mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and...
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82
83 /**
84 * skb_panic - private function for out-of-line support
85 * @skb: buffer
86 * @sz: size
87 * @addr: address
88 * @msg: skb_over_panic or skb_under_panic
89 *
90 * Out-of-line support for skb_put() and skb_push().
91 * Called via the wrapper skb_over_panic() or skb_under_panic().
92 * Keep out of line to prevent kernel bloat.
93 * __builtin_return_address is not used because it is not always reliable.
94 */
95 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
96 const char msg[])
97 {
98 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99 msg, addr, skb->len, sz, skb->head, skb->data,
100 (unsigned long)skb->tail, (unsigned long)skb->end,
101 skb->dev ? skb->dev->name : "<NULL>");
102 BUG();
103 }
104
105 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
106 {
107 skb_panic(skb, sz, addr, __func__);
108 }
109
110 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 skb_panic(skb, sz, addr, __func__);
113 }
114
115 /*
116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
117 * the caller if emergency pfmemalloc reserves are being used. If it is and
118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
119 * may be used. Otherwise, the packet data may be discarded until enough
120 * memory is free
121 */
122 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
123 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
124
125 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
126 unsigned long ip, bool *pfmemalloc)
127 {
128 void *obj;
129 bool ret_pfmemalloc = false;
130
131 /*
132 * Try a regular allocation, when that fails and we're not entitled
133 * to the reserves, fail.
134 */
135 obj = kmalloc_node_track_caller(size,
136 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
137 node);
138 if (obj || !(gfp_pfmemalloc_allowed(flags)))
139 goto out;
140
141 /* Try again but now we are using pfmemalloc reserves */
142 ret_pfmemalloc = true;
143 obj = kmalloc_node_track_caller(size, flags, node);
144
145 out:
146 if (pfmemalloc)
147 *pfmemalloc = ret_pfmemalloc;
148
149 return obj;
150 }
151
152 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
153 * 'private' fields and also do memory statistics to find all the
154 * [BEEP] leaks.
155 *
156 */
157
158 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
159 {
160 struct sk_buff *skb;
161
162 /* Get the HEAD */
163 skb = kmem_cache_alloc_node(skbuff_head_cache,
164 gfp_mask & ~__GFP_DMA, node);
165 if (!skb)
166 goto out;
167
168 /*
169 * Only clear those fields we need to clear, not those that we will
170 * actually initialise below. Hence, don't put any more fields after
171 * the tail pointer in struct sk_buff!
172 */
173 memset(skb, 0, offsetof(struct sk_buff, tail));
174 skb->head = NULL;
175 skb->truesize = sizeof(struct sk_buff);
176 atomic_set(&skb->users, 1);
177
178 skb->mac_header = (typeof(skb->mac_header))~0U;
179 out:
180 return skb;
181 }
182
183 /**
184 * __alloc_skb - allocate a network buffer
185 * @size: size to allocate
186 * @gfp_mask: allocation mask
187 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
188 * instead of head cache and allocate a cloned (child) skb.
189 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
190 * allocations in case the data is required for writeback
191 * @node: numa node to allocate memory on
192 *
193 * Allocate a new &sk_buff. The returned buffer has no headroom and a
194 * tail room of at least size bytes. The object has a reference count
195 * of one. The return is the buffer. On a failure the return is %NULL.
196 *
197 * Buffers may only be allocated from interrupts using a @gfp_mask of
198 * %GFP_ATOMIC.
199 */
200 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
201 int flags, int node)
202 {
203 struct kmem_cache *cache;
204 struct skb_shared_info *shinfo;
205 struct sk_buff *skb;
206 u8 *data;
207 bool pfmemalloc;
208
209 cache = (flags & SKB_ALLOC_FCLONE)
210 ? skbuff_fclone_cache : skbuff_head_cache;
211
212 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
213 gfp_mask |= __GFP_MEMALLOC;
214
215 /* Get the HEAD */
216 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
217 if (!skb)
218 goto out;
219 prefetchw(skb);
220
221 /* We do our best to align skb_shared_info on a separate cache
222 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
223 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
224 * Both skb->head and skb_shared_info are cache line aligned.
225 */
226 size = SKB_DATA_ALIGN(size);
227 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
228 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
229 if (!data)
230 goto nodata;
231 /* kmalloc(size) might give us more room than requested.
232 * Put skb_shared_info exactly at the end of allocated zone,
233 * to allow max possible filling before reallocation.
234 */
235 size = SKB_WITH_OVERHEAD(ksize(data));
236 prefetchw(data + size);
237
238 /*
239 * Only clear those fields we need to clear, not those that we will
240 * actually initialise below. Hence, don't put any more fields after
241 * the tail pointer in struct sk_buff!
242 */
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 /* Account for allocated memory : skb + skb->head */
245 skb->truesize = SKB_TRUESIZE(size);
246 skb->pfmemalloc = pfmemalloc;
247 atomic_set(&skb->users, 1);
248 skb->head = data;
249 skb->data = data;
250 skb_reset_tail_pointer(skb);
251 skb->end = skb->tail + size;
252 skb->mac_header = (typeof(skb->mac_header))~0U;
253 skb->transport_header = (typeof(skb->transport_header))~0U;
254
255 /* make sure we initialize shinfo sequentially */
256 shinfo = skb_shinfo(skb);
257 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
258 atomic_set(&shinfo->dataref, 1);
259 kmemcheck_annotate_variable(shinfo->destructor_arg);
260
261 if (flags & SKB_ALLOC_FCLONE) {
262 struct sk_buff_fclones *fclones;
263
264 fclones = container_of(skb, struct sk_buff_fclones, skb1);
265
266 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
267 skb->fclone = SKB_FCLONE_ORIG;
268 atomic_set(&fclones->fclone_ref, 1);
269
270 fclones->skb2.fclone = SKB_FCLONE_CLONE;
271 fclones->skb2.pfmemalloc = pfmemalloc;
272 }
273 out:
274 return skb;
275 nodata:
276 kmem_cache_free(cache, skb);
277 skb = NULL;
278 goto out;
279 }
280 EXPORT_SYMBOL(__alloc_skb);
281
282 /**
283 * __build_skb - build a network buffer
284 * @data: data buffer provided by caller
285 * @frag_size: size of data, or 0 if head was kmalloced
286 *
287 * Allocate a new &sk_buff. Caller provides space holding head and
288 * skb_shared_info. @data must have been allocated by kmalloc() only if
289 * @frag_size is 0, otherwise data should come from the page allocator
290 * or vmalloc()
291 * The return is the new skb buffer.
292 * On a failure the return is %NULL, and @data is not freed.
293 * Notes :
294 * Before IO, driver allocates only data buffer where NIC put incoming frame
295 * Driver should add room at head (NET_SKB_PAD) and
296 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
297 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
298 * before giving packet to stack.
299 * RX rings only contains data buffers, not full skbs.
300 */
301 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
302 {
303 struct skb_shared_info *shinfo;
304 struct sk_buff *skb;
305 unsigned int size = frag_size ? : ksize(data);
306
307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
308 if (!skb)
309 return NULL;
310
311 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
312
313 memset(skb, 0, offsetof(struct sk_buff, tail));
314 skb->truesize = SKB_TRUESIZE(size);
315 atomic_set(&skb->users, 1);
316 skb->head = data;
317 skb->data = data;
318 skb_reset_tail_pointer(skb);
319 skb->end = skb->tail + size;
320 skb->mac_header = (typeof(skb->mac_header))~0U;
321 skb->transport_header = (typeof(skb->transport_header))~0U;
322
323 /* make sure we initialize shinfo sequentially */
324 shinfo = skb_shinfo(skb);
325 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
326 atomic_set(&shinfo->dataref, 1);
327 kmemcheck_annotate_variable(shinfo->destructor_arg);
328
329 return skb;
330 }
331
332 /* build_skb() is wrapper over __build_skb(), that specifically
333 * takes care of skb->head and skb->pfmemalloc
334 * This means that if @frag_size is not zero, then @data must be backed
335 * by a page fragment, not kmalloc() or vmalloc()
336 */
337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 struct sk_buff *skb = __build_skb(data, frag_size);
340
341 if (skb && frag_size) {
342 skb->head_frag = 1;
343 if (page_is_pfmemalloc(virt_to_head_page(data)))
344 skb->pfmemalloc = 1;
345 }
346 return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349
350 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
351 static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
352
353 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
354 {
355 struct page_frag_cache *nc;
356 unsigned long flags;
357 void *data;
358
359 local_irq_save(flags);
360 nc = this_cpu_ptr(&netdev_alloc_cache);
361 data = __alloc_page_frag(nc, fragsz, gfp_mask);
362 local_irq_restore(flags);
363 return data;
364 }
365
366 /**
367 * netdev_alloc_frag - allocate a page fragment
368 * @fragsz: fragment size
369 *
370 * Allocates a frag from a page for receive buffer.
371 * Uses GFP_ATOMIC allocations.
372 */
373 void *netdev_alloc_frag(unsigned int fragsz)
374 {
375 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
376 }
377 EXPORT_SYMBOL(netdev_alloc_frag);
378
379 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
380 {
381 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
382
383 return __alloc_page_frag(nc, fragsz, gfp_mask);
384 }
385
386 void *napi_alloc_frag(unsigned int fragsz)
387 {
388 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391
392 /**
393 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
394 * @dev: network device to receive on
395 * @len: length to allocate
396 * @gfp_mask: get_free_pages mask, passed to alloc_skb
397 *
398 * Allocate a new &sk_buff and assign it a usage count of one. The
399 * buffer has NET_SKB_PAD headroom built in. Users should allocate
400 * the headroom they think they need without accounting for the
401 * built in space. The built in space is used for optimisations.
402 *
403 * %NULL is returned if there is no free memory.
404 */
405 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
406 gfp_t gfp_mask)
407 {
408 struct page_frag_cache *nc;
409 unsigned long flags;
410 struct sk_buff *skb;
411 bool pfmemalloc;
412 void *data;
413
414 len += NET_SKB_PAD;
415
416 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
417 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
418 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
419 if (!skb)
420 goto skb_fail;
421 goto skb_success;
422 }
423
424 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 len = SKB_DATA_ALIGN(len);
426
427 if (sk_memalloc_socks())
428 gfp_mask |= __GFP_MEMALLOC;
429
430 local_irq_save(flags);
431
432 nc = this_cpu_ptr(&netdev_alloc_cache);
433 data = __alloc_page_frag(nc, len, gfp_mask);
434 pfmemalloc = nc->pfmemalloc;
435
436 local_irq_restore(flags);
437
438 if (unlikely(!data))
439 return NULL;
440
441 skb = __build_skb(data, len);
442 if (unlikely(!skb)) {
443 skb_free_frag(data);
444 return NULL;
445 }
446
447 /* use OR instead of assignment to avoid clearing of bits in mask */
448 if (pfmemalloc)
449 skb->pfmemalloc = 1;
450 skb->head_frag = 1;
451
452 skb_success:
453 skb_reserve(skb, NET_SKB_PAD);
454 skb->dev = dev;
455
456 skb_fail:
457 return skb;
458 }
459 EXPORT_SYMBOL(__netdev_alloc_skb);
460
461 /**
462 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
463 * @napi: napi instance this buffer was allocated for
464 * @len: length to allocate
465 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
466 *
467 * Allocate a new sk_buff for use in NAPI receive. This buffer will
468 * attempt to allocate the head from a special reserved region used
469 * only for NAPI Rx allocation. By doing this we can save several
470 * CPU cycles by avoiding having to disable and re-enable IRQs.
471 *
472 * %NULL is returned if there is no free memory.
473 */
474 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
475 gfp_t gfp_mask)
476 {
477 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
478 struct sk_buff *skb;
479 void *data;
480
481 len += NET_SKB_PAD + NET_IP_ALIGN;
482
483 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
484 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
485 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
486 if (!skb)
487 goto skb_fail;
488 goto skb_success;
489 }
490
491 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
492 len = SKB_DATA_ALIGN(len);
493
494 if (sk_memalloc_socks())
495 gfp_mask |= __GFP_MEMALLOC;
496
497 data = __alloc_page_frag(nc, len, gfp_mask);
498 if (unlikely(!data))
499 return NULL;
500
501 skb = __build_skb(data, len);
502 if (unlikely(!skb)) {
503 skb_free_frag(data);
504 return NULL;
505 }
506
507 /* use OR instead of assignment to avoid clearing of bits in mask */
508 if (nc->pfmemalloc)
509 skb->pfmemalloc = 1;
510 skb->head_frag = 1;
511
512 skb_success:
513 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
514 skb->dev = napi->dev;
515
516 skb_fail:
517 return skb;
518 }
519 EXPORT_SYMBOL(__napi_alloc_skb);
520
521 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
522 int size, unsigned int truesize)
523 {
524 skb_fill_page_desc(skb, i, page, off, size);
525 skb->len += size;
526 skb->data_len += size;
527 skb->truesize += truesize;
528 }
529 EXPORT_SYMBOL(skb_add_rx_frag);
530
531 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
532 unsigned int truesize)
533 {
534 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
535
536 skb_frag_size_add(frag, size);
537 skb->len += size;
538 skb->data_len += size;
539 skb->truesize += truesize;
540 }
541 EXPORT_SYMBOL(skb_coalesce_rx_frag);
542
543 static void skb_drop_list(struct sk_buff **listp)
544 {
545 kfree_skb_list(*listp);
546 *listp = NULL;
547 }
548
549 static inline void skb_drop_fraglist(struct sk_buff *skb)
550 {
551 skb_drop_list(&skb_shinfo(skb)->frag_list);
552 }
553
554 static void skb_clone_fraglist(struct sk_buff *skb)
555 {
556 struct sk_buff *list;
557
558 skb_walk_frags(skb, list)
559 skb_get(list);
560 }
561
562 static void skb_free_head(struct sk_buff *skb)
563 {
564 unsigned char *head = skb->head;
565
566 if (skb->head_frag)
567 skb_free_frag(head);
568 else
569 kfree(head);
570 }
571
572 static void skb_release_data(struct sk_buff *skb)
573 {
574 struct skb_shared_info *shinfo = skb_shinfo(skb);
575 int i;
576
577 if (skb->cloned &&
578 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
579 &shinfo->dataref))
580 return;
581
582 for (i = 0; i < shinfo->nr_frags; i++)
583 __skb_frag_unref(&shinfo->frags[i]);
584
585 /*
586 * If skb buf is from userspace, we need to notify the caller
587 * the lower device DMA has done;
588 */
589 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
590 struct ubuf_info *uarg;
591
592 uarg = shinfo->destructor_arg;
593 if (uarg->callback)
594 uarg->callback(uarg, true);
595 }
596
597 if (shinfo->frag_list)
598 kfree_skb_list(shinfo->frag_list);
599
600 skb_free_head(skb);
601 }
602
603 /*
604 * Free an skbuff by memory without cleaning the state.
605 */
606 static void kfree_skbmem(struct sk_buff *skb)
607 {
608 struct sk_buff_fclones *fclones;
609
610 switch (skb->fclone) {
611 case SKB_FCLONE_UNAVAILABLE:
612 kmem_cache_free(skbuff_head_cache, skb);
613 return;
614
615 case SKB_FCLONE_ORIG:
616 fclones = container_of(skb, struct sk_buff_fclones, skb1);
617
618 /* We usually free the clone (TX completion) before original skb
619 * This test would have no chance to be true for the clone,
620 * while here, branch prediction will be good.
621 */
622 if (atomic_read(&fclones->fclone_ref) == 1)
623 goto fastpath;
624 break;
625
626 default: /* SKB_FCLONE_CLONE */
627 fclones = container_of(skb, struct sk_buff_fclones, skb2);
628 break;
629 }
630 if (!atomic_dec_and_test(&fclones->fclone_ref))
631 return;
632 fastpath:
633 kmem_cache_free(skbuff_fclone_cache, fclones);
634 }
635
636 static void skb_release_head_state(struct sk_buff *skb)
637 {
638 skb_dst_drop(skb);
639 #ifdef CONFIG_XFRM
640 secpath_put(skb->sp);
641 #endif
642 if (skb->destructor) {
643 WARN_ON(in_irq());
644 skb->destructor(skb);
645 }
646 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
647 nf_conntrack_put(skb->nfct);
648 #endif
649 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
650 nf_bridge_put(skb->nf_bridge);
651 #endif
652 }
653
654 /* Free everything but the sk_buff shell. */
655 static void skb_release_all(struct sk_buff *skb)
656 {
657 skb_release_head_state(skb);
658 if (likely(skb->head))
659 skb_release_data(skb);
660 }
661
662 /**
663 * __kfree_skb - private function
664 * @skb: buffer
665 *
666 * Free an sk_buff. Release anything attached to the buffer.
667 * Clean the state. This is an internal helper function. Users should
668 * always call kfree_skb
669 */
670
671 void __kfree_skb(struct sk_buff *skb)
672 {
673 skb_release_all(skb);
674 kfree_skbmem(skb);
675 }
676 EXPORT_SYMBOL(__kfree_skb);
677
678 /**
679 * kfree_skb - free an sk_buff
680 * @skb: buffer to free
681 *
682 * Drop a reference to the buffer and free it if the usage count has
683 * hit zero.
684 */
685 void kfree_skb(struct sk_buff *skb)
686 {
687 if (unlikely(!skb))
688 return;
689 if (likely(atomic_read(&skb->users) == 1))
690 smp_rmb();
691 else if (likely(!atomic_dec_and_test(&skb->users)))
692 return;
693 trace_kfree_skb(skb, __builtin_return_address(0));
694 __kfree_skb(skb);
695 }
696 EXPORT_SYMBOL(kfree_skb);
697
698 void kfree_skb_list(struct sk_buff *segs)
699 {
700 while (segs) {
701 struct sk_buff *next = segs->next;
702
703 kfree_skb(segs);
704 segs = next;
705 }
706 }
707 EXPORT_SYMBOL(kfree_skb_list);
708
709 /**
710 * skb_tx_error - report an sk_buff xmit error
711 * @skb: buffer that triggered an error
712 *
713 * Report xmit error if a device callback is tracking this skb.
714 * skb must be freed afterwards.
715 */
716 void skb_tx_error(struct sk_buff *skb)
717 {
718 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
719 struct ubuf_info *uarg;
720
721 uarg = skb_shinfo(skb)->destructor_arg;
722 if (uarg->callback)
723 uarg->callback(uarg, false);
724 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
725 }
726 }
727 EXPORT_SYMBOL(skb_tx_error);
728
729 /**
730 * consume_skb - free an skbuff
731 * @skb: buffer to free
732 *
733 * Drop a ref to the buffer and free it if the usage count has hit zero
734 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
735 * is being dropped after a failure and notes that
736 */
737 void consume_skb(struct sk_buff *skb)
738 {
739 if (unlikely(!skb))
740 return;
741 if (likely(atomic_read(&skb->users) == 1))
742 smp_rmb();
743 else if (likely(!atomic_dec_and_test(&skb->users)))
744 return;
745 trace_consume_skb(skb);
746 __kfree_skb(skb);
747 }
748 EXPORT_SYMBOL(consume_skb);
749
750 /* Make sure a field is enclosed inside headers_start/headers_end section */
751 #define CHECK_SKB_FIELD(field) \
752 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
753 offsetof(struct sk_buff, headers_start)); \
754 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
755 offsetof(struct sk_buff, headers_end)); \
756
757 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
758 {
759 new->tstamp = old->tstamp;
760 /* We do not copy old->sk */
761 new->dev = old->dev;
762 memcpy(new->cb, old->cb, sizeof(old->cb));
763 skb_dst_copy(new, old);
764 #ifdef CONFIG_XFRM
765 new->sp = secpath_get(old->sp);
766 #endif
767 __nf_copy(new, old, false);
768
769 /* Note : this field could be in headers_start/headers_end section
770 * It is not yet because we do not want to have a 16 bit hole
771 */
772 new->queue_mapping = old->queue_mapping;
773
774 memcpy(&new->headers_start, &old->headers_start,
775 offsetof(struct sk_buff, headers_end) -
776 offsetof(struct sk_buff, headers_start));
777 CHECK_SKB_FIELD(protocol);
778 CHECK_SKB_FIELD(csum);
779 CHECK_SKB_FIELD(hash);
780 CHECK_SKB_FIELD(priority);
781 CHECK_SKB_FIELD(skb_iif);
782 CHECK_SKB_FIELD(vlan_proto);
783 CHECK_SKB_FIELD(vlan_tci);
784 CHECK_SKB_FIELD(transport_header);
785 CHECK_SKB_FIELD(network_header);
786 CHECK_SKB_FIELD(mac_header);
787 CHECK_SKB_FIELD(inner_protocol);
788 CHECK_SKB_FIELD(inner_transport_header);
789 CHECK_SKB_FIELD(inner_network_header);
790 CHECK_SKB_FIELD(inner_mac_header);
791 CHECK_SKB_FIELD(mark);
792 #ifdef CONFIG_NETWORK_SECMARK
793 CHECK_SKB_FIELD(secmark);
794 #endif
795 #ifdef CONFIG_NET_RX_BUSY_POLL
796 CHECK_SKB_FIELD(napi_id);
797 #endif
798 #ifdef CONFIG_XPS
799 CHECK_SKB_FIELD(sender_cpu);
800 #endif
801 #ifdef CONFIG_NET_SCHED
802 CHECK_SKB_FIELD(tc_index);
803 #ifdef CONFIG_NET_CLS_ACT
804 CHECK_SKB_FIELD(tc_verd);
805 #endif
806 #endif
807
808 }
809
810 /*
811 * You should not add any new code to this function. Add it to
812 * __copy_skb_header above instead.
813 */
814 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
815 {
816 #define C(x) n->x = skb->x
817
818 n->next = n->prev = NULL;
819 n->sk = NULL;
820 __copy_skb_header(n, skb);
821
822 C(len);
823 C(data_len);
824 C(mac_len);
825 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
826 n->cloned = 1;
827 n->nohdr = 0;
828 n->destructor = NULL;
829 C(tail);
830 C(end);
831 C(head);
832 C(head_frag);
833 C(data);
834 C(truesize);
835 atomic_set(&n->users, 1);
836
837 atomic_inc(&(skb_shinfo(skb)->dataref));
838 skb->cloned = 1;
839
840 return n;
841 #undef C
842 }
843
844 /**
845 * skb_morph - morph one skb into another
846 * @dst: the skb to receive the contents
847 * @src: the skb to supply the contents
848 *
849 * This is identical to skb_clone except that the target skb is
850 * supplied by the user.
851 *
852 * The target skb is returned upon exit.
853 */
854 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
855 {
856 skb_release_all(dst);
857 return __skb_clone(dst, src);
858 }
859 EXPORT_SYMBOL_GPL(skb_morph);
860
861 /**
862 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
863 * @skb: the skb to modify
864 * @gfp_mask: allocation priority
865 *
866 * This must be called on SKBTX_DEV_ZEROCOPY skb.
867 * It will copy all frags into kernel and drop the reference
868 * to userspace pages.
869 *
870 * If this function is called from an interrupt gfp_mask() must be
871 * %GFP_ATOMIC.
872 *
873 * Returns 0 on success or a negative error code on failure
874 * to allocate kernel memory to copy to.
875 */
876 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
877 {
878 int i;
879 int num_frags = skb_shinfo(skb)->nr_frags;
880 struct page *page, *head = NULL;
881 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
882
883 for (i = 0; i < num_frags; i++) {
884 u8 *vaddr;
885 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
886
887 page = alloc_page(gfp_mask);
888 if (!page) {
889 while (head) {
890 struct page *next = (struct page *)page_private(head);
891 put_page(head);
892 head = next;
893 }
894 return -ENOMEM;
895 }
896 vaddr = kmap_atomic(skb_frag_page(f));
897 memcpy(page_address(page),
898 vaddr + f->page_offset, skb_frag_size(f));
899 kunmap_atomic(vaddr);
900 set_page_private(page, (unsigned long)head);
901 head = page;
902 }
903
904 /* skb frags release userspace buffers */
905 for (i = 0; i < num_frags; i++)
906 skb_frag_unref(skb, i);
907
908 uarg->callback(uarg, false);
909
910 /* skb frags point to kernel buffers */
911 for (i = num_frags - 1; i >= 0; i--) {
912 __skb_fill_page_desc(skb, i, head, 0,
913 skb_shinfo(skb)->frags[i].size);
914 head = (struct page *)page_private(head);
915 }
916
917 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
918 return 0;
919 }
920 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
921
922 /**
923 * skb_clone - duplicate an sk_buff
924 * @skb: buffer to clone
925 * @gfp_mask: allocation priority
926 *
927 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
928 * copies share the same packet data but not structure. The new
929 * buffer has a reference count of 1. If the allocation fails the
930 * function returns %NULL otherwise the new buffer is returned.
931 *
932 * If this function is called from an interrupt gfp_mask() must be
933 * %GFP_ATOMIC.
934 */
935
936 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
937 {
938 struct sk_buff_fclones *fclones = container_of(skb,
939 struct sk_buff_fclones,
940 skb1);
941 struct sk_buff *n;
942
943 if (skb_orphan_frags(skb, gfp_mask))
944 return NULL;
945
946 if (skb->fclone == SKB_FCLONE_ORIG &&
947 atomic_read(&fclones->fclone_ref) == 1) {
948 n = &fclones->skb2;
949 atomic_set(&fclones->fclone_ref, 2);
950 } else {
951 if (skb_pfmemalloc(skb))
952 gfp_mask |= __GFP_MEMALLOC;
953
954 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
955 if (!n)
956 return NULL;
957
958 kmemcheck_annotate_bitfield(n, flags1);
959 n->fclone = SKB_FCLONE_UNAVAILABLE;
960 }
961
962 return __skb_clone(n, skb);
963 }
964 EXPORT_SYMBOL(skb_clone);
965
966 static void skb_headers_offset_update(struct sk_buff *skb, int off)
967 {
968 /* Only adjust this if it actually is csum_start rather than csum */
969 if (skb->ip_summed == CHECKSUM_PARTIAL)
970 skb->csum_start += off;
971 /* {transport,network,mac}_header and tail are relative to skb->head */
972 skb->transport_header += off;
973 skb->network_header += off;
974 if (skb_mac_header_was_set(skb))
975 skb->mac_header += off;
976 skb->inner_transport_header += off;
977 skb->inner_network_header += off;
978 skb->inner_mac_header += off;
979 }
980
981 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
982 {
983 __copy_skb_header(new, old);
984
985 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
986 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
987 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
988 }
989
990 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
991 {
992 if (skb_pfmemalloc(skb))
993 return SKB_ALLOC_RX;
994 return 0;
995 }
996
997 /**
998 * skb_copy - create private copy of an sk_buff
999 * @skb: buffer to copy
1000 * @gfp_mask: allocation priority
1001 *
1002 * Make a copy of both an &sk_buff and its data. This is used when the
1003 * caller wishes to modify the data and needs a private copy of the
1004 * data to alter. Returns %NULL on failure or the pointer to the buffer
1005 * on success. The returned buffer has a reference count of 1.
1006 *
1007 * As by-product this function converts non-linear &sk_buff to linear
1008 * one, so that &sk_buff becomes completely private and caller is allowed
1009 * to modify all the data of returned buffer. This means that this
1010 * function is not recommended for use in circumstances when only
1011 * header is going to be modified. Use pskb_copy() instead.
1012 */
1013
1014 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 int headerlen = skb_headroom(skb);
1017 unsigned int size = skb_end_offset(skb) + skb->data_len;
1018 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1019 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1020
1021 if (!n)
1022 return NULL;
1023
1024 /* Set the data pointer */
1025 skb_reserve(n, headerlen);
1026 /* Set the tail pointer and length */
1027 skb_put(n, skb->len);
1028
1029 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1030 BUG();
1031
1032 copy_skb_header(n, skb);
1033 return n;
1034 }
1035 EXPORT_SYMBOL(skb_copy);
1036
1037 /**
1038 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1039 * @skb: buffer to copy
1040 * @headroom: headroom of new skb
1041 * @gfp_mask: allocation priority
1042 * @fclone: if true allocate the copy of the skb from the fclone
1043 * cache instead of the head cache; it is recommended to set this
1044 * to true for the cases where the copy will likely be cloned
1045 *
1046 * Make a copy of both an &sk_buff and part of its data, located
1047 * in header. Fragmented data remain shared. This is used when
1048 * the caller wishes to modify only header of &sk_buff and needs
1049 * private copy of the header to alter. Returns %NULL on failure
1050 * or the pointer to the buffer on success.
1051 * The returned buffer has a reference count of 1.
1052 */
1053
1054 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1055 gfp_t gfp_mask, bool fclone)
1056 {
1057 unsigned int size = skb_headlen(skb) + headroom;
1058 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1059 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1060
1061 if (!n)
1062 goto out;
1063
1064 /* Set the data pointer */
1065 skb_reserve(n, headroom);
1066 /* Set the tail pointer and length */
1067 skb_put(n, skb_headlen(skb));
1068 /* Copy the bytes */
1069 skb_copy_from_linear_data(skb, n->data, n->len);
1070
1071 n->truesize += skb->data_len;
1072 n->data_len = skb->data_len;
1073 n->len = skb->len;
1074
1075 if (skb_shinfo(skb)->nr_frags) {
1076 int i;
1077
1078 if (skb_orphan_frags(skb, gfp_mask)) {
1079 kfree_skb(n);
1080 n = NULL;
1081 goto out;
1082 }
1083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1084 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1085 skb_frag_ref(skb, i);
1086 }
1087 skb_shinfo(n)->nr_frags = i;
1088 }
1089
1090 if (skb_has_frag_list(skb)) {
1091 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1092 skb_clone_fraglist(n);
1093 }
1094
1095 copy_skb_header(n, skb);
1096 out:
1097 return n;
1098 }
1099 EXPORT_SYMBOL(__pskb_copy_fclone);
1100
1101 /**
1102 * pskb_expand_head - reallocate header of &sk_buff
1103 * @skb: buffer to reallocate
1104 * @nhead: room to add at head
1105 * @ntail: room to add at tail
1106 * @gfp_mask: allocation priority
1107 *
1108 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1109 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1110 * reference count of 1. Returns zero in the case of success or error,
1111 * if expansion failed. In the last case, &sk_buff is not changed.
1112 *
1113 * All the pointers pointing into skb header may change and must be
1114 * reloaded after call to this function.
1115 */
1116
1117 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1118 gfp_t gfp_mask)
1119 {
1120 int i;
1121 u8 *data;
1122 int size = nhead + skb_end_offset(skb) + ntail;
1123 long off;
1124
1125 BUG_ON(nhead < 0);
1126
1127 if (skb_shared(skb))
1128 BUG();
1129
1130 size = SKB_DATA_ALIGN(size);
1131
1132 if (skb_pfmemalloc(skb))
1133 gfp_mask |= __GFP_MEMALLOC;
1134 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1135 gfp_mask, NUMA_NO_NODE, NULL);
1136 if (!data)
1137 goto nodata;
1138 size = SKB_WITH_OVERHEAD(ksize(data));
1139
1140 /* Copy only real data... and, alas, header. This should be
1141 * optimized for the cases when header is void.
1142 */
1143 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1144
1145 memcpy((struct skb_shared_info *)(data + size),
1146 skb_shinfo(skb),
1147 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1148
1149 /*
1150 * if shinfo is shared we must drop the old head gracefully, but if it
1151 * is not we can just drop the old head and let the existing refcount
1152 * be since all we did is relocate the values
1153 */
1154 if (skb_cloned(skb)) {
1155 /* copy this zero copy skb frags */
1156 if (skb_orphan_frags(skb, gfp_mask))
1157 goto nofrags;
1158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1159 skb_frag_ref(skb, i);
1160
1161 if (skb_has_frag_list(skb))
1162 skb_clone_fraglist(skb);
1163
1164 skb_release_data(skb);
1165 } else {
1166 skb_free_head(skb);
1167 }
1168 off = (data + nhead) - skb->head;
1169
1170 skb->head = data;
1171 skb->head_frag = 0;
1172 skb->data += off;
1173 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1174 skb->end = size;
1175 off = nhead;
1176 #else
1177 skb->end = skb->head + size;
1178 #endif
1179 skb->tail += off;
1180 skb_headers_offset_update(skb, nhead);
1181 skb->cloned = 0;
1182 skb->hdr_len = 0;
1183 skb->nohdr = 0;
1184 atomic_set(&skb_shinfo(skb)->dataref, 1);
1185 return 0;
1186
1187 nofrags:
1188 kfree(data);
1189 nodata:
1190 return -ENOMEM;
1191 }
1192 EXPORT_SYMBOL(pskb_expand_head);
1193
1194 /* Make private copy of skb with writable head and some headroom */
1195
1196 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1197 {
1198 struct sk_buff *skb2;
1199 int delta = headroom - skb_headroom(skb);
1200
1201 if (delta <= 0)
1202 skb2 = pskb_copy(skb, GFP_ATOMIC);
1203 else {
1204 skb2 = skb_clone(skb, GFP_ATOMIC);
1205 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1206 GFP_ATOMIC)) {
1207 kfree_skb(skb2);
1208 skb2 = NULL;
1209 }
1210 }
1211 return skb2;
1212 }
1213 EXPORT_SYMBOL(skb_realloc_headroom);
1214
1215 /**
1216 * skb_copy_expand - copy and expand sk_buff
1217 * @skb: buffer to copy
1218 * @newheadroom: new free bytes at head
1219 * @newtailroom: new free bytes at tail
1220 * @gfp_mask: allocation priority
1221 *
1222 * Make a copy of both an &sk_buff and its data and while doing so
1223 * allocate additional space.
1224 *
1225 * This is used when the caller wishes to modify the data and needs a
1226 * private copy of the data to alter as well as more space for new fields.
1227 * Returns %NULL on failure or the pointer to the buffer
1228 * on success. The returned buffer has a reference count of 1.
1229 *
1230 * You must pass %GFP_ATOMIC as the allocation priority if this function
1231 * is called from an interrupt.
1232 */
1233 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1234 int newheadroom, int newtailroom,
1235 gfp_t gfp_mask)
1236 {
1237 /*
1238 * Allocate the copy buffer
1239 */
1240 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1241 gfp_mask, skb_alloc_rx_flag(skb),
1242 NUMA_NO_NODE);
1243 int oldheadroom = skb_headroom(skb);
1244 int head_copy_len, head_copy_off;
1245
1246 if (!n)
1247 return NULL;
1248
1249 skb_reserve(n, newheadroom);
1250
1251 /* Set the tail pointer and length */
1252 skb_put(n, skb->len);
1253
1254 head_copy_len = oldheadroom;
1255 head_copy_off = 0;
1256 if (newheadroom <= head_copy_len)
1257 head_copy_len = newheadroom;
1258 else
1259 head_copy_off = newheadroom - head_copy_len;
1260
1261 /* Copy the linear header and data. */
1262 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1263 skb->len + head_copy_len))
1264 BUG();
1265
1266 copy_skb_header(n, skb);
1267
1268 skb_headers_offset_update(n, newheadroom - oldheadroom);
1269
1270 return n;
1271 }
1272 EXPORT_SYMBOL(skb_copy_expand);
1273
1274 /**
1275 * skb_pad - zero pad the tail of an skb
1276 * @skb: buffer to pad
1277 * @pad: space to pad
1278 *
1279 * Ensure that a buffer is followed by a padding area that is zero
1280 * filled. Used by network drivers which may DMA or transfer data
1281 * beyond the buffer end onto the wire.
1282 *
1283 * May return error in out of memory cases. The skb is freed on error.
1284 */
1285
1286 int skb_pad(struct sk_buff *skb, int pad)
1287 {
1288 int err;
1289 int ntail;
1290
1291 /* If the skbuff is non linear tailroom is always zero.. */
1292 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1293 memset(skb->data+skb->len, 0, pad);
1294 return 0;
1295 }
1296
1297 ntail = skb->data_len + pad - (skb->end - skb->tail);
1298 if (likely(skb_cloned(skb) || ntail > 0)) {
1299 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1300 if (unlikely(err))
1301 goto free_skb;
1302 }
1303
1304 /* FIXME: The use of this function with non-linear skb's really needs
1305 * to be audited.
1306 */
1307 err = skb_linearize(skb);
1308 if (unlikely(err))
1309 goto free_skb;
1310
1311 memset(skb->data + skb->len, 0, pad);
1312 return 0;
1313
1314 free_skb:
1315 kfree_skb(skb);
1316 return err;
1317 }
1318 EXPORT_SYMBOL(skb_pad);
1319
1320 /**
1321 * pskb_put - add data to the tail of a potentially fragmented buffer
1322 * @skb: start of the buffer to use
1323 * @tail: tail fragment of the buffer to use
1324 * @len: amount of data to add
1325 *
1326 * This function extends the used data area of the potentially
1327 * fragmented buffer. @tail must be the last fragment of @skb -- or
1328 * @skb itself. If this would exceed the total buffer size the kernel
1329 * will panic. A pointer to the first byte of the extra data is
1330 * returned.
1331 */
1332
1333 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1334 {
1335 if (tail != skb) {
1336 skb->data_len += len;
1337 skb->len += len;
1338 }
1339 return skb_put(tail, len);
1340 }
1341 EXPORT_SYMBOL_GPL(pskb_put);
1342
1343 /**
1344 * skb_put - add data to a buffer
1345 * @skb: buffer to use
1346 * @len: amount of data to add
1347 *
1348 * This function extends the used data area of the buffer. If this would
1349 * exceed the total buffer size the kernel will panic. A pointer to the
1350 * first byte of the extra data is returned.
1351 */
1352 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1353 {
1354 unsigned char *tmp = skb_tail_pointer(skb);
1355 SKB_LINEAR_ASSERT(skb);
1356 skb->tail += len;
1357 skb->len += len;
1358 if (unlikely(skb->tail > skb->end))
1359 skb_over_panic(skb, len, __builtin_return_address(0));
1360 return tmp;
1361 }
1362 EXPORT_SYMBOL(skb_put);
1363
1364 /**
1365 * skb_push - add data to the start of a buffer
1366 * @skb: buffer to use
1367 * @len: amount of data to add
1368 *
1369 * This function extends the used data area of the buffer at the buffer
1370 * start. If this would exceed the total buffer headroom the kernel will
1371 * panic. A pointer to the first byte of the extra data is returned.
1372 */
1373 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1374 {
1375 skb->data -= len;
1376 skb->len += len;
1377 if (unlikely(skb->data<skb->head))
1378 skb_under_panic(skb, len, __builtin_return_address(0));
1379 return skb->data;
1380 }
1381 EXPORT_SYMBOL(skb_push);
1382
1383 /**
1384 * skb_pull - remove data from the start of a buffer
1385 * @skb: buffer to use
1386 * @len: amount of data to remove
1387 *
1388 * This function removes data from the start of a buffer, returning
1389 * the memory to the headroom. A pointer to the next data in the buffer
1390 * is returned. Once the data has been pulled future pushes will overwrite
1391 * the old data.
1392 */
1393 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1394 {
1395 return skb_pull_inline(skb, len);
1396 }
1397 EXPORT_SYMBOL(skb_pull);
1398
1399 /**
1400 * skb_trim - remove end from a buffer
1401 * @skb: buffer to alter
1402 * @len: new length
1403 *
1404 * Cut the length of a buffer down by removing data from the tail. If
1405 * the buffer is already under the length specified it is not modified.
1406 * The skb must be linear.
1407 */
1408 void skb_trim(struct sk_buff *skb, unsigned int len)
1409 {
1410 if (skb->len > len)
1411 __skb_trim(skb, len);
1412 }
1413 EXPORT_SYMBOL(skb_trim);
1414
1415 /* Trims skb to length len. It can change skb pointers.
1416 */
1417
1418 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1419 {
1420 struct sk_buff **fragp;
1421 struct sk_buff *frag;
1422 int offset = skb_headlen(skb);
1423 int nfrags = skb_shinfo(skb)->nr_frags;
1424 int i;
1425 int err;
1426
1427 if (skb_cloned(skb) &&
1428 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1429 return err;
1430
1431 i = 0;
1432 if (offset >= len)
1433 goto drop_pages;
1434
1435 for (; i < nfrags; i++) {
1436 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1437
1438 if (end < len) {
1439 offset = end;
1440 continue;
1441 }
1442
1443 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1444
1445 drop_pages:
1446 skb_shinfo(skb)->nr_frags = i;
1447
1448 for (; i < nfrags; i++)
1449 skb_frag_unref(skb, i);
1450
1451 if (skb_has_frag_list(skb))
1452 skb_drop_fraglist(skb);
1453 goto done;
1454 }
1455
1456 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1457 fragp = &frag->next) {
1458 int end = offset + frag->len;
1459
1460 if (skb_shared(frag)) {
1461 struct sk_buff *nfrag;
1462
1463 nfrag = skb_clone(frag, GFP_ATOMIC);
1464 if (unlikely(!nfrag))
1465 return -ENOMEM;
1466
1467 nfrag->next = frag->next;
1468 consume_skb(frag);
1469 frag = nfrag;
1470 *fragp = frag;
1471 }
1472
1473 if (end < len) {
1474 offset = end;
1475 continue;
1476 }
1477
1478 if (end > len &&
1479 unlikely((err = pskb_trim(frag, len - offset))))
1480 return err;
1481
1482 if (frag->next)
1483 skb_drop_list(&frag->next);
1484 break;
1485 }
1486
1487 done:
1488 if (len > skb_headlen(skb)) {
1489 skb->data_len -= skb->len - len;
1490 skb->len = len;
1491 } else {
1492 skb->len = len;
1493 skb->data_len = 0;
1494 skb_set_tail_pointer(skb, len);
1495 }
1496
1497 return 0;
1498 }
1499 EXPORT_SYMBOL(___pskb_trim);
1500
1501 /**
1502 * __pskb_pull_tail - advance tail of skb header
1503 * @skb: buffer to reallocate
1504 * @delta: number of bytes to advance tail
1505 *
1506 * The function makes a sense only on a fragmented &sk_buff,
1507 * it expands header moving its tail forward and copying necessary
1508 * data from fragmented part.
1509 *
1510 * &sk_buff MUST have reference count of 1.
1511 *
1512 * Returns %NULL (and &sk_buff does not change) if pull failed
1513 * or value of new tail of skb in the case of success.
1514 *
1515 * All the pointers pointing into skb header may change and must be
1516 * reloaded after call to this function.
1517 */
1518
1519 /* Moves tail of skb head forward, copying data from fragmented part,
1520 * when it is necessary.
1521 * 1. It may fail due to malloc failure.
1522 * 2. It may change skb pointers.
1523 *
1524 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1525 */
1526 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1527 {
1528 /* If skb has not enough free space at tail, get new one
1529 * plus 128 bytes for future expansions. If we have enough
1530 * room at tail, reallocate without expansion only if skb is cloned.
1531 */
1532 int i, k, eat = (skb->tail + delta) - skb->end;
1533
1534 if (eat > 0 || skb_cloned(skb)) {
1535 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1536 GFP_ATOMIC))
1537 return NULL;
1538 }
1539
1540 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1541 BUG();
1542
1543 /* Optimization: no fragments, no reasons to preestimate
1544 * size of pulled pages. Superb.
1545 */
1546 if (!skb_has_frag_list(skb))
1547 goto pull_pages;
1548
1549 /* Estimate size of pulled pages. */
1550 eat = delta;
1551 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1552 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1553
1554 if (size >= eat)
1555 goto pull_pages;
1556 eat -= size;
1557 }
1558
1559 /* If we need update frag list, we are in troubles.
1560 * Certainly, it possible to add an offset to skb data,
1561 * but taking into account that pulling is expected to
1562 * be very rare operation, it is worth to fight against
1563 * further bloating skb head and crucify ourselves here instead.
1564 * Pure masohism, indeed. 8)8)
1565 */
1566 if (eat) {
1567 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1568 struct sk_buff *clone = NULL;
1569 struct sk_buff *insp = NULL;
1570
1571 do {
1572 BUG_ON(!list);
1573
1574 if (list->len <= eat) {
1575 /* Eaten as whole. */
1576 eat -= list->len;
1577 list = list->next;
1578 insp = list;
1579 } else {
1580 /* Eaten partially. */
1581
1582 if (skb_shared(list)) {
1583 /* Sucks! We need to fork list. :-( */
1584 clone = skb_clone(list, GFP_ATOMIC);
1585 if (!clone)
1586 return NULL;
1587 insp = list->next;
1588 list = clone;
1589 } else {
1590 /* This may be pulled without
1591 * problems. */
1592 insp = list;
1593 }
1594 if (!pskb_pull(list, eat)) {
1595 kfree_skb(clone);
1596 return NULL;
1597 }
1598 break;
1599 }
1600 } while (eat);
1601
1602 /* Free pulled out fragments. */
1603 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1604 skb_shinfo(skb)->frag_list = list->next;
1605 kfree_skb(list);
1606 }
1607 /* And insert new clone at head. */
1608 if (clone) {
1609 clone->next = list;
1610 skb_shinfo(skb)->frag_list = clone;
1611 }
1612 }
1613 /* Success! Now we may commit changes to skb data. */
1614
1615 pull_pages:
1616 eat = delta;
1617 k = 0;
1618 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1619 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1620
1621 if (size <= eat) {
1622 skb_frag_unref(skb, i);
1623 eat -= size;
1624 } else {
1625 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1626 if (eat) {
1627 skb_shinfo(skb)->frags[k].page_offset += eat;
1628 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1629 eat = 0;
1630 }
1631 k++;
1632 }
1633 }
1634 skb_shinfo(skb)->nr_frags = k;
1635
1636 skb->tail += delta;
1637 skb->data_len -= delta;
1638
1639 return skb_tail_pointer(skb);
1640 }
1641 EXPORT_SYMBOL(__pskb_pull_tail);
1642
1643 /**
1644 * skb_copy_bits - copy bits from skb to kernel buffer
1645 * @skb: source skb
1646 * @offset: offset in source
1647 * @to: destination buffer
1648 * @len: number of bytes to copy
1649 *
1650 * Copy the specified number of bytes from the source skb to the
1651 * destination buffer.
1652 *
1653 * CAUTION ! :
1654 * If its prototype is ever changed,
1655 * check arch/{*}/net/{*}.S files,
1656 * since it is called from BPF assembly code.
1657 */
1658 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1659 {
1660 int start = skb_headlen(skb);
1661 struct sk_buff *frag_iter;
1662 int i, copy;
1663
1664 if (offset > (int)skb->len - len)
1665 goto fault;
1666
1667 /* Copy header. */
1668 if ((copy = start - offset) > 0) {
1669 if (copy > len)
1670 copy = len;
1671 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1672 if ((len -= copy) == 0)
1673 return 0;
1674 offset += copy;
1675 to += copy;
1676 }
1677
1678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1679 int end;
1680 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1681
1682 WARN_ON(start > offset + len);
1683
1684 end = start + skb_frag_size(f);
1685 if ((copy = end - offset) > 0) {
1686 u8 *vaddr;
1687
1688 if (copy > len)
1689 copy = len;
1690
1691 vaddr = kmap_atomic(skb_frag_page(f));
1692 memcpy(to,
1693 vaddr + f->page_offset + offset - start,
1694 copy);
1695 kunmap_atomic(vaddr);
1696
1697 if ((len -= copy) == 0)
1698 return 0;
1699 offset += copy;
1700 to += copy;
1701 }
1702 start = end;
1703 }
1704
1705 skb_walk_frags(skb, frag_iter) {
1706 int end;
1707
1708 WARN_ON(start > offset + len);
1709
1710 end = start + frag_iter->len;
1711 if ((copy = end - offset) > 0) {
1712 if (copy > len)
1713 copy = len;
1714 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1715 goto fault;
1716 if ((len -= copy) == 0)
1717 return 0;
1718 offset += copy;
1719 to += copy;
1720 }
1721 start = end;
1722 }
1723
1724 if (!len)
1725 return 0;
1726
1727 fault:
1728 return -EFAULT;
1729 }
1730 EXPORT_SYMBOL(skb_copy_bits);
1731
1732 /*
1733 * Callback from splice_to_pipe(), if we need to release some pages
1734 * at the end of the spd in case we error'ed out in filling the pipe.
1735 */
1736 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1737 {
1738 put_page(spd->pages[i]);
1739 }
1740
1741 static struct page *linear_to_page(struct page *page, unsigned int *len,
1742 unsigned int *offset,
1743 struct sock *sk)
1744 {
1745 struct page_frag *pfrag = sk_page_frag(sk);
1746
1747 if (!sk_page_frag_refill(sk, pfrag))
1748 return NULL;
1749
1750 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1751
1752 memcpy(page_address(pfrag->page) + pfrag->offset,
1753 page_address(page) + *offset, *len);
1754 *offset = pfrag->offset;
1755 pfrag->offset += *len;
1756
1757 return pfrag->page;
1758 }
1759
1760 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1761 struct page *page,
1762 unsigned int offset)
1763 {
1764 return spd->nr_pages &&
1765 spd->pages[spd->nr_pages - 1] == page &&
1766 (spd->partial[spd->nr_pages - 1].offset +
1767 spd->partial[spd->nr_pages - 1].len == offset);
1768 }
1769
1770 /*
1771 * Fill page/offset/length into spd, if it can hold more pages.
1772 */
1773 static bool spd_fill_page(struct splice_pipe_desc *spd,
1774 struct pipe_inode_info *pipe, struct page *page,
1775 unsigned int *len, unsigned int offset,
1776 bool linear,
1777 struct sock *sk)
1778 {
1779 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1780 return true;
1781
1782 if (linear) {
1783 page = linear_to_page(page, len, &offset, sk);
1784 if (!page)
1785 return true;
1786 }
1787 if (spd_can_coalesce(spd, page, offset)) {
1788 spd->partial[spd->nr_pages - 1].len += *len;
1789 return false;
1790 }
1791 get_page(page);
1792 spd->pages[spd->nr_pages] = page;
1793 spd->partial[spd->nr_pages].len = *len;
1794 spd->partial[spd->nr_pages].offset = offset;
1795 spd->nr_pages++;
1796
1797 return false;
1798 }
1799
1800 static bool __splice_segment(struct page *page, unsigned int poff,
1801 unsigned int plen, unsigned int *off,
1802 unsigned int *len,
1803 struct splice_pipe_desc *spd, bool linear,
1804 struct sock *sk,
1805 struct pipe_inode_info *pipe)
1806 {
1807 if (!*len)
1808 return true;
1809
1810 /* skip this segment if already processed */
1811 if (*off >= plen) {
1812 *off -= plen;
1813 return false;
1814 }
1815
1816 /* ignore any bits we already processed */
1817 poff += *off;
1818 plen -= *off;
1819 *off = 0;
1820
1821 do {
1822 unsigned int flen = min(*len, plen);
1823
1824 if (spd_fill_page(spd, pipe, page, &flen, poff,
1825 linear, sk))
1826 return true;
1827 poff += flen;
1828 plen -= flen;
1829 *len -= flen;
1830 } while (*len && plen);
1831
1832 return false;
1833 }
1834
1835 /*
1836 * Map linear and fragment data from the skb to spd. It reports true if the
1837 * pipe is full or if we already spliced the requested length.
1838 */
1839 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1840 unsigned int *offset, unsigned int *len,
1841 struct splice_pipe_desc *spd, struct sock *sk)
1842 {
1843 int seg;
1844
1845 /* map the linear part :
1846 * If skb->head_frag is set, this 'linear' part is backed by a
1847 * fragment, and if the head is not shared with any clones then
1848 * we can avoid a copy since we own the head portion of this page.
1849 */
1850 if (__splice_segment(virt_to_page(skb->data),
1851 (unsigned long) skb->data & (PAGE_SIZE - 1),
1852 skb_headlen(skb),
1853 offset, len, spd,
1854 skb_head_is_locked(skb),
1855 sk, pipe))
1856 return true;
1857
1858 /*
1859 * then map the fragments
1860 */
1861 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1862 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1863
1864 if (__splice_segment(skb_frag_page(f),
1865 f->page_offset, skb_frag_size(f),
1866 offset, len, spd, false, sk, pipe))
1867 return true;
1868 }
1869
1870 return false;
1871 }
1872
1873 ssize_t skb_socket_splice(struct sock *sk,
1874 struct pipe_inode_info *pipe,
1875 struct splice_pipe_desc *spd)
1876 {
1877 int ret;
1878
1879 /* Drop the socket lock, otherwise we have reverse
1880 * locking dependencies between sk_lock and i_mutex
1881 * here as compared to sendfile(). We enter here
1882 * with the socket lock held, and splice_to_pipe() will
1883 * grab the pipe inode lock. For sendfile() emulation,
1884 * we call into ->sendpage() with the i_mutex lock held
1885 * and networking will grab the socket lock.
1886 */
1887 release_sock(sk);
1888 ret = splice_to_pipe(pipe, spd);
1889 lock_sock(sk);
1890
1891 return ret;
1892 }
1893
1894 /*
1895 * Map data from the skb to a pipe. Should handle both the linear part,
1896 * the fragments, and the frag list. It does NOT handle frag lists within
1897 * the frag list, if such a thing exists. We'd probably need to recurse to
1898 * handle that cleanly.
1899 */
1900 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1901 struct pipe_inode_info *pipe, unsigned int tlen,
1902 unsigned int flags,
1903 ssize_t (*splice_cb)(struct sock *,
1904 struct pipe_inode_info *,
1905 struct splice_pipe_desc *))
1906 {
1907 struct partial_page partial[MAX_SKB_FRAGS];
1908 struct page *pages[MAX_SKB_FRAGS];
1909 struct splice_pipe_desc spd = {
1910 .pages = pages,
1911 .partial = partial,
1912 .nr_pages_max = MAX_SKB_FRAGS,
1913 .flags = flags,
1914 .ops = &nosteal_pipe_buf_ops,
1915 .spd_release = sock_spd_release,
1916 };
1917 struct sk_buff *frag_iter;
1918 int ret = 0;
1919
1920 /*
1921 * __skb_splice_bits() only fails if the output has no room left,
1922 * so no point in going over the frag_list for the error case.
1923 */
1924 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1925 goto done;
1926 else if (!tlen)
1927 goto done;
1928
1929 /*
1930 * now see if we have a frag_list to map
1931 */
1932 skb_walk_frags(skb, frag_iter) {
1933 if (!tlen)
1934 break;
1935 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1936 break;
1937 }
1938
1939 done:
1940 if (spd.nr_pages)
1941 ret = splice_cb(sk, pipe, &spd);
1942
1943 return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(skb_splice_bits);
1946
1947 /**
1948 * skb_store_bits - store bits from kernel buffer to skb
1949 * @skb: destination buffer
1950 * @offset: offset in destination
1951 * @from: source buffer
1952 * @len: number of bytes to copy
1953 *
1954 * Copy the specified number of bytes from the source buffer to the
1955 * destination skb. This function handles all the messy bits of
1956 * traversing fragment lists and such.
1957 */
1958
1959 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1960 {
1961 int start = skb_headlen(skb);
1962 struct sk_buff *frag_iter;
1963 int i, copy;
1964
1965 if (offset > (int)skb->len - len)
1966 goto fault;
1967
1968 if ((copy = start - offset) > 0) {
1969 if (copy > len)
1970 copy = len;
1971 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1972 if ((len -= copy) == 0)
1973 return 0;
1974 offset += copy;
1975 from += copy;
1976 }
1977
1978 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1979 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1980 int end;
1981
1982 WARN_ON(start > offset + len);
1983
1984 end = start + skb_frag_size(frag);
1985 if ((copy = end - offset) > 0) {
1986 u8 *vaddr;
1987
1988 if (copy > len)
1989 copy = len;
1990
1991 vaddr = kmap_atomic(skb_frag_page(frag));
1992 memcpy(vaddr + frag->page_offset + offset - start,
1993 from, copy);
1994 kunmap_atomic(vaddr);
1995
1996 if ((len -= copy) == 0)
1997 return 0;
1998 offset += copy;
1999 from += copy;
2000 }
2001 start = end;
2002 }
2003
2004 skb_walk_frags(skb, frag_iter) {
2005 int end;
2006
2007 WARN_ON(start > offset + len);
2008
2009 end = start + frag_iter->len;
2010 if ((copy = end - offset) > 0) {
2011 if (copy > len)
2012 copy = len;
2013 if (skb_store_bits(frag_iter, offset - start,
2014 from, copy))
2015 goto fault;
2016 if ((len -= copy) == 0)
2017 return 0;
2018 offset += copy;
2019 from += copy;
2020 }
2021 start = end;
2022 }
2023 if (!len)
2024 return 0;
2025
2026 fault:
2027 return -EFAULT;
2028 }
2029 EXPORT_SYMBOL(skb_store_bits);
2030
2031 /* Checksum skb data. */
2032 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2033 __wsum csum, const struct skb_checksum_ops *ops)
2034 {
2035 int start = skb_headlen(skb);
2036 int i, copy = start - offset;
2037 struct sk_buff *frag_iter;
2038 int pos = 0;
2039
2040 /* Checksum header. */
2041 if (copy > 0) {
2042 if (copy > len)
2043 copy = len;
2044 csum = ops->update(skb->data + offset, copy, csum);
2045 if ((len -= copy) == 0)
2046 return csum;
2047 offset += copy;
2048 pos = copy;
2049 }
2050
2051 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2052 int end;
2053 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2054
2055 WARN_ON(start > offset + len);
2056
2057 end = start + skb_frag_size(frag);
2058 if ((copy = end - offset) > 0) {
2059 __wsum csum2;
2060 u8 *vaddr;
2061
2062 if (copy > len)
2063 copy = len;
2064 vaddr = kmap_atomic(skb_frag_page(frag));
2065 csum2 = ops->update(vaddr + frag->page_offset +
2066 offset - start, copy, 0);
2067 kunmap_atomic(vaddr);
2068 csum = ops->combine(csum, csum2, pos, copy);
2069 if (!(len -= copy))
2070 return csum;
2071 offset += copy;
2072 pos += copy;
2073 }
2074 start = end;
2075 }
2076
2077 skb_walk_frags(skb, frag_iter) {
2078 int end;
2079
2080 WARN_ON(start > offset + len);
2081
2082 end = start + frag_iter->len;
2083 if ((copy = end - offset) > 0) {
2084 __wsum csum2;
2085 if (copy > len)
2086 copy = len;
2087 csum2 = __skb_checksum(frag_iter, offset - start,
2088 copy, 0, ops);
2089 csum = ops->combine(csum, csum2, pos, copy);
2090 if ((len -= copy) == 0)
2091 return csum;
2092 offset += copy;
2093 pos += copy;
2094 }
2095 start = end;
2096 }
2097 BUG_ON(len);
2098
2099 return csum;
2100 }
2101 EXPORT_SYMBOL(__skb_checksum);
2102
2103 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2104 int len, __wsum csum)
2105 {
2106 const struct skb_checksum_ops ops = {
2107 .update = csum_partial_ext,
2108 .combine = csum_block_add_ext,
2109 };
2110
2111 return __skb_checksum(skb, offset, len, csum, &ops);
2112 }
2113 EXPORT_SYMBOL(skb_checksum);
2114
2115 /* Both of above in one bottle. */
2116
2117 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2118 u8 *to, int len, __wsum csum)
2119 {
2120 int start = skb_headlen(skb);
2121 int i, copy = start - offset;
2122 struct sk_buff *frag_iter;
2123 int pos = 0;
2124
2125 /* Copy header. */
2126 if (copy > 0) {
2127 if (copy > len)
2128 copy = len;
2129 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2130 copy, csum);
2131 if ((len -= copy) == 0)
2132 return csum;
2133 offset += copy;
2134 to += copy;
2135 pos = copy;
2136 }
2137
2138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2139 int end;
2140
2141 WARN_ON(start > offset + len);
2142
2143 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2144 if ((copy = end - offset) > 0) {
2145 __wsum csum2;
2146 u8 *vaddr;
2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2148
2149 if (copy > len)
2150 copy = len;
2151 vaddr = kmap_atomic(skb_frag_page(frag));
2152 csum2 = csum_partial_copy_nocheck(vaddr +
2153 frag->page_offset +
2154 offset - start, to,
2155 copy, 0);
2156 kunmap_atomic(vaddr);
2157 csum = csum_block_add(csum, csum2, pos);
2158 if (!(len -= copy))
2159 return csum;
2160 offset += copy;
2161 to += copy;
2162 pos += copy;
2163 }
2164 start = end;
2165 }
2166
2167 skb_walk_frags(skb, frag_iter) {
2168 __wsum csum2;
2169 int end;
2170
2171 WARN_ON(start > offset + len);
2172
2173 end = start + frag_iter->len;
2174 if ((copy = end - offset) > 0) {
2175 if (copy > len)
2176 copy = len;
2177 csum2 = skb_copy_and_csum_bits(frag_iter,
2178 offset - start,
2179 to, copy, 0);
2180 csum = csum_block_add(csum, csum2, pos);
2181 if ((len -= copy) == 0)
2182 return csum;
2183 offset += copy;
2184 to += copy;
2185 pos += copy;
2186 }
2187 start = end;
2188 }
2189 BUG_ON(len);
2190 return csum;
2191 }
2192 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2193
2194 /**
2195 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2196 * @from: source buffer
2197 *
2198 * Calculates the amount of linear headroom needed in the 'to' skb passed
2199 * into skb_zerocopy().
2200 */
2201 unsigned int
2202 skb_zerocopy_headlen(const struct sk_buff *from)
2203 {
2204 unsigned int hlen = 0;
2205
2206 if (!from->head_frag ||
2207 skb_headlen(from) < L1_CACHE_BYTES ||
2208 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2209 hlen = skb_headlen(from);
2210
2211 if (skb_has_frag_list(from))
2212 hlen = from->len;
2213
2214 return hlen;
2215 }
2216 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2217
2218 /**
2219 * skb_zerocopy - Zero copy skb to skb
2220 * @to: destination buffer
2221 * @from: source buffer
2222 * @len: number of bytes to copy from source buffer
2223 * @hlen: size of linear headroom in destination buffer
2224 *
2225 * Copies up to `len` bytes from `from` to `to` by creating references
2226 * to the frags in the source buffer.
2227 *
2228 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2229 * headroom in the `to` buffer.
2230 *
2231 * Return value:
2232 * 0: everything is OK
2233 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2234 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2235 */
2236 int
2237 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2238 {
2239 int i, j = 0;
2240 int plen = 0; /* length of skb->head fragment */
2241 int ret;
2242 struct page *page;
2243 unsigned int offset;
2244
2245 BUG_ON(!from->head_frag && !hlen);
2246
2247 /* dont bother with small payloads */
2248 if (len <= skb_tailroom(to))
2249 return skb_copy_bits(from, 0, skb_put(to, len), len);
2250
2251 if (hlen) {
2252 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2253 if (unlikely(ret))
2254 return ret;
2255 len -= hlen;
2256 } else {
2257 plen = min_t(int, skb_headlen(from), len);
2258 if (plen) {
2259 page = virt_to_head_page(from->head);
2260 offset = from->data - (unsigned char *)page_address(page);
2261 __skb_fill_page_desc(to, 0, page, offset, plen);
2262 get_page(page);
2263 j = 1;
2264 len -= plen;
2265 }
2266 }
2267
2268 to->truesize += len + plen;
2269 to->len += len + plen;
2270 to->data_len += len + plen;
2271
2272 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2273 skb_tx_error(from);
2274 return -ENOMEM;
2275 }
2276
2277 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2278 if (!len)
2279 break;
2280 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2281 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2282 len -= skb_shinfo(to)->frags[j].size;
2283 skb_frag_ref(to, j);
2284 j++;
2285 }
2286 skb_shinfo(to)->nr_frags = j;
2287
2288 return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(skb_zerocopy);
2291
2292 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2293 {
2294 __wsum csum;
2295 long csstart;
2296
2297 if (skb->ip_summed == CHECKSUM_PARTIAL)
2298 csstart = skb_checksum_start_offset(skb);
2299 else
2300 csstart = skb_headlen(skb);
2301
2302 BUG_ON(csstart > skb_headlen(skb));
2303
2304 skb_copy_from_linear_data(skb, to, csstart);
2305
2306 csum = 0;
2307 if (csstart != skb->len)
2308 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2309 skb->len - csstart, 0);
2310
2311 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2312 long csstuff = csstart + skb->csum_offset;
2313
2314 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2315 }
2316 }
2317 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2318
2319 /**
2320 * skb_dequeue - remove from the head of the queue
2321 * @list: list to dequeue from
2322 *
2323 * Remove the head of the list. The list lock is taken so the function
2324 * may be used safely with other locking list functions. The head item is
2325 * returned or %NULL if the list is empty.
2326 */
2327
2328 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2329 {
2330 unsigned long flags;
2331 struct sk_buff *result;
2332
2333 spin_lock_irqsave(&list->lock, flags);
2334 result = __skb_dequeue(list);
2335 spin_unlock_irqrestore(&list->lock, flags);
2336 return result;
2337 }
2338 EXPORT_SYMBOL(skb_dequeue);
2339
2340 /**
2341 * skb_dequeue_tail - remove from the tail of the queue
2342 * @list: list to dequeue from
2343 *
2344 * Remove the tail of the list. The list lock is taken so the function
2345 * may be used safely with other locking list functions. The tail item is
2346 * returned or %NULL if the list is empty.
2347 */
2348 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2349 {
2350 unsigned long flags;
2351 struct sk_buff *result;
2352
2353 spin_lock_irqsave(&list->lock, flags);
2354 result = __skb_dequeue_tail(list);
2355 spin_unlock_irqrestore(&list->lock, flags);
2356 return result;
2357 }
2358 EXPORT_SYMBOL(skb_dequeue_tail);
2359
2360 /**
2361 * skb_queue_purge - empty a list
2362 * @list: list to empty
2363 *
2364 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2365 * the list and one reference dropped. This function takes the list
2366 * lock and is atomic with respect to other list locking functions.
2367 */
2368 void skb_queue_purge(struct sk_buff_head *list)
2369 {
2370 struct sk_buff *skb;
2371 while ((skb = skb_dequeue(list)) != NULL)
2372 kfree_skb(skb);
2373 }
2374 EXPORT_SYMBOL(skb_queue_purge);
2375
2376 /**
2377 * skb_queue_head - queue a buffer at the list head
2378 * @list: list to use
2379 * @newsk: buffer to queue
2380 *
2381 * Queue a buffer at the start of the list. This function takes the
2382 * list lock and can be used safely with other locking &sk_buff functions
2383 * safely.
2384 *
2385 * A buffer cannot be placed on two lists at the same time.
2386 */
2387 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2388 {
2389 unsigned long flags;
2390
2391 spin_lock_irqsave(&list->lock, flags);
2392 __skb_queue_head(list, newsk);
2393 spin_unlock_irqrestore(&list->lock, flags);
2394 }
2395 EXPORT_SYMBOL(skb_queue_head);
2396
2397 /**
2398 * skb_queue_tail - queue a buffer at the list tail
2399 * @list: list to use
2400 * @newsk: buffer to queue
2401 *
2402 * Queue a buffer at the tail of the list. This function takes the
2403 * list lock and can be used safely with other locking &sk_buff functions
2404 * safely.
2405 *
2406 * A buffer cannot be placed on two lists at the same time.
2407 */
2408 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2409 {
2410 unsigned long flags;
2411
2412 spin_lock_irqsave(&list->lock, flags);
2413 __skb_queue_tail(list, newsk);
2414 spin_unlock_irqrestore(&list->lock, flags);
2415 }
2416 EXPORT_SYMBOL(skb_queue_tail);
2417
2418 /**
2419 * skb_unlink - remove a buffer from a list
2420 * @skb: buffer to remove
2421 * @list: list to use
2422 *
2423 * Remove a packet from a list. The list locks are taken and this
2424 * function is atomic with respect to other list locked calls
2425 *
2426 * You must know what list the SKB is on.
2427 */
2428 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2429 {
2430 unsigned long flags;
2431
2432 spin_lock_irqsave(&list->lock, flags);
2433 __skb_unlink(skb, list);
2434 spin_unlock_irqrestore(&list->lock, flags);
2435 }
2436 EXPORT_SYMBOL(skb_unlink);
2437
2438 /**
2439 * skb_append - append a buffer
2440 * @old: buffer to insert after
2441 * @newsk: buffer to insert
2442 * @list: list to use
2443 *
2444 * Place a packet after a given packet in a list. The list locks are taken
2445 * and this function is atomic with respect to other list locked calls.
2446 * A buffer cannot be placed on two lists at the same time.
2447 */
2448 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2449 {
2450 unsigned long flags;
2451
2452 spin_lock_irqsave(&list->lock, flags);
2453 __skb_queue_after(list, old, newsk);
2454 spin_unlock_irqrestore(&list->lock, flags);
2455 }
2456 EXPORT_SYMBOL(skb_append);
2457
2458 /**
2459 * skb_insert - insert a buffer
2460 * @old: buffer to insert before
2461 * @newsk: buffer to insert
2462 * @list: list to use
2463 *
2464 * Place a packet before a given packet in a list. The list locks are
2465 * taken and this function is atomic with respect to other list locked
2466 * calls.
2467 *
2468 * A buffer cannot be placed on two lists at the same time.
2469 */
2470 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2471 {
2472 unsigned long flags;
2473
2474 spin_lock_irqsave(&list->lock, flags);
2475 __skb_insert(newsk, old->prev, old, list);
2476 spin_unlock_irqrestore(&list->lock, flags);
2477 }
2478 EXPORT_SYMBOL(skb_insert);
2479
2480 static inline void skb_split_inside_header(struct sk_buff *skb,
2481 struct sk_buff* skb1,
2482 const u32 len, const int pos)
2483 {
2484 int i;
2485
2486 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2487 pos - len);
2488 /* And move data appendix as is. */
2489 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2490 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2491
2492 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2493 skb_shinfo(skb)->nr_frags = 0;
2494 skb1->data_len = skb->data_len;
2495 skb1->len += skb1->data_len;
2496 skb->data_len = 0;
2497 skb->len = len;
2498 skb_set_tail_pointer(skb, len);
2499 }
2500
2501 static inline void skb_split_no_header(struct sk_buff *skb,
2502 struct sk_buff* skb1,
2503 const u32 len, int pos)
2504 {
2505 int i, k = 0;
2506 const int nfrags = skb_shinfo(skb)->nr_frags;
2507
2508 skb_shinfo(skb)->nr_frags = 0;
2509 skb1->len = skb1->data_len = skb->len - len;
2510 skb->len = len;
2511 skb->data_len = len - pos;
2512
2513 for (i = 0; i < nfrags; i++) {
2514 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2515
2516 if (pos + size > len) {
2517 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2518
2519 if (pos < len) {
2520 /* Split frag.
2521 * We have two variants in this case:
2522 * 1. Move all the frag to the second
2523 * part, if it is possible. F.e.
2524 * this approach is mandatory for TUX,
2525 * where splitting is expensive.
2526 * 2. Split is accurately. We make this.
2527 */
2528 skb_frag_ref(skb, i);
2529 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2530 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2531 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2532 skb_shinfo(skb)->nr_frags++;
2533 }
2534 k++;
2535 } else
2536 skb_shinfo(skb)->nr_frags++;
2537 pos += size;
2538 }
2539 skb_shinfo(skb1)->nr_frags = k;
2540 }
2541
2542 /**
2543 * skb_split - Split fragmented skb to two parts at length len.
2544 * @skb: the buffer to split
2545 * @skb1: the buffer to receive the second part
2546 * @len: new length for skb
2547 */
2548 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2549 {
2550 int pos = skb_headlen(skb);
2551
2552 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2553 if (len < pos) /* Split line is inside header. */
2554 skb_split_inside_header(skb, skb1, len, pos);
2555 else /* Second chunk has no header, nothing to copy. */
2556 skb_split_no_header(skb, skb1, len, pos);
2557 }
2558 EXPORT_SYMBOL(skb_split);
2559
2560 /* Shifting from/to a cloned skb is a no-go.
2561 *
2562 * Caller cannot keep skb_shinfo related pointers past calling here!
2563 */
2564 static int skb_prepare_for_shift(struct sk_buff *skb)
2565 {
2566 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2567 }
2568
2569 /**
2570 * skb_shift - Shifts paged data partially from skb to another
2571 * @tgt: buffer into which tail data gets added
2572 * @skb: buffer from which the paged data comes from
2573 * @shiftlen: shift up to this many bytes
2574 *
2575 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2576 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2577 * It's up to caller to free skb if everything was shifted.
2578 *
2579 * If @tgt runs out of frags, the whole operation is aborted.
2580 *
2581 * Skb cannot include anything else but paged data while tgt is allowed
2582 * to have non-paged data as well.
2583 *
2584 * TODO: full sized shift could be optimized but that would need
2585 * specialized skb free'er to handle frags without up-to-date nr_frags.
2586 */
2587 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2588 {
2589 int from, to, merge, todo;
2590 struct skb_frag_struct *fragfrom, *fragto;
2591
2592 BUG_ON(shiftlen > skb->len);
2593 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2594
2595 todo = shiftlen;
2596 from = 0;
2597 to = skb_shinfo(tgt)->nr_frags;
2598 fragfrom = &skb_shinfo(skb)->frags[from];
2599
2600 /* Actual merge is delayed until the point when we know we can
2601 * commit all, so that we don't have to undo partial changes
2602 */
2603 if (!to ||
2604 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2605 fragfrom->page_offset)) {
2606 merge = -1;
2607 } else {
2608 merge = to - 1;
2609
2610 todo -= skb_frag_size(fragfrom);
2611 if (todo < 0) {
2612 if (skb_prepare_for_shift(skb) ||
2613 skb_prepare_for_shift(tgt))
2614 return 0;
2615
2616 /* All previous frag pointers might be stale! */
2617 fragfrom = &skb_shinfo(skb)->frags[from];
2618 fragto = &skb_shinfo(tgt)->frags[merge];
2619
2620 skb_frag_size_add(fragto, shiftlen);
2621 skb_frag_size_sub(fragfrom, shiftlen);
2622 fragfrom->page_offset += shiftlen;
2623
2624 goto onlymerged;
2625 }
2626
2627 from++;
2628 }
2629
2630 /* Skip full, not-fitting skb to avoid expensive operations */
2631 if ((shiftlen == skb->len) &&
2632 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2633 return 0;
2634
2635 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2636 return 0;
2637
2638 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2639 if (to == MAX_SKB_FRAGS)
2640 return 0;
2641
2642 fragfrom = &skb_shinfo(skb)->frags[from];
2643 fragto = &skb_shinfo(tgt)->frags[to];
2644
2645 if (todo >= skb_frag_size(fragfrom)) {
2646 *fragto = *fragfrom;
2647 todo -= skb_frag_size(fragfrom);
2648 from++;
2649 to++;
2650
2651 } else {
2652 __skb_frag_ref(fragfrom);
2653 fragto->page = fragfrom->page;
2654 fragto->page_offset = fragfrom->page_offset;
2655 skb_frag_size_set(fragto, todo);
2656
2657 fragfrom->page_offset += todo;
2658 skb_frag_size_sub(fragfrom, todo);
2659 todo = 0;
2660
2661 to++;
2662 break;
2663 }
2664 }
2665
2666 /* Ready to "commit" this state change to tgt */
2667 skb_shinfo(tgt)->nr_frags = to;
2668
2669 if (merge >= 0) {
2670 fragfrom = &skb_shinfo(skb)->frags[0];
2671 fragto = &skb_shinfo(tgt)->frags[merge];
2672
2673 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2674 __skb_frag_unref(fragfrom);
2675 }
2676
2677 /* Reposition in the original skb */
2678 to = 0;
2679 while (from < skb_shinfo(skb)->nr_frags)
2680 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2681 skb_shinfo(skb)->nr_frags = to;
2682
2683 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2684
2685 onlymerged:
2686 /* Most likely the tgt won't ever need its checksum anymore, skb on
2687 * the other hand might need it if it needs to be resent
2688 */
2689 tgt->ip_summed = CHECKSUM_PARTIAL;
2690 skb->ip_summed = CHECKSUM_PARTIAL;
2691
2692 /* Yak, is it really working this way? Some helper please? */
2693 skb->len -= shiftlen;
2694 skb->data_len -= shiftlen;
2695 skb->truesize -= shiftlen;
2696 tgt->len += shiftlen;
2697 tgt->data_len += shiftlen;
2698 tgt->truesize += shiftlen;
2699
2700 return shiftlen;
2701 }
2702
2703 /**
2704 * skb_prepare_seq_read - Prepare a sequential read of skb data
2705 * @skb: the buffer to read
2706 * @from: lower offset of data to be read
2707 * @to: upper offset of data to be read
2708 * @st: state variable
2709 *
2710 * Initializes the specified state variable. Must be called before
2711 * invoking skb_seq_read() for the first time.
2712 */
2713 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2714 unsigned int to, struct skb_seq_state *st)
2715 {
2716 st->lower_offset = from;
2717 st->upper_offset = to;
2718 st->root_skb = st->cur_skb = skb;
2719 st->frag_idx = st->stepped_offset = 0;
2720 st->frag_data = NULL;
2721 }
2722 EXPORT_SYMBOL(skb_prepare_seq_read);
2723
2724 /**
2725 * skb_seq_read - Sequentially read skb data
2726 * @consumed: number of bytes consumed by the caller so far
2727 * @data: destination pointer for data to be returned
2728 * @st: state variable
2729 *
2730 * Reads a block of skb data at @consumed relative to the
2731 * lower offset specified to skb_prepare_seq_read(). Assigns
2732 * the head of the data block to @data and returns the length
2733 * of the block or 0 if the end of the skb data or the upper
2734 * offset has been reached.
2735 *
2736 * The caller is not required to consume all of the data
2737 * returned, i.e. @consumed is typically set to the number
2738 * of bytes already consumed and the next call to
2739 * skb_seq_read() will return the remaining part of the block.
2740 *
2741 * Note 1: The size of each block of data returned can be arbitrary,
2742 * this limitation is the cost for zerocopy sequential
2743 * reads of potentially non linear data.
2744 *
2745 * Note 2: Fragment lists within fragments are not implemented
2746 * at the moment, state->root_skb could be replaced with
2747 * a stack for this purpose.
2748 */
2749 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2750 struct skb_seq_state *st)
2751 {
2752 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2753 skb_frag_t *frag;
2754
2755 if (unlikely(abs_offset >= st->upper_offset)) {
2756 if (st->frag_data) {
2757 kunmap_atomic(st->frag_data);
2758 st->frag_data = NULL;
2759 }
2760 return 0;
2761 }
2762
2763 next_skb:
2764 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2765
2766 if (abs_offset < block_limit && !st->frag_data) {
2767 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2768 return block_limit - abs_offset;
2769 }
2770
2771 if (st->frag_idx == 0 && !st->frag_data)
2772 st->stepped_offset += skb_headlen(st->cur_skb);
2773
2774 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2775 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2776 block_limit = skb_frag_size(frag) + st->stepped_offset;
2777
2778 if (abs_offset < block_limit) {
2779 if (!st->frag_data)
2780 st->frag_data = kmap_atomic(skb_frag_page(frag));
2781
2782 *data = (u8 *) st->frag_data + frag->page_offset +
2783 (abs_offset - st->stepped_offset);
2784
2785 return block_limit - abs_offset;
2786 }
2787
2788 if (st->frag_data) {
2789 kunmap_atomic(st->frag_data);
2790 st->frag_data = NULL;
2791 }
2792
2793 st->frag_idx++;
2794 st->stepped_offset += skb_frag_size(frag);
2795 }
2796
2797 if (st->frag_data) {
2798 kunmap_atomic(st->frag_data);
2799 st->frag_data = NULL;
2800 }
2801
2802 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2803 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2804 st->frag_idx = 0;
2805 goto next_skb;
2806 } else if (st->cur_skb->next) {
2807 st->cur_skb = st->cur_skb->next;
2808 st->frag_idx = 0;
2809 goto next_skb;
2810 }
2811
2812 return 0;
2813 }
2814 EXPORT_SYMBOL(skb_seq_read);
2815
2816 /**
2817 * skb_abort_seq_read - Abort a sequential read of skb data
2818 * @st: state variable
2819 *
2820 * Must be called if skb_seq_read() was not called until it
2821 * returned 0.
2822 */
2823 void skb_abort_seq_read(struct skb_seq_state *st)
2824 {
2825 if (st->frag_data)
2826 kunmap_atomic(st->frag_data);
2827 }
2828 EXPORT_SYMBOL(skb_abort_seq_read);
2829
2830 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2831
2832 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2833 struct ts_config *conf,
2834 struct ts_state *state)
2835 {
2836 return skb_seq_read(offset, text, TS_SKB_CB(state));
2837 }
2838
2839 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2840 {
2841 skb_abort_seq_read(TS_SKB_CB(state));
2842 }
2843
2844 /**
2845 * skb_find_text - Find a text pattern in skb data
2846 * @skb: the buffer to look in
2847 * @from: search offset
2848 * @to: search limit
2849 * @config: textsearch configuration
2850 *
2851 * Finds a pattern in the skb data according to the specified
2852 * textsearch configuration. Use textsearch_next() to retrieve
2853 * subsequent occurrences of the pattern. Returns the offset
2854 * to the first occurrence or UINT_MAX if no match was found.
2855 */
2856 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2857 unsigned int to, struct ts_config *config)
2858 {
2859 struct ts_state state;
2860 unsigned int ret;
2861
2862 config->get_next_block = skb_ts_get_next_block;
2863 config->finish = skb_ts_finish;
2864
2865 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2866
2867 ret = textsearch_find(config, &state);
2868 return (ret <= to - from ? ret : UINT_MAX);
2869 }
2870 EXPORT_SYMBOL(skb_find_text);
2871
2872 /**
2873 * skb_append_datato_frags - append the user data to a skb
2874 * @sk: sock structure
2875 * @skb: skb structure to be appended with user data.
2876 * @getfrag: call back function to be used for getting the user data
2877 * @from: pointer to user message iov
2878 * @length: length of the iov message
2879 *
2880 * Description: This procedure append the user data in the fragment part
2881 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2882 */
2883 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2884 int (*getfrag)(void *from, char *to, int offset,
2885 int len, int odd, struct sk_buff *skb),
2886 void *from, int length)
2887 {
2888 int frg_cnt = skb_shinfo(skb)->nr_frags;
2889 int copy;
2890 int offset = 0;
2891 int ret;
2892 struct page_frag *pfrag = &current->task_frag;
2893
2894 do {
2895 /* Return error if we don't have space for new frag */
2896 if (frg_cnt >= MAX_SKB_FRAGS)
2897 return -EMSGSIZE;
2898
2899 if (!sk_page_frag_refill(sk, pfrag))
2900 return -ENOMEM;
2901
2902 /* copy the user data to page */
2903 copy = min_t(int, length, pfrag->size - pfrag->offset);
2904
2905 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2906 offset, copy, 0, skb);
2907 if (ret < 0)
2908 return -EFAULT;
2909
2910 /* copy was successful so update the size parameters */
2911 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2912 copy);
2913 frg_cnt++;
2914 pfrag->offset += copy;
2915 get_page(pfrag->page);
2916
2917 skb->truesize += copy;
2918 atomic_add(copy, &sk->sk_wmem_alloc);
2919 skb->len += copy;
2920 skb->data_len += copy;
2921 offset += copy;
2922 length -= copy;
2923
2924 } while (length > 0);
2925
2926 return 0;
2927 }
2928 EXPORT_SYMBOL(skb_append_datato_frags);
2929
2930 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2931 int offset, size_t size)
2932 {
2933 int i = skb_shinfo(skb)->nr_frags;
2934
2935 if (skb_can_coalesce(skb, i, page, offset)) {
2936 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
2937 } else if (i < MAX_SKB_FRAGS) {
2938 get_page(page);
2939 skb_fill_page_desc(skb, i, page, offset, size);
2940 } else {
2941 return -EMSGSIZE;
2942 }
2943
2944 return 0;
2945 }
2946 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
2947
2948 /**
2949 * skb_pull_rcsum - pull skb and update receive checksum
2950 * @skb: buffer to update
2951 * @len: length of data pulled
2952 *
2953 * This function performs an skb_pull on the packet and updates
2954 * the CHECKSUM_COMPLETE checksum. It should be used on
2955 * receive path processing instead of skb_pull unless you know
2956 * that the checksum difference is zero (e.g., a valid IP header)
2957 * or you are setting ip_summed to CHECKSUM_NONE.
2958 */
2959 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2960 {
2961 unsigned char *data = skb->data;
2962
2963 BUG_ON(len > skb->len);
2964 __skb_pull(skb, len);
2965 skb_postpull_rcsum(skb, data, len);
2966 return skb->data;
2967 }
2968 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2969
2970 /**
2971 * skb_segment - Perform protocol segmentation on skb.
2972 * @head_skb: buffer to segment
2973 * @features: features for the output path (see dev->features)
2974 *
2975 * This function performs segmentation on the given skb. It returns
2976 * a pointer to the first in a list of new skbs for the segments.
2977 * In case of error it returns ERR_PTR(err).
2978 */
2979 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2980 netdev_features_t features)
2981 {
2982 struct sk_buff *segs = NULL;
2983 struct sk_buff *tail = NULL;
2984 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2985 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2986 unsigned int mss = skb_shinfo(head_skb)->gso_size;
2987 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2988 struct sk_buff *frag_skb = head_skb;
2989 unsigned int offset = doffset;
2990 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2991 unsigned int headroom;
2992 unsigned int len;
2993 __be16 proto;
2994 bool csum;
2995 int sg = !!(features & NETIF_F_SG);
2996 int nfrags = skb_shinfo(head_skb)->nr_frags;
2997 int err = -ENOMEM;
2998 int i = 0;
2999 int pos;
3000 int dummy;
3001
3002 __skb_push(head_skb, doffset);
3003 proto = skb_network_protocol(head_skb, &dummy);
3004 if (unlikely(!proto))
3005 return ERR_PTR(-EINVAL);
3006
3007 csum = !head_skb->encap_hdr_csum &&
3008 !!can_checksum_protocol(features, proto);
3009
3010 headroom = skb_headroom(head_skb);
3011 pos = skb_headlen(head_skb);
3012
3013 do {
3014 struct sk_buff *nskb;
3015 skb_frag_t *nskb_frag;
3016 int hsize;
3017 int size;
3018
3019 len = head_skb->len - offset;
3020 if (len > mss)
3021 len = mss;
3022
3023 hsize = skb_headlen(head_skb) - offset;
3024 if (hsize < 0)
3025 hsize = 0;
3026 if (hsize > len || !sg)
3027 hsize = len;
3028
3029 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3030 (skb_headlen(list_skb) == len || sg)) {
3031 BUG_ON(skb_headlen(list_skb) > len);
3032
3033 i = 0;
3034 nfrags = skb_shinfo(list_skb)->nr_frags;
3035 frag = skb_shinfo(list_skb)->frags;
3036 frag_skb = list_skb;
3037 pos += skb_headlen(list_skb);
3038
3039 while (pos < offset + len) {
3040 BUG_ON(i >= nfrags);
3041
3042 size = skb_frag_size(frag);
3043 if (pos + size > offset + len)
3044 break;
3045
3046 i++;
3047 pos += size;
3048 frag++;
3049 }
3050
3051 nskb = skb_clone(list_skb, GFP_ATOMIC);
3052 list_skb = list_skb->next;
3053
3054 if (unlikely(!nskb))
3055 goto err;
3056
3057 if (unlikely(pskb_trim(nskb, len))) {
3058 kfree_skb(nskb);
3059 goto err;
3060 }
3061
3062 hsize = skb_end_offset(nskb);
3063 if (skb_cow_head(nskb, doffset + headroom)) {
3064 kfree_skb(nskb);
3065 goto err;
3066 }
3067
3068 nskb->truesize += skb_end_offset(nskb) - hsize;
3069 skb_release_head_state(nskb);
3070 __skb_push(nskb, doffset);
3071 } else {
3072 nskb = __alloc_skb(hsize + doffset + headroom,
3073 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3074 NUMA_NO_NODE);
3075
3076 if (unlikely(!nskb))
3077 goto err;
3078
3079 skb_reserve(nskb, headroom);
3080 __skb_put(nskb, doffset);
3081 }
3082
3083 if (segs)
3084 tail->next = nskb;
3085 else
3086 segs = nskb;
3087 tail = nskb;
3088
3089 __copy_skb_header(nskb, head_skb);
3090
3091 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3092 skb_reset_mac_len(nskb);
3093
3094 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3095 nskb->data - tnl_hlen,
3096 doffset + tnl_hlen);
3097
3098 if (nskb->len == len + doffset)
3099 goto perform_csum_check;
3100
3101 if (!sg && !nskb->remcsum_offload) {
3102 nskb->ip_summed = CHECKSUM_NONE;
3103 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3104 skb_put(nskb, len),
3105 len, 0);
3106 SKB_GSO_CB(nskb)->csum_start =
3107 skb_headroom(nskb) + doffset;
3108 continue;
3109 }
3110
3111 nskb_frag = skb_shinfo(nskb)->frags;
3112
3113 skb_copy_from_linear_data_offset(head_skb, offset,
3114 skb_put(nskb, hsize), hsize);
3115
3116 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3117 SKBTX_SHARED_FRAG;
3118
3119 while (pos < offset + len) {
3120 if (i >= nfrags) {
3121 BUG_ON(skb_headlen(list_skb));
3122
3123 i = 0;
3124 nfrags = skb_shinfo(list_skb)->nr_frags;
3125 frag = skb_shinfo(list_skb)->frags;
3126 frag_skb = list_skb;
3127
3128 BUG_ON(!nfrags);
3129
3130 list_skb = list_skb->next;
3131 }
3132
3133 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3134 MAX_SKB_FRAGS)) {
3135 net_warn_ratelimited(
3136 "skb_segment: too many frags: %u %u\n",
3137 pos, mss);
3138 goto err;
3139 }
3140
3141 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3142 goto err;
3143
3144 *nskb_frag = *frag;
3145 __skb_frag_ref(nskb_frag);
3146 size = skb_frag_size(nskb_frag);
3147
3148 if (pos < offset) {
3149 nskb_frag->page_offset += offset - pos;
3150 skb_frag_size_sub(nskb_frag, offset - pos);
3151 }
3152
3153 skb_shinfo(nskb)->nr_frags++;
3154
3155 if (pos + size <= offset + len) {
3156 i++;
3157 frag++;
3158 pos += size;
3159 } else {
3160 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3161 goto skip_fraglist;
3162 }
3163
3164 nskb_frag++;
3165 }
3166
3167 skip_fraglist:
3168 nskb->data_len = len - hsize;
3169 nskb->len += nskb->data_len;
3170 nskb->truesize += nskb->data_len;
3171
3172 perform_csum_check:
3173 if (!csum && !nskb->remcsum_offload) {
3174 nskb->csum = skb_checksum(nskb, doffset,
3175 nskb->len - doffset, 0);
3176 nskb->ip_summed = CHECKSUM_NONE;
3177 SKB_GSO_CB(nskb)->csum_start =
3178 skb_headroom(nskb) + doffset;
3179 }
3180 } while ((offset += len) < head_skb->len);
3181
3182 /* Some callers want to get the end of the list.
3183 * Put it in segs->prev to avoid walking the list.
3184 * (see validate_xmit_skb_list() for example)
3185 */
3186 segs->prev = tail;
3187
3188 /* Following permits correct backpressure, for protocols
3189 * using skb_set_owner_w().
3190 * Idea is to tranfert ownership from head_skb to last segment.
3191 */
3192 if (head_skb->destructor == sock_wfree) {
3193 swap(tail->truesize, head_skb->truesize);
3194 swap(tail->destructor, head_skb->destructor);
3195 swap(tail->sk, head_skb->sk);
3196 }
3197 return segs;
3198
3199 err:
3200 kfree_skb_list(segs);
3201 return ERR_PTR(err);
3202 }
3203 EXPORT_SYMBOL_GPL(skb_segment);
3204
3205 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3206 {
3207 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3208 unsigned int offset = skb_gro_offset(skb);
3209 unsigned int headlen = skb_headlen(skb);
3210 unsigned int len = skb_gro_len(skb);
3211 struct sk_buff *lp, *p = *head;
3212 unsigned int delta_truesize;
3213
3214 if (unlikely(p->len + len >= 65536))
3215 return -E2BIG;
3216
3217 lp = NAPI_GRO_CB(p)->last;
3218 pinfo = skb_shinfo(lp);
3219
3220 if (headlen <= offset) {
3221 skb_frag_t *frag;
3222 skb_frag_t *frag2;
3223 int i = skbinfo->nr_frags;
3224 int nr_frags = pinfo->nr_frags + i;
3225
3226 if (nr_frags > MAX_SKB_FRAGS)
3227 goto merge;
3228
3229 offset -= headlen;
3230 pinfo->nr_frags = nr_frags;
3231 skbinfo->nr_frags = 0;
3232
3233 frag = pinfo->frags + nr_frags;
3234 frag2 = skbinfo->frags + i;
3235 do {
3236 *--frag = *--frag2;
3237 } while (--i);
3238
3239 frag->page_offset += offset;
3240 skb_frag_size_sub(frag, offset);
3241
3242 /* all fragments truesize : remove (head size + sk_buff) */
3243 delta_truesize = skb->truesize -
3244 SKB_TRUESIZE(skb_end_offset(skb));
3245
3246 skb->truesize -= skb->data_len;
3247 skb->len -= skb->data_len;
3248 skb->data_len = 0;
3249
3250 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3251 goto done;
3252 } else if (skb->head_frag) {
3253 int nr_frags = pinfo->nr_frags;
3254 skb_frag_t *frag = pinfo->frags + nr_frags;
3255 struct page *page = virt_to_head_page(skb->head);
3256 unsigned int first_size = headlen - offset;
3257 unsigned int first_offset;
3258
3259 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3260 goto merge;
3261
3262 first_offset = skb->data -
3263 (unsigned char *)page_address(page) +
3264 offset;
3265
3266 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3267
3268 frag->page.p = page;
3269 frag->page_offset = first_offset;
3270 skb_frag_size_set(frag, first_size);
3271
3272 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3273 /* We dont need to clear skbinfo->nr_frags here */
3274
3275 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3276 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3277 goto done;
3278 }
3279
3280 merge:
3281 delta_truesize = skb->truesize;
3282 if (offset > headlen) {
3283 unsigned int eat = offset - headlen;
3284
3285 skbinfo->frags[0].page_offset += eat;
3286 skb_frag_size_sub(&skbinfo->frags[0], eat);
3287 skb->data_len -= eat;
3288 skb->len -= eat;
3289 offset = headlen;
3290 }
3291
3292 __skb_pull(skb, offset);
3293
3294 if (NAPI_GRO_CB(p)->last == p)
3295 skb_shinfo(p)->frag_list = skb;
3296 else
3297 NAPI_GRO_CB(p)->last->next = skb;
3298 NAPI_GRO_CB(p)->last = skb;
3299 __skb_header_release(skb);
3300 lp = p;
3301
3302 done:
3303 NAPI_GRO_CB(p)->count++;
3304 p->data_len += len;
3305 p->truesize += delta_truesize;
3306 p->len += len;
3307 if (lp != p) {
3308 lp->data_len += len;
3309 lp->truesize += delta_truesize;
3310 lp->len += len;
3311 }
3312 NAPI_GRO_CB(skb)->same_flow = 1;
3313 return 0;
3314 }
3315
3316 void __init skb_init(void)
3317 {
3318 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3319 sizeof(struct sk_buff),
3320 0,
3321 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3322 NULL);
3323 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3324 sizeof(struct sk_buff_fclones),
3325 0,
3326 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3327 NULL);
3328 }
3329
3330 /**
3331 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3332 * @skb: Socket buffer containing the buffers to be mapped
3333 * @sg: The scatter-gather list to map into
3334 * @offset: The offset into the buffer's contents to start mapping
3335 * @len: Length of buffer space to be mapped
3336 *
3337 * Fill the specified scatter-gather list with mappings/pointers into a
3338 * region of the buffer space attached to a socket buffer.
3339 */
3340 static int
3341 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3342 {
3343 int start = skb_headlen(skb);
3344 int i, copy = start - offset;
3345 struct sk_buff *frag_iter;
3346 int elt = 0;
3347
3348 if (copy > 0) {
3349 if (copy > len)
3350 copy = len;
3351 sg_set_buf(sg, skb->data + offset, copy);
3352 elt++;
3353 if ((len -= copy) == 0)
3354 return elt;
3355 offset += copy;
3356 }
3357
3358 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3359 int end;
3360
3361 WARN_ON(start > offset + len);
3362
3363 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3364 if ((copy = end - offset) > 0) {
3365 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3366
3367 if (copy > len)
3368 copy = len;
3369 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3370 frag->page_offset+offset-start);
3371 elt++;
3372 if (!(len -= copy))
3373 return elt;
3374 offset += copy;
3375 }
3376 start = end;
3377 }
3378
3379 skb_walk_frags(skb, frag_iter) {
3380 int end;
3381
3382 WARN_ON(start > offset + len);
3383
3384 end = start + frag_iter->len;
3385 if ((copy = end - offset) > 0) {
3386 if (copy > len)
3387 copy = len;
3388 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3389 copy);
3390 if ((len -= copy) == 0)
3391 return elt;
3392 offset += copy;
3393 }
3394 start = end;
3395 }
3396 BUG_ON(len);
3397 return elt;
3398 }
3399
3400 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3401 * sglist without mark the sg which contain last skb data as the end.
3402 * So the caller can mannipulate sg list as will when padding new data after
3403 * the first call without calling sg_unmark_end to expend sg list.
3404 *
3405 * Scenario to use skb_to_sgvec_nomark:
3406 * 1. sg_init_table
3407 * 2. skb_to_sgvec_nomark(payload1)
3408 * 3. skb_to_sgvec_nomark(payload2)
3409 *
3410 * This is equivalent to:
3411 * 1. sg_init_table
3412 * 2. skb_to_sgvec(payload1)
3413 * 3. sg_unmark_end
3414 * 4. skb_to_sgvec(payload2)
3415 *
3416 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3417 * is more preferable.
3418 */
3419 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3420 int offset, int len)
3421 {
3422 return __skb_to_sgvec(skb, sg, offset, len);
3423 }
3424 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3425
3426 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3427 {
3428 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3429
3430 sg_mark_end(&sg[nsg - 1]);
3431
3432 return nsg;
3433 }
3434 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3435
3436 /**
3437 * skb_cow_data - Check that a socket buffer's data buffers are writable
3438 * @skb: The socket buffer to check.
3439 * @tailbits: Amount of trailing space to be added
3440 * @trailer: Returned pointer to the skb where the @tailbits space begins
3441 *
3442 * Make sure that the data buffers attached to a socket buffer are
3443 * writable. If they are not, private copies are made of the data buffers
3444 * and the socket buffer is set to use these instead.
3445 *
3446 * If @tailbits is given, make sure that there is space to write @tailbits
3447 * bytes of data beyond current end of socket buffer. @trailer will be
3448 * set to point to the skb in which this space begins.
3449 *
3450 * The number of scatterlist elements required to completely map the
3451 * COW'd and extended socket buffer will be returned.
3452 */
3453 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3454 {
3455 int copyflag;
3456 int elt;
3457 struct sk_buff *skb1, **skb_p;
3458
3459 /* If skb is cloned or its head is paged, reallocate
3460 * head pulling out all the pages (pages are considered not writable
3461 * at the moment even if they are anonymous).
3462 */
3463 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3464 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3465 return -ENOMEM;
3466
3467 /* Easy case. Most of packets will go this way. */
3468 if (!skb_has_frag_list(skb)) {
3469 /* A little of trouble, not enough of space for trailer.
3470 * This should not happen, when stack is tuned to generate
3471 * good frames. OK, on miss we reallocate and reserve even more
3472 * space, 128 bytes is fair. */
3473
3474 if (skb_tailroom(skb) < tailbits &&
3475 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3476 return -ENOMEM;
3477
3478 /* Voila! */
3479 *trailer = skb;
3480 return 1;
3481 }
3482
3483 /* Misery. We are in troubles, going to mincer fragments... */
3484
3485 elt = 1;
3486 skb_p = &skb_shinfo(skb)->frag_list;
3487 copyflag = 0;
3488
3489 while ((skb1 = *skb_p) != NULL) {
3490 int ntail = 0;
3491
3492 /* The fragment is partially pulled by someone,
3493 * this can happen on input. Copy it and everything
3494 * after it. */
3495
3496 if (skb_shared(skb1))
3497 copyflag = 1;
3498
3499 /* If the skb is the last, worry about trailer. */
3500
3501 if (skb1->next == NULL && tailbits) {
3502 if (skb_shinfo(skb1)->nr_frags ||
3503 skb_has_frag_list(skb1) ||
3504 skb_tailroom(skb1) < tailbits)
3505 ntail = tailbits + 128;
3506 }
3507
3508 if (copyflag ||
3509 skb_cloned(skb1) ||
3510 ntail ||
3511 skb_shinfo(skb1)->nr_frags ||
3512 skb_has_frag_list(skb1)) {
3513 struct sk_buff *skb2;
3514
3515 /* Fuck, we are miserable poor guys... */
3516 if (ntail == 0)
3517 skb2 = skb_copy(skb1, GFP_ATOMIC);
3518 else
3519 skb2 = skb_copy_expand(skb1,
3520 skb_headroom(skb1),
3521 ntail,
3522 GFP_ATOMIC);
3523 if (unlikely(skb2 == NULL))
3524 return -ENOMEM;
3525
3526 if (skb1->sk)
3527 skb_set_owner_w(skb2, skb1->sk);
3528
3529 /* Looking around. Are we still alive?
3530 * OK, link new skb, drop old one */
3531
3532 skb2->next = skb1->next;
3533 *skb_p = skb2;
3534 kfree_skb(skb1);
3535 skb1 = skb2;
3536 }
3537 elt++;
3538 *trailer = skb1;
3539 skb_p = &skb1->next;
3540 }
3541
3542 return elt;
3543 }
3544 EXPORT_SYMBOL_GPL(skb_cow_data);
3545
3546 static void sock_rmem_free(struct sk_buff *skb)
3547 {
3548 struct sock *sk = skb->sk;
3549
3550 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3551 }
3552
3553 /*
3554 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3555 */
3556 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3557 {
3558 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3559 (unsigned int)sk->sk_rcvbuf)
3560 return -ENOMEM;
3561
3562 skb_orphan(skb);
3563 skb->sk = sk;
3564 skb->destructor = sock_rmem_free;
3565 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3566
3567 /* before exiting rcu section, make sure dst is refcounted */
3568 skb_dst_force(skb);
3569
3570 skb_queue_tail(&sk->sk_error_queue, skb);
3571 if (!sock_flag(sk, SOCK_DEAD))
3572 sk->sk_data_ready(sk);
3573 return 0;
3574 }
3575 EXPORT_SYMBOL(sock_queue_err_skb);
3576
3577 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3578 {
3579 struct sk_buff_head *q = &sk->sk_error_queue;
3580 struct sk_buff *skb, *skb_next;
3581 unsigned long flags;
3582 int err = 0;
3583
3584 spin_lock_irqsave(&q->lock, flags);
3585 skb = __skb_dequeue(q);
3586 if (skb && (skb_next = skb_peek(q)))
3587 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3588 spin_unlock_irqrestore(&q->lock, flags);
3589
3590 sk->sk_err = err;
3591 if (err)
3592 sk->sk_error_report(sk);
3593
3594 return skb;
3595 }
3596 EXPORT_SYMBOL(sock_dequeue_err_skb);
3597
3598 /**
3599 * skb_clone_sk - create clone of skb, and take reference to socket
3600 * @skb: the skb to clone
3601 *
3602 * This function creates a clone of a buffer that holds a reference on
3603 * sk_refcnt. Buffers created via this function are meant to be
3604 * returned using sock_queue_err_skb, or free via kfree_skb.
3605 *
3606 * When passing buffers allocated with this function to sock_queue_err_skb
3607 * it is necessary to wrap the call with sock_hold/sock_put in order to
3608 * prevent the socket from being released prior to being enqueued on
3609 * the sk_error_queue.
3610 */
3611 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3612 {
3613 struct sock *sk = skb->sk;
3614 struct sk_buff *clone;
3615
3616 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3617 return NULL;
3618
3619 clone = skb_clone(skb, GFP_ATOMIC);
3620 if (!clone) {
3621 sock_put(sk);
3622 return NULL;
3623 }
3624
3625 clone->sk = sk;
3626 clone->destructor = sock_efree;
3627
3628 return clone;
3629 }
3630 EXPORT_SYMBOL(skb_clone_sk);
3631
3632 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3633 struct sock *sk,
3634 int tstype)
3635 {
3636 struct sock_exterr_skb *serr;
3637 int err;
3638
3639 serr = SKB_EXT_ERR(skb);
3640 memset(serr, 0, sizeof(*serr));
3641 serr->ee.ee_errno = ENOMSG;
3642 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3643 serr->ee.ee_info = tstype;
3644 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3645 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3646 if (sk->sk_protocol == IPPROTO_TCP)
3647 serr->ee.ee_data -= sk->sk_tskey;
3648 }
3649
3650 err = sock_queue_err_skb(sk, skb);
3651
3652 if (err)
3653 kfree_skb(skb);
3654 }
3655
3656 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3657 {
3658 bool ret;
3659
3660 if (likely(sysctl_tstamp_allow_data || tsonly))
3661 return true;
3662
3663 read_lock_bh(&sk->sk_callback_lock);
3664 ret = sk->sk_socket && sk->sk_socket->file &&
3665 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3666 read_unlock_bh(&sk->sk_callback_lock);
3667 return ret;
3668 }
3669
3670 void skb_complete_tx_timestamp(struct sk_buff *skb,
3671 struct skb_shared_hwtstamps *hwtstamps)
3672 {
3673 struct sock *sk = skb->sk;
3674
3675 if (!skb_may_tx_timestamp(sk, false))
3676 return;
3677
3678 /* take a reference to prevent skb_orphan() from freeing the socket */
3679 sock_hold(sk);
3680
3681 *skb_hwtstamps(skb) = *hwtstamps;
3682 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3683
3684 sock_put(sk);
3685 }
3686 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3687
3688 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3689 struct skb_shared_hwtstamps *hwtstamps,
3690 struct sock *sk, int tstype)
3691 {
3692 struct sk_buff *skb;
3693 bool tsonly;
3694
3695 if (!sk)
3696 return;
3697
3698 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3699 if (!skb_may_tx_timestamp(sk, tsonly))
3700 return;
3701
3702 if (tsonly)
3703 skb = alloc_skb(0, GFP_ATOMIC);
3704 else
3705 skb = skb_clone(orig_skb, GFP_ATOMIC);
3706 if (!skb)
3707 return;
3708
3709 if (tsonly) {
3710 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3711 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3712 }
3713
3714 if (hwtstamps)
3715 *skb_hwtstamps(skb) = *hwtstamps;
3716 else
3717 skb->tstamp = ktime_get_real();
3718
3719 __skb_complete_tx_timestamp(skb, sk, tstype);
3720 }
3721 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3722
3723 void skb_tstamp_tx(struct sk_buff *orig_skb,
3724 struct skb_shared_hwtstamps *hwtstamps)
3725 {
3726 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3727 SCM_TSTAMP_SND);
3728 }
3729 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3730
3731 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3732 {
3733 struct sock *sk = skb->sk;
3734 struct sock_exterr_skb *serr;
3735 int err;
3736
3737 skb->wifi_acked_valid = 1;
3738 skb->wifi_acked = acked;
3739
3740 serr = SKB_EXT_ERR(skb);
3741 memset(serr, 0, sizeof(*serr));
3742 serr->ee.ee_errno = ENOMSG;
3743 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3744
3745 /* take a reference to prevent skb_orphan() from freeing the socket */
3746 sock_hold(sk);
3747
3748 err = sock_queue_err_skb(sk, skb);
3749 if (err)
3750 kfree_skb(skb);
3751
3752 sock_put(sk);
3753 }
3754 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3755
3756 /**
3757 * skb_partial_csum_set - set up and verify partial csum values for packet
3758 * @skb: the skb to set
3759 * @start: the number of bytes after skb->data to start checksumming.
3760 * @off: the offset from start to place the checksum.
3761 *
3762 * For untrusted partially-checksummed packets, we need to make sure the values
3763 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3764 *
3765 * This function checks and sets those values and skb->ip_summed: if this
3766 * returns false you should drop the packet.
3767 */
3768 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3769 {
3770 if (unlikely(start > skb_headlen(skb)) ||
3771 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3772 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3773 start, off, skb_headlen(skb));
3774 return false;
3775 }
3776 skb->ip_summed = CHECKSUM_PARTIAL;
3777 skb->csum_start = skb_headroom(skb) + start;
3778 skb->csum_offset = off;
3779 skb_set_transport_header(skb, start);
3780 return true;
3781 }
3782 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3783
3784 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3785 unsigned int max)
3786 {
3787 if (skb_headlen(skb) >= len)
3788 return 0;
3789
3790 /* If we need to pullup then pullup to the max, so we
3791 * won't need to do it again.
3792 */
3793 if (max > skb->len)
3794 max = skb->len;
3795
3796 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3797 return -ENOMEM;
3798
3799 if (skb_headlen(skb) < len)
3800 return -EPROTO;
3801
3802 return 0;
3803 }
3804
3805 #define MAX_TCP_HDR_LEN (15 * 4)
3806
3807 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3808 typeof(IPPROTO_IP) proto,
3809 unsigned int off)
3810 {
3811 switch (proto) {
3812 int err;
3813
3814 case IPPROTO_TCP:
3815 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3816 off + MAX_TCP_HDR_LEN);
3817 if (!err && !skb_partial_csum_set(skb, off,
3818 offsetof(struct tcphdr,
3819 check)))
3820 err = -EPROTO;
3821 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3822
3823 case IPPROTO_UDP:
3824 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3825 off + sizeof(struct udphdr));
3826 if (!err && !skb_partial_csum_set(skb, off,
3827 offsetof(struct udphdr,
3828 check)))
3829 err = -EPROTO;
3830 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3831 }
3832
3833 return ERR_PTR(-EPROTO);
3834 }
3835
3836 /* This value should be large enough to cover a tagged ethernet header plus
3837 * maximally sized IP and TCP or UDP headers.
3838 */
3839 #define MAX_IP_HDR_LEN 128
3840
3841 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3842 {
3843 unsigned int off;
3844 bool fragment;
3845 __sum16 *csum;
3846 int err;
3847
3848 fragment = false;
3849
3850 err = skb_maybe_pull_tail(skb,
3851 sizeof(struct iphdr),
3852 MAX_IP_HDR_LEN);
3853 if (err < 0)
3854 goto out;
3855
3856 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3857 fragment = true;
3858
3859 off = ip_hdrlen(skb);
3860
3861 err = -EPROTO;
3862
3863 if (fragment)
3864 goto out;
3865
3866 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3867 if (IS_ERR(csum))
3868 return PTR_ERR(csum);
3869
3870 if (recalculate)
3871 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3872 ip_hdr(skb)->daddr,
3873 skb->len - off,
3874 ip_hdr(skb)->protocol, 0);
3875 err = 0;
3876
3877 out:
3878 return err;
3879 }
3880
3881 /* This value should be large enough to cover a tagged ethernet header plus
3882 * an IPv6 header, all options, and a maximal TCP or UDP header.
3883 */
3884 #define MAX_IPV6_HDR_LEN 256
3885
3886 #define OPT_HDR(type, skb, off) \
3887 (type *)(skb_network_header(skb) + (off))
3888
3889 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3890 {
3891 int err;
3892 u8 nexthdr;
3893 unsigned int off;
3894 unsigned int len;
3895 bool fragment;
3896 bool done;
3897 __sum16 *csum;
3898
3899 fragment = false;
3900 done = false;
3901
3902 off = sizeof(struct ipv6hdr);
3903
3904 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3905 if (err < 0)
3906 goto out;
3907
3908 nexthdr = ipv6_hdr(skb)->nexthdr;
3909
3910 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3911 while (off <= len && !done) {
3912 switch (nexthdr) {
3913 case IPPROTO_DSTOPTS:
3914 case IPPROTO_HOPOPTS:
3915 case IPPROTO_ROUTING: {
3916 struct ipv6_opt_hdr *hp;
3917
3918 err = skb_maybe_pull_tail(skb,
3919 off +
3920 sizeof(struct ipv6_opt_hdr),
3921 MAX_IPV6_HDR_LEN);
3922 if (err < 0)
3923 goto out;
3924
3925 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3926 nexthdr = hp->nexthdr;
3927 off += ipv6_optlen(hp);
3928 break;
3929 }
3930 case IPPROTO_AH: {
3931 struct ip_auth_hdr *hp;
3932
3933 err = skb_maybe_pull_tail(skb,
3934 off +
3935 sizeof(struct ip_auth_hdr),
3936 MAX_IPV6_HDR_LEN);
3937 if (err < 0)
3938 goto out;
3939
3940 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3941 nexthdr = hp->nexthdr;
3942 off += ipv6_authlen(hp);
3943 break;
3944 }
3945 case IPPROTO_FRAGMENT: {
3946 struct frag_hdr *hp;
3947
3948 err = skb_maybe_pull_tail(skb,
3949 off +
3950 sizeof(struct frag_hdr),
3951 MAX_IPV6_HDR_LEN);
3952 if (err < 0)
3953 goto out;
3954
3955 hp = OPT_HDR(struct frag_hdr, skb, off);
3956
3957 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3958 fragment = true;
3959
3960 nexthdr = hp->nexthdr;
3961 off += sizeof(struct frag_hdr);
3962 break;
3963 }
3964 default:
3965 done = true;
3966 break;
3967 }
3968 }
3969
3970 err = -EPROTO;
3971
3972 if (!done || fragment)
3973 goto out;
3974
3975 csum = skb_checksum_setup_ip(skb, nexthdr, off);
3976 if (IS_ERR(csum))
3977 return PTR_ERR(csum);
3978
3979 if (recalculate)
3980 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3981 &ipv6_hdr(skb)->daddr,
3982 skb->len - off, nexthdr, 0);
3983 err = 0;
3984
3985 out:
3986 return err;
3987 }
3988
3989 /**
3990 * skb_checksum_setup - set up partial checksum offset
3991 * @skb: the skb to set up
3992 * @recalculate: if true the pseudo-header checksum will be recalculated
3993 */
3994 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3995 {
3996 int err;
3997
3998 switch (skb->protocol) {
3999 case htons(ETH_P_IP):
4000 err = skb_checksum_setup_ipv4(skb, recalculate);
4001 break;
4002
4003 case htons(ETH_P_IPV6):
4004 err = skb_checksum_setup_ipv6(skb, recalculate);
4005 break;
4006
4007 default:
4008 err = -EPROTO;
4009 break;
4010 }
4011
4012 return err;
4013 }
4014 EXPORT_SYMBOL(skb_checksum_setup);
4015
4016 /**
4017 * skb_checksum_maybe_trim - maybe trims the given skb
4018 * @skb: the skb to check
4019 * @transport_len: the data length beyond the network header
4020 *
4021 * Checks whether the given skb has data beyond the given transport length.
4022 * If so, returns a cloned skb trimmed to this transport length.
4023 * Otherwise returns the provided skb. Returns NULL in error cases
4024 * (e.g. transport_len exceeds skb length or out-of-memory).
4025 *
4026 * Caller needs to set the skb transport header and free any returned skb if it
4027 * differs from the provided skb.
4028 */
4029 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4030 unsigned int transport_len)
4031 {
4032 struct sk_buff *skb_chk;
4033 unsigned int len = skb_transport_offset(skb) + transport_len;
4034 int ret;
4035
4036 if (skb->len < len)
4037 return NULL;
4038 else if (skb->len == len)
4039 return skb;
4040
4041 skb_chk = skb_clone(skb, GFP_ATOMIC);
4042 if (!skb_chk)
4043 return NULL;
4044
4045 ret = pskb_trim_rcsum(skb_chk, len);
4046 if (ret) {
4047 kfree_skb(skb_chk);
4048 return NULL;
4049 }
4050
4051 return skb_chk;
4052 }
4053
4054 /**
4055 * skb_checksum_trimmed - validate checksum of an skb
4056 * @skb: the skb to check
4057 * @transport_len: the data length beyond the network header
4058 * @skb_chkf: checksum function to use
4059 *
4060 * Applies the given checksum function skb_chkf to the provided skb.
4061 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4062 *
4063 * If the skb has data beyond the given transport length, then a
4064 * trimmed & cloned skb is checked and returned.
4065 *
4066 * Caller needs to set the skb transport header and free any returned skb if it
4067 * differs from the provided skb.
4068 */
4069 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4070 unsigned int transport_len,
4071 __sum16(*skb_chkf)(struct sk_buff *skb))
4072 {
4073 struct sk_buff *skb_chk;
4074 unsigned int offset = skb_transport_offset(skb);
4075 __sum16 ret;
4076
4077 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4078 if (!skb_chk)
4079 goto err;
4080
4081 if (!pskb_may_pull(skb_chk, offset))
4082 goto err;
4083
4084 __skb_pull(skb_chk, offset);
4085 ret = skb_chkf(skb_chk);
4086 __skb_push(skb_chk, offset);
4087
4088 if (ret)
4089 goto err;
4090
4091 return skb_chk;
4092
4093 err:
4094 if (skb_chk && skb_chk != skb)
4095 kfree_skb(skb_chk);
4096
4097 return NULL;
4098
4099 }
4100 EXPORT_SYMBOL(skb_checksum_trimmed);
4101
4102 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4103 {
4104 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4105 skb->dev->name);
4106 }
4107 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4108
4109 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4110 {
4111 if (head_stolen) {
4112 skb_release_head_state(skb);
4113 kmem_cache_free(skbuff_head_cache, skb);
4114 } else {
4115 __kfree_skb(skb);
4116 }
4117 }
4118 EXPORT_SYMBOL(kfree_skb_partial);
4119
4120 /**
4121 * skb_try_coalesce - try to merge skb to prior one
4122 * @to: prior buffer
4123 * @from: buffer to add
4124 * @fragstolen: pointer to boolean
4125 * @delta_truesize: how much more was allocated than was requested
4126 */
4127 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4128 bool *fragstolen, int *delta_truesize)
4129 {
4130 int i, delta, len = from->len;
4131
4132 *fragstolen = false;
4133
4134 if (skb_cloned(to))
4135 return false;
4136
4137 if (len <= skb_tailroom(to)) {
4138 if (len)
4139 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4140 *delta_truesize = 0;
4141 return true;
4142 }
4143
4144 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4145 return false;
4146
4147 if (skb_headlen(from) != 0) {
4148 struct page *page;
4149 unsigned int offset;
4150
4151 if (skb_shinfo(to)->nr_frags +
4152 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4153 return false;
4154
4155 if (skb_head_is_locked(from))
4156 return false;
4157
4158 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4159
4160 page = virt_to_head_page(from->head);
4161 offset = from->data - (unsigned char *)page_address(page);
4162
4163 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4164 page, offset, skb_headlen(from));
4165 *fragstolen = true;
4166 } else {
4167 if (skb_shinfo(to)->nr_frags +
4168 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4169 return false;
4170
4171 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4172 }
4173
4174 WARN_ON_ONCE(delta < len);
4175
4176 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4177 skb_shinfo(from)->frags,
4178 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4179 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4180
4181 if (!skb_cloned(from))
4182 skb_shinfo(from)->nr_frags = 0;
4183
4184 /* if the skb is not cloned this does nothing
4185 * since we set nr_frags to 0.
4186 */
4187 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4188 skb_frag_ref(from, i);
4189
4190 to->truesize += delta;
4191 to->len += len;
4192 to->data_len += len;
4193
4194 *delta_truesize = delta;
4195 return true;
4196 }
4197 EXPORT_SYMBOL(skb_try_coalesce);
4198
4199 /**
4200 * skb_scrub_packet - scrub an skb
4201 *
4202 * @skb: buffer to clean
4203 * @xnet: packet is crossing netns
4204 *
4205 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4206 * into/from a tunnel. Some information have to be cleared during these
4207 * operations.
4208 * skb_scrub_packet can also be used to clean a skb before injecting it in
4209 * another namespace (@xnet == true). We have to clear all information in the
4210 * skb that could impact namespace isolation.
4211 */
4212 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4213 {
4214 skb->tstamp.tv64 = 0;
4215 skb->pkt_type = PACKET_HOST;
4216 skb->skb_iif = 0;
4217 skb->ignore_df = 0;
4218 skb_dst_drop(skb);
4219 skb_sender_cpu_clear(skb);
4220 secpath_reset(skb);
4221 nf_reset(skb);
4222 nf_reset_trace(skb);
4223
4224 if (!xnet)
4225 return;
4226
4227 skb_orphan(skb);
4228 skb->mark = 0;
4229 }
4230 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4231
4232 /**
4233 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4234 *
4235 * @skb: GSO skb
4236 *
4237 * skb_gso_transport_seglen is used to determine the real size of the
4238 * individual segments, including Layer4 headers (TCP/UDP).
4239 *
4240 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4241 */
4242 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4243 {
4244 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4245 unsigned int thlen = 0;
4246
4247 if (skb->encapsulation) {
4248 thlen = skb_inner_transport_header(skb) -
4249 skb_transport_header(skb);
4250
4251 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4252 thlen += inner_tcp_hdrlen(skb);
4253 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4254 thlen = tcp_hdrlen(skb);
4255 }
4256 /* UFO sets gso_size to the size of the fragmentation
4257 * payload, i.e. the size of the L4 (UDP) header is already
4258 * accounted for.
4259 */
4260 return thlen + shinfo->gso_size;
4261 }
4262 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4263
4264 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4265 {
4266 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4267 kfree_skb(skb);
4268 return NULL;
4269 }
4270
4271 memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4272 skb->mac_header += VLAN_HLEN;
4273 return skb;
4274 }
4275
4276 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4277 {
4278 struct vlan_hdr *vhdr;
4279 u16 vlan_tci;
4280
4281 if (unlikely(skb_vlan_tag_present(skb))) {
4282 /* vlan_tci is already set-up so leave this for another time */
4283 return skb;
4284 }
4285
4286 skb = skb_share_check(skb, GFP_ATOMIC);
4287 if (unlikely(!skb))
4288 goto err_free;
4289
4290 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4291 goto err_free;
4292
4293 vhdr = (struct vlan_hdr *)skb->data;
4294 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4295 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4296
4297 skb_pull_rcsum(skb, VLAN_HLEN);
4298 vlan_set_encap_proto(skb, vhdr);
4299
4300 skb = skb_reorder_vlan_header(skb);
4301 if (unlikely(!skb))
4302 goto err_free;
4303
4304 skb_reset_network_header(skb);
4305 skb_reset_transport_header(skb);
4306 skb_reset_mac_len(skb);
4307
4308 return skb;
4309
4310 err_free:
4311 kfree_skb(skb);
4312 return NULL;
4313 }
4314 EXPORT_SYMBOL(skb_vlan_untag);
4315
4316 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4317 {
4318 if (!pskb_may_pull(skb, write_len))
4319 return -ENOMEM;
4320
4321 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4322 return 0;
4323
4324 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4325 }
4326 EXPORT_SYMBOL(skb_ensure_writable);
4327
4328 /* remove VLAN header from packet and update csum accordingly. */
4329 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4330 {
4331 struct vlan_hdr *vhdr;
4332 unsigned int offset = skb->data - skb_mac_header(skb);
4333 int err;
4334
4335 __skb_push(skb, offset);
4336 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4337 if (unlikely(err))
4338 goto pull;
4339
4340 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4341
4342 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4343 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4344
4345 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4346 __skb_pull(skb, VLAN_HLEN);
4347
4348 vlan_set_encap_proto(skb, vhdr);
4349 skb->mac_header += VLAN_HLEN;
4350
4351 if (skb_network_offset(skb) < ETH_HLEN)
4352 skb_set_network_header(skb, ETH_HLEN);
4353
4354 skb_reset_mac_len(skb);
4355 pull:
4356 __skb_pull(skb, offset);
4357
4358 return err;
4359 }
4360
4361 int skb_vlan_pop(struct sk_buff *skb)
4362 {
4363 u16 vlan_tci;
4364 __be16 vlan_proto;
4365 int err;
4366
4367 if (likely(skb_vlan_tag_present(skb))) {
4368 skb->vlan_tci = 0;
4369 } else {
4370 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4371 skb->protocol != htons(ETH_P_8021AD)) ||
4372 skb->len < VLAN_ETH_HLEN))
4373 return 0;
4374
4375 err = __skb_vlan_pop(skb, &vlan_tci);
4376 if (err)
4377 return err;
4378 }
4379 /* move next vlan tag to hw accel tag */
4380 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4381 skb->protocol != htons(ETH_P_8021AD)) ||
4382 skb->len < VLAN_ETH_HLEN))
4383 return 0;
4384
4385 vlan_proto = skb->protocol;
4386 err = __skb_vlan_pop(skb, &vlan_tci);
4387 if (unlikely(err))
4388 return err;
4389
4390 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4391 return 0;
4392 }
4393 EXPORT_SYMBOL(skb_vlan_pop);
4394
4395 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4396 {
4397 if (skb_vlan_tag_present(skb)) {
4398 unsigned int offset = skb->data - skb_mac_header(skb);
4399 int err;
4400
4401 /* __vlan_insert_tag expect skb->data pointing to mac header.
4402 * So change skb->data before calling it and change back to
4403 * original position later
4404 */
4405 __skb_push(skb, offset);
4406 err = __vlan_insert_tag(skb, skb->vlan_proto,
4407 skb_vlan_tag_get(skb));
4408 if (err)
4409 return err;
4410 skb->protocol = skb->vlan_proto;
4411 skb->mac_len += VLAN_HLEN;
4412 __skb_pull(skb, offset);
4413
4414 if (skb->ip_summed == CHECKSUM_COMPLETE)
4415 skb->csum = csum_add(skb->csum, csum_partial(skb->data
4416 + (2 * ETH_ALEN), VLAN_HLEN, 0));
4417 }
4418 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4419 return 0;
4420 }
4421 EXPORT_SYMBOL(skb_vlan_push);
4422
4423 /**
4424 * alloc_skb_with_frags - allocate skb with page frags
4425 *
4426 * @header_len: size of linear part
4427 * @data_len: needed length in frags
4428 * @max_page_order: max page order desired.
4429 * @errcode: pointer to error code if any
4430 * @gfp_mask: allocation mask
4431 *
4432 * This can be used to allocate a paged skb, given a maximal order for frags.
4433 */
4434 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4435 unsigned long data_len,
4436 int max_page_order,
4437 int *errcode,
4438 gfp_t gfp_mask)
4439 {
4440 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4441 unsigned long chunk;
4442 struct sk_buff *skb;
4443 struct page *page;
4444 gfp_t gfp_head;
4445 int i;
4446
4447 *errcode = -EMSGSIZE;
4448 /* Note this test could be relaxed, if we succeed to allocate
4449 * high order pages...
4450 */
4451 if (npages > MAX_SKB_FRAGS)
4452 return NULL;
4453
4454 gfp_head = gfp_mask;
4455 if (gfp_head & __GFP_DIRECT_RECLAIM)
4456 gfp_head |= __GFP_REPEAT;
4457
4458 *errcode = -ENOBUFS;
4459 skb = alloc_skb(header_len, gfp_head);
4460 if (!skb)
4461 return NULL;
4462
4463 skb->truesize += npages << PAGE_SHIFT;
4464
4465 for (i = 0; npages > 0; i++) {
4466 int order = max_page_order;
4467
4468 while (order) {
4469 if (npages >= 1 << order) {
4470 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4471 __GFP_COMP |
4472 __GFP_NOWARN |
4473 __GFP_NORETRY,
4474 order);
4475 if (page)
4476 goto fill_page;
4477 /* Do not retry other high order allocations */
4478 order = 1;
4479 max_page_order = 0;
4480 }
4481 order--;
4482 }
4483 page = alloc_page(gfp_mask);
4484 if (!page)
4485 goto failure;
4486 fill_page:
4487 chunk = min_t(unsigned long, data_len,
4488 PAGE_SIZE << order);
4489 skb_fill_page_desc(skb, i, page, 0, chunk);
4490 data_len -= chunk;
4491 npages -= 1 << order;
4492 }
4493 return skb;
4494
4495 failure:
4496 kfree_skb(skb);
4497 return NULL;
4498 }
4499 EXPORT_SYMBOL(alloc_skb_with_frags);
This page took 0.137487 seconds and 5 git commands to generate.