin_lock(&class->lock);
1416 first_page = find_get_zspage(class);
1417
1418 if (!first_page) {
1419 spin_unlock(&class->lock);
1420 first_page = alloc_zspage(class, gfp);
1421 if (unlikely(!first_page)) {
1422 free_handle(pool, handle);
1423 return 0;
1424 }
1425
1426 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1427 atomic_long_add(class->pages_per_zspage,
1428 &pool->pages_allocated);
1429
1430 spin_lock(&class->lock);
1431 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1432 class->size, class->pages_per_zspage));
1433 }
1434
1435 obj = obj_malloc(class, first_page, handle);
1436 /* Now move the zspage to another fullness group, if required */
1437 fix_fullness_group(class, first_page);
1438 record_obj(handle, obj);
1439 spin_unlock(&class->lock);
1440
1441 return handle;
1442 }
1443 EXPORT_SYMBOL_GPL(zs_malloc);
1444
1445 static void obj_free(struct size_class *class, unsigned long obj)
1446 {
1447 struct link_free *link;
1448 struct page *first_page, *f_page;
1449 unsigned long f_objidx, f_offset;
1450 void *vaddr;
1451
1452 obj &= ~OBJ_ALLOCATED_TAG;
1453 obj_to_location(obj, &f_page, &f_objidx);
1454 first_page = get_first_page(f_page);
1455
1456 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1457
1458 vaddr = kmap_atomic(f_page);
1459
1460 /* Insert this object in containing zspage's freelist */
1461 link = (struct link_free *)(vaddr + f_offset);
1462 link->next = first_page->freelist;
1463 if (class->huge)
1464 set_page_private(first_page, 0);
1465 kunmap_atomic(vaddr);
1466 first_page->freelist = (void *)obj;
1467 first_page->inuse--;
1468 zs_stat_dec(class, OBJ_USED, 1);
1469 }
1470
1471 void zs_free(struct zs_pool *pool, unsigned long handle)
1472 {
1473 struct page *first_page, *f_page;
1474 unsigned long obj, f_objidx;
1475 int class_idx;
1476 struct size_class *class;
1477 enum fullness_group fullness;
1478
1479 if (unlikely(!handle))
1480 return;
1481
1482 pin_tag(handle);
1483 obj = handle_to_obj(handle);
1484 obj_to_location(obj, &f_page, &f_objidx);
1485 first_page = get_first_page(f_page);
1486
1487 get_zspage_mapping(first_page, &class_idx, &fullness);
1488 class = pool->size_class[class_idx];
1489
1490 spin_lock(&class->lock);
1491 obj_free(class, obj);
1492 fullness = fix_fullness_group(class, first_page);
1493 if (fullness == ZS_EMPTY) {
1494 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1495 class->size, class->pages_per_zspage));
1496 atomic_long_sub(class->pages_per_zspage,
1497 &pool->pages_allocated);
1498 free_zspage(first_page);
1499 }
1500 spin_unlock(&class->lock);
1501 unpin_tag(handle);
1502
1503 free_handle(pool, handle);
1504 }
1505 EXPORT_SYMBOL_GPL(zs_free);
1506
1507 static void zs_object_copy(struct size_class *class, unsigned long dst,
1508 unsigned long src)
1509 {
1510 struct page *s_page, *d_page;
1511 unsigned long s_objidx, d_objidx;
1512 unsigned long s_off, d_off;
1513 void *s_addr, *d_addr;
1514 int s_size, d_size, size;
1515 int written = 0;
1516
1517 s_size = d_size = class->size;
1518
1519 obj_to_location(src, &s_page, &s_objidx);
1520 obj_to_location(dst, &d_page, &d_objidx);
1521
1522 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1523 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1524
1525 if (s_off + class->size > PAGE_SIZE)
1526 s_size = PAGE_SIZE - s_off;
1527
1528 if (d_off + class->size > PAGE_SIZE)
1529 d_size = PAGE_SIZE - d_off;
1530
1531 s_addr = kmap_atomic(s_page);
1532 d_addr = kmap_atomic(d_page);
1533
1534 while (1) {
1535 size = min(s_size, d_size);
1536 memcpy(d_addr + d_off, s_addr + s_off, size);
1537 written += size;
1538
1539 if (written == class->size)
1540 break;
1541
1542 s_off += size;
1543 s_size -= size;
1544 d_off += size;
1545 d_size -= size;
1546
1547 if (s_off >= PAGE_SIZE) {
1548 kunmap_atomic(d_addr);
1549 kunmap_atomic(s_addr);
1550 s_page = get_next_page(s_page);
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553 s_size = class->size - written;
1554 s_off = 0;
1555 }
1556
1557 if (d_off >= PAGE_SIZE) {
1558 kunmap_atomic(d_addr);
1559 d_page = get_next_page(d_page);
1560 d_addr = kmap_atomic(d_page);
1561 d_size = class->size - written;
1562 d_off = 0;
1563 }
1564 }
1565
1566 kunmap_atomic(d_addr);
1567 kunmap_atomic(s_addr);
1568 }
1569
1570 /*
1571 * Find alloced object in zspage from index object and
1572 * return handle.
1573 */
1574 static unsigned long find_alloced_obj(struct size_class *class,
1575 struct page *page, int index)
1576 {
1577 unsigned long head;
1578 int offset = 0;
1579 unsigned long handle = 0;
1580 void *addr = kmap_atomic(page);
1581
1582 if (!is_first_page(page))
1583 offset = page->index;
1584 offset += class->size * index;
1585
1586 while (offset < PAGE_SIZE) {
1587 head = obj_to_head(class, page, addr + offset);
1588 if (head & OBJ_ALLOCATED_TAG) {
1589 handle = head & ~OBJ_ALLOCATED_TAG;
1590 if (trypin_tag(handle))
1591 break;
1592 handle = 0;
1593 }
1594
1595 offset += class->size;
1596 index++;
1597 }
1598
1599 kunmap_atomic(addr);
1600 return handle;
1601 }
1602
1603 struct zs_compact_control {
1604 /* Source page for migration which could be a subpage of zspage. */
1605 struct page *s_page;
1606 /* Destination page for migration which should be a first page
1607 * of zspage. */
1608 struct page *d_page;
1609 /* Starting object index within @s_page which used for live object
1610 * in the subpage. */
1611 int index;
1612 };
1613
1614 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1615 struct zs_compact_control *cc)
1616 {
1617 unsigned long used_obj, free_obj;
1618 unsigned long handle;
1619 struct page *s_page = cc->s_page;
1620 struct page *d_page = cc->d_page;
1621 unsigned long index = cc->index;
1622 int ret = 0;
1623
1624 while (1) {
1625 handle = find_alloced_obj(class, s_page, index);
1626 if (!handle) {
1627 s_page = get_next_page(s_page);
1628 if (!s_page)
1629 break;
1630 index = 0;
1631 continue;
1632 }
1633
1634 /* Stop if there is no more space */
1635 if (zspage_full(d_page)) {
1636 unpin_tag(handle);
1637 ret = -ENOMEM;
1638 break;
1639 }
1640
1641 used_obj = handle_to_obj(handle);
1642 free_obj = obj_malloc(class, d_page, handle);
1643 zs_object_copy(class, free_obj, used_obj);
1644 index++;
1645 /*
1646 * record_obj updates handle's value to free_obj and it will
1647 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1648 * breaks synchronization using pin_tag(e,g, zs_free) so
1649 * let's keep the lock bit.
1650 */
1651 free_obj |= BIT(HANDLE_PIN_BIT);
1652 record_obj(handle, free_obj);
1653 unpin_tag(handle);
1654 obj_free(class, used_obj);
1655 }
1656
1657 /* Remember last position in this iteration */
1658 cc->s_page = s_page;
1659 cc->index = index;
1660
1661 return ret;
1662 }
1663
1664 static struct page *isolate_target_page(struct size_class *class)
1665 {
1666 int i;
1667 struct page *page;
1668
1669 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1670 page = class->fullness_list[i];
1671 if (page) {
1672 remove_zspage(class, i, page);
1673 break;
1674 }
1675 }
1676
1677 return page;
1678 }
1679
1680 /*
1681 * putback_zspage - add @first_page into right class's fullness list
1682 * @pool: target pool
1683 * @class: destination class
1684 * @first_page: target page
1685 *
1686 * Return @fist_page's fullness_group
1687 */
1688 static enum fullness_group putback_zspage(struct zs_pool *pool,
1689 struct size_class *class,
1690 struct page *first_page)
1691 {
1692 enum fullness_group fullness;
1693
1694 fullness = get_fullness_group(first_page);
1695 insert_zspage(class, fullness, first_page);
1696 set_zspage_mapping(first_page, class->index, fullness);
1697
1698 if (fullness == ZS_EMPTY) {
1699 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1700 class->size, class->pages_per_zspage));
1701 atomic_long_sub(class->pages_per_zspage,
1702 &pool->pages_allocated);
1703
1704 free_zspage(first_page);
1705 }
1706
1707 return fullness;
1708 }
1709
1710 static struct page *isolate_source_page(struct size_class *class)
1711 {
1712 int i;
1713 struct page *page = NULL;
1714
1715 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1716 page = class->fullness_list[i];
1717 if (!page)
1718 continue;
1719
1720 remove_zspage(class, i, page);
1721 break;
1722 }
1723
1724 return page;
1725 }
1726
1727 /*
1728 *
1729 * Based on the number of unused allocated objects calculate
1730 * and return the number of pages that we can free.
1731 */
1732 static unsigned long zs_can_compact(struct size_class *class)
1733 {
1734 unsigned long obj_wasted;
1735 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1736 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1737
1738 if (obj_allocated <= obj_used)
1739 return 0;
1740
1741 obj_wasted = obj_allocated - obj_used;
1742 obj_wasted /= get_maxobj_per_zspage(class->size,
1743 class->pages_per_zspage);
1744
1745 return obj_wasted * class->pages_per_zspage;
1746 }
1747
1748 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1749 {
1750 struct zs_compact_control cc;
1751 struct page *src_page;
1752 struct page *dst_page = NULL;
1753
1754 spin_lock(&class->lock);
1755 while ((src_page = isolate_source_page(class))) {
1756
1757 if (!zs_can_compact(class))
1758 break;
1759
1760 cc.index = 0;
1761 cc.s_page = src_page;
1762
1763 while ((dst_page = isolate_target_page(class))) {
1764 cc.d_page = dst_page;
1765 /*
1766 * If there is no more space in dst_page, resched
1767 * and see if anyone had allocated another zspage.
1768 */
1769 if (!migrate_zspage(pool, class, &cc))
1770 break;
1771
1772 putback_zspage(pool, class, dst_page);
1773 }
1774
1775 /* Stop if we couldn't find slot */
1776 if (dst_page == NULL)
1777 break;
1778
1779 putback_zspage(pool, class, dst_page);
1780 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1781 pool->stats.pages_compacted += class->pages_per_zspage;
1782 spin_unlock(&class->lock);
1783 cond_resched();
1784 spin_lock(&class->lock);
1785 }
1786
1787 if (src_page)
1788 putback_zspage(pool, class, src_page);
1789
1790 spin_unlock(&class->lock);
1791 }
1792
1793 unsigned long zs_compact(struct zs_pool *pool)
1794 {
1795 int i;
1796 struct size_class *class;
1797
1798 for (i = zs_size_classes - 1; i >= 0; i--) {
1799 class = pool->size_class[i];
1800 if (!class)
1801 continue;
1802 if (class->index != i)
1803 continue;
1804 __zs_compact(pool, class);
1805 }
1806
1807 return pool->stats.pages_compacted;
1808 }
1809 EXPORT_SYMBOL_GPL(zs_compact);
1810
1811 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1812 {
1813 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1814 }
1815 EXPORT_SYMBOL_GPL(zs_pool_stats);
1816
1817 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1818 struct shrink_control *sc)
1819 {
1820 unsigned long pages_freed;
1821 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1822 shrinker);
1823
1824 pages_freed = pool->stats.pages_compacted;
1825 /*
1826 * Compact classes and calculate compaction delta.
1827 * Can run concurrently with a manually triggered
1828 * (by user) compaction.
1829 */
1830 pages_freed = zs_compact(pool) - pages_freed;
1831
1832 return pages_freed ? pages_freed : SHRINK_STOP;
1833 }
1834
1835 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1836 struct shrink_control *sc)
1837 {
1838 int i;
1839 struct size_class *class;
1840 unsigned long pages_to_free = 0;
1841 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1842 shrinker);
1843
1844 for (i = zs_size_classes - 1; i >= 0; i--) {
1845 class = pool->size_class[i];
1846 if (!class)
1847 continue;
1848 if (class->index != i)
1849 continue;
1850
1851 pages_to_free += zs_can_compact(class);
1852 }
1853
1854 return pages_to_free;
1855 }
1856
1857 static void zs_unregister_shrinker(struct zs_pool *pool)
1858 {
1859 if (pool->shrinker_enabled) {
1860 unregister_shrinker(&pool->shrinker);
1861 pool->shrinker_enabled = false;
1862 }
1863 }
1864
1865 static int zs_register_shrinker(struct zs_pool *pool)
1866 {
1867 pool->shrinker.scan_objects = zs_shrinker_scan;
1868 pool->shrinker.count_objects = zs_shrinker_count;
1869 pool->shrinker.batch = 0;
1870 pool->shrinker.seeks = DEFAULT_SEEKS;
1871
1872 return register_shrinker(&pool->shrinker);
1873 }
1874
1875 /**
1876 * zs_create_pool - Creates an allocation pool to work from.
1877 * @flags: allocation flags used to allocate pool metadata
1878 *
1879 * This function must be called before anything when using
1880 * the zsmalloc allocator.
1881 *
1882 * On success, a pointer to the newly created pool is returned,
1883 * otherwise NULL.
1884 */
1885 struct zs_pool *zs_create_pool(const char *name)
1886 {
1887 int i;
1888 struct zs_pool *pool;
1889 struct size_class *prev_class = NULL;
1890
1891 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1892 if (!pool)
1893 return NULL;
1894
1895 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1896 GFP_KERNEL);
1897 if (!pool->size_class) {
1898 kfree(pool);
1899 return NULL;
1900 }
1901
1902 pool->name = kstrdup(name, GFP_KERNEL);
1903 if (!pool->name)
1904 goto err;
1905
1906 if (create_handle_cache(pool))
1907 goto err;
1908
1909 /*
1910 * Iterate reversly, because, size of size_class that we want to use
1911 * for merging should be larger or equal to current size.
1912 */
1913 for (i = zs_size_classes - 1; i >= 0; i--) {
1914 int size;
1915 int pages_per_zspage;
1916 struct size_class *class;
1917
1918 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1919 if (size > ZS_MAX_ALLOC_SIZE)
1920 size = ZS_MAX_ALLOC_SIZE;
1921 pages_per_zspage = get_pages_per_zspage(size);
1922
1923 /*
1924 * size_class is used for normal zsmalloc operation such
1925 * as alloc/free for that size. Although it is natural that we
1926 * have one size_class for each size, there is a chance that we
1927 * can get more memory utilization if we use one size_class for
1928 * many different sizes whose size_class have same
1929 * characteristics. So, we makes size_class point to
1930 * previous size_class if possible.
1931 */
1932 if (prev_class) {
1933 if (can_merge(prev_class, size, pages_per_zspage)) {
1934 pool->size_class[i] = prev_class;
1935 continue;
1936 }
1937 }
1938
1939 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1940 if (!class)
1941 goto err;
1942
1943 class->size = size;
1944 class->index = i;
1945 class->pages_per_zspage = pages_per_zspage;
1946 if (pages_per_zspage == 1 &&
1947 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1948 class->huge = true;
1949 spin_lock_init(&class->lock);
1950 pool->size_class[i] = class;
1951
1952 prev_class = class;
1953 }
1954
1955 /* debug only, don't abort if it fails */
1956 zs_pool_stat_create(pool, name);
1957
1958 /*
1959 * Not critical, we still can use the pool
1960 * and user can trigger compaction manually.
1961 */
1962 if (zs_register_shrinker(pool) == 0)
1963 pool->shrinker_enabled = true;
1964 return pool;
1965
1966 err:
1967 zs_destroy_pool(pool);
1968 return NULL;
1969 }
1970 EXPORT_SYMBOL_GPL(zs_create_pool);
1971
1972 void zs_destroy_pool(struct zs_pool *pool)
1973 {
1974 int i;
1975
1976 zs_unregister_shrinker(pool);
1977 zs_pool_stat_destroy(pool);
1978
1979 for (i = 0; i < zs_size_classes; i++) {
1980 int fg;
1981 struct size_class *class = pool->size_class[i];
1982
1983 if (!class)
1984 continue;
1985
1986 if (class->index != i)
1987 continue;
1988
1989 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1990 if (class->fullness_list[fg]) {
1991 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1992 class->size, fg);
1993 }
1994 }
1995 kfree(class);
1996 }
1997
1998 destroy_handle_cache(pool);
1999 kfree(pool->size_class);
2000 kfree(pool->name);
2001 kfree(pool);
2002 }
2003 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2004
2005 static int __init zs_init(void)
2006 {
2007 int ret = zs_register_cpu_notifier();
2008
2009 if (ret)
2010 goto notifier_fail;
2011
2012 init_zs_size_classes();
2013
2014 #ifdef CONFIG_ZPOOL
2015 zpool_register_driver(&zs_zpool_driver);
2016 #endif
2017
2018 zs_stat_init();
2019
2020 return 0;
2021
2022 notifier_fail:
2023 zs_unregister_cpu_notifier();
2024
2025 return ret;
2026 }
2027
2028 static void __exit zs_exit(void)
2029 {
2030 #ifdef CONFIG_ZPOOL
2031 zpool_unregister_driver(&zs_zpool_driver);
2032 #endif
2033 zs_unregister_cpu_notifier();
2034
2035 zs_stat_exit();
2036 }
2037
2038 module_init(zs_init);
2039 module_exit(zs_exit);
2040
2041 MODULE_LICENSE("Dual BSD/GPL");
2042 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.075113 seconds and 5 git commands to generate.