88f1ef3589d8a6b02c88a3b11b34c56e0b2b4bbc
[deliverable/linux.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64 {
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76 {
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124 {
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136 {
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167 done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_BREDR:
264 bredr_init(req);
265 break;
266
267 case HCI_AMP:
268 amp_init1(req);
269 break;
270
271 default:
272 BT_ERR("Unknown device type %d", hdev->dev_type);
273 break;
274 }
275
276 return 0;
277 }
278
279 static void bredr_setup(struct hci_request *req)
280 {
281 __le16 param;
282 __u8 flt_type;
283
284 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
285 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
286
287 /* Read Class of Device */
288 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
289
290 /* Read Local Name */
291 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
292
293 /* Read Voice Setting */
294 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
295
296 /* Read Number of Supported IAC */
297 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
298
299 /* Read Current IAC LAP */
300 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
301
302 /* Clear Event Filters */
303 flt_type = HCI_FLT_CLEAR_ALL;
304 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
305
306 /* Connection accept timeout ~20 secs */
307 param = cpu_to_le16(0x7d00);
308 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
309 }
310
311 static void le_setup(struct hci_request *req)
312 {
313 struct hci_dev *hdev = req->hdev;
314
315 /* Read LE Buffer Size */
316 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
317
318 /* Read LE Local Supported Features */
319 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
320
321 /* Read LE Supported States */
322 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
323
324 /* LE-only controllers have LE implicitly enabled */
325 if (!lmp_bredr_capable(hdev))
326 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
327 }
328
329 static void hci_setup_event_mask(struct hci_request *req)
330 {
331 struct hci_dev *hdev = req->hdev;
332
333 /* The second byte is 0xff instead of 0x9f (two reserved bits
334 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
335 * command otherwise.
336 */
337 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
338
339 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
340 * any event mask for pre 1.2 devices.
341 */
342 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
343 return;
344
345 if (lmp_bredr_capable(hdev)) {
346 events[4] |= 0x01; /* Flow Specification Complete */
347 } else {
348 /* Use a different default for LE-only devices */
349 memset(events, 0, sizeof(events));
350 events[1] |= 0x20; /* Command Complete */
351 events[1] |= 0x40; /* Command Status */
352 events[1] |= 0x80; /* Hardware Error */
353
354 /* If the controller supports the Disconnect command, enable
355 * the corresponding event. In addition enable packet flow
356 * control related events.
357 */
358 if (hdev->commands[0] & 0x20) {
359 events[0] |= 0x10; /* Disconnection Complete */
360 events[2] |= 0x04; /* Number of Completed Packets */
361 events[3] |= 0x02; /* Data Buffer Overflow */
362 }
363
364 /* If the controller supports the Read Remote Version
365 * Information command, enable the corresponding event.
366 */
367 if (hdev->commands[2] & 0x80)
368 events[1] |= 0x08; /* Read Remote Version Information
369 * Complete
370 */
371
372 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
373 events[0] |= 0x80; /* Encryption Change */
374 events[5] |= 0x80; /* Encryption Key Refresh Complete */
375 }
376 }
377
378 if (lmp_inq_rssi_capable(hdev) ||
379 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
380 events[4] |= 0x02; /* Inquiry Result with RSSI */
381
382 if (lmp_ext_feat_capable(hdev))
383 events[4] |= 0x04; /* Read Remote Extended Features Complete */
384
385 if (lmp_esco_capable(hdev)) {
386 events[5] |= 0x08; /* Synchronous Connection Complete */
387 events[5] |= 0x10; /* Synchronous Connection Changed */
388 }
389
390 if (lmp_sniffsubr_capable(hdev))
391 events[5] |= 0x20; /* Sniff Subrating */
392
393 if (lmp_pause_enc_capable(hdev))
394 events[5] |= 0x80; /* Encryption Key Refresh Complete */
395
396 if (lmp_ext_inq_capable(hdev))
397 events[5] |= 0x40; /* Extended Inquiry Result */
398
399 if (lmp_no_flush_capable(hdev))
400 events[7] |= 0x01; /* Enhanced Flush Complete */
401
402 if (lmp_lsto_capable(hdev))
403 events[6] |= 0x80; /* Link Supervision Timeout Changed */
404
405 if (lmp_ssp_capable(hdev)) {
406 events[6] |= 0x01; /* IO Capability Request */
407 events[6] |= 0x02; /* IO Capability Response */
408 events[6] |= 0x04; /* User Confirmation Request */
409 events[6] |= 0x08; /* User Passkey Request */
410 events[6] |= 0x10; /* Remote OOB Data Request */
411 events[6] |= 0x20; /* Simple Pairing Complete */
412 events[7] |= 0x04; /* User Passkey Notification */
413 events[7] |= 0x08; /* Keypress Notification */
414 events[7] |= 0x10; /* Remote Host Supported
415 * Features Notification
416 */
417 }
418
419 if (lmp_le_capable(hdev))
420 events[7] |= 0x20; /* LE Meta-Event */
421
422 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
423 }
424
425 static int hci_init2_req(struct hci_request *req, unsigned long opt)
426 {
427 struct hci_dev *hdev = req->hdev;
428
429 if (hdev->dev_type == HCI_AMP)
430 return amp_init2(req);
431
432 if (lmp_bredr_capable(hdev))
433 bredr_setup(req);
434 else
435 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
436
437 if (lmp_le_capable(hdev))
438 le_setup(req);
439
440 /* All Bluetooth 1.2 and later controllers should support the
441 * HCI command for reading the local supported commands.
442 *
443 * Unfortunately some controllers indicate Bluetooth 1.2 support,
444 * but do not have support for this command. If that is the case,
445 * the driver can quirk the behavior and skip reading the local
446 * supported commands.
447 */
448 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
449 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
450 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
451
452 if (lmp_ssp_capable(hdev)) {
453 /* When SSP is available, then the host features page
454 * should also be available as well. However some
455 * controllers list the max_page as 0 as long as SSP
456 * has not been enabled. To achieve proper debugging
457 * output, force the minimum max_page to 1 at least.
458 */
459 hdev->max_page = 0x01;
460
461 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
462 u8 mode = 0x01;
463
464 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
465 sizeof(mode), &mode);
466 } else {
467 struct hci_cp_write_eir cp;
468
469 memset(hdev->eir, 0, sizeof(hdev->eir));
470 memset(&cp, 0, sizeof(cp));
471
472 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
473 }
474 }
475
476 if (lmp_inq_rssi_capable(hdev) ||
477 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
478 u8 mode;
479
480 /* If Extended Inquiry Result events are supported, then
481 * they are clearly preferred over Inquiry Result with RSSI
482 * events.
483 */
484 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
485
486 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
487 }
488
489 if (lmp_inq_tx_pwr_capable(hdev))
490 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
491
492 if (lmp_ext_feat_capable(hdev)) {
493 struct hci_cp_read_local_ext_features cp;
494
495 cp.page = 0x01;
496 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
497 sizeof(cp), &cp);
498 }
499
500 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
501 u8 enable = 1;
502 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
503 &enable);
504 }
505
506 return 0;
507 }
508
509 static void hci_setup_link_policy(struct hci_request *req)
510 {
511 struct hci_dev *hdev = req->hdev;
512 struct hci_cp_write_def_link_policy cp;
513 u16 link_policy = 0;
514
515 if (lmp_rswitch_capable(hdev))
516 link_policy |= HCI_LP_RSWITCH;
517 if (lmp_hold_capable(hdev))
518 link_policy |= HCI_LP_HOLD;
519 if (lmp_sniff_capable(hdev))
520 link_policy |= HCI_LP_SNIFF;
521 if (lmp_park_capable(hdev))
522 link_policy |= HCI_LP_PARK;
523
524 cp.policy = cpu_to_le16(link_policy);
525 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
526 }
527
528 static void hci_set_le_support(struct hci_request *req)
529 {
530 struct hci_dev *hdev = req->hdev;
531 struct hci_cp_write_le_host_supported cp;
532
533 /* LE-only devices do not support explicit enablement */
534 if (!lmp_bredr_capable(hdev))
535 return;
536
537 memset(&cp, 0, sizeof(cp));
538
539 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
540 cp.le = 0x01;
541 cp.simul = 0x00;
542 }
543
544 if (cp.le != lmp_host_le_capable(hdev))
545 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
546 &cp);
547 }
548
549 static void hci_set_event_mask_page_2(struct hci_request *req)
550 {
551 struct hci_dev *hdev = req->hdev;
552 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
553
554 /* If Connectionless Slave Broadcast master role is supported
555 * enable all necessary events for it.
556 */
557 if (lmp_csb_master_capable(hdev)) {
558 events[1] |= 0x40; /* Triggered Clock Capture */
559 events[1] |= 0x80; /* Synchronization Train Complete */
560 events[2] |= 0x10; /* Slave Page Response Timeout */
561 events[2] |= 0x20; /* CSB Channel Map Change */
562 }
563
564 /* If Connectionless Slave Broadcast slave role is supported
565 * enable all necessary events for it.
566 */
567 if (lmp_csb_slave_capable(hdev)) {
568 events[2] |= 0x01; /* Synchronization Train Received */
569 events[2] |= 0x02; /* CSB Receive */
570 events[2] |= 0x04; /* CSB Timeout */
571 events[2] |= 0x08; /* Truncated Page Complete */
572 }
573
574 /* Enable Authenticated Payload Timeout Expired event if supported */
575 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
576 events[2] |= 0x80;
577
578 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
579 }
580
581 static int hci_init3_req(struct hci_request *req, unsigned long opt)
582 {
583 struct hci_dev *hdev = req->hdev;
584 u8 p;
585
586 hci_setup_event_mask(req);
587
588 if (hdev->commands[6] & 0x20 &&
589 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
590 struct hci_cp_read_stored_link_key cp;
591
592 bacpy(&cp.bdaddr, BDADDR_ANY);
593 cp.read_all = 0x01;
594 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
595 }
596
597 if (hdev->commands[5] & 0x10)
598 hci_setup_link_policy(req);
599
600 if (hdev->commands[8] & 0x01)
601 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
602
603 /* Some older Broadcom based Bluetooth 1.2 controllers do not
604 * support the Read Page Scan Type command. Check support for
605 * this command in the bit mask of supported commands.
606 */
607 if (hdev->commands[13] & 0x01)
608 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
609
610 if (lmp_le_capable(hdev)) {
611 u8 events[8];
612
613 memset(events, 0, sizeof(events));
614
615 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
616 events[0] |= 0x10; /* LE Long Term Key Request */
617
618 /* If controller supports the Connection Parameters Request
619 * Link Layer Procedure, enable the corresponding event.
620 */
621 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
622 events[0] |= 0x20; /* LE Remote Connection
623 * Parameter Request
624 */
625
626 /* If the controller supports the Data Length Extension
627 * feature, enable the corresponding event.
628 */
629 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
630 events[0] |= 0x40; /* LE Data Length Change */
631
632 /* If the controller supports Extended Scanner Filter
633 * Policies, enable the correspondig event.
634 */
635 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
636 events[1] |= 0x04; /* LE Direct Advertising
637 * Report
638 */
639
640 /* If the controller supports the LE Set Scan Enable command,
641 * enable the corresponding advertising report event.
642 */
643 if (hdev->commands[26] & 0x08)
644 events[0] |= 0x02; /* LE Advertising Report */
645
646 /* If the controller supports the LE Create Connection
647 * command, enable the corresponding event.
648 */
649 if (hdev->commands[26] & 0x10)
650 events[0] |= 0x01; /* LE Connection Complete */
651
652 /* If the controller supports the LE Connection Update
653 * command, enable the corresponding event.
654 */
655 if (hdev->commands[27] & 0x04)
656 events[0] |= 0x04; /* LE Connection Update
657 * Complete
658 */
659
660 /* If the controller supports the LE Read Remote Used Features
661 * command, enable the corresponding event.
662 */
663 if (hdev->commands[27] & 0x20)
664 events[0] |= 0x08; /* LE Read Remote Used
665 * Features Complete
666 */
667
668 /* If the controller supports the LE Read Local P-256
669 * Public Key command, enable the corresponding event.
670 */
671 if (hdev->commands[34] & 0x02)
672 events[0] |= 0x80; /* LE Read Local P-256
673 * Public Key Complete
674 */
675
676 /* If the controller supports the LE Generate DHKey
677 * command, enable the corresponding event.
678 */
679 if (hdev->commands[34] & 0x04)
680 events[1] |= 0x01; /* LE Generate DHKey Complete */
681
682 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
683 events);
684
685 if (hdev->commands[25] & 0x40) {
686 /* Read LE Advertising Channel TX Power */
687 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
688 }
689
690 if (hdev->commands[26] & 0x40) {
691 /* Read LE White List Size */
692 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
693 0, NULL);
694 }
695
696 if (hdev->commands[26] & 0x80) {
697 /* Clear LE White List */
698 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
699 }
700
701 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
702 /* Read LE Maximum Data Length */
703 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
704
705 /* Read LE Suggested Default Data Length */
706 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
707 }
708
709 hci_set_le_support(req);
710 }
711
712 /* Read features beyond page 1 if available */
713 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
714 struct hci_cp_read_local_ext_features cp;
715
716 cp.page = p;
717 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
718 sizeof(cp), &cp);
719 }
720
721 return 0;
722 }
723
724 static int hci_init4_req(struct hci_request *req, unsigned long opt)
725 {
726 struct hci_dev *hdev = req->hdev;
727
728 /* Some Broadcom based Bluetooth controllers do not support the
729 * Delete Stored Link Key command. They are clearly indicating its
730 * absence in the bit mask of supported commands.
731 *
732 * Check the supported commands and only if the the command is marked
733 * as supported send it. If not supported assume that the controller
734 * does not have actual support for stored link keys which makes this
735 * command redundant anyway.
736 *
737 * Some controllers indicate that they support handling deleting
738 * stored link keys, but they don't. The quirk lets a driver
739 * just disable this command.
740 */
741 if (hdev->commands[6] & 0x80 &&
742 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
743 struct hci_cp_delete_stored_link_key cp;
744
745 bacpy(&cp.bdaddr, BDADDR_ANY);
746 cp.delete_all = 0x01;
747 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
748 sizeof(cp), &cp);
749 }
750
751 /* Set event mask page 2 if the HCI command for it is supported */
752 if (hdev->commands[22] & 0x04)
753 hci_set_event_mask_page_2(req);
754
755 /* Read local codec list if the HCI command is supported */
756 if (hdev->commands[29] & 0x20)
757 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
758
759 /* Get MWS transport configuration if the HCI command is supported */
760 if (hdev->commands[30] & 0x08)
761 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
762
763 /* Check for Synchronization Train support */
764 if (lmp_sync_train_capable(hdev))
765 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
766
767 /* Enable Secure Connections if supported and configured */
768 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
769 bredr_sc_enabled(hdev)) {
770 u8 support = 0x01;
771
772 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
773 sizeof(support), &support);
774 }
775
776 return 0;
777 }
778
779 static int __hci_init(struct hci_dev *hdev)
780 {
781 int err;
782
783 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
784 if (err < 0)
785 return err;
786
787 if (hci_dev_test_flag(hdev, HCI_SETUP))
788 hci_debugfs_create_basic(hdev);
789
790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
791 if (err < 0)
792 return err;
793
794 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
795 * BR/EDR/LE type controllers. AMP controllers only need the
796 * first two stages of init.
797 */
798 if (hdev->dev_type != HCI_BREDR)
799 return 0;
800
801 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
802 if (err < 0)
803 return err;
804
805 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
806 if (err < 0)
807 return err;
808
809 /* This function is only called when the controller is actually in
810 * configured state. When the controller is marked as unconfigured,
811 * this initialization procedure is not run.
812 *
813 * It means that it is possible that a controller runs through its
814 * setup phase and then discovers missing settings. If that is the
815 * case, then this function will not be called. It then will only
816 * be called during the config phase.
817 *
818 * So only when in setup phase or config phase, create the debugfs
819 * entries and register the SMP channels.
820 */
821 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
822 !hci_dev_test_flag(hdev, HCI_CONFIG))
823 return 0;
824
825 hci_debugfs_create_common(hdev);
826
827 if (lmp_bredr_capable(hdev))
828 hci_debugfs_create_bredr(hdev);
829
830 if (lmp_le_capable(hdev))
831 hci_debugfs_create_le(hdev);
832
833 return 0;
834 }
835
836 static int hci_init0_req(struct hci_request *req, unsigned long opt)
837 {
838 struct hci_dev *hdev = req->hdev;
839
840 BT_DBG("%s %ld", hdev->name, opt);
841
842 /* Reset */
843 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
844 hci_reset_req(req, 0);
845
846 /* Read Local Version */
847 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
848
849 /* Read BD Address */
850 if (hdev->set_bdaddr)
851 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
852
853 return 0;
854 }
855
856 static int __hci_unconf_init(struct hci_dev *hdev)
857 {
858 int err;
859
860 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
861 return 0;
862
863 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
864 if (err < 0)
865 return err;
866
867 if (hci_dev_test_flag(hdev, HCI_SETUP))
868 hci_debugfs_create_basic(hdev);
869
870 return 0;
871 }
872
873 static int hci_scan_req(struct hci_request *req, unsigned long opt)
874 {
875 __u8 scan = opt;
876
877 BT_DBG("%s %x", req->hdev->name, scan);
878
879 /* Inquiry and Page scans */
880 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
881 return 0;
882 }
883
884 static int hci_auth_req(struct hci_request *req, unsigned long opt)
885 {
886 __u8 auth = opt;
887
888 BT_DBG("%s %x", req->hdev->name, auth);
889
890 /* Authentication */
891 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
892 return 0;
893 }
894
895 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
896 {
897 __u8 encrypt = opt;
898
899 BT_DBG("%s %x", req->hdev->name, encrypt);
900
901 /* Encryption */
902 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
903 return 0;
904 }
905
906 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
907 {
908 __le16 policy = cpu_to_le16(opt);
909
910 BT_DBG("%s %x", req->hdev->name, policy);
911
912 /* Default link policy */
913 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
914 return 0;
915 }
916
917 /* Get HCI device by index.
918 * Device is held on return. */
919 struct hci_dev *hci_dev_get(int index)
920 {
921 struct hci_dev *hdev = NULL, *d;
922
923 BT_DBG("%d", index);
924
925 if (index < 0)
926 return NULL;
927
928 read_lock(&hci_dev_list_lock);
929 list_for_each_entry(d, &hci_dev_list, list) {
930 if (d->id == index) {
931 hdev = hci_dev_hold(d);
932 break;
933 }
934 }
935 read_unlock(&hci_dev_list_lock);
936 return hdev;
937 }
938
939 /* ---- Inquiry support ---- */
940
941 bool hci_discovery_active(struct hci_dev *hdev)
942 {
943 struct discovery_state *discov = &hdev->discovery;
944
945 switch (discov->state) {
946 case DISCOVERY_FINDING:
947 case DISCOVERY_RESOLVING:
948 return true;
949
950 default:
951 return false;
952 }
953 }
954
955 void hci_discovery_set_state(struct hci_dev *hdev, int state)
956 {
957 int old_state = hdev->discovery.state;
958
959 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
960
961 if (old_state == state)
962 return;
963
964 hdev->discovery.state = state;
965
966 switch (state) {
967 case DISCOVERY_STOPPED:
968 hci_update_background_scan(hdev);
969
970 if (old_state != DISCOVERY_STARTING)
971 mgmt_discovering(hdev, 0);
972 break;
973 case DISCOVERY_STARTING:
974 break;
975 case DISCOVERY_FINDING:
976 mgmt_discovering(hdev, 1);
977 break;
978 case DISCOVERY_RESOLVING:
979 break;
980 case DISCOVERY_STOPPING:
981 break;
982 }
983 }
984
985 void hci_inquiry_cache_flush(struct hci_dev *hdev)
986 {
987 struct discovery_state *cache = &hdev->discovery;
988 struct inquiry_entry *p, *n;
989
990 list_for_each_entry_safe(p, n, &cache->all, all) {
991 list_del(&p->all);
992 kfree(p);
993 }
994
995 INIT_LIST_HEAD(&cache->unknown);
996 INIT_LIST_HEAD(&cache->resolve);
997 }
998
999 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000 bdaddr_t *bdaddr)
1001 {
1002 struct discovery_state *cache = &hdev->discovery;
1003 struct inquiry_entry *e;
1004
1005 BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007 list_for_each_entry(e, &cache->all, all) {
1008 if (!bacmp(&e->data.bdaddr, bdaddr))
1009 return e;
1010 }
1011
1012 return NULL;
1013 }
1014
1015 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016 bdaddr_t *bdaddr)
1017 {
1018 struct discovery_state *cache = &hdev->discovery;
1019 struct inquiry_entry *e;
1020
1021 BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023 list_for_each_entry(e, &cache->unknown, list) {
1024 if (!bacmp(&e->data.bdaddr, bdaddr))
1025 return e;
1026 }
1027
1028 return NULL;
1029 }
1030
1031 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032 bdaddr_t *bdaddr,
1033 int state)
1034 {
1035 struct discovery_state *cache = &hdev->discovery;
1036 struct inquiry_entry *e;
1037
1038 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040 list_for_each_entry(e, &cache->resolve, list) {
1041 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042 return e;
1043 if (!bacmp(&e->data.bdaddr, bdaddr))
1044 return e;
1045 }
1046
1047 return NULL;
1048 }
1049
1050 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051 struct inquiry_entry *ie)
1052 {
1053 struct discovery_state *cache = &hdev->discovery;
1054 struct list_head *pos = &cache->resolve;
1055 struct inquiry_entry *p;
1056
1057 list_del(&ie->list);
1058
1059 list_for_each_entry(p, &cache->resolve, list) {
1060 if (p->name_state != NAME_PENDING &&
1061 abs(p->data.rssi) >= abs(ie->data.rssi))
1062 break;
1063 pos = &p->list;
1064 }
1065
1066 list_add(&ie->list, pos);
1067 }
1068
1069 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070 bool name_known)
1071 {
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *ie;
1074 u32 flags = 0;
1075
1076 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080 if (!data->ssp_mode)
1081 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084 if (ie) {
1085 if (!ie->data.ssp_mode)
1086 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088 if (ie->name_state == NAME_NEEDED &&
1089 data->rssi != ie->data.rssi) {
1090 ie->data.rssi = data->rssi;
1091 hci_inquiry_cache_update_resolve(hdev, ie);
1092 }
1093
1094 goto update;
1095 }
1096
1097 /* Entry not in the cache. Add new one. */
1098 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099 if (!ie) {
1100 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101 goto done;
1102 }
1103
1104 list_add(&ie->all, &cache->all);
1105
1106 if (name_known) {
1107 ie->name_state = NAME_KNOWN;
1108 } else {
1109 ie->name_state = NAME_NOT_KNOWN;
1110 list_add(&ie->list, &cache->unknown);
1111 }
1112
1113 update:
1114 if (name_known && ie->name_state != NAME_KNOWN &&
1115 ie->name_state != NAME_PENDING) {
1116 ie->name_state = NAME_KNOWN;
1117 list_del(&ie->list);
1118 }
1119
1120 memcpy(&ie->data, data, sizeof(*data));
1121 ie->timestamp = jiffies;
1122 cache->timestamp = jiffies;
1123
1124 if (ie->name_state == NAME_NOT_KNOWN)
1125 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127 done:
1128 return flags;
1129 }
1130
1131 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132 {
1133 struct discovery_state *cache = &hdev->discovery;
1134 struct inquiry_info *info = (struct inquiry_info *) buf;
1135 struct inquiry_entry *e;
1136 int copied = 0;
1137
1138 list_for_each_entry(e, &cache->all, all) {
1139 struct inquiry_data *data = &e->data;
1140
1141 if (copied >= num)
1142 break;
1143
1144 bacpy(&info->bdaddr, &data->bdaddr);
1145 info->pscan_rep_mode = data->pscan_rep_mode;
1146 info->pscan_period_mode = data->pscan_period_mode;
1147 info->pscan_mode = data->pscan_mode;
1148 memcpy(info->dev_class, data->dev_class, 3);
1149 info->clock_offset = data->clock_offset;
1150
1151 info++;
1152 copied++;
1153 }
1154
1155 BT_DBG("cache %p, copied %d", cache, copied);
1156 return copied;
1157 }
1158
1159 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160 {
1161 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162 struct hci_dev *hdev = req->hdev;
1163 struct hci_cp_inquiry cp;
1164
1165 BT_DBG("%s", hdev->name);
1166
1167 if (test_bit(HCI_INQUIRY, &hdev->flags))
1168 return 0;
1169
1170 /* Start Inquiry */
1171 memcpy(&cp.lap, &ir->lap, 3);
1172 cp.length = ir->length;
1173 cp.num_rsp = ir->num_rsp;
1174 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176 return 0;
1177 }
1178
1179 int hci_inquiry(void __user *arg)
1180 {
1181 __u8 __user *ptr = arg;
1182 struct hci_inquiry_req ir;
1183 struct hci_dev *hdev;
1184 int err = 0, do_inquiry = 0, max_rsp;
1185 long timeo;
1186 __u8 *buf;
1187
1188 if (copy_from_user(&ir, ptr, sizeof(ir)))
1189 return -EFAULT;
1190
1191 hdev = hci_dev_get(ir.dev_id);
1192 if (!hdev)
1193 return -ENODEV;
1194
1195 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196 err = -EBUSY;
1197 goto done;
1198 }
1199
1200 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201 err = -EOPNOTSUPP;
1202 goto done;
1203 }
1204
1205 if (hdev->dev_type != HCI_BREDR) {
1206 err = -EOPNOTSUPP;
1207 goto done;
1208 }
1209
1210 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211 err = -EOPNOTSUPP;
1212 goto done;
1213 }
1214
1215 hci_dev_lock(hdev);
1216 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218 hci_inquiry_cache_flush(hdev);
1219 do_inquiry = 1;
1220 }
1221 hci_dev_unlock(hdev);
1222
1223 timeo = ir.length * msecs_to_jiffies(2000);
1224
1225 if (do_inquiry) {
1226 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227 timeo, NULL);
1228 if (err < 0)
1229 goto done;
1230
1231 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232 * cleared). If it is interrupted by a signal, return -EINTR.
1233 */
1234 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235 TASK_INTERRUPTIBLE))
1236 return -EINTR;
1237 }
1238
1239 /* for unlimited number of responses we will use buffer with
1240 * 255 entries
1241 */
1242 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245 * copy it to the user space.
1246 */
1247 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248 if (!buf) {
1249 err = -ENOMEM;
1250 goto done;
1251 }
1252
1253 hci_dev_lock(hdev);
1254 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255 hci_dev_unlock(hdev);
1256
1257 BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260 ptr += sizeof(ir);
1261 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262 ir.num_rsp))
1263 err = -EFAULT;
1264 } else
1265 err = -EFAULT;
1266
1267 kfree(buf);
1268
1269 done:
1270 hci_dev_put(hdev);
1271 return err;
1272 }
1273
1274 static int hci_dev_do_open(struct hci_dev *hdev)
1275 {
1276 int ret = 0;
1277
1278 BT_DBG("%s %p", hdev->name, hdev);
1279
1280 hci_req_sync_lock(hdev);
1281
1282 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283 ret = -ENODEV;
1284 goto done;
1285 }
1286
1287 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289 /* Check for rfkill but allow the HCI setup stage to
1290 * proceed (which in itself doesn't cause any RF activity).
1291 */
1292 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293 ret = -ERFKILL;
1294 goto done;
1295 }
1296
1297 /* Check for valid public address or a configured static
1298 * random adddress, but let the HCI setup proceed to
1299 * be able to determine if there is a public address
1300 * or not.
1301 *
1302 * In case of user channel usage, it is not important
1303 * if a public address or static random address is
1304 * available.
1305 *
1306 * This check is only valid for BR/EDR controllers
1307 * since AMP controllers do not have an address.
1308 */
1309 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310 hdev->dev_type == HCI_BREDR &&
1311 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313 ret = -EADDRNOTAVAIL;
1314 goto done;
1315 }
1316 }
1317
1318 if (test_bit(HCI_UP, &hdev->flags)) {
1319 ret = -EALREADY;
1320 goto done;
1321 }
1322
1323 if (hdev->open(hdev)) {
1324 ret = -EIO;
1325 goto done;
1326 }
1327
1328 set_bit(HCI_RUNNING, &hdev->flags);
1329 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331 atomic_set(&hdev->cmd_cnt, 1);
1332 set_bit(HCI_INIT, &hdev->flags);
1333
1334 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337 if (hdev->setup)
1338 ret = hdev->setup(hdev);
1339
1340 /* The transport driver can set these quirks before
1341 * creating the HCI device or in its setup callback.
1342 *
1343 * In case any of them is set, the controller has to
1344 * start up as unconfigured.
1345 */
1346 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350 /* For an unconfigured controller it is required to
1351 * read at least the version information provided by
1352 * the Read Local Version Information command.
1353 *
1354 * If the set_bdaddr driver callback is provided, then
1355 * also the original Bluetooth public device address
1356 * will be read using the Read BD Address command.
1357 */
1358 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359 ret = __hci_unconf_init(hdev);
1360 }
1361
1362 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363 /* If public address change is configured, ensure that
1364 * the address gets programmed. If the driver does not
1365 * support changing the public address, fail the power
1366 * on procedure.
1367 */
1368 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369 hdev->set_bdaddr)
1370 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371 else
1372 ret = -EADDRNOTAVAIL;
1373 }
1374
1375 if (!ret) {
1376 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378 ret = __hci_init(hdev);
1379 if (!ret && hdev->post_init)
1380 ret = hdev->post_init(hdev);
1381 }
1382 }
1383
1384 /* If the HCI Reset command is clearing all diagnostic settings,
1385 * then they need to be reprogrammed after the init procedure
1386 * completed.
1387 */
1388 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390 ret = hdev->set_diag(hdev, true);
1391
1392 clear_bit(HCI_INIT, &hdev->flags);
1393
1394 if (!ret) {
1395 hci_dev_hold(hdev);
1396 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397 set_bit(HCI_UP, &hdev->flags);
1398 hci_sock_dev_event(hdev, HCI_DEV_UP);
1399 hci_leds_update_powered(hdev, true);
1400 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404 hci_dev_test_flag(hdev, HCI_MGMT) &&
1405 hdev->dev_type == HCI_BREDR) {
1406 ret = __hci_req_hci_power_on(hdev);
1407 mgmt_power_on(hdev, ret);
1408 }
1409 } else {
1410 /* Init failed, cleanup */
1411 flush_work(&hdev->tx_work);
1412 flush_work(&hdev->cmd_work);
1413 flush_work(&hdev->rx_work);
1414
1415 skb_queue_purge(&hdev->cmd_q);
1416 skb_queue_purge(&hdev->rx_q);
1417
1418 if (hdev->flush)
1419 hdev->flush(hdev);
1420
1421 if (hdev->sent_cmd) {
1422 kfree_skb(hdev->sent_cmd);
1423 hdev->sent_cmd = NULL;
1424 }
1425
1426 clear_bit(HCI_RUNNING, &hdev->flags);
1427 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429 hdev->close(hdev);
1430 hdev->flags &= BIT(HCI_RAW);
1431 }
1432
1433 done:
1434 hci_req_sync_unlock(hdev);
1435 return ret;
1436 }
1437
1438 /* ---- HCI ioctl helpers ---- */
1439
1440 int hci_dev_open(__u16 dev)
1441 {
1442 struct hci_dev *hdev;
1443 int err;
1444
1445 hdev = hci_dev_get(dev);
1446 if (!hdev)
1447 return -ENODEV;
1448
1449 /* Devices that are marked as unconfigured can only be powered
1450 * up as user channel. Trying to bring them up as normal devices
1451 * will result into a failure. Only user channel operation is
1452 * possible.
1453 *
1454 * When this function is called for a user channel, the flag
1455 * HCI_USER_CHANNEL will be set first before attempting to
1456 * open the device.
1457 */
1458 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460 err = -EOPNOTSUPP;
1461 goto done;
1462 }
1463
1464 /* We need to ensure that no other power on/off work is pending
1465 * before proceeding to call hci_dev_do_open. This is
1466 * particularly important if the setup procedure has not yet
1467 * completed.
1468 */
1469 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470 cancel_delayed_work(&hdev->power_off);
1471
1472 /* After this call it is guaranteed that the setup procedure
1473 * has finished. This means that error conditions like RFKILL
1474 * or no valid public or static random address apply.
1475 */
1476 flush_workqueue(hdev->req_workqueue);
1477
1478 /* For controllers not using the management interface and that
1479 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480 * so that pairing works for them. Once the management interface
1481 * is in use this bit will be cleared again and userspace has
1482 * to explicitly enable it.
1483 */
1484 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485 !hci_dev_test_flag(hdev, HCI_MGMT))
1486 hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488 err = hci_dev_do_open(hdev);
1489
1490 done:
1491 hci_dev_put(hdev);
1492 return err;
1493 }
1494
1495 /* This function requires the caller holds hdev->lock */
1496 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497 {
1498 struct hci_conn_params *p;
1499
1500 list_for_each_entry(p, &hdev->le_conn_params, list) {
1501 if (p->conn) {
1502 hci_conn_drop(p->conn);
1503 hci_conn_put(p->conn);
1504 p->conn = NULL;
1505 }
1506 list_del_init(&p->action);
1507 }
1508
1509 BT_DBG("All LE pending actions cleared");
1510 }
1511
1512 int hci_dev_do_close(struct hci_dev *hdev)
1513 {
1514 bool auto_off;
1515
1516 BT_DBG("%s %p", hdev->name, hdev);
1517
1518 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520 test_bit(HCI_UP, &hdev->flags)) {
1521 /* Execute vendor specific shutdown routine */
1522 if (hdev->shutdown)
1523 hdev->shutdown(hdev);
1524 }
1525
1526 cancel_delayed_work(&hdev->power_off);
1527
1528 hci_request_cancel_all(hdev);
1529 hci_req_sync_lock(hdev);
1530
1531 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532 cancel_delayed_work_sync(&hdev->cmd_timer);
1533 hci_req_sync_unlock(hdev);
1534 return 0;
1535 }
1536
1537 hci_leds_update_powered(hdev, false);
1538
1539 /* Flush RX and TX works */
1540 flush_work(&hdev->tx_work);
1541 flush_work(&hdev->rx_work);
1542
1543 if (hdev->discov_timeout > 0) {
1544 hdev->discov_timeout = 0;
1545 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547 }
1548
1549 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550 cancel_delayed_work(&hdev->service_cache);
1551
1552 if (hci_dev_test_flag(hdev, HCI_MGMT))
1553 cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555 /* Avoid potential lockdep warnings from the *_flush() calls by
1556 * ensuring the workqueue is empty up front.
1557 */
1558 drain_workqueue(hdev->workqueue);
1559
1560 hci_dev_lock(hdev);
1561
1562 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566 if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567 hci_dev_test_flag(hdev, HCI_MGMT))
1568 __mgmt_power_off(hdev);
1569
1570 hci_inquiry_cache_flush(hdev);
1571 hci_pend_le_actions_clear(hdev);
1572 hci_conn_hash_flush(hdev);
1573 hci_dev_unlock(hdev);
1574
1575 smp_unregister(hdev);
1576
1577 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579 if (hdev->flush)
1580 hdev->flush(hdev);
1581
1582 /* Reset device */
1583 skb_queue_purge(&hdev->cmd_q);
1584 atomic_set(&hdev->cmd_cnt, 1);
1585 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587 set_bit(HCI_INIT, &hdev->flags);
1588 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589 clear_bit(HCI_INIT, &hdev->flags);
1590 }
1591
1592 /* flush cmd work */
1593 flush_work(&hdev->cmd_work);
1594
1595 /* Drop queues */
1596 skb_queue_purge(&hdev->rx_q);
1597 skb_queue_purge(&hdev->cmd_q);
1598 skb_queue_purge(&hdev->raw_q);
1599
1600 /* Drop last sent command */
1601 if (hdev->sent_cmd) {
1602 cancel_delayed_work_sync(&hdev->cmd_timer);
1603 kfree_skb(hdev->sent_cmd);
1604 hdev->sent_cmd = NULL;
1605 }
1606
1607 clear_bit(HCI_RUNNING, &hdev->flags);
1608 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610 /* After this point our queues are empty
1611 * and no tasks are scheduled. */
1612 hdev->close(hdev);
1613
1614 /* Clear flags */
1615 hdev->flags &= BIT(HCI_RAW);
1616 hci_dev_clear_volatile_flags(hdev);
1617
1618 /* Controller radio is available but is currently powered down */
1619 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621 memset(hdev->eir, 0, sizeof(hdev->eir));
1622 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623 bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625 hci_req_sync_unlock(hdev);
1626
1627 hci_dev_put(hdev);
1628 return 0;
1629 }
1630
1631 int hci_dev_close(__u16 dev)
1632 {
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641 err = -EBUSY;
1642 goto done;
1643 }
1644
1645 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646 cancel_delayed_work(&hdev->power_off);
1647
1648 err = hci_dev_do_close(hdev);
1649
1650 done:
1651 hci_dev_put(hdev);
1652 return err;
1653 }
1654
1655 static int hci_dev_do_reset(struct hci_dev *hdev)
1656 {
1657 int ret;
1658
1659 BT_DBG("%s %p", hdev->name, hdev);
1660
1661 hci_req_sync_lock(hdev);
1662
1663 /* Drop queues */
1664 skb_queue_purge(&hdev->rx_q);
1665 skb_queue_purge(&hdev->cmd_q);
1666
1667 /* Avoid potential lockdep warnings from the *_flush() calls by
1668 * ensuring the workqueue is empty up front.
1669 */
1670 drain_workqueue(hdev->workqueue);
1671
1672 hci_dev_lock(hdev);
1673 hci_inquiry_cache_flush(hdev);
1674 hci_conn_hash_flush(hdev);
1675 hci_dev_unlock(hdev);
1676
1677 if (hdev->flush)
1678 hdev->flush(hdev);
1679
1680 atomic_set(&hdev->cmd_cnt, 1);
1681 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685 hci_req_sync_unlock(hdev);
1686 return ret;
1687 }
1688
1689 int hci_dev_reset(__u16 dev)
1690 {
1691 struct hci_dev *hdev;
1692 int err;
1693
1694 hdev = hci_dev_get(dev);
1695 if (!hdev)
1696 return -ENODEV;
1697
1698 if (!test_bit(HCI_UP, &hdev->flags)) {
1699 err = -ENETDOWN;
1700 goto done;
1701 }
1702
1703 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704 err = -EBUSY;
1705 goto done;
1706 }
1707
1708 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709 err = -EOPNOTSUPP;
1710 goto done;
1711 }
1712
1713 err = hci_dev_do_reset(hdev);
1714
1715 done:
1716 hci_dev_put(hdev);
1717 return err;
1718 }
1719
1720 int hci_dev_reset_stat(__u16 dev)
1721 {
1722 struct hci_dev *hdev;
1723 int ret = 0;
1724
1725 hdev = hci_dev_get(dev);
1726 if (!hdev)
1727 return -ENODEV;
1728
1729 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730 ret = -EBUSY;
1731 goto done;
1732 }
1733
1734 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735 ret = -EOPNOTSUPP;
1736 goto done;
1737 }
1738
1739 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741 done:
1742 hci_dev_put(hdev);
1743 return ret;
1744 }
1745
1746 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747 {
1748 bool conn_changed, discov_changed;
1749
1750 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752 if ((scan & SCAN_PAGE))
1753 conn_changed = !hci_dev_test_and_set_flag(hdev,
1754 HCI_CONNECTABLE);
1755 else
1756 conn_changed = hci_dev_test_and_clear_flag(hdev,
1757 HCI_CONNECTABLE);
1758
1759 if ((scan & SCAN_INQUIRY)) {
1760 discov_changed = !hci_dev_test_and_set_flag(hdev,
1761 HCI_DISCOVERABLE);
1762 } else {
1763 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764 discov_changed = hci_dev_test_and_clear_flag(hdev,
1765 HCI_DISCOVERABLE);
1766 }
1767
1768 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769 return;
1770
1771 if (conn_changed || discov_changed) {
1772 /* In case this was disabled through mgmt */
1773 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778 mgmt_new_settings(hdev);
1779 }
1780 }
1781
1782 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783 {
1784 struct hci_dev *hdev;
1785 struct hci_dev_req dr;
1786 int err = 0;
1787
1788 if (copy_from_user(&dr, arg, sizeof(dr)))
1789 return -EFAULT;
1790
1791 hdev = hci_dev_get(dr.dev_id);
1792 if (!hdev)
1793 return -ENODEV;
1794
1795 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796 err = -EBUSY;
1797 goto done;
1798 }
1799
1800 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 err = -EOPNOTSUPP;
1802 goto done;
1803 }
1804
1805 if (hdev->dev_type != HCI_BREDR) {
1806 err = -EOPNOTSUPP;
1807 goto done;
1808 }
1809
1810 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811 err = -EOPNOTSUPP;
1812 goto done;
1813 }
1814
1815 switch (cmd) {
1816 case HCISETAUTH:
1817 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818 HCI_INIT_TIMEOUT, NULL);
1819 break;
1820
1821 case HCISETENCRYPT:
1822 if (!lmp_encrypt_capable(hdev)) {
1823 err = -EOPNOTSUPP;
1824 break;
1825 }
1826
1827 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828 /* Auth must be enabled first */
1829 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830 HCI_INIT_TIMEOUT, NULL);
1831 if (err)
1832 break;
1833 }
1834
1835 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836 HCI_INIT_TIMEOUT, NULL);
1837 break;
1838
1839 case HCISETSCAN:
1840 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841 HCI_INIT_TIMEOUT, NULL);
1842
1843 /* Ensure that the connectable and discoverable states
1844 * get correctly modified as this was a non-mgmt change.
1845 */
1846 if (!err)
1847 hci_update_scan_state(hdev, dr.dev_opt);
1848 break;
1849
1850 case HCISETLINKPOL:
1851 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852 HCI_INIT_TIMEOUT, NULL);
1853 break;
1854
1855 case HCISETLINKMODE:
1856 hdev->link_mode = ((__u16) dr.dev_opt) &
1857 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1858 break;
1859
1860 case HCISETPTYPE:
1861 hdev->pkt_type = (__u16) dr.dev_opt;
1862 break;
1863
1864 case HCISETACLMTU:
1865 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1866 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867 break;
1868
1869 case HCISETSCOMTU:
1870 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1871 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872 break;
1873
1874 default:
1875 err = -EINVAL;
1876 break;
1877 }
1878
1879 done:
1880 hci_dev_put(hdev);
1881 return err;
1882 }
1883
1884 int hci_get_dev_list(void __user *arg)
1885 {
1886 struct hci_dev *hdev;
1887 struct hci_dev_list_req *dl;
1888 struct hci_dev_req *dr;
1889 int n = 0, size, err;
1890 __u16 dev_num;
1891
1892 if (get_user(dev_num, (__u16 __user *) arg))
1893 return -EFAULT;
1894
1895 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896 return -EINVAL;
1897
1898 size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900 dl = kzalloc(size, GFP_KERNEL);
1901 if (!dl)
1902 return -ENOMEM;
1903
1904 dr = dl->dev_req;
1905
1906 read_lock(&hci_dev_list_lock);
1907 list_for_each_entry(hdev, &hci_dev_list, list) {
1908 unsigned long flags = hdev->flags;
1909
1910 /* When the auto-off is configured it means the transport
1911 * is running, but in that case still indicate that the
1912 * device is actually down.
1913 */
1914 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915 flags &= ~BIT(HCI_UP);
1916
1917 (dr + n)->dev_id = hdev->id;
1918 (dr + n)->dev_opt = flags;
1919
1920 if (++n >= dev_num)
1921 break;
1922 }
1923 read_unlock(&hci_dev_list_lock);
1924
1925 dl->dev_num = n;
1926 size = sizeof(*dl) + n * sizeof(*dr);
1927
1928 err = copy_to_user(arg, dl, size);
1929 kfree(dl);
1930
1931 return err ? -EFAULT : 0;
1932 }
1933
1934 int hci_get_dev_info(void __user *arg)
1935 {
1936 struct hci_dev *hdev;
1937 struct hci_dev_info di;
1938 unsigned long flags;
1939 int err = 0;
1940
1941 if (copy_from_user(&di, arg, sizeof(di)))
1942 return -EFAULT;
1943
1944 hdev = hci_dev_get(di.dev_id);
1945 if (!hdev)
1946 return -ENODEV;
1947
1948 /* When the auto-off is configured it means the transport
1949 * is running, but in that case still indicate that the
1950 * device is actually down.
1951 */
1952 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953 flags = hdev->flags & ~BIT(HCI_UP);
1954 else
1955 flags = hdev->flags;
1956
1957 strcpy(di.name, hdev->name);
1958 di.bdaddr = hdev->bdaddr;
1959 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960 di.flags = flags;
1961 di.pkt_type = hdev->pkt_type;
1962 if (lmp_bredr_capable(hdev)) {
1963 di.acl_mtu = hdev->acl_mtu;
1964 di.acl_pkts = hdev->acl_pkts;
1965 di.sco_mtu = hdev->sco_mtu;
1966 di.sco_pkts = hdev->sco_pkts;
1967 } else {
1968 di.acl_mtu = hdev->le_mtu;
1969 di.acl_pkts = hdev->le_pkts;
1970 di.sco_mtu = 0;
1971 di.sco_pkts = 0;
1972 }
1973 di.link_policy = hdev->link_policy;
1974 di.link_mode = hdev->link_mode;
1975
1976 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977 memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979 if (copy_to_user(arg, &di, sizeof(di)))
1980 err = -EFAULT;
1981
1982 hci_dev_put(hdev);
1983
1984 return err;
1985 }
1986
1987 /* ---- Interface to HCI drivers ---- */
1988
1989 static int hci_rfkill_set_block(void *data, bool blocked)
1990 {
1991 struct hci_dev *hdev = data;
1992
1993 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996 return -EBUSY;
1997
1998 if (blocked) {
1999 hci_dev_set_flag(hdev, HCI_RFKILLED);
2000 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001 !hci_dev_test_flag(hdev, HCI_CONFIG))
2002 hci_dev_do_close(hdev);
2003 } else {
2004 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005 }
2006
2007 return 0;
2008 }
2009
2010 static const struct rfkill_ops hci_rfkill_ops = {
2011 .set_block = hci_rfkill_set_block,
2012 };
2013
2014 static void hci_power_on(struct work_struct *work)
2015 {
2016 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017 int err;
2018
2019 BT_DBG("%s", hdev->name);
2020
2021 if (test_bit(HCI_UP, &hdev->flags) &&
2022 hci_dev_test_flag(hdev, HCI_MGMT) &&
2023 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024 hci_req_sync_lock(hdev);
2025 err = __hci_req_hci_power_on(hdev);
2026 hci_req_sync_unlock(hdev);
2027 mgmt_power_on(hdev, err);
2028 return;
2029 }
2030
2031 err = hci_dev_do_open(hdev);
2032 if (err < 0) {
2033 hci_dev_lock(hdev);
2034 mgmt_set_powered_failed(hdev, err);
2035 hci_dev_unlock(hdev);
2036 return;
2037 }
2038
2039 /* During the HCI setup phase, a few error conditions are
2040 * ignored and they need to be checked now. If they are still
2041 * valid, it is important to turn the device back off.
2042 */
2043 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045 (hdev->dev_type == HCI_BREDR &&
2046 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049 hci_dev_do_close(hdev);
2050 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052 HCI_AUTO_OFF_TIMEOUT);
2053 }
2054
2055 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056 /* For unconfigured devices, set the HCI_RAW flag
2057 * so that userspace can easily identify them.
2058 */
2059 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060 set_bit(HCI_RAW, &hdev->flags);
2061
2062 /* For fully configured devices, this will send
2063 * the Index Added event. For unconfigured devices,
2064 * it will send Unconfigued Index Added event.
2065 *
2066 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067 * and no event will be send.
2068 */
2069 mgmt_index_added(hdev);
2070 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071 /* When the controller is now configured, then it
2072 * is important to clear the HCI_RAW flag.
2073 */
2074 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075 clear_bit(HCI_RAW, &hdev->flags);
2076
2077 /* Powering on the controller with HCI_CONFIG set only
2078 * happens with the transition from unconfigured to
2079 * configured. This will send the Index Added event.
2080 */
2081 mgmt_index_added(hdev);
2082 }
2083 }
2084
2085 static void hci_power_off(struct work_struct *work)
2086 {
2087 struct hci_dev *hdev = container_of(work, struct hci_dev,
2088 power_off.work);
2089
2090 BT_DBG("%s", hdev->name);
2091
2092 hci_dev_do_close(hdev);
2093 }
2094
2095 static void hci_error_reset(struct work_struct *work)
2096 {
2097 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
2099 BT_DBG("%s", hdev->name);
2100
2101 if (hdev->hw_error)
2102 hdev->hw_error(hdev, hdev->hw_error_code);
2103 else
2104 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105 hdev->hw_error_code);
2106
2107 if (hci_dev_do_close(hdev))
2108 return;
2109
2110 hci_dev_do_open(hdev);
2111 }
2112
2113 void hci_uuids_clear(struct hci_dev *hdev)
2114 {
2115 struct bt_uuid *uuid, *tmp;
2116
2117 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118 list_del(&uuid->list);
2119 kfree(uuid);
2120 }
2121 }
2122
2123 void hci_link_keys_clear(struct hci_dev *hdev)
2124 {
2125 struct link_key *key;
2126
2127 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128 list_del_rcu(&key->list);
2129 kfree_rcu(key, rcu);
2130 }
2131 }
2132
2133 void hci_smp_ltks_clear(struct hci_dev *hdev)
2134 {
2135 struct smp_ltk *k;
2136
2137 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138 list_del_rcu(&k->list);
2139 kfree_rcu(k, rcu);
2140 }
2141 }
2142
2143 void hci_smp_irks_clear(struct hci_dev *hdev)
2144 {
2145 struct smp_irk *k;
2146
2147 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148 list_del_rcu(&k->list);
2149 kfree_rcu(k, rcu);
2150 }
2151 }
2152
2153 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154 {
2155 struct link_key *k;
2156
2157 rcu_read_lock();
2158 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160 rcu_read_unlock();
2161 return k;
2162 }
2163 }
2164 rcu_read_unlock();
2165
2166 return NULL;
2167 }
2168
2169 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170 u8 key_type, u8 old_key_type)
2171 {
2172 /* Legacy key */
2173 if (key_type < 0x03)
2174 return true;
2175
2176 /* Debug keys are insecure so don't store them persistently */
2177 if (key_type == HCI_LK_DEBUG_COMBINATION)
2178 return false;
2179
2180 /* Changed combination key and there's no previous one */
2181 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182 return false;
2183
2184 /* Security mode 3 case */
2185 if (!conn)
2186 return true;
2187
2188 /* BR/EDR key derived using SC from an LE link */
2189 if (conn->type == LE_LINK)
2190 return true;
2191
2192 /* Neither local nor remote side had no-bonding as requirement */
2193 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194 return true;
2195
2196 /* Local side had dedicated bonding as requirement */
2197 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198 return true;
2199
2200 /* Remote side had dedicated bonding as requirement */
2201 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202 return true;
2203
2204 /* If none of the above criteria match, then don't store the key
2205 * persistently */
2206 return false;
2207 }
2208
2209 static u8 ltk_role(u8 type)
2210 {
2211 if (type == SMP_LTK)
2212 return HCI_ROLE_MASTER;
2213
2214 return HCI_ROLE_SLAVE;
2215 }
2216
2217 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218 u8 addr_type, u8 role)
2219 {
2220 struct smp_ltk *k;
2221
2222 rcu_read_lock();
2223 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225 continue;
2226
2227 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228 rcu_read_unlock();
2229 return k;
2230 }
2231 }
2232 rcu_read_unlock();
2233
2234 return NULL;
2235 }
2236
2237 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238 {
2239 struct smp_irk *irk;
2240
2241 rcu_read_lock();
2242 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243 if (!bacmp(&irk->rpa, rpa)) {
2244 rcu_read_unlock();
2245 return irk;
2246 }
2247 }
2248
2249 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250 if (smp_irk_matches(hdev, irk->val, rpa)) {
2251 bacpy(&irk->rpa, rpa);
2252 rcu_read_unlock();
2253 return irk;
2254 }
2255 }
2256 rcu_read_unlock();
2257
2258 return NULL;
2259 }
2260
2261 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262 u8 addr_type)
2263 {
2264 struct smp_irk *irk;
2265
2266 /* Identity Address must be public or static random */
2267 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268 return NULL;
2269
2270 rcu_read_lock();
2271 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272 if (addr_type == irk->addr_type &&
2273 bacmp(bdaddr, &irk->bdaddr) == 0) {
2274 rcu_read_unlock();
2275 return irk;
2276 }
2277 }
2278 rcu_read_unlock();
2279
2280 return NULL;
2281 }
2282
2283 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284 bdaddr_t *bdaddr, u8 *val, u8 type,
2285 u8 pin_len, bool *persistent)
2286 {
2287 struct link_key *key, *old_key;
2288 u8 old_key_type;
2289
2290 old_key = hci_find_link_key(hdev, bdaddr);
2291 if (old_key) {
2292 old_key_type = old_key->type;
2293 key = old_key;
2294 } else {
2295 old_key_type = conn ? conn->key_type : 0xff;
2296 key = kzalloc(sizeof(*key), GFP_KERNEL);
2297 if (!key)
2298 return NULL;
2299 list_add_rcu(&key->list, &hdev->link_keys);
2300 }
2301
2302 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304 /* Some buggy controller combinations generate a changed
2305 * combination key for legacy pairing even when there's no
2306 * previous key */
2307 if (type == HCI_LK_CHANGED_COMBINATION &&
2308 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309 type = HCI_LK_COMBINATION;
2310 if (conn)
2311 conn->key_type = type;
2312 }
2313
2314 bacpy(&key->bdaddr, bdaddr);
2315 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316 key->pin_len = pin_len;
2317
2318 if (type == HCI_LK_CHANGED_COMBINATION)
2319 key->type = old_key_type;
2320 else
2321 key->type = type;
2322
2323 if (persistent)
2324 *persistent = hci_persistent_key(hdev, conn, type,
2325 old_key_type);
2326
2327 return key;
2328 }
2329
2330 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331 u8 addr_type, u8 type, u8 authenticated,
2332 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333 {
2334 struct smp_ltk *key, *old_key;
2335 u8 role = ltk_role(type);
2336
2337 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338 if (old_key)
2339 key = old_key;
2340 else {
2341 key = kzalloc(sizeof(*key), GFP_KERNEL);
2342 if (!key)
2343 return NULL;
2344 list_add_rcu(&key->list, &hdev->long_term_keys);
2345 }
2346
2347 bacpy(&key->bdaddr, bdaddr);
2348 key->bdaddr_type = addr_type;
2349 memcpy(key->val, tk, sizeof(key->val));
2350 key->authenticated = authenticated;
2351 key->ediv = ediv;
2352 key->rand = rand;
2353 key->enc_size = enc_size;
2354 key->type = type;
2355
2356 return key;
2357 }
2358
2359 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361 {
2362 struct smp_irk *irk;
2363
2364 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365 if (!irk) {
2366 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367 if (!irk)
2368 return NULL;
2369
2370 bacpy(&irk->bdaddr, bdaddr);
2371 irk->addr_type = addr_type;
2372
2373 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374 }
2375
2376 memcpy(irk->val, val, 16);
2377 bacpy(&irk->rpa, rpa);
2378
2379 return irk;
2380 }
2381
2382 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383 {
2384 struct link_key *key;
2385
2386 key = hci_find_link_key(hdev, bdaddr);
2387 if (!key)
2388 return -ENOENT;
2389
2390 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392 list_del_rcu(&key->list);
2393 kfree_rcu(key, rcu);
2394
2395 return 0;
2396 }
2397
2398 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399 {
2400 struct smp_ltk *k;
2401 int removed = 0;
2402
2403 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405 continue;
2406
2407 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409 list_del_rcu(&k->list);
2410 kfree_rcu(k, rcu);
2411 removed++;
2412 }
2413
2414 return removed ? 0 : -ENOENT;
2415 }
2416
2417 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418 {
2419 struct smp_irk *k;
2420
2421 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423 continue;
2424
2425 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427 list_del_rcu(&k->list);
2428 kfree_rcu(k, rcu);
2429 }
2430 }
2431
2432 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433 {
2434 struct smp_ltk *k;
2435 struct smp_irk *irk;
2436 u8 addr_type;
2437
2438 if (type == BDADDR_BREDR) {
2439 if (hci_find_link_key(hdev, bdaddr))
2440 return true;
2441 return false;
2442 }
2443
2444 /* Convert to HCI addr type which struct smp_ltk uses */
2445 if (type == BDADDR_LE_PUBLIC)
2446 addr_type = ADDR_LE_DEV_PUBLIC;
2447 else
2448 addr_type = ADDR_LE_DEV_RANDOM;
2449
2450 irk = hci_get_irk(hdev, bdaddr, addr_type);
2451 if (irk) {
2452 bdaddr = &irk->bdaddr;
2453 addr_type = irk->addr_type;
2454 }
2455
2456 rcu_read_lock();
2457 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459 rcu_read_unlock();
2460 return true;
2461 }
2462 }
2463 rcu_read_unlock();
2464
2465 return false;
2466 }
2467
2468 /* HCI command timer function */
2469 static void hci_cmd_timeout(struct work_struct *work)
2470 {
2471 struct hci_dev *hdev = container_of(work, struct hci_dev,
2472 cmd_timer.work);
2473
2474 if (hdev->sent_cmd) {
2475 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476 u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479 } else {
2480 BT_ERR("%s command tx timeout", hdev->name);
2481 }
2482
2483 atomic_set(&hdev->cmd_cnt, 1);
2484 queue_work(hdev->workqueue, &hdev->cmd_work);
2485 }
2486
2487 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488 bdaddr_t *bdaddr, u8 bdaddr_type)
2489 {
2490 struct oob_data *data;
2491
2492 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493 if (bacmp(bdaddr, &data->bdaddr) != 0)
2494 continue;
2495 if (data->bdaddr_type != bdaddr_type)
2496 continue;
2497 return data;
2498 }
2499
2500 return NULL;
2501 }
2502
2503 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504 u8 bdaddr_type)
2505 {
2506 struct oob_data *data;
2507
2508 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509 if (!data)
2510 return -ENOENT;
2511
2512 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514 list_del(&data->list);
2515 kfree(data);
2516
2517 return 0;
2518 }
2519
2520 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521 {
2522 struct oob_data *data, *n;
2523
2524 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525 list_del(&data->list);
2526 kfree(data);
2527 }
2528 }
2529
2530 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532 u8 *hash256, u8 *rand256)
2533 {
2534 struct oob_data *data;
2535
2536 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537 if (!data) {
2538 data = kmalloc(sizeof(*data), GFP_KERNEL);
2539 if (!data)
2540 return -ENOMEM;
2541
2542 bacpy(&data->bdaddr, bdaddr);
2543 data->bdaddr_type = bdaddr_type;
2544 list_add(&data->list, &hdev->remote_oob_data);
2545 }
2546
2547 if (hash192 && rand192) {
2548 memcpy(data->hash192, hash192, sizeof(data->hash192));
2549 memcpy(data->rand192, rand192, sizeof(data->rand192));
2550 if (hash256 && rand256)
2551 data->present = 0x03;
2552 } else {
2553 memset(data->hash192, 0, sizeof(data->hash192));
2554 memset(data->rand192, 0, sizeof(data->rand192));
2555 if (hash256 && rand256)
2556 data->present = 0x02;
2557 else
2558 data->present = 0x00;
2559 }
2560
2561 if (hash256 && rand256) {
2562 memcpy(data->hash256, hash256, sizeof(data->hash256));
2563 memcpy(data->rand256, rand256, sizeof(data->rand256));
2564 } else {
2565 memset(data->hash256, 0, sizeof(data->hash256));
2566 memset(data->rand256, 0, sizeof(data->rand256));
2567 if (hash192 && rand192)
2568 data->present = 0x01;
2569 }
2570
2571 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573 return 0;
2574 }
2575
2576 /* This function requires the caller holds hdev->lock */
2577 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578 {
2579 struct adv_info *adv_instance;
2580
2581 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582 if (adv_instance->instance == instance)
2583 return adv_instance;
2584 }
2585
2586 return NULL;
2587 }
2588
2589 /* This function requires the caller holds hdev->lock */
2590 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591 {
2592 struct adv_info *cur_instance;
2593
2594 cur_instance = hci_find_adv_instance(hdev, instance);
2595 if (!cur_instance)
2596 return NULL;
2597
2598 if (cur_instance == list_last_entry(&hdev->adv_instances,
2599 struct adv_info, list))
2600 return list_first_entry(&hdev->adv_instances,
2601 struct adv_info, list);
2602 else
2603 return list_next_entry(cur_instance, list);
2604 }
2605
2606 /* This function requires the caller holds hdev->lock */
2607 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608 {
2609 struct adv_info *adv_instance;
2610
2611 adv_instance = hci_find_adv_instance(hdev, instance);
2612 if (!adv_instance)
2613 return -ENOENT;
2614
2615 BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617 if (hdev->cur_adv_instance == instance) {
2618 if (hdev->adv_instance_timeout) {
2619 cancel_delayed_work(&hdev->adv_instance_expire);
2620 hdev->adv_instance_timeout = 0;
2621 }
2622 hdev->cur_adv_instance = 0x00;
2623 }
2624
2625 list_del(&adv_instance->list);
2626 kfree(adv_instance);
2627
2628 hdev->adv_instance_cnt--;
2629
2630 return 0;
2631 }
2632
2633 /* This function requires the caller holds hdev->lock */
2634 void hci_adv_instances_clear(struct hci_dev *hdev)
2635 {
2636 struct adv_info *adv_instance, *n;
2637
2638 if (hdev->adv_instance_timeout) {
2639 cancel_delayed_work(&hdev->adv_instance_expire);
2640 hdev->adv_instance_timeout = 0;
2641 }
2642
2643 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2644 list_del(&adv_instance->list);
2645 kfree(adv_instance);
2646 }
2647
2648 hdev->adv_instance_cnt = 0;
2649 hdev->cur_adv_instance = 0x00;
2650 }
2651
2652 /* This function requires the caller holds hdev->lock */
2653 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654 u16 adv_data_len, u8 *adv_data,
2655 u16 scan_rsp_len, u8 *scan_rsp_data,
2656 u16 timeout, u16 duration)
2657 {
2658 struct adv_info *adv_instance;
2659
2660 adv_instance = hci_find_adv_instance(hdev, instance);
2661 if (adv_instance) {
2662 memset(adv_instance->adv_data, 0,
2663 sizeof(adv_instance->adv_data));
2664 memset(adv_instance->scan_rsp_data, 0,
2665 sizeof(adv_instance->scan_rsp_data));
2666 } else {
2667 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669 return -EOVERFLOW;
2670
2671 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672 if (!adv_instance)
2673 return -ENOMEM;
2674
2675 adv_instance->pending = true;
2676 adv_instance->instance = instance;
2677 list_add(&adv_instance->list, &hdev->adv_instances);
2678 hdev->adv_instance_cnt++;
2679 }
2680
2681 adv_instance->flags = flags;
2682 adv_instance->adv_data_len = adv_data_len;
2683 adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685 if (adv_data_len)
2686 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688 if (scan_rsp_len)
2689 memcpy(adv_instance->scan_rsp_data,
2690 scan_rsp_data, scan_rsp_len);
2691
2692 adv_instance->timeout = timeout;
2693 adv_instance->remaining_time = timeout;
2694
2695 if (duration == 0)
2696 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697 else
2698 adv_instance->duration = duration;
2699
2700 BT_DBG("%s for %dMR", hdev->name, instance);
2701
2702 return 0;
2703 }
2704
2705 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706 bdaddr_t *bdaddr, u8 type)
2707 {
2708 struct bdaddr_list *b;
2709
2710 list_for_each_entry(b, bdaddr_list, list) {
2711 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712 return b;
2713 }
2714
2715 return NULL;
2716 }
2717
2718 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719 {
2720 struct bdaddr_list *b, *n;
2721
2722 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723 list_del(&b->list);
2724 kfree(b);
2725 }
2726 }
2727
2728 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729 {
2730 struct bdaddr_list *entry;
2731
2732 if (!bacmp(bdaddr, BDADDR_ANY))
2733 return -EBADF;
2734
2735 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736 return -EEXIST;
2737
2738 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739 if (!entry)
2740 return -ENOMEM;
2741
2742 bacpy(&entry->bdaddr, bdaddr);
2743 entry->bdaddr_type = type;
2744
2745 list_add(&entry->list, list);
2746
2747 return 0;
2748 }
2749
2750 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751 {
2752 struct bdaddr_list *entry;
2753
2754 if (!bacmp(bdaddr, BDADDR_ANY)) {
2755 hci_bdaddr_list_clear(list);
2756 return 0;
2757 }
2758
2759 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760 if (!entry)
2761 return -ENOENT;
2762
2763 list_del(&entry->list);
2764 kfree(entry);
2765
2766 return 0;
2767 }
2768
2769 /* This function requires the caller holds hdev->lock */
2770 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771 bdaddr_t *addr, u8 addr_type)
2772 {
2773 struct hci_conn_params *params;
2774
2775 list_for_each_entry(params, &hdev->le_conn_params, list) {
2776 if (bacmp(&params->addr, addr) == 0 &&
2777 params->addr_type == addr_type) {
2778 return params;
2779 }
2780 }
2781
2782 return NULL;
2783 }
2784
2785 /* This function requires the caller holds hdev->lock */
2786 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787 bdaddr_t *addr, u8 addr_type)
2788 {
2789 struct hci_conn_params *param;
2790
2791 list_for_each_entry(param, list, action) {
2792 if (bacmp(&param->addr, addr) == 0 &&
2793 param->addr_type == addr_type)
2794 return param;
2795 }
2796
2797 return NULL;
2798 }
2799
2800 /* This function requires the caller holds hdev->lock */
2801 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802 bdaddr_t *addr, u8 addr_type)
2803 {
2804 struct hci_conn_params *params;
2805
2806 params = hci_conn_params_lookup(hdev, addr, addr_type);
2807 if (params)
2808 return params;
2809
2810 params = kzalloc(sizeof(*params), GFP_KERNEL);
2811 if (!params) {
2812 BT_ERR("Out of memory");
2813 return NULL;
2814 }
2815
2816 bacpy(&params->addr, addr);
2817 params->addr_type = addr_type;
2818
2819 list_add(&params->list, &hdev->le_conn_params);
2820 INIT_LIST_HEAD(&params->action);
2821
2822 params->conn_min_interval = hdev->le_conn_min_interval;
2823 params->conn_max_interval = hdev->le_conn_max_interval;
2824 params->conn_latency = hdev->le_conn_latency;
2825 params->supervision_timeout = hdev->le_supv_timeout;
2826 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830 return params;
2831 }
2832
2833 static void hci_conn_params_free(struct hci_conn_params *params)
2834 {
2835 if (params->conn) {
2836 hci_conn_drop(params->conn);
2837 hci_conn_put(params->conn);
2838 }
2839
2840 list_del(&params->action);
2841 list_del(&params->list);
2842 kfree(params);
2843 }
2844
2845 /* This function requires the caller holds hdev->lock */
2846 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847 {
2848 struct hci_conn_params *params;
2849
2850 params = hci_conn_params_lookup(hdev, addr, addr_type);
2851 if (!params)
2852 return;
2853
2854 hci_conn_params_free(params);
2855
2856 hci_update_background_scan(hdev);
2857
2858 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859 }
2860
2861 /* This function requires the caller holds hdev->lock */
2862 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863 {
2864 struct hci_conn_params *params, *tmp;
2865
2866 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868 continue;
2869
2870 /* If trying to estabilish one time connection to disabled
2871 * device, leave the params, but mark them as just once.
2872 */
2873 if (params->explicit_connect) {
2874 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875 continue;
2876 }
2877
2878 list_del(&params->list);
2879 kfree(params);
2880 }
2881
2882 BT_DBG("All LE disabled connection parameters were removed");
2883 }
2884
2885 /* This function requires the caller holds hdev->lock */
2886 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887 {
2888 struct hci_conn_params *params, *tmp;
2889
2890 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891 hci_conn_params_free(params);
2892
2893 BT_DBG("All LE connection parameters were removed");
2894 }
2895
2896 /* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910 u8 *bdaddr_type)
2911 {
2912 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916 bacpy(bdaddr, &hdev->static_addr);
2917 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2918 } else {
2919 bacpy(bdaddr, &hdev->bdaddr);
2920 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921 }
2922 }
2923
2924 /* Alloc HCI device */
2925 struct hci_dev *hci_alloc_dev(void)
2926 {
2927 struct hci_dev *hdev;
2928
2929 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930 if (!hdev)
2931 return NULL;
2932
2933 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934 hdev->esco_type = (ESCO_HV1);
2935 hdev->link_mode = (HCI_LM_ACCEPT);
2936 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2937 hdev->io_capability = 0x03; /* No Input No Output */
2938 hdev->manufacturer = 0xffff; /* Default to internal use */
2939 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941 hdev->adv_instance_cnt = 0;
2942 hdev->cur_adv_instance = 0x00;
2943 hdev->adv_instance_timeout = 0;
2944
2945 hdev->sniff_max_interval = 800;
2946 hdev->sniff_min_interval = 80;
2947
2948 hdev->le_adv_channel_map = 0x07;
2949 hdev->le_adv_min_interval = 0x0800;
2950 hdev->le_adv_max_interval = 0x0800;
2951 hdev->le_scan_interval = 0x0060;
2952 hdev->le_scan_window = 0x0030;
2953 hdev->le_conn_min_interval = 0x0028;
2954 hdev->le_conn_max_interval = 0x0038;
2955 hdev->le_conn_latency = 0x0000;
2956 hdev->le_supv_timeout = 0x002a;
2957 hdev->le_def_tx_len = 0x001b;
2958 hdev->le_def_tx_time = 0x0148;
2959 hdev->le_max_tx_len = 0x001b;
2960 hdev->le_max_tx_time = 0x0148;
2961 hdev->le_max_rx_len = 0x001b;
2962 hdev->le_max_rx_time = 0x0148;
2963
2964 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968
2969 mutex_init(&hdev->lock);
2970 mutex_init(&hdev->req_lock);
2971
2972 INIT_LIST_HEAD(&hdev->mgmt_pending);
2973 INIT_LIST_HEAD(&hdev->blacklist);
2974 INIT_LIST_HEAD(&hdev->whitelist);
2975 INIT_LIST_HEAD(&hdev->uuids);
2976 INIT_LIST_HEAD(&hdev->link_keys);
2977 INIT_LIST_HEAD(&hdev->long_term_keys);
2978 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979 INIT_LIST_HEAD(&hdev->remote_oob_data);
2980 INIT_LIST_HEAD(&hdev->le_white_list);
2981 INIT_LIST_HEAD(&hdev->le_conn_params);
2982 INIT_LIST_HEAD(&hdev->pend_le_conns);
2983 INIT_LIST_HEAD(&hdev->pend_le_reports);
2984 INIT_LIST_HEAD(&hdev->conn_hash.list);
2985 INIT_LIST_HEAD(&hdev->adv_instances);
2986
2987 INIT_WORK(&hdev->rx_work, hci_rx_work);
2988 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989 INIT_WORK(&hdev->tx_work, hci_tx_work);
2990 INIT_WORK(&hdev->power_on, hci_power_on);
2991 INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
2993 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995 skb_queue_head_init(&hdev->rx_q);
2996 skb_queue_head_init(&hdev->cmd_q);
2997 skb_queue_head_init(&hdev->raw_q);
2998
2999 init_waitqueue_head(&hdev->req_wait_q);
3000
3001 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002
3003 hci_request_setup(hdev);
3004
3005 hci_init_sysfs(hdev);
3006 discovery_init(hdev);
3007
3008 return hdev;
3009 }
3010 EXPORT_SYMBOL(hci_alloc_dev);
3011
3012 /* Free HCI device */
3013 void hci_free_dev(struct hci_dev *hdev)
3014 {
3015 /* will free via device release */
3016 put_device(&hdev->dev);
3017 }
3018 EXPORT_SYMBOL(hci_free_dev);
3019
3020 /* Register HCI device */
3021 int hci_register_dev(struct hci_dev *hdev)
3022 {
3023 int id, error;
3024
3025 if (!hdev->open || !hdev->close || !hdev->send)
3026 return -EINVAL;
3027
3028 /* Do not allow HCI_AMP devices to register at index 0,
3029 * so the index can be used as the AMP controller ID.
3030 */
3031 switch (hdev->dev_type) {
3032 case HCI_BREDR:
3033 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034 break;
3035 case HCI_AMP:
3036 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037 break;
3038 default:
3039 return -EINVAL;
3040 }
3041
3042 if (id < 0)
3043 return id;
3044
3045 sprintf(hdev->name, "hci%d", id);
3046 hdev->id = id;
3047
3048 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051 WQ_MEM_RECLAIM, 1, hdev->name);
3052 if (!hdev->workqueue) {
3053 error = -ENOMEM;
3054 goto err;
3055 }
3056
3057 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058 WQ_MEM_RECLAIM, 1, hdev->name);
3059 if (!hdev->req_workqueue) {
3060 destroy_workqueue(hdev->workqueue);
3061 error = -ENOMEM;
3062 goto err;
3063 }
3064
3065 if (!IS_ERR_OR_NULL(bt_debugfs))
3066 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068 dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070 error = device_add(&hdev->dev);
3071 if (error < 0)
3072 goto err_wqueue;
3073
3074 hci_leds_init(hdev);
3075
3076 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078 hdev);
3079 if (hdev->rfkill) {
3080 if (rfkill_register(hdev->rfkill) < 0) {
3081 rfkill_destroy(hdev->rfkill);
3082 hdev->rfkill = NULL;
3083 }
3084 }
3085
3086 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087 hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089 hci_dev_set_flag(hdev, HCI_SETUP);
3090 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092 if (hdev->dev_type == HCI_BREDR) {
3093 /* Assume BR/EDR support until proven otherwise (such as
3094 * through reading supported features during init.
3095 */
3096 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097 }
3098
3099 write_lock(&hci_dev_list_lock);
3100 list_add(&hdev->list, &hci_dev_list);
3101 write_unlock(&hci_dev_list_lock);
3102
3103 /* Devices that are marked for raw-only usage are unconfigured
3104 * and should not be included in normal operation.
3105 */
3106 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
3109 hci_sock_dev_event(hdev, HCI_DEV_REG);
3110 hci_dev_hold(hdev);
3111
3112 queue_work(hdev->req_workqueue, &hdev->power_on);
3113
3114 return id;
3115
3116 err_wqueue:
3117 destroy_workqueue(hdev->workqueue);
3118 destroy_workqueue(hdev->req_workqueue);
3119 err:
3120 ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122 return error;
3123 }
3124 EXPORT_SYMBOL(hci_register_dev);
3125
3126 /* Unregister HCI device */
3127 void hci_unregister_dev(struct hci_dev *hdev)
3128 {
3129 int id;
3130
3131 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
3133 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135 id = hdev->id;
3136
3137 hci_leds_exit(hdev);
3138
3139 write_lock(&hci_dev_list_lock);
3140 list_del(&hdev->list);
3141 write_unlock(&hci_dev_list_lock);
3142
3143 hci_dev_do_close(hdev);
3144
3145 cancel_work_sync(&hdev->power_on);
3146
3147 if (!test_bit(HCI_INIT, &hdev->flags) &&
3148 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3149 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3150 hci_dev_lock(hdev);
3151 mgmt_index_removed(hdev);
3152 hci_dev_unlock(hdev);
3153 }
3154
3155 /* mgmt_index_removed should take care of emptying the
3156 * pending list */
3157 BUG_ON(!list_empty(&hdev->mgmt_pending));
3158
3159 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3160
3161 if (hdev->rfkill) {
3162 rfkill_unregister(hdev->rfkill);
3163 rfkill_destroy(hdev->rfkill);
3164 }
3165
3166 device_del(&hdev->dev);
3167
3168 debugfs_remove_recursive(hdev->debugfs);
3169
3170 destroy_workqueue(hdev->workqueue);
3171 destroy_workqueue(hdev->req_workqueue);
3172
3173 hci_dev_lock(hdev);
3174 hci_bdaddr_list_clear(&hdev->blacklist);
3175 hci_bdaddr_list_clear(&hdev->whitelist);
3176 hci_uuids_clear(hdev);
3177 hci_link_keys_clear(hdev);
3178 hci_smp_ltks_clear(hdev);
3179 hci_smp_irks_clear(hdev);
3180 hci_remote_oob_data_clear(hdev);
3181 hci_adv_instances_clear(hdev);
3182 hci_bdaddr_list_clear(&hdev->le_white_list);
3183 hci_conn_params_clear_all(hdev);
3184 hci_discovery_filter_clear(hdev);
3185 hci_dev_unlock(hdev);
3186
3187 hci_dev_put(hdev);
3188
3189 ida_simple_remove(&hci_index_ida, id);
3190 }
3191 EXPORT_SYMBOL(hci_unregister_dev);
3192
3193 /* Suspend HCI device */
3194 int hci_suspend_dev(struct hci_dev *hdev)
3195 {
3196 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197 return 0;
3198 }
3199 EXPORT_SYMBOL(hci_suspend_dev);
3200
3201 /* Resume HCI device */
3202 int hci_resume_dev(struct hci_dev *hdev)
3203 {
3204 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205 return 0;
3206 }
3207 EXPORT_SYMBOL(hci_resume_dev);
3208
3209 /* Reset HCI device */
3210 int hci_reset_dev(struct hci_dev *hdev)
3211 {
3212 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213 struct sk_buff *skb;
3214
3215 skb = bt_skb_alloc(3, GFP_ATOMIC);
3216 if (!skb)
3217 return -ENOMEM;
3218
3219 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220 memcpy(skb_put(skb, 3), hw_err, 3);
3221
3222 /* Send Hardware Error to upper stack */
3223 return hci_recv_frame(hdev, skb);
3224 }
3225 EXPORT_SYMBOL(hci_reset_dev);
3226
3227 /* Receive frame from HCI drivers */
3228 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229 {
3230 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231 && !test_bit(HCI_INIT, &hdev->flags))) {
3232 kfree_skb(skb);
3233 return -ENXIO;
3234 }
3235
3236 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3239 kfree_skb(skb);
3240 return -EINVAL;
3241 }
3242
3243 /* Incoming skb */
3244 bt_cb(skb)->incoming = 1;
3245
3246 /* Time stamp */
3247 __net_timestamp(skb);
3248
3249 skb_queue_tail(&hdev->rx_q, skb);
3250 queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252 return 0;
3253 }
3254 EXPORT_SYMBOL(hci_recv_frame);
3255
3256 /* Receive diagnostic message from HCI drivers */
3257 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258 {
3259 /* Mark as diagnostic packet */
3260 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262 /* Time stamp */
3263 __net_timestamp(skb);
3264
3265 skb_queue_tail(&hdev->rx_q, skb);
3266 queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268 return 0;
3269 }
3270 EXPORT_SYMBOL(hci_recv_diag);
3271
3272 /* ---- Interface to upper protocols ---- */
3273
3274 int hci_register_cb(struct hci_cb *cb)
3275 {
3276 BT_DBG("%p name %s", cb, cb->name);
3277
3278 mutex_lock(&hci_cb_list_lock);
3279 list_add_tail(&cb->list, &hci_cb_list);
3280 mutex_unlock(&hci_cb_list_lock);
3281
3282 return 0;
3283 }
3284 EXPORT_SYMBOL(hci_register_cb);
3285
3286 int hci_unregister_cb(struct hci_cb *cb)
3287 {
3288 BT_DBG("%p name %s", cb, cb->name);
3289
3290 mutex_lock(&hci_cb_list_lock);
3291 list_del(&cb->list);
3292 mutex_unlock(&hci_cb_list_lock);
3293
3294 return 0;
3295 }
3296 EXPORT_SYMBOL(hci_unregister_cb);
3297
3298 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3299 {
3300 int err;
3301
3302 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3303 skb->len);
3304
3305 /* Time stamp */
3306 __net_timestamp(skb);
3307
3308 /* Send copy to monitor */
3309 hci_send_to_monitor(hdev, skb);
3310
3311 if (atomic_read(&hdev->promisc)) {
3312 /* Send copy to the sockets */
3313 hci_send_to_sock(hdev, skb);
3314 }
3315
3316 /* Get rid of skb owner, prior to sending to the driver. */
3317 skb_orphan(skb);
3318
3319 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3320 kfree_skb(skb);
3321 return;
3322 }
3323
3324 err = hdev->send(hdev, skb);
3325 if (err < 0) {
3326 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3327 kfree_skb(skb);
3328 }
3329 }
3330
3331 /* Send HCI command */
3332 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3333 const void *param)
3334 {
3335 struct sk_buff *skb;
3336
3337 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3338
3339 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3340 if (!skb) {
3341 BT_ERR("%s no memory for command", hdev->name);
3342 return -ENOMEM;
3343 }
3344
3345 /* Stand-alone HCI commands must be flagged as
3346 * single-command requests.
3347 */
3348 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3349
3350 skb_queue_tail(&hdev->cmd_q, skb);
3351 queue_work(hdev->workqueue, &hdev->cmd_work);
3352
3353 return 0;
3354 }
3355
3356 /* Get data from the previously sent command */
3357 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3358 {
3359 struct hci_command_hdr *hdr;
3360
3361 if (!hdev->sent_cmd)
3362 return NULL;
3363
3364 hdr = (void *) hdev->sent_cmd->data;
3365
3366 if (hdr->opcode != cpu_to_le16(opcode))
3367 return NULL;
3368
3369 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3370
3371 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3372 }
3373
3374 /* Send HCI command and wait for command commplete event */
3375 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3376 const void *param, u32 timeout)
3377 {
3378 struct sk_buff *skb;
3379
3380 if (!test_bit(HCI_UP, &hdev->flags))
3381 return ERR_PTR(-ENETDOWN);
3382
3383 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3384
3385 hci_req_sync_lock(hdev);
3386 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3387 hci_req_sync_unlock(hdev);
3388
3389 return skb;
3390 }
3391 EXPORT_SYMBOL(hci_cmd_sync);
3392
3393 /* Send ACL data */
3394 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3395 {
3396 struct hci_acl_hdr *hdr;
3397 int len = skb->len;
3398
3399 skb_push(skb, HCI_ACL_HDR_SIZE);
3400 skb_reset_transport_header(skb);
3401 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3402 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3403 hdr->dlen = cpu_to_le16(len);
3404 }
3405
3406 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3407 struct sk_buff *skb, __u16 flags)
3408 {
3409 struct hci_conn *conn = chan->conn;
3410 struct hci_dev *hdev = conn->hdev;
3411 struct sk_buff *list;
3412
3413 skb->len = skb_headlen(skb);
3414 skb->data_len = 0;
3415
3416 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3417
3418 switch (hdev->dev_type) {
3419 case HCI_BREDR:
3420 hci_add_acl_hdr(skb, conn->handle, flags);
3421 break;
3422 case HCI_AMP:
3423 hci_add_acl_hdr(skb, chan->handle, flags);
3424 break;
3425 default:
3426 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3427 return;
3428 }
3429
3430 list = skb_shinfo(skb)->frag_list;
3431 if (!list) {
3432 /* Non fragmented */
3433 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3434
3435 skb_queue_tail(queue, skb);
3436 } else {
3437 /* Fragmented */
3438 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3439
3440 skb_shinfo(skb)->frag_list = NULL;
3441
3442 /* Queue all fragments atomically. We need to use spin_lock_bh
3443 * here because of 6LoWPAN links, as there this function is
3444 * called from softirq and using normal spin lock could cause
3445 * deadlocks.
3446 */
3447 spin_lock_bh(&queue->lock);
3448
3449 __skb_queue_tail(queue, skb);
3450
3451 flags &= ~ACL_START;
3452 flags |= ACL_CONT;
3453 do {
3454 skb = list; list = list->next;
3455
3456 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3457 hci_add_acl_hdr(skb, conn->handle, flags);
3458
3459 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3460
3461 __skb_queue_tail(queue, skb);
3462 } while (list);
3463
3464 spin_unlock_bh(&queue->lock);
3465 }
3466 }
3467
3468 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3469 {
3470 struct hci_dev *hdev = chan->conn->hdev;
3471
3472 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3473
3474 hci_queue_acl(chan, &chan->data_q, skb, flags);
3475
3476 queue_work(hdev->workqueue, &hdev->tx_work);
3477 }
3478
3479 /* Send SCO data */
3480 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3481 {
3482 struct hci_dev *hdev = conn->hdev;
3483 struct hci_sco_hdr hdr;
3484
3485 BT_DBG("%s len %d", hdev->name, skb->len);
3486
3487 hdr.handle = cpu_to_le16(conn->handle);
3488 hdr.dlen = skb->len;
3489
3490 skb_push(skb, HCI_SCO_HDR_SIZE);
3491 skb_reset_transport_header(skb);
3492 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3493
3494 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3495
3496 skb_queue_tail(&conn->data_q, skb);
3497 queue_work(hdev->workqueue, &hdev->tx_work);
3498 }
3499
3500 /* ---- HCI TX task (outgoing data) ---- */
3501
3502 /* HCI Connection scheduler */
3503 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3504 int *quote)
3505 {
3506 struct hci_conn_hash *h = &hdev->conn_hash;
3507 struct hci_conn *conn = NULL, *c;
3508 unsigned int num = 0, min = ~0;
3509
3510 /* We don't have to lock device here. Connections are always
3511 * added and removed with TX task disabled. */
3512
3513 rcu_read_lock();
3514
3515 list_for_each_entry_rcu(c, &h->list, list) {
3516 if (c->type != type || skb_queue_empty(&c->data_q))
3517 continue;
3518
3519 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3520 continue;
3521
3522 num++;
3523
3524 if (c->sent < min) {
3525 min = c->sent;
3526 conn = c;
3527 }
3528
3529 if (hci_conn_num(hdev, type) == num)
3530 break;
3531 }
3532
3533 rcu_read_unlock();
3534
3535 if (conn) {
3536 int cnt, q;
3537
3538 switch (conn->type) {
3539 case ACL_LINK:
3540 cnt = hdev->acl_cnt;
3541 break;
3542 case SCO_LINK:
3543 case ESCO_LINK:
3544 cnt = hdev->sco_cnt;
3545 break;
3546 case LE_LINK:
3547 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3548 break;
3549 default:
3550 cnt = 0;
3551 BT_ERR("Unknown link type");
3552 }
3553
3554 q = cnt / num;
3555 *quote = q ? q : 1;
3556 } else
3557 *quote = 0;
3558
3559 BT_DBG("conn %p quote %d", conn, *quote);
3560 return conn;
3561 }
3562
3563 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3564 {
3565 struct hci_conn_hash *h = &hdev->conn_hash;
3566 struct hci_conn *c;
3567
3568 BT_ERR("%s link tx timeout", hdev->name);
3569
3570 rcu_read_lock();
3571
3572 /* Kill stalled connections */
3573 list_for_each_entry_rcu(c, &h->list, list) {
3574 if (c->type == type && c->sent) {
3575 BT_ERR("%s killing stalled connection %pMR",
3576 hdev->name, &c->dst);
3577 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3578 }
3579 }
3580
3581 rcu_read_unlock();
3582 }
3583
3584 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3585 int *quote)
3586 {
3587 struct hci_conn_hash *h = &hdev->conn_hash;
3588 struct hci_chan *chan = NULL;
3589 unsigned int num = 0, min = ~0, cur_prio = 0;
3590 struct hci_conn *conn;
3591 int cnt, q, conn_num = 0;
3592
3593 BT_DBG("%s", hdev->name);
3594
3595 rcu_read_lock();
3596
3597 list_for_each_entry_rcu(conn, &h->list, list) {
3598 struct hci_chan *tmp;
3599
3600 if (conn->type != type)
3601 continue;
3602
3603 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3604 continue;
3605
3606 conn_num++;
3607
3608 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3609 struct sk_buff *skb;
3610
3611 if (skb_queue_empty(&tmp->data_q))
3612 continue;
3613
3614 skb = skb_peek(&tmp->data_q);
3615 if (skb->priority < cur_prio)
3616 continue;
3617
3618 if (skb->priority > cur_prio) {
3619 num = 0;
3620 min = ~0;
3621 cur_prio = skb->priority;
3622 }
3623
3624 num++;
3625
3626 if (conn->sent < min) {
3627 min = conn->sent;
3628 chan = tmp;
3629 }
3630 }
3631
3632 if (hci_conn_num(hdev, type) == conn_num)
3633 break;
3634 }
3635
3636 rcu_read_unlock();
3637
3638 if (!chan)
3639 return NULL;
3640
3641 switch (chan->conn->type) {
3642 case ACL_LINK:
3643 cnt = hdev->acl_cnt;
3644 break;
3645 case AMP_LINK:
3646 cnt = hdev->block_cnt;
3647 break;
3648 case SCO_LINK:
3649 case ESCO_LINK:
3650 cnt = hdev->sco_cnt;
3651 break;
3652 case LE_LINK:
3653 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3654 break;
3655 default:
3656 cnt = 0;
3657 BT_ERR("Unknown link type");
3658 }
3659
3660 q = cnt / num;
3661 *quote = q ? q : 1;
3662 BT_DBG("chan %p quote %d", chan, *quote);
3663 return chan;
3664 }
3665
3666 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3667 {
3668 struct hci_conn_hash *h = &hdev->conn_hash;
3669 struct hci_conn *conn;
3670 int num = 0;
3671
3672 BT_DBG("%s", hdev->name);
3673
3674 rcu_read_lock();
3675
3676 list_for_each_entry_rcu(conn, &h->list, list) {
3677 struct hci_chan *chan;
3678
3679 if (conn->type != type)
3680 continue;
3681
3682 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3683 continue;
3684
3685 num++;
3686
3687 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3688 struct sk_buff *skb;
3689
3690 if (chan->sent) {
3691 chan->sent = 0;
3692 continue;
3693 }
3694
3695 if (skb_queue_empty(&chan->data_q))
3696 continue;
3697
3698 skb = skb_peek(&chan->data_q);
3699 if (skb->priority >= HCI_PRIO_MAX - 1)
3700 continue;
3701
3702 skb->priority = HCI_PRIO_MAX - 1;
3703
3704 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3705 skb->priority);
3706 }
3707
3708 if (hci_conn_num(hdev, type) == num)
3709 break;
3710 }
3711
3712 rcu_read_unlock();
3713
3714 }
3715
3716 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3717 {
3718 /* Calculate count of blocks used by this packet */
3719 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3720 }
3721
3722 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3723 {
3724 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3725 /* ACL tx timeout must be longer than maximum
3726 * link supervision timeout (40.9 seconds) */
3727 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3728 HCI_ACL_TX_TIMEOUT))
3729 hci_link_tx_to(hdev, ACL_LINK);
3730 }
3731 }
3732
3733 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3734 {
3735 unsigned int cnt = hdev->acl_cnt;
3736 struct hci_chan *chan;
3737 struct sk_buff *skb;
3738 int quote;
3739
3740 __check_timeout(hdev, cnt);
3741
3742 while (hdev->acl_cnt &&
3743 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3744 u32 priority = (skb_peek(&chan->data_q))->priority;
3745 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3746 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3747 skb->len, skb->priority);
3748
3749 /* Stop if priority has changed */
3750 if (skb->priority < priority)
3751 break;
3752
3753 skb = skb_dequeue(&chan->data_q);
3754
3755 hci_conn_enter_active_mode(chan->conn,
3756 bt_cb(skb)->force_active);
3757
3758 hci_send_frame(hdev, skb);
3759 hdev->acl_last_tx = jiffies;
3760
3761 hdev->acl_cnt--;
3762 chan->sent++;
3763 chan->conn->sent++;
3764 }
3765 }
3766
3767 if (cnt != hdev->acl_cnt)
3768 hci_prio_recalculate(hdev, ACL_LINK);
3769 }
3770
3771 static void hci_sched_acl_blk(struct hci_dev *hdev)
3772 {
3773 unsigned int cnt = hdev->block_cnt;
3774 struct hci_chan *chan;
3775 struct sk_buff *skb;
3776 int quote;
3777 u8 type;
3778
3779 __check_timeout(hdev, cnt);
3780
3781 BT_DBG("%s", hdev->name);
3782
3783 if (hdev->dev_type == HCI_AMP)
3784 type = AMP_LINK;
3785 else
3786 type = ACL_LINK;
3787
3788 while (hdev->block_cnt > 0 &&
3789 (chan = hci_chan_sent(hdev, type, &quote))) {
3790 u32 priority = (skb_peek(&chan->data_q))->priority;
3791 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3792 int blocks;
3793
3794 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3795 skb->len, skb->priority);
3796
3797 /* Stop if priority has changed */
3798 if (skb->priority < priority)
3799 break;
3800
3801 skb = skb_dequeue(&chan->data_q);
3802
3803 blocks = __get_blocks(hdev, skb);
3804 if (blocks > hdev->block_cnt)
3805 return;
3806
3807 hci_conn_enter_active_mode(chan->conn,
3808 bt_cb(skb)->force_active);
3809
3810 hci_send_frame(hdev, skb);
3811 hdev->acl_last_tx = jiffies;
3812
3813 hdev->block_cnt -= blocks;
3814 quote -= blocks;
3815
3816 chan->sent += blocks;
3817 chan->conn->sent += blocks;
3818 }
3819 }
3820
3821 if (cnt != hdev->block_cnt)
3822 hci_prio_recalculate(hdev, type);
3823 }
3824
3825 static void hci_sched_acl(struct hci_dev *hdev)
3826 {
3827 BT_DBG("%s", hdev->name);
3828
3829 /* No ACL link over BR/EDR controller */
3830 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3831 return;
3832
3833 /* No AMP link over AMP controller */
3834 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3835 return;
3836
3837 switch (hdev->flow_ctl_mode) {
3838 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3839 hci_sched_acl_pkt(hdev);
3840 break;
3841
3842 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3843 hci_sched_acl_blk(hdev);
3844 break;
3845 }
3846 }
3847
3848 /* Schedule SCO */
3849 static void hci_sched_sco(struct hci_dev *hdev)
3850 {
3851 struct hci_conn *conn;
3852 struct sk_buff *skb;
3853 int quote;
3854
3855 BT_DBG("%s", hdev->name);
3856
3857 if (!hci_conn_num(hdev, SCO_LINK))
3858 return;
3859
3860 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3861 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3862 BT_DBG("skb %p len %d", skb, skb->len);
3863 hci_send_frame(hdev, skb);
3864
3865 conn->sent++;
3866 if (conn->sent == ~0)
3867 conn->sent = 0;
3868 }
3869 }
3870 }
3871
3872 static void hci_sched_esco(struct hci_dev *hdev)
3873 {
3874 struct hci_conn *conn;
3875 struct sk_buff *skb;
3876 int quote;
3877
3878 BT_DBG("%s", hdev->name);
3879
3880 if (!hci_conn_num(hdev, ESCO_LINK))
3881 return;
3882
3883 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3884 &quote))) {
3885 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3886 BT_DBG("skb %p len %d", skb, skb->len);
3887 hci_send_frame(hdev, skb);
3888
3889 conn->sent++;
3890 if (conn->sent == ~0)
3891 conn->sent = 0;
3892 }
3893 }
3894 }
3895
3896 static void hci_sched_le(struct hci_dev *hdev)
3897 {
3898 struct hci_chan *chan;
3899 struct sk_buff *skb;
3900 int quote, cnt, tmp;
3901
3902 BT_DBG("%s", hdev->name);
3903
3904 if (!hci_conn_num(hdev, LE_LINK))
3905 return;
3906
3907 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3908 /* LE tx timeout must be longer than maximum
3909 * link supervision timeout (40.9 seconds) */
3910 if (!hdev->le_cnt && hdev->le_pkts &&
3911 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3912 hci_link_tx_to(hdev, LE_LINK);
3913 }
3914
3915 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3916 tmp = cnt;
3917 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3918 u32 priority = (skb_peek(&chan->data_q))->priority;
3919 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3920 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3921 skb->len, skb->priority);
3922
3923 /* Stop if priority has changed */
3924 if (skb->priority < priority)
3925 break;
3926
3927 skb = skb_dequeue(&chan->data_q);
3928
3929 hci_send_frame(hdev, skb);
3930 hdev->le_last_tx = jiffies;
3931
3932 cnt--;
3933 chan->sent++;
3934 chan->conn->sent++;
3935 }
3936 }
3937
3938 if (hdev->le_pkts)
3939 hdev->le_cnt = cnt;
3940 else
3941 hdev->acl_cnt = cnt;
3942
3943 if (cnt != tmp)
3944 hci_prio_recalculate(hdev, LE_LINK);
3945 }
3946
3947 static void hci_tx_work(struct work_struct *work)
3948 {
3949 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3950 struct sk_buff *skb;
3951
3952 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3953 hdev->sco_cnt, hdev->le_cnt);
3954
3955 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3956 /* Schedule queues and send stuff to HCI driver */
3957 hci_sched_acl(hdev);
3958 hci_sched_sco(hdev);
3959 hci_sched_esco(hdev);
3960 hci_sched_le(hdev);
3961 }
3962
3963 /* Send next queued raw (unknown type) packet */
3964 while ((skb = skb_dequeue(&hdev->raw_q)))
3965 hci_send_frame(hdev, skb);
3966 }
3967
3968 /* ----- HCI RX task (incoming data processing) ----- */
3969
3970 /* ACL data packet */
3971 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3972 {
3973 struct hci_acl_hdr *hdr = (void *) skb->data;
3974 struct hci_conn *conn;
3975 __u16 handle, flags;
3976
3977 skb_pull(skb, HCI_ACL_HDR_SIZE);
3978
3979 handle = __le16_to_cpu(hdr->handle);
3980 flags = hci_flags(handle);
3981 handle = hci_handle(handle);
3982
3983 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3984 handle, flags);
3985
3986 hdev->stat.acl_rx++;
3987
3988 hci_dev_lock(hdev);
3989 conn = hci_conn_hash_lookup_handle(hdev, handle);
3990 hci_dev_unlock(hdev);
3991
3992 if (conn) {
3993 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3994
3995 /* Send to upper protocol */
3996 l2cap_recv_acldata(conn, skb, flags);
3997 return;
3998 } else {
3999 BT_ERR("%s ACL packet for unknown connection handle %d",
4000 hdev->name, handle);
4001 }
4002
4003 kfree_skb(skb);
4004 }
4005
4006 /* SCO data packet */
4007 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4008 {
4009 struct hci_sco_hdr *hdr = (void *) skb->data;
4010 struct hci_conn *conn;
4011 __u16 handle;
4012
4013 skb_pull(skb, HCI_SCO_HDR_SIZE);
4014
4015 handle = __le16_to_cpu(hdr->handle);
4016
4017 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4018
4019 hdev->stat.sco_rx++;
4020
4021 hci_dev_lock(hdev);
4022 conn = hci_conn_hash_lookup_handle(hdev, handle);
4023 hci_dev_unlock(hdev);
4024
4025 if (conn) {
4026 /* Send to upper protocol */
4027 sco_recv_scodata(conn, skb);
4028 return;
4029 } else {
4030 BT_ERR("%s SCO packet for unknown connection handle %d",
4031 hdev->name, handle);
4032 }
4033
4034 kfree_skb(skb);
4035 }
4036
4037 static bool hci_req_is_complete(struct hci_dev *hdev)
4038 {
4039 struct sk_buff *skb;
4040
4041 skb = skb_peek(&hdev->cmd_q);
4042 if (!skb)
4043 return true;
4044
4045 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4046 }
4047
4048 static void hci_resend_last(struct hci_dev *hdev)
4049 {
4050 struct hci_command_hdr *sent;
4051 struct sk_buff *skb;
4052 u16 opcode;
4053
4054 if (!hdev->sent_cmd)
4055 return;
4056
4057 sent = (void *) hdev->sent_cmd->data;
4058 opcode = __le16_to_cpu(sent->opcode);
4059 if (opcode == HCI_OP_RESET)
4060 return;
4061
4062 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4063 if (!skb)
4064 return;
4065
4066 skb_queue_head(&hdev->cmd_q, skb);
4067 queue_work(hdev->workqueue, &hdev->cmd_work);
4068 }
4069
4070 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4071 hci_req_complete_t *req_complete,
4072 hci_req_complete_skb_t *req_complete_skb)
4073 {
4074 struct sk_buff *skb;
4075 unsigned long flags;
4076
4077 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4078
4079 /* If the completed command doesn't match the last one that was
4080 * sent we need to do special handling of it.
4081 */
4082 if (!hci_sent_cmd_data(hdev, opcode)) {
4083 /* Some CSR based controllers generate a spontaneous
4084 * reset complete event during init and any pending
4085 * command will never be completed. In such a case we
4086 * need to resend whatever was the last sent
4087 * command.
4088 */
4089 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4090 hci_resend_last(hdev);
4091
4092 return;
4093 }
4094
4095 /* If the command succeeded and there's still more commands in
4096 * this request the request is not yet complete.
4097 */
4098 if (!status && !hci_req_is_complete(hdev))
4099 return;
4100
4101 /* If this was the last command in a request the complete
4102 * callback would be found in hdev->sent_cmd instead of the
4103 * command queue (hdev->cmd_q).
4104 */
4105 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4106 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4107 return;
4108 }
4109
4110 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4111 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4112 return;
4113 }
4114
4115 /* Remove all pending commands belonging to this request */
4116 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4117 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4118 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4119 __skb_queue_head(&hdev->cmd_q, skb);
4120 break;
4121 }
4122
4123 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4124 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4125 else
4126 *req_complete = bt_cb(skb)->hci.req_complete;
4127 kfree_skb(skb);
4128 }
4129 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4130 }
4131
4132 static void hci_rx_work(struct work_struct *work)
4133 {
4134 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4135 struct sk_buff *skb;
4136
4137 BT_DBG("%s", hdev->name);
4138
4139 while ((skb = skb_dequeue(&hdev->rx_q))) {
4140 /* Send copy to monitor */
4141 hci_send_to_monitor(hdev, skb);
4142
4143 if (atomic_read(&hdev->promisc)) {
4144 /* Send copy to the sockets */
4145 hci_send_to_sock(hdev, skb);
4146 }
4147
4148 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4149 kfree_skb(skb);
4150 continue;
4151 }
4152
4153 if (test_bit(HCI_INIT, &hdev->flags)) {
4154 /* Don't process data packets in this states. */
4155 switch (hci_skb_pkt_type(skb)) {
4156 case HCI_ACLDATA_PKT:
4157 case HCI_SCODATA_PKT:
4158 kfree_skb(skb);
4159 continue;
4160 }
4161 }
4162
4163 /* Process frame */
4164 switch (hci_skb_pkt_type(skb)) {
4165 case HCI_EVENT_PKT:
4166 BT_DBG("%s Event packet", hdev->name);
4167 hci_event_packet(hdev, skb);
4168 break;
4169
4170 case HCI_ACLDATA_PKT:
4171 BT_DBG("%s ACL data packet", hdev->name);
4172 hci_acldata_packet(hdev, skb);
4173 break;
4174
4175 case HCI_SCODATA_PKT:
4176 BT_DBG("%s SCO data packet", hdev->name);
4177 hci_scodata_packet(hdev, skb);
4178 break;
4179
4180 default:
4181 kfree_skb(skb);
4182 break;
4183 }
4184 }
4185 }
4186
4187 static void hci_cmd_work(struct work_struct *work)
4188 {
4189 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4190 struct sk_buff *skb;
4191
4192 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4193 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4194
4195 /* Send queued commands */
4196 if (atomic_read(&hdev->cmd_cnt)) {
4197 skb = skb_dequeue(&hdev->cmd_q);
4198 if (!skb)
4199 return;
4200
4201 kfree_skb(hdev->sent_cmd);
4202
4203 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4204 if (hdev->sent_cmd) {
4205 atomic_dec(&hdev->cmd_cnt);
4206 hci_send_frame(hdev, skb);
4207 if (test_bit(HCI_RESET, &hdev->flags))
4208 cancel_delayed_work(&hdev->cmd_timer);
4209 else
4210 schedule_delayed_work(&hdev->cmd_timer,
4211 HCI_CMD_TIMEOUT);
4212 } else {
4213 skb_queue_head(&hdev->cmd_q, skb);
4214 queue_work(hdev->workqueue, &hdev->cmd_work);
4215 }
4216 }
4217 }
This page took 0.186413 seconds and 4 git commands to generate.