mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21
22 static void dissector_set_key(struct flow_dissector *flow_dissector,
23 enum flow_dissector_key_id key_id)
24 {
25 flow_dissector->used_keys |= (1 << key_id);
26 }
27
28 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
29 const struct flow_dissector_key *key,
30 unsigned int key_count)
31 {
32 unsigned int i;
33
34 memset(flow_dissector, 0, sizeof(*flow_dissector));
35
36 for (i = 0; i < key_count; i++, key++) {
37 /* User should make sure that every key target offset is withing
38 * boundaries of unsigned short.
39 */
40 BUG_ON(key->offset > USHRT_MAX);
41 BUG_ON(dissector_uses_key(flow_dissector,
42 key->key_id));
43
44 dissector_set_key(flow_dissector, key->key_id);
45 flow_dissector->offset[key->key_id] = key->offset;
46 }
47
48 /* Ensure that the dissector always includes control and basic key.
49 * That way we are able to avoid handling lack of these in fast path.
50 */
51 BUG_ON(!dissector_uses_key(flow_dissector,
52 FLOW_DISSECTOR_KEY_CONTROL));
53 BUG_ON(!dissector_uses_key(flow_dissector,
54 FLOW_DISSECTOR_KEY_BASIC));
55 }
56 EXPORT_SYMBOL(skb_flow_dissector_init);
57
58 /**
59 * __skb_flow_get_ports - extract the upper layer ports and return them
60 * @skb: sk_buff to extract the ports from
61 * @thoff: transport header offset
62 * @ip_proto: protocol for which to get port offset
63 * @data: raw buffer pointer to the packet, if NULL use skb->data
64 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
65 *
66 * The function will try to retrieve the ports at offset thoff + poff where poff
67 * is the protocol port offset returned from proto_ports_offset
68 */
69 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
70 void *data, int hlen)
71 {
72 int poff = proto_ports_offset(ip_proto);
73
74 if (!data) {
75 data = skb->data;
76 hlen = skb_headlen(skb);
77 }
78
79 if (poff >= 0) {
80 __be32 *ports, _ports;
81
82 ports = __skb_header_pointer(skb, thoff + poff,
83 sizeof(_ports), data, hlen, &_ports);
84 if (ports)
85 return *ports;
86 }
87
88 return 0;
89 }
90 EXPORT_SYMBOL(__skb_flow_get_ports);
91
92 /**
93 * __skb_flow_dissect - extract the flow_keys struct and return it
94 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
95 * @flow_dissector: list of keys to dissect
96 * @target_container: target structure to put dissected values into
97 * @data: raw buffer pointer to the packet, if NULL use skb->data
98 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
99 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
100 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
101 *
102 * The function will try to retrieve individual keys into target specified
103 * by flow_dissector from either the skbuff or a raw buffer specified by the
104 * rest parameters.
105 *
106 * Caller must take care of zeroing target container memory.
107 */
108 bool __skb_flow_dissect(const struct sk_buff *skb,
109 struct flow_dissector *flow_dissector,
110 void *target_container,
111 void *data, __be16 proto, int nhoff, int hlen,
112 unsigned int flags)
113 {
114 struct flow_dissector_key_control *key_control;
115 struct flow_dissector_key_basic *key_basic;
116 struct flow_dissector_key_addrs *key_addrs;
117 struct flow_dissector_key_ports *key_ports;
118 struct flow_dissector_key_tags *key_tags;
119 struct flow_dissector_key_keyid *key_keyid;
120 u8 ip_proto = 0;
121 bool ret = false;
122
123 if (!data) {
124 data = skb->data;
125 proto = skb->protocol;
126 nhoff = skb_network_offset(skb);
127 hlen = skb_headlen(skb);
128 }
129
130 /* It is ensured by skb_flow_dissector_init() that control key will
131 * be always present.
132 */
133 key_control = skb_flow_dissector_target(flow_dissector,
134 FLOW_DISSECTOR_KEY_CONTROL,
135 target_container);
136
137 /* It is ensured by skb_flow_dissector_init() that basic key will
138 * be always present.
139 */
140 key_basic = skb_flow_dissector_target(flow_dissector,
141 FLOW_DISSECTOR_KEY_BASIC,
142 target_container);
143
144 if (dissector_uses_key(flow_dissector,
145 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
146 struct ethhdr *eth = eth_hdr(skb);
147 struct flow_dissector_key_eth_addrs *key_eth_addrs;
148
149 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
150 FLOW_DISSECTOR_KEY_ETH_ADDRS,
151 target_container);
152 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
153 }
154
155 again:
156 switch (proto) {
157 case htons(ETH_P_IP): {
158 const struct iphdr *iph;
159 struct iphdr _iph;
160 ip:
161 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
162 if (!iph || iph->ihl < 5)
163 goto out_bad;
164 nhoff += iph->ihl * 4;
165
166 ip_proto = iph->protocol;
167
168 if (dissector_uses_key(flow_dissector,
169 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
170 key_addrs = skb_flow_dissector_target(flow_dissector,
171 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
172 target_container);
173
174 memcpy(&key_addrs->v4addrs, &iph->saddr,
175 sizeof(key_addrs->v4addrs));
176 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
177 }
178
179 if (ip_is_fragment(iph)) {
180 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
181
182 if (iph->frag_off & htons(IP_OFFSET)) {
183 goto out_good;
184 } else {
185 key_control->flags |= FLOW_DIS_FIRST_FRAG;
186 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
187 goto out_good;
188 }
189 }
190
191 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
192 goto out_good;
193
194 break;
195 }
196 case htons(ETH_P_IPV6): {
197 const struct ipv6hdr *iph;
198 struct ipv6hdr _iph;
199
200 ipv6:
201 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
202 if (!iph)
203 goto out_bad;
204
205 ip_proto = iph->nexthdr;
206 nhoff += sizeof(struct ipv6hdr);
207
208 if (dissector_uses_key(flow_dissector,
209 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
210 key_addrs = skb_flow_dissector_target(flow_dissector,
211 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
212 target_container);
213
214 memcpy(&key_addrs->v6addrs, &iph->saddr,
215 sizeof(key_addrs->v6addrs));
216 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
217 }
218
219 if ((dissector_uses_key(flow_dissector,
220 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
221 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
222 ip6_flowlabel(iph)) {
223 __be32 flow_label = ip6_flowlabel(iph);
224
225 if (dissector_uses_key(flow_dissector,
226 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
227 key_tags = skb_flow_dissector_target(flow_dissector,
228 FLOW_DISSECTOR_KEY_FLOW_LABEL,
229 target_container);
230 key_tags->flow_label = ntohl(flow_label);
231 }
232 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
233 goto out_good;
234 }
235
236 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
237 goto out_good;
238
239 break;
240 }
241 case htons(ETH_P_8021AD):
242 case htons(ETH_P_8021Q): {
243 const struct vlan_hdr *vlan;
244 struct vlan_hdr _vlan;
245
246 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
247 if (!vlan)
248 goto out_bad;
249
250 if (dissector_uses_key(flow_dissector,
251 FLOW_DISSECTOR_KEY_VLANID)) {
252 key_tags = skb_flow_dissector_target(flow_dissector,
253 FLOW_DISSECTOR_KEY_VLANID,
254 target_container);
255
256 key_tags->vlan_id = skb_vlan_tag_get_id(skb);
257 }
258
259 proto = vlan->h_vlan_encapsulated_proto;
260 nhoff += sizeof(*vlan);
261 goto again;
262 }
263 case htons(ETH_P_PPP_SES): {
264 struct {
265 struct pppoe_hdr hdr;
266 __be16 proto;
267 } *hdr, _hdr;
268 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
269 if (!hdr)
270 goto out_bad;
271 proto = hdr->proto;
272 nhoff += PPPOE_SES_HLEN;
273 switch (proto) {
274 case htons(PPP_IP):
275 goto ip;
276 case htons(PPP_IPV6):
277 goto ipv6;
278 default:
279 goto out_bad;
280 }
281 }
282 case htons(ETH_P_TIPC): {
283 struct {
284 __be32 pre[3];
285 __be32 srcnode;
286 } *hdr, _hdr;
287 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
288 if (!hdr)
289 goto out_bad;
290
291 if (dissector_uses_key(flow_dissector,
292 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
293 key_addrs = skb_flow_dissector_target(flow_dissector,
294 FLOW_DISSECTOR_KEY_TIPC_ADDRS,
295 target_container);
296 key_addrs->tipcaddrs.srcnode = hdr->srcnode;
297 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
298 }
299 goto out_good;
300 }
301
302 case htons(ETH_P_MPLS_UC):
303 case htons(ETH_P_MPLS_MC): {
304 struct mpls_label *hdr, _hdr[2];
305 mpls:
306 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
307 hlen, &_hdr);
308 if (!hdr)
309 goto out_bad;
310
311 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
312 MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
313 if (dissector_uses_key(flow_dissector,
314 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
315 key_keyid = skb_flow_dissector_target(flow_dissector,
316 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
317 target_container);
318 key_keyid->keyid = hdr[1].entry &
319 htonl(MPLS_LS_LABEL_MASK);
320 }
321
322 goto out_good;
323 }
324
325 goto out_good;
326 }
327
328 case htons(ETH_P_FCOE):
329 if ((hlen - nhoff) < FCOE_HEADER_LEN)
330 goto out_bad;
331
332 nhoff += FCOE_HEADER_LEN;
333 goto out_good;
334 default:
335 goto out_bad;
336 }
337
338 ip_proto_again:
339 switch (ip_proto) {
340 case IPPROTO_GRE: {
341 struct gre_hdr {
342 __be16 flags;
343 __be16 proto;
344 } *hdr, _hdr;
345
346 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
347 if (!hdr)
348 goto out_bad;
349 /*
350 * Only look inside GRE if version zero and no
351 * routing
352 */
353 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
354 break;
355
356 proto = hdr->proto;
357 nhoff += 4;
358 if (hdr->flags & GRE_CSUM)
359 nhoff += 4;
360 if (hdr->flags & GRE_KEY) {
361 const __be32 *keyid;
362 __be32 _keyid;
363
364 keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
365 data, hlen, &_keyid);
366
367 if (!keyid)
368 goto out_bad;
369
370 if (dissector_uses_key(flow_dissector,
371 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
372 key_keyid = skb_flow_dissector_target(flow_dissector,
373 FLOW_DISSECTOR_KEY_GRE_KEYID,
374 target_container);
375 key_keyid->keyid = *keyid;
376 }
377 nhoff += 4;
378 }
379 if (hdr->flags & GRE_SEQ)
380 nhoff += 4;
381 if (proto == htons(ETH_P_TEB)) {
382 const struct ethhdr *eth;
383 struct ethhdr _eth;
384
385 eth = __skb_header_pointer(skb, nhoff,
386 sizeof(_eth),
387 data, hlen, &_eth);
388 if (!eth)
389 goto out_bad;
390 proto = eth->h_proto;
391 nhoff += sizeof(*eth);
392
393 /* Cap headers that we access via pointers at the
394 * end of the Ethernet header as our maximum alignment
395 * at that point is only 2 bytes.
396 */
397 if (NET_IP_ALIGN)
398 hlen = nhoff;
399 }
400
401 key_control->flags |= FLOW_DIS_ENCAPSULATION;
402 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
403 goto out_good;
404
405 goto again;
406 }
407 case NEXTHDR_HOP:
408 case NEXTHDR_ROUTING:
409 case NEXTHDR_DEST: {
410 u8 _opthdr[2], *opthdr;
411
412 if (proto != htons(ETH_P_IPV6))
413 break;
414
415 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
416 data, hlen, &_opthdr);
417 if (!opthdr)
418 goto out_bad;
419
420 ip_proto = opthdr[0];
421 nhoff += (opthdr[1] + 1) << 3;
422
423 goto ip_proto_again;
424 }
425 case NEXTHDR_FRAGMENT: {
426 struct frag_hdr _fh, *fh;
427
428 if (proto != htons(ETH_P_IPV6))
429 break;
430
431 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
432 data, hlen, &_fh);
433
434 if (!fh)
435 goto out_bad;
436
437 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
438
439 nhoff += sizeof(_fh);
440 ip_proto = fh->nexthdr;
441
442 if (!(fh->frag_off & htons(IP6_OFFSET))) {
443 key_control->flags |= FLOW_DIS_FIRST_FRAG;
444 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
445 goto ip_proto_again;
446 }
447 goto out_good;
448 }
449 case IPPROTO_IPIP:
450 proto = htons(ETH_P_IP);
451
452 key_control->flags |= FLOW_DIS_ENCAPSULATION;
453 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
454 goto out_good;
455
456 goto ip;
457 case IPPROTO_IPV6:
458 proto = htons(ETH_P_IPV6);
459
460 key_control->flags |= FLOW_DIS_ENCAPSULATION;
461 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
462 goto out_good;
463
464 goto ipv6;
465 case IPPROTO_MPLS:
466 proto = htons(ETH_P_MPLS_UC);
467 goto mpls;
468 default:
469 break;
470 }
471
472 if (dissector_uses_key(flow_dissector,
473 FLOW_DISSECTOR_KEY_PORTS)) {
474 key_ports = skb_flow_dissector_target(flow_dissector,
475 FLOW_DISSECTOR_KEY_PORTS,
476 target_container);
477 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
478 data, hlen);
479 }
480
481 out_good:
482 ret = true;
483
484 out_bad:
485 key_basic->n_proto = proto;
486 key_basic->ip_proto = ip_proto;
487 key_control->thoff = (u16)nhoff;
488
489 return ret;
490 }
491 EXPORT_SYMBOL(__skb_flow_dissect);
492
493 static u32 hashrnd __read_mostly;
494 static __always_inline void __flow_hash_secret_init(void)
495 {
496 net_get_random_once(&hashrnd, sizeof(hashrnd));
497 }
498
499 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
500 u32 keyval)
501 {
502 return jhash2(words, length, keyval);
503 }
504
505 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
506 {
507 const void *p = flow;
508
509 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
510 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
511 }
512
513 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
514 {
515 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
516 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
517 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
518 sizeof(*flow) - sizeof(flow->addrs));
519
520 switch (flow->control.addr_type) {
521 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
522 diff -= sizeof(flow->addrs.v4addrs);
523 break;
524 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
525 diff -= sizeof(flow->addrs.v6addrs);
526 break;
527 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
528 diff -= sizeof(flow->addrs.tipcaddrs);
529 break;
530 }
531 return (sizeof(*flow) - diff) / sizeof(u32);
532 }
533
534 __be32 flow_get_u32_src(const struct flow_keys *flow)
535 {
536 switch (flow->control.addr_type) {
537 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
538 return flow->addrs.v4addrs.src;
539 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
540 return (__force __be32)ipv6_addr_hash(
541 &flow->addrs.v6addrs.src);
542 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
543 return flow->addrs.tipcaddrs.srcnode;
544 default:
545 return 0;
546 }
547 }
548 EXPORT_SYMBOL(flow_get_u32_src);
549
550 __be32 flow_get_u32_dst(const struct flow_keys *flow)
551 {
552 switch (flow->control.addr_type) {
553 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
554 return flow->addrs.v4addrs.dst;
555 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
556 return (__force __be32)ipv6_addr_hash(
557 &flow->addrs.v6addrs.dst);
558 default:
559 return 0;
560 }
561 }
562 EXPORT_SYMBOL(flow_get_u32_dst);
563
564 static inline void __flow_hash_consistentify(struct flow_keys *keys)
565 {
566 int addr_diff, i;
567
568 switch (keys->control.addr_type) {
569 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
570 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
571 (__force u32)keys->addrs.v4addrs.src;
572 if ((addr_diff < 0) ||
573 (addr_diff == 0 &&
574 ((__force u16)keys->ports.dst <
575 (__force u16)keys->ports.src))) {
576 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
577 swap(keys->ports.src, keys->ports.dst);
578 }
579 break;
580 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
581 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
582 &keys->addrs.v6addrs.src,
583 sizeof(keys->addrs.v6addrs.dst));
584 if ((addr_diff < 0) ||
585 (addr_diff == 0 &&
586 ((__force u16)keys->ports.dst <
587 (__force u16)keys->ports.src))) {
588 for (i = 0; i < 4; i++)
589 swap(keys->addrs.v6addrs.src.s6_addr32[i],
590 keys->addrs.v6addrs.dst.s6_addr32[i]);
591 swap(keys->ports.src, keys->ports.dst);
592 }
593 break;
594 }
595 }
596
597 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
598 {
599 u32 hash;
600
601 __flow_hash_consistentify(keys);
602
603 hash = __flow_hash_words(flow_keys_hash_start(keys),
604 flow_keys_hash_length(keys), keyval);
605 if (!hash)
606 hash = 1;
607
608 return hash;
609 }
610
611 u32 flow_hash_from_keys(struct flow_keys *keys)
612 {
613 __flow_hash_secret_init();
614 return __flow_hash_from_keys(keys, hashrnd);
615 }
616 EXPORT_SYMBOL(flow_hash_from_keys);
617
618 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
619 struct flow_keys *keys, u32 keyval)
620 {
621 skb_flow_dissect_flow_keys(skb, keys,
622 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
623
624 return __flow_hash_from_keys(keys, keyval);
625 }
626
627 struct _flow_keys_digest_data {
628 __be16 n_proto;
629 u8 ip_proto;
630 u8 padding;
631 __be32 ports;
632 __be32 src;
633 __be32 dst;
634 };
635
636 void make_flow_keys_digest(struct flow_keys_digest *digest,
637 const struct flow_keys *flow)
638 {
639 struct _flow_keys_digest_data *data =
640 (struct _flow_keys_digest_data *)digest;
641
642 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
643
644 memset(digest, 0, sizeof(*digest));
645
646 data->n_proto = flow->basic.n_proto;
647 data->ip_proto = flow->basic.ip_proto;
648 data->ports = flow->ports.ports;
649 data->src = flow->addrs.v4addrs.src;
650 data->dst = flow->addrs.v4addrs.dst;
651 }
652 EXPORT_SYMBOL(make_flow_keys_digest);
653
654 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
655
656 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
657 {
658 struct flow_keys keys;
659
660 __flow_hash_secret_init();
661
662 memset(&keys, 0, sizeof(keys));
663 __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
664 NULL, 0, 0, 0,
665 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
666
667 return __flow_hash_from_keys(&keys, hashrnd);
668 }
669 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
670
671 /**
672 * __skb_get_hash: calculate a flow hash
673 * @skb: sk_buff to calculate flow hash from
674 *
675 * This function calculates a flow hash based on src/dst addresses
676 * and src/dst port numbers. Sets hash in skb to non-zero hash value
677 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
678 * if hash is a canonical 4-tuple hash over transport ports.
679 */
680 void __skb_get_hash(struct sk_buff *skb)
681 {
682 struct flow_keys keys;
683
684 __flow_hash_secret_init();
685
686 __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
687 flow_keys_have_l4(&keys));
688 }
689 EXPORT_SYMBOL(__skb_get_hash);
690
691 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
692 {
693 struct flow_keys keys;
694
695 return ___skb_get_hash(skb, &keys, perturb);
696 }
697 EXPORT_SYMBOL(skb_get_hash_perturb);
698
699 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
700 {
701 struct flow_keys keys;
702
703 memset(&keys, 0, sizeof(keys));
704
705 memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
706 sizeof(keys.addrs.v6addrs.src));
707 memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
708 sizeof(keys.addrs.v6addrs.dst));
709 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
710 keys.ports.src = fl6->fl6_sport;
711 keys.ports.dst = fl6->fl6_dport;
712 keys.keyid.keyid = fl6->fl6_gre_key;
713 keys.tags.flow_label = (__force u32)fl6->flowlabel;
714 keys.basic.ip_proto = fl6->flowi6_proto;
715
716 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
717 flow_keys_have_l4(&keys));
718
719 return skb->hash;
720 }
721 EXPORT_SYMBOL(__skb_get_hash_flowi6);
722
723 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
724 {
725 struct flow_keys keys;
726
727 memset(&keys, 0, sizeof(keys));
728
729 keys.addrs.v4addrs.src = fl4->saddr;
730 keys.addrs.v4addrs.dst = fl4->daddr;
731 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
732 keys.ports.src = fl4->fl4_sport;
733 keys.ports.dst = fl4->fl4_dport;
734 keys.keyid.keyid = fl4->fl4_gre_key;
735 keys.basic.ip_proto = fl4->flowi4_proto;
736
737 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
738 flow_keys_have_l4(&keys));
739
740 return skb->hash;
741 }
742 EXPORT_SYMBOL(__skb_get_hash_flowi4);
743
744 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
745 const struct flow_keys *keys, int hlen)
746 {
747 u32 poff = keys->control.thoff;
748
749 /* skip L4 headers for fragments after the first */
750 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
751 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
752 return poff;
753
754 switch (keys->basic.ip_proto) {
755 case IPPROTO_TCP: {
756 /* access doff as u8 to avoid unaligned access */
757 const u8 *doff;
758 u8 _doff;
759
760 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
761 data, hlen, &_doff);
762 if (!doff)
763 return poff;
764
765 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
766 break;
767 }
768 case IPPROTO_UDP:
769 case IPPROTO_UDPLITE:
770 poff += sizeof(struct udphdr);
771 break;
772 /* For the rest, we do not really care about header
773 * extensions at this point for now.
774 */
775 case IPPROTO_ICMP:
776 poff += sizeof(struct icmphdr);
777 break;
778 case IPPROTO_ICMPV6:
779 poff += sizeof(struct icmp6hdr);
780 break;
781 case IPPROTO_IGMP:
782 poff += sizeof(struct igmphdr);
783 break;
784 case IPPROTO_DCCP:
785 poff += sizeof(struct dccp_hdr);
786 break;
787 case IPPROTO_SCTP:
788 poff += sizeof(struct sctphdr);
789 break;
790 }
791
792 return poff;
793 }
794
795 /**
796 * skb_get_poff - get the offset to the payload
797 * @skb: sk_buff to get the payload offset from
798 *
799 * The function will get the offset to the payload as far as it could
800 * be dissected. The main user is currently BPF, so that we can dynamically
801 * truncate packets without needing to push actual payload to the user
802 * space and can analyze headers only, instead.
803 */
804 u32 skb_get_poff(const struct sk_buff *skb)
805 {
806 struct flow_keys keys;
807
808 if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
809 return 0;
810
811 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
812 }
813
814 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
815 {
816 memset(keys, 0, sizeof(*keys));
817
818 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
819 sizeof(keys->addrs.v6addrs.src));
820 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
821 sizeof(keys->addrs.v6addrs.dst));
822 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
823 keys->ports.src = fl6->fl6_sport;
824 keys->ports.dst = fl6->fl6_dport;
825 keys->keyid.keyid = fl6->fl6_gre_key;
826 keys->tags.flow_label = (__force u32)fl6->flowlabel;
827 keys->basic.ip_proto = fl6->flowi6_proto;
828
829 return flow_hash_from_keys(keys);
830 }
831 EXPORT_SYMBOL(__get_hash_from_flowi6);
832
833 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
834 {
835 memset(keys, 0, sizeof(*keys));
836
837 keys->addrs.v4addrs.src = fl4->saddr;
838 keys->addrs.v4addrs.dst = fl4->daddr;
839 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
840 keys->ports.src = fl4->fl4_sport;
841 keys->ports.dst = fl4->fl4_dport;
842 keys->keyid.keyid = fl4->fl4_gre_key;
843 keys->basic.ip_proto = fl4->flowi4_proto;
844
845 return flow_hash_from_keys(keys);
846 }
847 EXPORT_SYMBOL(__get_hash_from_flowi4);
848
849 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
850 {
851 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
852 .offset = offsetof(struct flow_keys, control),
853 },
854 {
855 .key_id = FLOW_DISSECTOR_KEY_BASIC,
856 .offset = offsetof(struct flow_keys, basic),
857 },
858 {
859 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
860 .offset = offsetof(struct flow_keys, addrs.v4addrs),
861 },
862 {
863 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
864 .offset = offsetof(struct flow_keys, addrs.v6addrs),
865 },
866 {
867 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
868 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
869 },
870 {
871 .key_id = FLOW_DISSECTOR_KEY_PORTS,
872 .offset = offsetof(struct flow_keys, ports),
873 },
874 {
875 .key_id = FLOW_DISSECTOR_KEY_VLANID,
876 .offset = offsetof(struct flow_keys, tags),
877 },
878 {
879 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
880 .offset = offsetof(struct flow_keys, tags),
881 },
882 {
883 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
884 .offset = offsetof(struct flow_keys, keyid),
885 },
886 };
887
888 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
889 {
890 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
891 .offset = offsetof(struct flow_keys, control),
892 },
893 {
894 .key_id = FLOW_DISSECTOR_KEY_BASIC,
895 .offset = offsetof(struct flow_keys, basic),
896 },
897 {
898 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
899 .offset = offsetof(struct flow_keys, addrs.v4addrs),
900 },
901 {
902 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
903 .offset = offsetof(struct flow_keys, addrs.v6addrs),
904 },
905 {
906 .key_id = FLOW_DISSECTOR_KEY_PORTS,
907 .offset = offsetof(struct flow_keys, ports),
908 },
909 };
910
911 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
912 {
913 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
914 .offset = offsetof(struct flow_keys, control),
915 },
916 {
917 .key_id = FLOW_DISSECTOR_KEY_BASIC,
918 .offset = offsetof(struct flow_keys, basic),
919 },
920 };
921
922 struct flow_dissector flow_keys_dissector __read_mostly;
923 EXPORT_SYMBOL(flow_keys_dissector);
924
925 struct flow_dissector flow_keys_buf_dissector __read_mostly;
926
927 static int __init init_default_flow_dissectors(void)
928 {
929 skb_flow_dissector_init(&flow_keys_dissector,
930 flow_keys_dissector_keys,
931 ARRAY_SIZE(flow_keys_dissector_keys));
932 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
933 flow_keys_dissector_symmetric_keys,
934 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
935 skb_flow_dissector_init(&flow_keys_buf_dissector,
936 flow_keys_buf_dissector_keys,
937 ARRAY_SIZE(flow_keys_buf_dissector_keys));
938 return 0;
939 }
940
941 late_initcall_sync(init_default_flow_dissectors);
This page took 0.05103 seconds and 5 git commands to generate.