arm/xen: fix SMP guests boot
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74
75 #include <asm/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 struct sk_buff *skb;
164
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
170
171 /*
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
175 */
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
180
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
184 }
185
186 /**
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
195 *
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
199 *
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
202 */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
205 {
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
211
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
214
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
217
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
223
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
228 */
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
237 */
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
240
241 /*
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
245 */
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
257
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
263
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
266
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
268
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
272
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 fclones->skb2.pfmemalloc = pfmemalloc;
275 }
276 out:
277 return skb;
278 nodata:
279 kmem_cache_free(cache, skb);
280 skb = NULL;
281 goto out;
282 }
283 EXPORT_SYMBOL(__alloc_skb);
284
285 /**
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
289 *
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
293 * or vmalloc()
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
296 * Notes :
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
303 */
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 {
306 struct skb_shared_info *shinfo;
307 struct sk_buff *skb;
308 unsigned int size = frag_size ? : ksize(data);
309
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 if (!skb)
312 return NULL;
313
314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
315
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 skb->truesize = SKB_TRUESIZE(size);
318 atomic_set(&skb->users, 1);
319 skb->head = data;
320 skb->data = data;
321 skb_reset_tail_pointer(skb);
322 skb->end = skb->tail + size;
323 skb->mac_header = (typeof(skb->mac_header))~0U;
324 skb->transport_header = (typeof(skb->transport_header))~0U;
325
326 /* make sure we initialize shinfo sequentially */
327 shinfo = skb_shinfo(skb);
328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 atomic_set(&shinfo->dataref, 1);
330 kmemcheck_annotate_variable(shinfo->destructor_arg);
331
332 return skb;
333 }
334
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
339 */
340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
341 {
342 struct sk_buff *skb = __build_skb(data, frag_size);
343
344 if (skb && frag_size) {
345 skb->head_frag = 1;
346 if (page_is_pfmemalloc(virt_to_head_page(data)))
347 skb->pfmemalloc = 1;
348 }
349 return skb;
350 }
351 EXPORT_SYMBOL(build_skb);
352
353 #define NAPI_SKB_CACHE_SIZE 64
354
355 struct napi_alloc_cache {
356 struct page_frag_cache page;
357 size_t skb_count;
358 void *skb_cache[NAPI_SKB_CACHE_SIZE];
359 };
360
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
363
364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 struct page_frag_cache *nc;
367 unsigned long flags;
368 void *data;
369
370 local_irq_save(flags);
371 nc = this_cpu_ptr(&netdev_alloc_cache);
372 data = __alloc_page_frag(nc, fragsz, gfp_mask);
373 local_irq_restore(flags);
374 return data;
375 }
376
377 /**
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
380 *
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
383 */
384 void *netdev_alloc_frag(unsigned int fragsz)
385 {
386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
387 }
388 EXPORT_SYMBOL(netdev_alloc_frag);
389
390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
391 {
392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
393
394 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
395 }
396
397 void *napi_alloc_frag(unsigned int fragsz)
398 {
399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
400 }
401 EXPORT_SYMBOL(napi_alloc_frag);
402
403 /**
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 *
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
413 *
414 * %NULL is returned if there is no free memory.
415 */
416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
417 gfp_t gfp_mask)
418 {
419 struct page_frag_cache *nc;
420 unsigned long flags;
421 struct sk_buff *skb;
422 bool pfmemalloc;
423 void *data;
424
425 len += NET_SKB_PAD;
426
427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
430 if (!skb)
431 goto skb_fail;
432 goto skb_success;
433 }
434
435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 len = SKB_DATA_ALIGN(len);
437
438 if (sk_memalloc_socks())
439 gfp_mask |= __GFP_MEMALLOC;
440
441 local_irq_save(flags);
442
443 nc = this_cpu_ptr(&netdev_alloc_cache);
444 data = __alloc_page_frag(nc, len, gfp_mask);
445 pfmemalloc = nc->pfmemalloc;
446
447 local_irq_restore(flags);
448
449 if (unlikely(!data))
450 return NULL;
451
452 skb = __build_skb(data, len);
453 if (unlikely(!skb)) {
454 skb_free_frag(data);
455 return NULL;
456 }
457
458 /* use OR instead of assignment to avoid clearing of bits in mask */
459 if (pfmemalloc)
460 skb->pfmemalloc = 1;
461 skb->head_frag = 1;
462
463 skb_success:
464 skb_reserve(skb, NET_SKB_PAD);
465 skb->dev = dev;
466
467 skb_fail:
468 return skb;
469 }
470 EXPORT_SYMBOL(__netdev_alloc_skb);
471
472 /**
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 *
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 *
483 * %NULL is returned if there is no free memory.
484 */
485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
486 gfp_t gfp_mask)
487 {
488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
489 struct sk_buff *skb;
490 void *data;
491
492 len += NET_SKB_PAD + NET_IP_ALIGN;
493
494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 if (!skb)
498 goto skb_fail;
499 goto skb_success;
500 }
501
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
504
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
507
508 data = __alloc_page_frag(&nc->page, len, gfp_mask);
509 if (unlikely(!data))
510 return NULL;
511
512 skb = __build_skb(data, len);
513 if (unlikely(!skb)) {
514 skb_free_frag(data);
515 return NULL;
516 }
517
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc->page.pfmemalloc)
520 skb->pfmemalloc = 1;
521 skb->head_frag = 1;
522
523 skb_success:
524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 skb->dev = napi->dev;
526
527 skb_fail:
528 return skb;
529 }
530 EXPORT_SYMBOL(__napi_alloc_skb);
531
532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 int size, unsigned int truesize)
534 {
535 skb_fill_page_desc(skb, i, page, off, size);
536 skb->len += size;
537 skb->data_len += size;
538 skb->truesize += truesize;
539 }
540 EXPORT_SYMBOL(skb_add_rx_frag);
541
542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 unsigned int truesize)
544 {
545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
546
547 skb_frag_size_add(frag, size);
548 skb->len += size;
549 skb->data_len += size;
550 skb->truesize += truesize;
551 }
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
553
554 static void skb_drop_list(struct sk_buff **listp)
555 {
556 kfree_skb_list(*listp);
557 *listp = NULL;
558 }
559
560 static inline void skb_drop_fraglist(struct sk_buff *skb)
561 {
562 skb_drop_list(&skb_shinfo(skb)->frag_list);
563 }
564
565 static void skb_clone_fraglist(struct sk_buff *skb)
566 {
567 struct sk_buff *list;
568
569 skb_walk_frags(skb, list)
570 skb_get(list);
571 }
572
573 static void skb_free_head(struct sk_buff *skb)
574 {
575 unsigned char *head = skb->head;
576
577 if (skb->head_frag)
578 skb_free_frag(head);
579 else
580 kfree(head);
581 }
582
583 static void skb_release_data(struct sk_buff *skb)
584 {
585 struct skb_shared_info *shinfo = skb_shinfo(skb);
586 int i;
587
588 if (skb->cloned &&
589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
590 &shinfo->dataref))
591 return;
592
593 for (i = 0; i < shinfo->nr_frags; i++)
594 __skb_frag_unref(&shinfo->frags[i]);
595
596 /*
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
599 */
600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 struct ubuf_info *uarg;
602
603 uarg = shinfo->destructor_arg;
604 if (uarg->callback)
605 uarg->callback(uarg, true);
606 }
607
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
610
611 skb_free_head(skb);
612 }
613
614 /*
615 * Free an skbuff by memory without cleaning the state.
616 */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 struct sk_buff_fclones *fclones;
620
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
624 return;
625
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
632 */
633 if (atomic_read(&fclones->fclone_ref) == 1)
634 goto fastpath;
635 break;
636
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 break;
640 }
641 if (!atomic_dec_and_test(&fclones->fclone_ref))
642 return;
643 fastpath:
644 kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
647 static void skb_release_head_state(struct sk_buff *skb)
648 {
649 skb_dst_drop(skb);
650 #ifdef CONFIG_XFRM
651 secpath_put(skb->sp);
652 #endif
653 if (skb->destructor) {
654 WARN_ON(in_irq());
655 skb->destructor(skb);
656 }
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb->nfct);
659 #endif
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb->nf_bridge);
662 #endif
663 }
664
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff *skb)
667 {
668 skb_release_head_state(skb);
669 if (likely(skb->head))
670 skb_release_data(skb);
671 }
672
673 /**
674 * __kfree_skb - private function
675 * @skb: buffer
676 *
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
680 */
681
682 void __kfree_skb(struct sk_buff *skb)
683 {
684 skb_release_all(skb);
685 kfree_skbmem(skb);
686 }
687 EXPORT_SYMBOL(__kfree_skb);
688
689 /**
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
692 *
693 * Drop a reference to the buffer and free it if the usage count has
694 * hit zero.
695 */
696 void kfree_skb(struct sk_buff *skb)
697 {
698 if (unlikely(!skb))
699 return;
700 if (likely(atomic_read(&skb->users) == 1))
701 smp_rmb();
702 else if (likely(!atomic_dec_and_test(&skb->users)))
703 return;
704 trace_kfree_skb(skb, __builtin_return_address(0));
705 __kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(kfree_skb);
708
709 void kfree_skb_list(struct sk_buff *segs)
710 {
711 while (segs) {
712 struct sk_buff *next = segs->next;
713
714 kfree_skb(segs);
715 segs = next;
716 }
717 }
718 EXPORT_SYMBOL(kfree_skb_list);
719
720 /**
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
723 *
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
726 */
727 void skb_tx_error(struct sk_buff *skb)
728 {
729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 struct ubuf_info *uarg;
731
732 uarg = skb_shinfo(skb)->destructor_arg;
733 if (uarg->callback)
734 uarg->callback(uarg, false);
735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
736 }
737 }
738 EXPORT_SYMBOL(skb_tx_error);
739
740 /**
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
743 *
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
747 */
748 void consume_skb(struct sk_buff *skb)
749 {
750 if (unlikely(!skb))
751 return;
752 if (likely(atomic_read(&skb->users) == 1))
753 smp_rmb();
754 else if (likely(!atomic_dec_and_test(&skb->users)))
755 return;
756 trace_consume_skb(skb);
757 __kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(consume_skb);
760
761 void __kfree_skb_flush(void)
762 {
763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
764
765 /* flush skb_cache if containing objects */
766 if (nc->skb_count) {
767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
768 nc->skb_cache);
769 nc->skb_count = 0;
770 }
771 }
772
773 static inline void _kfree_skb_defer(struct sk_buff *skb)
774 {
775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
776
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb);
779
780 /* record skb to CPU local list */
781 nc->skb_cache[nc->skb_count++] = skb;
782
783 #ifdef CONFIG_SLUB
784 /* SLUB writes into objects when freeing */
785 prefetchw(skb);
786 #endif
787
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
791 nc->skb_cache);
792 nc->skb_count = 0;
793 }
794 }
795 void __kfree_skb_defer(struct sk_buff *skb)
796 {
797 _kfree_skb_defer(skb);
798 }
799
800 void napi_consume_skb(struct sk_buff *skb, int budget)
801 {
802 if (unlikely(!skb))
803 return;
804
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget)) {
807 dev_consume_skb_any(skb);
808 return;
809 }
810
811 if (likely(atomic_read(&skb->users) == 1))
812 smp_rmb();
813 else if (likely(!atomic_dec_and_test(&skb->users)))
814 return;
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb);
817
818 /* if SKB is a clone, don't handle this case */
819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
820 __kfree_skb(skb);
821 return;
822 }
823
824 _kfree_skb_defer(skb);
825 }
826 EXPORT_SYMBOL(napi_consume_skb);
827
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
834
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
836 {
837 new->tstamp = old->tstamp;
838 /* We do not copy old->sk */
839 new->dev = old->dev;
840 memcpy(new->cb, old->cb, sizeof(old->cb));
841 skb_dst_copy(new, old);
842 #ifdef CONFIG_XFRM
843 new->sp = secpath_get(old->sp);
844 #endif
845 __nf_copy(new, old, false);
846
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
849 */
850 new->queue_mapping = old->queue_mapping;
851
852 memcpy(&new->headers_start, &old->headers_start,
853 offsetof(struct sk_buff, headers_end) -
854 offsetof(struct sk_buff, headers_start));
855 CHECK_SKB_FIELD(protocol);
856 CHECK_SKB_FIELD(csum);
857 CHECK_SKB_FIELD(hash);
858 CHECK_SKB_FIELD(priority);
859 CHECK_SKB_FIELD(skb_iif);
860 CHECK_SKB_FIELD(vlan_proto);
861 CHECK_SKB_FIELD(vlan_tci);
862 CHECK_SKB_FIELD(transport_header);
863 CHECK_SKB_FIELD(network_header);
864 CHECK_SKB_FIELD(mac_header);
865 CHECK_SKB_FIELD(inner_protocol);
866 CHECK_SKB_FIELD(inner_transport_header);
867 CHECK_SKB_FIELD(inner_network_header);
868 CHECK_SKB_FIELD(inner_mac_header);
869 CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark);
872 #endif
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id);
875 #endif
876 #ifdef CONFIG_XPS
877 CHECK_SKB_FIELD(sender_cpu);
878 #endif
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index);
881 #ifdef CONFIG_NET_CLS_ACT
882 CHECK_SKB_FIELD(tc_verd);
883 #endif
884 #endif
885
886 }
887
888 /*
889 * You should not add any new code to this function. Add it to
890 * __copy_skb_header above instead.
891 */
892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
893 {
894 #define C(x) n->x = skb->x
895
896 n->next = n->prev = NULL;
897 n->sk = NULL;
898 __copy_skb_header(n, skb);
899
900 C(len);
901 C(data_len);
902 C(mac_len);
903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
904 n->cloned = 1;
905 n->nohdr = 0;
906 n->destructor = NULL;
907 C(tail);
908 C(end);
909 C(head);
910 C(head_frag);
911 C(data);
912 C(truesize);
913 atomic_set(&n->users, 1);
914
915 atomic_inc(&(skb_shinfo(skb)->dataref));
916 skb->cloned = 1;
917
918 return n;
919 #undef C
920 }
921
922 /**
923 * skb_morph - morph one skb into another
924 * @dst: the skb to receive the contents
925 * @src: the skb to supply the contents
926 *
927 * This is identical to skb_clone except that the target skb is
928 * supplied by the user.
929 *
930 * The target skb is returned upon exit.
931 */
932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
933 {
934 skb_release_all(dst);
935 return __skb_clone(dst, src);
936 }
937 EXPORT_SYMBOL_GPL(skb_morph);
938
939 /**
940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
941 * @skb: the skb to modify
942 * @gfp_mask: allocation priority
943 *
944 * This must be called on SKBTX_DEV_ZEROCOPY skb.
945 * It will copy all frags into kernel and drop the reference
946 * to userspace pages.
947 *
948 * If this function is called from an interrupt gfp_mask() must be
949 * %GFP_ATOMIC.
950 *
951 * Returns 0 on success or a negative error code on failure
952 * to allocate kernel memory to copy to.
953 */
954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
955 {
956 int i;
957 int num_frags = skb_shinfo(skb)->nr_frags;
958 struct page *page, *head = NULL;
959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
960
961 for (i = 0; i < num_frags; i++) {
962 u8 *vaddr;
963 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
964
965 page = alloc_page(gfp_mask);
966 if (!page) {
967 while (head) {
968 struct page *next = (struct page *)page_private(head);
969 put_page(head);
970 head = next;
971 }
972 return -ENOMEM;
973 }
974 vaddr = kmap_atomic(skb_frag_page(f));
975 memcpy(page_address(page),
976 vaddr + f->page_offset, skb_frag_size(f));
977 kunmap_atomic(vaddr);
978 set_page_private(page, (unsigned long)head);
979 head = page;
980 }
981
982 /* skb frags release userspace buffers */
983 for (i = 0; i < num_frags; i++)
984 skb_frag_unref(skb, i);
985
986 uarg->callback(uarg, false);
987
988 /* skb frags point to kernel buffers */
989 for (i = num_frags - 1; i >= 0; i--) {
990 __skb_fill_page_desc(skb, i, head, 0,
991 skb_shinfo(skb)->frags[i].size);
992 head = (struct page *)page_private(head);
993 }
994
995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
996 return 0;
997 }
998 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
999
1000 /**
1001 * skb_clone - duplicate an sk_buff
1002 * @skb: buffer to clone
1003 * @gfp_mask: allocation priority
1004 *
1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006 * copies share the same packet data but not structure. The new
1007 * buffer has a reference count of 1. If the allocation fails the
1008 * function returns %NULL otherwise the new buffer is returned.
1009 *
1010 * If this function is called from an interrupt gfp_mask() must be
1011 * %GFP_ATOMIC.
1012 */
1013
1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 struct sk_buff_fclones *fclones = container_of(skb,
1017 struct sk_buff_fclones,
1018 skb1);
1019 struct sk_buff *n;
1020
1021 if (skb_orphan_frags(skb, gfp_mask))
1022 return NULL;
1023
1024 if (skb->fclone == SKB_FCLONE_ORIG &&
1025 atomic_read(&fclones->fclone_ref) == 1) {
1026 n = &fclones->skb2;
1027 atomic_set(&fclones->fclone_ref, 2);
1028 } else {
1029 if (skb_pfmemalloc(skb))
1030 gfp_mask |= __GFP_MEMALLOC;
1031
1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033 if (!n)
1034 return NULL;
1035
1036 kmemcheck_annotate_bitfield(n, flags1);
1037 n->fclone = SKB_FCLONE_UNAVAILABLE;
1038 }
1039
1040 return __skb_clone(n, skb);
1041 }
1042 EXPORT_SYMBOL(skb_clone);
1043
1044 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1045 {
1046 /* Only adjust this if it actually is csum_start rather than csum */
1047 if (skb->ip_summed == CHECKSUM_PARTIAL)
1048 skb->csum_start += off;
1049 /* {transport,network,mac}_header and tail are relative to skb->head */
1050 skb->transport_header += off;
1051 skb->network_header += off;
1052 if (skb_mac_header_was_set(skb))
1053 skb->mac_header += off;
1054 skb->inner_transport_header += off;
1055 skb->inner_network_header += off;
1056 skb->inner_mac_header += off;
1057 }
1058
1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1060 {
1061 __copy_skb_header(new, old);
1062
1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1066 }
1067
1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1069 {
1070 if (skb_pfmemalloc(skb))
1071 return SKB_ALLOC_RX;
1072 return 0;
1073 }
1074
1075 /**
1076 * skb_copy - create private copy of an sk_buff
1077 * @skb: buffer to copy
1078 * @gfp_mask: allocation priority
1079 *
1080 * Make a copy of both an &sk_buff and its data. This is used when the
1081 * caller wishes to modify the data and needs a private copy of the
1082 * data to alter. Returns %NULL on failure or the pointer to the buffer
1083 * on success. The returned buffer has a reference count of 1.
1084 *
1085 * As by-product this function converts non-linear &sk_buff to linear
1086 * one, so that &sk_buff becomes completely private and caller is allowed
1087 * to modify all the data of returned buffer. This means that this
1088 * function is not recommended for use in circumstances when only
1089 * header is going to be modified. Use pskb_copy() instead.
1090 */
1091
1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1093 {
1094 int headerlen = skb_headroom(skb);
1095 unsigned int size = skb_end_offset(skb) + skb->data_len;
1096 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1098
1099 if (!n)
1100 return NULL;
1101
1102 /* Set the data pointer */
1103 skb_reserve(n, headerlen);
1104 /* Set the tail pointer and length */
1105 skb_put(n, skb->len);
1106
1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1108 BUG();
1109
1110 copy_skb_header(n, skb);
1111 return n;
1112 }
1113 EXPORT_SYMBOL(skb_copy);
1114
1115 /**
1116 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1117 * @skb: buffer to copy
1118 * @headroom: headroom of new skb
1119 * @gfp_mask: allocation priority
1120 * @fclone: if true allocate the copy of the skb from the fclone
1121 * cache instead of the head cache; it is recommended to set this
1122 * to true for the cases where the copy will likely be cloned
1123 *
1124 * Make a copy of both an &sk_buff and part of its data, located
1125 * in header. Fragmented data remain shared. This is used when
1126 * the caller wishes to modify only header of &sk_buff and needs
1127 * private copy of the header to alter. Returns %NULL on failure
1128 * or the pointer to the buffer on success.
1129 * The returned buffer has a reference count of 1.
1130 */
1131
1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133 gfp_t gfp_mask, bool fclone)
1134 {
1135 unsigned int size = skb_headlen(skb) + headroom;
1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1138
1139 if (!n)
1140 goto out;
1141
1142 /* Set the data pointer */
1143 skb_reserve(n, headroom);
1144 /* Set the tail pointer and length */
1145 skb_put(n, skb_headlen(skb));
1146 /* Copy the bytes */
1147 skb_copy_from_linear_data(skb, n->data, n->len);
1148
1149 n->truesize += skb->data_len;
1150 n->data_len = skb->data_len;
1151 n->len = skb->len;
1152
1153 if (skb_shinfo(skb)->nr_frags) {
1154 int i;
1155
1156 if (skb_orphan_frags(skb, gfp_mask)) {
1157 kfree_skb(n);
1158 n = NULL;
1159 goto out;
1160 }
1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163 skb_frag_ref(skb, i);
1164 }
1165 skb_shinfo(n)->nr_frags = i;
1166 }
1167
1168 if (skb_has_frag_list(skb)) {
1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170 skb_clone_fraglist(n);
1171 }
1172
1173 copy_skb_header(n, skb);
1174 out:
1175 return n;
1176 }
1177 EXPORT_SYMBOL(__pskb_copy_fclone);
1178
1179 /**
1180 * pskb_expand_head - reallocate header of &sk_buff
1181 * @skb: buffer to reallocate
1182 * @nhead: room to add at head
1183 * @ntail: room to add at tail
1184 * @gfp_mask: allocation priority
1185 *
1186 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188 * reference count of 1. Returns zero in the case of success or error,
1189 * if expansion failed. In the last case, &sk_buff is not changed.
1190 *
1191 * All the pointers pointing into skb header may change and must be
1192 * reloaded after call to this function.
1193 */
1194
1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1196 gfp_t gfp_mask)
1197 {
1198 int i;
1199 u8 *data;
1200 int size = nhead + skb_end_offset(skb) + ntail;
1201 long off;
1202
1203 BUG_ON(nhead < 0);
1204
1205 if (skb_shared(skb))
1206 BUG();
1207
1208 size = SKB_DATA_ALIGN(size);
1209
1210 if (skb_pfmemalloc(skb))
1211 gfp_mask |= __GFP_MEMALLOC;
1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213 gfp_mask, NUMA_NO_NODE, NULL);
1214 if (!data)
1215 goto nodata;
1216 size = SKB_WITH_OVERHEAD(ksize(data));
1217
1218 /* Copy only real data... and, alas, header. This should be
1219 * optimized for the cases when header is void.
1220 */
1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1222
1223 memcpy((struct skb_shared_info *)(data + size),
1224 skb_shinfo(skb),
1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1226
1227 /*
1228 * if shinfo is shared we must drop the old head gracefully, but if it
1229 * is not we can just drop the old head and let the existing refcount
1230 * be since all we did is relocate the values
1231 */
1232 if (skb_cloned(skb)) {
1233 /* copy this zero copy skb frags */
1234 if (skb_orphan_frags(skb, gfp_mask))
1235 goto nofrags;
1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237 skb_frag_ref(skb, i);
1238
1239 if (skb_has_frag_list(skb))
1240 skb_clone_fraglist(skb);
1241
1242 skb_release_data(skb);
1243 } else {
1244 skb_free_head(skb);
1245 }
1246 off = (data + nhead) - skb->head;
1247
1248 skb->head = data;
1249 skb->head_frag = 0;
1250 skb->data += off;
1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1252 skb->end = size;
1253 off = nhead;
1254 #else
1255 skb->end = skb->head + size;
1256 #endif
1257 skb->tail += off;
1258 skb_headers_offset_update(skb, nhead);
1259 skb->cloned = 0;
1260 skb->hdr_len = 0;
1261 skb->nohdr = 0;
1262 atomic_set(&skb_shinfo(skb)->dataref, 1);
1263 return 0;
1264
1265 nofrags:
1266 kfree(data);
1267 nodata:
1268 return -ENOMEM;
1269 }
1270 EXPORT_SYMBOL(pskb_expand_head);
1271
1272 /* Make private copy of skb with writable head and some headroom */
1273
1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1275 {
1276 struct sk_buff *skb2;
1277 int delta = headroom - skb_headroom(skb);
1278
1279 if (delta <= 0)
1280 skb2 = pskb_copy(skb, GFP_ATOMIC);
1281 else {
1282 skb2 = skb_clone(skb, GFP_ATOMIC);
1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1284 GFP_ATOMIC)) {
1285 kfree_skb(skb2);
1286 skb2 = NULL;
1287 }
1288 }
1289 return skb2;
1290 }
1291 EXPORT_SYMBOL(skb_realloc_headroom);
1292
1293 /**
1294 * skb_copy_expand - copy and expand sk_buff
1295 * @skb: buffer to copy
1296 * @newheadroom: new free bytes at head
1297 * @newtailroom: new free bytes at tail
1298 * @gfp_mask: allocation priority
1299 *
1300 * Make a copy of both an &sk_buff and its data and while doing so
1301 * allocate additional space.
1302 *
1303 * This is used when the caller wishes to modify the data and needs a
1304 * private copy of the data to alter as well as more space for new fields.
1305 * Returns %NULL on failure or the pointer to the buffer
1306 * on success. The returned buffer has a reference count of 1.
1307 *
1308 * You must pass %GFP_ATOMIC as the allocation priority if this function
1309 * is called from an interrupt.
1310 */
1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312 int newheadroom, int newtailroom,
1313 gfp_t gfp_mask)
1314 {
1315 /*
1316 * Allocate the copy buffer
1317 */
1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319 gfp_mask, skb_alloc_rx_flag(skb),
1320 NUMA_NO_NODE);
1321 int oldheadroom = skb_headroom(skb);
1322 int head_copy_len, head_copy_off;
1323
1324 if (!n)
1325 return NULL;
1326
1327 skb_reserve(n, newheadroom);
1328
1329 /* Set the tail pointer and length */
1330 skb_put(n, skb->len);
1331
1332 head_copy_len = oldheadroom;
1333 head_copy_off = 0;
1334 if (newheadroom <= head_copy_len)
1335 head_copy_len = newheadroom;
1336 else
1337 head_copy_off = newheadroom - head_copy_len;
1338
1339 /* Copy the linear header and data. */
1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341 skb->len + head_copy_len))
1342 BUG();
1343
1344 copy_skb_header(n, skb);
1345
1346 skb_headers_offset_update(n, newheadroom - oldheadroom);
1347
1348 return n;
1349 }
1350 EXPORT_SYMBOL(skb_copy_expand);
1351
1352 /**
1353 * skb_pad - zero pad the tail of an skb
1354 * @skb: buffer to pad
1355 * @pad: space to pad
1356 *
1357 * Ensure that a buffer is followed by a padding area that is zero
1358 * filled. Used by network drivers which may DMA or transfer data
1359 * beyond the buffer end onto the wire.
1360 *
1361 * May return error in out of memory cases. The skb is freed on error.
1362 */
1363
1364 int skb_pad(struct sk_buff *skb, int pad)
1365 {
1366 int err;
1367 int ntail;
1368
1369 /* If the skbuff is non linear tailroom is always zero.. */
1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371 memset(skb->data+skb->len, 0, pad);
1372 return 0;
1373 }
1374
1375 ntail = skb->data_len + pad - (skb->end - skb->tail);
1376 if (likely(skb_cloned(skb) || ntail > 0)) {
1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1378 if (unlikely(err))
1379 goto free_skb;
1380 }
1381
1382 /* FIXME: The use of this function with non-linear skb's really needs
1383 * to be audited.
1384 */
1385 err = skb_linearize(skb);
1386 if (unlikely(err))
1387 goto free_skb;
1388
1389 memset(skb->data + skb->len, 0, pad);
1390 return 0;
1391
1392 free_skb:
1393 kfree_skb(skb);
1394 return err;
1395 }
1396 EXPORT_SYMBOL(skb_pad);
1397
1398 /**
1399 * pskb_put - add data to the tail of a potentially fragmented buffer
1400 * @skb: start of the buffer to use
1401 * @tail: tail fragment of the buffer to use
1402 * @len: amount of data to add
1403 *
1404 * This function extends the used data area of the potentially
1405 * fragmented buffer. @tail must be the last fragment of @skb -- or
1406 * @skb itself. If this would exceed the total buffer size the kernel
1407 * will panic. A pointer to the first byte of the extra data is
1408 * returned.
1409 */
1410
1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1412 {
1413 if (tail != skb) {
1414 skb->data_len += len;
1415 skb->len += len;
1416 }
1417 return skb_put(tail, len);
1418 }
1419 EXPORT_SYMBOL_GPL(pskb_put);
1420
1421 /**
1422 * skb_put - add data to a buffer
1423 * @skb: buffer to use
1424 * @len: amount of data to add
1425 *
1426 * This function extends the used data area of the buffer. If this would
1427 * exceed the total buffer size the kernel will panic. A pointer to the
1428 * first byte of the extra data is returned.
1429 */
1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1431 {
1432 unsigned char *tmp = skb_tail_pointer(skb);
1433 SKB_LINEAR_ASSERT(skb);
1434 skb->tail += len;
1435 skb->len += len;
1436 if (unlikely(skb->tail > skb->end))
1437 skb_over_panic(skb, len, __builtin_return_address(0));
1438 return tmp;
1439 }
1440 EXPORT_SYMBOL(skb_put);
1441
1442 /**
1443 * skb_push - add data to the start of a buffer
1444 * @skb: buffer to use
1445 * @len: amount of data to add
1446 *
1447 * This function extends the used data area of the buffer at the buffer
1448 * start. If this would exceed the total buffer headroom the kernel will
1449 * panic. A pointer to the first byte of the extra data is returned.
1450 */
1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452 {
1453 skb->data -= len;
1454 skb->len += len;
1455 if (unlikely(skb->data<skb->head))
1456 skb_under_panic(skb, len, __builtin_return_address(0));
1457 return skb->data;
1458 }
1459 EXPORT_SYMBOL(skb_push);
1460
1461 /**
1462 * skb_pull - remove data from the start of a buffer
1463 * @skb: buffer to use
1464 * @len: amount of data to remove
1465 *
1466 * This function removes data from the start of a buffer, returning
1467 * the memory to the headroom. A pointer to the next data in the buffer
1468 * is returned. Once the data has been pulled future pushes will overwrite
1469 * the old data.
1470 */
1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1472 {
1473 return skb_pull_inline(skb, len);
1474 }
1475 EXPORT_SYMBOL(skb_pull);
1476
1477 /**
1478 * skb_trim - remove end from a buffer
1479 * @skb: buffer to alter
1480 * @len: new length
1481 *
1482 * Cut the length of a buffer down by removing data from the tail. If
1483 * the buffer is already under the length specified it is not modified.
1484 * The skb must be linear.
1485 */
1486 void skb_trim(struct sk_buff *skb, unsigned int len)
1487 {
1488 if (skb->len > len)
1489 __skb_trim(skb, len);
1490 }
1491 EXPORT_SYMBOL(skb_trim);
1492
1493 /* Trims skb to length len. It can change skb pointers.
1494 */
1495
1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1497 {
1498 struct sk_buff **fragp;
1499 struct sk_buff *frag;
1500 int offset = skb_headlen(skb);
1501 int nfrags = skb_shinfo(skb)->nr_frags;
1502 int i;
1503 int err;
1504
1505 if (skb_cloned(skb) &&
1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1507 return err;
1508
1509 i = 0;
1510 if (offset >= len)
1511 goto drop_pages;
1512
1513 for (; i < nfrags; i++) {
1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1515
1516 if (end < len) {
1517 offset = end;
1518 continue;
1519 }
1520
1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1522
1523 drop_pages:
1524 skb_shinfo(skb)->nr_frags = i;
1525
1526 for (; i < nfrags; i++)
1527 skb_frag_unref(skb, i);
1528
1529 if (skb_has_frag_list(skb))
1530 skb_drop_fraglist(skb);
1531 goto done;
1532 }
1533
1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535 fragp = &frag->next) {
1536 int end = offset + frag->len;
1537
1538 if (skb_shared(frag)) {
1539 struct sk_buff *nfrag;
1540
1541 nfrag = skb_clone(frag, GFP_ATOMIC);
1542 if (unlikely(!nfrag))
1543 return -ENOMEM;
1544
1545 nfrag->next = frag->next;
1546 consume_skb(frag);
1547 frag = nfrag;
1548 *fragp = frag;
1549 }
1550
1551 if (end < len) {
1552 offset = end;
1553 continue;
1554 }
1555
1556 if (end > len &&
1557 unlikely((err = pskb_trim(frag, len - offset))))
1558 return err;
1559
1560 if (frag->next)
1561 skb_drop_list(&frag->next);
1562 break;
1563 }
1564
1565 done:
1566 if (len > skb_headlen(skb)) {
1567 skb->data_len -= skb->len - len;
1568 skb->len = len;
1569 } else {
1570 skb->len = len;
1571 skb->data_len = 0;
1572 skb_set_tail_pointer(skb, len);
1573 }
1574
1575 return 0;
1576 }
1577 EXPORT_SYMBOL(___pskb_trim);
1578
1579 /**
1580 * __pskb_pull_tail - advance tail of skb header
1581 * @skb: buffer to reallocate
1582 * @delta: number of bytes to advance tail
1583 *
1584 * The function makes a sense only on a fragmented &sk_buff,
1585 * it expands header moving its tail forward and copying necessary
1586 * data from fragmented part.
1587 *
1588 * &sk_buff MUST have reference count of 1.
1589 *
1590 * Returns %NULL (and &sk_buff does not change) if pull failed
1591 * or value of new tail of skb in the case of success.
1592 *
1593 * All the pointers pointing into skb header may change and must be
1594 * reloaded after call to this function.
1595 */
1596
1597 /* Moves tail of skb head forward, copying data from fragmented part,
1598 * when it is necessary.
1599 * 1. It may fail due to malloc failure.
1600 * 2. It may change skb pointers.
1601 *
1602 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1603 */
1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1605 {
1606 /* If skb has not enough free space at tail, get new one
1607 * plus 128 bytes for future expansions. If we have enough
1608 * room at tail, reallocate without expansion only if skb is cloned.
1609 */
1610 int i, k, eat = (skb->tail + delta) - skb->end;
1611
1612 if (eat > 0 || skb_cloned(skb)) {
1613 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1614 GFP_ATOMIC))
1615 return NULL;
1616 }
1617
1618 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1619 BUG();
1620
1621 /* Optimization: no fragments, no reasons to preestimate
1622 * size of pulled pages. Superb.
1623 */
1624 if (!skb_has_frag_list(skb))
1625 goto pull_pages;
1626
1627 /* Estimate size of pulled pages. */
1628 eat = delta;
1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1631
1632 if (size >= eat)
1633 goto pull_pages;
1634 eat -= size;
1635 }
1636
1637 /* If we need update frag list, we are in troubles.
1638 * Certainly, it possible to add an offset to skb data,
1639 * but taking into account that pulling is expected to
1640 * be very rare operation, it is worth to fight against
1641 * further bloating skb head and crucify ourselves here instead.
1642 * Pure masohism, indeed. 8)8)
1643 */
1644 if (eat) {
1645 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1646 struct sk_buff *clone = NULL;
1647 struct sk_buff *insp = NULL;
1648
1649 do {
1650 BUG_ON(!list);
1651
1652 if (list->len <= eat) {
1653 /* Eaten as whole. */
1654 eat -= list->len;
1655 list = list->next;
1656 insp = list;
1657 } else {
1658 /* Eaten partially. */
1659
1660 if (skb_shared(list)) {
1661 /* Sucks! We need to fork list. :-( */
1662 clone = skb_clone(list, GFP_ATOMIC);
1663 if (!clone)
1664 return NULL;
1665 insp = list->next;
1666 list = clone;
1667 } else {
1668 /* This may be pulled without
1669 * problems. */
1670 insp = list;
1671 }
1672 if (!pskb_pull(list, eat)) {
1673 kfree_skb(clone);
1674 return NULL;
1675 }
1676 break;
1677 }
1678 } while (eat);
1679
1680 /* Free pulled out fragments. */
1681 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1682 skb_shinfo(skb)->frag_list = list->next;
1683 kfree_skb(list);
1684 }
1685 /* And insert new clone at head. */
1686 if (clone) {
1687 clone->next = list;
1688 skb_shinfo(skb)->frag_list = clone;
1689 }
1690 }
1691 /* Success! Now we may commit changes to skb data. */
1692
1693 pull_pages:
1694 eat = delta;
1695 k = 0;
1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1697 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1698
1699 if (size <= eat) {
1700 skb_frag_unref(skb, i);
1701 eat -= size;
1702 } else {
1703 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1704 if (eat) {
1705 skb_shinfo(skb)->frags[k].page_offset += eat;
1706 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1707 eat = 0;
1708 }
1709 k++;
1710 }
1711 }
1712 skb_shinfo(skb)->nr_frags = k;
1713
1714 skb->tail += delta;
1715 skb->data_len -= delta;
1716
1717 return skb_tail_pointer(skb);
1718 }
1719 EXPORT_SYMBOL(__pskb_pull_tail);
1720
1721 /**
1722 * skb_copy_bits - copy bits from skb to kernel buffer
1723 * @skb: source skb
1724 * @offset: offset in source
1725 * @to: destination buffer
1726 * @len: number of bytes to copy
1727 *
1728 * Copy the specified number of bytes from the source skb to the
1729 * destination buffer.
1730 *
1731 * CAUTION ! :
1732 * If its prototype is ever changed,
1733 * check arch/{*}/net/{*}.S files,
1734 * since it is called from BPF assembly code.
1735 */
1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1737 {
1738 int start = skb_headlen(skb);
1739 struct sk_buff *frag_iter;
1740 int i, copy;
1741
1742 if (offset > (int)skb->len - len)
1743 goto fault;
1744
1745 /* Copy header. */
1746 if ((copy = start - offset) > 0) {
1747 if (copy > len)
1748 copy = len;
1749 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1750 if ((len -= copy) == 0)
1751 return 0;
1752 offset += copy;
1753 to += copy;
1754 }
1755
1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757 int end;
1758 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1759
1760 WARN_ON(start > offset + len);
1761
1762 end = start + skb_frag_size(f);
1763 if ((copy = end - offset) > 0) {
1764 u8 *vaddr;
1765
1766 if (copy > len)
1767 copy = len;
1768
1769 vaddr = kmap_atomic(skb_frag_page(f));
1770 memcpy(to,
1771 vaddr + f->page_offset + offset - start,
1772 copy);
1773 kunmap_atomic(vaddr);
1774
1775 if ((len -= copy) == 0)
1776 return 0;
1777 offset += copy;
1778 to += copy;
1779 }
1780 start = end;
1781 }
1782
1783 skb_walk_frags(skb, frag_iter) {
1784 int end;
1785
1786 WARN_ON(start > offset + len);
1787
1788 end = start + frag_iter->len;
1789 if ((copy = end - offset) > 0) {
1790 if (copy > len)
1791 copy = len;
1792 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1793 goto fault;
1794 if ((len -= copy) == 0)
1795 return 0;
1796 offset += copy;
1797 to += copy;
1798 }
1799 start = end;
1800 }
1801
1802 if (!len)
1803 return 0;
1804
1805 fault:
1806 return -EFAULT;
1807 }
1808 EXPORT_SYMBOL(skb_copy_bits);
1809
1810 /*
1811 * Callback from splice_to_pipe(), if we need to release some pages
1812 * at the end of the spd in case we error'ed out in filling the pipe.
1813 */
1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1815 {
1816 put_page(spd->pages[i]);
1817 }
1818
1819 static struct page *linear_to_page(struct page *page, unsigned int *len,
1820 unsigned int *offset,
1821 struct sock *sk)
1822 {
1823 struct page_frag *pfrag = sk_page_frag(sk);
1824
1825 if (!sk_page_frag_refill(sk, pfrag))
1826 return NULL;
1827
1828 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1829
1830 memcpy(page_address(pfrag->page) + pfrag->offset,
1831 page_address(page) + *offset, *len);
1832 *offset = pfrag->offset;
1833 pfrag->offset += *len;
1834
1835 return pfrag->page;
1836 }
1837
1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1839 struct page *page,
1840 unsigned int offset)
1841 {
1842 return spd->nr_pages &&
1843 spd->pages[spd->nr_pages - 1] == page &&
1844 (spd->partial[spd->nr_pages - 1].offset +
1845 spd->partial[spd->nr_pages - 1].len == offset);
1846 }
1847
1848 /*
1849 * Fill page/offset/length into spd, if it can hold more pages.
1850 */
1851 static bool spd_fill_page(struct splice_pipe_desc *spd,
1852 struct pipe_inode_info *pipe, struct page *page,
1853 unsigned int *len, unsigned int offset,
1854 bool linear,
1855 struct sock *sk)
1856 {
1857 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1858 return true;
1859
1860 if (linear) {
1861 page = linear_to_page(page, len, &offset, sk);
1862 if (!page)
1863 return true;
1864 }
1865 if (spd_can_coalesce(spd, page, offset)) {
1866 spd->partial[spd->nr_pages - 1].len += *len;
1867 return false;
1868 }
1869 get_page(page);
1870 spd->pages[spd->nr_pages] = page;
1871 spd->partial[spd->nr_pages].len = *len;
1872 spd->partial[spd->nr_pages].offset = offset;
1873 spd->nr_pages++;
1874
1875 return false;
1876 }
1877
1878 static bool __splice_segment(struct page *page, unsigned int poff,
1879 unsigned int plen, unsigned int *off,
1880 unsigned int *len,
1881 struct splice_pipe_desc *spd, bool linear,
1882 struct sock *sk,
1883 struct pipe_inode_info *pipe)
1884 {
1885 if (!*len)
1886 return true;
1887
1888 /* skip this segment if already processed */
1889 if (*off >= plen) {
1890 *off -= plen;
1891 return false;
1892 }
1893
1894 /* ignore any bits we already processed */
1895 poff += *off;
1896 plen -= *off;
1897 *off = 0;
1898
1899 do {
1900 unsigned int flen = min(*len, plen);
1901
1902 if (spd_fill_page(spd, pipe, page, &flen, poff,
1903 linear, sk))
1904 return true;
1905 poff += flen;
1906 plen -= flen;
1907 *len -= flen;
1908 } while (*len && plen);
1909
1910 return false;
1911 }
1912
1913 /*
1914 * Map linear and fragment data from the skb to spd. It reports true if the
1915 * pipe is full or if we already spliced the requested length.
1916 */
1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1918 unsigned int *offset, unsigned int *len,
1919 struct splice_pipe_desc *spd, struct sock *sk)
1920 {
1921 int seg;
1922 struct sk_buff *iter;
1923
1924 /* map the linear part :
1925 * If skb->head_frag is set, this 'linear' part is backed by a
1926 * fragment, and if the head is not shared with any clones then
1927 * we can avoid a copy since we own the head portion of this page.
1928 */
1929 if (__splice_segment(virt_to_page(skb->data),
1930 (unsigned long) skb->data & (PAGE_SIZE - 1),
1931 skb_headlen(skb),
1932 offset, len, spd,
1933 skb_head_is_locked(skb),
1934 sk, pipe))
1935 return true;
1936
1937 /*
1938 * then map the fragments
1939 */
1940 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1941 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1942
1943 if (__splice_segment(skb_frag_page(f),
1944 f->page_offset, skb_frag_size(f),
1945 offset, len, spd, false, sk, pipe))
1946 return true;
1947 }
1948
1949 skb_walk_frags(skb, iter) {
1950 if (*offset >= iter->len) {
1951 *offset -= iter->len;
1952 continue;
1953 }
1954 /* __skb_splice_bits() only fails if the output has no room
1955 * left, so no point in going over the frag_list for the error
1956 * case.
1957 */
1958 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1959 return true;
1960 }
1961
1962 return false;
1963 }
1964
1965 ssize_t skb_socket_splice(struct sock *sk,
1966 struct pipe_inode_info *pipe,
1967 struct splice_pipe_desc *spd)
1968 {
1969 int ret;
1970
1971 /* Drop the socket lock, otherwise we have reverse
1972 * locking dependencies between sk_lock and i_mutex
1973 * here as compared to sendfile(). We enter here
1974 * with the socket lock held, and splice_to_pipe() will
1975 * grab the pipe inode lock. For sendfile() emulation,
1976 * we call into ->sendpage() with the i_mutex lock held
1977 * and networking will grab the socket lock.
1978 */
1979 release_sock(sk);
1980 ret = splice_to_pipe(pipe, spd);
1981 lock_sock(sk);
1982
1983 return ret;
1984 }
1985
1986 /*
1987 * Map data from the skb to a pipe. Should handle both the linear part,
1988 * the fragments, and the frag list.
1989 */
1990 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1991 struct pipe_inode_info *pipe, unsigned int tlen,
1992 unsigned int flags,
1993 ssize_t (*splice_cb)(struct sock *,
1994 struct pipe_inode_info *,
1995 struct splice_pipe_desc *))
1996 {
1997 struct partial_page partial[MAX_SKB_FRAGS];
1998 struct page *pages[MAX_SKB_FRAGS];
1999 struct splice_pipe_desc spd = {
2000 .pages = pages,
2001 .partial = partial,
2002 .nr_pages_max = MAX_SKB_FRAGS,
2003 .flags = flags,
2004 .ops = &nosteal_pipe_buf_ops,
2005 .spd_release = sock_spd_release,
2006 };
2007 int ret = 0;
2008
2009 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2010
2011 if (spd.nr_pages)
2012 ret = splice_cb(sk, pipe, &spd);
2013
2014 return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(skb_splice_bits);
2017
2018 /**
2019 * skb_store_bits - store bits from kernel buffer to skb
2020 * @skb: destination buffer
2021 * @offset: offset in destination
2022 * @from: source buffer
2023 * @len: number of bytes to copy
2024 *
2025 * Copy the specified number of bytes from the source buffer to the
2026 * destination skb. This function handles all the messy bits of
2027 * traversing fragment lists and such.
2028 */
2029
2030 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2031 {
2032 int start = skb_headlen(skb);
2033 struct sk_buff *frag_iter;
2034 int i, copy;
2035
2036 if (offset > (int)skb->len - len)
2037 goto fault;
2038
2039 if ((copy = start - offset) > 0) {
2040 if (copy > len)
2041 copy = len;
2042 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2043 if ((len -= copy) == 0)
2044 return 0;
2045 offset += copy;
2046 from += copy;
2047 }
2048
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 int end;
2052
2053 WARN_ON(start > offset + len);
2054
2055 end = start + skb_frag_size(frag);
2056 if ((copy = end - offset) > 0) {
2057 u8 *vaddr;
2058
2059 if (copy > len)
2060 copy = len;
2061
2062 vaddr = kmap_atomic(skb_frag_page(frag));
2063 memcpy(vaddr + frag->page_offset + offset - start,
2064 from, copy);
2065 kunmap_atomic(vaddr);
2066
2067 if ((len -= copy) == 0)
2068 return 0;
2069 offset += copy;
2070 from += copy;
2071 }
2072 start = end;
2073 }
2074
2075 skb_walk_frags(skb, frag_iter) {
2076 int end;
2077
2078 WARN_ON(start > offset + len);
2079
2080 end = start + frag_iter->len;
2081 if ((copy = end - offset) > 0) {
2082 if (copy > len)
2083 copy = len;
2084 if (skb_store_bits(frag_iter, offset - start,
2085 from, copy))
2086 goto fault;
2087 if ((len -= copy) == 0)
2088 return 0;
2089 offset += copy;
2090 from += copy;
2091 }
2092 start = end;
2093 }
2094 if (!len)
2095 return 0;
2096
2097 fault:
2098 return -EFAULT;
2099 }
2100 EXPORT_SYMBOL(skb_store_bits);
2101
2102 /* Checksum skb data. */
2103 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2104 __wsum csum, const struct skb_checksum_ops *ops)
2105 {
2106 int start = skb_headlen(skb);
2107 int i, copy = start - offset;
2108 struct sk_buff *frag_iter;
2109 int pos = 0;
2110
2111 /* Checksum header. */
2112 if (copy > 0) {
2113 if (copy > len)
2114 copy = len;
2115 csum = ops->update(skb->data + offset, copy, csum);
2116 if ((len -= copy) == 0)
2117 return csum;
2118 offset += copy;
2119 pos = copy;
2120 }
2121
2122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2123 int end;
2124 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2125
2126 WARN_ON(start > offset + len);
2127
2128 end = start + skb_frag_size(frag);
2129 if ((copy = end - offset) > 0) {
2130 __wsum csum2;
2131 u8 *vaddr;
2132
2133 if (copy > len)
2134 copy = len;
2135 vaddr = kmap_atomic(skb_frag_page(frag));
2136 csum2 = ops->update(vaddr + frag->page_offset +
2137 offset - start, copy, 0);
2138 kunmap_atomic(vaddr);
2139 csum = ops->combine(csum, csum2, pos, copy);
2140 if (!(len -= copy))
2141 return csum;
2142 offset += copy;
2143 pos += copy;
2144 }
2145 start = end;
2146 }
2147
2148 skb_walk_frags(skb, frag_iter) {
2149 int end;
2150
2151 WARN_ON(start > offset + len);
2152
2153 end = start + frag_iter->len;
2154 if ((copy = end - offset) > 0) {
2155 __wsum csum2;
2156 if (copy > len)
2157 copy = len;
2158 csum2 = __skb_checksum(frag_iter, offset - start,
2159 copy, 0, ops);
2160 csum = ops->combine(csum, csum2, pos, copy);
2161 if ((len -= copy) == 0)
2162 return csum;
2163 offset += copy;
2164 pos += copy;
2165 }
2166 start = end;
2167 }
2168 BUG_ON(len);
2169
2170 return csum;
2171 }
2172 EXPORT_SYMBOL(__skb_checksum);
2173
2174 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2175 int len, __wsum csum)
2176 {
2177 const struct skb_checksum_ops ops = {
2178 .update = csum_partial_ext,
2179 .combine = csum_block_add_ext,
2180 };
2181
2182 return __skb_checksum(skb, offset, len, csum, &ops);
2183 }
2184 EXPORT_SYMBOL(skb_checksum);
2185
2186 /* Both of above in one bottle. */
2187
2188 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2189 u8 *to, int len, __wsum csum)
2190 {
2191 int start = skb_headlen(skb);
2192 int i, copy = start - offset;
2193 struct sk_buff *frag_iter;
2194 int pos = 0;
2195
2196 /* Copy header. */
2197 if (copy > 0) {
2198 if (copy > len)
2199 copy = len;
2200 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2201 copy, csum);
2202 if ((len -= copy) == 0)
2203 return csum;
2204 offset += copy;
2205 to += copy;
2206 pos = copy;
2207 }
2208
2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 int end;
2211
2212 WARN_ON(start > offset + len);
2213
2214 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2215 if ((copy = end - offset) > 0) {
2216 __wsum csum2;
2217 u8 *vaddr;
2218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2219
2220 if (copy > len)
2221 copy = len;
2222 vaddr = kmap_atomic(skb_frag_page(frag));
2223 csum2 = csum_partial_copy_nocheck(vaddr +
2224 frag->page_offset +
2225 offset - start, to,
2226 copy, 0);
2227 kunmap_atomic(vaddr);
2228 csum = csum_block_add(csum, csum2, pos);
2229 if (!(len -= copy))
2230 return csum;
2231 offset += copy;
2232 to += copy;
2233 pos += copy;
2234 }
2235 start = end;
2236 }
2237
2238 skb_walk_frags(skb, frag_iter) {
2239 __wsum csum2;
2240 int end;
2241
2242 WARN_ON(start > offset + len);
2243
2244 end = start + frag_iter->len;
2245 if ((copy = end - offset) > 0) {
2246 if (copy > len)
2247 copy = len;
2248 csum2 = skb_copy_and_csum_bits(frag_iter,
2249 offset - start,
2250 to, copy, 0);
2251 csum = csum_block_add(csum, csum2, pos);
2252 if ((len -= copy) == 0)
2253 return csum;
2254 offset += copy;
2255 to += copy;
2256 pos += copy;
2257 }
2258 start = end;
2259 }
2260 BUG_ON(len);
2261 return csum;
2262 }
2263 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2264
2265 /**
2266 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2267 * @from: source buffer
2268 *
2269 * Calculates the amount of linear headroom needed in the 'to' skb passed
2270 * into skb_zerocopy().
2271 */
2272 unsigned int
2273 skb_zerocopy_headlen(const struct sk_buff *from)
2274 {
2275 unsigned int hlen = 0;
2276
2277 if (!from->head_frag ||
2278 skb_headlen(from) < L1_CACHE_BYTES ||
2279 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2280 hlen = skb_headlen(from);
2281
2282 if (skb_has_frag_list(from))
2283 hlen = from->len;
2284
2285 return hlen;
2286 }
2287 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2288
2289 /**
2290 * skb_zerocopy - Zero copy skb to skb
2291 * @to: destination buffer
2292 * @from: source buffer
2293 * @len: number of bytes to copy from source buffer
2294 * @hlen: size of linear headroom in destination buffer
2295 *
2296 * Copies up to `len` bytes from `from` to `to` by creating references
2297 * to the frags in the source buffer.
2298 *
2299 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2300 * headroom in the `to` buffer.
2301 *
2302 * Return value:
2303 * 0: everything is OK
2304 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2305 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2306 */
2307 int
2308 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2309 {
2310 int i, j = 0;
2311 int plen = 0; /* length of skb->head fragment */
2312 int ret;
2313 struct page *page;
2314 unsigned int offset;
2315
2316 BUG_ON(!from->head_frag && !hlen);
2317
2318 /* dont bother with small payloads */
2319 if (len <= skb_tailroom(to))
2320 return skb_copy_bits(from, 0, skb_put(to, len), len);
2321
2322 if (hlen) {
2323 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2324 if (unlikely(ret))
2325 return ret;
2326 len -= hlen;
2327 } else {
2328 plen = min_t(int, skb_headlen(from), len);
2329 if (plen) {
2330 page = virt_to_head_page(from->head);
2331 offset = from->data - (unsigned char *)page_address(page);
2332 __skb_fill_page_desc(to, 0, page, offset, plen);
2333 get_page(page);
2334 j = 1;
2335 len -= plen;
2336 }
2337 }
2338
2339 to->truesize += len + plen;
2340 to->len += len + plen;
2341 to->data_len += len + plen;
2342
2343 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2344 skb_tx_error(from);
2345 return -ENOMEM;
2346 }
2347
2348 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2349 if (!len)
2350 break;
2351 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2352 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2353 len -= skb_shinfo(to)->frags[j].size;
2354 skb_frag_ref(to, j);
2355 j++;
2356 }
2357 skb_shinfo(to)->nr_frags = j;
2358
2359 return 0;
2360 }
2361 EXPORT_SYMBOL_GPL(skb_zerocopy);
2362
2363 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2364 {
2365 __wsum csum;
2366 long csstart;
2367
2368 if (skb->ip_summed == CHECKSUM_PARTIAL)
2369 csstart = skb_checksum_start_offset(skb);
2370 else
2371 csstart = skb_headlen(skb);
2372
2373 BUG_ON(csstart > skb_headlen(skb));
2374
2375 skb_copy_from_linear_data(skb, to, csstart);
2376
2377 csum = 0;
2378 if (csstart != skb->len)
2379 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2380 skb->len - csstart, 0);
2381
2382 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2383 long csstuff = csstart + skb->csum_offset;
2384
2385 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2386 }
2387 }
2388 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2389
2390 /**
2391 * skb_dequeue - remove from the head of the queue
2392 * @list: list to dequeue from
2393 *
2394 * Remove the head of the list. The list lock is taken so the function
2395 * may be used safely with other locking list functions. The head item is
2396 * returned or %NULL if the list is empty.
2397 */
2398
2399 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2400 {
2401 unsigned long flags;
2402 struct sk_buff *result;
2403
2404 spin_lock_irqsave(&list->lock, flags);
2405 result = __skb_dequeue(list);
2406 spin_unlock_irqrestore(&list->lock, flags);
2407 return result;
2408 }
2409 EXPORT_SYMBOL(skb_dequeue);
2410
2411 /**
2412 * skb_dequeue_tail - remove from the tail of the queue
2413 * @list: list to dequeue from
2414 *
2415 * Remove the tail of the list. The list lock is taken so the function
2416 * may be used safely with other locking list functions. The tail item is
2417 * returned or %NULL if the list is empty.
2418 */
2419 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2420 {
2421 unsigned long flags;
2422 struct sk_buff *result;
2423
2424 spin_lock_irqsave(&list->lock, flags);
2425 result = __skb_dequeue_tail(list);
2426 spin_unlock_irqrestore(&list->lock, flags);
2427 return result;
2428 }
2429 EXPORT_SYMBOL(skb_dequeue_tail);
2430
2431 /**
2432 * skb_queue_purge - empty a list
2433 * @list: list to empty
2434 *
2435 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2436 * the list and one reference dropped. This function takes the list
2437 * lock and is atomic with respect to other list locking functions.
2438 */
2439 void skb_queue_purge(struct sk_buff_head *list)
2440 {
2441 struct sk_buff *skb;
2442 while ((skb = skb_dequeue(list)) != NULL)
2443 kfree_skb(skb);
2444 }
2445 EXPORT_SYMBOL(skb_queue_purge);
2446
2447 /**
2448 * skb_queue_head - queue a buffer at the list head
2449 * @list: list to use
2450 * @newsk: buffer to queue
2451 *
2452 * Queue a buffer at the start of the list. This function takes the
2453 * list lock and can be used safely with other locking &sk_buff functions
2454 * safely.
2455 *
2456 * A buffer cannot be placed on two lists at the same time.
2457 */
2458 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2459 {
2460 unsigned long flags;
2461
2462 spin_lock_irqsave(&list->lock, flags);
2463 __skb_queue_head(list, newsk);
2464 spin_unlock_irqrestore(&list->lock, flags);
2465 }
2466 EXPORT_SYMBOL(skb_queue_head);
2467
2468 /**
2469 * skb_queue_tail - queue a buffer at the list tail
2470 * @list: list to use
2471 * @newsk: buffer to queue
2472 *
2473 * Queue a buffer at the tail of the list. This function takes the
2474 * list lock and can be used safely with other locking &sk_buff functions
2475 * safely.
2476 *
2477 * A buffer cannot be placed on two lists at the same time.
2478 */
2479 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2480 {
2481 unsigned long flags;
2482
2483 spin_lock_irqsave(&list->lock, flags);
2484 __skb_queue_tail(list, newsk);
2485 spin_unlock_irqrestore(&list->lock, flags);
2486 }
2487 EXPORT_SYMBOL(skb_queue_tail);
2488
2489 /**
2490 * skb_unlink - remove a buffer from a list
2491 * @skb: buffer to remove
2492 * @list: list to use
2493 *
2494 * Remove a packet from a list. The list locks are taken and this
2495 * function is atomic with respect to other list locked calls
2496 *
2497 * You must know what list the SKB is on.
2498 */
2499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2500 {
2501 unsigned long flags;
2502
2503 spin_lock_irqsave(&list->lock, flags);
2504 __skb_unlink(skb, list);
2505 spin_unlock_irqrestore(&list->lock, flags);
2506 }
2507 EXPORT_SYMBOL(skb_unlink);
2508
2509 /**
2510 * skb_append - append a buffer
2511 * @old: buffer to insert after
2512 * @newsk: buffer to insert
2513 * @list: list to use
2514 *
2515 * Place a packet after a given packet in a list. The list locks are taken
2516 * and this function is atomic with respect to other list locked calls.
2517 * A buffer cannot be placed on two lists at the same time.
2518 */
2519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2520 {
2521 unsigned long flags;
2522
2523 spin_lock_irqsave(&list->lock, flags);
2524 __skb_queue_after(list, old, newsk);
2525 spin_unlock_irqrestore(&list->lock, flags);
2526 }
2527 EXPORT_SYMBOL(skb_append);
2528
2529 /**
2530 * skb_insert - insert a buffer
2531 * @old: buffer to insert before
2532 * @newsk: buffer to insert
2533 * @list: list to use
2534 *
2535 * Place a packet before a given packet in a list. The list locks are
2536 * taken and this function is atomic with respect to other list locked
2537 * calls.
2538 *
2539 * A buffer cannot be placed on two lists at the same time.
2540 */
2541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2542 {
2543 unsigned long flags;
2544
2545 spin_lock_irqsave(&list->lock, flags);
2546 __skb_insert(newsk, old->prev, old, list);
2547 spin_unlock_irqrestore(&list->lock, flags);
2548 }
2549 EXPORT_SYMBOL(skb_insert);
2550
2551 static inline void skb_split_inside_header(struct sk_buff *skb,
2552 struct sk_buff* skb1,
2553 const u32 len, const int pos)
2554 {
2555 int i;
2556
2557 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2558 pos - len);
2559 /* And move data appendix as is. */
2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2561 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2562
2563 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2564 skb_shinfo(skb)->nr_frags = 0;
2565 skb1->data_len = skb->data_len;
2566 skb1->len += skb1->data_len;
2567 skb->data_len = 0;
2568 skb->len = len;
2569 skb_set_tail_pointer(skb, len);
2570 }
2571
2572 static inline void skb_split_no_header(struct sk_buff *skb,
2573 struct sk_buff* skb1,
2574 const u32 len, int pos)
2575 {
2576 int i, k = 0;
2577 const int nfrags = skb_shinfo(skb)->nr_frags;
2578
2579 skb_shinfo(skb)->nr_frags = 0;
2580 skb1->len = skb1->data_len = skb->len - len;
2581 skb->len = len;
2582 skb->data_len = len - pos;
2583
2584 for (i = 0; i < nfrags; i++) {
2585 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2586
2587 if (pos + size > len) {
2588 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2589
2590 if (pos < len) {
2591 /* Split frag.
2592 * We have two variants in this case:
2593 * 1. Move all the frag to the second
2594 * part, if it is possible. F.e.
2595 * this approach is mandatory for TUX,
2596 * where splitting is expensive.
2597 * 2. Split is accurately. We make this.
2598 */
2599 skb_frag_ref(skb, i);
2600 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2601 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2602 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2603 skb_shinfo(skb)->nr_frags++;
2604 }
2605 k++;
2606 } else
2607 skb_shinfo(skb)->nr_frags++;
2608 pos += size;
2609 }
2610 skb_shinfo(skb1)->nr_frags = k;
2611 }
2612
2613 /**
2614 * skb_split - Split fragmented skb to two parts at length len.
2615 * @skb: the buffer to split
2616 * @skb1: the buffer to receive the second part
2617 * @len: new length for skb
2618 */
2619 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2620 {
2621 int pos = skb_headlen(skb);
2622
2623 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2624 if (len < pos) /* Split line is inside header. */
2625 skb_split_inside_header(skb, skb1, len, pos);
2626 else /* Second chunk has no header, nothing to copy. */
2627 skb_split_no_header(skb, skb1, len, pos);
2628 }
2629 EXPORT_SYMBOL(skb_split);
2630
2631 /* Shifting from/to a cloned skb is a no-go.
2632 *
2633 * Caller cannot keep skb_shinfo related pointers past calling here!
2634 */
2635 static int skb_prepare_for_shift(struct sk_buff *skb)
2636 {
2637 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2638 }
2639
2640 /**
2641 * skb_shift - Shifts paged data partially from skb to another
2642 * @tgt: buffer into which tail data gets added
2643 * @skb: buffer from which the paged data comes from
2644 * @shiftlen: shift up to this many bytes
2645 *
2646 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2647 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2648 * It's up to caller to free skb if everything was shifted.
2649 *
2650 * If @tgt runs out of frags, the whole operation is aborted.
2651 *
2652 * Skb cannot include anything else but paged data while tgt is allowed
2653 * to have non-paged data as well.
2654 *
2655 * TODO: full sized shift could be optimized but that would need
2656 * specialized skb free'er to handle frags without up-to-date nr_frags.
2657 */
2658 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2659 {
2660 int from, to, merge, todo;
2661 struct skb_frag_struct *fragfrom, *fragto;
2662
2663 BUG_ON(shiftlen > skb->len);
2664 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2665
2666 todo = shiftlen;
2667 from = 0;
2668 to = skb_shinfo(tgt)->nr_frags;
2669 fragfrom = &skb_shinfo(skb)->frags[from];
2670
2671 /* Actual merge is delayed until the point when we know we can
2672 * commit all, so that we don't have to undo partial changes
2673 */
2674 if (!to ||
2675 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2676 fragfrom->page_offset)) {
2677 merge = -1;
2678 } else {
2679 merge = to - 1;
2680
2681 todo -= skb_frag_size(fragfrom);
2682 if (todo < 0) {
2683 if (skb_prepare_for_shift(skb) ||
2684 skb_prepare_for_shift(tgt))
2685 return 0;
2686
2687 /* All previous frag pointers might be stale! */
2688 fragfrom = &skb_shinfo(skb)->frags[from];
2689 fragto = &skb_shinfo(tgt)->frags[merge];
2690
2691 skb_frag_size_add(fragto, shiftlen);
2692 skb_frag_size_sub(fragfrom, shiftlen);
2693 fragfrom->page_offset += shiftlen;
2694
2695 goto onlymerged;
2696 }
2697
2698 from++;
2699 }
2700
2701 /* Skip full, not-fitting skb to avoid expensive operations */
2702 if ((shiftlen == skb->len) &&
2703 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2704 return 0;
2705
2706 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2707 return 0;
2708
2709 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2710 if (to == MAX_SKB_FRAGS)
2711 return 0;
2712
2713 fragfrom = &skb_shinfo(skb)->frags[from];
2714 fragto = &skb_shinfo(tgt)->frags[to];
2715
2716 if (todo >= skb_frag_size(fragfrom)) {
2717 *fragto = *fragfrom;
2718 todo -= skb_frag_size(fragfrom);
2719 from++;
2720 to++;
2721
2722 } else {
2723 __skb_frag_ref(fragfrom);
2724 fragto->page = fragfrom->page;
2725 fragto->page_offset = fragfrom->page_offset;
2726 skb_frag_size_set(fragto, todo);
2727
2728 fragfrom->page_offset += todo;
2729 skb_frag_size_sub(fragfrom, todo);
2730 todo = 0;
2731
2732 to++;
2733 break;
2734 }
2735 }
2736
2737 /* Ready to "commit" this state change to tgt */
2738 skb_shinfo(tgt)->nr_frags = to;
2739
2740 if (merge >= 0) {
2741 fragfrom = &skb_shinfo(skb)->frags[0];
2742 fragto = &skb_shinfo(tgt)->frags[merge];
2743
2744 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2745 __skb_frag_unref(fragfrom);
2746 }
2747
2748 /* Reposition in the original skb */
2749 to = 0;
2750 while (from < skb_shinfo(skb)->nr_frags)
2751 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2752 skb_shinfo(skb)->nr_frags = to;
2753
2754 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2755
2756 onlymerged:
2757 /* Most likely the tgt won't ever need its checksum anymore, skb on
2758 * the other hand might need it if it needs to be resent
2759 */
2760 tgt->ip_summed = CHECKSUM_PARTIAL;
2761 skb->ip_summed = CHECKSUM_PARTIAL;
2762
2763 /* Yak, is it really working this way? Some helper please? */
2764 skb->len -= shiftlen;
2765 skb->data_len -= shiftlen;
2766 skb->truesize -= shiftlen;
2767 tgt->len += shiftlen;
2768 tgt->data_len += shiftlen;
2769 tgt->truesize += shiftlen;
2770
2771 return shiftlen;
2772 }
2773
2774 /**
2775 * skb_prepare_seq_read - Prepare a sequential read of skb data
2776 * @skb: the buffer to read
2777 * @from: lower offset of data to be read
2778 * @to: upper offset of data to be read
2779 * @st: state variable
2780 *
2781 * Initializes the specified state variable. Must be called before
2782 * invoking skb_seq_read() for the first time.
2783 */
2784 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2785 unsigned int to, struct skb_seq_state *st)
2786 {
2787 st->lower_offset = from;
2788 st->upper_offset = to;
2789 st->root_skb = st->cur_skb = skb;
2790 st->frag_idx = st->stepped_offset = 0;
2791 st->frag_data = NULL;
2792 }
2793 EXPORT_SYMBOL(skb_prepare_seq_read);
2794
2795 /**
2796 * skb_seq_read - Sequentially read skb data
2797 * @consumed: number of bytes consumed by the caller so far
2798 * @data: destination pointer for data to be returned
2799 * @st: state variable
2800 *
2801 * Reads a block of skb data at @consumed relative to the
2802 * lower offset specified to skb_prepare_seq_read(). Assigns
2803 * the head of the data block to @data and returns the length
2804 * of the block or 0 if the end of the skb data or the upper
2805 * offset has been reached.
2806 *
2807 * The caller is not required to consume all of the data
2808 * returned, i.e. @consumed is typically set to the number
2809 * of bytes already consumed and the next call to
2810 * skb_seq_read() will return the remaining part of the block.
2811 *
2812 * Note 1: The size of each block of data returned can be arbitrary,
2813 * this limitation is the cost for zerocopy sequential
2814 * reads of potentially non linear data.
2815 *
2816 * Note 2: Fragment lists within fragments are not implemented
2817 * at the moment, state->root_skb could be replaced with
2818 * a stack for this purpose.
2819 */
2820 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2821 struct skb_seq_state *st)
2822 {
2823 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2824 skb_frag_t *frag;
2825
2826 if (unlikely(abs_offset >= st->upper_offset)) {
2827 if (st->frag_data) {
2828 kunmap_atomic(st->frag_data);
2829 st->frag_data = NULL;
2830 }
2831 return 0;
2832 }
2833
2834 next_skb:
2835 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2836
2837 if (abs_offset < block_limit && !st->frag_data) {
2838 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2839 return block_limit - abs_offset;
2840 }
2841
2842 if (st->frag_idx == 0 && !st->frag_data)
2843 st->stepped_offset += skb_headlen(st->cur_skb);
2844
2845 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2846 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2847 block_limit = skb_frag_size(frag) + st->stepped_offset;
2848
2849 if (abs_offset < block_limit) {
2850 if (!st->frag_data)
2851 st->frag_data = kmap_atomic(skb_frag_page(frag));
2852
2853 *data = (u8 *) st->frag_data + frag->page_offset +
2854 (abs_offset - st->stepped_offset);
2855
2856 return block_limit - abs_offset;
2857 }
2858
2859 if (st->frag_data) {
2860 kunmap_atomic(st->frag_data);
2861 st->frag_data = NULL;
2862 }
2863
2864 st->frag_idx++;
2865 st->stepped_offset += skb_frag_size(frag);
2866 }
2867
2868 if (st->frag_data) {
2869 kunmap_atomic(st->frag_data);
2870 st->frag_data = NULL;
2871 }
2872
2873 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2874 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2875 st->frag_idx = 0;
2876 goto next_skb;
2877 } else if (st->cur_skb->next) {
2878 st->cur_skb = st->cur_skb->next;
2879 st->frag_idx = 0;
2880 goto next_skb;
2881 }
2882
2883 return 0;
2884 }
2885 EXPORT_SYMBOL(skb_seq_read);
2886
2887 /**
2888 * skb_abort_seq_read - Abort a sequential read of skb data
2889 * @st: state variable
2890 *
2891 * Must be called if skb_seq_read() was not called until it
2892 * returned 0.
2893 */
2894 void skb_abort_seq_read(struct skb_seq_state *st)
2895 {
2896 if (st->frag_data)
2897 kunmap_atomic(st->frag_data);
2898 }
2899 EXPORT_SYMBOL(skb_abort_seq_read);
2900
2901 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2902
2903 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2904 struct ts_config *conf,
2905 struct ts_state *state)
2906 {
2907 return skb_seq_read(offset, text, TS_SKB_CB(state));
2908 }
2909
2910 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2911 {
2912 skb_abort_seq_read(TS_SKB_CB(state));
2913 }
2914
2915 /**
2916 * skb_find_text - Find a text pattern in skb data
2917 * @skb: the buffer to look in
2918 * @from: search offset
2919 * @to: search limit
2920 * @config: textsearch configuration
2921 *
2922 * Finds a pattern in the skb data according to the specified
2923 * textsearch configuration. Use textsearch_next() to retrieve
2924 * subsequent occurrences of the pattern. Returns the offset
2925 * to the first occurrence or UINT_MAX if no match was found.
2926 */
2927 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2928 unsigned int to, struct ts_config *config)
2929 {
2930 struct ts_state state;
2931 unsigned int ret;
2932
2933 config->get_next_block = skb_ts_get_next_block;
2934 config->finish = skb_ts_finish;
2935
2936 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2937
2938 ret = textsearch_find(config, &state);
2939 return (ret <= to - from ? ret : UINT_MAX);
2940 }
2941 EXPORT_SYMBOL(skb_find_text);
2942
2943 /**
2944 * skb_append_datato_frags - append the user data to a skb
2945 * @sk: sock structure
2946 * @skb: skb structure to be appended with user data.
2947 * @getfrag: call back function to be used for getting the user data
2948 * @from: pointer to user message iov
2949 * @length: length of the iov message
2950 *
2951 * Description: This procedure append the user data in the fragment part
2952 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2953 */
2954 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2955 int (*getfrag)(void *from, char *to, int offset,
2956 int len, int odd, struct sk_buff *skb),
2957 void *from, int length)
2958 {
2959 int frg_cnt = skb_shinfo(skb)->nr_frags;
2960 int copy;
2961 int offset = 0;
2962 int ret;
2963 struct page_frag *pfrag = &current->task_frag;
2964
2965 do {
2966 /* Return error if we don't have space for new frag */
2967 if (frg_cnt >= MAX_SKB_FRAGS)
2968 return -EMSGSIZE;
2969
2970 if (!sk_page_frag_refill(sk, pfrag))
2971 return -ENOMEM;
2972
2973 /* copy the user data to page */
2974 copy = min_t(int, length, pfrag->size - pfrag->offset);
2975
2976 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2977 offset, copy, 0, skb);
2978 if (ret < 0)
2979 return -EFAULT;
2980
2981 /* copy was successful so update the size parameters */
2982 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2983 copy);
2984 frg_cnt++;
2985 pfrag->offset += copy;
2986 get_page(pfrag->page);
2987
2988 skb->truesize += copy;
2989 atomic_add(copy, &sk->sk_wmem_alloc);
2990 skb->len += copy;
2991 skb->data_len += copy;
2992 offset += copy;
2993 length -= copy;
2994
2995 } while (length > 0);
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL(skb_append_datato_frags);
3000
3001 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3002 int offset, size_t size)
3003 {
3004 int i = skb_shinfo(skb)->nr_frags;
3005
3006 if (skb_can_coalesce(skb, i, page, offset)) {
3007 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3008 } else if (i < MAX_SKB_FRAGS) {
3009 get_page(page);
3010 skb_fill_page_desc(skb, i, page, offset, size);
3011 } else {
3012 return -EMSGSIZE;
3013 }
3014
3015 return 0;
3016 }
3017 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3018
3019 /**
3020 * skb_pull_rcsum - pull skb and update receive checksum
3021 * @skb: buffer to update
3022 * @len: length of data pulled
3023 *
3024 * This function performs an skb_pull on the packet and updates
3025 * the CHECKSUM_COMPLETE checksum. It should be used on
3026 * receive path processing instead of skb_pull unless you know
3027 * that the checksum difference is zero (e.g., a valid IP header)
3028 * or you are setting ip_summed to CHECKSUM_NONE.
3029 */
3030 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3031 {
3032 unsigned char *data = skb->data;
3033
3034 BUG_ON(len > skb->len);
3035 __skb_pull(skb, len);
3036 skb_postpull_rcsum(skb, data, len);
3037 return skb->data;
3038 }
3039 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3040
3041 /**
3042 * skb_segment - Perform protocol segmentation on skb.
3043 * @head_skb: buffer to segment
3044 * @features: features for the output path (see dev->features)
3045 *
3046 * This function performs segmentation on the given skb. It returns
3047 * a pointer to the first in a list of new skbs for the segments.
3048 * In case of error it returns ERR_PTR(err).
3049 */
3050 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3051 netdev_features_t features)
3052 {
3053 struct sk_buff *segs = NULL;
3054 struct sk_buff *tail = NULL;
3055 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3056 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3057 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3058 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3059 struct sk_buff *frag_skb = head_skb;
3060 unsigned int offset = doffset;
3061 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3062 unsigned int partial_segs = 0;
3063 unsigned int headroom;
3064 unsigned int len = head_skb->len;
3065 __be16 proto;
3066 bool csum, sg;
3067 int nfrags = skb_shinfo(head_skb)->nr_frags;
3068 int err = -ENOMEM;
3069 int i = 0;
3070 int pos;
3071 int dummy;
3072
3073 __skb_push(head_skb, doffset);
3074 proto = skb_network_protocol(head_skb, &dummy);
3075 if (unlikely(!proto))
3076 return ERR_PTR(-EINVAL);
3077
3078 sg = !!(features & NETIF_F_SG);
3079 csum = !!can_checksum_protocol(features, proto);
3080
3081 /* GSO partial only requires that we trim off any excess that
3082 * doesn't fit into an MSS sized block, so take care of that
3083 * now.
3084 */
3085 if (sg && csum && (features & NETIF_F_GSO_PARTIAL)) {
3086 partial_segs = len / mss;
3087 if (partial_segs > 1)
3088 mss *= partial_segs;
3089 else
3090 partial_segs = 0;
3091 }
3092
3093 headroom = skb_headroom(head_skb);
3094 pos = skb_headlen(head_skb);
3095
3096 do {
3097 struct sk_buff *nskb;
3098 skb_frag_t *nskb_frag;
3099 int hsize;
3100 int size;
3101
3102 if (unlikely(mss == GSO_BY_FRAGS)) {
3103 len = list_skb->len;
3104 } else {
3105 len = head_skb->len - offset;
3106 if (len > mss)
3107 len = mss;
3108 }
3109
3110 hsize = skb_headlen(head_skb) - offset;
3111 if (hsize < 0)
3112 hsize = 0;
3113 if (hsize > len || !sg)
3114 hsize = len;
3115
3116 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3117 (skb_headlen(list_skb) == len || sg)) {
3118 BUG_ON(skb_headlen(list_skb) > len);
3119
3120 i = 0;
3121 nfrags = skb_shinfo(list_skb)->nr_frags;
3122 frag = skb_shinfo(list_skb)->frags;
3123 frag_skb = list_skb;
3124 pos += skb_headlen(list_skb);
3125
3126 while (pos < offset + len) {
3127 BUG_ON(i >= nfrags);
3128
3129 size = skb_frag_size(frag);
3130 if (pos + size > offset + len)
3131 break;
3132
3133 i++;
3134 pos += size;
3135 frag++;
3136 }
3137
3138 nskb = skb_clone(list_skb, GFP_ATOMIC);
3139 list_skb = list_skb->next;
3140
3141 if (unlikely(!nskb))
3142 goto err;
3143
3144 if (unlikely(pskb_trim(nskb, len))) {
3145 kfree_skb(nskb);
3146 goto err;
3147 }
3148
3149 hsize = skb_end_offset(nskb);
3150 if (skb_cow_head(nskb, doffset + headroom)) {
3151 kfree_skb(nskb);
3152 goto err;
3153 }
3154
3155 nskb->truesize += skb_end_offset(nskb) - hsize;
3156 skb_release_head_state(nskb);
3157 __skb_push(nskb, doffset);
3158 } else {
3159 nskb = __alloc_skb(hsize + doffset + headroom,
3160 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3161 NUMA_NO_NODE);
3162
3163 if (unlikely(!nskb))
3164 goto err;
3165
3166 skb_reserve(nskb, headroom);
3167 __skb_put(nskb, doffset);
3168 }
3169
3170 if (segs)
3171 tail->next = nskb;
3172 else
3173 segs = nskb;
3174 tail = nskb;
3175
3176 __copy_skb_header(nskb, head_skb);
3177
3178 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3179 skb_reset_mac_len(nskb);
3180
3181 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3182 nskb->data - tnl_hlen,
3183 doffset + tnl_hlen);
3184
3185 if (nskb->len == len + doffset)
3186 goto perform_csum_check;
3187
3188 if (!sg) {
3189 if (!nskb->remcsum_offload)
3190 nskb->ip_summed = CHECKSUM_NONE;
3191 SKB_GSO_CB(nskb)->csum =
3192 skb_copy_and_csum_bits(head_skb, offset,
3193 skb_put(nskb, len),
3194 len, 0);
3195 SKB_GSO_CB(nskb)->csum_start =
3196 skb_headroom(nskb) + doffset;
3197 continue;
3198 }
3199
3200 nskb_frag = skb_shinfo(nskb)->frags;
3201
3202 skb_copy_from_linear_data_offset(head_skb, offset,
3203 skb_put(nskb, hsize), hsize);
3204
3205 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3206 SKBTX_SHARED_FRAG;
3207
3208 while (pos < offset + len) {
3209 if (i >= nfrags) {
3210 BUG_ON(skb_headlen(list_skb));
3211
3212 i = 0;
3213 nfrags = skb_shinfo(list_skb)->nr_frags;
3214 frag = skb_shinfo(list_skb)->frags;
3215 frag_skb = list_skb;
3216
3217 BUG_ON(!nfrags);
3218
3219 list_skb = list_skb->next;
3220 }
3221
3222 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3223 MAX_SKB_FRAGS)) {
3224 net_warn_ratelimited(
3225 "skb_segment: too many frags: %u %u\n",
3226 pos, mss);
3227 goto err;
3228 }
3229
3230 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3231 goto err;
3232
3233 *nskb_frag = *frag;
3234 __skb_frag_ref(nskb_frag);
3235 size = skb_frag_size(nskb_frag);
3236
3237 if (pos < offset) {
3238 nskb_frag->page_offset += offset - pos;
3239 skb_frag_size_sub(nskb_frag, offset - pos);
3240 }
3241
3242 skb_shinfo(nskb)->nr_frags++;
3243
3244 if (pos + size <= offset + len) {
3245 i++;
3246 frag++;
3247 pos += size;
3248 } else {
3249 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3250 goto skip_fraglist;
3251 }
3252
3253 nskb_frag++;
3254 }
3255
3256 skip_fraglist:
3257 nskb->data_len = len - hsize;
3258 nskb->len += nskb->data_len;
3259 nskb->truesize += nskb->data_len;
3260
3261 perform_csum_check:
3262 if (!csum) {
3263 if (skb_has_shared_frag(nskb)) {
3264 err = __skb_linearize(nskb);
3265 if (err)
3266 goto err;
3267 }
3268 if (!nskb->remcsum_offload)
3269 nskb->ip_summed = CHECKSUM_NONE;
3270 SKB_GSO_CB(nskb)->csum =
3271 skb_checksum(nskb, doffset,
3272 nskb->len - doffset, 0);
3273 SKB_GSO_CB(nskb)->csum_start =
3274 skb_headroom(nskb) + doffset;
3275 }
3276 } while ((offset += len) < head_skb->len);
3277
3278 /* Some callers want to get the end of the list.
3279 * Put it in segs->prev to avoid walking the list.
3280 * (see validate_xmit_skb_list() for example)
3281 */
3282 segs->prev = tail;
3283
3284 /* Update GSO info on first skb in partial sequence. */
3285 if (partial_segs) {
3286 int type = skb_shinfo(head_skb)->gso_type;
3287
3288 /* Update type to add partial and then remove dodgy if set */
3289 type |= SKB_GSO_PARTIAL;
3290 type &= ~SKB_GSO_DODGY;
3291
3292 /* Update GSO info and prepare to start updating headers on
3293 * our way back down the stack of protocols.
3294 */
3295 skb_shinfo(segs)->gso_size = skb_shinfo(head_skb)->gso_size;
3296 skb_shinfo(segs)->gso_segs = partial_segs;
3297 skb_shinfo(segs)->gso_type = type;
3298 SKB_GSO_CB(segs)->data_offset = skb_headroom(segs) + doffset;
3299 }
3300
3301 /* Following permits correct backpressure, for protocols
3302 * using skb_set_owner_w().
3303 * Idea is to tranfert ownership from head_skb to last segment.
3304 */
3305 if (head_skb->destructor == sock_wfree) {
3306 swap(tail->truesize, head_skb->truesize);
3307 swap(tail->destructor, head_skb->destructor);
3308 swap(tail->sk, head_skb->sk);
3309 }
3310 return segs;
3311
3312 err:
3313 kfree_skb_list(segs);
3314 return ERR_PTR(err);
3315 }
3316 EXPORT_SYMBOL_GPL(skb_segment);
3317
3318 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3319 {
3320 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3321 unsigned int offset = skb_gro_offset(skb);
3322 unsigned int headlen = skb_headlen(skb);
3323 unsigned int len = skb_gro_len(skb);
3324 struct sk_buff *lp, *p = *head;
3325 unsigned int delta_truesize;
3326
3327 if (unlikely(p->len + len >= 65536))
3328 return -E2BIG;
3329
3330 lp = NAPI_GRO_CB(p)->last;
3331 pinfo = skb_shinfo(lp);
3332
3333 if (headlen <= offset) {
3334 skb_frag_t *frag;
3335 skb_frag_t *frag2;
3336 int i = skbinfo->nr_frags;
3337 int nr_frags = pinfo->nr_frags + i;
3338
3339 if (nr_frags > MAX_SKB_FRAGS)
3340 goto merge;
3341
3342 offset -= headlen;
3343 pinfo->nr_frags = nr_frags;
3344 skbinfo->nr_frags = 0;
3345
3346 frag = pinfo->frags + nr_frags;
3347 frag2 = skbinfo->frags + i;
3348 do {
3349 *--frag = *--frag2;
3350 } while (--i);
3351
3352 frag->page_offset += offset;
3353 skb_frag_size_sub(frag, offset);
3354
3355 /* all fragments truesize : remove (head size + sk_buff) */
3356 delta_truesize = skb->truesize -
3357 SKB_TRUESIZE(skb_end_offset(skb));
3358
3359 skb->truesize -= skb->data_len;
3360 skb->len -= skb->data_len;
3361 skb->data_len = 0;
3362
3363 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3364 goto done;
3365 } else if (skb->head_frag) {
3366 int nr_frags = pinfo->nr_frags;
3367 skb_frag_t *frag = pinfo->frags + nr_frags;
3368 struct page *page = virt_to_head_page(skb->head);
3369 unsigned int first_size = headlen - offset;
3370 unsigned int first_offset;
3371
3372 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3373 goto merge;
3374
3375 first_offset = skb->data -
3376 (unsigned char *)page_address(page) +
3377 offset;
3378
3379 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3380
3381 frag->page.p = page;
3382 frag->page_offset = first_offset;
3383 skb_frag_size_set(frag, first_size);
3384
3385 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3386 /* We dont need to clear skbinfo->nr_frags here */
3387
3388 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3389 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3390 goto done;
3391 }
3392
3393 merge:
3394 delta_truesize = skb->truesize;
3395 if (offset > headlen) {
3396 unsigned int eat = offset - headlen;
3397
3398 skbinfo->frags[0].page_offset += eat;
3399 skb_frag_size_sub(&skbinfo->frags[0], eat);
3400 skb->data_len -= eat;
3401 skb->len -= eat;
3402 offset = headlen;
3403 }
3404
3405 __skb_pull(skb, offset);
3406
3407 if (NAPI_GRO_CB(p)->last == p)
3408 skb_shinfo(p)->frag_list = skb;
3409 else
3410 NAPI_GRO_CB(p)->last->next = skb;
3411 NAPI_GRO_CB(p)->last = skb;
3412 __skb_header_release(skb);
3413 lp = p;
3414
3415 done:
3416 NAPI_GRO_CB(p)->count++;
3417 p->data_len += len;
3418 p->truesize += delta_truesize;
3419 p->len += len;
3420 if (lp != p) {
3421 lp->data_len += len;
3422 lp->truesize += delta_truesize;
3423 lp->len += len;
3424 }
3425 NAPI_GRO_CB(skb)->same_flow = 1;
3426 return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(skb_gro_receive);
3429
3430 void __init skb_init(void)
3431 {
3432 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3433 sizeof(struct sk_buff),
3434 0,
3435 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3436 NULL);
3437 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3438 sizeof(struct sk_buff_fclones),
3439 0,
3440 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3441 NULL);
3442 }
3443
3444 /**
3445 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3446 * @skb: Socket buffer containing the buffers to be mapped
3447 * @sg: The scatter-gather list to map into
3448 * @offset: The offset into the buffer's contents to start mapping
3449 * @len: Length of buffer space to be mapped
3450 *
3451 * Fill the specified scatter-gather list with mappings/pointers into a
3452 * region of the buffer space attached to a socket buffer.
3453 */
3454 static int
3455 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3456 {
3457 int start = skb_headlen(skb);
3458 int i, copy = start - offset;
3459 struct sk_buff *frag_iter;
3460 int elt = 0;
3461
3462 if (copy > 0) {
3463 if (copy > len)
3464 copy = len;
3465 sg_set_buf(sg, skb->data + offset, copy);
3466 elt++;
3467 if ((len -= copy) == 0)
3468 return elt;
3469 offset += copy;
3470 }
3471
3472 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3473 int end;
3474
3475 WARN_ON(start > offset + len);
3476
3477 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3478 if ((copy = end - offset) > 0) {
3479 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3480
3481 if (copy > len)
3482 copy = len;
3483 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3484 frag->page_offset+offset-start);
3485 elt++;
3486 if (!(len -= copy))
3487 return elt;
3488 offset += copy;
3489 }
3490 start = end;
3491 }
3492
3493 skb_walk_frags(skb, frag_iter) {
3494 int end;
3495
3496 WARN_ON(start > offset + len);
3497
3498 end = start + frag_iter->len;
3499 if ((copy = end - offset) > 0) {
3500 if (copy > len)
3501 copy = len;
3502 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3503 copy);
3504 if ((len -= copy) == 0)
3505 return elt;
3506 offset += copy;
3507 }
3508 start = end;
3509 }
3510 BUG_ON(len);
3511 return elt;
3512 }
3513
3514 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3515 * sglist without mark the sg which contain last skb data as the end.
3516 * So the caller can mannipulate sg list as will when padding new data after
3517 * the first call without calling sg_unmark_end to expend sg list.
3518 *
3519 * Scenario to use skb_to_sgvec_nomark:
3520 * 1. sg_init_table
3521 * 2. skb_to_sgvec_nomark(payload1)
3522 * 3. skb_to_sgvec_nomark(payload2)
3523 *
3524 * This is equivalent to:
3525 * 1. sg_init_table
3526 * 2. skb_to_sgvec(payload1)
3527 * 3. sg_unmark_end
3528 * 4. skb_to_sgvec(payload2)
3529 *
3530 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3531 * is more preferable.
3532 */
3533 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3534 int offset, int len)
3535 {
3536 return __skb_to_sgvec(skb, sg, offset, len);
3537 }
3538 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3539
3540 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3541 {
3542 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3543
3544 sg_mark_end(&sg[nsg - 1]);
3545
3546 return nsg;
3547 }
3548 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3549
3550 /**
3551 * skb_cow_data - Check that a socket buffer's data buffers are writable
3552 * @skb: The socket buffer to check.
3553 * @tailbits: Amount of trailing space to be added
3554 * @trailer: Returned pointer to the skb where the @tailbits space begins
3555 *
3556 * Make sure that the data buffers attached to a socket buffer are
3557 * writable. If they are not, private copies are made of the data buffers
3558 * and the socket buffer is set to use these instead.
3559 *
3560 * If @tailbits is given, make sure that there is space to write @tailbits
3561 * bytes of data beyond current end of socket buffer. @trailer will be
3562 * set to point to the skb in which this space begins.
3563 *
3564 * The number of scatterlist elements required to completely map the
3565 * COW'd and extended socket buffer will be returned.
3566 */
3567 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3568 {
3569 int copyflag;
3570 int elt;
3571 struct sk_buff *skb1, **skb_p;
3572
3573 /* If skb is cloned or its head is paged, reallocate
3574 * head pulling out all the pages (pages are considered not writable
3575 * at the moment even if they are anonymous).
3576 */
3577 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3578 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3579 return -ENOMEM;
3580
3581 /* Easy case. Most of packets will go this way. */
3582 if (!skb_has_frag_list(skb)) {
3583 /* A little of trouble, not enough of space for trailer.
3584 * This should not happen, when stack is tuned to generate
3585 * good frames. OK, on miss we reallocate and reserve even more
3586 * space, 128 bytes is fair. */
3587
3588 if (skb_tailroom(skb) < tailbits &&
3589 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3590 return -ENOMEM;
3591
3592 /* Voila! */
3593 *trailer = skb;
3594 return 1;
3595 }
3596
3597 /* Misery. We are in troubles, going to mincer fragments... */
3598
3599 elt = 1;
3600 skb_p = &skb_shinfo(skb)->frag_list;
3601 copyflag = 0;
3602
3603 while ((skb1 = *skb_p) != NULL) {
3604 int ntail = 0;
3605
3606 /* The fragment is partially pulled by someone,
3607 * this can happen on input. Copy it and everything
3608 * after it. */
3609
3610 if (skb_shared(skb1))
3611 copyflag = 1;
3612
3613 /* If the skb is the last, worry about trailer. */
3614
3615 if (skb1->next == NULL && tailbits) {
3616 if (skb_shinfo(skb1)->nr_frags ||
3617 skb_has_frag_list(skb1) ||
3618 skb_tailroom(skb1) < tailbits)
3619 ntail = tailbits + 128;
3620 }
3621
3622 if (copyflag ||
3623 skb_cloned(skb1) ||
3624 ntail ||
3625 skb_shinfo(skb1)->nr_frags ||
3626 skb_has_frag_list(skb1)) {
3627 struct sk_buff *skb2;
3628
3629 /* Fuck, we are miserable poor guys... */
3630 if (ntail == 0)
3631 skb2 = skb_copy(skb1, GFP_ATOMIC);
3632 else
3633 skb2 = skb_copy_expand(skb1,
3634 skb_headroom(skb1),
3635 ntail,
3636 GFP_ATOMIC);
3637 if (unlikely(skb2 == NULL))
3638 return -ENOMEM;
3639
3640 if (skb1->sk)
3641 skb_set_owner_w(skb2, skb1->sk);
3642
3643 /* Looking around. Are we still alive?
3644 * OK, link new skb, drop old one */
3645
3646 skb2->next = skb1->next;
3647 *skb_p = skb2;
3648 kfree_skb(skb1);
3649 skb1 = skb2;
3650 }
3651 elt++;
3652 *trailer = skb1;
3653 skb_p = &skb1->next;
3654 }
3655
3656 return elt;
3657 }
3658 EXPORT_SYMBOL_GPL(skb_cow_data);
3659
3660 static void sock_rmem_free(struct sk_buff *skb)
3661 {
3662 struct sock *sk = skb->sk;
3663
3664 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3665 }
3666
3667 /*
3668 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3669 */
3670 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3671 {
3672 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3673 (unsigned int)sk->sk_rcvbuf)
3674 return -ENOMEM;
3675
3676 skb_orphan(skb);
3677 skb->sk = sk;
3678 skb->destructor = sock_rmem_free;
3679 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3680
3681 /* before exiting rcu section, make sure dst is refcounted */
3682 skb_dst_force(skb);
3683
3684 skb_queue_tail(&sk->sk_error_queue, skb);
3685 if (!sock_flag(sk, SOCK_DEAD))
3686 sk->sk_data_ready(sk);
3687 return 0;
3688 }
3689 EXPORT_SYMBOL(sock_queue_err_skb);
3690
3691 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3692 {
3693 struct sk_buff_head *q = &sk->sk_error_queue;
3694 struct sk_buff *skb, *skb_next;
3695 unsigned long flags;
3696 int err = 0;
3697
3698 spin_lock_irqsave(&q->lock, flags);
3699 skb = __skb_dequeue(q);
3700 if (skb && (skb_next = skb_peek(q)))
3701 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3702 spin_unlock_irqrestore(&q->lock, flags);
3703
3704 sk->sk_err = err;
3705 if (err)
3706 sk->sk_error_report(sk);
3707
3708 return skb;
3709 }
3710 EXPORT_SYMBOL(sock_dequeue_err_skb);
3711
3712 /**
3713 * skb_clone_sk - create clone of skb, and take reference to socket
3714 * @skb: the skb to clone
3715 *
3716 * This function creates a clone of a buffer that holds a reference on
3717 * sk_refcnt. Buffers created via this function are meant to be
3718 * returned using sock_queue_err_skb, or free via kfree_skb.
3719 *
3720 * When passing buffers allocated with this function to sock_queue_err_skb
3721 * it is necessary to wrap the call with sock_hold/sock_put in order to
3722 * prevent the socket from being released prior to being enqueued on
3723 * the sk_error_queue.
3724 */
3725 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3726 {
3727 struct sock *sk = skb->sk;
3728 struct sk_buff *clone;
3729
3730 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3731 return NULL;
3732
3733 clone = skb_clone(skb, GFP_ATOMIC);
3734 if (!clone) {
3735 sock_put(sk);
3736 return NULL;
3737 }
3738
3739 clone->sk = sk;
3740 clone->destructor = sock_efree;
3741
3742 return clone;
3743 }
3744 EXPORT_SYMBOL(skb_clone_sk);
3745
3746 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3747 struct sock *sk,
3748 int tstype)
3749 {
3750 struct sock_exterr_skb *serr;
3751 int err;
3752
3753 serr = SKB_EXT_ERR(skb);
3754 memset(serr, 0, sizeof(*serr));
3755 serr->ee.ee_errno = ENOMSG;
3756 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3757 serr->ee.ee_info = tstype;
3758 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3759 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3760 if (sk->sk_protocol == IPPROTO_TCP &&
3761 sk->sk_type == SOCK_STREAM)
3762 serr->ee.ee_data -= sk->sk_tskey;
3763 }
3764
3765 err = sock_queue_err_skb(sk, skb);
3766
3767 if (err)
3768 kfree_skb(skb);
3769 }
3770
3771 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3772 {
3773 bool ret;
3774
3775 if (likely(sysctl_tstamp_allow_data || tsonly))
3776 return true;
3777
3778 read_lock_bh(&sk->sk_callback_lock);
3779 ret = sk->sk_socket && sk->sk_socket->file &&
3780 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3781 read_unlock_bh(&sk->sk_callback_lock);
3782 return ret;
3783 }
3784
3785 void skb_complete_tx_timestamp(struct sk_buff *skb,
3786 struct skb_shared_hwtstamps *hwtstamps)
3787 {
3788 struct sock *sk = skb->sk;
3789
3790 if (!skb_may_tx_timestamp(sk, false))
3791 return;
3792
3793 /* take a reference to prevent skb_orphan() from freeing the socket */
3794 sock_hold(sk);
3795
3796 *skb_hwtstamps(skb) = *hwtstamps;
3797 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3798
3799 sock_put(sk);
3800 }
3801 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3802
3803 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3804 struct skb_shared_hwtstamps *hwtstamps,
3805 struct sock *sk, int tstype)
3806 {
3807 struct sk_buff *skb;
3808 bool tsonly;
3809
3810 if (!sk)
3811 return;
3812
3813 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3814 if (!skb_may_tx_timestamp(sk, tsonly))
3815 return;
3816
3817 if (tsonly)
3818 skb = alloc_skb(0, GFP_ATOMIC);
3819 else
3820 skb = skb_clone(orig_skb, GFP_ATOMIC);
3821 if (!skb)
3822 return;
3823
3824 if (tsonly) {
3825 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3826 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3827 }
3828
3829 if (hwtstamps)
3830 *skb_hwtstamps(skb) = *hwtstamps;
3831 else
3832 skb->tstamp = ktime_get_real();
3833
3834 __skb_complete_tx_timestamp(skb, sk, tstype);
3835 }
3836 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3837
3838 void skb_tstamp_tx(struct sk_buff *orig_skb,
3839 struct skb_shared_hwtstamps *hwtstamps)
3840 {
3841 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3842 SCM_TSTAMP_SND);
3843 }
3844 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3845
3846 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3847 {
3848 struct sock *sk = skb->sk;
3849 struct sock_exterr_skb *serr;
3850 int err;
3851
3852 skb->wifi_acked_valid = 1;
3853 skb->wifi_acked = acked;
3854
3855 serr = SKB_EXT_ERR(skb);
3856 memset(serr, 0, sizeof(*serr));
3857 serr->ee.ee_errno = ENOMSG;
3858 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3859
3860 /* take a reference to prevent skb_orphan() from freeing the socket */
3861 sock_hold(sk);
3862
3863 err = sock_queue_err_skb(sk, skb);
3864 if (err)
3865 kfree_skb(skb);
3866
3867 sock_put(sk);
3868 }
3869 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3870
3871 /**
3872 * skb_partial_csum_set - set up and verify partial csum values for packet
3873 * @skb: the skb to set
3874 * @start: the number of bytes after skb->data to start checksumming.
3875 * @off: the offset from start to place the checksum.
3876 *
3877 * For untrusted partially-checksummed packets, we need to make sure the values
3878 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3879 *
3880 * This function checks and sets those values and skb->ip_summed: if this
3881 * returns false you should drop the packet.
3882 */
3883 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3884 {
3885 if (unlikely(start > skb_headlen(skb)) ||
3886 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3887 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3888 start, off, skb_headlen(skb));
3889 return false;
3890 }
3891 skb->ip_summed = CHECKSUM_PARTIAL;
3892 skb->csum_start = skb_headroom(skb) + start;
3893 skb->csum_offset = off;
3894 skb_set_transport_header(skb, start);
3895 return true;
3896 }
3897 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3898
3899 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3900 unsigned int max)
3901 {
3902 if (skb_headlen(skb) >= len)
3903 return 0;
3904
3905 /* If we need to pullup then pullup to the max, so we
3906 * won't need to do it again.
3907 */
3908 if (max > skb->len)
3909 max = skb->len;
3910
3911 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3912 return -ENOMEM;
3913
3914 if (skb_headlen(skb) < len)
3915 return -EPROTO;
3916
3917 return 0;
3918 }
3919
3920 #define MAX_TCP_HDR_LEN (15 * 4)
3921
3922 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3923 typeof(IPPROTO_IP) proto,
3924 unsigned int off)
3925 {
3926 switch (proto) {
3927 int err;
3928
3929 case IPPROTO_TCP:
3930 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3931 off + MAX_TCP_HDR_LEN);
3932 if (!err && !skb_partial_csum_set(skb, off,
3933 offsetof(struct tcphdr,
3934 check)))
3935 err = -EPROTO;
3936 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3937
3938 case IPPROTO_UDP:
3939 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3940 off + sizeof(struct udphdr));
3941 if (!err && !skb_partial_csum_set(skb, off,
3942 offsetof(struct udphdr,
3943 check)))
3944 err = -EPROTO;
3945 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3946 }
3947
3948 return ERR_PTR(-EPROTO);
3949 }
3950
3951 /* This value should be large enough to cover a tagged ethernet header plus
3952 * maximally sized IP and TCP or UDP headers.
3953 */
3954 #define MAX_IP_HDR_LEN 128
3955
3956 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3957 {
3958 unsigned int off;
3959 bool fragment;
3960 __sum16 *csum;
3961 int err;
3962
3963 fragment = false;
3964
3965 err = skb_maybe_pull_tail(skb,
3966 sizeof(struct iphdr),
3967 MAX_IP_HDR_LEN);
3968 if (err < 0)
3969 goto out;
3970
3971 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3972 fragment = true;
3973
3974 off = ip_hdrlen(skb);
3975
3976 err = -EPROTO;
3977
3978 if (fragment)
3979 goto out;
3980
3981 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3982 if (IS_ERR(csum))
3983 return PTR_ERR(csum);
3984
3985 if (recalculate)
3986 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3987 ip_hdr(skb)->daddr,
3988 skb->len - off,
3989 ip_hdr(skb)->protocol, 0);
3990 err = 0;
3991
3992 out:
3993 return err;
3994 }
3995
3996 /* This value should be large enough to cover a tagged ethernet header plus
3997 * an IPv6 header, all options, and a maximal TCP or UDP header.
3998 */
3999 #define MAX_IPV6_HDR_LEN 256
4000
4001 #define OPT_HDR(type, skb, off) \
4002 (type *)(skb_network_header(skb) + (off))
4003
4004 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4005 {
4006 int err;
4007 u8 nexthdr;
4008 unsigned int off;
4009 unsigned int len;
4010 bool fragment;
4011 bool done;
4012 __sum16 *csum;
4013
4014 fragment = false;
4015 done = false;
4016
4017 off = sizeof(struct ipv6hdr);
4018
4019 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4020 if (err < 0)
4021 goto out;
4022
4023 nexthdr = ipv6_hdr(skb)->nexthdr;
4024
4025 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4026 while (off <= len && !done) {
4027 switch (nexthdr) {
4028 case IPPROTO_DSTOPTS:
4029 case IPPROTO_HOPOPTS:
4030 case IPPROTO_ROUTING: {
4031 struct ipv6_opt_hdr *hp;
4032
4033 err = skb_maybe_pull_tail(skb,
4034 off +
4035 sizeof(struct ipv6_opt_hdr),
4036 MAX_IPV6_HDR_LEN);
4037 if (err < 0)
4038 goto out;
4039
4040 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4041 nexthdr = hp->nexthdr;
4042 off += ipv6_optlen(hp);
4043 break;
4044 }
4045 case IPPROTO_AH: {
4046 struct ip_auth_hdr *hp;
4047
4048 err = skb_maybe_pull_tail(skb,
4049 off +
4050 sizeof(struct ip_auth_hdr),
4051 MAX_IPV6_HDR_LEN);
4052 if (err < 0)
4053 goto out;
4054
4055 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4056 nexthdr = hp->nexthdr;
4057 off += ipv6_authlen(hp);
4058 break;
4059 }
4060 case IPPROTO_FRAGMENT: {
4061 struct frag_hdr *hp;
4062
4063 err = skb_maybe_pull_tail(skb,
4064 off +
4065 sizeof(struct frag_hdr),
4066 MAX_IPV6_HDR_LEN);
4067 if (err < 0)
4068 goto out;
4069
4070 hp = OPT_HDR(struct frag_hdr, skb, off);
4071
4072 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4073 fragment = true;
4074
4075 nexthdr = hp->nexthdr;
4076 off += sizeof(struct frag_hdr);
4077 break;
4078 }
4079 default:
4080 done = true;
4081 break;
4082 }
4083 }
4084
4085 err = -EPROTO;
4086
4087 if (!done || fragment)
4088 goto out;
4089
4090 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4091 if (IS_ERR(csum))
4092 return PTR_ERR(csum);
4093
4094 if (recalculate)
4095 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4096 &ipv6_hdr(skb)->daddr,
4097 skb->len - off, nexthdr, 0);
4098 err = 0;
4099
4100 out:
4101 return err;
4102 }
4103
4104 /**
4105 * skb_checksum_setup - set up partial checksum offset
4106 * @skb: the skb to set up
4107 * @recalculate: if true the pseudo-header checksum will be recalculated
4108 */
4109 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4110 {
4111 int err;
4112
4113 switch (skb->protocol) {
4114 case htons(ETH_P_IP):
4115 err = skb_checksum_setup_ipv4(skb, recalculate);
4116 break;
4117
4118 case htons(ETH_P_IPV6):
4119 err = skb_checksum_setup_ipv6(skb, recalculate);
4120 break;
4121
4122 default:
4123 err = -EPROTO;
4124 break;
4125 }
4126
4127 return err;
4128 }
4129 EXPORT_SYMBOL(skb_checksum_setup);
4130
4131 /**
4132 * skb_checksum_maybe_trim - maybe trims the given skb
4133 * @skb: the skb to check
4134 * @transport_len: the data length beyond the network header
4135 *
4136 * Checks whether the given skb has data beyond the given transport length.
4137 * If so, returns a cloned skb trimmed to this transport length.
4138 * Otherwise returns the provided skb. Returns NULL in error cases
4139 * (e.g. transport_len exceeds skb length or out-of-memory).
4140 *
4141 * Caller needs to set the skb transport header and free any returned skb if it
4142 * differs from the provided skb.
4143 */
4144 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4145 unsigned int transport_len)
4146 {
4147 struct sk_buff *skb_chk;
4148 unsigned int len = skb_transport_offset(skb) + transport_len;
4149 int ret;
4150
4151 if (skb->len < len)
4152 return NULL;
4153 else if (skb->len == len)
4154 return skb;
4155
4156 skb_chk = skb_clone(skb, GFP_ATOMIC);
4157 if (!skb_chk)
4158 return NULL;
4159
4160 ret = pskb_trim_rcsum(skb_chk, len);
4161 if (ret) {
4162 kfree_skb(skb_chk);
4163 return NULL;
4164 }
4165
4166 return skb_chk;
4167 }
4168
4169 /**
4170 * skb_checksum_trimmed - validate checksum of an skb
4171 * @skb: the skb to check
4172 * @transport_len: the data length beyond the network header
4173 * @skb_chkf: checksum function to use
4174 *
4175 * Applies the given checksum function skb_chkf to the provided skb.
4176 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4177 *
4178 * If the skb has data beyond the given transport length, then a
4179 * trimmed & cloned skb is checked and returned.
4180 *
4181 * Caller needs to set the skb transport header and free any returned skb if it
4182 * differs from the provided skb.
4183 */
4184 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4185 unsigned int transport_len,
4186 __sum16(*skb_chkf)(struct sk_buff *skb))
4187 {
4188 struct sk_buff *skb_chk;
4189 unsigned int offset = skb_transport_offset(skb);
4190 __sum16 ret;
4191
4192 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4193 if (!skb_chk)
4194 goto err;
4195
4196 if (!pskb_may_pull(skb_chk, offset))
4197 goto err;
4198
4199 skb_pull_rcsum(skb_chk, offset);
4200 ret = skb_chkf(skb_chk);
4201 skb_push_rcsum(skb_chk, offset);
4202
4203 if (ret)
4204 goto err;
4205
4206 return skb_chk;
4207
4208 err:
4209 if (skb_chk && skb_chk != skb)
4210 kfree_skb(skb_chk);
4211
4212 return NULL;
4213
4214 }
4215 EXPORT_SYMBOL(skb_checksum_trimmed);
4216
4217 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4218 {
4219 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4220 skb->dev->name);
4221 }
4222 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4223
4224 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4225 {
4226 if (head_stolen) {
4227 skb_release_head_state(skb);
4228 kmem_cache_free(skbuff_head_cache, skb);
4229 } else {
4230 __kfree_skb(skb);
4231 }
4232 }
4233 EXPORT_SYMBOL(kfree_skb_partial);
4234
4235 /**
4236 * skb_try_coalesce - try to merge skb to prior one
4237 * @to: prior buffer
4238 * @from: buffer to add
4239 * @fragstolen: pointer to boolean
4240 * @delta_truesize: how much more was allocated than was requested
4241 */
4242 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4243 bool *fragstolen, int *delta_truesize)
4244 {
4245 int i, delta, len = from->len;
4246
4247 *fragstolen = false;
4248
4249 if (skb_cloned(to))
4250 return false;
4251
4252 if (len <= skb_tailroom(to)) {
4253 if (len)
4254 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4255 *delta_truesize = 0;
4256 return true;
4257 }
4258
4259 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4260 return false;
4261
4262 if (skb_headlen(from) != 0) {
4263 struct page *page;
4264 unsigned int offset;
4265
4266 if (skb_shinfo(to)->nr_frags +
4267 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4268 return false;
4269
4270 if (skb_head_is_locked(from))
4271 return false;
4272
4273 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4274
4275 page = virt_to_head_page(from->head);
4276 offset = from->data - (unsigned char *)page_address(page);
4277
4278 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4279 page, offset, skb_headlen(from));
4280 *fragstolen = true;
4281 } else {
4282 if (skb_shinfo(to)->nr_frags +
4283 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4284 return false;
4285
4286 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4287 }
4288
4289 WARN_ON_ONCE(delta < len);
4290
4291 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4292 skb_shinfo(from)->frags,
4293 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4294 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4295
4296 if (!skb_cloned(from))
4297 skb_shinfo(from)->nr_frags = 0;
4298
4299 /* if the skb is not cloned this does nothing
4300 * since we set nr_frags to 0.
4301 */
4302 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4303 skb_frag_ref(from, i);
4304
4305 to->truesize += delta;
4306 to->len += len;
4307 to->data_len += len;
4308
4309 *delta_truesize = delta;
4310 return true;
4311 }
4312 EXPORT_SYMBOL(skb_try_coalesce);
4313
4314 /**
4315 * skb_scrub_packet - scrub an skb
4316 *
4317 * @skb: buffer to clean
4318 * @xnet: packet is crossing netns
4319 *
4320 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4321 * into/from a tunnel. Some information have to be cleared during these
4322 * operations.
4323 * skb_scrub_packet can also be used to clean a skb before injecting it in
4324 * another namespace (@xnet == true). We have to clear all information in the
4325 * skb that could impact namespace isolation.
4326 */
4327 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4328 {
4329 skb->tstamp.tv64 = 0;
4330 skb->pkt_type = PACKET_HOST;
4331 skb->skb_iif = 0;
4332 skb->ignore_df = 0;
4333 skb_dst_drop(skb);
4334 secpath_reset(skb);
4335 nf_reset(skb);
4336 nf_reset_trace(skb);
4337
4338 if (!xnet)
4339 return;
4340
4341 skb_orphan(skb);
4342 skb->mark = 0;
4343 }
4344 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4345
4346 /**
4347 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4348 *
4349 * @skb: GSO skb
4350 *
4351 * skb_gso_transport_seglen is used to determine the real size of the
4352 * individual segments, including Layer4 headers (TCP/UDP).
4353 *
4354 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4355 */
4356 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4357 {
4358 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4359 unsigned int thlen = 0;
4360
4361 if (skb->encapsulation) {
4362 thlen = skb_inner_transport_header(skb) -
4363 skb_transport_header(skb);
4364
4365 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4366 thlen += inner_tcp_hdrlen(skb);
4367 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4368 thlen = tcp_hdrlen(skb);
4369 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4370 thlen = sizeof(struct sctphdr);
4371 }
4372 /* UFO sets gso_size to the size of the fragmentation
4373 * payload, i.e. the size of the L4 (UDP) header is already
4374 * accounted for.
4375 */
4376 return thlen + shinfo->gso_size;
4377 }
4378 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4379
4380 /**
4381 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4382 *
4383 * @skb: GSO skb
4384 * @mtu: MTU to validate against
4385 *
4386 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4387 * once split.
4388 */
4389 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4390 {
4391 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4392 const struct sk_buff *iter;
4393 unsigned int hlen;
4394
4395 hlen = skb_gso_network_seglen(skb);
4396
4397 if (shinfo->gso_size != GSO_BY_FRAGS)
4398 return hlen <= mtu;
4399
4400 /* Undo this so we can re-use header sizes */
4401 hlen -= GSO_BY_FRAGS;
4402
4403 skb_walk_frags(skb, iter) {
4404 if (hlen + skb_headlen(iter) > mtu)
4405 return false;
4406 }
4407
4408 return true;
4409 }
4410 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4411
4412 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4413 {
4414 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4415 kfree_skb(skb);
4416 return NULL;
4417 }
4418
4419 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4420 2 * ETH_ALEN);
4421 skb->mac_header += VLAN_HLEN;
4422 return skb;
4423 }
4424
4425 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4426 {
4427 struct vlan_hdr *vhdr;
4428 u16 vlan_tci;
4429
4430 if (unlikely(skb_vlan_tag_present(skb))) {
4431 /* vlan_tci is already set-up so leave this for another time */
4432 return skb;
4433 }
4434
4435 skb = skb_share_check(skb, GFP_ATOMIC);
4436 if (unlikely(!skb))
4437 goto err_free;
4438
4439 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4440 goto err_free;
4441
4442 vhdr = (struct vlan_hdr *)skb->data;
4443 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4444 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4445
4446 skb_pull_rcsum(skb, VLAN_HLEN);
4447 vlan_set_encap_proto(skb, vhdr);
4448
4449 skb = skb_reorder_vlan_header(skb);
4450 if (unlikely(!skb))
4451 goto err_free;
4452
4453 skb_reset_network_header(skb);
4454 skb_reset_transport_header(skb);
4455 skb_reset_mac_len(skb);
4456
4457 return skb;
4458
4459 err_free:
4460 kfree_skb(skb);
4461 return NULL;
4462 }
4463 EXPORT_SYMBOL(skb_vlan_untag);
4464
4465 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4466 {
4467 if (!pskb_may_pull(skb, write_len))
4468 return -ENOMEM;
4469
4470 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4471 return 0;
4472
4473 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4474 }
4475 EXPORT_SYMBOL(skb_ensure_writable);
4476
4477 /* remove VLAN header from packet and update csum accordingly. */
4478 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4479 {
4480 struct vlan_hdr *vhdr;
4481 unsigned int offset = skb->data - skb_mac_header(skb);
4482 int err;
4483
4484 __skb_push(skb, offset);
4485 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4486 if (unlikely(err))
4487 goto pull;
4488
4489 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4490
4491 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4492 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4493
4494 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4495 __skb_pull(skb, VLAN_HLEN);
4496
4497 vlan_set_encap_proto(skb, vhdr);
4498 skb->mac_header += VLAN_HLEN;
4499
4500 if (skb_network_offset(skb) < ETH_HLEN)
4501 skb_set_network_header(skb, ETH_HLEN);
4502
4503 skb_reset_mac_len(skb);
4504 pull:
4505 __skb_pull(skb, offset);
4506
4507 return err;
4508 }
4509
4510 int skb_vlan_pop(struct sk_buff *skb)
4511 {
4512 u16 vlan_tci;
4513 __be16 vlan_proto;
4514 int err;
4515
4516 if (likely(skb_vlan_tag_present(skb))) {
4517 skb->vlan_tci = 0;
4518 } else {
4519 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4520 skb->protocol != htons(ETH_P_8021AD)) ||
4521 skb->len < VLAN_ETH_HLEN))
4522 return 0;
4523
4524 err = __skb_vlan_pop(skb, &vlan_tci);
4525 if (err)
4526 return err;
4527 }
4528 /* move next vlan tag to hw accel tag */
4529 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4530 skb->protocol != htons(ETH_P_8021AD)) ||
4531 skb->len < VLAN_ETH_HLEN))
4532 return 0;
4533
4534 vlan_proto = skb->protocol;
4535 err = __skb_vlan_pop(skb, &vlan_tci);
4536 if (unlikely(err))
4537 return err;
4538
4539 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4540 return 0;
4541 }
4542 EXPORT_SYMBOL(skb_vlan_pop);
4543
4544 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4545 {
4546 if (skb_vlan_tag_present(skb)) {
4547 unsigned int offset = skb->data - skb_mac_header(skb);
4548 int err;
4549
4550 /* __vlan_insert_tag expect skb->data pointing to mac header.
4551 * So change skb->data before calling it and change back to
4552 * original position later
4553 */
4554 __skb_push(skb, offset);
4555 err = __vlan_insert_tag(skb, skb->vlan_proto,
4556 skb_vlan_tag_get(skb));
4557 if (err) {
4558 __skb_pull(skb, offset);
4559 return err;
4560 }
4561
4562 skb->protocol = skb->vlan_proto;
4563 skb->mac_len += VLAN_HLEN;
4564
4565 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4566 __skb_pull(skb, offset);
4567 }
4568 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4569 return 0;
4570 }
4571 EXPORT_SYMBOL(skb_vlan_push);
4572
4573 /**
4574 * alloc_skb_with_frags - allocate skb with page frags
4575 *
4576 * @header_len: size of linear part
4577 * @data_len: needed length in frags
4578 * @max_page_order: max page order desired.
4579 * @errcode: pointer to error code if any
4580 * @gfp_mask: allocation mask
4581 *
4582 * This can be used to allocate a paged skb, given a maximal order for frags.
4583 */
4584 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4585 unsigned long data_len,
4586 int max_page_order,
4587 int *errcode,
4588 gfp_t gfp_mask)
4589 {
4590 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4591 unsigned long chunk;
4592 struct sk_buff *skb;
4593 struct page *page;
4594 gfp_t gfp_head;
4595 int i;
4596
4597 *errcode = -EMSGSIZE;
4598 /* Note this test could be relaxed, if we succeed to allocate
4599 * high order pages...
4600 */
4601 if (npages > MAX_SKB_FRAGS)
4602 return NULL;
4603
4604 gfp_head = gfp_mask;
4605 if (gfp_head & __GFP_DIRECT_RECLAIM)
4606 gfp_head |= __GFP_REPEAT;
4607
4608 *errcode = -ENOBUFS;
4609 skb = alloc_skb(header_len, gfp_head);
4610 if (!skb)
4611 return NULL;
4612
4613 skb->truesize += npages << PAGE_SHIFT;
4614
4615 for (i = 0; npages > 0; i++) {
4616 int order = max_page_order;
4617
4618 while (order) {
4619 if (npages >= 1 << order) {
4620 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4621 __GFP_COMP |
4622 __GFP_NOWARN |
4623 __GFP_NORETRY,
4624 order);
4625 if (page)
4626 goto fill_page;
4627 /* Do not retry other high order allocations */
4628 order = 1;
4629 max_page_order = 0;
4630 }
4631 order--;
4632 }
4633 page = alloc_page(gfp_mask);
4634 if (!page)
4635 goto failure;
4636 fill_page:
4637 chunk = min_t(unsigned long, data_len,
4638 PAGE_SIZE << order);
4639 skb_fill_page_desc(skb, i, page, 0, chunk);
4640 data_len -= chunk;
4641 npages -= 1 << order;
4642 }
4643 return skb;
4644
4645 failure:
4646 kfree_skb(skb);
4647 return NULL;
4648 }
4649 EXPORT_SYMBOL(alloc_skb_with_frags);
4650
4651 /* carve out the first off bytes from skb when off < headlen */
4652 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4653 const int headlen, gfp_t gfp_mask)
4654 {
4655 int i;
4656 int size = skb_end_offset(skb);
4657 int new_hlen = headlen - off;
4658 u8 *data;
4659
4660 size = SKB_DATA_ALIGN(size);
4661
4662 if (skb_pfmemalloc(skb))
4663 gfp_mask |= __GFP_MEMALLOC;
4664 data = kmalloc_reserve(size +
4665 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4666 gfp_mask, NUMA_NO_NODE, NULL);
4667 if (!data)
4668 return -ENOMEM;
4669
4670 size = SKB_WITH_OVERHEAD(ksize(data));
4671
4672 /* Copy real data, and all frags */
4673 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4674 skb->len -= off;
4675
4676 memcpy((struct skb_shared_info *)(data + size),
4677 skb_shinfo(skb),
4678 offsetof(struct skb_shared_info,
4679 frags[skb_shinfo(skb)->nr_frags]));
4680 if (skb_cloned(skb)) {
4681 /* drop the old head gracefully */
4682 if (skb_orphan_frags(skb, gfp_mask)) {
4683 kfree(data);
4684 return -ENOMEM;
4685 }
4686 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4687 skb_frag_ref(skb, i);
4688 if (skb_has_frag_list(skb))
4689 skb_clone_fraglist(skb);
4690 skb_release_data(skb);
4691 } else {
4692 /* we can reuse existing recount- all we did was
4693 * relocate values
4694 */
4695 skb_free_head(skb);
4696 }
4697
4698 skb->head = data;
4699 skb->data = data;
4700 skb->head_frag = 0;
4701 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4702 skb->end = size;
4703 #else
4704 skb->end = skb->head + size;
4705 #endif
4706 skb_set_tail_pointer(skb, skb_headlen(skb));
4707 skb_headers_offset_update(skb, 0);
4708 skb->cloned = 0;
4709 skb->hdr_len = 0;
4710 skb->nohdr = 0;
4711 atomic_set(&skb_shinfo(skb)->dataref, 1);
4712
4713 return 0;
4714 }
4715
4716 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4717
4718 /* carve out the first eat bytes from skb's frag_list. May recurse into
4719 * pskb_carve()
4720 */
4721 static int pskb_carve_frag_list(struct sk_buff *skb,
4722 struct skb_shared_info *shinfo, int eat,
4723 gfp_t gfp_mask)
4724 {
4725 struct sk_buff *list = shinfo->frag_list;
4726 struct sk_buff *clone = NULL;
4727 struct sk_buff *insp = NULL;
4728
4729 do {
4730 if (!list) {
4731 pr_err("Not enough bytes to eat. Want %d\n", eat);
4732 return -EFAULT;
4733 }
4734 if (list->len <= eat) {
4735 /* Eaten as whole. */
4736 eat -= list->len;
4737 list = list->next;
4738 insp = list;
4739 } else {
4740 /* Eaten partially. */
4741 if (skb_shared(list)) {
4742 clone = skb_clone(list, gfp_mask);
4743 if (!clone)
4744 return -ENOMEM;
4745 insp = list->next;
4746 list = clone;
4747 } else {
4748 /* This may be pulled without problems. */
4749 insp = list;
4750 }
4751 if (pskb_carve(list, eat, gfp_mask) < 0) {
4752 kfree_skb(clone);
4753 return -ENOMEM;
4754 }
4755 break;
4756 }
4757 } while (eat);
4758
4759 /* Free pulled out fragments. */
4760 while ((list = shinfo->frag_list) != insp) {
4761 shinfo->frag_list = list->next;
4762 kfree_skb(list);
4763 }
4764 /* And insert new clone at head. */
4765 if (clone) {
4766 clone->next = list;
4767 shinfo->frag_list = clone;
4768 }
4769 return 0;
4770 }
4771
4772 /* carve off first len bytes from skb. Split line (off) is in the
4773 * non-linear part of skb
4774 */
4775 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4776 int pos, gfp_t gfp_mask)
4777 {
4778 int i, k = 0;
4779 int size = skb_end_offset(skb);
4780 u8 *data;
4781 const int nfrags = skb_shinfo(skb)->nr_frags;
4782 struct skb_shared_info *shinfo;
4783
4784 size = SKB_DATA_ALIGN(size);
4785
4786 if (skb_pfmemalloc(skb))
4787 gfp_mask |= __GFP_MEMALLOC;
4788 data = kmalloc_reserve(size +
4789 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4790 gfp_mask, NUMA_NO_NODE, NULL);
4791 if (!data)
4792 return -ENOMEM;
4793
4794 size = SKB_WITH_OVERHEAD(ksize(data));
4795
4796 memcpy((struct skb_shared_info *)(data + size),
4797 skb_shinfo(skb), offsetof(struct skb_shared_info,
4798 frags[skb_shinfo(skb)->nr_frags]));
4799 if (skb_orphan_frags(skb, gfp_mask)) {
4800 kfree(data);
4801 return -ENOMEM;
4802 }
4803 shinfo = (struct skb_shared_info *)(data + size);
4804 for (i = 0; i < nfrags; i++) {
4805 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4806
4807 if (pos + fsize > off) {
4808 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4809
4810 if (pos < off) {
4811 /* Split frag.
4812 * We have two variants in this case:
4813 * 1. Move all the frag to the second
4814 * part, if it is possible. F.e.
4815 * this approach is mandatory for TUX,
4816 * where splitting is expensive.
4817 * 2. Split is accurately. We make this.
4818 */
4819 shinfo->frags[0].page_offset += off - pos;
4820 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4821 }
4822 skb_frag_ref(skb, i);
4823 k++;
4824 }
4825 pos += fsize;
4826 }
4827 shinfo->nr_frags = k;
4828 if (skb_has_frag_list(skb))
4829 skb_clone_fraglist(skb);
4830
4831 if (k == 0) {
4832 /* split line is in frag list */
4833 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4834 }
4835 skb_release_data(skb);
4836
4837 skb->head = data;
4838 skb->head_frag = 0;
4839 skb->data = data;
4840 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4841 skb->end = size;
4842 #else
4843 skb->end = skb->head + size;
4844 #endif
4845 skb_reset_tail_pointer(skb);
4846 skb_headers_offset_update(skb, 0);
4847 skb->cloned = 0;
4848 skb->hdr_len = 0;
4849 skb->nohdr = 0;
4850 skb->len -= off;
4851 skb->data_len = skb->len;
4852 atomic_set(&skb_shinfo(skb)->dataref, 1);
4853 return 0;
4854 }
4855
4856 /* remove len bytes from the beginning of the skb */
4857 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4858 {
4859 int headlen = skb_headlen(skb);
4860
4861 if (len < headlen)
4862 return pskb_carve_inside_header(skb, len, headlen, gfp);
4863 else
4864 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4865 }
4866
4867 /* Extract to_copy bytes starting at off from skb, and return this in
4868 * a new skb
4869 */
4870 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4871 int to_copy, gfp_t gfp)
4872 {
4873 struct sk_buff *clone = skb_clone(skb, gfp);
4874
4875 if (!clone)
4876 return NULL;
4877
4878 if (pskb_carve(clone, off, gfp) < 0 ||
4879 pskb_trim(clone, to_copy)) {
4880 kfree_skb(clone);
4881 return NULL;
4882 }
4883 return clone;
4884 }
4885 EXPORT_SYMBOL(pskb_extract);
This page took 0.132659 seconds and 5 git commands to generate.