Merge remote-tracking branch 'keys/keys-next'
[deliverable/linux.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64 {
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76 {
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124 {
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136 {
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167 done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_PRIMARY:
264 bredr_init(req);
265 break;
266 case HCI_AMP:
267 amp_init1(req);
268 break;
269 default:
270 BT_ERR("Unknown device type %d", hdev->dev_type);
271 break;
272 }
273
274 return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279 __le16 param;
280 __u8 flt_type;
281
282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285 /* Read Class of Device */
286 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288 /* Read Local Name */
289 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291 /* Read Voice Setting */
292 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294 /* Read Number of Supported IAC */
295 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297 /* Read Current IAC LAP */
298 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300 /* Clear Event Filters */
301 flt_type = HCI_FLT_CLEAR_ALL;
302 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304 /* Connection accept timeout ~20 secs */
305 param = cpu_to_le16(0x7d00);
306 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311 struct hci_dev *hdev = req->hdev;
312
313 /* Read LE Buffer Size */
314 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316 /* Read LE Local Supported Features */
317 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319 /* Read LE Supported States */
320 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322 /* LE-only controllers have LE implicitly enabled */
323 if (!lmp_bredr_capable(hdev))
324 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329 struct hci_dev *hdev = req->hdev;
330
331 /* The second byte is 0xff instead of 0x9f (two reserved bits
332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 * command otherwise.
334 */
335 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 * any event mask for pre 1.2 devices.
339 */
340 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 return;
342
343 if (lmp_bredr_capable(hdev)) {
344 events[4] |= 0x01; /* Flow Specification Complete */
345 } else {
346 /* Use a different default for LE-only devices */
347 memset(events, 0, sizeof(events));
348 events[1] |= 0x20; /* Command Complete */
349 events[1] |= 0x40; /* Command Status */
350 events[1] |= 0x80; /* Hardware Error */
351
352 /* If the controller supports the Disconnect command, enable
353 * the corresponding event. In addition enable packet flow
354 * control related events.
355 */
356 if (hdev->commands[0] & 0x20) {
357 events[0] |= 0x10; /* Disconnection Complete */
358 events[2] |= 0x04; /* Number of Completed Packets */
359 events[3] |= 0x02; /* Data Buffer Overflow */
360 }
361
362 /* If the controller supports the Read Remote Version
363 * Information command, enable the corresponding event.
364 */
365 if (hdev->commands[2] & 0x80)
366 events[1] |= 0x08; /* Read Remote Version Information
367 * Complete
368 */
369
370 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 events[0] |= 0x80; /* Encryption Change */
372 events[5] |= 0x80; /* Encryption Key Refresh Complete */
373 }
374 }
375
376 if (lmp_inq_rssi_capable(hdev) ||
377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380 if (lmp_ext_feat_capable(hdev))
381 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383 if (lmp_esco_capable(hdev)) {
384 events[5] |= 0x08; /* Synchronous Connection Complete */
385 events[5] |= 0x10; /* Synchronous Connection Changed */
386 }
387
388 if (lmp_sniffsubr_capable(hdev))
389 events[5] |= 0x20; /* Sniff Subrating */
390
391 if (lmp_pause_enc_capable(hdev))
392 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394 if (lmp_ext_inq_capable(hdev))
395 events[5] |= 0x40; /* Extended Inquiry Result */
396
397 if (lmp_no_flush_capable(hdev))
398 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400 if (lmp_lsto_capable(hdev))
401 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403 if (lmp_ssp_capable(hdev)) {
404 events[6] |= 0x01; /* IO Capability Request */
405 events[6] |= 0x02; /* IO Capability Response */
406 events[6] |= 0x04; /* User Confirmation Request */
407 events[6] |= 0x08; /* User Passkey Request */
408 events[6] |= 0x10; /* Remote OOB Data Request */
409 events[6] |= 0x20; /* Simple Pairing Complete */
410 events[7] |= 0x04; /* User Passkey Notification */
411 events[7] |= 0x08; /* Keypress Notification */
412 events[7] |= 0x10; /* Remote Host Supported
413 * Features Notification
414 */
415 }
416
417 if (lmp_le_capable(hdev))
418 events[7] |= 0x20; /* LE Meta-Event */
419
420 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425 struct hci_dev *hdev = req->hdev;
426
427 if (hdev->dev_type == HCI_AMP)
428 return amp_init2(req);
429
430 if (lmp_bredr_capable(hdev))
431 bredr_setup(req);
432 else
433 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435 if (lmp_le_capable(hdev))
436 le_setup(req);
437
438 /* All Bluetooth 1.2 and later controllers should support the
439 * HCI command for reading the local supported commands.
440 *
441 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 * but do not have support for this command. If that is the case,
443 * the driver can quirk the behavior and skip reading the local
444 * supported commands.
445 */
446 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450 if (lmp_ssp_capable(hdev)) {
451 /* When SSP is available, then the host features page
452 * should also be available as well. However some
453 * controllers list the max_page as 0 as long as SSP
454 * has not been enabled. To achieve proper debugging
455 * output, force the minimum max_page to 1 at least.
456 */
457 hdev->max_page = 0x01;
458
459 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 u8 mode = 0x01;
461
462 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 sizeof(mode), &mode);
464 } else {
465 struct hci_cp_write_eir cp;
466
467 memset(hdev->eir, 0, sizeof(hdev->eir));
468 memset(&cp, 0, sizeof(cp));
469
470 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471 }
472 }
473
474 if (lmp_inq_rssi_capable(hdev) ||
475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 u8 mode;
477
478 /* If Extended Inquiry Result events are supported, then
479 * they are clearly preferred over Inquiry Result with RSSI
480 * events.
481 */
482 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485 }
486
487 if (lmp_inq_tx_pwr_capable(hdev))
488 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490 if (lmp_ext_feat_capable(hdev)) {
491 struct hci_cp_read_local_ext_features cp;
492
493 cp.page = 0x01;
494 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 sizeof(cp), &cp);
496 }
497
498 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 u8 enable = 1;
500 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 &enable);
502 }
503
504 return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509 struct hci_dev *hdev = req->hdev;
510 struct hci_cp_write_def_link_policy cp;
511 u16 link_policy = 0;
512
513 if (lmp_rswitch_capable(hdev))
514 link_policy |= HCI_LP_RSWITCH;
515 if (lmp_hold_capable(hdev))
516 link_policy |= HCI_LP_HOLD;
517 if (lmp_sniff_capable(hdev))
518 link_policy |= HCI_LP_SNIFF;
519 if (lmp_park_capable(hdev))
520 link_policy |= HCI_LP_PARK;
521
522 cp.policy = cpu_to_le16(link_policy);
523 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528 struct hci_dev *hdev = req->hdev;
529 struct hci_cp_write_le_host_supported cp;
530
531 /* LE-only devices do not support explicit enablement */
532 if (!lmp_bredr_capable(hdev))
533 return;
534
535 memset(&cp, 0, sizeof(cp));
536
537 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 cp.le = 0x01;
539 cp.simul = 0x00;
540 }
541
542 if (cp.le != lmp_host_le_capable(hdev))
543 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549 struct hci_dev *hdev = req->hdev;
550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551
552 /* If Connectionless Slave Broadcast master role is supported
553 * enable all necessary events for it.
554 */
555 if (lmp_csb_master_capable(hdev)) {
556 events[1] |= 0x40; /* Triggered Clock Capture */
557 events[1] |= 0x80; /* Synchronization Train Complete */
558 events[2] |= 0x10; /* Slave Page Response Timeout */
559 events[2] |= 0x20; /* CSB Channel Map Change */
560 }
561
562 /* If Connectionless Slave Broadcast slave role is supported
563 * enable all necessary events for it.
564 */
565 if (lmp_csb_slave_capable(hdev)) {
566 events[2] |= 0x01; /* Synchronization Train Received */
567 events[2] |= 0x02; /* CSB Receive */
568 events[2] |= 0x04; /* CSB Timeout */
569 events[2] |= 0x08; /* Truncated Page Complete */
570 }
571
572 /* Enable Authenticated Payload Timeout Expired event if supported */
573 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574 events[2] |= 0x80;
575
576 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
577 }
578
579 static int hci_init3_req(struct hci_request *req, unsigned long opt)
580 {
581 struct hci_dev *hdev = req->hdev;
582 u8 p;
583
584 hci_setup_event_mask(req);
585
586 if (hdev->commands[6] & 0x20 &&
587 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588 struct hci_cp_read_stored_link_key cp;
589
590 bacpy(&cp.bdaddr, BDADDR_ANY);
591 cp.read_all = 0x01;
592 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
593 }
594
595 if (hdev->commands[5] & 0x10)
596 hci_setup_link_policy(req);
597
598 if (hdev->commands[8] & 0x01)
599 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
600
601 /* Some older Broadcom based Bluetooth 1.2 controllers do not
602 * support the Read Page Scan Type command. Check support for
603 * this command in the bit mask of supported commands.
604 */
605 if (hdev->commands[13] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
607
608 if (lmp_le_capable(hdev)) {
609 u8 events[8];
610
611 memset(events, 0, sizeof(events));
612
613 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614 events[0] |= 0x10; /* LE Long Term Key Request */
615
616 /* If controller supports the Connection Parameters Request
617 * Link Layer Procedure, enable the corresponding event.
618 */
619 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620 events[0] |= 0x20; /* LE Remote Connection
621 * Parameter Request
622 */
623
624 /* If the controller supports the Data Length Extension
625 * feature, enable the corresponding event.
626 */
627 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628 events[0] |= 0x40; /* LE Data Length Change */
629
630 /* If the controller supports Extended Scanner Filter
631 * Policies, enable the correspondig event.
632 */
633 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634 events[1] |= 0x04; /* LE Direct Advertising
635 * Report
636 */
637
638 /* If the controller supports the LE Set Scan Enable command,
639 * enable the corresponding advertising report event.
640 */
641 if (hdev->commands[26] & 0x08)
642 events[0] |= 0x02; /* LE Advertising Report */
643
644 /* If the controller supports the LE Create Connection
645 * command, enable the corresponding event.
646 */
647 if (hdev->commands[26] & 0x10)
648 events[0] |= 0x01; /* LE Connection Complete */
649
650 /* If the controller supports the LE Connection Update
651 * command, enable the corresponding event.
652 */
653 if (hdev->commands[27] & 0x04)
654 events[0] |= 0x04; /* LE Connection Update
655 * Complete
656 */
657
658 /* If the controller supports the LE Read Remote Used Features
659 * command, enable the corresponding event.
660 */
661 if (hdev->commands[27] & 0x20)
662 events[0] |= 0x08; /* LE Read Remote Used
663 * Features Complete
664 */
665
666 /* If the controller supports the LE Read Local P-256
667 * Public Key command, enable the corresponding event.
668 */
669 if (hdev->commands[34] & 0x02)
670 events[0] |= 0x80; /* LE Read Local P-256
671 * Public Key Complete
672 */
673
674 /* If the controller supports the LE Generate DHKey
675 * command, enable the corresponding event.
676 */
677 if (hdev->commands[34] & 0x04)
678 events[1] |= 0x01; /* LE Generate DHKey Complete */
679
680 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
681 events);
682
683 if (hdev->commands[25] & 0x40) {
684 /* Read LE Advertising Channel TX Power */
685 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
686 }
687
688 if (hdev->commands[26] & 0x40) {
689 /* Read LE White List Size */
690 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
691 0, NULL);
692 }
693
694 if (hdev->commands[26] & 0x80) {
695 /* Clear LE White List */
696 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
697 }
698
699 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
700 /* Read LE Maximum Data Length */
701 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
702
703 /* Read LE Suggested Default Data Length */
704 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
705 }
706
707 hci_set_le_support(req);
708 }
709
710 /* Read features beyond page 1 if available */
711 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
712 struct hci_cp_read_local_ext_features cp;
713
714 cp.page = p;
715 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
716 sizeof(cp), &cp);
717 }
718
719 return 0;
720 }
721
722 static int hci_init4_req(struct hci_request *req, unsigned long opt)
723 {
724 struct hci_dev *hdev = req->hdev;
725
726 /* Some Broadcom based Bluetooth controllers do not support the
727 * Delete Stored Link Key command. They are clearly indicating its
728 * absence in the bit mask of supported commands.
729 *
730 * Check the supported commands and only if the the command is marked
731 * as supported send it. If not supported assume that the controller
732 * does not have actual support for stored link keys which makes this
733 * command redundant anyway.
734 *
735 * Some controllers indicate that they support handling deleting
736 * stored link keys, but they don't. The quirk lets a driver
737 * just disable this command.
738 */
739 if (hdev->commands[6] & 0x80 &&
740 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
741 struct hci_cp_delete_stored_link_key cp;
742
743 bacpy(&cp.bdaddr, BDADDR_ANY);
744 cp.delete_all = 0x01;
745 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
746 sizeof(cp), &cp);
747 }
748
749 /* Set event mask page 2 if the HCI command for it is supported */
750 if (hdev->commands[22] & 0x04)
751 hci_set_event_mask_page_2(req);
752
753 /* Read local codec list if the HCI command is supported */
754 if (hdev->commands[29] & 0x20)
755 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
756
757 /* Get MWS transport configuration if the HCI command is supported */
758 if (hdev->commands[30] & 0x08)
759 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
760
761 /* Check for Synchronization Train support */
762 if (lmp_sync_train_capable(hdev))
763 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
764
765 /* Enable Secure Connections if supported and configured */
766 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
767 bredr_sc_enabled(hdev)) {
768 u8 support = 0x01;
769
770 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
771 sizeof(support), &support);
772 }
773
774 return 0;
775 }
776
777 static int __hci_init(struct hci_dev *hdev)
778 {
779 int err;
780
781 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
782 if (err < 0)
783 return err;
784
785 if (hci_dev_test_flag(hdev, HCI_SETUP))
786 hci_debugfs_create_basic(hdev);
787
788 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
789 if (err < 0)
790 return err;
791
792 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
793 * BR/EDR/LE type controllers. AMP controllers only need the
794 * first two stages of init.
795 */
796 if (hdev->dev_type != HCI_PRIMARY)
797 return 0;
798
799 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
800 if (err < 0)
801 return err;
802
803 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
804 if (err < 0)
805 return err;
806
807 /* This function is only called when the controller is actually in
808 * configured state. When the controller is marked as unconfigured,
809 * this initialization procedure is not run.
810 *
811 * It means that it is possible that a controller runs through its
812 * setup phase and then discovers missing settings. If that is the
813 * case, then this function will not be called. It then will only
814 * be called during the config phase.
815 *
816 * So only when in setup phase or config phase, create the debugfs
817 * entries and register the SMP channels.
818 */
819 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
820 !hci_dev_test_flag(hdev, HCI_CONFIG))
821 return 0;
822
823 hci_debugfs_create_common(hdev);
824
825 if (lmp_bredr_capable(hdev))
826 hci_debugfs_create_bredr(hdev);
827
828 if (lmp_le_capable(hdev))
829 hci_debugfs_create_le(hdev);
830
831 return 0;
832 }
833
834 static int hci_init0_req(struct hci_request *req, unsigned long opt)
835 {
836 struct hci_dev *hdev = req->hdev;
837
838 BT_DBG("%s %ld", hdev->name, opt);
839
840 /* Reset */
841 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
842 hci_reset_req(req, 0);
843
844 /* Read Local Version */
845 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
846
847 /* Read BD Address */
848 if (hdev->set_bdaddr)
849 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
850
851 return 0;
852 }
853
854 static int __hci_unconf_init(struct hci_dev *hdev)
855 {
856 int err;
857
858 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
859 return 0;
860
861 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
862 if (err < 0)
863 return err;
864
865 if (hci_dev_test_flag(hdev, HCI_SETUP))
866 hci_debugfs_create_basic(hdev);
867
868 return 0;
869 }
870
871 static int hci_scan_req(struct hci_request *req, unsigned long opt)
872 {
873 __u8 scan = opt;
874
875 BT_DBG("%s %x", req->hdev->name, scan);
876
877 /* Inquiry and Page scans */
878 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
879 return 0;
880 }
881
882 static int hci_auth_req(struct hci_request *req, unsigned long opt)
883 {
884 __u8 auth = opt;
885
886 BT_DBG("%s %x", req->hdev->name, auth);
887
888 /* Authentication */
889 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
890 return 0;
891 }
892
893 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
894 {
895 __u8 encrypt = opt;
896
897 BT_DBG("%s %x", req->hdev->name, encrypt);
898
899 /* Encryption */
900 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
901 return 0;
902 }
903
904 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
905 {
906 __le16 policy = cpu_to_le16(opt);
907
908 BT_DBG("%s %x", req->hdev->name, policy);
909
910 /* Default link policy */
911 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
912 return 0;
913 }
914
915 /* Get HCI device by index.
916 * Device is held on return. */
917 struct hci_dev *hci_dev_get(int index)
918 {
919 struct hci_dev *hdev = NULL, *d;
920
921 BT_DBG("%d", index);
922
923 if (index < 0)
924 return NULL;
925
926 read_lock(&hci_dev_list_lock);
927 list_for_each_entry(d, &hci_dev_list, list) {
928 if (d->id == index) {
929 hdev = hci_dev_hold(d);
930 break;
931 }
932 }
933 read_unlock(&hci_dev_list_lock);
934 return hdev;
935 }
936
937 /* ---- Inquiry support ---- */
938
939 bool hci_discovery_active(struct hci_dev *hdev)
940 {
941 struct discovery_state *discov = &hdev->discovery;
942
943 switch (discov->state) {
944 case DISCOVERY_FINDING:
945 case DISCOVERY_RESOLVING:
946 return true;
947
948 default:
949 return false;
950 }
951 }
952
953 void hci_discovery_set_state(struct hci_dev *hdev, int state)
954 {
955 int old_state = hdev->discovery.state;
956
957 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
958
959 if (old_state == state)
960 return;
961
962 hdev->discovery.state = state;
963
964 switch (state) {
965 case DISCOVERY_STOPPED:
966 hci_update_background_scan(hdev);
967
968 if (old_state != DISCOVERY_STARTING)
969 mgmt_discovering(hdev, 0);
970 break;
971 case DISCOVERY_STARTING:
972 break;
973 case DISCOVERY_FINDING:
974 mgmt_discovering(hdev, 1);
975 break;
976 case DISCOVERY_RESOLVING:
977 break;
978 case DISCOVERY_STOPPING:
979 break;
980 }
981 }
982
983 void hci_inquiry_cache_flush(struct hci_dev *hdev)
984 {
985 struct discovery_state *cache = &hdev->discovery;
986 struct inquiry_entry *p, *n;
987
988 list_for_each_entry_safe(p, n, &cache->all, all) {
989 list_del(&p->all);
990 kfree(p);
991 }
992
993 INIT_LIST_HEAD(&cache->unknown);
994 INIT_LIST_HEAD(&cache->resolve);
995 }
996
997 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
998 bdaddr_t *bdaddr)
999 {
1000 struct discovery_state *cache = &hdev->discovery;
1001 struct inquiry_entry *e;
1002
1003 BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005 list_for_each_entry(e, &cache->all, all) {
1006 if (!bacmp(&e->data.bdaddr, bdaddr))
1007 return e;
1008 }
1009
1010 return NULL;
1011 }
1012
1013 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014 bdaddr_t *bdaddr)
1015 {
1016 struct discovery_state *cache = &hdev->discovery;
1017 struct inquiry_entry *e;
1018
1019 BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021 list_for_each_entry(e, &cache->unknown, list) {
1022 if (!bacmp(&e->data.bdaddr, bdaddr))
1023 return e;
1024 }
1025
1026 return NULL;
1027 }
1028
1029 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030 bdaddr_t *bdaddr,
1031 int state)
1032 {
1033 struct discovery_state *cache = &hdev->discovery;
1034 struct inquiry_entry *e;
1035
1036 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038 list_for_each_entry(e, &cache->resolve, list) {
1039 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040 return e;
1041 if (!bacmp(&e->data.bdaddr, bdaddr))
1042 return e;
1043 }
1044
1045 return NULL;
1046 }
1047
1048 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049 struct inquiry_entry *ie)
1050 {
1051 struct discovery_state *cache = &hdev->discovery;
1052 struct list_head *pos = &cache->resolve;
1053 struct inquiry_entry *p;
1054
1055 list_del(&ie->list);
1056
1057 list_for_each_entry(p, &cache->resolve, list) {
1058 if (p->name_state != NAME_PENDING &&
1059 abs(p->data.rssi) >= abs(ie->data.rssi))
1060 break;
1061 pos = &p->list;
1062 }
1063
1064 list_add(&ie->list, pos);
1065 }
1066
1067 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068 bool name_known)
1069 {
1070 struct discovery_state *cache = &hdev->discovery;
1071 struct inquiry_entry *ie;
1072 u32 flags = 0;
1073
1074 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078 if (!data->ssp_mode)
1079 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082 if (ie) {
1083 if (!ie->data.ssp_mode)
1084 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086 if (ie->name_state == NAME_NEEDED &&
1087 data->rssi != ie->data.rssi) {
1088 ie->data.rssi = data->rssi;
1089 hci_inquiry_cache_update_resolve(hdev, ie);
1090 }
1091
1092 goto update;
1093 }
1094
1095 /* Entry not in the cache. Add new one. */
1096 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097 if (!ie) {
1098 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099 goto done;
1100 }
1101
1102 list_add(&ie->all, &cache->all);
1103
1104 if (name_known) {
1105 ie->name_state = NAME_KNOWN;
1106 } else {
1107 ie->name_state = NAME_NOT_KNOWN;
1108 list_add(&ie->list, &cache->unknown);
1109 }
1110
1111 update:
1112 if (name_known && ie->name_state != NAME_KNOWN &&
1113 ie->name_state != NAME_PENDING) {
1114 ie->name_state = NAME_KNOWN;
1115 list_del(&ie->list);
1116 }
1117
1118 memcpy(&ie->data, data, sizeof(*data));
1119 ie->timestamp = jiffies;
1120 cache->timestamp = jiffies;
1121
1122 if (ie->name_state == NAME_NOT_KNOWN)
1123 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125 done:
1126 return flags;
1127 }
1128
1129 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130 {
1131 struct discovery_state *cache = &hdev->discovery;
1132 struct inquiry_info *info = (struct inquiry_info *) buf;
1133 struct inquiry_entry *e;
1134 int copied = 0;
1135
1136 list_for_each_entry(e, &cache->all, all) {
1137 struct inquiry_data *data = &e->data;
1138
1139 if (copied >= num)
1140 break;
1141
1142 bacpy(&info->bdaddr, &data->bdaddr);
1143 info->pscan_rep_mode = data->pscan_rep_mode;
1144 info->pscan_period_mode = data->pscan_period_mode;
1145 info->pscan_mode = data->pscan_mode;
1146 memcpy(info->dev_class, data->dev_class, 3);
1147 info->clock_offset = data->clock_offset;
1148
1149 info++;
1150 copied++;
1151 }
1152
1153 BT_DBG("cache %p, copied %d", cache, copied);
1154 return copied;
1155 }
1156
1157 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158 {
1159 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160 struct hci_dev *hdev = req->hdev;
1161 struct hci_cp_inquiry cp;
1162
1163 BT_DBG("%s", hdev->name);
1164
1165 if (test_bit(HCI_INQUIRY, &hdev->flags))
1166 return 0;
1167
1168 /* Start Inquiry */
1169 memcpy(&cp.lap, &ir->lap, 3);
1170 cp.length = ir->length;
1171 cp.num_rsp = ir->num_rsp;
1172 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174 return 0;
1175 }
1176
1177 int hci_inquiry(void __user *arg)
1178 {
1179 __u8 __user *ptr = arg;
1180 struct hci_inquiry_req ir;
1181 struct hci_dev *hdev;
1182 int err = 0, do_inquiry = 0, max_rsp;
1183 long timeo;
1184 __u8 *buf;
1185
1186 if (copy_from_user(&ir, ptr, sizeof(ir)))
1187 return -EFAULT;
1188
1189 hdev = hci_dev_get(ir.dev_id);
1190 if (!hdev)
1191 return -ENODEV;
1192
1193 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194 err = -EBUSY;
1195 goto done;
1196 }
1197
1198 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199 err = -EOPNOTSUPP;
1200 goto done;
1201 }
1202
1203 if (hdev->dev_type != HCI_PRIMARY) {
1204 err = -EOPNOTSUPP;
1205 goto done;
1206 }
1207
1208 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209 err = -EOPNOTSUPP;
1210 goto done;
1211 }
1212
1213 hci_dev_lock(hdev);
1214 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216 hci_inquiry_cache_flush(hdev);
1217 do_inquiry = 1;
1218 }
1219 hci_dev_unlock(hdev);
1220
1221 timeo = ir.length * msecs_to_jiffies(2000);
1222
1223 if (do_inquiry) {
1224 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225 timeo, NULL);
1226 if (err < 0)
1227 goto done;
1228
1229 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230 * cleared). If it is interrupted by a signal, return -EINTR.
1231 */
1232 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233 TASK_INTERRUPTIBLE))
1234 return -EINTR;
1235 }
1236
1237 /* for unlimited number of responses we will use buffer with
1238 * 255 entries
1239 */
1240 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243 * copy it to the user space.
1244 */
1245 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246 if (!buf) {
1247 err = -ENOMEM;
1248 goto done;
1249 }
1250
1251 hci_dev_lock(hdev);
1252 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253 hci_dev_unlock(hdev);
1254
1255 BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258 ptr += sizeof(ir);
1259 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260 ir.num_rsp))
1261 err = -EFAULT;
1262 } else
1263 err = -EFAULT;
1264
1265 kfree(buf);
1266
1267 done:
1268 hci_dev_put(hdev);
1269 return err;
1270 }
1271
1272 static int hci_dev_do_open(struct hci_dev *hdev)
1273 {
1274 int ret = 0;
1275
1276 BT_DBG("%s %p", hdev->name, hdev);
1277
1278 hci_req_sync_lock(hdev);
1279
1280 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281 ret = -ENODEV;
1282 goto done;
1283 }
1284
1285 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287 /* Check for rfkill but allow the HCI setup stage to
1288 * proceed (which in itself doesn't cause any RF activity).
1289 */
1290 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291 ret = -ERFKILL;
1292 goto done;
1293 }
1294
1295 /* Check for valid public address or a configured static
1296 * random adddress, but let the HCI setup proceed to
1297 * be able to determine if there is a public address
1298 * or not.
1299 *
1300 * In case of user channel usage, it is not important
1301 * if a public address or static random address is
1302 * available.
1303 *
1304 * This check is only valid for BR/EDR controllers
1305 * since AMP controllers do not have an address.
1306 */
1307 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308 hdev->dev_type == HCI_PRIMARY &&
1309 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311 ret = -EADDRNOTAVAIL;
1312 goto done;
1313 }
1314 }
1315
1316 if (test_bit(HCI_UP, &hdev->flags)) {
1317 ret = -EALREADY;
1318 goto done;
1319 }
1320
1321 if (hdev->open(hdev)) {
1322 ret = -EIO;
1323 goto done;
1324 }
1325
1326 set_bit(HCI_RUNNING, &hdev->flags);
1327 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329 atomic_set(&hdev->cmd_cnt, 1);
1330 set_bit(HCI_INIT, &hdev->flags);
1331
1332 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335 if (hdev->setup)
1336 ret = hdev->setup(hdev);
1337
1338 /* The transport driver can set these quirks before
1339 * creating the HCI device or in its setup callback.
1340 *
1341 * In case any of them is set, the controller has to
1342 * start up as unconfigured.
1343 */
1344 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348 /* For an unconfigured controller it is required to
1349 * read at least the version information provided by
1350 * the Read Local Version Information command.
1351 *
1352 * If the set_bdaddr driver callback is provided, then
1353 * also the original Bluetooth public device address
1354 * will be read using the Read BD Address command.
1355 */
1356 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357 ret = __hci_unconf_init(hdev);
1358 }
1359
1360 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361 /* If public address change is configured, ensure that
1362 * the address gets programmed. If the driver does not
1363 * support changing the public address, fail the power
1364 * on procedure.
1365 */
1366 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367 hdev->set_bdaddr)
1368 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369 else
1370 ret = -EADDRNOTAVAIL;
1371 }
1372
1373 if (!ret) {
1374 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376 ret = __hci_init(hdev);
1377 if (!ret && hdev->post_init)
1378 ret = hdev->post_init(hdev);
1379 }
1380 }
1381
1382 /* If the HCI Reset command is clearing all diagnostic settings,
1383 * then they need to be reprogrammed after the init procedure
1384 * completed.
1385 */
1386 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388 ret = hdev->set_diag(hdev, true);
1389
1390 clear_bit(HCI_INIT, &hdev->flags);
1391
1392 if (!ret) {
1393 hci_dev_hold(hdev);
1394 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395 set_bit(HCI_UP, &hdev->flags);
1396 hci_sock_dev_event(hdev, HCI_DEV_UP);
1397 hci_leds_update_powered(hdev, true);
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402 hci_dev_test_flag(hdev, HCI_MGMT) &&
1403 hdev->dev_type == HCI_PRIMARY) {
1404 ret = __hci_req_hci_power_on(hdev);
1405 mgmt_power_on(hdev, ret);
1406 }
1407 } else {
1408 /* Init failed, cleanup */
1409 flush_work(&hdev->tx_work);
1410 flush_work(&hdev->cmd_work);
1411 flush_work(&hdev->rx_work);
1412
1413 skb_queue_purge(&hdev->cmd_q);
1414 skb_queue_purge(&hdev->rx_q);
1415
1416 if (hdev->flush)
1417 hdev->flush(hdev);
1418
1419 if (hdev->sent_cmd) {
1420 kfree_skb(hdev->sent_cmd);
1421 hdev->sent_cmd = NULL;
1422 }
1423
1424 clear_bit(HCI_RUNNING, &hdev->flags);
1425 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427 hdev->close(hdev);
1428 hdev->flags &= BIT(HCI_RAW);
1429 }
1430
1431 done:
1432 hci_req_sync_unlock(hdev);
1433 return ret;
1434 }
1435
1436 /* ---- HCI ioctl helpers ---- */
1437
1438 int hci_dev_open(__u16 dev)
1439 {
1440 struct hci_dev *hdev;
1441 int err;
1442
1443 hdev = hci_dev_get(dev);
1444 if (!hdev)
1445 return -ENODEV;
1446
1447 /* Devices that are marked as unconfigured can only be powered
1448 * up as user channel. Trying to bring them up as normal devices
1449 * will result into a failure. Only user channel operation is
1450 * possible.
1451 *
1452 * When this function is called for a user channel, the flag
1453 * HCI_USER_CHANNEL will be set first before attempting to
1454 * open the device.
1455 */
1456 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458 err = -EOPNOTSUPP;
1459 goto done;
1460 }
1461
1462 /* We need to ensure that no other power on/off work is pending
1463 * before proceeding to call hci_dev_do_open. This is
1464 * particularly important if the setup procedure has not yet
1465 * completed.
1466 */
1467 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468 cancel_delayed_work(&hdev->power_off);
1469
1470 /* After this call it is guaranteed that the setup procedure
1471 * has finished. This means that error conditions like RFKILL
1472 * or no valid public or static random address apply.
1473 */
1474 flush_workqueue(hdev->req_workqueue);
1475
1476 /* For controllers not using the management interface and that
1477 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478 * so that pairing works for them. Once the management interface
1479 * is in use this bit will be cleared again and userspace has
1480 * to explicitly enable it.
1481 */
1482 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483 !hci_dev_test_flag(hdev, HCI_MGMT))
1484 hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486 err = hci_dev_do_open(hdev);
1487
1488 done:
1489 hci_dev_put(hdev);
1490 return err;
1491 }
1492
1493 /* This function requires the caller holds hdev->lock */
1494 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495 {
1496 struct hci_conn_params *p;
1497
1498 list_for_each_entry(p, &hdev->le_conn_params, list) {
1499 if (p->conn) {
1500 hci_conn_drop(p->conn);
1501 hci_conn_put(p->conn);
1502 p->conn = NULL;
1503 }
1504 list_del_init(&p->action);
1505 }
1506
1507 BT_DBG("All LE pending actions cleared");
1508 }
1509
1510 int hci_dev_do_close(struct hci_dev *hdev)
1511 {
1512 bool auto_off;
1513
1514 BT_DBG("%s %p", hdev->name, hdev);
1515
1516 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518 test_bit(HCI_UP, &hdev->flags)) {
1519 /* Execute vendor specific shutdown routine */
1520 if (hdev->shutdown)
1521 hdev->shutdown(hdev);
1522 }
1523
1524 cancel_delayed_work(&hdev->power_off);
1525
1526 hci_request_cancel_all(hdev);
1527 hci_req_sync_lock(hdev);
1528
1529 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530 cancel_delayed_work_sync(&hdev->cmd_timer);
1531 hci_req_sync_unlock(hdev);
1532 return 0;
1533 }
1534
1535 hci_leds_update_powered(hdev, false);
1536
1537 /* Flush RX and TX works */
1538 flush_work(&hdev->tx_work);
1539 flush_work(&hdev->rx_work);
1540
1541 if (hdev->discov_timeout > 0) {
1542 hdev->discov_timeout = 0;
1543 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545 }
1546
1547 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548 cancel_delayed_work(&hdev->service_cache);
1549
1550 if (hci_dev_test_flag(hdev, HCI_MGMT))
1551 cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553 /* Avoid potential lockdep warnings from the *_flush() calls by
1554 * ensuring the workqueue is empty up front.
1555 */
1556 drain_workqueue(hdev->workqueue);
1557
1558 hci_dev_lock(hdev);
1559
1560 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566 hci_dev_test_flag(hdev, HCI_MGMT))
1567 __mgmt_power_off(hdev);
1568
1569 hci_inquiry_cache_flush(hdev);
1570 hci_pend_le_actions_clear(hdev);
1571 hci_conn_hash_flush(hdev);
1572 hci_dev_unlock(hdev);
1573
1574 smp_unregister(hdev);
1575
1576 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578 if (hdev->flush)
1579 hdev->flush(hdev);
1580
1581 /* Reset device */
1582 skb_queue_purge(&hdev->cmd_q);
1583 atomic_set(&hdev->cmd_cnt, 1);
1584 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586 set_bit(HCI_INIT, &hdev->flags);
1587 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1588 clear_bit(HCI_INIT, &hdev->flags);
1589 }
1590
1591 /* flush cmd work */
1592 flush_work(&hdev->cmd_work);
1593
1594 /* Drop queues */
1595 skb_queue_purge(&hdev->rx_q);
1596 skb_queue_purge(&hdev->cmd_q);
1597 skb_queue_purge(&hdev->raw_q);
1598
1599 /* Drop last sent command */
1600 if (hdev->sent_cmd) {
1601 cancel_delayed_work_sync(&hdev->cmd_timer);
1602 kfree_skb(hdev->sent_cmd);
1603 hdev->sent_cmd = NULL;
1604 }
1605
1606 clear_bit(HCI_RUNNING, &hdev->flags);
1607 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609 /* After this point our queues are empty
1610 * and no tasks are scheduled. */
1611 hdev->close(hdev);
1612
1613 /* Clear flags */
1614 hdev->flags &= BIT(HCI_RAW);
1615 hci_dev_clear_volatile_flags(hdev);
1616
1617 /* Controller radio is available but is currently powered down */
1618 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620 memset(hdev->eir, 0, sizeof(hdev->eir));
1621 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622 bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624 hci_req_sync_unlock(hdev);
1625
1626 hci_dev_put(hdev);
1627 return 0;
1628 }
1629
1630 int hci_dev_close(__u16 dev)
1631 {
1632 struct hci_dev *hdev;
1633 int err;
1634
1635 hdev = hci_dev_get(dev);
1636 if (!hdev)
1637 return -ENODEV;
1638
1639 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640 err = -EBUSY;
1641 goto done;
1642 }
1643
1644 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645 cancel_delayed_work(&hdev->power_off);
1646
1647 err = hci_dev_do_close(hdev);
1648
1649 done:
1650 hci_dev_put(hdev);
1651 return err;
1652 }
1653
1654 static int hci_dev_do_reset(struct hci_dev *hdev)
1655 {
1656 int ret;
1657
1658 BT_DBG("%s %p", hdev->name, hdev);
1659
1660 hci_req_sync_lock(hdev);
1661
1662 /* Drop queues */
1663 skb_queue_purge(&hdev->rx_q);
1664 skb_queue_purge(&hdev->cmd_q);
1665
1666 /* Avoid potential lockdep warnings from the *_flush() calls by
1667 * ensuring the workqueue is empty up front.
1668 */
1669 drain_workqueue(hdev->workqueue);
1670
1671 hci_dev_lock(hdev);
1672 hci_inquiry_cache_flush(hdev);
1673 hci_conn_hash_flush(hdev);
1674 hci_dev_unlock(hdev);
1675
1676 if (hdev->flush)
1677 hdev->flush(hdev);
1678
1679 atomic_set(&hdev->cmd_cnt, 1);
1680 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1681
1682 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684 hci_req_sync_unlock(hdev);
1685 return ret;
1686 }
1687
1688 int hci_dev_reset(__u16 dev)
1689 {
1690 struct hci_dev *hdev;
1691 int err;
1692
1693 hdev = hci_dev_get(dev);
1694 if (!hdev)
1695 return -ENODEV;
1696
1697 if (!test_bit(HCI_UP, &hdev->flags)) {
1698 err = -ENETDOWN;
1699 goto done;
1700 }
1701
1702 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703 err = -EBUSY;
1704 goto done;
1705 }
1706
1707 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708 err = -EOPNOTSUPP;
1709 goto done;
1710 }
1711
1712 err = hci_dev_do_reset(hdev);
1713
1714 done:
1715 hci_dev_put(hdev);
1716 return err;
1717 }
1718
1719 int hci_dev_reset_stat(__u16 dev)
1720 {
1721 struct hci_dev *hdev;
1722 int ret = 0;
1723
1724 hdev = hci_dev_get(dev);
1725 if (!hdev)
1726 return -ENODEV;
1727
1728 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729 ret = -EBUSY;
1730 goto done;
1731 }
1732
1733 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734 ret = -EOPNOTSUPP;
1735 goto done;
1736 }
1737
1738 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740 done:
1741 hci_dev_put(hdev);
1742 return ret;
1743 }
1744
1745 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746 {
1747 bool conn_changed, discov_changed;
1748
1749 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751 if ((scan & SCAN_PAGE))
1752 conn_changed = !hci_dev_test_and_set_flag(hdev,
1753 HCI_CONNECTABLE);
1754 else
1755 conn_changed = hci_dev_test_and_clear_flag(hdev,
1756 HCI_CONNECTABLE);
1757
1758 if ((scan & SCAN_INQUIRY)) {
1759 discov_changed = !hci_dev_test_and_set_flag(hdev,
1760 HCI_DISCOVERABLE);
1761 } else {
1762 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763 discov_changed = hci_dev_test_and_clear_flag(hdev,
1764 HCI_DISCOVERABLE);
1765 }
1766
1767 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768 return;
1769
1770 if (conn_changed || discov_changed) {
1771 /* In case this was disabled through mgmt */
1772 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777 mgmt_new_settings(hdev);
1778 }
1779 }
1780
1781 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782 {
1783 struct hci_dev *hdev;
1784 struct hci_dev_req dr;
1785 int err = 0;
1786
1787 if (copy_from_user(&dr, arg, sizeof(dr)))
1788 return -EFAULT;
1789
1790 hdev = hci_dev_get(dr.dev_id);
1791 if (!hdev)
1792 return -ENODEV;
1793
1794 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795 err = -EBUSY;
1796 goto done;
1797 }
1798
1799 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800 err = -EOPNOTSUPP;
1801 goto done;
1802 }
1803
1804 if (hdev->dev_type != HCI_PRIMARY) {
1805 err = -EOPNOTSUPP;
1806 goto done;
1807 }
1808
1809 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810 err = -EOPNOTSUPP;
1811 goto done;
1812 }
1813
1814 switch (cmd) {
1815 case HCISETAUTH:
1816 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817 HCI_INIT_TIMEOUT, NULL);
1818 break;
1819
1820 case HCISETENCRYPT:
1821 if (!lmp_encrypt_capable(hdev)) {
1822 err = -EOPNOTSUPP;
1823 break;
1824 }
1825
1826 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827 /* Auth must be enabled first */
1828 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829 HCI_INIT_TIMEOUT, NULL);
1830 if (err)
1831 break;
1832 }
1833
1834 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835 HCI_INIT_TIMEOUT, NULL);
1836 break;
1837
1838 case HCISETSCAN:
1839 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840 HCI_INIT_TIMEOUT, NULL);
1841
1842 /* Ensure that the connectable and discoverable states
1843 * get correctly modified as this was a non-mgmt change.
1844 */
1845 if (!err)
1846 hci_update_scan_state(hdev, dr.dev_opt);
1847 break;
1848
1849 case HCISETLINKPOL:
1850 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851 HCI_INIT_TIMEOUT, NULL);
1852 break;
1853
1854 case HCISETLINKMODE:
1855 hdev->link_mode = ((__u16) dr.dev_opt) &
1856 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1857 break;
1858
1859 case HCISETPTYPE:
1860 hdev->pkt_type = (__u16) dr.dev_opt;
1861 break;
1862
1863 case HCISETACLMTU:
1864 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1865 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866 break;
1867
1868 case HCISETSCOMTU:
1869 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1870 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871 break;
1872
1873 default:
1874 err = -EINVAL;
1875 break;
1876 }
1877
1878 done:
1879 hci_dev_put(hdev);
1880 return err;
1881 }
1882
1883 int hci_get_dev_list(void __user *arg)
1884 {
1885 struct hci_dev *hdev;
1886 struct hci_dev_list_req *dl;
1887 struct hci_dev_req *dr;
1888 int n = 0, size, err;
1889 __u16 dev_num;
1890
1891 if (get_user(dev_num, (__u16 __user *) arg))
1892 return -EFAULT;
1893
1894 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895 return -EINVAL;
1896
1897 size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899 dl = kzalloc(size, GFP_KERNEL);
1900 if (!dl)
1901 return -ENOMEM;
1902
1903 dr = dl->dev_req;
1904
1905 read_lock(&hci_dev_list_lock);
1906 list_for_each_entry(hdev, &hci_dev_list, list) {
1907 unsigned long flags = hdev->flags;
1908
1909 /* When the auto-off is configured it means the transport
1910 * is running, but in that case still indicate that the
1911 * device is actually down.
1912 */
1913 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914 flags &= ~BIT(HCI_UP);
1915
1916 (dr + n)->dev_id = hdev->id;
1917 (dr + n)->dev_opt = flags;
1918
1919 if (++n >= dev_num)
1920 break;
1921 }
1922 read_unlock(&hci_dev_list_lock);
1923
1924 dl->dev_num = n;
1925 size = sizeof(*dl) + n * sizeof(*dr);
1926
1927 err = copy_to_user(arg, dl, size);
1928 kfree(dl);
1929
1930 return err ? -EFAULT : 0;
1931 }
1932
1933 int hci_get_dev_info(void __user *arg)
1934 {
1935 struct hci_dev *hdev;
1936 struct hci_dev_info di;
1937 unsigned long flags;
1938 int err = 0;
1939
1940 if (copy_from_user(&di, arg, sizeof(di)))
1941 return -EFAULT;
1942
1943 hdev = hci_dev_get(di.dev_id);
1944 if (!hdev)
1945 return -ENODEV;
1946
1947 /* When the auto-off is configured it means the transport
1948 * is running, but in that case still indicate that the
1949 * device is actually down.
1950 */
1951 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952 flags = hdev->flags & ~BIT(HCI_UP);
1953 else
1954 flags = hdev->flags;
1955
1956 strcpy(di.name, hdev->name);
1957 di.bdaddr = hdev->bdaddr;
1958 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959 di.flags = flags;
1960 di.pkt_type = hdev->pkt_type;
1961 if (lmp_bredr_capable(hdev)) {
1962 di.acl_mtu = hdev->acl_mtu;
1963 di.acl_pkts = hdev->acl_pkts;
1964 di.sco_mtu = hdev->sco_mtu;
1965 di.sco_pkts = hdev->sco_pkts;
1966 } else {
1967 di.acl_mtu = hdev->le_mtu;
1968 di.acl_pkts = hdev->le_pkts;
1969 di.sco_mtu = 0;
1970 di.sco_pkts = 0;
1971 }
1972 di.link_policy = hdev->link_policy;
1973 di.link_mode = hdev->link_mode;
1974
1975 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976 memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978 if (copy_to_user(arg, &di, sizeof(di)))
1979 err = -EFAULT;
1980
1981 hci_dev_put(hdev);
1982
1983 return err;
1984 }
1985
1986 /* ---- Interface to HCI drivers ---- */
1987
1988 static int hci_rfkill_set_block(void *data, bool blocked)
1989 {
1990 struct hci_dev *hdev = data;
1991
1992 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995 return -EBUSY;
1996
1997 if (blocked) {
1998 hci_dev_set_flag(hdev, HCI_RFKILLED);
1999 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000 !hci_dev_test_flag(hdev, HCI_CONFIG))
2001 hci_dev_do_close(hdev);
2002 } else {
2003 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004 }
2005
2006 return 0;
2007 }
2008
2009 static const struct rfkill_ops hci_rfkill_ops = {
2010 .set_block = hci_rfkill_set_block,
2011 };
2012
2013 static void hci_power_on(struct work_struct *work)
2014 {
2015 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016 int err;
2017
2018 BT_DBG("%s", hdev->name);
2019
2020 if (test_bit(HCI_UP, &hdev->flags) &&
2021 hci_dev_test_flag(hdev, HCI_MGMT) &&
2022 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023 cancel_delayed_work(&hdev->power_off);
2024 hci_req_sync_lock(hdev);
2025 err = __hci_req_hci_power_on(hdev);
2026 hci_req_sync_unlock(hdev);
2027 mgmt_power_on(hdev, err);
2028 return;
2029 }
2030
2031 err = hci_dev_do_open(hdev);
2032 if (err < 0) {
2033 hci_dev_lock(hdev);
2034 mgmt_set_powered_failed(hdev, err);
2035 hci_dev_unlock(hdev);
2036 return;
2037 }
2038
2039 /* During the HCI setup phase, a few error conditions are
2040 * ignored and they need to be checked now. If they are still
2041 * valid, it is important to turn the device back off.
2042 */
2043 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045 (hdev->dev_type == HCI_PRIMARY &&
2046 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049 hci_dev_do_close(hdev);
2050 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052 HCI_AUTO_OFF_TIMEOUT);
2053 }
2054
2055 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056 /* For unconfigured devices, set the HCI_RAW flag
2057 * so that userspace can easily identify them.
2058 */
2059 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060 set_bit(HCI_RAW, &hdev->flags);
2061
2062 /* For fully configured devices, this will send
2063 * the Index Added event. For unconfigured devices,
2064 * it will send Unconfigued Index Added event.
2065 *
2066 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067 * and no event will be send.
2068 */
2069 mgmt_index_added(hdev);
2070 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071 /* When the controller is now configured, then it
2072 * is important to clear the HCI_RAW flag.
2073 */
2074 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075 clear_bit(HCI_RAW, &hdev->flags);
2076
2077 /* Powering on the controller with HCI_CONFIG set only
2078 * happens with the transition from unconfigured to
2079 * configured. This will send the Index Added event.
2080 */
2081 mgmt_index_added(hdev);
2082 }
2083 }
2084
2085 static void hci_power_off(struct work_struct *work)
2086 {
2087 struct hci_dev *hdev = container_of(work, struct hci_dev,
2088 power_off.work);
2089
2090 BT_DBG("%s", hdev->name);
2091
2092 hci_dev_do_close(hdev);
2093 }
2094
2095 static void hci_error_reset(struct work_struct *work)
2096 {
2097 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
2099 BT_DBG("%s", hdev->name);
2100
2101 if (hdev->hw_error)
2102 hdev->hw_error(hdev, hdev->hw_error_code);
2103 else
2104 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105 hdev->hw_error_code);
2106
2107 if (hci_dev_do_close(hdev))
2108 return;
2109
2110 hci_dev_do_open(hdev);
2111 }
2112
2113 void hci_uuids_clear(struct hci_dev *hdev)
2114 {
2115 struct bt_uuid *uuid, *tmp;
2116
2117 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118 list_del(&uuid->list);
2119 kfree(uuid);
2120 }
2121 }
2122
2123 void hci_link_keys_clear(struct hci_dev *hdev)
2124 {
2125 struct link_key *key;
2126
2127 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128 list_del_rcu(&key->list);
2129 kfree_rcu(key, rcu);
2130 }
2131 }
2132
2133 void hci_smp_ltks_clear(struct hci_dev *hdev)
2134 {
2135 struct smp_ltk *k;
2136
2137 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138 list_del_rcu(&k->list);
2139 kfree_rcu(k, rcu);
2140 }
2141 }
2142
2143 void hci_smp_irks_clear(struct hci_dev *hdev)
2144 {
2145 struct smp_irk *k;
2146
2147 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148 list_del_rcu(&k->list);
2149 kfree_rcu(k, rcu);
2150 }
2151 }
2152
2153 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154 {
2155 struct link_key *k;
2156
2157 rcu_read_lock();
2158 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160 rcu_read_unlock();
2161 return k;
2162 }
2163 }
2164 rcu_read_unlock();
2165
2166 return NULL;
2167 }
2168
2169 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170 u8 key_type, u8 old_key_type)
2171 {
2172 /* Legacy key */
2173 if (key_type < 0x03)
2174 return true;
2175
2176 /* Debug keys are insecure so don't store them persistently */
2177 if (key_type == HCI_LK_DEBUG_COMBINATION)
2178 return false;
2179
2180 /* Changed combination key and there's no previous one */
2181 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182 return false;
2183
2184 /* Security mode 3 case */
2185 if (!conn)
2186 return true;
2187
2188 /* BR/EDR key derived using SC from an LE link */
2189 if (conn->type == LE_LINK)
2190 return true;
2191
2192 /* Neither local nor remote side had no-bonding as requirement */
2193 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194 return true;
2195
2196 /* Local side had dedicated bonding as requirement */
2197 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198 return true;
2199
2200 /* Remote side had dedicated bonding as requirement */
2201 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202 return true;
2203
2204 /* If none of the above criteria match, then don't store the key
2205 * persistently */
2206 return false;
2207 }
2208
2209 static u8 ltk_role(u8 type)
2210 {
2211 if (type == SMP_LTK)
2212 return HCI_ROLE_MASTER;
2213
2214 return HCI_ROLE_SLAVE;
2215 }
2216
2217 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218 u8 addr_type, u8 role)
2219 {
2220 struct smp_ltk *k;
2221
2222 rcu_read_lock();
2223 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225 continue;
2226
2227 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228 rcu_read_unlock();
2229 return k;
2230 }
2231 }
2232 rcu_read_unlock();
2233
2234 return NULL;
2235 }
2236
2237 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238 {
2239 struct smp_irk *irk;
2240
2241 rcu_read_lock();
2242 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243 if (!bacmp(&irk->rpa, rpa)) {
2244 rcu_read_unlock();
2245 return irk;
2246 }
2247 }
2248
2249 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250 if (smp_irk_matches(hdev, irk->val, rpa)) {
2251 bacpy(&irk->rpa, rpa);
2252 rcu_read_unlock();
2253 return irk;
2254 }
2255 }
2256 rcu_read_unlock();
2257
2258 return NULL;
2259 }
2260
2261 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262 u8 addr_type)
2263 {
2264 struct smp_irk *irk;
2265
2266 /* Identity Address must be public or static random */
2267 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268 return NULL;
2269
2270 rcu_read_lock();
2271 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272 if (addr_type == irk->addr_type &&
2273 bacmp(bdaddr, &irk->bdaddr) == 0) {
2274 rcu_read_unlock();
2275 return irk;
2276 }
2277 }
2278 rcu_read_unlock();
2279
2280 return NULL;
2281 }
2282
2283 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284 bdaddr_t *bdaddr, u8 *val, u8 type,
2285 u8 pin_len, bool *persistent)
2286 {
2287 struct link_key *key, *old_key;
2288 u8 old_key_type;
2289
2290 old_key = hci_find_link_key(hdev, bdaddr);
2291 if (old_key) {
2292 old_key_type = old_key->type;
2293 key = old_key;
2294 } else {
2295 old_key_type = conn ? conn->key_type : 0xff;
2296 key = kzalloc(sizeof(*key), GFP_KERNEL);
2297 if (!key)
2298 return NULL;
2299 list_add_rcu(&key->list, &hdev->link_keys);
2300 }
2301
2302 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304 /* Some buggy controller combinations generate a changed
2305 * combination key for legacy pairing even when there's no
2306 * previous key */
2307 if (type == HCI_LK_CHANGED_COMBINATION &&
2308 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309 type = HCI_LK_COMBINATION;
2310 if (conn)
2311 conn->key_type = type;
2312 }
2313
2314 bacpy(&key->bdaddr, bdaddr);
2315 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316 key->pin_len = pin_len;
2317
2318 if (type == HCI_LK_CHANGED_COMBINATION)
2319 key->type = old_key_type;
2320 else
2321 key->type = type;
2322
2323 if (persistent)
2324 *persistent = hci_persistent_key(hdev, conn, type,
2325 old_key_type);
2326
2327 return key;
2328 }
2329
2330 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331 u8 addr_type, u8 type, u8 authenticated,
2332 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333 {
2334 struct smp_ltk *key, *old_key;
2335 u8 role = ltk_role(type);
2336
2337 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338 if (old_key)
2339 key = old_key;
2340 else {
2341 key = kzalloc(sizeof(*key), GFP_KERNEL);
2342 if (!key)
2343 return NULL;
2344 list_add_rcu(&key->list, &hdev->long_term_keys);
2345 }
2346
2347 bacpy(&key->bdaddr, bdaddr);
2348 key->bdaddr_type = addr_type;
2349 memcpy(key->val, tk, sizeof(key->val));
2350 key->authenticated = authenticated;
2351 key->ediv = ediv;
2352 key->rand = rand;
2353 key->enc_size = enc_size;
2354 key->type = type;
2355
2356 return key;
2357 }
2358
2359 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361 {
2362 struct smp_irk *irk;
2363
2364 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365 if (!irk) {
2366 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367 if (!irk)
2368 return NULL;
2369
2370 bacpy(&irk->bdaddr, bdaddr);
2371 irk->addr_type = addr_type;
2372
2373 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374 }
2375
2376 memcpy(irk->val, val, 16);
2377 bacpy(&irk->rpa, rpa);
2378
2379 return irk;
2380 }
2381
2382 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383 {
2384 struct link_key *key;
2385
2386 key = hci_find_link_key(hdev, bdaddr);
2387 if (!key)
2388 return -ENOENT;
2389
2390 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392 list_del_rcu(&key->list);
2393 kfree_rcu(key, rcu);
2394
2395 return 0;
2396 }
2397
2398 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399 {
2400 struct smp_ltk *k;
2401 int removed = 0;
2402
2403 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405 continue;
2406
2407 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409 list_del_rcu(&k->list);
2410 kfree_rcu(k, rcu);
2411 removed++;
2412 }
2413
2414 return removed ? 0 : -ENOENT;
2415 }
2416
2417 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418 {
2419 struct smp_irk *k;
2420
2421 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423 continue;
2424
2425 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427 list_del_rcu(&k->list);
2428 kfree_rcu(k, rcu);
2429 }
2430 }
2431
2432 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433 {
2434 struct smp_ltk *k;
2435 struct smp_irk *irk;
2436 u8 addr_type;
2437
2438 if (type == BDADDR_BREDR) {
2439 if (hci_find_link_key(hdev, bdaddr))
2440 return true;
2441 return false;
2442 }
2443
2444 /* Convert to HCI addr type which struct smp_ltk uses */
2445 if (type == BDADDR_LE_PUBLIC)
2446 addr_type = ADDR_LE_DEV_PUBLIC;
2447 else
2448 addr_type = ADDR_LE_DEV_RANDOM;
2449
2450 irk = hci_get_irk(hdev, bdaddr, addr_type);
2451 if (irk) {
2452 bdaddr = &irk->bdaddr;
2453 addr_type = irk->addr_type;
2454 }
2455
2456 rcu_read_lock();
2457 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459 rcu_read_unlock();
2460 return true;
2461 }
2462 }
2463 rcu_read_unlock();
2464
2465 return false;
2466 }
2467
2468 /* HCI command timer function */
2469 static void hci_cmd_timeout(struct work_struct *work)
2470 {
2471 struct hci_dev *hdev = container_of(work, struct hci_dev,
2472 cmd_timer.work);
2473
2474 if (hdev->sent_cmd) {
2475 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476 u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479 } else {
2480 BT_ERR("%s command tx timeout", hdev->name);
2481 }
2482
2483 atomic_set(&hdev->cmd_cnt, 1);
2484 queue_work(hdev->workqueue, &hdev->cmd_work);
2485 }
2486
2487 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488 bdaddr_t *bdaddr, u8 bdaddr_type)
2489 {
2490 struct oob_data *data;
2491
2492 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493 if (bacmp(bdaddr, &data->bdaddr) != 0)
2494 continue;
2495 if (data->bdaddr_type != bdaddr_type)
2496 continue;
2497 return data;
2498 }
2499
2500 return NULL;
2501 }
2502
2503 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504 u8 bdaddr_type)
2505 {
2506 struct oob_data *data;
2507
2508 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509 if (!data)
2510 return -ENOENT;
2511
2512 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514 list_del(&data->list);
2515 kfree(data);
2516
2517 return 0;
2518 }
2519
2520 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521 {
2522 struct oob_data *data, *n;
2523
2524 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525 list_del(&data->list);
2526 kfree(data);
2527 }
2528 }
2529
2530 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532 u8 *hash256, u8 *rand256)
2533 {
2534 struct oob_data *data;
2535
2536 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537 if (!data) {
2538 data = kmalloc(sizeof(*data), GFP_KERNEL);
2539 if (!data)
2540 return -ENOMEM;
2541
2542 bacpy(&data->bdaddr, bdaddr);
2543 data->bdaddr_type = bdaddr_type;
2544 list_add(&data->list, &hdev->remote_oob_data);
2545 }
2546
2547 if (hash192 && rand192) {
2548 memcpy(data->hash192, hash192, sizeof(data->hash192));
2549 memcpy(data->rand192, rand192, sizeof(data->rand192));
2550 if (hash256 && rand256)
2551 data->present = 0x03;
2552 } else {
2553 memset(data->hash192, 0, sizeof(data->hash192));
2554 memset(data->rand192, 0, sizeof(data->rand192));
2555 if (hash256 && rand256)
2556 data->present = 0x02;
2557 else
2558 data->present = 0x00;
2559 }
2560
2561 if (hash256 && rand256) {
2562 memcpy(data->hash256, hash256, sizeof(data->hash256));
2563 memcpy(data->rand256, rand256, sizeof(data->rand256));
2564 } else {
2565 memset(data->hash256, 0, sizeof(data->hash256));
2566 memset(data->rand256, 0, sizeof(data->rand256));
2567 if (hash192 && rand192)
2568 data->present = 0x01;
2569 }
2570
2571 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573 return 0;
2574 }
2575
2576 /* This function requires the caller holds hdev->lock */
2577 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578 {
2579 struct adv_info *adv_instance;
2580
2581 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582 if (adv_instance->instance == instance)
2583 return adv_instance;
2584 }
2585
2586 return NULL;
2587 }
2588
2589 /* This function requires the caller holds hdev->lock */
2590 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591 {
2592 struct adv_info *cur_instance;
2593
2594 cur_instance = hci_find_adv_instance(hdev, instance);
2595 if (!cur_instance)
2596 return NULL;
2597
2598 if (cur_instance == list_last_entry(&hdev->adv_instances,
2599 struct adv_info, list))
2600 return list_first_entry(&hdev->adv_instances,
2601 struct adv_info, list);
2602 else
2603 return list_next_entry(cur_instance, list);
2604 }
2605
2606 /* This function requires the caller holds hdev->lock */
2607 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608 {
2609 struct adv_info *adv_instance;
2610
2611 adv_instance = hci_find_adv_instance(hdev, instance);
2612 if (!adv_instance)
2613 return -ENOENT;
2614
2615 BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617 if (hdev->cur_adv_instance == instance) {
2618 if (hdev->adv_instance_timeout) {
2619 cancel_delayed_work(&hdev->adv_instance_expire);
2620 hdev->adv_instance_timeout = 0;
2621 }
2622 hdev->cur_adv_instance = 0x00;
2623 }
2624
2625 list_del(&adv_instance->list);
2626 kfree(adv_instance);
2627
2628 hdev->adv_instance_cnt--;
2629
2630 return 0;
2631 }
2632
2633 /* This function requires the caller holds hdev->lock */
2634 void hci_adv_instances_clear(struct hci_dev *hdev)
2635 {
2636 struct adv_info *adv_instance, *n;
2637
2638 if (hdev->adv_instance_timeout) {
2639 cancel_delayed_work(&hdev->adv_instance_expire);
2640 hdev->adv_instance_timeout = 0;
2641 }
2642
2643 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2644 list_del(&adv_instance->list);
2645 kfree(adv_instance);
2646 }
2647
2648 hdev->adv_instance_cnt = 0;
2649 hdev->cur_adv_instance = 0x00;
2650 }
2651
2652 /* This function requires the caller holds hdev->lock */
2653 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654 u16 adv_data_len, u8 *adv_data,
2655 u16 scan_rsp_len, u8 *scan_rsp_data,
2656 u16 timeout, u16 duration)
2657 {
2658 struct adv_info *adv_instance;
2659
2660 adv_instance = hci_find_adv_instance(hdev, instance);
2661 if (adv_instance) {
2662 memset(adv_instance->adv_data, 0,
2663 sizeof(adv_instance->adv_data));
2664 memset(adv_instance->scan_rsp_data, 0,
2665 sizeof(adv_instance->scan_rsp_data));
2666 } else {
2667 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669 return -EOVERFLOW;
2670
2671 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672 if (!adv_instance)
2673 return -ENOMEM;
2674
2675 adv_instance->pending = true;
2676 adv_instance->instance = instance;
2677 list_add(&adv_instance->list, &hdev->adv_instances);
2678 hdev->adv_instance_cnt++;
2679 }
2680
2681 adv_instance->flags = flags;
2682 adv_instance->adv_data_len = adv_data_len;
2683 adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685 if (adv_data_len)
2686 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688 if (scan_rsp_len)
2689 memcpy(adv_instance->scan_rsp_data,
2690 scan_rsp_data, scan_rsp_len);
2691
2692 adv_instance->timeout = timeout;
2693 adv_instance->remaining_time = timeout;
2694
2695 if (duration == 0)
2696 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697 else
2698 adv_instance->duration = duration;
2699
2700 BT_DBG("%s for %dMR", hdev->name, instance);
2701
2702 return 0;
2703 }
2704
2705 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706 bdaddr_t *bdaddr, u8 type)
2707 {
2708 struct bdaddr_list *b;
2709
2710 list_for_each_entry(b, bdaddr_list, list) {
2711 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712 return b;
2713 }
2714
2715 return NULL;
2716 }
2717
2718 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719 {
2720 struct bdaddr_list *b, *n;
2721
2722 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723 list_del(&b->list);
2724 kfree(b);
2725 }
2726 }
2727
2728 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729 {
2730 struct bdaddr_list *entry;
2731
2732 if (!bacmp(bdaddr, BDADDR_ANY))
2733 return -EBADF;
2734
2735 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736 return -EEXIST;
2737
2738 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739 if (!entry)
2740 return -ENOMEM;
2741
2742 bacpy(&entry->bdaddr, bdaddr);
2743 entry->bdaddr_type = type;
2744
2745 list_add(&entry->list, list);
2746
2747 return 0;
2748 }
2749
2750 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751 {
2752 struct bdaddr_list *entry;
2753
2754 if (!bacmp(bdaddr, BDADDR_ANY)) {
2755 hci_bdaddr_list_clear(list);
2756 return 0;
2757 }
2758
2759 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760 if (!entry)
2761 return -ENOENT;
2762
2763 list_del(&entry->list);
2764 kfree(entry);
2765
2766 return 0;
2767 }
2768
2769 /* This function requires the caller holds hdev->lock */
2770 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771 bdaddr_t *addr, u8 addr_type)
2772 {
2773 struct hci_conn_params *params;
2774
2775 list_for_each_entry(params, &hdev->le_conn_params, list) {
2776 if (bacmp(&params->addr, addr) == 0 &&
2777 params->addr_type == addr_type) {
2778 return params;
2779 }
2780 }
2781
2782 return NULL;
2783 }
2784
2785 /* This function requires the caller holds hdev->lock */
2786 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787 bdaddr_t *addr, u8 addr_type)
2788 {
2789 struct hci_conn_params *param;
2790
2791 list_for_each_entry(param, list, action) {
2792 if (bacmp(&param->addr, addr) == 0 &&
2793 param->addr_type == addr_type)
2794 return param;
2795 }
2796
2797 return NULL;
2798 }
2799
2800 /* This function requires the caller holds hdev->lock */
2801 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802 bdaddr_t *addr, u8 addr_type)
2803 {
2804 struct hci_conn_params *params;
2805
2806 params = hci_conn_params_lookup(hdev, addr, addr_type);
2807 if (params)
2808 return params;
2809
2810 params = kzalloc(sizeof(*params), GFP_KERNEL);
2811 if (!params) {
2812 BT_ERR("Out of memory");
2813 return NULL;
2814 }
2815
2816 bacpy(&params->addr, addr);
2817 params->addr_type = addr_type;
2818
2819 list_add(&params->list, &hdev->le_conn_params);
2820 INIT_LIST_HEAD(&params->action);
2821
2822 params->conn_min_interval = hdev->le_conn_min_interval;
2823 params->conn_max_interval = hdev->le_conn_max_interval;
2824 params->conn_latency = hdev->le_conn_latency;
2825 params->supervision_timeout = hdev->le_supv_timeout;
2826 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830 return params;
2831 }
2832
2833 static void hci_conn_params_free(struct hci_conn_params *params)
2834 {
2835 if (params->conn) {
2836 hci_conn_drop(params->conn);
2837 hci_conn_put(params->conn);
2838 }
2839
2840 list_del(&params->action);
2841 list_del(&params->list);
2842 kfree(params);
2843 }
2844
2845 /* This function requires the caller holds hdev->lock */
2846 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847 {
2848 struct hci_conn_params *params;
2849
2850 params = hci_conn_params_lookup(hdev, addr, addr_type);
2851 if (!params)
2852 return;
2853
2854 hci_conn_params_free(params);
2855
2856 hci_update_background_scan(hdev);
2857
2858 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859 }
2860
2861 /* This function requires the caller holds hdev->lock */
2862 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863 {
2864 struct hci_conn_params *params, *tmp;
2865
2866 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868 continue;
2869
2870 /* If trying to estabilish one time connection to disabled
2871 * device, leave the params, but mark them as just once.
2872 */
2873 if (params->explicit_connect) {
2874 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875 continue;
2876 }
2877
2878 list_del(&params->list);
2879 kfree(params);
2880 }
2881
2882 BT_DBG("All LE disabled connection parameters were removed");
2883 }
2884
2885 /* This function requires the caller holds hdev->lock */
2886 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887 {
2888 struct hci_conn_params *params, *tmp;
2889
2890 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891 hci_conn_params_free(params);
2892
2893 BT_DBG("All LE connection parameters were removed");
2894 }
2895
2896 /* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910 u8 *bdaddr_type)
2911 {
2912 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916 bacpy(bdaddr, &hdev->static_addr);
2917 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2918 } else {
2919 bacpy(bdaddr, &hdev->bdaddr);
2920 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921 }
2922 }
2923
2924 /* Alloc HCI device */
2925 struct hci_dev *hci_alloc_dev(void)
2926 {
2927 struct hci_dev *hdev;
2928
2929 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930 if (!hdev)
2931 return NULL;
2932
2933 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934 hdev->esco_type = (ESCO_HV1);
2935 hdev->link_mode = (HCI_LM_ACCEPT);
2936 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2937 hdev->io_capability = 0x03; /* No Input No Output */
2938 hdev->manufacturer = 0xffff; /* Default to internal use */
2939 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941 hdev->adv_instance_cnt = 0;
2942 hdev->cur_adv_instance = 0x00;
2943 hdev->adv_instance_timeout = 0;
2944
2945 hdev->sniff_max_interval = 800;
2946 hdev->sniff_min_interval = 80;
2947
2948 hdev->le_adv_channel_map = 0x07;
2949 hdev->le_adv_min_interval = 0x0800;
2950 hdev->le_adv_max_interval = 0x0800;
2951 hdev->le_scan_interval = 0x0060;
2952 hdev->le_scan_window = 0x0030;
2953 hdev->le_conn_min_interval = 0x0028;
2954 hdev->le_conn_max_interval = 0x0038;
2955 hdev->le_conn_latency = 0x0000;
2956 hdev->le_supv_timeout = 0x002a;
2957 hdev->le_def_tx_len = 0x001b;
2958 hdev->le_def_tx_time = 0x0148;
2959 hdev->le_max_tx_len = 0x001b;
2960 hdev->le_max_tx_time = 0x0148;
2961 hdev->le_max_rx_len = 0x001b;
2962 hdev->le_max_rx_time = 0x0148;
2963
2964 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968
2969 mutex_init(&hdev->lock);
2970 mutex_init(&hdev->req_lock);
2971
2972 INIT_LIST_HEAD(&hdev->mgmt_pending);
2973 INIT_LIST_HEAD(&hdev->blacklist);
2974 INIT_LIST_HEAD(&hdev->whitelist);
2975 INIT_LIST_HEAD(&hdev->uuids);
2976 INIT_LIST_HEAD(&hdev->link_keys);
2977 INIT_LIST_HEAD(&hdev->long_term_keys);
2978 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979 INIT_LIST_HEAD(&hdev->remote_oob_data);
2980 INIT_LIST_HEAD(&hdev->le_white_list);
2981 INIT_LIST_HEAD(&hdev->le_conn_params);
2982 INIT_LIST_HEAD(&hdev->pend_le_conns);
2983 INIT_LIST_HEAD(&hdev->pend_le_reports);
2984 INIT_LIST_HEAD(&hdev->conn_hash.list);
2985 INIT_LIST_HEAD(&hdev->adv_instances);
2986
2987 INIT_WORK(&hdev->rx_work, hci_rx_work);
2988 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989 INIT_WORK(&hdev->tx_work, hci_tx_work);
2990 INIT_WORK(&hdev->power_on, hci_power_on);
2991 INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
2993 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995 skb_queue_head_init(&hdev->rx_q);
2996 skb_queue_head_init(&hdev->cmd_q);
2997 skb_queue_head_init(&hdev->raw_q);
2998
2999 init_waitqueue_head(&hdev->req_wait_q);
3000
3001 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002
3003 hci_request_setup(hdev);
3004
3005 hci_init_sysfs(hdev);
3006 discovery_init(hdev);
3007
3008 return hdev;
3009 }
3010 EXPORT_SYMBOL(hci_alloc_dev);
3011
3012 /* Free HCI device */
3013 void hci_free_dev(struct hci_dev *hdev)
3014 {
3015 /* will free via device release */
3016 put_device(&hdev->dev);
3017 }
3018 EXPORT_SYMBOL(hci_free_dev);
3019
3020 /* Register HCI device */
3021 int hci_register_dev(struct hci_dev *hdev)
3022 {
3023 int id, error;
3024
3025 if (!hdev->open || !hdev->close || !hdev->send)
3026 return -EINVAL;
3027
3028 /* Do not allow HCI_AMP devices to register at index 0,
3029 * so the index can be used as the AMP controller ID.
3030 */
3031 switch (hdev->dev_type) {
3032 case HCI_PRIMARY:
3033 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034 break;
3035 case HCI_AMP:
3036 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037 break;
3038 default:
3039 return -EINVAL;
3040 }
3041
3042 if (id < 0)
3043 return id;
3044
3045 sprintf(hdev->name, "hci%d", id);
3046 hdev->id = id;
3047
3048 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051 WQ_MEM_RECLAIM, 1, hdev->name);
3052 if (!hdev->workqueue) {
3053 error = -ENOMEM;
3054 goto err;
3055 }
3056
3057 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058 WQ_MEM_RECLAIM, 1, hdev->name);
3059 if (!hdev->req_workqueue) {
3060 destroy_workqueue(hdev->workqueue);
3061 error = -ENOMEM;
3062 goto err;
3063 }
3064
3065 if (!IS_ERR_OR_NULL(bt_debugfs))
3066 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068 dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070 error = device_add(&hdev->dev);
3071 if (error < 0)
3072 goto err_wqueue;
3073
3074 hci_leds_init(hdev);
3075
3076 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078 hdev);
3079 if (hdev->rfkill) {
3080 if (rfkill_register(hdev->rfkill) < 0) {
3081 rfkill_destroy(hdev->rfkill);
3082 hdev->rfkill = NULL;
3083 }
3084 }
3085
3086 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087 hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089 hci_dev_set_flag(hdev, HCI_SETUP);
3090 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092 if (hdev->dev_type == HCI_PRIMARY) {
3093 /* Assume BR/EDR support until proven otherwise (such as
3094 * through reading supported features during init.
3095 */
3096 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097 }
3098
3099 write_lock(&hci_dev_list_lock);
3100 list_add(&hdev->list, &hci_dev_list);
3101 write_unlock(&hci_dev_list_lock);
3102
3103 /* Devices that are marked for raw-only usage are unconfigured
3104 * and should not be included in normal operation.
3105 */
3106 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
3109 hci_sock_dev_event(hdev, HCI_DEV_REG);
3110 hci_dev_hold(hdev);
3111
3112 queue_work(hdev->req_workqueue, &hdev->power_on);
3113
3114 return id;
3115
3116 err_wqueue:
3117 destroy_workqueue(hdev->workqueue);
3118 destroy_workqueue(hdev->req_workqueue);
3119 err:
3120 ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122 return error;
3123 }
3124 EXPORT_SYMBOL(hci_register_dev);
3125
3126 /* Unregister HCI device */
3127 void hci_unregister_dev(struct hci_dev *hdev)
3128 {
3129 int id;
3130
3131 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
3133 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135 id = hdev->id;
3136
3137 write_lock(&hci_dev_list_lock);
3138 list_del(&hdev->list);
3139 write_unlock(&hci_dev_list_lock);
3140
3141 cancel_work_sync(&hdev->power_on);
3142
3143 hci_dev_do_close(hdev);
3144
3145 if (!test_bit(HCI_INIT, &hdev->flags) &&
3146 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148 hci_dev_lock(hdev);
3149 mgmt_index_removed(hdev);
3150 hci_dev_unlock(hdev);
3151 }
3152
3153 /* mgmt_index_removed should take care of emptying the
3154 * pending list */
3155 BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159 if (hdev->rfkill) {
3160 rfkill_unregister(hdev->rfkill);
3161 rfkill_destroy(hdev->rfkill);
3162 }
3163
3164 device_del(&hdev->dev);
3165
3166 debugfs_remove_recursive(hdev->debugfs);
3167 kfree_const(hdev->hw_info);
3168 kfree_const(hdev->fw_info);
3169
3170 destroy_workqueue(hdev->workqueue);
3171 destroy_workqueue(hdev->req_workqueue);
3172
3173 hci_dev_lock(hdev);
3174 hci_bdaddr_list_clear(&hdev->blacklist);
3175 hci_bdaddr_list_clear(&hdev->whitelist);
3176 hci_uuids_clear(hdev);
3177 hci_link_keys_clear(hdev);
3178 hci_smp_ltks_clear(hdev);
3179 hci_smp_irks_clear(hdev);
3180 hci_remote_oob_data_clear(hdev);
3181 hci_adv_instances_clear(hdev);
3182 hci_bdaddr_list_clear(&hdev->le_white_list);
3183 hci_conn_params_clear_all(hdev);
3184 hci_discovery_filter_clear(hdev);
3185 hci_dev_unlock(hdev);
3186
3187 hci_dev_put(hdev);
3188
3189 ida_simple_remove(&hci_index_ida, id);
3190 }
3191 EXPORT_SYMBOL(hci_unregister_dev);
3192
3193 /* Suspend HCI device */
3194 int hci_suspend_dev(struct hci_dev *hdev)
3195 {
3196 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197 return 0;
3198 }
3199 EXPORT_SYMBOL(hci_suspend_dev);
3200
3201 /* Resume HCI device */
3202 int hci_resume_dev(struct hci_dev *hdev)
3203 {
3204 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205 return 0;
3206 }
3207 EXPORT_SYMBOL(hci_resume_dev);
3208
3209 /* Reset HCI device */
3210 int hci_reset_dev(struct hci_dev *hdev)
3211 {
3212 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213 struct sk_buff *skb;
3214
3215 skb = bt_skb_alloc(3, GFP_ATOMIC);
3216 if (!skb)
3217 return -ENOMEM;
3218
3219 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220 memcpy(skb_put(skb, 3), hw_err, 3);
3221
3222 /* Send Hardware Error to upper stack */
3223 return hci_recv_frame(hdev, skb);
3224 }
3225 EXPORT_SYMBOL(hci_reset_dev);
3226
3227 /* Receive frame from HCI drivers */
3228 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229 {
3230 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231 && !test_bit(HCI_INIT, &hdev->flags))) {
3232 kfree_skb(skb);
3233 return -ENXIO;
3234 }
3235
3236 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3239 kfree_skb(skb);
3240 return -EINVAL;
3241 }
3242
3243 /* Incoming skb */
3244 bt_cb(skb)->incoming = 1;
3245
3246 /* Time stamp */
3247 __net_timestamp(skb);
3248
3249 skb_queue_tail(&hdev->rx_q, skb);
3250 queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252 return 0;
3253 }
3254 EXPORT_SYMBOL(hci_recv_frame);
3255
3256 /* Receive diagnostic message from HCI drivers */
3257 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258 {
3259 /* Mark as diagnostic packet */
3260 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262 /* Time stamp */
3263 __net_timestamp(skb);
3264
3265 skb_queue_tail(&hdev->rx_q, skb);
3266 queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268 return 0;
3269 }
3270 EXPORT_SYMBOL(hci_recv_diag);
3271
3272 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273 {
3274 va_list vargs;
3275
3276 va_start(vargs, fmt);
3277 kfree_const(hdev->hw_info);
3278 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279 va_end(vargs);
3280 }
3281 EXPORT_SYMBOL(hci_set_hw_info);
3282
3283 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284 {
3285 va_list vargs;
3286
3287 va_start(vargs, fmt);
3288 kfree_const(hdev->fw_info);
3289 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290 va_end(vargs);
3291 }
3292 EXPORT_SYMBOL(hci_set_fw_info);
3293
3294 /* ---- Interface to upper protocols ---- */
3295
3296 int hci_register_cb(struct hci_cb *cb)
3297 {
3298 BT_DBG("%p name %s", cb, cb->name);
3299
3300 mutex_lock(&hci_cb_list_lock);
3301 list_add_tail(&cb->list, &hci_cb_list);
3302 mutex_unlock(&hci_cb_list_lock);
3303
3304 return 0;
3305 }
3306 EXPORT_SYMBOL(hci_register_cb);
3307
3308 int hci_unregister_cb(struct hci_cb *cb)
3309 {
3310 BT_DBG("%p name %s", cb, cb->name);
3311
3312 mutex_lock(&hci_cb_list_lock);
3313 list_del(&cb->list);
3314 mutex_unlock(&hci_cb_list_lock);
3315
3316 return 0;
3317 }
3318 EXPORT_SYMBOL(hci_unregister_cb);
3319
3320 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321 {
3322 int err;
3323
3324 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325 skb->len);
3326
3327 /* Time stamp */
3328 __net_timestamp(skb);
3329
3330 /* Send copy to monitor */
3331 hci_send_to_monitor(hdev, skb);
3332
3333 if (atomic_read(&hdev->promisc)) {
3334 /* Send copy to the sockets */
3335 hci_send_to_sock(hdev, skb);
3336 }
3337
3338 /* Get rid of skb owner, prior to sending to the driver. */
3339 skb_orphan(skb);
3340
3341 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342 kfree_skb(skb);
3343 return;
3344 }
3345
3346 err = hdev->send(hdev, skb);
3347 if (err < 0) {
3348 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349 kfree_skb(skb);
3350 }
3351 }
3352
3353 /* Send HCI command */
3354 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355 const void *param)
3356 {
3357 struct sk_buff *skb;
3358
3359 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362 if (!skb) {
3363 BT_ERR("%s no memory for command", hdev->name);
3364 return -ENOMEM;
3365 }
3366
3367 /* Stand-alone HCI commands must be flagged as
3368 * single-command requests.
3369 */
3370 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371
3372 skb_queue_tail(&hdev->cmd_q, skb);
3373 queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375 return 0;
3376 }
3377
3378 /* Get data from the previously sent command */
3379 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380 {
3381 struct hci_command_hdr *hdr;
3382
3383 if (!hdev->sent_cmd)
3384 return NULL;
3385
3386 hdr = (void *) hdev->sent_cmd->data;
3387
3388 if (hdr->opcode != cpu_to_le16(opcode))
3389 return NULL;
3390
3391 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392
3393 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394 }
3395
3396 /* Send HCI command and wait for command commplete event */
3397 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398 const void *param, u32 timeout)
3399 {
3400 struct sk_buff *skb;
3401
3402 if (!test_bit(HCI_UP, &hdev->flags))
3403 return ERR_PTR(-ENETDOWN);
3404
3405 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3406
3407 hci_req_sync_lock(hdev);
3408 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409 hci_req_sync_unlock(hdev);
3410
3411 return skb;
3412 }
3413 EXPORT_SYMBOL(hci_cmd_sync);
3414
3415 /* Send ACL data */
3416 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417 {
3418 struct hci_acl_hdr *hdr;
3419 int len = skb->len;
3420
3421 skb_push(skb, HCI_ACL_HDR_SIZE);
3422 skb_reset_transport_header(skb);
3423 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425 hdr->dlen = cpu_to_le16(len);
3426 }
3427
3428 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429 struct sk_buff *skb, __u16 flags)
3430 {
3431 struct hci_conn *conn = chan->conn;
3432 struct hci_dev *hdev = conn->hdev;
3433 struct sk_buff *list;
3434
3435 skb->len = skb_headlen(skb);
3436 skb->data_len = 0;
3437
3438 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440 switch (hdev->dev_type) {
3441 case HCI_PRIMARY:
3442 hci_add_acl_hdr(skb, conn->handle, flags);
3443 break;
3444 case HCI_AMP:
3445 hci_add_acl_hdr(skb, chan->handle, flags);
3446 break;
3447 default:
3448 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449 return;
3450 }
3451
3452 list = skb_shinfo(skb)->frag_list;
3453 if (!list) {
3454 /* Non fragmented */
3455 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457 skb_queue_tail(queue, skb);
3458 } else {
3459 /* Fragmented */
3460 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462 skb_shinfo(skb)->frag_list = NULL;
3463
3464 /* Queue all fragments atomically. We need to use spin_lock_bh
3465 * here because of 6LoWPAN links, as there this function is
3466 * called from softirq and using normal spin lock could cause
3467 * deadlocks.
3468 */
3469 spin_lock_bh(&queue->lock);
3470
3471 __skb_queue_tail(queue, skb);
3472
3473 flags &= ~ACL_START;
3474 flags |= ACL_CONT;
3475 do {
3476 skb = list; list = list->next;
3477
3478 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3479 hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483 __skb_queue_tail(queue, skb);
3484 } while (list);
3485
3486 spin_unlock_bh(&queue->lock);
3487 }
3488 }
3489
3490 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491 {
3492 struct hci_dev *hdev = chan->conn->hdev;
3493
3494 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496 hci_queue_acl(chan, &chan->data_q, skb, flags);
3497
3498 queue_work(hdev->workqueue, &hdev->tx_work);
3499 }
3500
3501 /* Send SCO data */
3502 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503 {
3504 struct hci_dev *hdev = conn->hdev;
3505 struct hci_sco_hdr hdr;
3506
3507 BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509 hdr.handle = cpu_to_le16(conn->handle);
3510 hdr.dlen = skb->len;
3511
3512 skb_push(skb, HCI_SCO_HDR_SIZE);
3513 skb_reset_transport_header(skb);
3514 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517
3518 skb_queue_tail(&conn->data_q, skb);
3519 queue_work(hdev->workqueue, &hdev->tx_work);
3520 }
3521
3522 /* ---- HCI TX task (outgoing data) ---- */
3523
3524 /* HCI Connection scheduler */
3525 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526 int *quote)
3527 {
3528 struct hci_conn_hash *h = &hdev->conn_hash;
3529 struct hci_conn *conn = NULL, *c;
3530 unsigned int num = 0, min = ~0;
3531
3532 /* We don't have to lock device here. Connections are always
3533 * added and removed with TX task disabled. */
3534
3535 rcu_read_lock();
3536
3537 list_for_each_entry_rcu(c, &h->list, list) {
3538 if (c->type != type || skb_queue_empty(&c->data_q))
3539 continue;
3540
3541 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542 continue;
3543
3544 num++;
3545
3546 if (c->sent < min) {
3547 min = c->sent;
3548 conn = c;
3549 }
3550
3551 if (hci_conn_num(hdev, type) == num)
3552 break;
3553 }
3554
3555 rcu_read_unlock();
3556
3557 if (conn) {
3558 int cnt, q;
3559
3560 switch (conn->type) {
3561 case ACL_LINK:
3562 cnt = hdev->acl_cnt;
3563 break;
3564 case SCO_LINK:
3565 case ESCO_LINK:
3566 cnt = hdev->sco_cnt;
3567 break;
3568 case LE_LINK:
3569 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570 break;
3571 default:
3572 cnt = 0;
3573 BT_ERR("Unknown link type");
3574 }
3575
3576 q = cnt / num;
3577 *quote = q ? q : 1;
3578 } else
3579 *quote = 0;
3580
3581 BT_DBG("conn %p quote %d", conn, *quote);
3582 return conn;
3583 }
3584
3585 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586 {
3587 struct hci_conn_hash *h = &hdev->conn_hash;
3588 struct hci_conn *c;
3589
3590 BT_ERR("%s link tx timeout", hdev->name);
3591
3592 rcu_read_lock();
3593
3594 /* Kill stalled connections */
3595 list_for_each_entry_rcu(c, &h->list, list) {
3596 if (c->type == type && c->sent) {
3597 BT_ERR("%s killing stalled connection %pMR",
3598 hdev->name, &c->dst);
3599 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3600 }
3601 }
3602
3603 rcu_read_unlock();
3604 }
3605
3606 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607 int *quote)
3608 {
3609 struct hci_conn_hash *h = &hdev->conn_hash;
3610 struct hci_chan *chan = NULL;
3611 unsigned int num = 0, min = ~0, cur_prio = 0;
3612 struct hci_conn *conn;
3613 int cnt, q, conn_num = 0;
3614
3615 BT_DBG("%s", hdev->name);
3616
3617 rcu_read_lock();
3618
3619 list_for_each_entry_rcu(conn, &h->list, list) {
3620 struct hci_chan *tmp;
3621
3622 if (conn->type != type)
3623 continue;
3624
3625 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626 continue;
3627
3628 conn_num++;
3629
3630 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631 struct sk_buff *skb;
3632
3633 if (skb_queue_empty(&tmp->data_q))
3634 continue;
3635
3636 skb = skb_peek(&tmp->data_q);
3637 if (skb->priority < cur_prio)
3638 continue;
3639
3640 if (skb->priority > cur_prio) {
3641 num = 0;
3642 min = ~0;
3643 cur_prio = skb->priority;
3644 }
3645
3646 num++;
3647
3648 if (conn->sent < min) {
3649 min = conn->sent;
3650 chan = tmp;
3651 }
3652 }
3653
3654 if (hci_conn_num(hdev, type) == conn_num)
3655 break;
3656 }
3657
3658 rcu_read_unlock();
3659
3660 if (!chan)
3661 return NULL;
3662
3663 switch (chan->conn->type) {
3664 case ACL_LINK:
3665 cnt = hdev->acl_cnt;
3666 break;
3667 case AMP_LINK:
3668 cnt = hdev->block_cnt;
3669 break;
3670 case SCO_LINK:
3671 case ESCO_LINK:
3672 cnt = hdev->sco_cnt;
3673 break;
3674 case LE_LINK:
3675 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676 break;
3677 default:
3678 cnt = 0;
3679 BT_ERR("Unknown link type");
3680 }
3681
3682 q = cnt / num;
3683 *quote = q ? q : 1;
3684 BT_DBG("chan %p quote %d", chan, *quote);
3685 return chan;
3686 }
3687
3688 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689 {
3690 struct hci_conn_hash *h = &hdev->conn_hash;
3691 struct hci_conn *conn;
3692 int num = 0;
3693
3694 BT_DBG("%s", hdev->name);
3695
3696 rcu_read_lock();
3697
3698 list_for_each_entry_rcu(conn, &h->list, list) {
3699 struct hci_chan *chan;
3700
3701 if (conn->type != type)
3702 continue;
3703
3704 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705 continue;
3706
3707 num++;
3708
3709 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710 struct sk_buff *skb;
3711
3712 if (chan->sent) {
3713 chan->sent = 0;
3714 continue;
3715 }
3716
3717 if (skb_queue_empty(&chan->data_q))
3718 continue;
3719
3720 skb = skb_peek(&chan->data_q);
3721 if (skb->priority >= HCI_PRIO_MAX - 1)
3722 continue;
3723
3724 skb->priority = HCI_PRIO_MAX - 1;
3725
3726 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727 skb->priority);
3728 }
3729
3730 if (hci_conn_num(hdev, type) == num)
3731 break;
3732 }
3733
3734 rcu_read_unlock();
3735
3736 }
3737
3738 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739 {
3740 /* Calculate count of blocks used by this packet */
3741 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742 }
3743
3744 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745 {
3746 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747 /* ACL tx timeout must be longer than maximum
3748 * link supervision timeout (40.9 seconds) */
3749 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750 HCI_ACL_TX_TIMEOUT))
3751 hci_link_tx_to(hdev, ACL_LINK);
3752 }
3753 }
3754
3755 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756 {
3757 unsigned int cnt = hdev->acl_cnt;
3758 struct hci_chan *chan;
3759 struct sk_buff *skb;
3760 int quote;
3761
3762 __check_timeout(hdev, cnt);
3763
3764 while (hdev->acl_cnt &&
3765 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3766 u32 priority = (skb_peek(&chan->data_q))->priority;
3767 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769 skb->len, skb->priority);
3770
3771 /* Stop if priority has changed */
3772 if (skb->priority < priority)
3773 break;
3774
3775 skb = skb_dequeue(&chan->data_q);
3776
3777 hci_conn_enter_active_mode(chan->conn,
3778 bt_cb(skb)->force_active);
3779
3780 hci_send_frame(hdev, skb);
3781 hdev->acl_last_tx = jiffies;
3782
3783 hdev->acl_cnt--;
3784 chan->sent++;
3785 chan->conn->sent++;
3786 }
3787 }
3788
3789 if (cnt != hdev->acl_cnt)
3790 hci_prio_recalculate(hdev, ACL_LINK);
3791 }
3792
3793 static void hci_sched_acl_blk(struct hci_dev *hdev)
3794 {
3795 unsigned int cnt = hdev->block_cnt;
3796 struct hci_chan *chan;
3797 struct sk_buff *skb;
3798 int quote;
3799 u8 type;
3800
3801 __check_timeout(hdev, cnt);
3802
3803 BT_DBG("%s", hdev->name);
3804
3805 if (hdev->dev_type == HCI_AMP)
3806 type = AMP_LINK;
3807 else
3808 type = ACL_LINK;
3809
3810 while (hdev->block_cnt > 0 &&
3811 (chan = hci_chan_sent(hdev, type, &quote))) {
3812 u32 priority = (skb_peek(&chan->data_q))->priority;
3813 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814 int blocks;
3815
3816 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817 skb->len, skb->priority);
3818
3819 /* Stop if priority has changed */
3820 if (skb->priority < priority)
3821 break;
3822
3823 skb = skb_dequeue(&chan->data_q);
3824
3825 blocks = __get_blocks(hdev, skb);
3826 if (blocks > hdev->block_cnt)
3827 return;
3828
3829 hci_conn_enter_active_mode(chan->conn,
3830 bt_cb(skb)->force_active);
3831
3832 hci_send_frame(hdev, skb);
3833 hdev->acl_last_tx = jiffies;
3834
3835 hdev->block_cnt -= blocks;
3836 quote -= blocks;
3837
3838 chan->sent += blocks;
3839 chan->conn->sent += blocks;
3840 }
3841 }
3842
3843 if (cnt != hdev->block_cnt)
3844 hci_prio_recalculate(hdev, type);
3845 }
3846
3847 static void hci_sched_acl(struct hci_dev *hdev)
3848 {
3849 BT_DBG("%s", hdev->name);
3850
3851 /* No ACL link over BR/EDR controller */
3852 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853 return;
3854
3855 /* No AMP link over AMP controller */
3856 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857 return;
3858
3859 switch (hdev->flow_ctl_mode) {
3860 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861 hci_sched_acl_pkt(hdev);
3862 break;
3863
3864 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865 hci_sched_acl_blk(hdev);
3866 break;
3867 }
3868 }
3869
3870 /* Schedule SCO */
3871 static void hci_sched_sco(struct hci_dev *hdev)
3872 {
3873 struct hci_conn *conn;
3874 struct sk_buff *skb;
3875 int quote;
3876
3877 BT_DBG("%s", hdev->name);
3878
3879 if (!hci_conn_num(hdev, SCO_LINK))
3880 return;
3881
3882 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3883 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884 BT_DBG("skb %p len %d", skb, skb->len);
3885 hci_send_frame(hdev, skb);
3886
3887 conn->sent++;
3888 if (conn->sent == ~0)
3889 conn->sent = 0;
3890 }
3891 }
3892 }
3893
3894 static void hci_sched_esco(struct hci_dev *hdev)
3895 {
3896 struct hci_conn *conn;
3897 struct sk_buff *skb;
3898 int quote;
3899
3900 BT_DBG("%s", hdev->name);
3901
3902 if (!hci_conn_num(hdev, ESCO_LINK))
3903 return;
3904
3905 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906 &quote))) {
3907 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908 BT_DBG("skb %p len %d", skb, skb->len);
3909 hci_send_frame(hdev, skb);
3910
3911 conn->sent++;
3912 if (conn->sent == ~0)
3913 conn->sent = 0;
3914 }
3915 }
3916 }
3917
3918 static void hci_sched_le(struct hci_dev *hdev)
3919 {
3920 struct hci_chan *chan;
3921 struct sk_buff *skb;
3922 int quote, cnt, tmp;
3923
3924 BT_DBG("%s", hdev->name);
3925
3926 if (!hci_conn_num(hdev, LE_LINK))
3927 return;
3928
3929 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930 /* LE tx timeout must be longer than maximum
3931 * link supervision timeout (40.9 seconds) */
3932 if (!hdev->le_cnt && hdev->le_pkts &&
3933 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934 hci_link_tx_to(hdev, LE_LINK);
3935 }
3936
3937 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938 tmp = cnt;
3939 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3940 u32 priority = (skb_peek(&chan->data_q))->priority;
3941 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943 skb->len, skb->priority);
3944
3945 /* Stop if priority has changed */
3946 if (skb->priority < priority)
3947 break;
3948
3949 skb = skb_dequeue(&chan->data_q);
3950
3951 hci_send_frame(hdev, skb);
3952 hdev->le_last_tx = jiffies;
3953
3954 cnt--;
3955 chan->sent++;
3956 chan->conn->sent++;
3957 }
3958 }
3959
3960 if (hdev->le_pkts)
3961 hdev->le_cnt = cnt;
3962 else
3963 hdev->acl_cnt = cnt;
3964
3965 if (cnt != tmp)
3966 hci_prio_recalculate(hdev, LE_LINK);
3967 }
3968
3969 static void hci_tx_work(struct work_struct *work)
3970 {
3971 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972 struct sk_buff *skb;
3973
3974 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975 hdev->sco_cnt, hdev->le_cnt);
3976
3977 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978 /* Schedule queues and send stuff to HCI driver */
3979 hci_sched_acl(hdev);
3980 hci_sched_sco(hdev);
3981 hci_sched_esco(hdev);
3982 hci_sched_le(hdev);
3983 }
3984
3985 /* Send next queued raw (unknown type) packet */
3986 while ((skb = skb_dequeue(&hdev->raw_q)))
3987 hci_send_frame(hdev, skb);
3988 }
3989
3990 /* ----- HCI RX task (incoming data processing) ----- */
3991
3992 /* ACL data packet */
3993 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994 {
3995 struct hci_acl_hdr *hdr = (void *) skb->data;
3996 struct hci_conn *conn;
3997 __u16 handle, flags;
3998
3999 skb_pull(skb, HCI_ACL_HDR_SIZE);
4000
4001 handle = __le16_to_cpu(hdr->handle);
4002 flags = hci_flags(handle);
4003 handle = hci_handle(handle);
4004
4005 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006 handle, flags);
4007
4008 hdev->stat.acl_rx++;
4009
4010 hci_dev_lock(hdev);
4011 conn = hci_conn_hash_lookup_handle(hdev, handle);
4012 hci_dev_unlock(hdev);
4013
4014 if (conn) {
4015 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
4017 /* Send to upper protocol */
4018 l2cap_recv_acldata(conn, skb, flags);
4019 return;
4020 } else {
4021 BT_ERR("%s ACL packet for unknown connection handle %d",
4022 hdev->name, handle);
4023 }
4024
4025 kfree_skb(skb);
4026 }
4027
4028 /* SCO data packet */
4029 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030 {
4031 struct hci_sco_hdr *hdr = (void *) skb->data;
4032 struct hci_conn *conn;
4033 __u16 handle;
4034
4035 skb_pull(skb, HCI_SCO_HDR_SIZE);
4036
4037 handle = __le16_to_cpu(hdr->handle);
4038
4039 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4040
4041 hdev->stat.sco_rx++;
4042
4043 hci_dev_lock(hdev);
4044 conn = hci_conn_hash_lookup_handle(hdev, handle);
4045 hci_dev_unlock(hdev);
4046
4047 if (conn) {
4048 /* Send to upper protocol */
4049 sco_recv_scodata(conn, skb);
4050 return;
4051 } else {
4052 BT_ERR("%s SCO packet for unknown connection handle %d",
4053 hdev->name, handle);
4054 }
4055
4056 kfree_skb(skb);
4057 }
4058
4059 static bool hci_req_is_complete(struct hci_dev *hdev)
4060 {
4061 struct sk_buff *skb;
4062
4063 skb = skb_peek(&hdev->cmd_q);
4064 if (!skb)
4065 return true;
4066
4067 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068 }
4069
4070 static void hci_resend_last(struct hci_dev *hdev)
4071 {
4072 struct hci_command_hdr *sent;
4073 struct sk_buff *skb;
4074 u16 opcode;
4075
4076 if (!hdev->sent_cmd)
4077 return;
4078
4079 sent = (void *) hdev->sent_cmd->data;
4080 opcode = __le16_to_cpu(sent->opcode);
4081 if (opcode == HCI_OP_RESET)
4082 return;
4083
4084 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085 if (!skb)
4086 return;
4087
4088 skb_queue_head(&hdev->cmd_q, skb);
4089 queue_work(hdev->workqueue, &hdev->cmd_work);
4090 }
4091
4092 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093 hci_req_complete_t *req_complete,
4094 hci_req_complete_skb_t *req_complete_skb)
4095 {
4096 struct sk_buff *skb;
4097 unsigned long flags;
4098
4099 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101 /* If the completed command doesn't match the last one that was
4102 * sent we need to do special handling of it.
4103 */
4104 if (!hci_sent_cmd_data(hdev, opcode)) {
4105 /* Some CSR based controllers generate a spontaneous
4106 * reset complete event during init and any pending
4107 * command will never be completed. In such a case we
4108 * need to resend whatever was the last sent
4109 * command.
4110 */
4111 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112 hci_resend_last(hdev);
4113
4114 return;
4115 }
4116
4117 /* If the command succeeded and there's still more commands in
4118 * this request the request is not yet complete.
4119 */
4120 if (!status && !hci_req_is_complete(hdev))
4121 return;
4122
4123 /* If this was the last command in a request the complete
4124 * callback would be found in hdev->sent_cmd instead of the
4125 * command queue (hdev->cmd_q).
4126 */
4127 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129 return;
4130 }
4131
4132 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134 return;
4135 }
4136
4137 /* Remove all pending commands belonging to this request */
4138 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141 __skb_queue_head(&hdev->cmd_q, skb);
4142 break;
4143 }
4144
4145 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147 else
4148 *req_complete = bt_cb(skb)->hci.req_complete;
4149 kfree_skb(skb);
4150 }
4151 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152 }
4153
4154 static void hci_rx_work(struct work_struct *work)
4155 {
4156 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157 struct sk_buff *skb;
4158
4159 BT_DBG("%s", hdev->name);
4160
4161 while ((skb = skb_dequeue(&hdev->rx_q))) {
4162 /* Send copy to monitor */
4163 hci_send_to_monitor(hdev, skb);
4164
4165 if (atomic_read(&hdev->promisc)) {
4166 /* Send copy to the sockets */
4167 hci_send_to_sock(hdev, skb);
4168 }
4169
4170 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4171 kfree_skb(skb);
4172 continue;
4173 }
4174
4175 if (test_bit(HCI_INIT, &hdev->flags)) {
4176 /* Don't process data packets in this states. */
4177 switch (hci_skb_pkt_type(skb)) {
4178 case HCI_ACLDATA_PKT:
4179 case HCI_SCODATA_PKT:
4180 kfree_skb(skb);
4181 continue;
4182 }
4183 }
4184
4185 /* Process frame */
4186 switch (hci_skb_pkt_type(skb)) {
4187 case HCI_EVENT_PKT:
4188 BT_DBG("%s Event packet", hdev->name);
4189 hci_event_packet(hdev, skb);
4190 break;
4191
4192 case HCI_ACLDATA_PKT:
4193 BT_DBG("%s ACL data packet", hdev->name);
4194 hci_acldata_packet(hdev, skb);
4195 break;
4196
4197 case HCI_SCODATA_PKT:
4198 BT_DBG("%s SCO data packet", hdev->name);
4199 hci_scodata_packet(hdev, skb);
4200 break;
4201
4202 default:
4203 kfree_skb(skb);
4204 break;
4205 }
4206 }
4207 }
4208
4209 static void hci_cmd_work(struct work_struct *work)
4210 {
4211 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212 struct sk_buff *skb;
4213
4214 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217 /* Send queued commands */
4218 if (atomic_read(&hdev->cmd_cnt)) {
4219 skb = skb_dequeue(&hdev->cmd_q);
4220 if (!skb)
4221 return;
4222
4223 kfree_skb(hdev->sent_cmd);
4224
4225 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226 if (hdev->sent_cmd) {
4227 atomic_dec(&hdev->cmd_cnt);
4228 hci_send_frame(hdev, skb);
4229 if (test_bit(HCI_RESET, &hdev->flags))
4230 cancel_delayed_work(&hdev->cmd_timer);
4231 else
4232 schedule_delayed_work(&hdev->cmd_timer,
4233 HCI_CMD_TIMEOUT);
4234 } else {
4235 skb_queue_head(&hdev->cmd_q, skb);
4236 queue_work(hdev->workqueue, &hdev->cmd_work);
4237 }
4238 }
4239 }
This page took 0.125497 seconds and 5 git commands to generate.