net: provide generic busy polling to all NAPI drivers
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141
142 #include "net-sysfs.h"
143
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149
150 static DEFINE_SPINLOCK(ptype_lock);
151 static DEFINE_SPINLOCK(offload_lock);
152 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
153 struct list_head ptype_all __read_mostly; /* Taps */
154 static struct list_head offload_base __read_mostly;
155
156 static int netif_rx_internal(struct sk_buff *skb);
157 static int call_netdevice_notifiers_info(unsigned long val,
158 struct net_device *dev,
159 struct netdev_notifier_info *info);
160
161 /*
162 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
163 * semaphore.
164 *
165 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
166 *
167 * Writers must hold the rtnl semaphore while they loop through the
168 * dev_base_head list, and hold dev_base_lock for writing when they do the
169 * actual updates. This allows pure readers to access the list even
170 * while a writer is preparing to update it.
171 *
172 * To put it another way, dev_base_lock is held for writing only to
173 * protect against pure readers; the rtnl semaphore provides the
174 * protection against other writers.
175 *
176 * See, for example usages, register_netdevice() and
177 * unregister_netdevice(), which must be called with the rtnl
178 * semaphore held.
179 */
180 DEFINE_RWLOCK(dev_base_lock);
181 EXPORT_SYMBOL(dev_base_lock);
182
183 /* protects napi_hash addition/deletion and napi_gen_id */
184 static DEFINE_SPINLOCK(napi_hash_lock);
185
186 static unsigned int napi_gen_id = NR_CPUS;
187 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
188
189 static seqcount_t devnet_rename_seq;
190
191 static inline void dev_base_seq_inc(struct net *net)
192 {
193 while (++net->dev_base_seq == 0);
194 }
195
196 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197 {
198 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199
200 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
201 }
202
203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
204 {
205 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
206 }
207
208 static inline void rps_lock(struct softnet_data *sd)
209 {
210 #ifdef CONFIG_RPS
211 spin_lock(&sd->input_pkt_queue.lock);
212 #endif
213 }
214
215 static inline void rps_unlock(struct softnet_data *sd)
216 {
217 #ifdef CONFIG_RPS
218 spin_unlock(&sd->input_pkt_queue.lock);
219 #endif
220 }
221
222 /* Device list insertion */
223 static void list_netdevice(struct net_device *dev)
224 {
225 struct net *net = dev_net(dev);
226
227 ASSERT_RTNL();
228
229 write_lock_bh(&dev_base_lock);
230 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
231 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
232 hlist_add_head_rcu(&dev->index_hlist,
233 dev_index_hash(net, dev->ifindex));
234 write_unlock_bh(&dev_base_lock);
235
236 dev_base_seq_inc(net);
237 }
238
239 /* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252
253 dev_base_seq_inc(dev_net(dev));
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
289 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
290 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
306 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
307 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
308
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331 }
332
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351
352 /*******************************************************************************
353
354 Protocol management and registration routines
355
356 *******************************************************************************/
357
358 /*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374 static inline struct list_head *ptype_head(const struct packet_type *pt)
375 {
376 if (pt->type == htons(ETH_P_ALL))
377 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
378 else
379 return pt->dev ? &pt->dev->ptype_specific :
380 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 pr_warn("dev_remove_pack: %p not found\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459
460 /**
461 * dev_add_offload - register offload handlers
462 * @po: protocol offload declaration
463 *
464 * Add protocol offload handlers to the networking stack. The passed
465 * &proto_offload is linked into kernel lists and may not be freed until
466 * it has been removed from the kernel lists.
467 *
468 * This call does not sleep therefore it can not
469 * guarantee all CPU's that are in middle of receiving packets
470 * will see the new offload handlers (until the next received packet).
471 */
472 void dev_add_offload(struct packet_offload *po)
473 {
474 struct packet_offload *elem;
475
476 spin_lock(&offload_lock);
477 list_for_each_entry(elem, &offload_base, list) {
478 if (po->priority < elem->priority)
479 break;
480 }
481 list_add_rcu(&po->list, elem->list.prev);
482 spin_unlock(&offload_lock);
483 }
484 EXPORT_SYMBOL(dev_add_offload);
485
486 /**
487 * __dev_remove_offload - remove offload handler
488 * @po: packet offload declaration
489 *
490 * Remove a protocol offload handler that was previously added to the
491 * kernel offload handlers by dev_add_offload(). The passed &offload_type
492 * is removed from the kernel lists and can be freed or reused once this
493 * function returns.
494 *
495 * The packet type might still be in use by receivers
496 * and must not be freed until after all the CPU's have gone
497 * through a quiescent state.
498 */
499 static void __dev_remove_offload(struct packet_offload *po)
500 {
501 struct list_head *head = &offload_base;
502 struct packet_offload *po1;
503
504 spin_lock(&offload_lock);
505
506 list_for_each_entry(po1, head, list) {
507 if (po == po1) {
508 list_del_rcu(&po->list);
509 goto out;
510 }
511 }
512
513 pr_warn("dev_remove_offload: %p not found\n", po);
514 out:
515 spin_unlock(&offload_lock);
516 }
517
518 /**
519 * dev_remove_offload - remove packet offload handler
520 * @po: packet offload declaration
521 *
522 * Remove a packet offload handler that was previously added to the kernel
523 * offload handlers by dev_add_offload(). The passed &offload_type is
524 * removed from the kernel lists and can be freed or reused once this
525 * function returns.
526 *
527 * This call sleeps to guarantee that no CPU is looking at the packet
528 * type after return.
529 */
530 void dev_remove_offload(struct packet_offload *po)
531 {
532 __dev_remove_offload(po);
533
534 synchronize_net();
535 }
536 EXPORT_SYMBOL(dev_remove_offload);
537
538 /******************************************************************************
539
540 Device Boot-time Settings Routines
541
542 *******************************************************************************/
543
544 /* Boot time configuration table */
545 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
546
547 /**
548 * netdev_boot_setup_add - add new setup entry
549 * @name: name of the device
550 * @map: configured settings for the device
551 *
552 * Adds new setup entry to the dev_boot_setup list. The function
553 * returns 0 on error and 1 on success. This is a generic routine to
554 * all netdevices.
555 */
556 static int netdev_boot_setup_add(char *name, struct ifmap *map)
557 {
558 struct netdev_boot_setup *s;
559 int i;
560
561 s = dev_boot_setup;
562 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
563 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
564 memset(s[i].name, 0, sizeof(s[i].name));
565 strlcpy(s[i].name, name, IFNAMSIZ);
566 memcpy(&s[i].map, map, sizeof(s[i].map));
567 break;
568 }
569 }
570
571 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
572 }
573
574 /**
575 * netdev_boot_setup_check - check boot time settings
576 * @dev: the netdevice
577 *
578 * Check boot time settings for the device.
579 * The found settings are set for the device to be used
580 * later in the device probing.
581 * Returns 0 if no settings found, 1 if they are.
582 */
583 int netdev_boot_setup_check(struct net_device *dev)
584 {
585 struct netdev_boot_setup *s = dev_boot_setup;
586 int i;
587
588 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
589 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
590 !strcmp(dev->name, s[i].name)) {
591 dev->irq = s[i].map.irq;
592 dev->base_addr = s[i].map.base_addr;
593 dev->mem_start = s[i].map.mem_start;
594 dev->mem_end = s[i].map.mem_end;
595 return 1;
596 }
597 }
598 return 0;
599 }
600 EXPORT_SYMBOL(netdev_boot_setup_check);
601
602
603 /**
604 * netdev_boot_base - get address from boot time settings
605 * @prefix: prefix for network device
606 * @unit: id for network device
607 *
608 * Check boot time settings for the base address of device.
609 * The found settings are set for the device to be used
610 * later in the device probing.
611 * Returns 0 if no settings found.
612 */
613 unsigned long netdev_boot_base(const char *prefix, int unit)
614 {
615 const struct netdev_boot_setup *s = dev_boot_setup;
616 char name[IFNAMSIZ];
617 int i;
618
619 sprintf(name, "%s%d", prefix, unit);
620
621 /*
622 * If device already registered then return base of 1
623 * to indicate not to probe for this interface
624 */
625 if (__dev_get_by_name(&init_net, name))
626 return 1;
627
628 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
629 if (!strcmp(name, s[i].name))
630 return s[i].map.base_addr;
631 return 0;
632 }
633
634 /*
635 * Saves at boot time configured settings for any netdevice.
636 */
637 int __init netdev_boot_setup(char *str)
638 {
639 int ints[5];
640 struct ifmap map;
641
642 str = get_options(str, ARRAY_SIZE(ints), ints);
643 if (!str || !*str)
644 return 0;
645
646 /* Save settings */
647 memset(&map, 0, sizeof(map));
648 if (ints[0] > 0)
649 map.irq = ints[1];
650 if (ints[0] > 1)
651 map.base_addr = ints[2];
652 if (ints[0] > 2)
653 map.mem_start = ints[3];
654 if (ints[0] > 3)
655 map.mem_end = ints[4];
656
657 /* Add new entry to the list */
658 return netdev_boot_setup_add(str, &map);
659 }
660
661 __setup("netdev=", netdev_boot_setup);
662
663 /*******************************************************************************
664
665 Device Interface Subroutines
666
667 *******************************************************************************/
668
669 /**
670 * dev_get_iflink - get 'iflink' value of a interface
671 * @dev: targeted interface
672 *
673 * Indicates the ifindex the interface is linked to.
674 * Physical interfaces have the same 'ifindex' and 'iflink' values.
675 */
676
677 int dev_get_iflink(const struct net_device *dev)
678 {
679 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
680 return dev->netdev_ops->ndo_get_iflink(dev);
681
682 return dev->ifindex;
683 }
684 EXPORT_SYMBOL(dev_get_iflink);
685
686 /**
687 * dev_fill_metadata_dst - Retrieve tunnel egress information.
688 * @dev: targeted interface
689 * @skb: The packet.
690 *
691 * For better visibility of tunnel traffic OVS needs to retrieve
692 * egress tunnel information for a packet. Following API allows
693 * user to get this info.
694 */
695 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
696 {
697 struct ip_tunnel_info *info;
698
699 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
700 return -EINVAL;
701
702 info = skb_tunnel_info_unclone(skb);
703 if (!info)
704 return -ENOMEM;
705 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
706 return -EINVAL;
707
708 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
709 }
710 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
711
712 /**
713 * __dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. Must be called under RTNL semaphore
718 * or @dev_base_lock. If the name is found a pointer to the device
719 * is returned. If the name is not found then %NULL is returned. The
720 * reference counters are not incremented so the caller must be
721 * careful with locks.
722 */
723
724 struct net_device *__dev_get_by_name(struct net *net, const char *name)
725 {
726 struct net_device *dev;
727 struct hlist_head *head = dev_name_hash(net, name);
728
729 hlist_for_each_entry(dev, head, name_hlist)
730 if (!strncmp(dev->name, name, IFNAMSIZ))
731 return dev;
732
733 return NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736
737 /**
738 * dev_get_by_name_rcu - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name.
743 * If the name is found a pointer to the device is returned.
744 * If the name is not found then %NULL is returned.
745 * The reference counters are not incremented so the caller must be
746 * careful with locks. The caller must hold RCU lock.
747 */
748
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 struct net_device *dev;
752 struct hlist_head *head = dev_name_hash(net, name);
753
754 hlist_for_each_entry_rcu(dev, head, name_hlist)
755 if (!strncmp(dev->name, name, IFNAMSIZ))
756 return dev;
757
758 return NULL;
759 }
760 EXPORT_SYMBOL(dev_get_by_name_rcu);
761
762 /**
763 * dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
766 *
767 * Find an interface by name. This can be called from any
768 * context and does its own locking. The returned handle has
769 * the usage count incremented and the caller must use dev_put() to
770 * release it when it is no longer needed. %NULL is returned if no
771 * matching device is found.
772 */
773
774 struct net_device *dev_get_by_name(struct net *net, const char *name)
775 {
776 struct net_device *dev;
777
778 rcu_read_lock();
779 dev = dev_get_by_name_rcu(net, name);
780 if (dev)
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 if (dev)
855 dev_hold(dev);
856 rcu_read_unlock();
857 return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860
861 /**
862 * netdev_get_name - get a netdevice name, knowing its ifindex.
863 * @net: network namespace
864 * @name: a pointer to the buffer where the name will be stored.
865 * @ifindex: the ifindex of the interface to get the name from.
866 *
867 * The use of raw_seqcount_begin() and cond_resched() before
868 * retrying is required as we want to give the writers a chance
869 * to complete when CONFIG_PREEMPT is not set.
870 */
871 int netdev_get_name(struct net *net, char *name, int ifindex)
872 {
873 struct net_device *dev;
874 unsigned int seq;
875
876 retry:
877 seq = raw_seqcount_begin(&devnet_rename_seq);
878 rcu_read_lock();
879 dev = dev_get_by_index_rcu(net, ifindex);
880 if (!dev) {
881 rcu_read_unlock();
882 return -ENODEV;
883 }
884
885 strcpy(name, dev->name);
886 rcu_read_unlock();
887 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
888 cond_resched();
889 goto retry;
890 }
891
892 return 0;
893 }
894
895 /**
896 * dev_getbyhwaddr_rcu - find a device by its hardware address
897 * @net: the applicable net namespace
898 * @type: media type of device
899 * @ha: hardware address
900 *
901 * Search for an interface by MAC address. Returns NULL if the device
902 * is not found or a pointer to the device.
903 * The caller must hold RCU or RTNL.
904 * The returned device has not had its ref count increased
905 * and the caller must therefore be careful about locking
906 *
907 */
908
909 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
910 const char *ha)
911 {
912 struct net_device *dev;
913
914 for_each_netdev_rcu(net, dev)
915 if (dev->type == type &&
916 !memcmp(dev->dev_addr, ha, dev->addr_len))
917 return dev;
918
919 return NULL;
920 }
921 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
922
923 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
924 {
925 struct net_device *dev;
926
927 ASSERT_RTNL();
928 for_each_netdev(net, dev)
929 if (dev->type == type)
930 return dev;
931
932 return NULL;
933 }
934 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
935
936 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
937 {
938 struct net_device *dev, *ret = NULL;
939
940 rcu_read_lock();
941 for_each_netdev_rcu(net, dev)
942 if (dev->type == type) {
943 dev_hold(dev);
944 ret = dev;
945 break;
946 }
947 rcu_read_unlock();
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_getfirstbyhwtype);
951
952 /**
953 * __dev_get_by_flags - find any device with given flags
954 * @net: the applicable net namespace
955 * @if_flags: IFF_* values
956 * @mask: bitmask of bits in if_flags to check
957 *
958 * Search for any interface with the given flags. Returns NULL if a device
959 * is not found or a pointer to the device. Must be called inside
960 * rtnl_lock(), and result refcount is unchanged.
961 */
962
963 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
964 unsigned short mask)
965 {
966 struct net_device *dev, *ret;
967
968 ASSERT_RTNL();
969
970 ret = NULL;
971 for_each_netdev(net, dev) {
972 if (((dev->flags ^ if_flags) & mask) == 0) {
973 ret = dev;
974 break;
975 }
976 }
977 return ret;
978 }
979 EXPORT_SYMBOL(__dev_get_by_flags);
980
981 /**
982 * dev_valid_name - check if name is okay for network device
983 * @name: name string
984 *
985 * Network device names need to be valid file names to
986 * to allow sysfs to work. We also disallow any kind of
987 * whitespace.
988 */
989 bool dev_valid_name(const char *name)
990 {
991 if (*name == '\0')
992 return false;
993 if (strlen(name) >= IFNAMSIZ)
994 return false;
995 if (!strcmp(name, ".") || !strcmp(name, ".."))
996 return false;
997
998 while (*name) {
999 if (*name == '/' || *name == ':' || isspace(*name))
1000 return false;
1001 name++;
1002 }
1003 return true;
1004 }
1005 EXPORT_SYMBOL(dev_valid_name);
1006
1007 /**
1008 * __dev_alloc_name - allocate a name for a device
1009 * @net: network namespace to allocate the device name in
1010 * @name: name format string
1011 * @buf: scratch buffer and result name string
1012 *
1013 * Passed a format string - eg "lt%d" it will try and find a suitable
1014 * id. It scans list of devices to build up a free map, then chooses
1015 * the first empty slot. The caller must hold the dev_base or rtnl lock
1016 * while allocating the name and adding the device in order to avoid
1017 * duplicates.
1018 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1019 * Returns the number of the unit assigned or a negative errno code.
1020 */
1021
1022 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1023 {
1024 int i = 0;
1025 const char *p;
1026 const int max_netdevices = 8*PAGE_SIZE;
1027 unsigned long *inuse;
1028 struct net_device *d;
1029
1030 p = strnchr(name, IFNAMSIZ-1, '%');
1031 if (p) {
1032 /*
1033 * Verify the string as this thing may have come from
1034 * the user. There must be either one "%d" and no other "%"
1035 * characters.
1036 */
1037 if (p[1] != 'd' || strchr(p + 2, '%'))
1038 return -EINVAL;
1039
1040 /* Use one page as a bit array of possible slots */
1041 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1042 if (!inuse)
1043 return -ENOMEM;
1044
1045 for_each_netdev(net, d) {
1046 if (!sscanf(d->name, name, &i))
1047 continue;
1048 if (i < 0 || i >= max_netdevices)
1049 continue;
1050
1051 /* avoid cases where sscanf is not exact inverse of printf */
1052 snprintf(buf, IFNAMSIZ, name, i);
1053 if (!strncmp(buf, d->name, IFNAMSIZ))
1054 set_bit(i, inuse);
1055 }
1056
1057 i = find_first_zero_bit(inuse, max_netdevices);
1058 free_page((unsigned long) inuse);
1059 }
1060
1061 if (buf != name)
1062 snprintf(buf, IFNAMSIZ, name, i);
1063 if (!__dev_get_by_name(net, buf))
1064 return i;
1065
1066 /* It is possible to run out of possible slots
1067 * when the name is long and there isn't enough space left
1068 * for the digits, or if all bits are used.
1069 */
1070 return -ENFILE;
1071 }
1072
1073 /**
1074 * dev_alloc_name - allocate a name for a device
1075 * @dev: device
1076 * @name: name format string
1077 *
1078 * Passed a format string - eg "lt%d" it will try and find a suitable
1079 * id. It scans list of devices to build up a free map, then chooses
1080 * the first empty slot. The caller must hold the dev_base or rtnl lock
1081 * while allocating the name and adding the device in order to avoid
1082 * duplicates.
1083 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084 * Returns the number of the unit assigned or a negative errno code.
1085 */
1086
1087 int dev_alloc_name(struct net_device *dev, const char *name)
1088 {
1089 char buf[IFNAMSIZ];
1090 struct net *net;
1091 int ret;
1092
1093 BUG_ON(!dev_net(dev));
1094 net = dev_net(dev);
1095 ret = __dev_alloc_name(net, name, buf);
1096 if (ret >= 0)
1097 strlcpy(dev->name, buf, IFNAMSIZ);
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101
1102 static int dev_alloc_name_ns(struct net *net,
1103 struct net_device *dev,
1104 const char *name)
1105 {
1106 char buf[IFNAMSIZ];
1107 int ret;
1108
1109 ret = __dev_alloc_name(net, name, buf);
1110 if (ret >= 0)
1111 strlcpy(dev->name, buf, IFNAMSIZ);
1112 return ret;
1113 }
1114
1115 static int dev_get_valid_name(struct net *net,
1116 struct net_device *dev,
1117 const char *name)
1118 {
1119 BUG_ON(!net);
1120
1121 if (!dev_valid_name(name))
1122 return -EINVAL;
1123
1124 if (strchr(name, '%'))
1125 return dev_alloc_name_ns(net, dev, name);
1126 else if (__dev_get_by_name(net, name))
1127 return -EEXIST;
1128 else if (dev->name != name)
1129 strlcpy(dev->name, name, IFNAMSIZ);
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * dev_change_name - change name of a device
1136 * @dev: device
1137 * @newname: name (or format string) must be at least IFNAMSIZ
1138 *
1139 * Change name of a device, can pass format strings "eth%d".
1140 * for wildcarding.
1141 */
1142 int dev_change_name(struct net_device *dev, const char *newname)
1143 {
1144 unsigned char old_assign_type;
1145 char oldname[IFNAMSIZ];
1146 int err = 0;
1147 int ret;
1148 struct net *net;
1149
1150 ASSERT_RTNL();
1151 BUG_ON(!dev_net(dev));
1152
1153 net = dev_net(dev);
1154 if (dev->flags & IFF_UP)
1155 return -EBUSY;
1156
1157 write_seqcount_begin(&devnet_rename_seq);
1158
1159 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160 write_seqcount_end(&devnet_rename_seq);
1161 return 0;
1162 }
1163
1164 memcpy(oldname, dev->name, IFNAMSIZ);
1165
1166 err = dev_get_valid_name(net, dev, newname);
1167 if (err < 0) {
1168 write_seqcount_end(&devnet_rename_seq);
1169 return err;
1170 }
1171
1172 if (oldname[0] && !strchr(oldname, '%'))
1173 netdev_info(dev, "renamed from %s\n", oldname);
1174
1175 old_assign_type = dev->name_assign_type;
1176 dev->name_assign_type = NET_NAME_RENAMED;
1177
1178 rollback:
1179 ret = device_rename(&dev->dev, dev->name);
1180 if (ret) {
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 dev->name_assign_type = old_assign_type;
1183 write_seqcount_end(&devnet_rename_seq);
1184 return ret;
1185 }
1186
1187 write_seqcount_end(&devnet_rename_seq);
1188
1189 netdev_adjacent_rename_links(dev, oldname);
1190
1191 write_lock_bh(&dev_base_lock);
1192 hlist_del_rcu(&dev->name_hlist);
1193 write_unlock_bh(&dev_base_lock);
1194
1195 synchronize_rcu();
1196
1197 write_lock_bh(&dev_base_lock);
1198 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1199 write_unlock_bh(&dev_base_lock);
1200
1201 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202 ret = notifier_to_errno(ret);
1203
1204 if (ret) {
1205 /* err >= 0 after dev_alloc_name() or stores the first errno */
1206 if (err >= 0) {
1207 err = ret;
1208 write_seqcount_begin(&devnet_rename_seq);
1209 memcpy(dev->name, oldname, IFNAMSIZ);
1210 memcpy(oldname, newname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 old_assign_type = NET_NAME_RENAMED;
1213 goto rollback;
1214 } else {
1215 pr_err("%s: name change rollback failed: %d\n",
1216 dev->name, ret);
1217 }
1218 }
1219
1220 return err;
1221 }
1222
1223 /**
1224 * dev_set_alias - change ifalias of a device
1225 * @dev: device
1226 * @alias: name up to IFALIASZ
1227 * @len: limit of bytes to copy from info
1228 *
1229 * Set ifalias for a device,
1230 */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233 char *new_ifalias;
1234
1235 ASSERT_RTNL();
1236
1237 if (len >= IFALIASZ)
1238 return -EINVAL;
1239
1240 if (!len) {
1241 kfree(dev->ifalias);
1242 dev->ifalias = NULL;
1243 return 0;
1244 }
1245
1246 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1247 if (!new_ifalias)
1248 return -ENOMEM;
1249 dev->ifalias = new_ifalias;
1250
1251 strlcpy(dev->ifalias, alias, len+1);
1252 return len;
1253 }
1254
1255
1256 /**
1257 * netdev_features_change - device changes features
1258 * @dev: device to cause notification
1259 *
1260 * Called to indicate a device has changed features.
1261 */
1262 void netdev_features_change(struct net_device *dev)
1263 {
1264 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1265 }
1266 EXPORT_SYMBOL(netdev_features_change);
1267
1268 /**
1269 * netdev_state_change - device changes state
1270 * @dev: device to cause notification
1271 *
1272 * Called to indicate a device has changed state. This function calls
1273 * the notifier chains for netdev_chain and sends a NEWLINK message
1274 * to the routing socket.
1275 */
1276 void netdev_state_change(struct net_device *dev)
1277 {
1278 if (dev->flags & IFF_UP) {
1279 struct netdev_notifier_change_info change_info;
1280
1281 change_info.flags_changed = 0;
1282 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1283 &change_info.info);
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1285 }
1286 }
1287 EXPORT_SYMBOL(netdev_state_change);
1288
1289 /**
1290 * netdev_notify_peers - notify network peers about existence of @dev
1291 * @dev: network device
1292 *
1293 * Generate traffic such that interested network peers are aware of
1294 * @dev, such as by generating a gratuitous ARP. This may be used when
1295 * a device wants to inform the rest of the network about some sort of
1296 * reconfiguration such as a failover event or virtual machine
1297 * migration.
1298 */
1299 void netdev_notify_peers(struct net_device *dev)
1300 {
1301 rtnl_lock();
1302 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1303 rtnl_unlock();
1304 }
1305 EXPORT_SYMBOL(netdev_notify_peers);
1306
1307 static int __dev_open(struct net_device *dev)
1308 {
1309 const struct net_device_ops *ops = dev->netdev_ops;
1310 int ret;
1311
1312 ASSERT_RTNL();
1313
1314 if (!netif_device_present(dev))
1315 return -ENODEV;
1316
1317 /* Block netpoll from trying to do any rx path servicing.
1318 * If we don't do this there is a chance ndo_poll_controller
1319 * or ndo_poll may be running while we open the device
1320 */
1321 netpoll_poll_disable(dev);
1322
1323 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1324 ret = notifier_to_errno(ret);
1325 if (ret)
1326 return ret;
1327
1328 set_bit(__LINK_STATE_START, &dev->state);
1329
1330 if (ops->ndo_validate_addr)
1331 ret = ops->ndo_validate_addr(dev);
1332
1333 if (!ret && ops->ndo_open)
1334 ret = ops->ndo_open(dev);
1335
1336 netpoll_poll_enable(dev);
1337
1338 if (ret)
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340 else {
1341 dev->flags |= IFF_UP;
1342 dev_set_rx_mode(dev);
1343 dev_activate(dev);
1344 add_device_randomness(dev->dev_addr, dev->addr_len);
1345 }
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * dev_open - prepare an interface for use.
1352 * @dev: device to open
1353 *
1354 * Takes a device from down to up state. The device's private open
1355 * function is invoked and then the multicast lists are loaded. Finally
1356 * the device is moved into the up state and a %NETDEV_UP message is
1357 * sent to the netdev notifier chain.
1358 *
1359 * Calling this function on an active interface is a nop. On a failure
1360 * a negative errno code is returned.
1361 */
1362 int dev_open(struct net_device *dev)
1363 {
1364 int ret;
1365
1366 if (dev->flags & IFF_UP)
1367 return 0;
1368
1369 ret = __dev_open(dev);
1370 if (ret < 0)
1371 return ret;
1372
1373 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1374 call_netdevice_notifiers(NETDEV_UP, dev);
1375
1376 return ret;
1377 }
1378 EXPORT_SYMBOL(dev_open);
1379
1380 static int __dev_close_many(struct list_head *head)
1381 {
1382 struct net_device *dev;
1383
1384 ASSERT_RTNL();
1385 might_sleep();
1386
1387 list_for_each_entry(dev, head, close_list) {
1388 /* Temporarily disable netpoll until the interface is down */
1389 netpoll_poll_disable(dev);
1390
1391 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1392
1393 clear_bit(__LINK_STATE_START, &dev->state);
1394
1395 /* Synchronize to scheduled poll. We cannot touch poll list, it
1396 * can be even on different cpu. So just clear netif_running().
1397 *
1398 * dev->stop() will invoke napi_disable() on all of it's
1399 * napi_struct instances on this device.
1400 */
1401 smp_mb__after_atomic(); /* Commit netif_running(). */
1402 }
1403
1404 dev_deactivate_many(head);
1405
1406 list_for_each_entry(dev, head, close_list) {
1407 const struct net_device_ops *ops = dev->netdev_ops;
1408
1409 /*
1410 * Call the device specific close. This cannot fail.
1411 * Only if device is UP
1412 *
1413 * We allow it to be called even after a DETACH hot-plug
1414 * event.
1415 */
1416 if (ops->ndo_stop)
1417 ops->ndo_stop(dev);
1418
1419 dev->flags &= ~IFF_UP;
1420 netpoll_poll_enable(dev);
1421 }
1422
1423 return 0;
1424 }
1425
1426 static int __dev_close(struct net_device *dev)
1427 {
1428 int retval;
1429 LIST_HEAD(single);
1430
1431 list_add(&dev->close_list, &single);
1432 retval = __dev_close_many(&single);
1433 list_del(&single);
1434
1435 return retval;
1436 }
1437
1438 int dev_close_many(struct list_head *head, bool unlink)
1439 {
1440 struct net_device *dev, *tmp;
1441
1442 /* Remove the devices that don't need to be closed */
1443 list_for_each_entry_safe(dev, tmp, head, close_list)
1444 if (!(dev->flags & IFF_UP))
1445 list_del_init(&dev->close_list);
1446
1447 __dev_close_many(head);
1448
1449 list_for_each_entry_safe(dev, tmp, head, close_list) {
1450 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1451 call_netdevice_notifiers(NETDEV_DOWN, dev);
1452 if (unlink)
1453 list_del_init(&dev->close_list);
1454 }
1455
1456 return 0;
1457 }
1458 EXPORT_SYMBOL(dev_close_many);
1459
1460 /**
1461 * dev_close - shutdown an interface.
1462 * @dev: device to shutdown
1463 *
1464 * This function moves an active device into down state. A
1465 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1466 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1467 * chain.
1468 */
1469 int dev_close(struct net_device *dev)
1470 {
1471 if (dev->flags & IFF_UP) {
1472 LIST_HEAD(single);
1473
1474 list_add(&dev->close_list, &single);
1475 dev_close_many(&single, true);
1476 list_del(&single);
1477 }
1478 return 0;
1479 }
1480 EXPORT_SYMBOL(dev_close);
1481
1482
1483 /**
1484 * dev_disable_lro - disable Large Receive Offload on a device
1485 * @dev: device
1486 *
1487 * Disable Large Receive Offload (LRO) on a net device. Must be
1488 * called under RTNL. This is needed if received packets may be
1489 * forwarded to another interface.
1490 */
1491 void dev_disable_lro(struct net_device *dev)
1492 {
1493 struct net_device *lower_dev;
1494 struct list_head *iter;
1495
1496 dev->wanted_features &= ~NETIF_F_LRO;
1497 netdev_update_features(dev);
1498
1499 if (unlikely(dev->features & NETIF_F_LRO))
1500 netdev_WARN(dev, "failed to disable LRO!\n");
1501
1502 netdev_for_each_lower_dev(dev, lower_dev, iter)
1503 dev_disable_lro(lower_dev);
1504 }
1505 EXPORT_SYMBOL(dev_disable_lro);
1506
1507 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1508 struct net_device *dev)
1509 {
1510 struct netdev_notifier_info info;
1511
1512 netdev_notifier_info_init(&info, dev);
1513 return nb->notifier_call(nb, val, &info);
1514 }
1515
1516 static int dev_boot_phase = 1;
1517
1518 /**
1519 * register_netdevice_notifier - register a network notifier block
1520 * @nb: notifier
1521 *
1522 * Register a notifier to be called when network device events occur.
1523 * The notifier passed is linked into the kernel structures and must
1524 * not be reused until it has been unregistered. A negative errno code
1525 * is returned on a failure.
1526 *
1527 * When registered all registration and up events are replayed
1528 * to the new notifier to allow device to have a race free
1529 * view of the network device list.
1530 */
1531
1532 int register_netdevice_notifier(struct notifier_block *nb)
1533 {
1534 struct net_device *dev;
1535 struct net_device *last;
1536 struct net *net;
1537 int err;
1538
1539 rtnl_lock();
1540 err = raw_notifier_chain_register(&netdev_chain, nb);
1541 if (err)
1542 goto unlock;
1543 if (dev_boot_phase)
1544 goto unlock;
1545 for_each_net(net) {
1546 for_each_netdev(net, dev) {
1547 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1548 err = notifier_to_errno(err);
1549 if (err)
1550 goto rollback;
1551
1552 if (!(dev->flags & IFF_UP))
1553 continue;
1554
1555 call_netdevice_notifier(nb, NETDEV_UP, dev);
1556 }
1557 }
1558
1559 unlock:
1560 rtnl_unlock();
1561 return err;
1562
1563 rollback:
1564 last = dev;
1565 for_each_net(net) {
1566 for_each_netdev(net, dev) {
1567 if (dev == last)
1568 goto outroll;
1569
1570 if (dev->flags & IFF_UP) {
1571 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1572 dev);
1573 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1574 }
1575 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1576 }
1577 }
1578
1579 outroll:
1580 raw_notifier_chain_unregister(&netdev_chain, nb);
1581 goto unlock;
1582 }
1583 EXPORT_SYMBOL(register_netdevice_notifier);
1584
1585 /**
1586 * unregister_netdevice_notifier - unregister a network notifier block
1587 * @nb: notifier
1588 *
1589 * Unregister a notifier previously registered by
1590 * register_netdevice_notifier(). The notifier is unlinked into the
1591 * kernel structures and may then be reused. A negative errno code
1592 * is returned on a failure.
1593 *
1594 * After unregistering unregister and down device events are synthesized
1595 * for all devices on the device list to the removed notifier to remove
1596 * the need for special case cleanup code.
1597 */
1598
1599 int unregister_netdevice_notifier(struct notifier_block *nb)
1600 {
1601 struct net_device *dev;
1602 struct net *net;
1603 int err;
1604
1605 rtnl_lock();
1606 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1607 if (err)
1608 goto unlock;
1609
1610 for_each_net(net) {
1611 for_each_netdev(net, dev) {
1612 if (dev->flags & IFF_UP) {
1613 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1614 dev);
1615 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1616 }
1617 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1618 }
1619 }
1620 unlock:
1621 rtnl_unlock();
1622 return err;
1623 }
1624 EXPORT_SYMBOL(unregister_netdevice_notifier);
1625
1626 /**
1627 * call_netdevice_notifiers_info - call all network notifier blocks
1628 * @val: value passed unmodified to notifier function
1629 * @dev: net_device pointer passed unmodified to notifier function
1630 * @info: notifier information data
1631 *
1632 * Call all network notifier blocks. Parameters and return value
1633 * are as for raw_notifier_call_chain().
1634 */
1635
1636 static int call_netdevice_notifiers_info(unsigned long val,
1637 struct net_device *dev,
1638 struct netdev_notifier_info *info)
1639 {
1640 ASSERT_RTNL();
1641 netdev_notifier_info_init(info, dev);
1642 return raw_notifier_call_chain(&netdev_chain, val, info);
1643 }
1644
1645 /**
1646 * call_netdevice_notifiers - call all network notifier blocks
1647 * @val: value passed unmodified to notifier function
1648 * @dev: net_device pointer passed unmodified to notifier function
1649 *
1650 * Call all network notifier blocks. Parameters and return value
1651 * are as for raw_notifier_call_chain().
1652 */
1653
1654 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1655 {
1656 struct netdev_notifier_info info;
1657
1658 return call_netdevice_notifiers_info(val, dev, &info);
1659 }
1660 EXPORT_SYMBOL(call_netdevice_notifiers);
1661
1662 #ifdef CONFIG_NET_INGRESS
1663 static struct static_key ingress_needed __read_mostly;
1664
1665 void net_inc_ingress_queue(void)
1666 {
1667 static_key_slow_inc(&ingress_needed);
1668 }
1669 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1670
1671 void net_dec_ingress_queue(void)
1672 {
1673 static_key_slow_dec(&ingress_needed);
1674 }
1675 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1676 #endif
1677
1678 static struct static_key netstamp_needed __read_mostly;
1679 #ifdef HAVE_JUMP_LABEL
1680 /* We are not allowed to call static_key_slow_dec() from irq context
1681 * If net_disable_timestamp() is called from irq context, defer the
1682 * static_key_slow_dec() calls.
1683 */
1684 static atomic_t netstamp_needed_deferred;
1685 #endif
1686
1687 void net_enable_timestamp(void)
1688 {
1689 #ifdef HAVE_JUMP_LABEL
1690 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1691
1692 if (deferred) {
1693 while (--deferred)
1694 static_key_slow_dec(&netstamp_needed);
1695 return;
1696 }
1697 #endif
1698 static_key_slow_inc(&netstamp_needed);
1699 }
1700 EXPORT_SYMBOL(net_enable_timestamp);
1701
1702 void net_disable_timestamp(void)
1703 {
1704 #ifdef HAVE_JUMP_LABEL
1705 if (in_interrupt()) {
1706 atomic_inc(&netstamp_needed_deferred);
1707 return;
1708 }
1709 #endif
1710 static_key_slow_dec(&netstamp_needed);
1711 }
1712 EXPORT_SYMBOL(net_disable_timestamp);
1713
1714 static inline void net_timestamp_set(struct sk_buff *skb)
1715 {
1716 skb->tstamp.tv64 = 0;
1717 if (static_key_false(&netstamp_needed))
1718 __net_timestamp(skb);
1719 }
1720
1721 #define net_timestamp_check(COND, SKB) \
1722 if (static_key_false(&netstamp_needed)) { \
1723 if ((COND) && !(SKB)->tstamp.tv64) \
1724 __net_timestamp(SKB); \
1725 } \
1726
1727 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1728 {
1729 unsigned int len;
1730
1731 if (!(dev->flags & IFF_UP))
1732 return false;
1733
1734 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1735 if (skb->len <= len)
1736 return true;
1737
1738 /* if TSO is enabled, we don't care about the length as the packet
1739 * could be forwarded without being segmented before
1740 */
1741 if (skb_is_gso(skb))
1742 return true;
1743
1744 return false;
1745 }
1746 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1747
1748 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1749 {
1750 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1751 unlikely(!is_skb_forwardable(dev, skb))) {
1752 atomic_long_inc(&dev->rx_dropped);
1753 kfree_skb(skb);
1754 return NET_RX_DROP;
1755 }
1756
1757 skb_scrub_packet(skb, true);
1758 skb->priority = 0;
1759 skb->protocol = eth_type_trans(skb, dev);
1760 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1761
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1765
1766 /**
1767 * dev_forward_skb - loopback an skb to another netif
1768 *
1769 * @dev: destination network device
1770 * @skb: buffer to forward
1771 *
1772 * return values:
1773 * NET_RX_SUCCESS (no congestion)
1774 * NET_RX_DROP (packet was dropped, but freed)
1775 *
1776 * dev_forward_skb can be used for injecting an skb from the
1777 * start_xmit function of one device into the receive queue
1778 * of another device.
1779 *
1780 * The receiving device may be in another namespace, so
1781 * we have to clear all information in the skb that could
1782 * impact namespace isolation.
1783 */
1784 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1785 {
1786 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1787 }
1788 EXPORT_SYMBOL_GPL(dev_forward_skb);
1789
1790 static inline int deliver_skb(struct sk_buff *skb,
1791 struct packet_type *pt_prev,
1792 struct net_device *orig_dev)
1793 {
1794 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1795 return -ENOMEM;
1796 atomic_inc(&skb->users);
1797 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1798 }
1799
1800 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1801 struct packet_type **pt,
1802 struct net_device *orig_dev,
1803 __be16 type,
1804 struct list_head *ptype_list)
1805 {
1806 struct packet_type *ptype, *pt_prev = *pt;
1807
1808 list_for_each_entry_rcu(ptype, ptype_list, list) {
1809 if (ptype->type != type)
1810 continue;
1811 if (pt_prev)
1812 deliver_skb(skb, pt_prev, orig_dev);
1813 pt_prev = ptype;
1814 }
1815 *pt = pt_prev;
1816 }
1817
1818 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1819 {
1820 if (!ptype->af_packet_priv || !skb->sk)
1821 return false;
1822
1823 if (ptype->id_match)
1824 return ptype->id_match(ptype, skb->sk);
1825 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /*
1832 * Support routine. Sends outgoing frames to any network
1833 * taps currently in use.
1834 */
1835
1836 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1837 {
1838 struct packet_type *ptype;
1839 struct sk_buff *skb2 = NULL;
1840 struct packet_type *pt_prev = NULL;
1841 struct list_head *ptype_list = &ptype_all;
1842
1843 rcu_read_lock();
1844 again:
1845 list_for_each_entry_rcu(ptype, ptype_list, list) {
1846 /* Never send packets back to the socket
1847 * they originated from - MvS (miquels@drinkel.ow.org)
1848 */
1849 if (skb_loop_sk(ptype, skb))
1850 continue;
1851
1852 if (pt_prev) {
1853 deliver_skb(skb2, pt_prev, skb->dev);
1854 pt_prev = ptype;
1855 continue;
1856 }
1857
1858 /* need to clone skb, done only once */
1859 skb2 = skb_clone(skb, GFP_ATOMIC);
1860 if (!skb2)
1861 goto out_unlock;
1862
1863 net_timestamp_set(skb2);
1864
1865 /* skb->nh should be correctly
1866 * set by sender, so that the second statement is
1867 * just protection against buggy protocols.
1868 */
1869 skb_reset_mac_header(skb2);
1870
1871 if (skb_network_header(skb2) < skb2->data ||
1872 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1873 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1874 ntohs(skb2->protocol),
1875 dev->name);
1876 skb_reset_network_header(skb2);
1877 }
1878
1879 skb2->transport_header = skb2->network_header;
1880 skb2->pkt_type = PACKET_OUTGOING;
1881 pt_prev = ptype;
1882 }
1883
1884 if (ptype_list == &ptype_all) {
1885 ptype_list = &dev->ptype_all;
1886 goto again;
1887 }
1888 out_unlock:
1889 if (pt_prev)
1890 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1891 rcu_read_unlock();
1892 }
1893
1894 /**
1895 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1896 * @dev: Network device
1897 * @txq: number of queues available
1898 *
1899 * If real_num_tx_queues is changed the tc mappings may no longer be
1900 * valid. To resolve this verify the tc mapping remains valid and if
1901 * not NULL the mapping. With no priorities mapping to this
1902 * offset/count pair it will no longer be used. In the worst case TC0
1903 * is invalid nothing can be done so disable priority mappings. If is
1904 * expected that drivers will fix this mapping if they can before
1905 * calling netif_set_real_num_tx_queues.
1906 */
1907 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1908 {
1909 int i;
1910 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1911
1912 /* If TC0 is invalidated disable TC mapping */
1913 if (tc->offset + tc->count > txq) {
1914 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1915 dev->num_tc = 0;
1916 return;
1917 }
1918
1919 /* Invalidated prio to tc mappings set to TC0 */
1920 for (i = 1; i < TC_BITMASK + 1; i++) {
1921 int q = netdev_get_prio_tc_map(dev, i);
1922
1923 tc = &dev->tc_to_txq[q];
1924 if (tc->offset + tc->count > txq) {
1925 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1926 i, q);
1927 netdev_set_prio_tc_map(dev, i, 0);
1928 }
1929 }
1930 }
1931
1932 #ifdef CONFIG_XPS
1933 static DEFINE_MUTEX(xps_map_mutex);
1934 #define xmap_dereference(P) \
1935 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1936
1937 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1938 int cpu, u16 index)
1939 {
1940 struct xps_map *map = NULL;
1941 int pos;
1942
1943 if (dev_maps)
1944 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1945
1946 for (pos = 0; map && pos < map->len; pos++) {
1947 if (map->queues[pos] == index) {
1948 if (map->len > 1) {
1949 map->queues[pos] = map->queues[--map->len];
1950 } else {
1951 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1952 kfree_rcu(map, rcu);
1953 map = NULL;
1954 }
1955 break;
1956 }
1957 }
1958
1959 return map;
1960 }
1961
1962 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1963 {
1964 struct xps_dev_maps *dev_maps;
1965 int cpu, i;
1966 bool active = false;
1967
1968 mutex_lock(&xps_map_mutex);
1969 dev_maps = xmap_dereference(dev->xps_maps);
1970
1971 if (!dev_maps)
1972 goto out_no_maps;
1973
1974 for_each_possible_cpu(cpu) {
1975 for (i = index; i < dev->num_tx_queues; i++) {
1976 if (!remove_xps_queue(dev_maps, cpu, i))
1977 break;
1978 }
1979 if (i == dev->num_tx_queues)
1980 active = true;
1981 }
1982
1983 if (!active) {
1984 RCU_INIT_POINTER(dev->xps_maps, NULL);
1985 kfree_rcu(dev_maps, rcu);
1986 }
1987
1988 for (i = index; i < dev->num_tx_queues; i++)
1989 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1990 NUMA_NO_NODE);
1991
1992 out_no_maps:
1993 mutex_unlock(&xps_map_mutex);
1994 }
1995
1996 static struct xps_map *expand_xps_map(struct xps_map *map,
1997 int cpu, u16 index)
1998 {
1999 struct xps_map *new_map;
2000 int alloc_len = XPS_MIN_MAP_ALLOC;
2001 int i, pos;
2002
2003 for (pos = 0; map && pos < map->len; pos++) {
2004 if (map->queues[pos] != index)
2005 continue;
2006 return map;
2007 }
2008
2009 /* Need to add queue to this CPU's existing map */
2010 if (map) {
2011 if (pos < map->alloc_len)
2012 return map;
2013
2014 alloc_len = map->alloc_len * 2;
2015 }
2016
2017 /* Need to allocate new map to store queue on this CPU's map */
2018 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2019 cpu_to_node(cpu));
2020 if (!new_map)
2021 return NULL;
2022
2023 for (i = 0; i < pos; i++)
2024 new_map->queues[i] = map->queues[i];
2025 new_map->alloc_len = alloc_len;
2026 new_map->len = pos;
2027
2028 return new_map;
2029 }
2030
2031 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2032 u16 index)
2033 {
2034 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2035 struct xps_map *map, *new_map;
2036 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2037 int cpu, numa_node_id = -2;
2038 bool active = false;
2039
2040 mutex_lock(&xps_map_mutex);
2041
2042 dev_maps = xmap_dereference(dev->xps_maps);
2043
2044 /* allocate memory for queue storage */
2045 for_each_online_cpu(cpu) {
2046 if (!cpumask_test_cpu(cpu, mask))
2047 continue;
2048
2049 if (!new_dev_maps)
2050 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2051 if (!new_dev_maps) {
2052 mutex_unlock(&xps_map_mutex);
2053 return -ENOMEM;
2054 }
2055
2056 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2057 NULL;
2058
2059 map = expand_xps_map(map, cpu, index);
2060 if (!map)
2061 goto error;
2062
2063 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2064 }
2065
2066 if (!new_dev_maps)
2067 goto out_no_new_maps;
2068
2069 for_each_possible_cpu(cpu) {
2070 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2071 /* add queue to CPU maps */
2072 int pos = 0;
2073
2074 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2075 while ((pos < map->len) && (map->queues[pos] != index))
2076 pos++;
2077
2078 if (pos == map->len)
2079 map->queues[map->len++] = index;
2080 #ifdef CONFIG_NUMA
2081 if (numa_node_id == -2)
2082 numa_node_id = cpu_to_node(cpu);
2083 else if (numa_node_id != cpu_to_node(cpu))
2084 numa_node_id = -1;
2085 #endif
2086 } else if (dev_maps) {
2087 /* fill in the new device map from the old device map */
2088 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2089 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2090 }
2091
2092 }
2093
2094 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2095
2096 /* Cleanup old maps */
2097 if (dev_maps) {
2098 for_each_possible_cpu(cpu) {
2099 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2100 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2101 if (map && map != new_map)
2102 kfree_rcu(map, rcu);
2103 }
2104
2105 kfree_rcu(dev_maps, rcu);
2106 }
2107
2108 dev_maps = new_dev_maps;
2109 active = true;
2110
2111 out_no_new_maps:
2112 /* update Tx queue numa node */
2113 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2114 (numa_node_id >= 0) ? numa_node_id :
2115 NUMA_NO_NODE);
2116
2117 if (!dev_maps)
2118 goto out_no_maps;
2119
2120 /* removes queue from unused CPUs */
2121 for_each_possible_cpu(cpu) {
2122 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2123 continue;
2124
2125 if (remove_xps_queue(dev_maps, cpu, index))
2126 active = true;
2127 }
2128
2129 /* free map if not active */
2130 if (!active) {
2131 RCU_INIT_POINTER(dev->xps_maps, NULL);
2132 kfree_rcu(dev_maps, rcu);
2133 }
2134
2135 out_no_maps:
2136 mutex_unlock(&xps_map_mutex);
2137
2138 return 0;
2139 error:
2140 /* remove any maps that we added */
2141 for_each_possible_cpu(cpu) {
2142 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2143 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2144 NULL;
2145 if (new_map && new_map != map)
2146 kfree(new_map);
2147 }
2148
2149 mutex_unlock(&xps_map_mutex);
2150
2151 kfree(new_dev_maps);
2152 return -ENOMEM;
2153 }
2154 EXPORT_SYMBOL(netif_set_xps_queue);
2155
2156 #endif
2157 /*
2158 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2159 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2160 */
2161 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2162 {
2163 int rc;
2164
2165 if (txq < 1 || txq > dev->num_tx_queues)
2166 return -EINVAL;
2167
2168 if (dev->reg_state == NETREG_REGISTERED ||
2169 dev->reg_state == NETREG_UNREGISTERING) {
2170 ASSERT_RTNL();
2171
2172 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2173 txq);
2174 if (rc)
2175 return rc;
2176
2177 if (dev->num_tc)
2178 netif_setup_tc(dev, txq);
2179
2180 if (txq < dev->real_num_tx_queues) {
2181 qdisc_reset_all_tx_gt(dev, txq);
2182 #ifdef CONFIG_XPS
2183 netif_reset_xps_queues_gt(dev, txq);
2184 #endif
2185 }
2186 }
2187
2188 dev->real_num_tx_queues = txq;
2189 return 0;
2190 }
2191 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2192
2193 #ifdef CONFIG_SYSFS
2194 /**
2195 * netif_set_real_num_rx_queues - set actual number of RX queues used
2196 * @dev: Network device
2197 * @rxq: Actual number of RX queues
2198 *
2199 * This must be called either with the rtnl_lock held or before
2200 * registration of the net device. Returns 0 on success, or a
2201 * negative error code. If called before registration, it always
2202 * succeeds.
2203 */
2204 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2205 {
2206 int rc;
2207
2208 if (rxq < 1 || rxq > dev->num_rx_queues)
2209 return -EINVAL;
2210
2211 if (dev->reg_state == NETREG_REGISTERED) {
2212 ASSERT_RTNL();
2213
2214 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2215 rxq);
2216 if (rc)
2217 return rc;
2218 }
2219
2220 dev->real_num_rx_queues = rxq;
2221 return 0;
2222 }
2223 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2224 #endif
2225
2226 /**
2227 * netif_get_num_default_rss_queues - default number of RSS queues
2228 *
2229 * This routine should set an upper limit on the number of RSS queues
2230 * used by default by multiqueue devices.
2231 */
2232 int netif_get_num_default_rss_queues(void)
2233 {
2234 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2235 }
2236 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2237
2238 static inline void __netif_reschedule(struct Qdisc *q)
2239 {
2240 struct softnet_data *sd;
2241 unsigned long flags;
2242
2243 local_irq_save(flags);
2244 sd = this_cpu_ptr(&softnet_data);
2245 q->next_sched = NULL;
2246 *sd->output_queue_tailp = q;
2247 sd->output_queue_tailp = &q->next_sched;
2248 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2249 local_irq_restore(flags);
2250 }
2251
2252 void __netif_schedule(struct Qdisc *q)
2253 {
2254 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2255 __netif_reschedule(q);
2256 }
2257 EXPORT_SYMBOL(__netif_schedule);
2258
2259 struct dev_kfree_skb_cb {
2260 enum skb_free_reason reason;
2261 };
2262
2263 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2264 {
2265 return (struct dev_kfree_skb_cb *)skb->cb;
2266 }
2267
2268 void netif_schedule_queue(struct netdev_queue *txq)
2269 {
2270 rcu_read_lock();
2271 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2272 struct Qdisc *q = rcu_dereference(txq->qdisc);
2273
2274 __netif_schedule(q);
2275 }
2276 rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(netif_schedule_queue);
2279
2280 /**
2281 * netif_wake_subqueue - allow sending packets on subqueue
2282 * @dev: network device
2283 * @queue_index: sub queue index
2284 *
2285 * Resume individual transmit queue of a device with multiple transmit queues.
2286 */
2287 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2288 {
2289 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2290
2291 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2292 struct Qdisc *q;
2293
2294 rcu_read_lock();
2295 q = rcu_dereference(txq->qdisc);
2296 __netif_schedule(q);
2297 rcu_read_unlock();
2298 }
2299 }
2300 EXPORT_SYMBOL(netif_wake_subqueue);
2301
2302 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2303 {
2304 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2305 struct Qdisc *q;
2306
2307 rcu_read_lock();
2308 q = rcu_dereference(dev_queue->qdisc);
2309 __netif_schedule(q);
2310 rcu_read_unlock();
2311 }
2312 }
2313 EXPORT_SYMBOL(netif_tx_wake_queue);
2314
2315 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2316 {
2317 unsigned long flags;
2318
2319 if (likely(atomic_read(&skb->users) == 1)) {
2320 smp_rmb();
2321 atomic_set(&skb->users, 0);
2322 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2323 return;
2324 }
2325 get_kfree_skb_cb(skb)->reason = reason;
2326 local_irq_save(flags);
2327 skb->next = __this_cpu_read(softnet_data.completion_queue);
2328 __this_cpu_write(softnet_data.completion_queue, skb);
2329 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2330 local_irq_restore(flags);
2331 }
2332 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2333
2334 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2335 {
2336 if (in_irq() || irqs_disabled())
2337 __dev_kfree_skb_irq(skb, reason);
2338 else
2339 dev_kfree_skb(skb);
2340 }
2341 EXPORT_SYMBOL(__dev_kfree_skb_any);
2342
2343
2344 /**
2345 * netif_device_detach - mark device as removed
2346 * @dev: network device
2347 *
2348 * Mark device as removed from system and therefore no longer available.
2349 */
2350 void netif_device_detach(struct net_device *dev)
2351 {
2352 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2353 netif_running(dev)) {
2354 netif_tx_stop_all_queues(dev);
2355 }
2356 }
2357 EXPORT_SYMBOL(netif_device_detach);
2358
2359 /**
2360 * netif_device_attach - mark device as attached
2361 * @dev: network device
2362 *
2363 * Mark device as attached from system and restart if needed.
2364 */
2365 void netif_device_attach(struct net_device *dev)
2366 {
2367 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2368 netif_running(dev)) {
2369 netif_tx_wake_all_queues(dev);
2370 __netdev_watchdog_up(dev);
2371 }
2372 }
2373 EXPORT_SYMBOL(netif_device_attach);
2374
2375 /*
2376 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2377 * to be used as a distribution range.
2378 */
2379 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2380 unsigned int num_tx_queues)
2381 {
2382 u32 hash;
2383 u16 qoffset = 0;
2384 u16 qcount = num_tx_queues;
2385
2386 if (skb_rx_queue_recorded(skb)) {
2387 hash = skb_get_rx_queue(skb);
2388 while (unlikely(hash >= num_tx_queues))
2389 hash -= num_tx_queues;
2390 return hash;
2391 }
2392
2393 if (dev->num_tc) {
2394 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2395 qoffset = dev->tc_to_txq[tc].offset;
2396 qcount = dev->tc_to_txq[tc].count;
2397 }
2398
2399 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2400 }
2401 EXPORT_SYMBOL(__skb_tx_hash);
2402
2403 static void skb_warn_bad_offload(const struct sk_buff *skb)
2404 {
2405 static const netdev_features_t null_features = 0;
2406 struct net_device *dev = skb->dev;
2407 const char *name = "";
2408
2409 if (!net_ratelimit())
2410 return;
2411
2412 if (dev) {
2413 if (dev->dev.parent)
2414 name = dev_driver_string(dev->dev.parent);
2415 else
2416 name = netdev_name(dev);
2417 }
2418 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2419 "gso_type=%d ip_summed=%d\n",
2420 name, dev ? &dev->features : &null_features,
2421 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2422 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2423 skb_shinfo(skb)->gso_type, skb->ip_summed);
2424 }
2425
2426 /*
2427 * Invalidate hardware checksum when packet is to be mangled, and
2428 * complete checksum manually on outgoing path.
2429 */
2430 int skb_checksum_help(struct sk_buff *skb)
2431 {
2432 __wsum csum;
2433 int ret = 0, offset;
2434
2435 if (skb->ip_summed == CHECKSUM_COMPLETE)
2436 goto out_set_summed;
2437
2438 if (unlikely(skb_shinfo(skb)->gso_size)) {
2439 skb_warn_bad_offload(skb);
2440 return -EINVAL;
2441 }
2442
2443 /* Before computing a checksum, we should make sure no frag could
2444 * be modified by an external entity : checksum could be wrong.
2445 */
2446 if (skb_has_shared_frag(skb)) {
2447 ret = __skb_linearize(skb);
2448 if (ret)
2449 goto out;
2450 }
2451
2452 offset = skb_checksum_start_offset(skb);
2453 BUG_ON(offset >= skb_headlen(skb));
2454 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2455
2456 offset += skb->csum_offset;
2457 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2458
2459 if (skb_cloned(skb) &&
2460 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2461 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2462 if (ret)
2463 goto out;
2464 }
2465
2466 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2467 out_set_summed:
2468 skb->ip_summed = CHECKSUM_NONE;
2469 out:
2470 return ret;
2471 }
2472 EXPORT_SYMBOL(skb_checksum_help);
2473
2474 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2475 {
2476 __be16 type = skb->protocol;
2477
2478 /* Tunnel gso handlers can set protocol to ethernet. */
2479 if (type == htons(ETH_P_TEB)) {
2480 struct ethhdr *eth;
2481
2482 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2483 return 0;
2484
2485 eth = (struct ethhdr *)skb_mac_header(skb);
2486 type = eth->h_proto;
2487 }
2488
2489 return __vlan_get_protocol(skb, type, depth);
2490 }
2491
2492 /**
2493 * skb_mac_gso_segment - mac layer segmentation handler.
2494 * @skb: buffer to segment
2495 * @features: features for the output path (see dev->features)
2496 */
2497 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2498 netdev_features_t features)
2499 {
2500 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2501 struct packet_offload *ptype;
2502 int vlan_depth = skb->mac_len;
2503 __be16 type = skb_network_protocol(skb, &vlan_depth);
2504
2505 if (unlikely(!type))
2506 return ERR_PTR(-EINVAL);
2507
2508 __skb_pull(skb, vlan_depth);
2509
2510 rcu_read_lock();
2511 list_for_each_entry_rcu(ptype, &offload_base, list) {
2512 if (ptype->type == type && ptype->callbacks.gso_segment) {
2513 segs = ptype->callbacks.gso_segment(skb, features);
2514 break;
2515 }
2516 }
2517 rcu_read_unlock();
2518
2519 __skb_push(skb, skb->data - skb_mac_header(skb));
2520
2521 return segs;
2522 }
2523 EXPORT_SYMBOL(skb_mac_gso_segment);
2524
2525
2526 /* openvswitch calls this on rx path, so we need a different check.
2527 */
2528 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2529 {
2530 if (tx_path)
2531 return skb->ip_summed != CHECKSUM_PARTIAL;
2532 else
2533 return skb->ip_summed == CHECKSUM_NONE;
2534 }
2535
2536 /**
2537 * __skb_gso_segment - Perform segmentation on skb.
2538 * @skb: buffer to segment
2539 * @features: features for the output path (see dev->features)
2540 * @tx_path: whether it is called in TX path
2541 *
2542 * This function segments the given skb and returns a list of segments.
2543 *
2544 * It may return NULL if the skb requires no segmentation. This is
2545 * only possible when GSO is used for verifying header integrity.
2546 */
2547 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2548 netdev_features_t features, bool tx_path)
2549 {
2550 if (unlikely(skb_needs_check(skb, tx_path))) {
2551 int err;
2552
2553 skb_warn_bad_offload(skb);
2554
2555 err = skb_cow_head(skb, 0);
2556 if (err < 0)
2557 return ERR_PTR(err);
2558 }
2559
2560 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2561 SKB_GSO_CB(skb)->encap_level = 0;
2562
2563 skb_reset_mac_header(skb);
2564 skb_reset_mac_len(skb);
2565
2566 return skb_mac_gso_segment(skb, features);
2567 }
2568 EXPORT_SYMBOL(__skb_gso_segment);
2569
2570 /* Take action when hardware reception checksum errors are detected. */
2571 #ifdef CONFIG_BUG
2572 void netdev_rx_csum_fault(struct net_device *dev)
2573 {
2574 if (net_ratelimit()) {
2575 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2576 dump_stack();
2577 }
2578 }
2579 EXPORT_SYMBOL(netdev_rx_csum_fault);
2580 #endif
2581
2582 /* Actually, we should eliminate this check as soon as we know, that:
2583 * 1. IOMMU is present and allows to map all the memory.
2584 * 2. No high memory really exists on this machine.
2585 */
2586
2587 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2588 {
2589 #ifdef CONFIG_HIGHMEM
2590 int i;
2591 if (!(dev->features & NETIF_F_HIGHDMA)) {
2592 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2593 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2594 if (PageHighMem(skb_frag_page(frag)))
2595 return 1;
2596 }
2597 }
2598
2599 if (PCI_DMA_BUS_IS_PHYS) {
2600 struct device *pdev = dev->dev.parent;
2601
2602 if (!pdev)
2603 return 0;
2604 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2606 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2607 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2608 return 1;
2609 }
2610 }
2611 #endif
2612 return 0;
2613 }
2614
2615 /* If MPLS offload request, verify we are testing hardware MPLS features
2616 * instead of standard features for the netdev.
2617 */
2618 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2619 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2620 netdev_features_t features,
2621 __be16 type)
2622 {
2623 if (eth_p_mpls(type))
2624 features &= skb->dev->mpls_features;
2625
2626 return features;
2627 }
2628 #else
2629 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2630 netdev_features_t features,
2631 __be16 type)
2632 {
2633 return features;
2634 }
2635 #endif
2636
2637 static netdev_features_t harmonize_features(struct sk_buff *skb,
2638 netdev_features_t features)
2639 {
2640 int tmp;
2641 __be16 type;
2642
2643 type = skb_network_protocol(skb, &tmp);
2644 features = net_mpls_features(skb, features, type);
2645
2646 if (skb->ip_summed != CHECKSUM_NONE &&
2647 !can_checksum_protocol(features, type)) {
2648 features &= ~NETIF_F_ALL_CSUM;
2649 } else if (illegal_highdma(skb->dev, skb)) {
2650 features &= ~NETIF_F_SG;
2651 }
2652
2653 return features;
2654 }
2655
2656 netdev_features_t passthru_features_check(struct sk_buff *skb,
2657 struct net_device *dev,
2658 netdev_features_t features)
2659 {
2660 return features;
2661 }
2662 EXPORT_SYMBOL(passthru_features_check);
2663
2664 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2665 struct net_device *dev,
2666 netdev_features_t features)
2667 {
2668 return vlan_features_check(skb, features);
2669 }
2670
2671 netdev_features_t netif_skb_features(struct sk_buff *skb)
2672 {
2673 struct net_device *dev = skb->dev;
2674 netdev_features_t features = dev->features;
2675 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2676
2677 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2678 features &= ~NETIF_F_GSO_MASK;
2679
2680 /* If encapsulation offload request, verify we are testing
2681 * hardware encapsulation features instead of standard
2682 * features for the netdev
2683 */
2684 if (skb->encapsulation)
2685 features &= dev->hw_enc_features;
2686
2687 if (skb_vlan_tagged(skb))
2688 features = netdev_intersect_features(features,
2689 dev->vlan_features |
2690 NETIF_F_HW_VLAN_CTAG_TX |
2691 NETIF_F_HW_VLAN_STAG_TX);
2692
2693 if (dev->netdev_ops->ndo_features_check)
2694 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2695 features);
2696 else
2697 features &= dflt_features_check(skb, dev, features);
2698
2699 return harmonize_features(skb, features);
2700 }
2701 EXPORT_SYMBOL(netif_skb_features);
2702
2703 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2704 struct netdev_queue *txq, bool more)
2705 {
2706 unsigned int len;
2707 int rc;
2708
2709 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2710 dev_queue_xmit_nit(skb, dev);
2711
2712 len = skb->len;
2713 trace_net_dev_start_xmit(skb, dev);
2714 rc = netdev_start_xmit(skb, dev, txq, more);
2715 trace_net_dev_xmit(skb, rc, dev, len);
2716
2717 return rc;
2718 }
2719
2720 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2721 struct netdev_queue *txq, int *ret)
2722 {
2723 struct sk_buff *skb = first;
2724 int rc = NETDEV_TX_OK;
2725
2726 while (skb) {
2727 struct sk_buff *next = skb->next;
2728
2729 skb->next = NULL;
2730 rc = xmit_one(skb, dev, txq, next != NULL);
2731 if (unlikely(!dev_xmit_complete(rc))) {
2732 skb->next = next;
2733 goto out;
2734 }
2735
2736 skb = next;
2737 if (netif_xmit_stopped(txq) && skb) {
2738 rc = NETDEV_TX_BUSY;
2739 break;
2740 }
2741 }
2742
2743 out:
2744 *ret = rc;
2745 return skb;
2746 }
2747
2748 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2749 netdev_features_t features)
2750 {
2751 if (skb_vlan_tag_present(skb) &&
2752 !vlan_hw_offload_capable(features, skb->vlan_proto))
2753 skb = __vlan_hwaccel_push_inside(skb);
2754 return skb;
2755 }
2756
2757 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2758 {
2759 netdev_features_t features;
2760
2761 if (skb->next)
2762 return skb;
2763
2764 features = netif_skb_features(skb);
2765 skb = validate_xmit_vlan(skb, features);
2766 if (unlikely(!skb))
2767 goto out_null;
2768
2769 if (netif_needs_gso(skb, features)) {
2770 struct sk_buff *segs;
2771
2772 segs = skb_gso_segment(skb, features);
2773 if (IS_ERR(segs)) {
2774 goto out_kfree_skb;
2775 } else if (segs) {
2776 consume_skb(skb);
2777 skb = segs;
2778 }
2779 } else {
2780 if (skb_needs_linearize(skb, features) &&
2781 __skb_linearize(skb))
2782 goto out_kfree_skb;
2783
2784 /* If packet is not checksummed and device does not
2785 * support checksumming for this protocol, complete
2786 * checksumming here.
2787 */
2788 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 if (skb->encapsulation)
2790 skb_set_inner_transport_header(skb,
2791 skb_checksum_start_offset(skb));
2792 else
2793 skb_set_transport_header(skb,
2794 skb_checksum_start_offset(skb));
2795 if (!(features & NETIF_F_ALL_CSUM) &&
2796 skb_checksum_help(skb))
2797 goto out_kfree_skb;
2798 }
2799 }
2800
2801 return skb;
2802
2803 out_kfree_skb:
2804 kfree_skb(skb);
2805 out_null:
2806 return NULL;
2807 }
2808
2809 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2810 {
2811 struct sk_buff *next, *head = NULL, *tail;
2812
2813 for (; skb != NULL; skb = next) {
2814 next = skb->next;
2815 skb->next = NULL;
2816
2817 /* in case skb wont be segmented, point to itself */
2818 skb->prev = skb;
2819
2820 skb = validate_xmit_skb(skb, dev);
2821 if (!skb)
2822 continue;
2823
2824 if (!head)
2825 head = skb;
2826 else
2827 tail->next = skb;
2828 /* If skb was segmented, skb->prev points to
2829 * the last segment. If not, it still contains skb.
2830 */
2831 tail = skb->prev;
2832 }
2833 return head;
2834 }
2835
2836 static void qdisc_pkt_len_init(struct sk_buff *skb)
2837 {
2838 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2839
2840 qdisc_skb_cb(skb)->pkt_len = skb->len;
2841
2842 /* To get more precise estimation of bytes sent on wire,
2843 * we add to pkt_len the headers size of all segments
2844 */
2845 if (shinfo->gso_size) {
2846 unsigned int hdr_len;
2847 u16 gso_segs = shinfo->gso_segs;
2848
2849 /* mac layer + network layer */
2850 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2851
2852 /* + transport layer */
2853 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2854 hdr_len += tcp_hdrlen(skb);
2855 else
2856 hdr_len += sizeof(struct udphdr);
2857
2858 if (shinfo->gso_type & SKB_GSO_DODGY)
2859 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2860 shinfo->gso_size);
2861
2862 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2863 }
2864 }
2865
2866 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2867 struct net_device *dev,
2868 struct netdev_queue *txq)
2869 {
2870 spinlock_t *root_lock = qdisc_lock(q);
2871 bool contended;
2872 int rc;
2873
2874 qdisc_pkt_len_init(skb);
2875 qdisc_calculate_pkt_len(skb, q);
2876 /*
2877 * Heuristic to force contended enqueues to serialize on a
2878 * separate lock before trying to get qdisc main lock.
2879 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2880 * often and dequeue packets faster.
2881 */
2882 contended = qdisc_is_running(q);
2883 if (unlikely(contended))
2884 spin_lock(&q->busylock);
2885
2886 spin_lock(root_lock);
2887 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2888 kfree_skb(skb);
2889 rc = NET_XMIT_DROP;
2890 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2891 qdisc_run_begin(q)) {
2892 /*
2893 * This is a work-conserving queue; there are no old skbs
2894 * waiting to be sent out; and the qdisc is not running -
2895 * xmit the skb directly.
2896 */
2897
2898 qdisc_bstats_update(q, skb);
2899
2900 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2901 if (unlikely(contended)) {
2902 spin_unlock(&q->busylock);
2903 contended = false;
2904 }
2905 __qdisc_run(q);
2906 } else
2907 qdisc_run_end(q);
2908
2909 rc = NET_XMIT_SUCCESS;
2910 } else {
2911 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2912 if (qdisc_run_begin(q)) {
2913 if (unlikely(contended)) {
2914 spin_unlock(&q->busylock);
2915 contended = false;
2916 }
2917 __qdisc_run(q);
2918 }
2919 }
2920 spin_unlock(root_lock);
2921 if (unlikely(contended))
2922 spin_unlock(&q->busylock);
2923 return rc;
2924 }
2925
2926 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2927 static void skb_update_prio(struct sk_buff *skb)
2928 {
2929 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2930
2931 if (!skb->priority && skb->sk && map) {
2932 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2933
2934 if (prioidx < map->priomap_len)
2935 skb->priority = map->priomap[prioidx];
2936 }
2937 }
2938 #else
2939 #define skb_update_prio(skb)
2940 #endif
2941
2942 DEFINE_PER_CPU(int, xmit_recursion);
2943 EXPORT_SYMBOL(xmit_recursion);
2944
2945 #define RECURSION_LIMIT 10
2946
2947 /**
2948 * dev_loopback_xmit - loop back @skb
2949 * @net: network namespace this loopback is happening in
2950 * @sk: sk needed to be a netfilter okfn
2951 * @skb: buffer to transmit
2952 */
2953 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2954 {
2955 skb_reset_mac_header(skb);
2956 __skb_pull(skb, skb_network_offset(skb));
2957 skb->pkt_type = PACKET_LOOPBACK;
2958 skb->ip_summed = CHECKSUM_UNNECESSARY;
2959 WARN_ON(!skb_dst(skb));
2960 skb_dst_force(skb);
2961 netif_rx_ni(skb);
2962 return 0;
2963 }
2964 EXPORT_SYMBOL(dev_loopback_xmit);
2965
2966 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2967 {
2968 #ifdef CONFIG_XPS
2969 struct xps_dev_maps *dev_maps;
2970 struct xps_map *map;
2971 int queue_index = -1;
2972
2973 rcu_read_lock();
2974 dev_maps = rcu_dereference(dev->xps_maps);
2975 if (dev_maps) {
2976 map = rcu_dereference(
2977 dev_maps->cpu_map[skb->sender_cpu - 1]);
2978 if (map) {
2979 if (map->len == 1)
2980 queue_index = map->queues[0];
2981 else
2982 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2983 map->len)];
2984 if (unlikely(queue_index >= dev->real_num_tx_queues))
2985 queue_index = -1;
2986 }
2987 }
2988 rcu_read_unlock();
2989
2990 return queue_index;
2991 #else
2992 return -1;
2993 #endif
2994 }
2995
2996 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2997 {
2998 struct sock *sk = skb->sk;
2999 int queue_index = sk_tx_queue_get(sk);
3000
3001 if (queue_index < 0 || skb->ooo_okay ||
3002 queue_index >= dev->real_num_tx_queues) {
3003 int new_index = get_xps_queue(dev, skb);
3004 if (new_index < 0)
3005 new_index = skb_tx_hash(dev, skb);
3006
3007 if (queue_index != new_index && sk &&
3008 sk_fullsock(sk) &&
3009 rcu_access_pointer(sk->sk_dst_cache))
3010 sk_tx_queue_set(sk, new_index);
3011
3012 queue_index = new_index;
3013 }
3014
3015 return queue_index;
3016 }
3017
3018 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3019 struct sk_buff *skb,
3020 void *accel_priv)
3021 {
3022 int queue_index = 0;
3023
3024 #ifdef CONFIG_XPS
3025 u32 sender_cpu = skb->sender_cpu - 1;
3026
3027 if (sender_cpu >= (u32)NR_CPUS)
3028 skb->sender_cpu = raw_smp_processor_id() + 1;
3029 #endif
3030
3031 if (dev->real_num_tx_queues != 1) {
3032 const struct net_device_ops *ops = dev->netdev_ops;
3033 if (ops->ndo_select_queue)
3034 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3035 __netdev_pick_tx);
3036 else
3037 queue_index = __netdev_pick_tx(dev, skb);
3038
3039 if (!accel_priv)
3040 queue_index = netdev_cap_txqueue(dev, queue_index);
3041 }
3042
3043 skb_set_queue_mapping(skb, queue_index);
3044 return netdev_get_tx_queue(dev, queue_index);
3045 }
3046
3047 /**
3048 * __dev_queue_xmit - transmit a buffer
3049 * @skb: buffer to transmit
3050 * @accel_priv: private data used for L2 forwarding offload
3051 *
3052 * Queue a buffer for transmission to a network device. The caller must
3053 * have set the device and priority and built the buffer before calling
3054 * this function. The function can be called from an interrupt.
3055 *
3056 * A negative errno code is returned on a failure. A success does not
3057 * guarantee the frame will be transmitted as it may be dropped due
3058 * to congestion or traffic shaping.
3059 *
3060 * -----------------------------------------------------------------------------------
3061 * I notice this method can also return errors from the queue disciplines,
3062 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3063 * be positive.
3064 *
3065 * Regardless of the return value, the skb is consumed, so it is currently
3066 * difficult to retry a send to this method. (You can bump the ref count
3067 * before sending to hold a reference for retry if you are careful.)
3068 *
3069 * When calling this method, interrupts MUST be enabled. This is because
3070 * the BH enable code must have IRQs enabled so that it will not deadlock.
3071 * --BLG
3072 */
3073 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3074 {
3075 struct net_device *dev = skb->dev;
3076 struct netdev_queue *txq;
3077 struct Qdisc *q;
3078 int rc = -ENOMEM;
3079
3080 skb_reset_mac_header(skb);
3081
3082 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3083 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3084
3085 /* Disable soft irqs for various locks below. Also
3086 * stops preemption for RCU.
3087 */
3088 rcu_read_lock_bh();
3089
3090 skb_update_prio(skb);
3091
3092 /* If device/qdisc don't need skb->dst, release it right now while
3093 * its hot in this cpu cache.
3094 */
3095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3096 skb_dst_drop(skb);
3097 else
3098 skb_dst_force(skb);
3099
3100 #ifdef CONFIG_NET_SWITCHDEV
3101 /* Don't forward if offload device already forwarded */
3102 if (skb->offload_fwd_mark &&
3103 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3104 consume_skb(skb);
3105 rc = NET_XMIT_SUCCESS;
3106 goto out;
3107 }
3108 #endif
3109
3110 txq = netdev_pick_tx(dev, skb, accel_priv);
3111 q = rcu_dereference_bh(txq->qdisc);
3112
3113 #ifdef CONFIG_NET_CLS_ACT
3114 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3115 #endif
3116 trace_net_dev_queue(skb);
3117 if (q->enqueue) {
3118 rc = __dev_xmit_skb(skb, q, dev, txq);
3119 goto out;
3120 }
3121
3122 /* The device has no queue. Common case for software devices:
3123 loopback, all the sorts of tunnels...
3124
3125 Really, it is unlikely that netif_tx_lock protection is necessary
3126 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3127 counters.)
3128 However, it is possible, that they rely on protection
3129 made by us here.
3130
3131 Check this and shot the lock. It is not prone from deadlocks.
3132 Either shot noqueue qdisc, it is even simpler 8)
3133 */
3134 if (dev->flags & IFF_UP) {
3135 int cpu = smp_processor_id(); /* ok because BHs are off */
3136
3137 if (txq->xmit_lock_owner != cpu) {
3138
3139 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3140 goto recursion_alert;
3141
3142 skb = validate_xmit_skb(skb, dev);
3143 if (!skb)
3144 goto drop;
3145
3146 HARD_TX_LOCK(dev, txq, cpu);
3147
3148 if (!netif_xmit_stopped(txq)) {
3149 __this_cpu_inc(xmit_recursion);
3150 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3151 __this_cpu_dec(xmit_recursion);
3152 if (dev_xmit_complete(rc)) {
3153 HARD_TX_UNLOCK(dev, txq);
3154 goto out;
3155 }
3156 }
3157 HARD_TX_UNLOCK(dev, txq);
3158 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3159 dev->name);
3160 } else {
3161 /* Recursion is detected! It is possible,
3162 * unfortunately
3163 */
3164 recursion_alert:
3165 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3166 dev->name);
3167 }
3168 }
3169
3170 rc = -ENETDOWN;
3171 drop:
3172 rcu_read_unlock_bh();
3173
3174 atomic_long_inc(&dev->tx_dropped);
3175 kfree_skb_list(skb);
3176 return rc;
3177 out:
3178 rcu_read_unlock_bh();
3179 return rc;
3180 }
3181
3182 int dev_queue_xmit(struct sk_buff *skb)
3183 {
3184 return __dev_queue_xmit(skb, NULL);
3185 }
3186 EXPORT_SYMBOL(dev_queue_xmit);
3187
3188 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3189 {
3190 return __dev_queue_xmit(skb, accel_priv);
3191 }
3192 EXPORT_SYMBOL(dev_queue_xmit_accel);
3193
3194
3195 /*=======================================================================
3196 Receiver routines
3197 =======================================================================*/
3198
3199 int netdev_max_backlog __read_mostly = 1000;
3200 EXPORT_SYMBOL(netdev_max_backlog);
3201
3202 int netdev_tstamp_prequeue __read_mostly = 1;
3203 int netdev_budget __read_mostly = 300;
3204 int weight_p __read_mostly = 64; /* old backlog weight */
3205
3206 /* Called with irq disabled */
3207 static inline void ____napi_schedule(struct softnet_data *sd,
3208 struct napi_struct *napi)
3209 {
3210 list_add_tail(&napi->poll_list, &sd->poll_list);
3211 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3212 }
3213
3214 #ifdef CONFIG_RPS
3215
3216 /* One global table that all flow-based protocols share. */
3217 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3218 EXPORT_SYMBOL(rps_sock_flow_table);
3219 u32 rps_cpu_mask __read_mostly;
3220 EXPORT_SYMBOL(rps_cpu_mask);
3221
3222 struct static_key rps_needed __read_mostly;
3223
3224 static struct rps_dev_flow *
3225 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3226 struct rps_dev_flow *rflow, u16 next_cpu)
3227 {
3228 if (next_cpu < nr_cpu_ids) {
3229 #ifdef CONFIG_RFS_ACCEL
3230 struct netdev_rx_queue *rxqueue;
3231 struct rps_dev_flow_table *flow_table;
3232 struct rps_dev_flow *old_rflow;
3233 u32 flow_id;
3234 u16 rxq_index;
3235 int rc;
3236
3237 /* Should we steer this flow to a different hardware queue? */
3238 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3239 !(dev->features & NETIF_F_NTUPLE))
3240 goto out;
3241 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3242 if (rxq_index == skb_get_rx_queue(skb))
3243 goto out;
3244
3245 rxqueue = dev->_rx + rxq_index;
3246 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3247 if (!flow_table)
3248 goto out;
3249 flow_id = skb_get_hash(skb) & flow_table->mask;
3250 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3251 rxq_index, flow_id);
3252 if (rc < 0)
3253 goto out;
3254 old_rflow = rflow;
3255 rflow = &flow_table->flows[flow_id];
3256 rflow->filter = rc;
3257 if (old_rflow->filter == rflow->filter)
3258 old_rflow->filter = RPS_NO_FILTER;
3259 out:
3260 #endif
3261 rflow->last_qtail =
3262 per_cpu(softnet_data, next_cpu).input_queue_head;
3263 }
3264
3265 rflow->cpu = next_cpu;
3266 return rflow;
3267 }
3268
3269 /*
3270 * get_rps_cpu is called from netif_receive_skb and returns the target
3271 * CPU from the RPS map of the receiving queue for a given skb.
3272 * rcu_read_lock must be held on entry.
3273 */
3274 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3275 struct rps_dev_flow **rflowp)
3276 {
3277 const struct rps_sock_flow_table *sock_flow_table;
3278 struct netdev_rx_queue *rxqueue = dev->_rx;
3279 struct rps_dev_flow_table *flow_table;
3280 struct rps_map *map;
3281 int cpu = -1;
3282 u32 tcpu;
3283 u32 hash;
3284
3285 if (skb_rx_queue_recorded(skb)) {
3286 u16 index = skb_get_rx_queue(skb);
3287
3288 if (unlikely(index >= dev->real_num_rx_queues)) {
3289 WARN_ONCE(dev->real_num_rx_queues > 1,
3290 "%s received packet on queue %u, but number "
3291 "of RX queues is %u\n",
3292 dev->name, index, dev->real_num_rx_queues);
3293 goto done;
3294 }
3295 rxqueue += index;
3296 }
3297
3298 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3299
3300 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3301 map = rcu_dereference(rxqueue->rps_map);
3302 if (!flow_table && !map)
3303 goto done;
3304
3305 skb_reset_network_header(skb);
3306 hash = skb_get_hash(skb);
3307 if (!hash)
3308 goto done;
3309
3310 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3311 if (flow_table && sock_flow_table) {
3312 struct rps_dev_flow *rflow;
3313 u32 next_cpu;
3314 u32 ident;
3315
3316 /* First check into global flow table if there is a match */
3317 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3318 if ((ident ^ hash) & ~rps_cpu_mask)
3319 goto try_rps;
3320
3321 next_cpu = ident & rps_cpu_mask;
3322
3323 /* OK, now we know there is a match,
3324 * we can look at the local (per receive queue) flow table
3325 */
3326 rflow = &flow_table->flows[hash & flow_table->mask];
3327 tcpu = rflow->cpu;
3328
3329 /*
3330 * If the desired CPU (where last recvmsg was done) is
3331 * different from current CPU (one in the rx-queue flow
3332 * table entry), switch if one of the following holds:
3333 * - Current CPU is unset (>= nr_cpu_ids).
3334 * - Current CPU is offline.
3335 * - The current CPU's queue tail has advanced beyond the
3336 * last packet that was enqueued using this table entry.
3337 * This guarantees that all previous packets for the flow
3338 * have been dequeued, thus preserving in order delivery.
3339 */
3340 if (unlikely(tcpu != next_cpu) &&
3341 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3342 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3343 rflow->last_qtail)) >= 0)) {
3344 tcpu = next_cpu;
3345 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3346 }
3347
3348 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3349 *rflowp = rflow;
3350 cpu = tcpu;
3351 goto done;
3352 }
3353 }
3354
3355 try_rps:
3356
3357 if (map) {
3358 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3359 if (cpu_online(tcpu)) {
3360 cpu = tcpu;
3361 goto done;
3362 }
3363 }
3364
3365 done:
3366 return cpu;
3367 }
3368
3369 #ifdef CONFIG_RFS_ACCEL
3370
3371 /**
3372 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3373 * @dev: Device on which the filter was set
3374 * @rxq_index: RX queue index
3375 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3376 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3377 *
3378 * Drivers that implement ndo_rx_flow_steer() should periodically call
3379 * this function for each installed filter and remove the filters for
3380 * which it returns %true.
3381 */
3382 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3383 u32 flow_id, u16 filter_id)
3384 {
3385 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3386 struct rps_dev_flow_table *flow_table;
3387 struct rps_dev_flow *rflow;
3388 bool expire = true;
3389 unsigned int cpu;
3390
3391 rcu_read_lock();
3392 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3393 if (flow_table && flow_id <= flow_table->mask) {
3394 rflow = &flow_table->flows[flow_id];
3395 cpu = ACCESS_ONCE(rflow->cpu);
3396 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3397 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3398 rflow->last_qtail) <
3399 (int)(10 * flow_table->mask)))
3400 expire = false;
3401 }
3402 rcu_read_unlock();
3403 return expire;
3404 }
3405 EXPORT_SYMBOL(rps_may_expire_flow);
3406
3407 #endif /* CONFIG_RFS_ACCEL */
3408
3409 /* Called from hardirq (IPI) context */
3410 static void rps_trigger_softirq(void *data)
3411 {
3412 struct softnet_data *sd = data;
3413
3414 ____napi_schedule(sd, &sd->backlog);
3415 sd->received_rps++;
3416 }
3417
3418 #endif /* CONFIG_RPS */
3419
3420 /*
3421 * Check if this softnet_data structure is another cpu one
3422 * If yes, queue it to our IPI list and return 1
3423 * If no, return 0
3424 */
3425 static int rps_ipi_queued(struct softnet_data *sd)
3426 {
3427 #ifdef CONFIG_RPS
3428 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3429
3430 if (sd != mysd) {
3431 sd->rps_ipi_next = mysd->rps_ipi_list;
3432 mysd->rps_ipi_list = sd;
3433
3434 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3435 return 1;
3436 }
3437 #endif /* CONFIG_RPS */
3438 return 0;
3439 }
3440
3441 #ifdef CONFIG_NET_FLOW_LIMIT
3442 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3443 #endif
3444
3445 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3446 {
3447 #ifdef CONFIG_NET_FLOW_LIMIT
3448 struct sd_flow_limit *fl;
3449 struct softnet_data *sd;
3450 unsigned int old_flow, new_flow;
3451
3452 if (qlen < (netdev_max_backlog >> 1))
3453 return false;
3454
3455 sd = this_cpu_ptr(&softnet_data);
3456
3457 rcu_read_lock();
3458 fl = rcu_dereference(sd->flow_limit);
3459 if (fl) {
3460 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3461 old_flow = fl->history[fl->history_head];
3462 fl->history[fl->history_head] = new_flow;
3463
3464 fl->history_head++;
3465 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3466
3467 if (likely(fl->buckets[old_flow]))
3468 fl->buckets[old_flow]--;
3469
3470 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3471 fl->count++;
3472 rcu_read_unlock();
3473 return true;
3474 }
3475 }
3476 rcu_read_unlock();
3477 #endif
3478 return false;
3479 }
3480
3481 /*
3482 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3483 * queue (may be a remote CPU queue).
3484 */
3485 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3486 unsigned int *qtail)
3487 {
3488 struct softnet_data *sd;
3489 unsigned long flags;
3490 unsigned int qlen;
3491
3492 sd = &per_cpu(softnet_data, cpu);
3493
3494 local_irq_save(flags);
3495
3496 rps_lock(sd);
3497 if (!netif_running(skb->dev))
3498 goto drop;
3499 qlen = skb_queue_len(&sd->input_pkt_queue);
3500 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3501 if (qlen) {
3502 enqueue:
3503 __skb_queue_tail(&sd->input_pkt_queue, skb);
3504 input_queue_tail_incr_save(sd, qtail);
3505 rps_unlock(sd);
3506 local_irq_restore(flags);
3507 return NET_RX_SUCCESS;
3508 }
3509
3510 /* Schedule NAPI for backlog device
3511 * We can use non atomic operation since we own the queue lock
3512 */
3513 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3514 if (!rps_ipi_queued(sd))
3515 ____napi_schedule(sd, &sd->backlog);
3516 }
3517 goto enqueue;
3518 }
3519
3520 drop:
3521 sd->dropped++;
3522 rps_unlock(sd);
3523
3524 local_irq_restore(flags);
3525
3526 atomic_long_inc(&skb->dev->rx_dropped);
3527 kfree_skb(skb);
3528 return NET_RX_DROP;
3529 }
3530
3531 static int netif_rx_internal(struct sk_buff *skb)
3532 {
3533 int ret;
3534
3535 net_timestamp_check(netdev_tstamp_prequeue, skb);
3536
3537 trace_netif_rx(skb);
3538 #ifdef CONFIG_RPS
3539 if (static_key_false(&rps_needed)) {
3540 struct rps_dev_flow voidflow, *rflow = &voidflow;
3541 int cpu;
3542
3543 preempt_disable();
3544 rcu_read_lock();
3545
3546 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3547 if (cpu < 0)
3548 cpu = smp_processor_id();
3549
3550 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3551
3552 rcu_read_unlock();
3553 preempt_enable();
3554 } else
3555 #endif
3556 {
3557 unsigned int qtail;
3558 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3559 put_cpu();
3560 }
3561 return ret;
3562 }
3563
3564 /**
3565 * netif_rx - post buffer to the network code
3566 * @skb: buffer to post
3567 *
3568 * This function receives a packet from a device driver and queues it for
3569 * the upper (protocol) levels to process. It always succeeds. The buffer
3570 * may be dropped during processing for congestion control or by the
3571 * protocol layers.
3572 *
3573 * return values:
3574 * NET_RX_SUCCESS (no congestion)
3575 * NET_RX_DROP (packet was dropped)
3576 *
3577 */
3578
3579 int netif_rx(struct sk_buff *skb)
3580 {
3581 trace_netif_rx_entry(skb);
3582
3583 return netif_rx_internal(skb);
3584 }
3585 EXPORT_SYMBOL(netif_rx);
3586
3587 int netif_rx_ni(struct sk_buff *skb)
3588 {
3589 int err;
3590
3591 trace_netif_rx_ni_entry(skb);
3592
3593 preempt_disable();
3594 err = netif_rx_internal(skb);
3595 if (local_softirq_pending())
3596 do_softirq();
3597 preempt_enable();
3598
3599 return err;
3600 }
3601 EXPORT_SYMBOL(netif_rx_ni);
3602
3603 static void net_tx_action(struct softirq_action *h)
3604 {
3605 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3606
3607 if (sd->completion_queue) {
3608 struct sk_buff *clist;
3609
3610 local_irq_disable();
3611 clist = sd->completion_queue;
3612 sd->completion_queue = NULL;
3613 local_irq_enable();
3614
3615 while (clist) {
3616 struct sk_buff *skb = clist;
3617 clist = clist->next;
3618
3619 WARN_ON(atomic_read(&skb->users));
3620 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3621 trace_consume_skb(skb);
3622 else
3623 trace_kfree_skb(skb, net_tx_action);
3624 __kfree_skb(skb);
3625 }
3626 }
3627
3628 if (sd->output_queue) {
3629 struct Qdisc *head;
3630
3631 local_irq_disable();
3632 head = sd->output_queue;
3633 sd->output_queue = NULL;
3634 sd->output_queue_tailp = &sd->output_queue;
3635 local_irq_enable();
3636
3637 while (head) {
3638 struct Qdisc *q = head;
3639 spinlock_t *root_lock;
3640
3641 head = head->next_sched;
3642
3643 root_lock = qdisc_lock(q);
3644 if (spin_trylock(root_lock)) {
3645 smp_mb__before_atomic();
3646 clear_bit(__QDISC_STATE_SCHED,
3647 &q->state);
3648 qdisc_run(q);
3649 spin_unlock(root_lock);
3650 } else {
3651 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3652 &q->state)) {
3653 __netif_reschedule(q);
3654 } else {
3655 smp_mb__before_atomic();
3656 clear_bit(__QDISC_STATE_SCHED,
3657 &q->state);
3658 }
3659 }
3660 }
3661 }
3662 }
3663
3664 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3665 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3666 /* This hook is defined here for ATM LANE */
3667 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3668 unsigned char *addr) __read_mostly;
3669 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3670 #endif
3671
3672 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3673 struct packet_type **pt_prev,
3674 int *ret, struct net_device *orig_dev)
3675 {
3676 #ifdef CONFIG_NET_CLS_ACT
3677 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3678 struct tcf_result cl_res;
3679
3680 /* If there's at least one ingress present somewhere (so
3681 * we get here via enabled static key), remaining devices
3682 * that are not configured with an ingress qdisc will bail
3683 * out here.
3684 */
3685 if (!cl)
3686 return skb;
3687 if (*pt_prev) {
3688 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3689 *pt_prev = NULL;
3690 }
3691
3692 qdisc_skb_cb(skb)->pkt_len = skb->len;
3693 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3694 qdisc_bstats_cpu_update(cl->q, skb);
3695
3696 switch (tc_classify(skb, cl, &cl_res, false)) {
3697 case TC_ACT_OK:
3698 case TC_ACT_RECLASSIFY:
3699 skb->tc_index = TC_H_MIN(cl_res.classid);
3700 break;
3701 case TC_ACT_SHOT:
3702 qdisc_qstats_cpu_drop(cl->q);
3703 case TC_ACT_STOLEN:
3704 case TC_ACT_QUEUED:
3705 kfree_skb(skb);
3706 return NULL;
3707 case TC_ACT_REDIRECT:
3708 /* skb_mac_header check was done by cls/act_bpf, so
3709 * we can safely push the L2 header back before
3710 * redirecting to another netdev
3711 */
3712 __skb_push(skb, skb->mac_len);
3713 skb_do_redirect(skb);
3714 return NULL;
3715 default:
3716 break;
3717 }
3718 #endif /* CONFIG_NET_CLS_ACT */
3719 return skb;
3720 }
3721
3722 /**
3723 * netdev_rx_handler_register - register receive handler
3724 * @dev: device to register a handler for
3725 * @rx_handler: receive handler to register
3726 * @rx_handler_data: data pointer that is used by rx handler
3727 *
3728 * Register a receive handler for a device. This handler will then be
3729 * called from __netif_receive_skb. A negative errno code is returned
3730 * on a failure.
3731 *
3732 * The caller must hold the rtnl_mutex.
3733 *
3734 * For a general description of rx_handler, see enum rx_handler_result.
3735 */
3736 int netdev_rx_handler_register(struct net_device *dev,
3737 rx_handler_func_t *rx_handler,
3738 void *rx_handler_data)
3739 {
3740 ASSERT_RTNL();
3741
3742 if (dev->rx_handler)
3743 return -EBUSY;
3744
3745 /* Note: rx_handler_data must be set before rx_handler */
3746 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3747 rcu_assign_pointer(dev->rx_handler, rx_handler);
3748
3749 return 0;
3750 }
3751 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3752
3753 /**
3754 * netdev_rx_handler_unregister - unregister receive handler
3755 * @dev: device to unregister a handler from
3756 *
3757 * Unregister a receive handler from a device.
3758 *
3759 * The caller must hold the rtnl_mutex.
3760 */
3761 void netdev_rx_handler_unregister(struct net_device *dev)
3762 {
3763
3764 ASSERT_RTNL();
3765 RCU_INIT_POINTER(dev->rx_handler, NULL);
3766 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3767 * section has a guarantee to see a non NULL rx_handler_data
3768 * as well.
3769 */
3770 synchronize_net();
3771 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3772 }
3773 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3774
3775 /*
3776 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3777 * the special handling of PFMEMALLOC skbs.
3778 */
3779 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3780 {
3781 switch (skb->protocol) {
3782 case htons(ETH_P_ARP):
3783 case htons(ETH_P_IP):
3784 case htons(ETH_P_IPV6):
3785 case htons(ETH_P_8021Q):
3786 case htons(ETH_P_8021AD):
3787 return true;
3788 default:
3789 return false;
3790 }
3791 }
3792
3793 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3794 int *ret, struct net_device *orig_dev)
3795 {
3796 #ifdef CONFIG_NETFILTER_INGRESS
3797 if (nf_hook_ingress_active(skb)) {
3798 if (*pt_prev) {
3799 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3800 *pt_prev = NULL;
3801 }
3802
3803 return nf_hook_ingress(skb);
3804 }
3805 #endif /* CONFIG_NETFILTER_INGRESS */
3806 return 0;
3807 }
3808
3809 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3810 {
3811 struct packet_type *ptype, *pt_prev;
3812 rx_handler_func_t *rx_handler;
3813 struct net_device *orig_dev;
3814 bool deliver_exact = false;
3815 int ret = NET_RX_DROP;
3816 __be16 type;
3817
3818 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3819
3820 trace_netif_receive_skb(skb);
3821
3822 orig_dev = skb->dev;
3823
3824 skb_reset_network_header(skb);
3825 if (!skb_transport_header_was_set(skb))
3826 skb_reset_transport_header(skb);
3827 skb_reset_mac_len(skb);
3828
3829 pt_prev = NULL;
3830
3831 another_round:
3832 skb->skb_iif = skb->dev->ifindex;
3833
3834 __this_cpu_inc(softnet_data.processed);
3835
3836 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3837 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3838 skb = skb_vlan_untag(skb);
3839 if (unlikely(!skb))
3840 goto out;
3841 }
3842
3843 #ifdef CONFIG_NET_CLS_ACT
3844 if (skb->tc_verd & TC_NCLS) {
3845 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3846 goto ncls;
3847 }
3848 #endif
3849
3850 if (pfmemalloc)
3851 goto skip_taps;
3852
3853 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3854 if (pt_prev)
3855 ret = deliver_skb(skb, pt_prev, orig_dev);
3856 pt_prev = ptype;
3857 }
3858
3859 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3860 if (pt_prev)
3861 ret = deliver_skb(skb, pt_prev, orig_dev);
3862 pt_prev = ptype;
3863 }
3864
3865 skip_taps:
3866 #ifdef CONFIG_NET_INGRESS
3867 if (static_key_false(&ingress_needed)) {
3868 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3869 if (!skb)
3870 goto out;
3871
3872 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3873 goto out;
3874 }
3875 #endif
3876 #ifdef CONFIG_NET_CLS_ACT
3877 skb->tc_verd = 0;
3878 ncls:
3879 #endif
3880 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3881 goto drop;
3882
3883 if (skb_vlan_tag_present(skb)) {
3884 if (pt_prev) {
3885 ret = deliver_skb(skb, pt_prev, orig_dev);
3886 pt_prev = NULL;
3887 }
3888 if (vlan_do_receive(&skb))
3889 goto another_round;
3890 else if (unlikely(!skb))
3891 goto out;
3892 }
3893
3894 rx_handler = rcu_dereference(skb->dev->rx_handler);
3895 if (rx_handler) {
3896 if (pt_prev) {
3897 ret = deliver_skb(skb, pt_prev, orig_dev);
3898 pt_prev = NULL;
3899 }
3900 switch (rx_handler(&skb)) {
3901 case RX_HANDLER_CONSUMED:
3902 ret = NET_RX_SUCCESS;
3903 goto out;
3904 case RX_HANDLER_ANOTHER:
3905 goto another_round;
3906 case RX_HANDLER_EXACT:
3907 deliver_exact = true;
3908 case RX_HANDLER_PASS:
3909 break;
3910 default:
3911 BUG();
3912 }
3913 }
3914
3915 if (unlikely(skb_vlan_tag_present(skb))) {
3916 if (skb_vlan_tag_get_id(skb))
3917 skb->pkt_type = PACKET_OTHERHOST;
3918 /* Note: we might in the future use prio bits
3919 * and set skb->priority like in vlan_do_receive()
3920 * For the time being, just ignore Priority Code Point
3921 */
3922 skb->vlan_tci = 0;
3923 }
3924
3925 type = skb->protocol;
3926
3927 /* deliver only exact match when indicated */
3928 if (likely(!deliver_exact)) {
3929 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3930 &ptype_base[ntohs(type) &
3931 PTYPE_HASH_MASK]);
3932 }
3933
3934 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3935 &orig_dev->ptype_specific);
3936
3937 if (unlikely(skb->dev != orig_dev)) {
3938 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3939 &skb->dev->ptype_specific);
3940 }
3941
3942 if (pt_prev) {
3943 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3944 goto drop;
3945 else
3946 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3947 } else {
3948 drop:
3949 atomic_long_inc(&skb->dev->rx_dropped);
3950 kfree_skb(skb);
3951 /* Jamal, now you will not able to escape explaining
3952 * me how you were going to use this. :-)
3953 */
3954 ret = NET_RX_DROP;
3955 }
3956
3957 out:
3958 return ret;
3959 }
3960
3961 static int __netif_receive_skb(struct sk_buff *skb)
3962 {
3963 int ret;
3964
3965 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3966 unsigned long pflags = current->flags;
3967
3968 /*
3969 * PFMEMALLOC skbs are special, they should
3970 * - be delivered to SOCK_MEMALLOC sockets only
3971 * - stay away from userspace
3972 * - have bounded memory usage
3973 *
3974 * Use PF_MEMALLOC as this saves us from propagating the allocation
3975 * context down to all allocation sites.
3976 */
3977 current->flags |= PF_MEMALLOC;
3978 ret = __netif_receive_skb_core(skb, true);
3979 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3980 } else
3981 ret = __netif_receive_skb_core(skb, false);
3982
3983 return ret;
3984 }
3985
3986 static int netif_receive_skb_internal(struct sk_buff *skb)
3987 {
3988 int ret;
3989
3990 net_timestamp_check(netdev_tstamp_prequeue, skb);
3991
3992 if (skb_defer_rx_timestamp(skb))
3993 return NET_RX_SUCCESS;
3994
3995 rcu_read_lock();
3996
3997 #ifdef CONFIG_RPS
3998 if (static_key_false(&rps_needed)) {
3999 struct rps_dev_flow voidflow, *rflow = &voidflow;
4000 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4001
4002 if (cpu >= 0) {
4003 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4004 rcu_read_unlock();
4005 return ret;
4006 }
4007 }
4008 #endif
4009 ret = __netif_receive_skb(skb);
4010 rcu_read_unlock();
4011 return ret;
4012 }
4013
4014 /**
4015 * netif_receive_skb - process receive buffer from network
4016 * @skb: buffer to process
4017 *
4018 * netif_receive_skb() is the main receive data processing function.
4019 * It always succeeds. The buffer may be dropped during processing
4020 * for congestion control or by the protocol layers.
4021 *
4022 * This function may only be called from softirq context and interrupts
4023 * should be enabled.
4024 *
4025 * Return values (usually ignored):
4026 * NET_RX_SUCCESS: no congestion
4027 * NET_RX_DROP: packet was dropped
4028 */
4029 int netif_receive_skb(struct sk_buff *skb)
4030 {
4031 trace_netif_receive_skb_entry(skb);
4032
4033 return netif_receive_skb_internal(skb);
4034 }
4035 EXPORT_SYMBOL(netif_receive_skb);
4036
4037 /* Network device is going away, flush any packets still pending
4038 * Called with irqs disabled.
4039 */
4040 static void flush_backlog(void *arg)
4041 {
4042 struct net_device *dev = arg;
4043 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4044 struct sk_buff *skb, *tmp;
4045
4046 rps_lock(sd);
4047 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4048 if (skb->dev == dev) {
4049 __skb_unlink(skb, &sd->input_pkt_queue);
4050 kfree_skb(skb);
4051 input_queue_head_incr(sd);
4052 }
4053 }
4054 rps_unlock(sd);
4055
4056 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4057 if (skb->dev == dev) {
4058 __skb_unlink(skb, &sd->process_queue);
4059 kfree_skb(skb);
4060 input_queue_head_incr(sd);
4061 }
4062 }
4063 }
4064
4065 static int napi_gro_complete(struct sk_buff *skb)
4066 {
4067 struct packet_offload *ptype;
4068 __be16 type = skb->protocol;
4069 struct list_head *head = &offload_base;
4070 int err = -ENOENT;
4071
4072 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4073
4074 if (NAPI_GRO_CB(skb)->count == 1) {
4075 skb_shinfo(skb)->gso_size = 0;
4076 goto out;
4077 }
4078
4079 rcu_read_lock();
4080 list_for_each_entry_rcu(ptype, head, list) {
4081 if (ptype->type != type || !ptype->callbacks.gro_complete)
4082 continue;
4083
4084 err = ptype->callbacks.gro_complete(skb, 0);
4085 break;
4086 }
4087 rcu_read_unlock();
4088
4089 if (err) {
4090 WARN_ON(&ptype->list == head);
4091 kfree_skb(skb);
4092 return NET_RX_SUCCESS;
4093 }
4094
4095 out:
4096 return netif_receive_skb_internal(skb);
4097 }
4098
4099 /* napi->gro_list contains packets ordered by age.
4100 * youngest packets at the head of it.
4101 * Complete skbs in reverse order to reduce latencies.
4102 */
4103 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4104 {
4105 struct sk_buff *skb, *prev = NULL;
4106
4107 /* scan list and build reverse chain */
4108 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4109 skb->prev = prev;
4110 prev = skb;
4111 }
4112
4113 for (skb = prev; skb; skb = prev) {
4114 skb->next = NULL;
4115
4116 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4117 return;
4118
4119 prev = skb->prev;
4120 napi_gro_complete(skb);
4121 napi->gro_count--;
4122 }
4123
4124 napi->gro_list = NULL;
4125 }
4126 EXPORT_SYMBOL(napi_gro_flush);
4127
4128 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4129 {
4130 struct sk_buff *p;
4131 unsigned int maclen = skb->dev->hard_header_len;
4132 u32 hash = skb_get_hash_raw(skb);
4133
4134 for (p = napi->gro_list; p; p = p->next) {
4135 unsigned long diffs;
4136
4137 NAPI_GRO_CB(p)->flush = 0;
4138
4139 if (hash != skb_get_hash_raw(p)) {
4140 NAPI_GRO_CB(p)->same_flow = 0;
4141 continue;
4142 }
4143
4144 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4145 diffs |= p->vlan_tci ^ skb->vlan_tci;
4146 if (maclen == ETH_HLEN)
4147 diffs |= compare_ether_header(skb_mac_header(p),
4148 skb_mac_header(skb));
4149 else if (!diffs)
4150 diffs = memcmp(skb_mac_header(p),
4151 skb_mac_header(skb),
4152 maclen);
4153 NAPI_GRO_CB(p)->same_flow = !diffs;
4154 }
4155 }
4156
4157 static void skb_gro_reset_offset(struct sk_buff *skb)
4158 {
4159 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4160 const skb_frag_t *frag0 = &pinfo->frags[0];
4161
4162 NAPI_GRO_CB(skb)->data_offset = 0;
4163 NAPI_GRO_CB(skb)->frag0 = NULL;
4164 NAPI_GRO_CB(skb)->frag0_len = 0;
4165
4166 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4167 pinfo->nr_frags &&
4168 !PageHighMem(skb_frag_page(frag0))) {
4169 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4170 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4171 }
4172 }
4173
4174 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4175 {
4176 struct skb_shared_info *pinfo = skb_shinfo(skb);
4177
4178 BUG_ON(skb->end - skb->tail < grow);
4179
4180 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4181
4182 skb->data_len -= grow;
4183 skb->tail += grow;
4184
4185 pinfo->frags[0].page_offset += grow;
4186 skb_frag_size_sub(&pinfo->frags[0], grow);
4187
4188 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4189 skb_frag_unref(skb, 0);
4190 memmove(pinfo->frags, pinfo->frags + 1,
4191 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4192 }
4193 }
4194
4195 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4196 {
4197 struct sk_buff **pp = NULL;
4198 struct packet_offload *ptype;
4199 __be16 type = skb->protocol;
4200 struct list_head *head = &offload_base;
4201 int same_flow;
4202 enum gro_result ret;
4203 int grow;
4204
4205 if (!(skb->dev->features & NETIF_F_GRO))
4206 goto normal;
4207
4208 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4209 goto normal;
4210
4211 gro_list_prepare(napi, skb);
4212
4213 rcu_read_lock();
4214 list_for_each_entry_rcu(ptype, head, list) {
4215 if (ptype->type != type || !ptype->callbacks.gro_receive)
4216 continue;
4217
4218 skb_set_network_header(skb, skb_gro_offset(skb));
4219 skb_reset_mac_len(skb);
4220 NAPI_GRO_CB(skb)->same_flow = 0;
4221 NAPI_GRO_CB(skb)->flush = 0;
4222 NAPI_GRO_CB(skb)->free = 0;
4223 NAPI_GRO_CB(skb)->udp_mark = 0;
4224 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4225
4226 /* Setup for GRO checksum validation */
4227 switch (skb->ip_summed) {
4228 case CHECKSUM_COMPLETE:
4229 NAPI_GRO_CB(skb)->csum = skb->csum;
4230 NAPI_GRO_CB(skb)->csum_valid = 1;
4231 NAPI_GRO_CB(skb)->csum_cnt = 0;
4232 break;
4233 case CHECKSUM_UNNECESSARY:
4234 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4235 NAPI_GRO_CB(skb)->csum_valid = 0;
4236 break;
4237 default:
4238 NAPI_GRO_CB(skb)->csum_cnt = 0;
4239 NAPI_GRO_CB(skb)->csum_valid = 0;
4240 }
4241
4242 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4243 break;
4244 }
4245 rcu_read_unlock();
4246
4247 if (&ptype->list == head)
4248 goto normal;
4249
4250 same_flow = NAPI_GRO_CB(skb)->same_flow;
4251 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4252
4253 if (pp) {
4254 struct sk_buff *nskb = *pp;
4255
4256 *pp = nskb->next;
4257 nskb->next = NULL;
4258 napi_gro_complete(nskb);
4259 napi->gro_count--;
4260 }
4261
4262 if (same_flow)
4263 goto ok;
4264
4265 if (NAPI_GRO_CB(skb)->flush)
4266 goto normal;
4267
4268 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4269 struct sk_buff *nskb = napi->gro_list;
4270
4271 /* locate the end of the list to select the 'oldest' flow */
4272 while (nskb->next) {
4273 pp = &nskb->next;
4274 nskb = *pp;
4275 }
4276 *pp = NULL;
4277 nskb->next = NULL;
4278 napi_gro_complete(nskb);
4279 } else {
4280 napi->gro_count++;
4281 }
4282 NAPI_GRO_CB(skb)->count = 1;
4283 NAPI_GRO_CB(skb)->age = jiffies;
4284 NAPI_GRO_CB(skb)->last = skb;
4285 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4286 skb->next = napi->gro_list;
4287 napi->gro_list = skb;
4288 ret = GRO_HELD;
4289
4290 pull:
4291 grow = skb_gro_offset(skb) - skb_headlen(skb);
4292 if (grow > 0)
4293 gro_pull_from_frag0(skb, grow);
4294 ok:
4295 return ret;
4296
4297 normal:
4298 ret = GRO_NORMAL;
4299 goto pull;
4300 }
4301
4302 struct packet_offload *gro_find_receive_by_type(__be16 type)
4303 {
4304 struct list_head *offload_head = &offload_base;
4305 struct packet_offload *ptype;
4306
4307 list_for_each_entry_rcu(ptype, offload_head, list) {
4308 if (ptype->type != type || !ptype->callbacks.gro_receive)
4309 continue;
4310 return ptype;
4311 }
4312 return NULL;
4313 }
4314 EXPORT_SYMBOL(gro_find_receive_by_type);
4315
4316 struct packet_offload *gro_find_complete_by_type(__be16 type)
4317 {
4318 struct list_head *offload_head = &offload_base;
4319 struct packet_offload *ptype;
4320
4321 list_for_each_entry_rcu(ptype, offload_head, list) {
4322 if (ptype->type != type || !ptype->callbacks.gro_complete)
4323 continue;
4324 return ptype;
4325 }
4326 return NULL;
4327 }
4328 EXPORT_SYMBOL(gro_find_complete_by_type);
4329
4330 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4331 {
4332 switch (ret) {
4333 case GRO_NORMAL:
4334 if (netif_receive_skb_internal(skb))
4335 ret = GRO_DROP;
4336 break;
4337
4338 case GRO_DROP:
4339 kfree_skb(skb);
4340 break;
4341
4342 case GRO_MERGED_FREE:
4343 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4344 kmem_cache_free(skbuff_head_cache, skb);
4345 else
4346 __kfree_skb(skb);
4347 break;
4348
4349 case GRO_HELD:
4350 case GRO_MERGED:
4351 break;
4352 }
4353
4354 return ret;
4355 }
4356
4357 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4358 {
4359 skb_mark_napi_id(skb, napi);
4360 trace_napi_gro_receive_entry(skb);
4361
4362 skb_gro_reset_offset(skb);
4363
4364 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4365 }
4366 EXPORT_SYMBOL(napi_gro_receive);
4367
4368 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4369 {
4370 if (unlikely(skb->pfmemalloc)) {
4371 consume_skb(skb);
4372 return;
4373 }
4374 __skb_pull(skb, skb_headlen(skb));
4375 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4376 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4377 skb->vlan_tci = 0;
4378 skb->dev = napi->dev;
4379 skb->skb_iif = 0;
4380 skb->encapsulation = 0;
4381 skb_shinfo(skb)->gso_type = 0;
4382 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4383
4384 napi->skb = skb;
4385 }
4386
4387 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4388 {
4389 struct sk_buff *skb = napi->skb;
4390
4391 if (!skb) {
4392 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4393 napi->skb = skb;
4394 skb_mark_napi_id(skb, napi);
4395 }
4396 return skb;
4397 }
4398 EXPORT_SYMBOL(napi_get_frags);
4399
4400 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4401 struct sk_buff *skb,
4402 gro_result_t ret)
4403 {
4404 switch (ret) {
4405 case GRO_NORMAL:
4406 case GRO_HELD:
4407 __skb_push(skb, ETH_HLEN);
4408 skb->protocol = eth_type_trans(skb, skb->dev);
4409 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4410 ret = GRO_DROP;
4411 break;
4412
4413 case GRO_DROP:
4414 case GRO_MERGED_FREE:
4415 napi_reuse_skb(napi, skb);
4416 break;
4417
4418 case GRO_MERGED:
4419 break;
4420 }
4421
4422 return ret;
4423 }
4424
4425 /* Upper GRO stack assumes network header starts at gro_offset=0
4426 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4427 * We copy ethernet header into skb->data to have a common layout.
4428 */
4429 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4430 {
4431 struct sk_buff *skb = napi->skb;
4432 const struct ethhdr *eth;
4433 unsigned int hlen = sizeof(*eth);
4434
4435 napi->skb = NULL;
4436
4437 skb_reset_mac_header(skb);
4438 skb_gro_reset_offset(skb);
4439
4440 eth = skb_gro_header_fast(skb, 0);
4441 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4442 eth = skb_gro_header_slow(skb, hlen, 0);
4443 if (unlikely(!eth)) {
4444 napi_reuse_skb(napi, skb);
4445 return NULL;
4446 }
4447 } else {
4448 gro_pull_from_frag0(skb, hlen);
4449 NAPI_GRO_CB(skb)->frag0 += hlen;
4450 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4451 }
4452 __skb_pull(skb, hlen);
4453
4454 /*
4455 * This works because the only protocols we care about don't require
4456 * special handling.
4457 * We'll fix it up properly in napi_frags_finish()
4458 */
4459 skb->protocol = eth->h_proto;
4460
4461 return skb;
4462 }
4463
4464 gro_result_t napi_gro_frags(struct napi_struct *napi)
4465 {
4466 struct sk_buff *skb = napi_frags_skb(napi);
4467
4468 if (!skb)
4469 return GRO_DROP;
4470
4471 trace_napi_gro_frags_entry(skb);
4472
4473 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4474 }
4475 EXPORT_SYMBOL(napi_gro_frags);
4476
4477 /* Compute the checksum from gro_offset and return the folded value
4478 * after adding in any pseudo checksum.
4479 */
4480 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4481 {
4482 __wsum wsum;
4483 __sum16 sum;
4484
4485 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4486
4487 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4488 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4489 if (likely(!sum)) {
4490 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4491 !skb->csum_complete_sw)
4492 netdev_rx_csum_fault(skb->dev);
4493 }
4494
4495 NAPI_GRO_CB(skb)->csum = wsum;
4496 NAPI_GRO_CB(skb)->csum_valid = 1;
4497
4498 return sum;
4499 }
4500 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4501
4502 /*
4503 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4504 * Note: called with local irq disabled, but exits with local irq enabled.
4505 */
4506 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4507 {
4508 #ifdef CONFIG_RPS
4509 struct softnet_data *remsd = sd->rps_ipi_list;
4510
4511 if (remsd) {
4512 sd->rps_ipi_list = NULL;
4513
4514 local_irq_enable();
4515
4516 /* Send pending IPI's to kick RPS processing on remote cpus. */
4517 while (remsd) {
4518 struct softnet_data *next = remsd->rps_ipi_next;
4519
4520 if (cpu_online(remsd->cpu))
4521 smp_call_function_single_async(remsd->cpu,
4522 &remsd->csd);
4523 remsd = next;
4524 }
4525 } else
4526 #endif
4527 local_irq_enable();
4528 }
4529
4530 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4531 {
4532 #ifdef CONFIG_RPS
4533 return sd->rps_ipi_list != NULL;
4534 #else
4535 return false;
4536 #endif
4537 }
4538
4539 static int process_backlog(struct napi_struct *napi, int quota)
4540 {
4541 int work = 0;
4542 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4543
4544 /* Check if we have pending ipi, its better to send them now,
4545 * not waiting net_rx_action() end.
4546 */
4547 if (sd_has_rps_ipi_waiting(sd)) {
4548 local_irq_disable();
4549 net_rps_action_and_irq_enable(sd);
4550 }
4551
4552 napi->weight = weight_p;
4553 local_irq_disable();
4554 while (1) {
4555 struct sk_buff *skb;
4556
4557 while ((skb = __skb_dequeue(&sd->process_queue))) {
4558 rcu_read_lock();
4559 local_irq_enable();
4560 __netif_receive_skb(skb);
4561 rcu_read_unlock();
4562 local_irq_disable();
4563 input_queue_head_incr(sd);
4564 if (++work >= quota) {
4565 local_irq_enable();
4566 return work;
4567 }
4568 }
4569
4570 rps_lock(sd);
4571 if (skb_queue_empty(&sd->input_pkt_queue)) {
4572 /*
4573 * Inline a custom version of __napi_complete().
4574 * only current cpu owns and manipulates this napi,
4575 * and NAPI_STATE_SCHED is the only possible flag set
4576 * on backlog.
4577 * We can use a plain write instead of clear_bit(),
4578 * and we dont need an smp_mb() memory barrier.
4579 */
4580 napi->state = 0;
4581 rps_unlock(sd);
4582
4583 break;
4584 }
4585
4586 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4587 &sd->process_queue);
4588 rps_unlock(sd);
4589 }
4590 local_irq_enable();
4591
4592 return work;
4593 }
4594
4595 /**
4596 * __napi_schedule - schedule for receive
4597 * @n: entry to schedule
4598 *
4599 * The entry's receive function will be scheduled to run.
4600 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4601 */
4602 void __napi_schedule(struct napi_struct *n)
4603 {
4604 unsigned long flags;
4605
4606 local_irq_save(flags);
4607 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4608 local_irq_restore(flags);
4609 }
4610 EXPORT_SYMBOL(__napi_schedule);
4611
4612 /**
4613 * __napi_schedule_irqoff - schedule for receive
4614 * @n: entry to schedule
4615 *
4616 * Variant of __napi_schedule() assuming hard irqs are masked
4617 */
4618 void __napi_schedule_irqoff(struct napi_struct *n)
4619 {
4620 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4621 }
4622 EXPORT_SYMBOL(__napi_schedule_irqoff);
4623
4624 void __napi_complete(struct napi_struct *n)
4625 {
4626 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4627
4628 list_del_init(&n->poll_list);
4629 smp_mb__before_atomic();
4630 clear_bit(NAPI_STATE_SCHED, &n->state);
4631 }
4632 EXPORT_SYMBOL(__napi_complete);
4633
4634 void napi_complete_done(struct napi_struct *n, int work_done)
4635 {
4636 unsigned long flags;
4637
4638 /*
4639 * don't let napi dequeue from the cpu poll list
4640 * just in case its running on a different cpu
4641 */
4642 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4643 return;
4644
4645 if (n->gro_list) {
4646 unsigned long timeout = 0;
4647
4648 if (work_done)
4649 timeout = n->dev->gro_flush_timeout;
4650
4651 if (timeout)
4652 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4653 HRTIMER_MODE_REL_PINNED);
4654 else
4655 napi_gro_flush(n, false);
4656 }
4657 if (likely(list_empty(&n->poll_list))) {
4658 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4659 } else {
4660 /* If n->poll_list is not empty, we need to mask irqs */
4661 local_irq_save(flags);
4662 __napi_complete(n);
4663 local_irq_restore(flags);
4664 }
4665 }
4666 EXPORT_SYMBOL(napi_complete_done);
4667
4668 /* must be called under rcu_read_lock(), as we dont take a reference */
4669 static struct napi_struct *napi_by_id(unsigned int napi_id)
4670 {
4671 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4672 struct napi_struct *napi;
4673
4674 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4675 if (napi->napi_id == napi_id)
4676 return napi;
4677
4678 return NULL;
4679 }
4680
4681 #if defined(CONFIG_NET_RX_BUSY_POLL)
4682 #define BUSY_POLL_BUDGET 8
4683 bool sk_busy_loop(struct sock *sk, int nonblock)
4684 {
4685 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4686 int (*busy_poll)(struct napi_struct *dev);
4687 struct napi_struct *napi;
4688 int rc = false;
4689
4690 rcu_read_lock();
4691
4692 napi = napi_by_id(sk->sk_napi_id);
4693 if (!napi)
4694 goto out;
4695
4696 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4697 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4698
4699 do {
4700 rc = 0;
4701 local_bh_disable();
4702 if (busy_poll) {
4703 rc = busy_poll(napi);
4704 } else if (napi_schedule_prep(napi)) {
4705 void *have = netpoll_poll_lock(napi);
4706
4707 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4708 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4709 trace_napi_poll(napi);
4710 if (rc == BUSY_POLL_BUDGET) {
4711 napi_complete_done(napi, rc);
4712 napi_schedule(napi);
4713 }
4714 }
4715 netpoll_poll_unlock(have);
4716 }
4717 if (rc > 0)
4718 NET_ADD_STATS_BH(sock_net(sk),
4719 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4720 local_bh_enable();
4721
4722 if (rc == LL_FLUSH_FAILED)
4723 break; /* permanent failure */
4724
4725 cpu_relax();
4726 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4727 !need_resched() && !busy_loop_timeout(end_time));
4728
4729 rc = !skb_queue_empty(&sk->sk_receive_queue);
4730 out:
4731 rcu_read_unlock();
4732 return rc;
4733 }
4734 EXPORT_SYMBOL(sk_busy_loop);
4735
4736 #endif /* CONFIG_NET_RX_BUSY_POLL */
4737
4738 void napi_hash_add(struct napi_struct *napi)
4739 {
4740 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4741 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4742 return;
4743
4744 spin_lock(&napi_hash_lock);
4745
4746 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4747 do {
4748 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4749 napi_gen_id = NR_CPUS + 1;
4750 } while (napi_by_id(napi_gen_id));
4751 napi->napi_id = napi_gen_id;
4752
4753 hlist_add_head_rcu(&napi->napi_hash_node,
4754 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4755
4756 spin_unlock(&napi_hash_lock);
4757 }
4758 EXPORT_SYMBOL_GPL(napi_hash_add);
4759
4760 /* Warning : caller is responsible to make sure rcu grace period
4761 * is respected before freeing memory containing @napi
4762 */
4763 bool napi_hash_del(struct napi_struct *napi)
4764 {
4765 bool rcu_sync_needed = false;
4766
4767 spin_lock(&napi_hash_lock);
4768
4769 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4770 rcu_sync_needed = true;
4771 hlist_del_rcu(&napi->napi_hash_node);
4772 }
4773 spin_unlock(&napi_hash_lock);
4774 return rcu_sync_needed;
4775 }
4776 EXPORT_SYMBOL_GPL(napi_hash_del);
4777
4778 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4779 {
4780 struct napi_struct *napi;
4781
4782 napi = container_of(timer, struct napi_struct, timer);
4783 if (napi->gro_list)
4784 napi_schedule(napi);
4785
4786 return HRTIMER_NORESTART;
4787 }
4788
4789 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4790 int (*poll)(struct napi_struct *, int), int weight)
4791 {
4792 INIT_LIST_HEAD(&napi->poll_list);
4793 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4794 napi->timer.function = napi_watchdog;
4795 napi->gro_count = 0;
4796 napi->gro_list = NULL;
4797 napi->skb = NULL;
4798 napi->poll = poll;
4799 if (weight > NAPI_POLL_WEIGHT)
4800 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4801 weight, dev->name);
4802 napi->weight = weight;
4803 list_add(&napi->dev_list, &dev->napi_list);
4804 napi->dev = dev;
4805 #ifdef CONFIG_NETPOLL
4806 spin_lock_init(&napi->poll_lock);
4807 napi->poll_owner = -1;
4808 #endif
4809 set_bit(NAPI_STATE_SCHED, &napi->state);
4810 napi_hash_add(napi);
4811 }
4812 EXPORT_SYMBOL(netif_napi_add);
4813
4814 void napi_disable(struct napi_struct *n)
4815 {
4816 might_sleep();
4817 set_bit(NAPI_STATE_DISABLE, &n->state);
4818
4819 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4820 msleep(1);
4821 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4822 msleep(1);
4823
4824 hrtimer_cancel(&n->timer);
4825
4826 clear_bit(NAPI_STATE_DISABLE, &n->state);
4827 }
4828 EXPORT_SYMBOL(napi_disable);
4829
4830 /* Must be called in process context */
4831 void netif_napi_del(struct napi_struct *napi)
4832 {
4833 might_sleep();
4834 if (napi_hash_del(napi))
4835 synchronize_net();
4836 list_del_init(&napi->dev_list);
4837 napi_free_frags(napi);
4838
4839 kfree_skb_list(napi->gro_list);
4840 napi->gro_list = NULL;
4841 napi->gro_count = 0;
4842 }
4843 EXPORT_SYMBOL(netif_napi_del);
4844
4845 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4846 {
4847 void *have;
4848 int work, weight;
4849
4850 list_del_init(&n->poll_list);
4851
4852 have = netpoll_poll_lock(n);
4853
4854 weight = n->weight;
4855
4856 /* This NAPI_STATE_SCHED test is for avoiding a race
4857 * with netpoll's poll_napi(). Only the entity which
4858 * obtains the lock and sees NAPI_STATE_SCHED set will
4859 * actually make the ->poll() call. Therefore we avoid
4860 * accidentally calling ->poll() when NAPI is not scheduled.
4861 */
4862 work = 0;
4863 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4864 work = n->poll(n, weight);
4865 trace_napi_poll(n);
4866 }
4867
4868 WARN_ON_ONCE(work > weight);
4869
4870 if (likely(work < weight))
4871 goto out_unlock;
4872
4873 /* Drivers must not modify the NAPI state if they
4874 * consume the entire weight. In such cases this code
4875 * still "owns" the NAPI instance and therefore can
4876 * move the instance around on the list at-will.
4877 */
4878 if (unlikely(napi_disable_pending(n))) {
4879 napi_complete(n);
4880 goto out_unlock;
4881 }
4882
4883 if (n->gro_list) {
4884 /* flush too old packets
4885 * If HZ < 1000, flush all packets.
4886 */
4887 napi_gro_flush(n, HZ >= 1000);
4888 }
4889
4890 /* Some drivers may have called napi_schedule
4891 * prior to exhausting their budget.
4892 */
4893 if (unlikely(!list_empty(&n->poll_list))) {
4894 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4895 n->dev ? n->dev->name : "backlog");
4896 goto out_unlock;
4897 }
4898
4899 list_add_tail(&n->poll_list, repoll);
4900
4901 out_unlock:
4902 netpoll_poll_unlock(have);
4903
4904 return work;
4905 }
4906
4907 static void net_rx_action(struct softirq_action *h)
4908 {
4909 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4910 unsigned long time_limit = jiffies + 2;
4911 int budget = netdev_budget;
4912 LIST_HEAD(list);
4913 LIST_HEAD(repoll);
4914
4915 local_irq_disable();
4916 list_splice_init(&sd->poll_list, &list);
4917 local_irq_enable();
4918
4919 for (;;) {
4920 struct napi_struct *n;
4921
4922 if (list_empty(&list)) {
4923 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4924 return;
4925 break;
4926 }
4927
4928 n = list_first_entry(&list, struct napi_struct, poll_list);
4929 budget -= napi_poll(n, &repoll);
4930
4931 /* If softirq window is exhausted then punt.
4932 * Allow this to run for 2 jiffies since which will allow
4933 * an average latency of 1.5/HZ.
4934 */
4935 if (unlikely(budget <= 0 ||
4936 time_after_eq(jiffies, time_limit))) {
4937 sd->time_squeeze++;
4938 break;
4939 }
4940 }
4941
4942 local_irq_disable();
4943
4944 list_splice_tail_init(&sd->poll_list, &list);
4945 list_splice_tail(&repoll, &list);
4946 list_splice(&list, &sd->poll_list);
4947 if (!list_empty(&sd->poll_list))
4948 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4949
4950 net_rps_action_and_irq_enable(sd);
4951 }
4952
4953 struct netdev_adjacent {
4954 struct net_device *dev;
4955
4956 /* upper master flag, there can only be one master device per list */
4957 bool master;
4958
4959 /* counter for the number of times this device was added to us */
4960 u16 ref_nr;
4961
4962 /* private field for the users */
4963 void *private;
4964
4965 struct list_head list;
4966 struct rcu_head rcu;
4967 };
4968
4969 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4970 struct list_head *adj_list)
4971 {
4972 struct netdev_adjacent *adj;
4973
4974 list_for_each_entry(adj, adj_list, list) {
4975 if (adj->dev == adj_dev)
4976 return adj;
4977 }
4978 return NULL;
4979 }
4980
4981 /**
4982 * netdev_has_upper_dev - Check if device is linked to an upper device
4983 * @dev: device
4984 * @upper_dev: upper device to check
4985 *
4986 * Find out if a device is linked to specified upper device and return true
4987 * in case it is. Note that this checks only immediate upper device,
4988 * not through a complete stack of devices. The caller must hold the RTNL lock.
4989 */
4990 bool netdev_has_upper_dev(struct net_device *dev,
4991 struct net_device *upper_dev)
4992 {
4993 ASSERT_RTNL();
4994
4995 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4996 }
4997 EXPORT_SYMBOL(netdev_has_upper_dev);
4998
4999 /**
5000 * netdev_has_any_upper_dev - Check if device is linked to some device
5001 * @dev: device
5002 *
5003 * Find out if a device is linked to an upper device and return true in case
5004 * it is. The caller must hold the RTNL lock.
5005 */
5006 static bool netdev_has_any_upper_dev(struct net_device *dev)
5007 {
5008 ASSERT_RTNL();
5009
5010 return !list_empty(&dev->all_adj_list.upper);
5011 }
5012
5013 /**
5014 * netdev_master_upper_dev_get - Get master upper device
5015 * @dev: device
5016 *
5017 * Find a master upper device and return pointer to it or NULL in case
5018 * it's not there. The caller must hold the RTNL lock.
5019 */
5020 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5021 {
5022 struct netdev_adjacent *upper;
5023
5024 ASSERT_RTNL();
5025
5026 if (list_empty(&dev->adj_list.upper))
5027 return NULL;
5028
5029 upper = list_first_entry(&dev->adj_list.upper,
5030 struct netdev_adjacent, list);
5031 if (likely(upper->master))
5032 return upper->dev;
5033 return NULL;
5034 }
5035 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5036
5037 void *netdev_adjacent_get_private(struct list_head *adj_list)
5038 {
5039 struct netdev_adjacent *adj;
5040
5041 adj = list_entry(adj_list, struct netdev_adjacent, list);
5042
5043 return adj->private;
5044 }
5045 EXPORT_SYMBOL(netdev_adjacent_get_private);
5046
5047 /**
5048 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5049 * @dev: device
5050 * @iter: list_head ** of the current position
5051 *
5052 * Gets the next device from the dev's upper list, starting from iter
5053 * position. The caller must hold RCU read lock.
5054 */
5055 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5056 struct list_head **iter)
5057 {
5058 struct netdev_adjacent *upper;
5059
5060 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5061
5062 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5063
5064 if (&upper->list == &dev->adj_list.upper)
5065 return NULL;
5066
5067 *iter = &upper->list;
5068
5069 return upper->dev;
5070 }
5071 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5072
5073 /**
5074 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5075 * @dev: device
5076 * @iter: list_head ** of the current position
5077 *
5078 * Gets the next device from the dev's upper list, starting from iter
5079 * position. The caller must hold RCU read lock.
5080 */
5081 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5082 struct list_head **iter)
5083 {
5084 struct netdev_adjacent *upper;
5085
5086 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5087
5088 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5089
5090 if (&upper->list == &dev->all_adj_list.upper)
5091 return NULL;
5092
5093 *iter = &upper->list;
5094
5095 return upper->dev;
5096 }
5097 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5098
5099 /**
5100 * netdev_lower_get_next_private - Get the next ->private from the
5101 * lower neighbour list
5102 * @dev: device
5103 * @iter: list_head ** of the current position
5104 *
5105 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5106 * list, starting from iter position. The caller must hold either hold the
5107 * RTNL lock or its own locking that guarantees that the neighbour lower
5108 * list will remain unchanged.
5109 */
5110 void *netdev_lower_get_next_private(struct net_device *dev,
5111 struct list_head **iter)
5112 {
5113 struct netdev_adjacent *lower;
5114
5115 lower = list_entry(*iter, struct netdev_adjacent, list);
5116
5117 if (&lower->list == &dev->adj_list.lower)
5118 return NULL;
5119
5120 *iter = lower->list.next;
5121
5122 return lower->private;
5123 }
5124 EXPORT_SYMBOL(netdev_lower_get_next_private);
5125
5126 /**
5127 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5128 * lower neighbour list, RCU
5129 * variant
5130 * @dev: device
5131 * @iter: list_head ** of the current position
5132 *
5133 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5134 * list, starting from iter position. The caller must hold RCU read lock.
5135 */
5136 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5137 struct list_head **iter)
5138 {
5139 struct netdev_adjacent *lower;
5140
5141 WARN_ON_ONCE(!rcu_read_lock_held());
5142
5143 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5144
5145 if (&lower->list == &dev->adj_list.lower)
5146 return NULL;
5147
5148 *iter = &lower->list;
5149
5150 return lower->private;
5151 }
5152 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5153
5154 /**
5155 * netdev_lower_get_next - Get the next device from the lower neighbour
5156 * list
5157 * @dev: device
5158 * @iter: list_head ** of the current position
5159 *
5160 * Gets the next netdev_adjacent from the dev's lower neighbour
5161 * list, starting from iter position. The caller must hold RTNL lock or
5162 * its own locking that guarantees that the neighbour lower
5163 * list will remain unchanged.
5164 */
5165 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5166 {
5167 struct netdev_adjacent *lower;
5168
5169 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5170
5171 if (&lower->list == &dev->adj_list.lower)
5172 return NULL;
5173
5174 *iter = &lower->list;
5175
5176 return lower->dev;
5177 }
5178 EXPORT_SYMBOL(netdev_lower_get_next);
5179
5180 /**
5181 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5182 * lower neighbour list, RCU
5183 * variant
5184 * @dev: device
5185 *
5186 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5187 * list. The caller must hold RCU read lock.
5188 */
5189 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5190 {
5191 struct netdev_adjacent *lower;
5192
5193 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5194 struct netdev_adjacent, list);
5195 if (lower)
5196 return lower->private;
5197 return NULL;
5198 }
5199 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5200
5201 /**
5202 * netdev_master_upper_dev_get_rcu - Get master upper device
5203 * @dev: device
5204 *
5205 * Find a master upper device and return pointer to it or NULL in case
5206 * it's not there. The caller must hold the RCU read lock.
5207 */
5208 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5209 {
5210 struct netdev_adjacent *upper;
5211
5212 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5213 struct netdev_adjacent, list);
5214 if (upper && likely(upper->master))
5215 return upper->dev;
5216 return NULL;
5217 }
5218 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5219
5220 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5221 struct net_device *adj_dev,
5222 struct list_head *dev_list)
5223 {
5224 char linkname[IFNAMSIZ+7];
5225 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5226 "upper_%s" : "lower_%s", adj_dev->name);
5227 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5228 linkname);
5229 }
5230 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5231 char *name,
5232 struct list_head *dev_list)
5233 {
5234 char linkname[IFNAMSIZ+7];
5235 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5236 "upper_%s" : "lower_%s", name);
5237 sysfs_remove_link(&(dev->dev.kobj), linkname);
5238 }
5239
5240 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5241 struct net_device *adj_dev,
5242 struct list_head *dev_list)
5243 {
5244 return (dev_list == &dev->adj_list.upper ||
5245 dev_list == &dev->adj_list.lower) &&
5246 net_eq(dev_net(dev), dev_net(adj_dev));
5247 }
5248
5249 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5250 struct net_device *adj_dev,
5251 struct list_head *dev_list,
5252 void *private, bool master)
5253 {
5254 struct netdev_adjacent *adj;
5255 int ret;
5256
5257 adj = __netdev_find_adj(adj_dev, dev_list);
5258
5259 if (adj) {
5260 adj->ref_nr++;
5261 return 0;
5262 }
5263
5264 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5265 if (!adj)
5266 return -ENOMEM;
5267
5268 adj->dev = adj_dev;
5269 adj->master = master;
5270 adj->ref_nr = 1;
5271 adj->private = private;
5272 dev_hold(adj_dev);
5273
5274 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5275 adj_dev->name, dev->name, adj_dev->name);
5276
5277 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5278 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5279 if (ret)
5280 goto free_adj;
5281 }
5282
5283 /* Ensure that master link is always the first item in list. */
5284 if (master) {
5285 ret = sysfs_create_link(&(dev->dev.kobj),
5286 &(adj_dev->dev.kobj), "master");
5287 if (ret)
5288 goto remove_symlinks;
5289
5290 list_add_rcu(&adj->list, dev_list);
5291 } else {
5292 list_add_tail_rcu(&adj->list, dev_list);
5293 }
5294
5295 return 0;
5296
5297 remove_symlinks:
5298 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5299 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5300 free_adj:
5301 kfree(adj);
5302 dev_put(adj_dev);
5303
5304 return ret;
5305 }
5306
5307 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5308 struct net_device *adj_dev,
5309 struct list_head *dev_list)
5310 {
5311 struct netdev_adjacent *adj;
5312
5313 adj = __netdev_find_adj(adj_dev, dev_list);
5314
5315 if (!adj) {
5316 pr_err("tried to remove device %s from %s\n",
5317 dev->name, adj_dev->name);
5318 BUG();
5319 }
5320
5321 if (adj->ref_nr > 1) {
5322 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5323 adj->ref_nr-1);
5324 adj->ref_nr--;
5325 return;
5326 }
5327
5328 if (adj->master)
5329 sysfs_remove_link(&(dev->dev.kobj), "master");
5330
5331 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5332 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5333
5334 list_del_rcu(&adj->list);
5335 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5336 adj_dev->name, dev->name, adj_dev->name);
5337 dev_put(adj_dev);
5338 kfree_rcu(adj, rcu);
5339 }
5340
5341 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5342 struct net_device *upper_dev,
5343 struct list_head *up_list,
5344 struct list_head *down_list,
5345 void *private, bool master)
5346 {
5347 int ret;
5348
5349 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5350 master);
5351 if (ret)
5352 return ret;
5353
5354 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5355 false);
5356 if (ret) {
5357 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5358 return ret;
5359 }
5360
5361 return 0;
5362 }
5363
5364 static int __netdev_adjacent_dev_link(struct net_device *dev,
5365 struct net_device *upper_dev)
5366 {
5367 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5368 &dev->all_adj_list.upper,
5369 &upper_dev->all_adj_list.lower,
5370 NULL, false);
5371 }
5372
5373 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5374 struct net_device *upper_dev,
5375 struct list_head *up_list,
5376 struct list_head *down_list)
5377 {
5378 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5379 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5380 }
5381
5382 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5383 struct net_device *upper_dev)
5384 {
5385 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5386 &dev->all_adj_list.upper,
5387 &upper_dev->all_adj_list.lower);
5388 }
5389
5390 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5391 struct net_device *upper_dev,
5392 void *private, bool master)
5393 {
5394 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5395
5396 if (ret)
5397 return ret;
5398
5399 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5400 &dev->adj_list.upper,
5401 &upper_dev->adj_list.lower,
5402 private, master);
5403 if (ret) {
5404 __netdev_adjacent_dev_unlink(dev, upper_dev);
5405 return ret;
5406 }
5407
5408 return 0;
5409 }
5410
5411 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5412 struct net_device *upper_dev)
5413 {
5414 __netdev_adjacent_dev_unlink(dev, upper_dev);
5415 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5416 &dev->adj_list.upper,
5417 &upper_dev->adj_list.lower);
5418 }
5419
5420 static int __netdev_upper_dev_link(struct net_device *dev,
5421 struct net_device *upper_dev, bool master,
5422 void *private)
5423 {
5424 struct netdev_notifier_changeupper_info changeupper_info;
5425 struct netdev_adjacent *i, *j, *to_i, *to_j;
5426 int ret = 0;
5427
5428 ASSERT_RTNL();
5429
5430 if (dev == upper_dev)
5431 return -EBUSY;
5432
5433 /* To prevent loops, check if dev is not upper device to upper_dev. */
5434 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5435 return -EBUSY;
5436
5437 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5438 return -EEXIST;
5439
5440 if (master && netdev_master_upper_dev_get(dev))
5441 return -EBUSY;
5442
5443 changeupper_info.upper_dev = upper_dev;
5444 changeupper_info.master = master;
5445 changeupper_info.linking = true;
5446
5447 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5448 &changeupper_info.info);
5449 ret = notifier_to_errno(ret);
5450 if (ret)
5451 return ret;
5452
5453 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5454 master);
5455 if (ret)
5456 return ret;
5457
5458 /* Now that we linked these devs, make all the upper_dev's
5459 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5460 * versa, and don't forget the devices itself. All of these
5461 * links are non-neighbours.
5462 */
5463 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5464 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5465 pr_debug("Interlinking %s with %s, non-neighbour\n",
5466 i->dev->name, j->dev->name);
5467 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5468 if (ret)
5469 goto rollback_mesh;
5470 }
5471 }
5472
5473 /* add dev to every upper_dev's upper device */
5474 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5475 pr_debug("linking %s's upper device %s with %s\n",
5476 upper_dev->name, i->dev->name, dev->name);
5477 ret = __netdev_adjacent_dev_link(dev, i->dev);
5478 if (ret)
5479 goto rollback_upper_mesh;
5480 }
5481
5482 /* add upper_dev to every dev's lower device */
5483 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5484 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5485 i->dev->name, upper_dev->name);
5486 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5487 if (ret)
5488 goto rollback_lower_mesh;
5489 }
5490
5491 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5492 &changeupper_info.info);
5493 return 0;
5494
5495 rollback_lower_mesh:
5496 to_i = i;
5497 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5498 if (i == to_i)
5499 break;
5500 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5501 }
5502
5503 i = NULL;
5504
5505 rollback_upper_mesh:
5506 to_i = i;
5507 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5508 if (i == to_i)
5509 break;
5510 __netdev_adjacent_dev_unlink(dev, i->dev);
5511 }
5512
5513 i = j = NULL;
5514
5515 rollback_mesh:
5516 to_i = i;
5517 to_j = j;
5518 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5519 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5520 if (i == to_i && j == to_j)
5521 break;
5522 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5523 }
5524 if (i == to_i)
5525 break;
5526 }
5527
5528 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5529
5530 return ret;
5531 }
5532
5533 /**
5534 * netdev_upper_dev_link - Add a link to the upper device
5535 * @dev: device
5536 * @upper_dev: new upper device
5537 *
5538 * Adds a link to device which is upper to this one. The caller must hold
5539 * the RTNL lock. On a failure a negative errno code is returned.
5540 * On success the reference counts are adjusted and the function
5541 * returns zero.
5542 */
5543 int netdev_upper_dev_link(struct net_device *dev,
5544 struct net_device *upper_dev)
5545 {
5546 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5547 }
5548 EXPORT_SYMBOL(netdev_upper_dev_link);
5549
5550 /**
5551 * netdev_master_upper_dev_link - Add a master link to the upper device
5552 * @dev: device
5553 * @upper_dev: new upper device
5554 *
5555 * Adds a link to device which is upper to this one. In this case, only
5556 * one master upper device can be linked, although other non-master devices
5557 * might be linked as well. The caller must hold the RTNL lock.
5558 * On a failure a negative errno code is returned. On success the reference
5559 * counts are adjusted and the function returns zero.
5560 */
5561 int netdev_master_upper_dev_link(struct net_device *dev,
5562 struct net_device *upper_dev)
5563 {
5564 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5565 }
5566 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5567
5568 int netdev_master_upper_dev_link_private(struct net_device *dev,
5569 struct net_device *upper_dev,
5570 void *private)
5571 {
5572 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5573 }
5574 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5575
5576 /**
5577 * netdev_upper_dev_unlink - Removes a link to upper device
5578 * @dev: device
5579 * @upper_dev: new upper device
5580 *
5581 * Removes a link to device which is upper to this one. The caller must hold
5582 * the RTNL lock.
5583 */
5584 void netdev_upper_dev_unlink(struct net_device *dev,
5585 struct net_device *upper_dev)
5586 {
5587 struct netdev_notifier_changeupper_info changeupper_info;
5588 struct netdev_adjacent *i, *j;
5589 ASSERT_RTNL();
5590
5591 changeupper_info.upper_dev = upper_dev;
5592 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5593 changeupper_info.linking = false;
5594
5595 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5596 &changeupper_info.info);
5597
5598 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5599
5600 /* Here is the tricky part. We must remove all dev's lower
5601 * devices from all upper_dev's upper devices and vice
5602 * versa, to maintain the graph relationship.
5603 */
5604 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5605 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5606 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5607
5608 /* remove also the devices itself from lower/upper device
5609 * list
5610 */
5611 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5612 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5613
5614 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5615 __netdev_adjacent_dev_unlink(dev, i->dev);
5616
5617 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5618 &changeupper_info.info);
5619 }
5620 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5621
5622 /**
5623 * netdev_bonding_info_change - Dispatch event about slave change
5624 * @dev: device
5625 * @bonding_info: info to dispatch
5626 *
5627 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5628 * The caller must hold the RTNL lock.
5629 */
5630 void netdev_bonding_info_change(struct net_device *dev,
5631 struct netdev_bonding_info *bonding_info)
5632 {
5633 struct netdev_notifier_bonding_info info;
5634
5635 memcpy(&info.bonding_info, bonding_info,
5636 sizeof(struct netdev_bonding_info));
5637 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5638 &info.info);
5639 }
5640 EXPORT_SYMBOL(netdev_bonding_info_change);
5641
5642 static void netdev_adjacent_add_links(struct net_device *dev)
5643 {
5644 struct netdev_adjacent *iter;
5645
5646 struct net *net = dev_net(dev);
5647
5648 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5649 if (!net_eq(net,dev_net(iter->dev)))
5650 continue;
5651 netdev_adjacent_sysfs_add(iter->dev, dev,
5652 &iter->dev->adj_list.lower);
5653 netdev_adjacent_sysfs_add(dev, iter->dev,
5654 &dev->adj_list.upper);
5655 }
5656
5657 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5658 if (!net_eq(net,dev_net(iter->dev)))
5659 continue;
5660 netdev_adjacent_sysfs_add(iter->dev, dev,
5661 &iter->dev->adj_list.upper);
5662 netdev_adjacent_sysfs_add(dev, iter->dev,
5663 &dev->adj_list.lower);
5664 }
5665 }
5666
5667 static void netdev_adjacent_del_links(struct net_device *dev)
5668 {
5669 struct netdev_adjacent *iter;
5670
5671 struct net *net = dev_net(dev);
5672
5673 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5674 if (!net_eq(net,dev_net(iter->dev)))
5675 continue;
5676 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5677 &iter->dev->adj_list.lower);
5678 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5679 &dev->adj_list.upper);
5680 }
5681
5682 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5683 if (!net_eq(net,dev_net(iter->dev)))
5684 continue;
5685 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5686 &iter->dev->adj_list.upper);
5687 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5688 &dev->adj_list.lower);
5689 }
5690 }
5691
5692 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5693 {
5694 struct netdev_adjacent *iter;
5695
5696 struct net *net = dev_net(dev);
5697
5698 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5699 if (!net_eq(net,dev_net(iter->dev)))
5700 continue;
5701 netdev_adjacent_sysfs_del(iter->dev, oldname,
5702 &iter->dev->adj_list.lower);
5703 netdev_adjacent_sysfs_add(iter->dev, dev,
5704 &iter->dev->adj_list.lower);
5705 }
5706
5707 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5708 if (!net_eq(net,dev_net(iter->dev)))
5709 continue;
5710 netdev_adjacent_sysfs_del(iter->dev, oldname,
5711 &iter->dev->adj_list.upper);
5712 netdev_adjacent_sysfs_add(iter->dev, dev,
5713 &iter->dev->adj_list.upper);
5714 }
5715 }
5716
5717 void *netdev_lower_dev_get_private(struct net_device *dev,
5718 struct net_device *lower_dev)
5719 {
5720 struct netdev_adjacent *lower;
5721
5722 if (!lower_dev)
5723 return NULL;
5724 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5725 if (!lower)
5726 return NULL;
5727
5728 return lower->private;
5729 }
5730 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5731
5732
5733 int dev_get_nest_level(struct net_device *dev,
5734 bool (*type_check)(struct net_device *dev))
5735 {
5736 struct net_device *lower = NULL;
5737 struct list_head *iter;
5738 int max_nest = -1;
5739 int nest;
5740
5741 ASSERT_RTNL();
5742
5743 netdev_for_each_lower_dev(dev, lower, iter) {
5744 nest = dev_get_nest_level(lower, type_check);
5745 if (max_nest < nest)
5746 max_nest = nest;
5747 }
5748
5749 if (type_check(dev))
5750 max_nest++;
5751
5752 return max_nest;
5753 }
5754 EXPORT_SYMBOL(dev_get_nest_level);
5755
5756 static void dev_change_rx_flags(struct net_device *dev, int flags)
5757 {
5758 const struct net_device_ops *ops = dev->netdev_ops;
5759
5760 if (ops->ndo_change_rx_flags)
5761 ops->ndo_change_rx_flags(dev, flags);
5762 }
5763
5764 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5765 {
5766 unsigned int old_flags = dev->flags;
5767 kuid_t uid;
5768 kgid_t gid;
5769
5770 ASSERT_RTNL();
5771
5772 dev->flags |= IFF_PROMISC;
5773 dev->promiscuity += inc;
5774 if (dev->promiscuity == 0) {
5775 /*
5776 * Avoid overflow.
5777 * If inc causes overflow, untouch promisc and return error.
5778 */
5779 if (inc < 0)
5780 dev->flags &= ~IFF_PROMISC;
5781 else {
5782 dev->promiscuity -= inc;
5783 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5784 dev->name);
5785 return -EOVERFLOW;
5786 }
5787 }
5788 if (dev->flags != old_flags) {
5789 pr_info("device %s %s promiscuous mode\n",
5790 dev->name,
5791 dev->flags & IFF_PROMISC ? "entered" : "left");
5792 if (audit_enabled) {
5793 current_uid_gid(&uid, &gid);
5794 audit_log(current->audit_context, GFP_ATOMIC,
5795 AUDIT_ANOM_PROMISCUOUS,
5796 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5797 dev->name, (dev->flags & IFF_PROMISC),
5798 (old_flags & IFF_PROMISC),
5799 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5800 from_kuid(&init_user_ns, uid),
5801 from_kgid(&init_user_ns, gid),
5802 audit_get_sessionid(current));
5803 }
5804
5805 dev_change_rx_flags(dev, IFF_PROMISC);
5806 }
5807 if (notify)
5808 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5809 return 0;
5810 }
5811
5812 /**
5813 * dev_set_promiscuity - update promiscuity count on a device
5814 * @dev: device
5815 * @inc: modifier
5816 *
5817 * Add or remove promiscuity from a device. While the count in the device
5818 * remains above zero the interface remains promiscuous. Once it hits zero
5819 * the device reverts back to normal filtering operation. A negative inc
5820 * value is used to drop promiscuity on the device.
5821 * Return 0 if successful or a negative errno code on error.
5822 */
5823 int dev_set_promiscuity(struct net_device *dev, int inc)
5824 {
5825 unsigned int old_flags = dev->flags;
5826 int err;
5827
5828 err = __dev_set_promiscuity(dev, inc, true);
5829 if (err < 0)
5830 return err;
5831 if (dev->flags != old_flags)
5832 dev_set_rx_mode(dev);
5833 return err;
5834 }
5835 EXPORT_SYMBOL(dev_set_promiscuity);
5836
5837 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5838 {
5839 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5840
5841 ASSERT_RTNL();
5842
5843 dev->flags |= IFF_ALLMULTI;
5844 dev->allmulti += inc;
5845 if (dev->allmulti == 0) {
5846 /*
5847 * Avoid overflow.
5848 * If inc causes overflow, untouch allmulti and return error.
5849 */
5850 if (inc < 0)
5851 dev->flags &= ~IFF_ALLMULTI;
5852 else {
5853 dev->allmulti -= inc;
5854 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5855 dev->name);
5856 return -EOVERFLOW;
5857 }
5858 }
5859 if (dev->flags ^ old_flags) {
5860 dev_change_rx_flags(dev, IFF_ALLMULTI);
5861 dev_set_rx_mode(dev);
5862 if (notify)
5863 __dev_notify_flags(dev, old_flags,
5864 dev->gflags ^ old_gflags);
5865 }
5866 return 0;
5867 }
5868
5869 /**
5870 * dev_set_allmulti - update allmulti count on a device
5871 * @dev: device
5872 * @inc: modifier
5873 *
5874 * Add or remove reception of all multicast frames to a device. While the
5875 * count in the device remains above zero the interface remains listening
5876 * to all interfaces. Once it hits zero the device reverts back to normal
5877 * filtering operation. A negative @inc value is used to drop the counter
5878 * when releasing a resource needing all multicasts.
5879 * Return 0 if successful or a negative errno code on error.
5880 */
5881
5882 int dev_set_allmulti(struct net_device *dev, int inc)
5883 {
5884 return __dev_set_allmulti(dev, inc, true);
5885 }
5886 EXPORT_SYMBOL(dev_set_allmulti);
5887
5888 /*
5889 * Upload unicast and multicast address lists to device and
5890 * configure RX filtering. When the device doesn't support unicast
5891 * filtering it is put in promiscuous mode while unicast addresses
5892 * are present.
5893 */
5894 void __dev_set_rx_mode(struct net_device *dev)
5895 {
5896 const struct net_device_ops *ops = dev->netdev_ops;
5897
5898 /* dev_open will call this function so the list will stay sane. */
5899 if (!(dev->flags&IFF_UP))
5900 return;
5901
5902 if (!netif_device_present(dev))
5903 return;
5904
5905 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5906 /* Unicast addresses changes may only happen under the rtnl,
5907 * therefore calling __dev_set_promiscuity here is safe.
5908 */
5909 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5910 __dev_set_promiscuity(dev, 1, false);
5911 dev->uc_promisc = true;
5912 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5913 __dev_set_promiscuity(dev, -1, false);
5914 dev->uc_promisc = false;
5915 }
5916 }
5917
5918 if (ops->ndo_set_rx_mode)
5919 ops->ndo_set_rx_mode(dev);
5920 }
5921
5922 void dev_set_rx_mode(struct net_device *dev)
5923 {
5924 netif_addr_lock_bh(dev);
5925 __dev_set_rx_mode(dev);
5926 netif_addr_unlock_bh(dev);
5927 }
5928
5929 /**
5930 * dev_get_flags - get flags reported to userspace
5931 * @dev: device
5932 *
5933 * Get the combination of flag bits exported through APIs to userspace.
5934 */
5935 unsigned int dev_get_flags(const struct net_device *dev)
5936 {
5937 unsigned int flags;
5938
5939 flags = (dev->flags & ~(IFF_PROMISC |
5940 IFF_ALLMULTI |
5941 IFF_RUNNING |
5942 IFF_LOWER_UP |
5943 IFF_DORMANT)) |
5944 (dev->gflags & (IFF_PROMISC |
5945 IFF_ALLMULTI));
5946
5947 if (netif_running(dev)) {
5948 if (netif_oper_up(dev))
5949 flags |= IFF_RUNNING;
5950 if (netif_carrier_ok(dev))
5951 flags |= IFF_LOWER_UP;
5952 if (netif_dormant(dev))
5953 flags |= IFF_DORMANT;
5954 }
5955
5956 return flags;
5957 }
5958 EXPORT_SYMBOL(dev_get_flags);
5959
5960 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5961 {
5962 unsigned int old_flags = dev->flags;
5963 int ret;
5964
5965 ASSERT_RTNL();
5966
5967 /*
5968 * Set the flags on our device.
5969 */
5970
5971 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5972 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5973 IFF_AUTOMEDIA)) |
5974 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5975 IFF_ALLMULTI));
5976
5977 /*
5978 * Load in the correct multicast list now the flags have changed.
5979 */
5980
5981 if ((old_flags ^ flags) & IFF_MULTICAST)
5982 dev_change_rx_flags(dev, IFF_MULTICAST);
5983
5984 dev_set_rx_mode(dev);
5985
5986 /*
5987 * Have we downed the interface. We handle IFF_UP ourselves
5988 * according to user attempts to set it, rather than blindly
5989 * setting it.
5990 */
5991
5992 ret = 0;
5993 if ((old_flags ^ flags) & IFF_UP)
5994 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5995
5996 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5997 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5998 unsigned int old_flags = dev->flags;
5999
6000 dev->gflags ^= IFF_PROMISC;
6001
6002 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6003 if (dev->flags != old_flags)
6004 dev_set_rx_mode(dev);
6005 }
6006
6007 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6008 is important. Some (broken) drivers set IFF_PROMISC, when
6009 IFF_ALLMULTI is requested not asking us and not reporting.
6010 */
6011 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6012 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6013
6014 dev->gflags ^= IFF_ALLMULTI;
6015 __dev_set_allmulti(dev, inc, false);
6016 }
6017
6018 return ret;
6019 }
6020
6021 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6022 unsigned int gchanges)
6023 {
6024 unsigned int changes = dev->flags ^ old_flags;
6025
6026 if (gchanges)
6027 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6028
6029 if (changes & IFF_UP) {
6030 if (dev->flags & IFF_UP)
6031 call_netdevice_notifiers(NETDEV_UP, dev);
6032 else
6033 call_netdevice_notifiers(NETDEV_DOWN, dev);
6034 }
6035
6036 if (dev->flags & IFF_UP &&
6037 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6038 struct netdev_notifier_change_info change_info;
6039
6040 change_info.flags_changed = changes;
6041 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6042 &change_info.info);
6043 }
6044 }
6045
6046 /**
6047 * dev_change_flags - change device settings
6048 * @dev: device
6049 * @flags: device state flags
6050 *
6051 * Change settings on device based state flags. The flags are
6052 * in the userspace exported format.
6053 */
6054 int dev_change_flags(struct net_device *dev, unsigned int flags)
6055 {
6056 int ret;
6057 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6058
6059 ret = __dev_change_flags(dev, flags);
6060 if (ret < 0)
6061 return ret;
6062
6063 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6064 __dev_notify_flags(dev, old_flags, changes);
6065 return ret;
6066 }
6067 EXPORT_SYMBOL(dev_change_flags);
6068
6069 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6070 {
6071 const struct net_device_ops *ops = dev->netdev_ops;
6072
6073 if (ops->ndo_change_mtu)
6074 return ops->ndo_change_mtu(dev, new_mtu);
6075
6076 dev->mtu = new_mtu;
6077 return 0;
6078 }
6079
6080 /**
6081 * dev_set_mtu - Change maximum transfer unit
6082 * @dev: device
6083 * @new_mtu: new transfer unit
6084 *
6085 * Change the maximum transfer size of the network device.
6086 */
6087 int dev_set_mtu(struct net_device *dev, int new_mtu)
6088 {
6089 int err, orig_mtu;
6090
6091 if (new_mtu == dev->mtu)
6092 return 0;
6093
6094 /* MTU must be positive. */
6095 if (new_mtu < 0)
6096 return -EINVAL;
6097
6098 if (!netif_device_present(dev))
6099 return -ENODEV;
6100
6101 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6102 err = notifier_to_errno(err);
6103 if (err)
6104 return err;
6105
6106 orig_mtu = dev->mtu;
6107 err = __dev_set_mtu(dev, new_mtu);
6108
6109 if (!err) {
6110 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6111 err = notifier_to_errno(err);
6112 if (err) {
6113 /* setting mtu back and notifying everyone again,
6114 * so that they have a chance to revert changes.
6115 */
6116 __dev_set_mtu(dev, orig_mtu);
6117 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6118 }
6119 }
6120 return err;
6121 }
6122 EXPORT_SYMBOL(dev_set_mtu);
6123
6124 /**
6125 * dev_set_group - Change group this device belongs to
6126 * @dev: device
6127 * @new_group: group this device should belong to
6128 */
6129 void dev_set_group(struct net_device *dev, int new_group)
6130 {
6131 dev->group = new_group;
6132 }
6133 EXPORT_SYMBOL(dev_set_group);
6134
6135 /**
6136 * dev_set_mac_address - Change Media Access Control Address
6137 * @dev: device
6138 * @sa: new address
6139 *
6140 * Change the hardware (MAC) address of the device
6141 */
6142 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6143 {
6144 const struct net_device_ops *ops = dev->netdev_ops;
6145 int err;
6146
6147 if (!ops->ndo_set_mac_address)
6148 return -EOPNOTSUPP;
6149 if (sa->sa_family != dev->type)
6150 return -EINVAL;
6151 if (!netif_device_present(dev))
6152 return -ENODEV;
6153 err = ops->ndo_set_mac_address(dev, sa);
6154 if (err)
6155 return err;
6156 dev->addr_assign_type = NET_ADDR_SET;
6157 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6158 add_device_randomness(dev->dev_addr, dev->addr_len);
6159 return 0;
6160 }
6161 EXPORT_SYMBOL(dev_set_mac_address);
6162
6163 /**
6164 * dev_change_carrier - Change device carrier
6165 * @dev: device
6166 * @new_carrier: new value
6167 *
6168 * Change device carrier
6169 */
6170 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6171 {
6172 const struct net_device_ops *ops = dev->netdev_ops;
6173
6174 if (!ops->ndo_change_carrier)
6175 return -EOPNOTSUPP;
6176 if (!netif_device_present(dev))
6177 return -ENODEV;
6178 return ops->ndo_change_carrier(dev, new_carrier);
6179 }
6180 EXPORT_SYMBOL(dev_change_carrier);
6181
6182 /**
6183 * dev_get_phys_port_id - Get device physical port ID
6184 * @dev: device
6185 * @ppid: port ID
6186 *
6187 * Get device physical port ID
6188 */
6189 int dev_get_phys_port_id(struct net_device *dev,
6190 struct netdev_phys_item_id *ppid)
6191 {
6192 const struct net_device_ops *ops = dev->netdev_ops;
6193
6194 if (!ops->ndo_get_phys_port_id)
6195 return -EOPNOTSUPP;
6196 return ops->ndo_get_phys_port_id(dev, ppid);
6197 }
6198 EXPORT_SYMBOL(dev_get_phys_port_id);
6199
6200 /**
6201 * dev_get_phys_port_name - Get device physical port name
6202 * @dev: device
6203 * @name: port name
6204 *
6205 * Get device physical port name
6206 */
6207 int dev_get_phys_port_name(struct net_device *dev,
6208 char *name, size_t len)
6209 {
6210 const struct net_device_ops *ops = dev->netdev_ops;
6211
6212 if (!ops->ndo_get_phys_port_name)
6213 return -EOPNOTSUPP;
6214 return ops->ndo_get_phys_port_name(dev, name, len);
6215 }
6216 EXPORT_SYMBOL(dev_get_phys_port_name);
6217
6218 /**
6219 * dev_change_proto_down - update protocol port state information
6220 * @dev: device
6221 * @proto_down: new value
6222 *
6223 * This info can be used by switch drivers to set the phys state of the
6224 * port.
6225 */
6226 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6227 {
6228 const struct net_device_ops *ops = dev->netdev_ops;
6229
6230 if (!ops->ndo_change_proto_down)
6231 return -EOPNOTSUPP;
6232 if (!netif_device_present(dev))
6233 return -ENODEV;
6234 return ops->ndo_change_proto_down(dev, proto_down);
6235 }
6236 EXPORT_SYMBOL(dev_change_proto_down);
6237
6238 /**
6239 * dev_new_index - allocate an ifindex
6240 * @net: the applicable net namespace
6241 *
6242 * Returns a suitable unique value for a new device interface
6243 * number. The caller must hold the rtnl semaphore or the
6244 * dev_base_lock to be sure it remains unique.
6245 */
6246 static int dev_new_index(struct net *net)
6247 {
6248 int ifindex = net->ifindex;
6249 for (;;) {
6250 if (++ifindex <= 0)
6251 ifindex = 1;
6252 if (!__dev_get_by_index(net, ifindex))
6253 return net->ifindex = ifindex;
6254 }
6255 }
6256
6257 /* Delayed registration/unregisteration */
6258 static LIST_HEAD(net_todo_list);
6259 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6260
6261 static void net_set_todo(struct net_device *dev)
6262 {
6263 list_add_tail(&dev->todo_list, &net_todo_list);
6264 dev_net(dev)->dev_unreg_count++;
6265 }
6266
6267 static void rollback_registered_many(struct list_head *head)
6268 {
6269 struct net_device *dev, *tmp;
6270 LIST_HEAD(close_head);
6271
6272 BUG_ON(dev_boot_phase);
6273 ASSERT_RTNL();
6274
6275 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6276 /* Some devices call without registering
6277 * for initialization unwind. Remove those
6278 * devices and proceed with the remaining.
6279 */
6280 if (dev->reg_state == NETREG_UNINITIALIZED) {
6281 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6282 dev->name, dev);
6283
6284 WARN_ON(1);
6285 list_del(&dev->unreg_list);
6286 continue;
6287 }
6288 dev->dismantle = true;
6289 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6290 }
6291
6292 /* If device is running, close it first. */
6293 list_for_each_entry(dev, head, unreg_list)
6294 list_add_tail(&dev->close_list, &close_head);
6295 dev_close_many(&close_head, true);
6296
6297 list_for_each_entry(dev, head, unreg_list) {
6298 /* And unlink it from device chain. */
6299 unlist_netdevice(dev);
6300
6301 dev->reg_state = NETREG_UNREGISTERING;
6302 on_each_cpu(flush_backlog, dev, 1);
6303 }
6304
6305 synchronize_net();
6306
6307 list_for_each_entry(dev, head, unreg_list) {
6308 struct sk_buff *skb = NULL;
6309
6310 /* Shutdown queueing discipline. */
6311 dev_shutdown(dev);
6312
6313
6314 /* Notify protocols, that we are about to destroy
6315 this device. They should clean all the things.
6316 */
6317 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6318
6319 if (!dev->rtnl_link_ops ||
6320 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6321 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6322 GFP_KERNEL);
6323
6324 /*
6325 * Flush the unicast and multicast chains
6326 */
6327 dev_uc_flush(dev);
6328 dev_mc_flush(dev);
6329
6330 if (dev->netdev_ops->ndo_uninit)
6331 dev->netdev_ops->ndo_uninit(dev);
6332
6333 if (skb)
6334 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6335
6336 /* Notifier chain MUST detach us all upper devices. */
6337 WARN_ON(netdev_has_any_upper_dev(dev));
6338
6339 /* Remove entries from kobject tree */
6340 netdev_unregister_kobject(dev);
6341 #ifdef CONFIG_XPS
6342 /* Remove XPS queueing entries */
6343 netif_reset_xps_queues_gt(dev, 0);
6344 #endif
6345 }
6346
6347 synchronize_net();
6348
6349 list_for_each_entry(dev, head, unreg_list)
6350 dev_put(dev);
6351 }
6352
6353 static void rollback_registered(struct net_device *dev)
6354 {
6355 LIST_HEAD(single);
6356
6357 list_add(&dev->unreg_list, &single);
6358 rollback_registered_many(&single);
6359 list_del(&single);
6360 }
6361
6362 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6363 struct net_device *upper, netdev_features_t features)
6364 {
6365 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6366 netdev_features_t feature;
6367 int feature_bit;
6368
6369 for_each_netdev_feature(&upper_disables, feature_bit) {
6370 feature = __NETIF_F_BIT(feature_bit);
6371 if (!(upper->wanted_features & feature)
6372 && (features & feature)) {
6373 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6374 &feature, upper->name);
6375 features &= ~feature;
6376 }
6377 }
6378
6379 return features;
6380 }
6381
6382 static void netdev_sync_lower_features(struct net_device *upper,
6383 struct net_device *lower, netdev_features_t features)
6384 {
6385 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6386 netdev_features_t feature;
6387 int feature_bit;
6388
6389 for_each_netdev_feature(&upper_disables, feature_bit) {
6390 feature = __NETIF_F_BIT(feature_bit);
6391 if (!(features & feature) && (lower->features & feature)) {
6392 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6393 &feature, lower->name);
6394 lower->wanted_features &= ~feature;
6395 netdev_update_features(lower);
6396
6397 if (unlikely(lower->features & feature))
6398 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6399 &feature, lower->name);
6400 }
6401 }
6402 }
6403
6404 static netdev_features_t netdev_fix_features(struct net_device *dev,
6405 netdev_features_t features)
6406 {
6407 /* Fix illegal checksum combinations */
6408 if ((features & NETIF_F_HW_CSUM) &&
6409 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6410 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6411 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6412 }
6413
6414 /* TSO requires that SG is present as well. */
6415 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6416 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6417 features &= ~NETIF_F_ALL_TSO;
6418 }
6419
6420 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6421 !(features & NETIF_F_IP_CSUM)) {
6422 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6423 features &= ~NETIF_F_TSO;
6424 features &= ~NETIF_F_TSO_ECN;
6425 }
6426
6427 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6428 !(features & NETIF_F_IPV6_CSUM)) {
6429 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6430 features &= ~NETIF_F_TSO6;
6431 }
6432
6433 /* TSO ECN requires that TSO is present as well. */
6434 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6435 features &= ~NETIF_F_TSO_ECN;
6436
6437 /* Software GSO depends on SG. */
6438 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6439 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6440 features &= ~NETIF_F_GSO;
6441 }
6442
6443 /* UFO needs SG and checksumming */
6444 if (features & NETIF_F_UFO) {
6445 /* maybe split UFO into V4 and V6? */
6446 if (!((features & NETIF_F_GEN_CSUM) ||
6447 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6448 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6449 netdev_dbg(dev,
6450 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6451 features &= ~NETIF_F_UFO;
6452 }
6453
6454 if (!(features & NETIF_F_SG)) {
6455 netdev_dbg(dev,
6456 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6457 features &= ~NETIF_F_UFO;
6458 }
6459 }
6460
6461 #ifdef CONFIG_NET_RX_BUSY_POLL
6462 if (dev->netdev_ops->ndo_busy_poll)
6463 features |= NETIF_F_BUSY_POLL;
6464 else
6465 #endif
6466 features &= ~NETIF_F_BUSY_POLL;
6467
6468 return features;
6469 }
6470
6471 int __netdev_update_features(struct net_device *dev)
6472 {
6473 struct net_device *upper, *lower;
6474 netdev_features_t features;
6475 struct list_head *iter;
6476 int err = -1;
6477
6478 ASSERT_RTNL();
6479
6480 features = netdev_get_wanted_features(dev);
6481
6482 if (dev->netdev_ops->ndo_fix_features)
6483 features = dev->netdev_ops->ndo_fix_features(dev, features);
6484
6485 /* driver might be less strict about feature dependencies */
6486 features = netdev_fix_features(dev, features);
6487
6488 /* some features can't be enabled if they're off an an upper device */
6489 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6490 features = netdev_sync_upper_features(dev, upper, features);
6491
6492 if (dev->features == features)
6493 goto sync_lower;
6494
6495 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6496 &dev->features, &features);
6497
6498 if (dev->netdev_ops->ndo_set_features)
6499 err = dev->netdev_ops->ndo_set_features(dev, features);
6500 else
6501 err = 0;
6502
6503 if (unlikely(err < 0)) {
6504 netdev_err(dev,
6505 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6506 err, &features, &dev->features);
6507 /* return non-0 since some features might have changed and
6508 * it's better to fire a spurious notification than miss it
6509 */
6510 return -1;
6511 }
6512
6513 sync_lower:
6514 /* some features must be disabled on lower devices when disabled
6515 * on an upper device (think: bonding master or bridge)
6516 */
6517 netdev_for_each_lower_dev(dev, lower, iter)
6518 netdev_sync_lower_features(dev, lower, features);
6519
6520 if (!err)
6521 dev->features = features;
6522
6523 return err < 0 ? 0 : 1;
6524 }
6525
6526 /**
6527 * netdev_update_features - recalculate device features
6528 * @dev: the device to check
6529 *
6530 * Recalculate dev->features set and send notifications if it
6531 * has changed. Should be called after driver or hardware dependent
6532 * conditions might have changed that influence the features.
6533 */
6534 void netdev_update_features(struct net_device *dev)
6535 {
6536 if (__netdev_update_features(dev))
6537 netdev_features_change(dev);
6538 }
6539 EXPORT_SYMBOL(netdev_update_features);
6540
6541 /**
6542 * netdev_change_features - recalculate device features
6543 * @dev: the device to check
6544 *
6545 * Recalculate dev->features set and send notifications even
6546 * if they have not changed. Should be called instead of
6547 * netdev_update_features() if also dev->vlan_features might
6548 * have changed to allow the changes to be propagated to stacked
6549 * VLAN devices.
6550 */
6551 void netdev_change_features(struct net_device *dev)
6552 {
6553 __netdev_update_features(dev);
6554 netdev_features_change(dev);
6555 }
6556 EXPORT_SYMBOL(netdev_change_features);
6557
6558 /**
6559 * netif_stacked_transfer_operstate - transfer operstate
6560 * @rootdev: the root or lower level device to transfer state from
6561 * @dev: the device to transfer operstate to
6562 *
6563 * Transfer operational state from root to device. This is normally
6564 * called when a stacking relationship exists between the root
6565 * device and the device(a leaf device).
6566 */
6567 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6568 struct net_device *dev)
6569 {
6570 if (rootdev->operstate == IF_OPER_DORMANT)
6571 netif_dormant_on(dev);
6572 else
6573 netif_dormant_off(dev);
6574
6575 if (netif_carrier_ok(rootdev)) {
6576 if (!netif_carrier_ok(dev))
6577 netif_carrier_on(dev);
6578 } else {
6579 if (netif_carrier_ok(dev))
6580 netif_carrier_off(dev);
6581 }
6582 }
6583 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6584
6585 #ifdef CONFIG_SYSFS
6586 static int netif_alloc_rx_queues(struct net_device *dev)
6587 {
6588 unsigned int i, count = dev->num_rx_queues;
6589 struct netdev_rx_queue *rx;
6590 size_t sz = count * sizeof(*rx);
6591
6592 BUG_ON(count < 1);
6593
6594 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6595 if (!rx) {
6596 rx = vzalloc(sz);
6597 if (!rx)
6598 return -ENOMEM;
6599 }
6600 dev->_rx = rx;
6601
6602 for (i = 0; i < count; i++)
6603 rx[i].dev = dev;
6604 return 0;
6605 }
6606 #endif
6607
6608 static void netdev_init_one_queue(struct net_device *dev,
6609 struct netdev_queue *queue, void *_unused)
6610 {
6611 /* Initialize queue lock */
6612 spin_lock_init(&queue->_xmit_lock);
6613 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6614 queue->xmit_lock_owner = -1;
6615 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6616 queue->dev = dev;
6617 #ifdef CONFIG_BQL
6618 dql_init(&queue->dql, HZ);
6619 #endif
6620 }
6621
6622 static void netif_free_tx_queues(struct net_device *dev)
6623 {
6624 kvfree(dev->_tx);
6625 }
6626
6627 static int netif_alloc_netdev_queues(struct net_device *dev)
6628 {
6629 unsigned int count = dev->num_tx_queues;
6630 struct netdev_queue *tx;
6631 size_t sz = count * sizeof(*tx);
6632
6633 if (count < 1 || count > 0xffff)
6634 return -EINVAL;
6635
6636 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6637 if (!tx) {
6638 tx = vzalloc(sz);
6639 if (!tx)
6640 return -ENOMEM;
6641 }
6642 dev->_tx = tx;
6643
6644 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6645 spin_lock_init(&dev->tx_global_lock);
6646
6647 return 0;
6648 }
6649
6650 void netif_tx_stop_all_queues(struct net_device *dev)
6651 {
6652 unsigned int i;
6653
6654 for (i = 0; i < dev->num_tx_queues; i++) {
6655 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6656 netif_tx_stop_queue(txq);
6657 }
6658 }
6659 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6660
6661 /**
6662 * register_netdevice - register a network device
6663 * @dev: device to register
6664 *
6665 * Take a completed network device structure and add it to the kernel
6666 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6667 * chain. 0 is returned on success. A negative errno code is returned
6668 * on a failure to set up the device, or if the name is a duplicate.
6669 *
6670 * Callers must hold the rtnl semaphore. You may want
6671 * register_netdev() instead of this.
6672 *
6673 * BUGS:
6674 * The locking appears insufficient to guarantee two parallel registers
6675 * will not get the same name.
6676 */
6677
6678 int register_netdevice(struct net_device *dev)
6679 {
6680 int ret;
6681 struct net *net = dev_net(dev);
6682
6683 BUG_ON(dev_boot_phase);
6684 ASSERT_RTNL();
6685
6686 might_sleep();
6687
6688 /* When net_device's are persistent, this will be fatal. */
6689 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6690 BUG_ON(!net);
6691
6692 spin_lock_init(&dev->addr_list_lock);
6693 netdev_set_addr_lockdep_class(dev);
6694
6695 ret = dev_get_valid_name(net, dev, dev->name);
6696 if (ret < 0)
6697 goto out;
6698
6699 /* Init, if this function is available */
6700 if (dev->netdev_ops->ndo_init) {
6701 ret = dev->netdev_ops->ndo_init(dev);
6702 if (ret) {
6703 if (ret > 0)
6704 ret = -EIO;
6705 goto out;
6706 }
6707 }
6708
6709 if (((dev->hw_features | dev->features) &
6710 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6711 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6712 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6713 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6714 ret = -EINVAL;
6715 goto err_uninit;
6716 }
6717
6718 ret = -EBUSY;
6719 if (!dev->ifindex)
6720 dev->ifindex = dev_new_index(net);
6721 else if (__dev_get_by_index(net, dev->ifindex))
6722 goto err_uninit;
6723
6724 /* Transfer changeable features to wanted_features and enable
6725 * software offloads (GSO and GRO).
6726 */
6727 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6728 dev->features |= NETIF_F_SOFT_FEATURES;
6729 dev->wanted_features = dev->features & dev->hw_features;
6730
6731 if (!(dev->flags & IFF_LOOPBACK)) {
6732 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6733 }
6734
6735 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6736 */
6737 dev->vlan_features |= NETIF_F_HIGHDMA;
6738
6739 /* Make NETIF_F_SG inheritable to tunnel devices.
6740 */
6741 dev->hw_enc_features |= NETIF_F_SG;
6742
6743 /* Make NETIF_F_SG inheritable to MPLS.
6744 */
6745 dev->mpls_features |= NETIF_F_SG;
6746
6747 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6748 ret = notifier_to_errno(ret);
6749 if (ret)
6750 goto err_uninit;
6751
6752 ret = netdev_register_kobject(dev);
6753 if (ret)
6754 goto err_uninit;
6755 dev->reg_state = NETREG_REGISTERED;
6756
6757 __netdev_update_features(dev);
6758
6759 /*
6760 * Default initial state at registry is that the
6761 * device is present.
6762 */
6763
6764 set_bit(__LINK_STATE_PRESENT, &dev->state);
6765
6766 linkwatch_init_dev(dev);
6767
6768 dev_init_scheduler(dev);
6769 dev_hold(dev);
6770 list_netdevice(dev);
6771 add_device_randomness(dev->dev_addr, dev->addr_len);
6772
6773 /* If the device has permanent device address, driver should
6774 * set dev_addr and also addr_assign_type should be set to
6775 * NET_ADDR_PERM (default value).
6776 */
6777 if (dev->addr_assign_type == NET_ADDR_PERM)
6778 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6779
6780 /* Notify protocols, that a new device appeared. */
6781 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6782 ret = notifier_to_errno(ret);
6783 if (ret) {
6784 rollback_registered(dev);
6785 dev->reg_state = NETREG_UNREGISTERED;
6786 }
6787 /*
6788 * Prevent userspace races by waiting until the network
6789 * device is fully setup before sending notifications.
6790 */
6791 if (!dev->rtnl_link_ops ||
6792 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6793 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6794
6795 out:
6796 return ret;
6797
6798 err_uninit:
6799 if (dev->netdev_ops->ndo_uninit)
6800 dev->netdev_ops->ndo_uninit(dev);
6801 goto out;
6802 }
6803 EXPORT_SYMBOL(register_netdevice);
6804
6805 /**
6806 * init_dummy_netdev - init a dummy network device for NAPI
6807 * @dev: device to init
6808 *
6809 * This takes a network device structure and initialize the minimum
6810 * amount of fields so it can be used to schedule NAPI polls without
6811 * registering a full blown interface. This is to be used by drivers
6812 * that need to tie several hardware interfaces to a single NAPI
6813 * poll scheduler due to HW limitations.
6814 */
6815 int init_dummy_netdev(struct net_device *dev)
6816 {
6817 /* Clear everything. Note we don't initialize spinlocks
6818 * are they aren't supposed to be taken by any of the
6819 * NAPI code and this dummy netdev is supposed to be
6820 * only ever used for NAPI polls
6821 */
6822 memset(dev, 0, sizeof(struct net_device));
6823
6824 /* make sure we BUG if trying to hit standard
6825 * register/unregister code path
6826 */
6827 dev->reg_state = NETREG_DUMMY;
6828
6829 /* NAPI wants this */
6830 INIT_LIST_HEAD(&dev->napi_list);
6831
6832 /* a dummy interface is started by default */
6833 set_bit(__LINK_STATE_PRESENT, &dev->state);
6834 set_bit(__LINK_STATE_START, &dev->state);
6835
6836 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6837 * because users of this 'device' dont need to change
6838 * its refcount.
6839 */
6840
6841 return 0;
6842 }
6843 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6844
6845
6846 /**
6847 * register_netdev - register a network device
6848 * @dev: device to register
6849 *
6850 * Take a completed network device structure and add it to the kernel
6851 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6852 * chain. 0 is returned on success. A negative errno code is returned
6853 * on a failure to set up the device, or if the name is a duplicate.
6854 *
6855 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6856 * and expands the device name if you passed a format string to
6857 * alloc_netdev.
6858 */
6859 int register_netdev(struct net_device *dev)
6860 {
6861 int err;
6862
6863 rtnl_lock();
6864 err = register_netdevice(dev);
6865 rtnl_unlock();
6866 return err;
6867 }
6868 EXPORT_SYMBOL(register_netdev);
6869
6870 int netdev_refcnt_read(const struct net_device *dev)
6871 {
6872 int i, refcnt = 0;
6873
6874 for_each_possible_cpu(i)
6875 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6876 return refcnt;
6877 }
6878 EXPORT_SYMBOL(netdev_refcnt_read);
6879
6880 /**
6881 * netdev_wait_allrefs - wait until all references are gone.
6882 * @dev: target net_device
6883 *
6884 * This is called when unregistering network devices.
6885 *
6886 * Any protocol or device that holds a reference should register
6887 * for netdevice notification, and cleanup and put back the
6888 * reference if they receive an UNREGISTER event.
6889 * We can get stuck here if buggy protocols don't correctly
6890 * call dev_put.
6891 */
6892 static void netdev_wait_allrefs(struct net_device *dev)
6893 {
6894 unsigned long rebroadcast_time, warning_time;
6895 int refcnt;
6896
6897 linkwatch_forget_dev(dev);
6898
6899 rebroadcast_time = warning_time = jiffies;
6900 refcnt = netdev_refcnt_read(dev);
6901
6902 while (refcnt != 0) {
6903 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6904 rtnl_lock();
6905
6906 /* Rebroadcast unregister notification */
6907 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6908
6909 __rtnl_unlock();
6910 rcu_barrier();
6911 rtnl_lock();
6912
6913 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6914 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6915 &dev->state)) {
6916 /* We must not have linkwatch events
6917 * pending on unregister. If this
6918 * happens, we simply run the queue
6919 * unscheduled, resulting in a noop
6920 * for this device.
6921 */
6922 linkwatch_run_queue();
6923 }
6924
6925 __rtnl_unlock();
6926
6927 rebroadcast_time = jiffies;
6928 }
6929
6930 msleep(250);
6931
6932 refcnt = netdev_refcnt_read(dev);
6933
6934 if (time_after(jiffies, warning_time + 10 * HZ)) {
6935 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6936 dev->name, refcnt);
6937 warning_time = jiffies;
6938 }
6939 }
6940 }
6941
6942 /* The sequence is:
6943 *
6944 * rtnl_lock();
6945 * ...
6946 * register_netdevice(x1);
6947 * register_netdevice(x2);
6948 * ...
6949 * unregister_netdevice(y1);
6950 * unregister_netdevice(y2);
6951 * ...
6952 * rtnl_unlock();
6953 * free_netdev(y1);
6954 * free_netdev(y2);
6955 *
6956 * We are invoked by rtnl_unlock().
6957 * This allows us to deal with problems:
6958 * 1) We can delete sysfs objects which invoke hotplug
6959 * without deadlocking with linkwatch via keventd.
6960 * 2) Since we run with the RTNL semaphore not held, we can sleep
6961 * safely in order to wait for the netdev refcnt to drop to zero.
6962 *
6963 * We must not return until all unregister events added during
6964 * the interval the lock was held have been completed.
6965 */
6966 void netdev_run_todo(void)
6967 {
6968 struct list_head list;
6969
6970 /* Snapshot list, allow later requests */
6971 list_replace_init(&net_todo_list, &list);
6972
6973 __rtnl_unlock();
6974
6975
6976 /* Wait for rcu callbacks to finish before next phase */
6977 if (!list_empty(&list))
6978 rcu_barrier();
6979
6980 while (!list_empty(&list)) {
6981 struct net_device *dev
6982 = list_first_entry(&list, struct net_device, todo_list);
6983 list_del(&dev->todo_list);
6984
6985 rtnl_lock();
6986 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6987 __rtnl_unlock();
6988
6989 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6990 pr_err("network todo '%s' but state %d\n",
6991 dev->name, dev->reg_state);
6992 dump_stack();
6993 continue;
6994 }
6995
6996 dev->reg_state = NETREG_UNREGISTERED;
6997
6998 netdev_wait_allrefs(dev);
6999
7000 /* paranoia */
7001 BUG_ON(netdev_refcnt_read(dev));
7002 BUG_ON(!list_empty(&dev->ptype_all));
7003 BUG_ON(!list_empty(&dev->ptype_specific));
7004 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7005 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7006 WARN_ON(dev->dn_ptr);
7007
7008 if (dev->destructor)
7009 dev->destructor(dev);
7010
7011 /* Report a network device has been unregistered */
7012 rtnl_lock();
7013 dev_net(dev)->dev_unreg_count--;
7014 __rtnl_unlock();
7015 wake_up(&netdev_unregistering_wq);
7016
7017 /* Free network device */
7018 kobject_put(&dev->dev.kobj);
7019 }
7020 }
7021
7022 /* Convert net_device_stats to rtnl_link_stats64. They have the same
7023 * fields in the same order, with only the type differing.
7024 */
7025 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7026 const struct net_device_stats *netdev_stats)
7027 {
7028 #if BITS_PER_LONG == 64
7029 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7030 memcpy(stats64, netdev_stats, sizeof(*stats64));
7031 #else
7032 size_t i, n = sizeof(*stats64) / sizeof(u64);
7033 const unsigned long *src = (const unsigned long *)netdev_stats;
7034 u64 *dst = (u64 *)stats64;
7035
7036 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7037 sizeof(*stats64) / sizeof(u64));
7038 for (i = 0; i < n; i++)
7039 dst[i] = src[i];
7040 #endif
7041 }
7042 EXPORT_SYMBOL(netdev_stats_to_stats64);
7043
7044 /**
7045 * dev_get_stats - get network device statistics
7046 * @dev: device to get statistics from
7047 * @storage: place to store stats
7048 *
7049 * Get network statistics from device. Return @storage.
7050 * The device driver may provide its own method by setting
7051 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7052 * otherwise the internal statistics structure is used.
7053 */
7054 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7055 struct rtnl_link_stats64 *storage)
7056 {
7057 const struct net_device_ops *ops = dev->netdev_ops;
7058
7059 if (ops->ndo_get_stats64) {
7060 memset(storage, 0, sizeof(*storage));
7061 ops->ndo_get_stats64(dev, storage);
7062 } else if (ops->ndo_get_stats) {
7063 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7064 } else {
7065 netdev_stats_to_stats64(storage, &dev->stats);
7066 }
7067 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7068 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7069 return storage;
7070 }
7071 EXPORT_SYMBOL(dev_get_stats);
7072
7073 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7074 {
7075 struct netdev_queue *queue = dev_ingress_queue(dev);
7076
7077 #ifdef CONFIG_NET_CLS_ACT
7078 if (queue)
7079 return queue;
7080 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7081 if (!queue)
7082 return NULL;
7083 netdev_init_one_queue(dev, queue, NULL);
7084 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7085 queue->qdisc_sleeping = &noop_qdisc;
7086 rcu_assign_pointer(dev->ingress_queue, queue);
7087 #endif
7088 return queue;
7089 }
7090
7091 static const struct ethtool_ops default_ethtool_ops;
7092
7093 void netdev_set_default_ethtool_ops(struct net_device *dev,
7094 const struct ethtool_ops *ops)
7095 {
7096 if (dev->ethtool_ops == &default_ethtool_ops)
7097 dev->ethtool_ops = ops;
7098 }
7099 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7100
7101 void netdev_freemem(struct net_device *dev)
7102 {
7103 char *addr = (char *)dev - dev->padded;
7104
7105 kvfree(addr);
7106 }
7107
7108 /**
7109 * alloc_netdev_mqs - allocate network device
7110 * @sizeof_priv: size of private data to allocate space for
7111 * @name: device name format string
7112 * @name_assign_type: origin of device name
7113 * @setup: callback to initialize device
7114 * @txqs: the number of TX subqueues to allocate
7115 * @rxqs: the number of RX subqueues to allocate
7116 *
7117 * Allocates a struct net_device with private data area for driver use
7118 * and performs basic initialization. Also allocates subqueue structs
7119 * for each queue on the device.
7120 */
7121 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7122 unsigned char name_assign_type,
7123 void (*setup)(struct net_device *),
7124 unsigned int txqs, unsigned int rxqs)
7125 {
7126 struct net_device *dev;
7127 size_t alloc_size;
7128 struct net_device *p;
7129
7130 BUG_ON(strlen(name) >= sizeof(dev->name));
7131
7132 if (txqs < 1) {
7133 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7134 return NULL;
7135 }
7136
7137 #ifdef CONFIG_SYSFS
7138 if (rxqs < 1) {
7139 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7140 return NULL;
7141 }
7142 #endif
7143
7144 alloc_size = sizeof(struct net_device);
7145 if (sizeof_priv) {
7146 /* ensure 32-byte alignment of private area */
7147 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7148 alloc_size += sizeof_priv;
7149 }
7150 /* ensure 32-byte alignment of whole construct */
7151 alloc_size += NETDEV_ALIGN - 1;
7152
7153 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7154 if (!p)
7155 p = vzalloc(alloc_size);
7156 if (!p)
7157 return NULL;
7158
7159 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7160 dev->padded = (char *)dev - (char *)p;
7161
7162 dev->pcpu_refcnt = alloc_percpu(int);
7163 if (!dev->pcpu_refcnt)
7164 goto free_dev;
7165
7166 if (dev_addr_init(dev))
7167 goto free_pcpu;
7168
7169 dev_mc_init(dev);
7170 dev_uc_init(dev);
7171
7172 dev_net_set(dev, &init_net);
7173
7174 dev->gso_max_size = GSO_MAX_SIZE;
7175 dev->gso_max_segs = GSO_MAX_SEGS;
7176 dev->gso_min_segs = 0;
7177
7178 INIT_LIST_HEAD(&dev->napi_list);
7179 INIT_LIST_HEAD(&dev->unreg_list);
7180 INIT_LIST_HEAD(&dev->close_list);
7181 INIT_LIST_HEAD(&dev->link_watch_list);
7182 INIT_LIST_HEAD(&dev->adj_list.upper);
7183 INIT_LIST_HEAD(&dev->adj_list.lower);
7184 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7185 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7186 INIT_LIST_HEAD(&dev->ptype_all);
7187 INIT_LIST_HEAD(&dev->ptype_specific);
7188 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7189 setup(dev);
7190
7191 if (!dev->tx_queue_len)
7192 dev->priv_flags |= IFF_NO_QUEUE;
7193
7194 dev->num_tx_queues = txqs;
7195 dev->real_num_tx_queues = txqs;
7196 if (netif_alloc_netdev_queues(dev))
7197 goto free_all;
7198
7199 #ifdef CONFIG_SYSFS
7200 dev->num_rx_queues = rxqs;
7201 dev->real_num_rx_queues = rxqs;
7202 if (netif_alloc_rx_queues(dev))
7203 goto free_all;
7204 #endif
7205
7206 strcpy(dev->name, name);
7207 dev->name_assign_type = name_assign_type;
7208 dev->group = INIT_NETDEV_GROUP;
7209 if (!dev->ethtool_ops)
7210 dev->ethtool_ops = &default_ethtool_ops;
7211
7212 nf_hook_ingress_init(dev);
7213
7214 return dev;
7215
7216 free_all:
7217 free_netdev(dev);
7218 return NULL;
7219
7220 free_pcpu:
7221 free_percpu(dev->pcpu_refcnt);
7222 free_dev:
7223 netdev_freemem(dev);
7224 return NULL;
7225 }
7226 EXPORT_SYMBOL(alloc_netdev_mqs);
7227
7228 /**
7229 * free_netdev - free network device
7230 * @dev: device
7231 *
7232 * This function does the last stage of destroying an allocated device
7233 * interface. The reference to the device object is released.
7234 * If this is the last reference then it will be freed.
7235 * Must be called in process context.
7236 */
7237 void free_netdev(struct net_device *dev)
7238 {
7239 struct napi_struct *p, *n;
7240
7241 might_sleep();
7242 netif_free_tx_queues(dev);
7243 #ifdef CONFIG_SYSFS
7244 kvfree(dev->_rx);
7245 #endif
7246
7247 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7248
7249 /* Flush device addresses */
7250 dev_addr_flush(dev);
7251
7252 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7253 netif_napi_del(p);
7254
7255 free_percpu(dev->pcpu_refcnt);
7256 dev->pcpu_refcnt = NULL;
7257
7258 /* Compatibility with error handling in drivers */
7259 if (dev->reg_state == NETREG_UNINITIALIZED) {
7260 netdev_freemem(dev);
7261 return;
7262 }
7263
7264 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7265 dev->reg_state = NETREG_RELEASED;
7266
7267 /* will free via device release */
7268 put_device(&dev->dev);
7269 }
7270 EXPORT_SYMBOL(free_netdev);
7271
7272 /**
7273 * synchronize_net - Synchronize with packet receive processing
7274 *
7275 * Wait for packets currently being received to be done.
7276 * Does not block later packets from starting.
7277 */
7278 void synchronize_net(void)
7279 {
7280 might_sleep();
7281 if (rtnl_is_locked())
7282 synchronize_rcu_expedited();
7283 else
7284 synchronize_rcu();
7285 }
7286 EXPORT_SYMBOL(synchronize_net);
7287
7288 /**
7289 * unregister_netdevice_queue - remove device from the kernel
7290 * @dev: device
7291 * @head: list
7292 *
7293 * This function shuts down a device interface and removes it
7294 * from the kernel tables.
7295 * If head not NULL, device is queued to be unregistered later.
7296 *
7297 * Callers must hold the rtnl semaphore. You may want
7298 * unregister_netdev() instead of this.
7299 */
7300
7301 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7302 {
7303 ASSERT_RTNL();
7304
7305 if (head) {
7306 list_move_tail(&dev->unreg_list, head);
7307 } else {
7308 rollback_registered(dev);
7309 /* Finish processing unregister after unlock */
7310 net_set_todo(dev);
7311 }
7312 }
7313 EXPORT_SYMBOL(unregister_netdevice_queue);
7314
7315 /**
7316 * unregister_netdevice_many - unregister many devices
7317 * @head: list of devices
7318 *
7319 * Note: As most callers use a stack allocated list_head,
7320 * we force a list_del() to make sure stack wont be corrupted later.
7321 */
7322 void unregister_netdevice_many(struct list_head *head)
7323 {
7324 struct net_device *dev;
7325
7326 if (!list_empty(head)) {
7327 rollback_registered_many(head);
7328 list_for_each_entry(dev, head, unreg_list)
7329 net_set_todo(dev);
7330 list_del(head);
7331 }
7332 }
7333 EXPORT_SYMBOL(unregister_netdevice_many);
7334
7335 /**
7336 * unregister_netdev - remove device from the kernel
7337 * @dev: device
7338 *
7339 * This function shuts down a device interface and removes it
7340 * from the kernel tables.
7341 *
7342 * This is just a wrapper for unregister_netdevice that takes
7343 * the rtnl semaphore. In general you want to use this and not
7344 * unregister_netdevice.
7345 */
7346 void unregister_netdev(struct net_device *dev)
7347 {
7348 rtnl_lock();
7349 unregister_netdevice(dev);
7350 rtnl_unlock();
7351 }
7352 EXPORT_SYMBOL(unregister_netdev);
7353
7354 /**
7355 * dev_change_net_namespace - move device to different nethost namespace
7356 * @dev: device
7357 * @net: network namespace
7358 * @pat: If not NULL name pattern to try if the current device name
7359 * is already taken in the destination network namespace.
7360 *
7361 * This function shuts down a device interface and moves it
7362 * to a new network namespace. On success 0 is returned, on
7363 * a failure a netagive errno code is returned.
7364 *
7365 * Callers must hold the rtnl semaphore.
7366 */
7367
7368 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7369 {
7370 int err;
7371
7372 ASSERT_RTNL();
7373
7374 /* Don't allow namespace local devices to be moved. */
7375 err = -EINVAL;
7376 if (dev->features & NETIF_F_NETNS_LOCAL)
7377 goto out;
7378
7379 /* Ensure the device has been registrered */
7380 if (dev->reg_state != NETREG_REGISTERED)
7381 goto out;
7382
7383 /* Get out if there is nothing todo */
7384 err = 0;
7385 if (net_eq(dev_net(dev), net))
7386 goto out;
7387
7388 /* Pick the destination device name, and ensure
7389 * we can use it in the destination network namespace.
7390 */
7391 err = -EEXIST;
7392 if (__dev_get_by_name(net, dev->name)) {
7393 /* We get here if we can't use the current device name */
7394 if (!pat)
7395 goto out;
7396 if (dev_get_valid_name(net, dev, pat) < 0)
7397 goto out;
7398 }
7399
7400 /*
7401 * And now a mini version of register_netdevice unregister_netdevice.
7402 */
7403
7404 /* If device is running close it first. */
7405 dev_close(dev);
7406
7407 /* And unlink it from device chain */
7408 err = -ENODEV;
7409 unlist_netdevice(dev);
7410
7411 synchronize_net();
7412
7413 /* Shutdown queueing discipline. */
7414 dev_shutdown(dev);
7415
7416 /* Notify protocols, that we are about to destroy
7417 this device. They should clean all the things.
7418
7419 Note that dev->reg_state stays at NETREG_REGISTERED.
7420 This is wanted because this way 8021q and macvlan know
7421 the device is just moving and can keep their slaves up.
7422 */
7423 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7424 rcu_barrier();
7425 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7426 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7427
7428 /*
7429 * Flush the unicast and multicast chains
7430 */
7431 dev_uc_flush(dev);
7432 dev_mc_flush(dev);
7433
7434 /* Send a netdev-removed uevent to the old namespace */
7435 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7436 netdev_adjacent_del_links(dev);
7437
7438 /* Actually switch the network namespace */
7439 dev_net_set(dev, net);
7440
7441 /* If there is an ifindex conflict assign a new one */
7442 if (__dev_get_by_index(net, dev->ifindex))
7443 dev->ifindex = dev_new_index(net);
7444
7445 /* Send a netdev-add uevent to the new namespace */
7446 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7447 netdev_adjacent_add_links(dev);
7448
7449 /* Fixup kobjects */
7450 err = device_rename(&dev->dev, dev->name);
7451 WARN_ON(err);
7452
7453 /* Add the device back in the hashes */
7454 list_netdevice(dev);
7455
7456 /* Notify protocols, that a new device appeared. */
7457 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7458
7459 /*
7460 * Prevent userspace races by waiting until the network
7461 * device is fully setup before sending notifications.
7462 */
7463 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7464
7465 synchronize_net();
7466 err = 0;
7467 out:
7468 return err;
7469 }
7470 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7471
7472 static int dev_cpu_callback(struct notifier_block *nfb,
7473 unsigned long action,
7474 void *ocpu)
7475 {
7476 struct sk_buff **list_skb;
7477 struct sk_buff *skb;
7478 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7479 struct softnet_data *sd, *oldsd;
7480
7481 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7482 return NOTIFY_OK;
7483
7484 local_irq_disable();
7485 cpu = smp_processor_id();
7486 sd = &per_cpu(softnet_data, cpu);
7487 oldsd = &per_cpu(softnet_data, oldcpu);
7488
7489 /* Find end of our completion_queue. */
7490 list_skb = &sd->completion_queue;
7491 while (*list_skb)
7492 list_skb = &(*list_skb)->next;
7493 /* Append completion queue from offline CPU. */
7494 *list_skb = oldsd->completion_queue;
7495 oldsd->completion_queue = NULL;
7496
7497 /* Append output queue from offline CPU. */
7498 if (oldsd->output_queue) {
7499 *sd->output_queue_tailp = oldsd->output_queue;
7500 sd->output_queue_tailp = oldsd->output_queue_tailp;
7501 oldsd->output_queue = NULL;
7502 oldsd->output_queue_tailp = &oldsd->output_queue;
7503 }
7504 /* Append NAPI poll list from offline CPU, with one exception :
7505 * process_backlog() must be called by cpu owning percpu backlog.
7506 * We properly handle process_queue & input_pkt_queue later.
7507 */
7508 while (!list_empty(&oldsd->poll_list)) {
7509 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7510 struct napi_struct,
7511 poll_list);
7512
7513 list_del_init(&napi->poll_list);
7514 if (napi->poll == process_backlog)
7515 napi->state = 0;
7516 else
7517 ____napi_schedule(sd, napi);
7518 }
7519
7520 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7521 local_irq_enable();
7522
7523 /* Process offline CPU's input_pkt_queue */
7524 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7525 netif_rx_ni(skb);
7526 input_queue_head_incr(oldsd);
7527 }
7528 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7529 netif_rx_ni(skb);
7530 input_queue_head_incr(oldsd);
7531 }
7532
7533 return NOTIFY_OK;
7534 }
7535
7536
7537 /**
7538 * netdev_increment_features - increment feature set by one
7539 * @all: current feature set
7540 * @one: new feature set
7541 * @mask: mask feature set
7542 *
7543 * Computes a new feature set after adding a device with feature set
7544 * @one to the master device with current feature set @all. Will not
7545 * enable anything that is off in @mask. Returns the new feature set.
7546 */
7547 netdev_features_t netdev_increment_features(netdev_features_t all,
7548 netdev_features_t one, netdev_features_t mask)
7549 {
7550 if (mask & NETIF_F_GEN_CSUM)
7551 mask |= NETIF_F_ALL_CSUM;
7552 mask |= NETIF_F_VLAN_CHALLENGED;
7553
7554 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7555 all &= one | ~NETIF_F_ALL_FOR_ALL;
7556
7557 /* If one device supports hw checksumming, set for all. */
7558 if (all & NETIF_F_GEN_CSUM)
7559 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7560
7561 return all;
7562 }
7563 EXPORT_SYMBOL(netdev_increment_features);
7564
7565 static struct hlist_head * __net_init netdev_create_hash(void)
7566 {
7567 int i;
7568 struct hlist_head *hash;
7569
7570 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7571 if (hash != NULL)
7572 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7573 INIT_HLIST_HEAD(&hash[i]);
7574
7575 return hash;
7576 }
7577
7578 /* Initialize per network namespace state */
7579 static int __net_init netdev_init(struct net *net)
7580 {
7581 if (net != &init_net)
7582 INIT_LIST_HEAD(&net->dev_base_head);
7583
7584 net->dev_name_head = netdev_create_hash();
7585 if (net->dev_name_head == NULL)
7586 goto err_name;
7587
7588 net->dev_index_head = netdev_create_hash();
7589 if (net->dev_index_head == NULL)
7590 goto err_idx;
7591
7592 return 0;
7593
7594 err_idx:
7595 kfree(net->dev_name_head);
7596 err_name:
7597 return -ENOMEM;
7598 }
7599
7600 /**
7601 * netdev_drivername - network driver for the device
7602 * @dev: network device
7603 *
7604 * Determine network driver for device.
7605 */
7606 const char *netdev_drivername(const struct net_device *dev)
7607 {
7608 const struct device_driver *driver;
7609 const struct device *parent;
7610 const char *empty = "";
7611
7612 parent = dev->dev.parent;
7613 if (!parent)
7614 return empty;
7615
7616 driver = parent->driver;
7617 if (driver && driver->name)
7618 return driver->name;
7619 return empty;
7620 }
7621
7622 static void __netdev_printk(const char *level, const struct net_device *dev,
7623 struct va_format *vaf)
7624 {
7625 if (dev && dev->dev.parent) {
7626 dev_printk_emit(level[1] - '0',
7627 dev->dev.parent,
7628 "%s %s %s%s: %pV",
7629 dev_driver_string(dev->dev.parent),
7630 dev_name(dev->dev.parent),
7631 netdev_name(dev), netdev_reg_state(dev),
7632 vaf);
7633 } else if (dev) {
7634 printk("%s%s%s: %pV",
7635 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7636 } else {
7637 printk("%s(NULL net_device): %pV", level, vaf);
7638 }
7639 }
7640
7641 void netdev_printk(const char *level, const struct net_device *dev,
7642 const char *format, ...)
7643 {
7644 struct va_format vaf;
7645 va_list args;
7646
7647 va_start(args, format);
7648
7649 vaf.fmt = format;
7650 vaf.va = &args;
7651
7652 __netdev_printk(level, dev, &vaf);
7653
7654 va_end(args);
7655 }
7656 EXPORT_SYMBOL(netdev_printk);
7657
7658 #define define_netdev_printk_level(func, level) \
7659 void func(const struct net_device *dev, const char *fmt, ...) \
7660 { \
7661 struct va_format vaf; \
7662 va_list args; \
7663 \
7664 va_start(args, fmt); \
7665 \
7666 vaf.fmt = fmt; \
7667 vaf.va = &args; \
7668 \
7669 __netdev_printk(level, dev, &vaf); \
7670 \
7671 va_end(args); \
7672 } \
7673 EXPORT_SYMBOL(func);
7674
7675 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7676 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7677 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7678 define_netdev_printk_level(netdev_err, KERN_ERR);
7679 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7680 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7681 define_netdev_printk_level(netdev_info, KERN_INFO);
7682
7683 static void __net_exit netdev_exit(struct net *net)
7684 {
7685 kfree(net->dev_name_head);
7686 kfree(net->dev_index_head);
7687 }
7688
7689 static struct pernet_operations __net_initdata netdev_net_ops = {
7690 .init = netdev_init,
7691 .exit = netdev_exit,
7692 };
7693
7694 static void __net_exit default_device_exit(struct net *net)
7695 {
7696 struct net_device *dev, *aux;
7697 /*
7698 * Push all migratable network devices back to the
7699 * initial network namespace
7700 */
7701 rtnl_lock();
7702 for_each_netdev_safe(net, dev, aux) {
7703 int err;
7704 char fb_name[IFNAMSIZ];
7705
7706 /* Ignore unmoveable devices (i.e. loopback) */
7707 if (dev->features & NETIF_F_NETNS_LOCAL)
7708 continue;
7709
7710 /* Leave virtual devices for the generic cleanup */
7711 if (dev->rtnl_link_ops)
7712 continue;
7713
7714 /* Push remaining network devices to init_net */
7715 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7716 err = dev_change_net_namespace(dev, &init_net, fb_name);
7717 if (err) {
7718 pr_emerg("%s: failed to move %s to init_net: %d\n",
7719 __func__, dev->name, err);
7720 BUG();
7721 }
7722 }
7723 rtnl_unlock();
7724 }
7725
7726 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7727 {
7728 /* Return with the rtnl_lock held when there are no network
7729 * devices unregistering in any network namespace in net_list.
7730 */
7731 struct net *net;
7732 bool unregistering;
7733 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7734
7735 add_wait_queue(&netdev_unregistering_wq, &wait);
7736 for (;;) {
7737 unregistering = false;
7738 rtnl_lock();
7739 list_for_each_entry(net, net_list, exit_list) {
7740 if (net->dev_unreg_count > 0) {
7741 unregistering = true;
7742 break;
7743 }
7744 }
7745 if (!unregistering)
7746 break;
7747 __rtnl_unlock();
7748
7749 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7750 }
7751 remove_wait_queue(&netdev_unregistering_wq, &wait);
7752 }
7753
7754 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7755 {
7756 /* At exit all network devices most be removed from a network
7757 * namespace. Do this in the reverse order of registration.
7758 * Do this across as many network namespaces as possible to
7759 * improve batching efficiency.
7760 */
7761 struct net_device *dev;
7762 struct net *net;
7763 LIST_HEAD(dev_kill_list);
7764
7765 /* To prevent network device cleanup code from dereferencing
7766 * loopback devices or network devices that have been freed
7767 * wait here for all pending unregistrations to complete,
7768 * before unregistring the loopback device and allowing the
7769 * network namespace be freed.
7770 *
7771 * The netdev todo list containing all network devices
7772 * unregistrations that happen in default_device_exit_batch
7773 * will run in the rtnl_unlock() at the end of
7774 * default_device_exit_batch.
7775 */
7776 rtnl_lock_unregistering(net_list);
7777 list_for_each_entry(net, net_list, exit_list) {
7778 for_each_netdev_reverse(net, dev) {
7779 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7780 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7781 else
7782 unregister_netdevice_queue(dev, &dev_kill_list);
7783 }
7784 }
7785 unregister_netdevice_many(&dev_kill_list);
7786 rtnl_unlock();
7787 }
7788
7789 static struct pernet_operations __net_initdata default_device_ops = {
7790 .exit = default_device_exit,
7791 .exit_batch = default_device_exit_batch,
7792 };
7793
7794 /*
7795 * Initialize the DEV module. At boot time this walks the device list and
7796 * unhooks any devices that fail to initialise (normally hardware not
7797 * present) and leaves us with a valid list of present and active devices.
7798 *
7799 */
7800
7801 /*
7802 * This is called single threaded during boot, so no need
7803 * to take the rtnl semaphore.
7804 */
7805 static int __init net_dev_init(void)
7806 {
7807 int i, rc = -ENOMEM;
7808
7809 BUG_ON(!dev_boot_phase);
7810
7811 if (dev_proc_init())
7812 goto out;
7813
7814 if (netdev_kobject_init())
7815 goto out;
7816
7817 INIT_LIST_HEAD(&ptype_all);
7818 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7819 INIT_LIST_HEAD(&ptype_base[i]);
7820
7821 INIT_LIST_HEAD(&offload_base);
7822
7823 if (register_pernet_subsys(&netdev_net_ops))
7824 goto out;
7825
7826 /*
7827 * Initialise the packet receive queues.
7828 */
7829
7830 for_each_possible_cpu(i) {
7831 struct softnet_data *sd = &per_cpu(softnet_data, i);
7832
7833 skb_queue_head_init(&sd->input_pkt_queue);
7834 skb_queue_head_init(&sd->process_queue);
7835 INIT_LIST_HEAD(&sd->poll_list);
7836 sd->output_queue_tailp = &sd->output_queue;
7837 #ifdef CONFIG_RPS
7838 sd->csd.func = rps_trigger_softirq;
7839 sd->csd.info = sd;
7840 sd->cpu = i;
7841 #endif
7842
7843 sd->backlog.poll = process_backlog;
7844 sd->backlog.weight = weight_p;
7845 }
7846
7847 dev_boot_phase = 0;
7848
7849 /* The loopback device is special if any other network devices
7850 * is present in a network namespace the loopback device must
7851 * be present. Since we now dynamically allocate and free the
7852 * loopback device ensure this invariant is maintained by
7853 * keeping the loopback device as the first device on the
7854 * list of network devices. Ensuring the loopback devices
7855 * is the first device that appears and the last network device
7856 * that disappears.
7857 */
7858 if (register_pernet_device(&loopback_net_ops))
7859 goto out;
7860
7861 if (register_pernet_device(&default_device_ops))
7862 goto out;
7863
7864 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7865 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7866
7867 hotcpu_notifier(dev_cpu_callback, 0);
7868 dst_subsys_init();
7869 rc = 0;
7870 out:
7871 return rc;
7872 }
7873
7874 subsys_initcall(net_dev_init);
This page took 0.192104 seconds and 5 git commands to generate.