Merge remote-tracking branch 'ftrace/for-next'
[deliverable/linux.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 static bool init_net_initialized;
41
42 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
43
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45
46 static struct net_generic *net_alloc_generic(void)
47 {
48 struct net_generic *ng;
49 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50
51 ng = kzalloc(generic_size, GFP_KERNEL);
52 if (ng)
53 ng->len = max_gen_ptrs;
54
55 return ng;
56 }
57
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 struct net_generic *ng, *old_ng;
61
62 BUG_ON(!mutex_is_locked(&net_mutex));
63 BUG_ON(id == 0);
64
65 old_ng = rcu_dereference_protected(net->gen,
66 lockdep_is_held(&net_mutex));
67 ng = old_ng;
68 if (old_ng->len >= id)
69 goto assign;
70
71 ng = net_alloc_generic();
72 if (ng == NULL)
73 return -ENOMEM;
74
75 /*
76 * Some synchronisation notes:
77 *
78 * The net_generic explores the net->gen array inside rcu
79 * read section. Besides once set the net->gen->ptr[x]
80 * pointer never changes (see rules in netns/generic.h).
81 *
82 * That said, we simply duplicate this array and schedule
83 * the old copy for kfree after a grace period.
84 */
85
86 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87
88 rcu_assign_pointer(net->gen, ng);
89 kfree_rcu(old_ng, rcu);
90 assign:
91 ng->ptr[id - 1] = data;
92 return 0;
93 }
94
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 int err = -ENOMEM;
98 void *data = NULL;
99
100 if (ops->id && ops->size) {
101 data = kzalloc(ops->size, GFP_KERNEL);
102 if (!data)
103 goto out;
104
105 err = net_assign_generic(net, *ops->id, data);
106 if (err)
107 goto cleanup;
108 }
109 err = 0;
110 if (ops->init)
111 err = ops->init(net);
112 if (!err)
113 return 0;
114
115 cleanup:
116 kfree(data);
117
118 out:
119 return err;
120 }
121
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 if (ops->id && ops->size) {
125 int id = *ops->id;
126 kfree(net_generic(net, id));
127 }
128 }
129
130 static void ops_exit_list(const struct pernet_operations *ops,
131 struct list_head *net_exit_list)
132 {
133 struct net *net;
134 if (ops->exit) {
135 list_for_each_entry(net, net_exit_list, exit_list)
136 ops->exit(net);
137 }
138 if (ops->exit_batch)
139 ops->exit_batch(net_exit_list);
140 }
141
142 static void ops_free_list(const struct pernet_operations *ops,
143 struct list_head *net_exit_list)
144 {
145 struct net *net;
146 if (ops->size && ops->id) {
147 list_for_each_entry(net, net_exit_list, exit_list)
148 ops_free(ops, net);
149 }
150 }
151
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 int min = 0, max = 0;
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166 * function returns the id so that idr_for_each() stops. Because we cannot
167 * returns the id 0 (idr_for_each() will not stop), we return the magic value
168 * NET_ID_ZERO (-1) for it.
169 */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 if (net_eq(net, peer))
174 return id ? : NET_ID_ZERO;
175 return 0;
176 }
177
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179 * is set to true, thus the caller knows that the new id must be notified via
180 * rtnl.
181 */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 bool alloc_it = *alloc;
186
187 *alloc = false;
188
189 /* Magic value for id 0. */
190 if (id == NET_ID_ZERO)
191 return 0;
192 if (id > 0)
193 return id;
194
195 if (alloc_it) {
196 id = alloc_netid(net, peer, -1);
197 *alloc = true;
198 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 }
200
201 return NETNSA_NSID_NOT_ASSIGNED;
202 }
203
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 bool no = false;
208
209 return __peernet2id_alloc(net, peer, &no);
210 }
211
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214 * be allocated and returned.
215 */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 bool alloc;
219 int id;
220
221 spin_lock_bh(&net->nsid_lock);
222 alloc = atomic_read(&peer->count) == 0 ? false : true;
223 id = __peernet2id_alloc(net, peer, &alloc);
224 spin_unlock_bh(&net->nsid_lock);
225 if (alloc && id >= 0)
226 rtnl_net_notifyid(net, RTM_NEWNSID, id);
227 return id;
228 }
229
230 /* This function returns, if assigned, the id of a peer netns. */
231 int peernet2id(struct net *net, struct net *peer)
232 {
233 int id;
234
235 spin_lock_bh(&net->nsid_lock);
236 id = __peernet2id(net, peer);
237 spin_unlock_bh(&net->nsid_lock);
238 return id;
239 }
240 EXPORT_SYMBOL(peernet2id);
241
242 /* This function returns true is the peer netns has an id assigned into the
243 * current netns.
244 */
245 bool peernet_has_id(struct net *net, struct net *peer)
246 {
247 return peernet2id(net, peer) >= 0;
248 }
249
250 struct net *get_net_ns_by_id(struct net *net, int id)
251 {
252 struct net *peer;
253
254 if (id < 0)
255 return NULL;
256
257 rcu_read_lock();
258 spin_lock_bh(&net->nsid_lock);
259 peer = idr_find(&net->netns_ids, id);
260 if (peer)
261 get_net(peer);
262 spin_unlock_bh(&net->nsid_lock);
263 rcu_read_unlock();
264
265 return peer;
266 }
267
268 /*
269 * setup_net runs the initializers for the network namespace object.
270 */
271 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
272 {
273 /* Must be called with net_mutex held */
274 const struct pernet_operations *ops, *saved_ops;
275 int error = 0;
276 LIST_HEAD(net_exit_list);
277
278 atomic_set(&net->count, 1);
279 atomic_set(&net->passive, 1);
280 net->dev_base_seq = 1;
281 net->user_ns = user_ns;
282 idr_init(&net->netns_ids);
283 spin_lock_init(&net->nsid_lock);
284
285 list_for_each_entry(ops, &pernet_list, list) {
286 error = ops_init(ops, net);
287 if (error < 0)
288 goto out_undo;
289 }
290 out:
291 return error;
292
293 out_undo:
294 /* Walk through the list backwards calling the exit functions
295 * for the pernet modules whose init functions did not fail.
296 */
297 list_add(&net->exit_list, &net_exit_list);
298 saved_ops = ops;
299 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
300 ops_exit_list(ops, &net_exit_list);
301
302 ops = saved_ops;
303 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
304 ops_free_list(ops, &net_exit_list);
305
306 rcu_barrier();
307 goto out;
308 }
309
310
311 #ifdef CONFIG_NET_NS
312 static struct kmem_cache *net_cachep;
313 static struct workqueue_struct *netns_wq;
314
315 static struct net *net_alloc(void)
316 {
317 struct net *net = NULL;
318 struct net_generic *ng;
319
320 ng = net_alloc_generic();
321 if (!ng)
322 goto out;
323
324 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
325 if (!net)
326 goto out_free;
327
328 rcu_assign_pointer(net->gen, ng);
329 out:
330 return net;
331
332 out_free:
333 kfree(ng);
334 goto out;
335 }
336
337 static void net_free(struct net *net)
338 {
339 kfree(rcu_access_pointer(net->gen));
340 kmem_cache_free(net_cachep, net);
341 }
342
343 void net_drop_ns(void *p)
344 {
345 struct net *ns = p;
346 if (ns && atomic_dec_and_test(&ns->passive))
347 net_free(ns);
348 }
349
350 struct net *copy_net_ns(unsigned long flags,
351 struct user_namespace *user_ns, struct net *old_net)
352 {
353 struct net *net;
354 int rv;
355
356 if (!(flags & CLONE_NEWNET))
357 return get_net(old_net);
358
359 net = net_alloc();
360 if (!net)
361 return ERR_PTR(-ENOMEM);
362
363 get_user_ns(user_ns);
364
365 mutex_lock(&net_mutex);
366 rv = setup_net(net, user_ns);
367 if (rv == 0) {
368 rtnl_lock();
369 list_add_tail_rcu(&net->list, &net_namespace_list);
370 rtnl_unlock();
371 }
372 mutex_unlock(&net_mutex);
373 if (rv < 0) {
374 put_user_ns(user_ns);
375 net_drop_ns(net);
376 return ERR_PTR(rv);
377 }
378 return net;
379 }
380
381 static DEFINE_SPINLOCK(cleanup_list_lock);
382 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
383
384 static void cleanup_net(struct work_struct *work)
385 {
386 const struct pernet_operations *ops;
387 struct net *net, *tmp;
388 struct list_head net_kill_list;
389 LIST_HEAD(net_exit_list);
390
391 /* Atomically snapshot the list of namespaces to cleanup */
392 spin_lock_irq(&cleanup_list_lock);
393 list_replace_init(&cleanup_list, &net_kill_list);
394 spin_unlock_irq(&cleanup_list_lock);
395
396 mutex_lock(&net_mutex);
397
398 /* Don't let anyone else find us. */
399 rtnl_lock();
400 list_for_each_entry(net, &net_kill_list, cleanup_list) {
401 list_del_rcu(&net->list);
402 list_add_tail(&net->exit_list, &net_exit_list);
403 for_each_net(tmp) {
404 int id;
405
406 spin_lock_bh(&tmp->nsid_lock);
407 id = __peernet2id(tmp, net);
408 if (id >= 0)
409 idr_remove(&tmp->netns_ids, id);
410 spin_unlock_bh(&tmp->nsid_lock);
411 if (id >= 0)
412 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
413 }
414 spin_lock_bh(&net->nsid_lock);
415 idr_destroy(&net->netns_ids);
416 spin_unlock_bh(&net->nsid_lock);
417
418 }
419 rtnl_unlock();
420
421 /*
422 * Another CPU might be rcu-iterating the list, wait for it.
423 * This needs to be before calling the exit() notifiers, so
424 * the rcu_barrier() below isn't sufficient alone.
425 */
426 synchronize_rcu();
427
428 /* Run all of the network namespace exit methods */
429 list_for_each_entry_reverse(ops, &pernet_list, list)
430 ops_exit_list(ops, &net_exit_list);
431
432 /* Free the net generic variables */
433 list_for_each_entry_reverse(ops, &pernet_list, list)
434 ops_free_list(ops, &net_exit_list);
435
436 mutex_unlock(&net_mutex);
437
438 /* Ensure there are no outstanding rcu callbacks using this
439 * network namespace.
440 */
441 rcu_barrier();
442
443 /* Finally it is safe to free my network namespace structure */
444 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
445 list_del_init(&net->exit_list);
446 put_user_ns(net->user_ns);
447 net_drop_ns(net);
448 }
449 }
450 static DECLARE_WORK(net_cleanup_work, cleanup_net);
451
452 void __put_net(struct net *net)
453 {
454 /* Cleanup the network namespace in process context */
455 unsigned long flags;
456
457 spin_lock_irqsave(&cleanup_list_lock, flags);
458 list_add(&net->cleanup_list, &cleanup_list);
459 spin_unlock_irqrestore(&cleanup_list_lock, flags);
460
461 queue_work(netns_wq, &net_cleanup_work);
462 }
463 EXPORT_SYMBOL_GPL(__put_net);
464
465 struct net *get_net_ns_by_fd(int fd)
466 {
467 struct file *file;
468 struct ns_common *ns;
469 struct net *net;
470
471 file = proc_ns_fget(fd);
472 if (IS_ERR(file))
473 return ERR_CAST(file);
474
475 ns = get_proc_ns(file_inode(file));
476 if (ns->ops == &netns_operations)
477 net = get_net(container_of(ns, struct net, ns));
478 else
479 net = ERR_PTR(-EINVAL);
480
481 fput(file);
482 return net;
483 }
484
485 #else
486 struct net *get_net_ns_by_fd(int fd)
487 {
488 return ERR_PTR(-EINVAL);
489 }
490 #endif
491 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
492
493 struct net *get_net_ns_by_pid(pid_t pid)
494 {
495 struct task_struct *tsk;
496 struct net *net;
497
498 /* Lookup the network namespace */
499 net = ERR_PTR(-ESRCH);
500 rcu_read_lock();
501 tsk = find_task_by_vpid(pid);
502 if (tsk) {
503 struct nsproxy *nsproxy;
504 task_lock(tsk);
505 nsproxy = tsk->nsproxy;
506 if (nsproxy)
507 net = get_net(nsproxy->net_ns);
508 task_unlock(tsk);
509 }
510 rcu_read_unlock();
511 return net;
512 }
513 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
514
515 static __net_init int net_ns_net_init(struct net *net)
516 {
517 #ifdef CONFIG_NET_NS
518 net->ns.ops = &netns_operations;
519 #endif
520 return ns_alloc_inum(&net->ns);
521 }
522
523 static __net_exit void net_ns_net_exit(struct net *net)
524 {
525 ns_free_inum(&net->ns);
526 }
527
528 static struct pernet_operations __net_initdata net_ns_ops = {
529 .init = net_ns_net_init,
530 .exit = net_ns_net_exit,
531 };
532
533 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
534 [NETNSA_NONE] = { .type = NLA_UNSPEC },
535 [NETNSA_NSID] = { .type = NLA_S32 },
536 [NETNSA_PID] = { .type = NLA_U32 },
537 [NETNSA_FD] = { .type = NLA_U32 },
538 };
539
540 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
541 {
542 struct net *net = sock_net(skb->sk);
543 struct nlattr *tb[NETNSA_MAX + 1];
544 struct net *peer;
545 int nsid, err;
546
547 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
548 rtnl_net_policy);
549 if (err < 0)
550 return err;
551 if (!tb[NETNSA_NSID])
552 return -EINVAL;
553 nsid = nla_get_s32(tb[NETNSA_NSID]);
554
555 if (tb[NETNSA_PID])
556 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
557 else if (tb[NETNSA_FD])
558 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
559 else
560 return -EINVAL;
561 if (IS_ERR(peer))
562 return PTR_ERR(peer);
563
564 spin_lock_bh(&net->nsid_lock);
565 if (__peernet2id(net, peer) >= 0) {
566 spin_unlock_bh(&net->nsid_lock);
567 err = -EEXIST;
568 goto out;
569 }
570
571 err = alloc_netid(net, peer, nsid);
572 spin_unlock_bh(&net->nsid_lock);
573 if (err >= 0) {
574 rtnl_net_notifyid(net, RTM_NEWNSID, err);
575 err = 0;
576 }
577 out:
578 put_net(peer);
579 return err;
580 }
581
582 static int rtnl_net_get_size(void)
583 {
584 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
585 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
586 ;
587 }
588
589 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
590 int cmd, struct net *net, int nsid)
591 {
592 struct nlmsghdr *nlh;
593 struct rtgenmsg *rth;
594
595 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
596 if (!nlh)
597 return -EMSGSIZE;
598
599 rth = nlmsg_data(nlh);
600 rth->rtgen_family = AF_UNSPEC;
601
602 if (nla_put_s32(skb, NETNSA_NSID, nsid))
603 goto nla_put_failure;
604
605 nlmsg_end(skb, nlh);
606 return 0;
607
608 nla_put_failure:
609 nlmsg_cancel(skb, nlh);
610 return -EMSGSIZE;
611 }
612
613 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
614 {
615 struct net *net = sock_net(skb->sk);
616 struct nlattr *tb[NETNSA_MAX + 1];
617 struct sk_buff *msg;
618 struct net *peer;
619 int err, id;
620
621 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
622 rtnl_net_policy);
623 if (err < 0)
624 return err;
625 if (tb[NETNSA_PID])
626 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
627 else if (tb[NETNSA_FD])
628 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
629 else
630 return -EINVAL;
631
632 if (IS_ERR(peer))
633 return PTR_ERR(peer);
634
635 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
636 if (!msg) {
637 err = -ENOMEM;
638 goto out;
639 }
640
641 id = peernet2id(net, peer);
642 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
643 RTM_NEWNSID, net, id);
644 if (err < 0)
645 goto err_out;
646
647 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
648 goto out;
649
650 err_out:
651 nlmsg_free(msg);
652 out:
653 put_net(peer);
654 return err;
655 }
656
657 struct rtnl_net_dump_cb {
658 struct net *net;
659 struct sk_buff *skb;
660 struct netlink_callback *cb;
661 int idx;
662 int s_idx;
663 };
664
665 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
666 {
667 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
668 int ret;
669
670 if (net_cb->idx < net_cb->s_idx)
671 goto cont;
672
673 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
674 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
675 RTM_NEWNSID, net_cb->net, id);
676 if (ret < 0)
677 return ret;
678
679 cont:
680 net_cb->idx++;
681 return 0;
682 }
683
684 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
685 {
686 struct net *net = sock_net(skb->sk);
687 struct rtnl_net_dump_cb net_cb = {
688 .net = net,
689 .skb = skb,
690 .cb = cb,
691 .idx = 0,
692 .s_idx = cb->args[0],
693 };
694
695 spin_lock_bh(&net->nsid_lock);
696 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
697 spin_unlock_bh(&net->nsid_lock);
698
699 cb->args[0] = net_cb.idx;
700 return skb->len;
701 }
702
703 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
704 {
705 struct sk_buff *msg;
706 int err = -ENOMEM;
707
708 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
709 if (!msg)
710 goto out;
711
712 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
713 if (err < 0)
714 goto err_out;
715
716 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
717 return;
718
719 err_out:
720 nlmsg_free(msg);
721 out:
722 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
723 }
724
725 static int __init net_ns_init(void)
726 {
727 struct net_generic *ng;
728
729 #ifdef CONFIG_NET_NS
730 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
731 SMP_CACHE_BYTES,
732 SLAB_PANIC, NULL);
733
734 /* Create workqueue for cleanup */
735 netns_wq = create_singlethread_workqueue("netns");
736 if (!netns_wq)
737 panic("Could not create netns workq");
738 #endif
739
740 ng = net_alloc_generic();
741 if (!ng)
742 panic("Could not allocate generic netns");
743
744 rcu_assign_pointer(init_net.gen, ng);
745
746 mutex_lock(&net_mutex);
747 if (setup_net(&init_net, &init_user_ns))
748 panic("Could not setup the initial network namespace");
749
750 init_net_initialized = true;
751
752 rtnl_lock();
753 list_add_tail_rcu(&init_net.list, &net_namespace_list);
754 rtnl_unlock();
755
756 mutex_unlock(&net_mutex);
757
758 register_pernet_subsys(&net_ns_ops);
759
760 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
761 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
762 NULL);
763
764 return 0;
765 }
766
767 pure_initcall(net_ns_init);
768
769 #ifdef CONFIG_NET_NS
770 static int __register_pernet_operations(struct list_head *list,
771 struct pernet_operations *ops)
772 {
773 struct net *net;
774 int error;
775 LIST_HEAD(net_exit_list);
776
777 list_add_tail(&ops->list, list);
778 if (ops->init || (ops->id && ops->size)) {
779 for_each_net(net) {
780 error = ops_init(ops, net);
781 if (error)
782 goto out_undo;
783 list_add_tail(&net->exit_list, &net_exit_list);
784 }
785 }
786 return 0;
787
788 out_undo:
789 /* If I have an error cleanup all namespaces I initialized */
790 list_del(&ops->list);
791 ops_exit_list(ops, &net_exit_list);
792 ops_free_list(ops, &net_exit_list);
793 return error;
794 }
795
796 static void __unregister_pernet_operations(struct pernet_operations *ops)
797 {
798 struct net *net;
799 LIST_HEAD(net_exit_list);
800
801 list_del(&ops->list);
802 for_each_net(net)
803 list_add_tail(&net->exit_list, &net_exit_list);
804 ops_exit_list(ops, &net_exit_list);
805 ops_free_list(ops, &net_exit_list);
806 }
807
808 #else
809
810 static int __register_pernet_operations(struct list_head *list,
811 struct pernet_operations *ops)
812 {
813 if (!init_net_initialized) {
814 list_add_tail(&ops->list, list);
815 return 0;
816 }
817
818 return ops_init(ops, &init_net);
819 }
820
821 static void __unregister_pernet_operations(struct pernet_operations *ops)
822 {
823 if (!init_net_initialized) {
824 list_del(&ops->list);
825 } else {
826 LIST_HEAD(net_exit_list);
827 list_add(&init_net.exit_list, &net_exit_list);
828 ops_exit_list(ops, &net_exit_list);
829 ops_free_list(ops, &net_exit_list);
830 }
831 }
832
833 #endif /* CONFIG_NET_NS */
834
835 static DEFINE_IDA(net_generic_ids);
836
837 static int register_pernet_operations(struct list_head *list,
838 struct pernet_operations *ops)
839 {
840 int error;
841
842 if (ops->id) {
843 again:
844 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
845 if (error < 0) {
846 if (error == -EAGAIN) {
847 ida_pre_get(&net_generic_ids, GFP_KERNEL);
848 goto again;
849 }
850 return error;
851 }
852 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
853 }
854 error = __register_pernet_operations(list, ops);
855 if (error) {
856 rcu_barrier();
857 if (ops->id)
858 ida_remove(&net_generic_ids, *ops->id);
859 }
860
861 return error;
862 }
863
864 static void unregister_pernet_operations(struct pernet_operations *ops)
865 {
866
867 __unregister_pernet_operations(ops);
868 rcu_barrier();
869 if (ops->id)
870 ida_remove(&net_generic_ids, *ops->id);
871 }
872
873 /**
874 * register_pernet_subsys - register a network namespace subsystem
875 * @ops: pernet operations structure for the subsystem
876 *
877 * Register a subsystem which has init and exit functions
878 * that are called when network namespaces are created and
879 * destroyed respectively.
880 *
881 * When registered all network namespace init functions are
882 * called for every existing network namespace. Allowing kernel
883 * modules to have a race free view of the set of network namespaces.
884 *
885 * When a new network namespace is created all of the init
886 * methods are called in the order in which they were registered.
887 *
888 * When a network namespace is destroyed all of the exit methods
889 * are called in the reverse of the order with which they were
890 * registered.
891 */
892 int register_pernet_subsys(struct pernet_operations *ops)
893 {
894 int error;
895 mutex_lock(&net_mutex);
896 error = register_pernet_operations(first_device, ops);
897 mutex_unlock(&net_mutex);
898 return error;
899 }
900 EXPORT_SYMBOL_GPL(register_pernet_subsys);
901
902 /**
903 * unregister_pernet_subsys - unregister a network namespace subsystem
904 * @ops: pernet operations structure to manipulate
905 *
906 * Remove the pernet operations structure from the list to be
907 * used when network namespaces are created or destroyed. In
908 * addition run the exit method for all existing network
909 * namespaces.
910 */
911 void unregister_pernet_subsys(struct pernet_operations *ops)
912 {
913 mutex_lock(&net_mutex);
914 unregister_pernet_operations(ops);
915 mutex_unlock(&net_mutex);
916 }
917 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
918
919 /**
920 * register_pernet_device - register a network namespace device
921 * @ops: pernet operations structure for the subsystem
922 *
923 * Register a device which has init and exit functions
924 * that are called when network namespaces are created and
925 * destroyed respectively.
926 *
927 * When registered all network namespace init functions are
928 * called for every existing network namespace. Allowing kernel
929 * modules to have a race free view of the set of network namespaces.
930 *
931 * When a new network namespace is created all of the init
932 * methods are called in the order in which they were registered.
933 *
934 * When a network namespace is destroyed all of the exit methods
935 * are called in the reverse of the order with which they were
936 * registered.
937 */
938 int register_pernet_device(struct pernet_operations *ops)
939 {
940 int error;
941 mutex_lock(&net_mutex);
942 error = register_pernet_operations(&pernet_list, ops);
943 if (!error && (first_device == &pernet_list))
944 first_device = &ops->list;
945 mutex_unlock(&net_mutex);
946 return error;
947 }
948 EXPORT_SYMBOL_GPL(register_pernet_device);
949
950 /**
951 * unregister_pernet_device - unregister a network namespace netdevice
952 * @ops: pernet operations structure to manipulate
953 *
954 * Remove the pernet operations structure from the list to be
955 * used when network namespaces are created or destroyed. In
956 * addition run the exit method for all existing network
957 * namespaces.
958 */
959 void unregister_pernet_device(struct pernet_operations *ops)
960 {
961 mutex_lock(&net_mutex);
962 if (&ops->list == first_device)
963 first_device = first_device->next;
964 unregister_pernet_operations(ops);
965 mutex_unlock(&net_mutex);
966 }
967 EXPORT_SYMBOL_GPL(unregister_pernet_device);
968
969 #ifdef CONFIG_NET_NS
970 static struct ns_common *netns_get(struct task_struct *task)
971 {
972 struct net *net = NULL;
973 struct nsproxy *nsproxy;
974
975 task_lock(task);
976 nsproxy = task->nsproxy;
977 if (nsproxy)
978 net = get_net(nsproxy->net_ns);
979 task_unlock(task);
980
981 return net ? &net->ns : NULL;
982 }
983
984 static inline struct net *to_net_ns(struct ns_common *ns)
985 {
986 return container_of(ns, struct net, ns);
987 }
988
989 static void netns_put(struct ns_common *ns)
990 {
991 put_net(to_net_ns(ns));
992 }
993
994 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
995 {
996 struct net *net = to_net_ns(ns);
997
998 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
999 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1000 return -EPERM;
1001
1002 put_net(nsproxy->net_ns);
1003 nsproxy->net_ns = get_net(net);
1004 return 0;
1005 }
1006
1007 const struct proc_ns_operations netns_operations = {
1008 .name = "net",
1009 .type = CLONE_NEWNET,
1010 .get = netns_get,
1011 .put = netns_put,
1012 .install = netns_install,
1013 };
1014 #endif
This page took 0.075402 seconds and 5 git commands to generate.