Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82
83 static int
84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
85 unsigned int mtu,
86 int (*output)(struct net *, struct sock *, struct sk_buff *));
87
88 /* Generate a checksum for an outgoing IP datagram. */
89 void ip_send_check(struct iphdr *iph)
90 {
91 iph->check = 0;
92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 EXPORT_SYMBOL(ip_send_check);
95
96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
97 {
98 struct iphdr *iph = ip_hdr(skb);
99
100 iph->tot_len = htons(skb->len);
101 ip_send_check(iph);
102
103 /* if egress device is enslaved to an L3 master device pass the
104 * skb to its handler for processing
105 */
106 skb = l3mdev_ip_out(sk, skb);
107 if (unlikely(!skb))
108 return 0;
109
110 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
111 net, sk, skb, NULL, skb_dst(skb)->dev,
112 dst_output);
113 }
114
115 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
116 {
117 int err;
118
119 err = __ip_local_out(net, sk, skb);
120 if (likely(err == 1))
121 err = dst_output(net, sk, skb);
122
123 return err;
124 }
125 EXPORT_SYMBOL_GPL(ip_local_out);
126
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 {
129 int ttl = inet->uc_ttl;
130
131 if (ttl < 0)
132 ttl = ip4_dst_hoplimit(dst);
133 return ttl;
134 }
135
136 /*
137 * Add an ip header to a skbuff and send it out.
138 *
139 */
140 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
141 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
142 {
143 struct inet_sock *inet = inet_sk(sk);
144 struct rtable *rt = skb_rtable(skb);
145 struct net *net = sock_net(sk);
146 struct iphdr *iph;
147
148 /* Build the IP header. */
149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
150 skb_reset_network_header(skb);
151 iph = ip_hdr(skb);
152 iph->version = 4;
153 iph->ihl = 5;
154 iph->tos = inet->tos;
155 iph->ttl = ip_select_ttl(inet, &rt->dst);
156 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
157 iph->saddr = saddr;
158 iph->protocol = sk->sk_protocol;
159 if (ip_dont_fragment(sk, &rt->dst)) {
160 iph->frag_off = htons(IP_DF);
161 iph->id = 0;
162 } else {
163 iph->frag_off = 0;
164 __ip_select_ident(net, iph, 1);
165 }
166
167 if (opt && opt->opt.optlen) {
168 iph->ihl += opt->opt.optlen>>2;
169 ip_options_build(skb, &opt->opt, daddr, rt, 0);
170 }
171
172 skb->priority = sk->sk_priority;
173 skb->mark = sk->sk_mark;
174
175 /* Send it out. */
176 return ip_local_out(net, skb->sk, skb);
177 }
178 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179
180 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
181 {
182 struct dst_entry *dst = skb_dst(skb);
183 struct rtable *rt = (struct rtable *)dst;
184 struct net_device *dev = dst->dev;
185 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 struct neighbour *neigh;
187 u32 nexthop;
188
189 if (rt->rt_type == RTN_MULTICAST) {
190 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
191 } else if (rt->rt_type == RTN_BROADCAST)
192 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
193
194 /* Be paranoid, rather than too clever. */
195 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
196 struct sk_buff *skb2;
197
198 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
199 if (!skb2) {
200 kfree_skb(skb);
201 return -ENOMEM;
202 }
203 if (skb->sk)
204 skb_set_owner_w(skb2, skb->sk);
205 consume_skb(skb);
206 skb = skb2;
207 }
208
209 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
210 int res = lwtunnel_xmit(skb);
211
212 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
213 return res;
214 }
215
216 rcu_read_lock_bh();
217 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
218 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
219 if (unlikely(!neigh))
220 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
221 if (!IS_ERR(neigh)) {
222 int res = dst_neigh_output(dst, neigh, skb);
223
224 rcu_read_unlock_bh();
225 return res;
226 }
227 rcu_read_unlock_bh();
228
229 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
230 __func__);
231 kfree_skb(skb);
232 return -EINVAL;
233 }
234
235 static int ip_finish_output_gso(struct net *net, struct sock *sk,
236 struct sk_buff *skb, unsigned int mtu)
237 {
238 netdev_features_t features;
239 struct sk_buff *segs;
240 int ret = 0;
241
242 /* common case: fragmentation of segments is not allowed,
243 * or seglen is <= mtu
244 */
245 if (((IPCB(skb)->flags & IPSKB_FRAG_SEGS) == 0) ||
246 skb_gso_validate_mtu(skb, mtu))
247 return ip_finish_output2(net, sk, skb);
248
249 /* Slowpath - GSO segment length is exceeding the dst MTU.
250 *
251 * This can happen in two cases:
252 * 1) TCP GRO packet, DF bit not set
253 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
254 * from host network stack.
255 */
256 features = netif_skb_features(skb);
257 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
258 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
259 if (IS_ERR_OR_NULL(segs)) {
260 kfree_skb(skb);
261 return -ENOMEM;
262 }
263
264 consume_skb(skb);
265
266 do {
267 struct sk_buff *nskb = segs->next;
268 int err;
269
270 segs->next = NULL;
271 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
272
273 if (err && ret == 0)
274 ret = err;
275 segs = nskb;
276 } while (segs);
277
278 return ret;
279 }
280
281 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
282 {
283 unsigned int mtu;
284
285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
286 /* Policy lookup after SNAT yielded a new policy */
287 if (skb_dst(skb)->xfrm) {
288 IPCB(skb)->flags |= IPSKB_REROUTED;
289 return dst_output(net, sk, skb);
290 }
291 #endif
292 mtu = ip_skb_dst_mtu(sk, skb);
293 if (skb_is_gso(skb))
294 return ip_finish_output_gso(net, sk, skb, mtu);
295
296 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
297 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
298
299 return ip_finish_output2(net, sk, skb);
300 }
301
302 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
303 {
304 struct rtable *rt = skb_rtable(skb);
305 struct net_device *dev = rt->dst.dev;
306
307 /*
308 * If the indicated interface is up and running, send the packet.
309 */
310 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
311
312 skb->dev = dev;
313 skb->protocol = htons(ETH_P_IP);
314
315 /*
316 * Multicasts are looped back for other local users
317 */
318
319 if (rt->rt_flags&RTCF_MULTICAST) {
320 if (sk_mc_loop(sk)
321 #ifdef CONFIG_IP_MROUTE
322 /* Small optimization: do not loopback not local frames,
323 which returned after forwarding; they will be dropped
324 by ip_mr_input in any case.
325 Note, that local frames are looped back to be delivered
326 to local recipients.
327
328 This check is duplicated in ip_mr_input at the moment.
329 */
330 &&
331 ((rt->rt_flags & RTCF_LOCAL) ||
332 !(IPCB(skb)->flags & IPSKB_FORWARDED))
333 #endif
334 ) {
335 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
336 if (newskb)
337 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
338 net, sk, newskb, NULL, newskb->dev,
339 dev_loopback_xmit);
340 }
341
342 /* Multicasts with ttl 0 must not go beyond the host */
343
344 if (ip_hdr(skb)->ttl == 0) {
345 kfree_skb(skb);
346 return 0;
347 }
348 }
349
350 if (rt->rt_flags&RTCF_BROADCAST) {
351 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
352 if (newskb)
353 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
354 net, sk, newskb, NULL, newskb->dev,
355 dev_loopback_xmit);
356 }
357
358 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
359 net, sk, skb, NULL, skb->dev,
360 ip_finish_output,
361 !(IPCB(skb)->flags & IPSKB_REROUTED));
362 }
363
364 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
365 {
366 struct net_device *dev = skb_dst(skb)->dev;
367
368 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
369
370 skb->dev = dev;
371 skb->protocol = htons(ETH_P_IP);
372
373 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
374 net, sk, skb, NULL, dev,
375 ip_finish_output,
376 !(IPCB(skb)->flags & IPSKB_REROUTED));
377 }
378
379 /*
380 * copy saddr and daddr, possibly using 64bit load/stores
381 * Equivalent to :
382 * iph->saddr = fl4->saddr;
383 * iph->daddr = fl4->daddr;
384 */
385 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
386 {
387 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
388 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
389 memcpy(&iph->saddr, &fl4->saddr,
390 sizeof(fl4->saddr) + sizeof(fl4->daddr));
391 }
392
393 /* Note: skb->sk can be different from sk, in case of tunnels */
394 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
395 {
396 struct inet_sock *inet = inet_sk(sk);
397 struct net *net = sock_net(sk);
398 struct ip_options_rcu *inet_opt;
399 struct flowi4 *fl4;
400 struct rtable *rt;
401 struct iphdr *iph;
402 int res;
403
404 /* Skip all of this if the packet is already routed,
405 * f.e. by something like SCTP.
406 */
407 rcu_read_lock();
408 inet_opt = rcu_dereference(inet->inet_opt);
409 fl4 = &fl->u.ip4;
410 rt = skb_rtable(skb);
411 if (rt)
412 goto packet_routed;
413
414 /* Make sure we can route this packet. */
415 rt = (struct rtable *)__sk_dst_check(sk, 0);
416 if (!rt) {
417 __be32 daddr;
418
419 /* Use correct destination address if we have options. */
420 daddr = inet->inet_daddr;
421 if (inet_opt && inet_opt->opt.srr)
422 daddr = inet_opt->opt.faddr;
423
424 /* If this fails, retransmit mechanism of transport layer will
425 * keep trying until route appears or the connection times
426 * itself out.
427 */
428 rt = ip_route_output_ports(net, fl4, sk,
429 daddr, inet->inet_saddr,
430 inet->inet_dport,
431 inet->inet_sport,
432 sk->sk_protocol,
433 RT_CONN_FLAGS(sk),
434 sk->sk_bound_dev_if);
435 if (IS_ERR(rt))
436 goto no_route;
437 sk_setup_caps(sk, &rt->dst);
438 }
439 skb_dst_set_noref(skb, &rt->dst);
440
441 packet_routed:
442 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
443 goto no_route;
444
445 /* OK, we know where to send it, allocate and build IP header. */
446 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
447 skb_reset_network_header(skb);
448 iph = ip_hdr(skb);
449 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
450 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
451 iph->frag_off = htons(IP_DF);
452 else
453 iph->frag_off = 0;
454 iph->ttl = ip_select_ttl(inet, &rt->dst);
455 iph->protocol = sk->sk_protocol;
456 ip_copy_addrs(iph, fl4);
457
458 /* Transport layer set skb->h.foo itself. */
459
460 if (inet_opt && inet_opt->opt.optlen) {
461 iph->ihl += inet_opt->opt.optlen >> 2;
462 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
463 }
464
465 ip_select_ident_segs(net, skb, sk,
466 skb_shinfo(skb)->gso_segs ?: 1);
467
468 /* TODO : should we use skb->sk here instead of sk ? */
469 skb->priority = sk->sk_priority;
470 skb->mark = sk->sk_mark;
471
472 res = ip_local_out(net, sk, skb);
473 rcu_read_unlock();
474 return res;
475
476 no_route:
477 rcu_read_unlock();
478 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
479 kfree_skb(skb);
480 return -EHOSTUNREACH;
481 }
482 EXPORT_SYMBOL(ip_queue_xmit);
483
484 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
485 {
486 to->pkt_type = from->pkt_type;
487 to->priority = from->priority;
488 to->protocol = from->protocol;
489 skb_dst_drop(to);
490 skb_dst_copy(to, from);
491 to->dev = from->dev;
492 to->mark = from->mark;
493
494 /* Copy the flags to each fragment. */
495 IPCB(to)->flags = IPCB(from)->flags;
496
497 #ifdef CONFIG_NET_SCHED
498 to->tc_index = from->tc_index;
499 #endif
500 nf_copy(to, from);
501 #if IS_ENABLED(CONFIG_IP_VS)
502 to->ipvs_property = from->ipvs_property;
503 #endif
504 skb_copy_secmark(to, from);
505 }
506
507 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
508 unsigned int mtu,
509 int (*output)(struct net *, struct sock *, struct sk_buff *))
510 {
511 struct iphdr *iph = ip_hdr(skb);
512
513 if ((iph->frag_off & htons(IP_DF)) == 0)
514 return ip_do_fragment(net, sk, skb, output);
515
516 if (unlikely(!skb->ignore_df ||
517 (IPCB(skb)->frag_max_size &&
518 IPCB(skb)->frag_max_size > mtu))) {
519 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
520 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
521 htonl(mtu));
522 kfree_skb(skb);
523 return -EMSGSIZE;
524 }
525
526 return ip_do_fragment(net, sk, skb, output);
527 }
528
529 /*
530 * This IP datagram is too large to be sent in one piece. Break it up into
531 * smaller pieces (each of size equal to IP header plus
532 * a block of the data of the original IP data part) that will yet fit in a
533 * single device frame, and queue such a frame for sending.
534 */
535
536 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
537 int (*output)(struct net *, struct sock *, struct sk_buff *))
538 {
539 struct iphdr *iph;
540 int ptr;
541 struct net_device *dev;
542 struct sk_buff *skb2;
543 unsigned int mtu, hlen, left, len, ll_rs;
544 int offset;
545 __be16 not_last_frag;
546 struct rtable *rt = skb_rtable(skb);
547 int err = 0;
548
549 dev = rt->dst.dev;
550
551 /* for offloaded checksums cleanup checksum before fragmentation */
552 if (skb->ip_summed == CHECKSUM_PARTIAL &&
553 (err = skb_checksum_help(skb)))
554 goto fail;
555
556 /*
557 * Point into the IP datagram header.
558 */
559
560 iph = ip_hdr(skb);
561
562 mtu = ip_skb_dst_mtu(sk, skb);
563 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
564 mtu = IPCB(skb)->frag_max_size;
565
566 /*
567 * Setup starting values.
568 */
569
570 hlen = iph->ihl * 4;
571 mtu = mtu - hlen; /* Size of data space */
572 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
573
574 /* When frag_list is given, use it. First, check its validity:
575 * some transformers could create wrong frag_list or break existing
576 * one, it is not prohibited. In this case fall back to copying.
577 *
578 * LATER: this step can be merged to real generation of fragments,
579 * we can switch to copy when see the first bad fragment.
580 */
581 if (skb_has_frag_list(skb)) {
582 struct sk_buff *frag, *frag2;
583 int first_len = skb_pagelen(skb);
584
585 if (first_len - hlen > mtu ||
586 ((first_len - hlen) & 7) ||
587 ip_is_fragment(iph) ||
588 skb_cloned(skb))
589 goto slow_path;
590
591 skb_walk_frags(skb, frag) {
592 /* Correct geometry. */
593 if (frag->len > mtu ||
594 ((frag->len & 7) && frag->next) ||
595 skb_headroom(frag) < hlen)
596 goto slow_path_clean;
597
598 /* Partially cloned skb? */
599 if (skb_shared(frag))
600 goto slow_path_clean;
601
602 BUG_ON(frag->sk);
603 if (skb->sk) {
604 frag->sk = skb->sk;
605 frag->destructor = sock_wfree;
606 }
607 skb->truesize -= frag->truesize;
608 }
609
610 /* Everything is OK. Generate! */
611
612 err = 0;
613 offset = 0;
614 frag = skb_shinfo(skb)->frag_list;
615 skb_frag_list_init(skb);
616 skb->data_len = first_len - skb_headlen(skb);
617 skb->len = first_len;
618 iph->tot_len = htons(first_len);
619 iph->frag_off = htons(IP_MF);
620 ip_send_check(iph);
621
622 for (;;) {
623 /* Prepare header of the next frame,
624 * before previous one went down. */
625 if (frag) {
626 frag->ip_summed = CHECKSUM_NONE;
627 skb_reset_transport_header(frag);
628 __skb_push(frag, hlen);
629 skb_reset_network_header(frag);
630 memcpy(skb_network_header(frag), iph, hlen);
631 iph = ip_hdr(frag);
632 iph->tot_len = htons(frag->len);
633 ip_copy_metadata(frag, skb);
634 if (offset == 0)
635 ip_options_fragment(frag);
636 offset += skb->len - hlen;
637 iph->frag_off = htons(offset>>3);
638 if (frag->next)
639 iph->frag_off |= htons(IP_MF);
640 /* Ready, complete checksum */
641 ip_send_check(iph);
642 }
643
644 err = output(net, sk, skb);
645
646 if (!err)
647 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
648 if (err || !frag)
649 break;
650
651 skb = frag;
652 frag = skb->next;
653 skb->next = NULL;
654 }
655
656 if (err == 0) {
657 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
658 return 0;
659 }
660
661 while (frag) {
662 skb = frag->next;
663 kfree_skb(frag);
664 frag = skb;
665 }
666 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
667 return err;
668
669 slow_path_clean:
670 skb_walk_frags(skb, frag2) {
671 if (frag2 == frag)
672 break;
673 frag2->sk = NULL;
674 frag2->destructor = NULL;
675 skb->truesize += frag2->truesize;
676 }
677 }
678
679 slow_path:
680 iph = ip_hdr(skb);
681
682 left = skb->len - hlen; /* Space per frame */
683 ptr = hlen; /* Where to start from */
684
685 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
686
687 /*
688 * Fragment the datagram.
689 */
690
691 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
692 not_last_frag = iph->frag_off & htons(IP_MF);
693
694 /*
695 * Keep copying data until we run out.
696 */
697
698 while (left > 0) {
699 len = left;
700 /* IF: it doesn't fit, use 'mtu' - the data space left */
701 if (len > mtu)
702 len = mtu;
703 /* IF: we are not sending up to and including the packet end
704 then align the next start on an eight byte boundary */
705 if (len < left) {
706 len &= ~7;
707 }
708
709 /* Allocate buffer */
710 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
711 if (!skb2) {
712 err = -ENOMEM;
713 goto fail;
714 }
715
716 /*
717 * Set up data on packet
718 */
719
720 ip_copy_metadata(skb2, skb);
721 skb_reserve(skb2, ll_rs);
722 skb_put(skb2, len + hlen);
723 skb_reset_network_header(skb2);
724 skb2->transport_header = skb2->network_header + hlen;
725
726 /*
727 * Charge the memory for the fragment to any owner
728 * it might possess
729 */
730
731 if (skb->sk)
732 skb_set_owner_w(skb2, skb->sk);
733
734 /*
735 * Copy the packet header into the new buffer.
736 */
737
738 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
739
740 /*
741 * Copy a block of the IP datagram.
742 */
743 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
744 BUG();
745 left -= len;
746
747 /*
748 * Fill in the new header fields.
749 */
750 iph = ip_hdr(skb2);
751 iph->frag_off = htons((offset >> 3));
752
753 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
754 iph->frag_off |= htons(IP_DF);
755
756 /* ANK: dirty, but effective trick. Upgrade options only if
757 * the segment to be fragmented was THE FIRST (otherwise,
758 * options are already fixed) and make it ONCE
759 * on the initial skb, so that all the following fragments
760 * will inherit fixed options.
761 */
762 if (offset == 0)
763 ip_options_fragment(skb);
764
765 /*
766 * Added AC : If we are fragmenting a fragment that's not the
767 * last fragment then keep MF on each bit
768 */
769 if (left > 0 || not_last_frag)
770 iph->frag_off |= htons(IP_MF);
771 ptr += len;
772 offset += len;
773
774 /*
775 * Put this fragment into the sending queue.
776 */
777 iph->tot_len = htons(len + hlen);
778
779 ip_send_check(iph);
780
781 err = output(net, sk, skb2);
782 if (err)
783 goto fail;
784
785 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
786 }
787 consume_skb(skb);
788 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
789 return err;
790
791 fail:
792 kfree_skb(skb);
793 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
794 return err;
795 }
796 EXPORT_SYMBOL(ip_do_fragment);
797
798 int
799 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
800 {
801 struct msghdr *msg = from;
802
803 if (skb->ip_summed == CHECKSUM_PARTIAL) {
804 if (copy_from_iter(to, len, &msg->msg_iter) != len)
805 return -EFAULT;
806 } else {
807 __wsum csum = 0;
808 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
809 return -EFAULT;
810 skb->csum = csum_block_add(skb->csum, csum, odd);
811 }
812 return 0;
813 }
814 EXPORT_SYMBOL(ip_generic_getfrag);
815
816 static inline __wsum
817 csum_page(struct page *page, int offset, int copy)
818 {
819 char *kaddr;
820 __wsum csum;
821 kaddr = kmap(page);
822 csum = csum_partial(kaddr + offset, copy, 0);
823 kunmap(page);
824 return csum;
825 }
826
827 static inline int ip_ufo_append_data(struct sock *sk,
828 struct sk_buff_head *queue,
829 int getfrag(void *from, char *to, int offset, int len,
830 int odd, struct sk_buff *skb),
831 void *from, int length, int hh_len, int fragheaderlen,
832 int transhdrlen, int maxfraglen, unsigned int flags)
833 {
834 struct sk_buff *skb;
835 int err;
836
837 /* There is support for UDP fragmentation offload by network
838 * device, so create one single skb packet containing complete
839 * udp datagram
840 */
841 skb = skb_peek_tail(queue);
842 if (!skb) {
843 skb = sock_alloc_send_skb(sk,
844 hh_len + fragheaderlen + transhdrlen + 20,
845 (flags & MSG_DONTWAIT), &err);
846
847 if (!skb)
848 return err;
849
850 /* reserve space for Hardware header */
851 skb_reserve(skb, hh_len);
852
853 /* create space for UDP/IP header */
854 skb_put(skb, fragheaderlen + transhdrlen);
855
856 /* initialize network header pointer */
857 skb_reset_network_header(skb);
858
859 /* initialize protocol header pointer */
860 skb->transport_header = skb->network_header + fragheaderlen;
861
862 skb->csum = 0;
863
864 __skb_queue_tail(queue, skb);
865 } else if (skb_is_gso(skb)) {
866 goto append;
867 }
868
869 skb->ip_summed = CHECKSUM_PARTIAL;
870 /* specify the length of each IP datagram fragment */
871 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
872 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
873
874 append:
875 return skb_append_datato_frags(sk, skb, getfrag, from,
876 (length - transhdrlen));
877 }
878
879 static int __ip_append_data(struct sock *sk,
880 struct flowi4 *fl4,
881 struct sk_buff_head *queue,
882 struct inet_cork *cork,
883 struct page_frag *pfrag,
884 int getfrag(void *from, char *to, int offset,
885 int len, int odd, struct sk_buff *skb),
886 void *from, int length, int transhdrlen,
887 unsigned int flags)
888 {
889 struct inet_sock *inet = inet_sk(sk);
890 struct sk_buff *skb;
891
892 struct ip_options *opt = cork->opt;
893 int hh_len;
894 int exthdrlen;
895 int mtu;
896 int copy;
897 int err;
898 int offset = 0;
899 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
900 int csummode = CHECKSUM_NONE;
901 struct rtable *rt = (struct rtable *)cork->dst;
902 u32 tskey = 0;
903
904 skb = skb_peek_tail(queue);
905
906 exthdrlen = !skb ? rt->dst.header_len : 0;
907 mtu = cork->fragsize;
908 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
909 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
910 tskey = sk->sk_tskey++;
911
912 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
913
914 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
915 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
916 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
917
918 if (cork->length + length > maxnonfragsize - fragheaderlen) {
919 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
920 mtu - (opt ? opt->optlen : 0));
921 return -EMSGSIZE;
922 }
923
924 /*
925 * transhdrlen > 0 means that this is the first fragment and we wish
926 * it won't be fragmented in the future.
927 */
928 if (transhdrlen &&
929 length + fragheaderlen <= mtu &&
930 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
931 !(flags & MSG_MORE) &&
932 !exthdrlen)
933 csummode = CHECKSUM_PARTIAL;
934
935 cork->length += length;
936 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
937 (sk->sk_protocol == IPPROTO_UDP) &&
938 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
939 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
940 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
941 hh_len, fragheaderlen, transhdrlen,
942 maxfraglen, flags);
943 if (err)
944 goto error;
945 return 0;
946 }
947
948 /* So, what's going on in the loop below?
949 *
950 * We use calculated fragment length to generate chained skb,
951 * each of segments is IP fragment ready for sending to network after
952 * adding appropriate IP header.
953 */
954
955 if (!skb)
956 goto alloc_new_skb;
957
958 while (length > 0) {
959 /* Check if the remaining data fits into current packet. */
960 copy = mtu - skb->len;
961 if (copy < length)
962 copy = maxfraglen - skb->len;
963 if (copy <= 0) {
964 char *data;
965 unsigned int datalen;
966 unsigned int fraglen;
967 unsigned int fraggap;
968 unsigned int alloclen;
969 struct sk_buff *skb_prev;
970 alloc_new_skb:
971 skb_prev = skb;
972 if (skb_prev)
973 fraggap = skb_prev->len - maxfraglen;
974 else
975 fraggap = 0;
976
977 /*
978 * If remaining data exceeds the mtu,
979 * we know we need more fragment(s).
980 */
981 datalen = length + fraggap;
982 if (datalen > mtu - fragheaderlen)
983 datalen = maxfraglen - fragheaderlen;
984 fraglen = datalen + fragheaderlen;
985
986 if ((flags & MSG_MORE) &&
987 !(rt->dst.dev->features&NETIF_F_SG))
988 alloclen = mtu;
989 else
990 alloclen = fraglen;
991
992 alloclen += exthdrlen;
993
994 /* The last fragment gets additional space at tail.
995 * Note, with MSG_MORE we overallocate on fragments,
996 * because we have no idea what fragment will be
997 * the last.
998 */
999 if (datalen == length + fraggap)
1000 alloclen += rt->dst.trailer_len;
1001
1002 if (transhdrlen) {
1003 skb = sock_alloc_send_skb(sk,
1004 alloclen + hh_len + 15,
1005 (flags & MSG_DONTWAIT), &err);
1006 } else {
1007 skb = NULL;
1008 if (atomic_read(&sk->sk_wmem_alloc) <=
1009 2 * sk->sk_sndbuf)
1010 skb = sock_wmalloc(sk,
1011 alloclen + hh_len + 15, 1,
1012 sk->sk_allocation);
1013 if (unlikely(!skb))
1014 err = -ENOBUFS;
1015 }
1016 if (!skb)
1017 goto error;
1018
1019 /*
1020 * Fill in the control structures
1021 */
1022 skb->ip_summed = csummode;
1023 skb->csum = 0;
1024 skb_reserve(skb, hh_len);
1025
1026 /* only the initial fragment is time stamped */
1027 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1028 cork->tx_flags = 0;
1029 skb_shinfo(skb)->tskey = tskey;
1030 tskey = 0;
1031
1032 /*
1033 * Find where to start putting bytes.
1034 */
1035 data = skb_put(skb, fraglen + exthdrlen);
1036 skb_set_network_header(skb, exthdrlen);
1037 skb->transport_header = (skb->network_header +
1038 fragheaderlen);
1039 data += fragheaderlen + exthdrlen;
1040
1041 if (fraggap) {
1042 skb->csum = skb_copy_and_csum_bits(
1043 skb_prev, maxfraglen,
1044 data + transhdrlen, fraggap, 0);
1045 skb_prev->csum = csum_sub(skb_prev->csum,
1046 skb->csum);
1047 data += fraggap;
1048 pskb_trim_unique(skb_prev, maxfraglen);
1049 }
1050
1051 copy = datalen - transhdrlen - fraggap;
1052 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1053 err = -EFAULT;
1054 kfree_skb(skb);
1055 goto error;
1056 }
1057
1058 offset += copy;
1059 length -= datalen - fraggap;
1060 transhdrlen = 0;
1061 exthdrlen = 0;
1062 csummode = CHECKSUM_NONE;
1063
1064 /*
1065 * Put the packet on the pending queue.
1066 */
1067 __skb_queue_tail(queue, skb);
1068 continue;
1069 }
1070
1071 if (copy > length)
1072 copy = length;
1073
1074 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1075 unsigned int off;
1076
1077 off = skb->len;
1078 if (getfrag(from, skb_put(skb, copy),
1079 offset, copy, off, skb) < 0) {
1080 __skb_trim(skb, off);
1081 err = -EFAULT;
1082 goto error;
1083 }
1084 } else {
1085 int i = skb_shinfo(skb)->nr_frags;
1086
1087 err = -ENOMEM;
1088 if (!sk_page_frag_refill(sk, pfrag))
1089 goto error;
1090
1091 if (!skb_can_coalesce(skb, i, pfrag->page,
1092 pfrag->offset)) {
1093 err = -EMSGSIZE;
1094 if (i == MAX_SKB_FRAGS)
1095 goto error;
1096
1097 __skb_fill_page_desc(skb, i, pfrag->page,
1098 pfrag->offset, 0);
1099 skb_shinfo(skb)->nr_frags = ++i;
1100 get_page(pfrag->page);
1101 }
1102 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1103 if (getfrag(from,
1104 page_address(pfrag->page) + pfrag->offset,
1105 offset, copy, skb->len, skb) < 0)
1106 goto error_efault;
1107
1108 pfrag->offset += copy;
1109 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1110 skb->len += copy;
1111 skb->data_len += copy;
1112 skb->truesize += copy;
1113 atomic_add(copy, &sk->sk_wmem_alloc);
1114 }
1115 offset += copy;
1116 length -= copy;
1117 }
1118
1119 return 0;
1120
1121 error_efault:
1122 err = -EFAULT;
1123 error:
1124 cork->length -= length;
1125 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1126 return err;
1127 }
1128
1129 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1130 struct ipcm_cookie *ipc, struct rtable **rtp)
1131 {
1132 struct ip_options_rcu *opt;
1133 struct rtable *rt;
1134
1135 /*
1136 * setup for corking.
1137 */
1138 opt = ipc->opt;
1139 if (opt) {
1140 if (!cork->opt) {
1141 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1142 sk->sk_allocation);
1143 if (unlikely(!cork->opt))
1144 return -ENOBUFS;
1145 }
1146 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1147 cork->flags |= IPCORK_OPT;
1148 cork->addr = ipc->addr;
1149 }
1150 rt = *rtp;
1151 if (unlikely(!rt))
1152 return -EFAULT;
1153 /*
1154 * We steal reference to this route, caller should not release it
1155 */
1156 *rtp = NULL;
1157 cork->fragsize = ip_sk_use_pmtu(sk) ?
1158 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1159 cork->dst = &rt->dst;
1160 cork->length = 0;
1161 cork->ttl = ipc->ttl;
1162 cork->tos = ipc->tos;
1163 cork->priority = ipc->priority;
1164 cork->tx_flags = ipc->tx_flags;
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * ip_append_data() and ip_append_page() can make one large IP datagram
1171 * from many pieces of data. Each pieces will be holded on the socket
1172 * until ip_push_pending_frames() is called. Each piece can be a page
1173 * or non-page data.
1174 *
1175 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1176 * this interface potentially.
1177 *
1178 * LATER: length must be adjusted by pad at tail, when it is required.
1179 */
1180 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1181 int getfrag(void *from, char *to, int offset, int len,
1182 int odd, struct sk_buff *skb),
1183 void *from, int length, int transhdrlen,
1184 struct ipcm_cookie *ipc, struct rtable **rtp,
1185 unsigned int flags)
1186 {
1187 struct inet_sock *inet = inet_sk(sk);
1188 int err;
1189
1190 if (flags&MSG_PROBE)
1191 return 0;
1192
1193 if (skb_queue_empty(&sk->sk_write_queue)) {
1194 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1195 if (err)
1196 return err;
1197 } else {
1198 transhdrlen = 0;
1199 }
1200
1201 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1202 sk_page_frag(sk), getfrag,
1203 from, length, transhdrlen, flags);
1204 }
1205
1206 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1207 int offset, size_t size, int flags)
1208 {
1209 struct inet_sock *inet = inet_sk(sk);
1210 struct sk_buff *skb;
1211 struct rtable *rt;
1212 struct ip_options *opt = NULL;
1213 struct inet_cork *cork;
1214 int hh_len;
1215 int mtu;
1216 int len;
1217 int err;
1218 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1219
1220 if (inet->hdrincl)
1221 return -EPERM;
1222
1223 if (flags&MSG_PROBE)
1224 return 0;
1225
1226 if (skb_queue_empty(&sk->sk_write_queue))
1227 return -EINVAL;
1228
1229 cork = &inet->cork.base;
1230 rt = (struct rtable *)cork->dst;
1231 if (cork->flags & IPCORK_OPT)
1232 opt = cork->opt;
1233
1234 if (!(rt->dst.dev->features&NETIF_F_SG))
1235 return -EOPNOTSUPP;
1236
1237 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1238 mtu = cork->fragsize;
1239
1240 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1241 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1242 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1243
1244 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1245 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1246 mtu - (opt ? opt->optlen : 0));
1247 return -EMSGSIZE;
1248 }
1249
1250 skb = skb_peek_tail(&sk->sk_write_queue);
1251 if (!skb)
1252 return -EINVAL;
1253
1254 if ((size + skb->len > mtu) &&
1255 (sk->sk_protocol == IPPROTO_UDP) &&
1256 (rt->dst.dev->features & NETIF_F_UFO)) {
1257 if (skb->ip_summed != CHECKSUM_PARTIAL)
1258 return -EOPNOTSUPP;
1259
1260 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1261 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1262 }
1263 cork->length += size;
1264
1265 while (size > 0) {
1266 if (skb_is_gso(skb)) {
1267 len = size;
1268 } else {
1269
1270 /* Check if the remaining data fits into current packet. */
1271 len = mtu - skb->len;
1272 if (len < size)
1273 len = maxfraglen - skb->len;
1274 }
1275 if (len <= 0) {
1276 struct sk_buff *skb_prev;
1277 int alloclen;
1278
1279 skb_prev = skb;
1280 fraggap = skb_prev->len - maxfraglen;
1281
1282 alloclen = fragheaderlen + hh_len + fraggap + 15;
1283 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1284 if (unlikely(!skb)) {
1285 err = -ENOBUFS;
1286 goto error;
1287 }
1288
1289 /*
1290 * Fill in the control structures
1291 */
1292 skb->ip_summed = CHECKSUM_NONE;
1293 skb->csum = 0;
1294 skb_reserve(skb, hh_len);
1295
1296 /*
1297 * Find where to start putting bytes.
1298 */
1299 skb_put(skb, fragheaderlen + fraggap);
1300 skb_reset_network_header(skb);
1301 skb->transport_header = (skb->network_header +
1302 fragheaderlen);
1303 if (fraggap) {
1304 skb->csum = skb_copy_and_csum_bits(skb_prev,
1305 maxfraglen,
1306 skb_transport_header(skb),
1307 fraggap, 0);
1308 skb_prev->csum = csum_sub(skb_prev->csum,
1309 skb->csum);
1310 pskb_trim_unique(skb_prev, maxfraglen);
1311 }
1312
1313 /*
1314 * Put the packet on the pending queue.
1315 */
1316 __skb_queue_tail(&sk->sk_write_queue, skb);
1317 continue;
1318 }
1319
1320 if (len > size)
1321 len = size;
1322
1323 if (skb_append_pagefrags(skb, page, offset, len)) {
1324 err = -EMSGSIZE;
1325 goto error;
1326 }
1327
1328 if (skb->ip_summed == CHECKSUM_NONE) {
1329 __wsum csum;
1330 csum = csum_page(page, offset, len);
1331 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1332 }
1333
1334 skb->len += len;
1335 skb->data_len += len;
1336 skb->truesize += len;
1337 atomic_add(len, &sk->sk_wmem_alloc);
1338 offset += len;
1339 size -= len;
1340 }
1341 return 0;
1342
1343 error:
1344 cork->length -= size;
1345 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1346 return err;
1347 }
1348
1349 static void ip_cork_release(struct inet_cork *cork)
1350 {
1351 cork->flags &= ~IPCORK_OPT;
1352 kfree(cork->opt);
1353 cork->opt = NULL;
1354 dst_release(cork->dst);
1355 cork->dst = NULL;
1356 }
1357
1358 /*
1359 * Combined all pending IP fragments on the socket as one IP datagram
1360 * and push them out.
1361 */
1362 struct sk_buff *__ip_make_skb(struct sock *sk,
1363 struct flowi4 *fl4,
1364 struct sk_buff_head *queue,
1365 struct inet_cork *cork)
1366 {
1367 struct sk_buff *skb, *tmp_skb;
1368 struct sk_buff **tail_skb;
1369 struct inet_sock *inet = inet_sk(sk);
1370 struct net *net = sock_net(sk);
1371 struct ip_options *opt = NULL;
1372 struct rtable *rt = (struct rtable *)cork->dst;
1373 struct iphdr *iph;
1374 __be16 df = 0;
1375 __u8 ttl;
1376
1377 skb = __skb_dequeue(queue);
1378 if (!skb)
1379 goto out;
1380 tail_skb = &(skb_shinfo(skb)->frag_list);
1381
1382 /* move skb->data to ip header from ext header */
1383 if (skb->data < skb_network_header(skb))
1384 __skb_pull(skb, skb_network_offset(skb));
1385 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1386 __skb_pull(tmp_skb, skb_network_header_len(skb));
1387 *tail_skb = tmp_skb;
1388 tail_skb = &(tmp_skb->next);
1389 skb->len += tmp_skb->len;
1390 skb->data_len += tmp_skb->len;
1391 skb->truesize += tmp_skb->truesize;
1392 tmp_skb->destructor = NULL;
1393 tmp_skb->sk = NULL;
1394 }
1395
1396 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1397 * to fragment the frame generated here. No matter, what transforms
1398 * how transforms change size of the packet, it will come out.
1399 */
1400 skb->ignore_df = ip_sk_ignore_df(sk);
1401
1402 /* DF bit is set when we want to see DF on outgoing frames.
1403 * If ignore_df is set too, we still allow to fragment this frame
1404 * locally. */
1405 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1406 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1407 (skb->len <= dst_mtu(&rt->dst) &&
1408 ip_dont_fragment(sk, &rt->dst)))
1409 df = htons(IP_DF);
1410
1411 if (cork->flags & IPCORK_OPT)
1412 opt = cork->opt;
1413
1414 if (cork->ttl != 0)
1415 ttl = cork->ttl;
1416 else if (rt->rt_type == RTN_MULTICAST)
1417 ttl = inet->mc_ttl;
1418 else
1419 ttl = ip_select_ttl(inet, &rt->dst);
1420
1421 iph = ip_hdr(skb);
1422 iph->version = 4;
1423 iph->ihl = 5;
1424 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1425 iph->frag_off = df;
1426 iph->ttl = ttl;
1427 iph->protocol = sk->sk_protocol;
1428 ip_copy_addrs(iph, fl4);
1429 ip_select_ident(net, skb, sk);
1430
1431 if (opt) {
1432 iph->ihl += opt->optlen>>2;
1433 ip_options_build(skb, opt, cork->addr, rt, 0);
1434 }
1435
1436 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1437 skb->mark = sk->sk_mark;
1438 /*
1439 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1440 * on dst refcount
1441 */
1442 cork->dst = NULL;
1443 skb_dst_set(skb, &rt->dst);
1444
1445 if (iph->protocol == IPPROTO_ICMP)
1446 icmp_out_count(net, ((struct icmphdr *)
1447 skb_transport_header(skb))->type);
1448
1449 ip_cork_release(cork);
1450 out:
1451 return skb;
1452 }
1453
1454 int ip_send_skb(struct net *net, struct sk_buff *skb)
1455 {
1456 int err;
1457
1458 err = ip_local_out(net, skb->sk, skb);
1459 if (err) {
1460 if (err > 0)
1461 err = net_xmit_errno(err);
1462 if (err)
1463 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1464 }
1465
1466 return err;
1467 }
1468
1469 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1470 {
1471 struct sk_buff *skb;
1472
1473 skb = ip_finish_skb(sk, fl4);
1474 if (!skb)
1475 return 0;
1476
1477 /* Netfilter gets whole the not fragmented skb. */
1478 return ip_send_skb(sock_net(sk), skb);
1479 }
1480
1481 /*
1482 * Throw away all pending data on the socket.
1483 */
1484 static void __ip_flush_pending_frames(struct sock *sk,
1485 struct sk_buff_head *queue,
1486 struct inet_cork *cork)
1487 {
1488 struct sk_buff *skb;
1489
1490 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1491 kfree_skb(skb);
1492
1493 ip_cork_release(cork);
1494 }
1495
1496 void ip_flush_pending_frames(struct sock *sk)
1497 {
1498 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1499 }
1500
1501 struct sk_buff *ip_make_skb(struct sock *sk,
1502 struct flowi4 *fl4,
1503 int getfrag(void *from, char *to, int offset,
1504 int len, int odd, struct sk_buff *skb),
1505 void *from, int length, int transhdrlen,
1506 struct ipcm_cookie *ipc, struct rtable **rtp,
1507 unsigned int flags)
1508 {
1509 struct inet_cork cork;
1510 struct sk_buff_head queue;
1511 int err;
1512
1513 if (flags & MSG_PROBE)
1514 return NULL;
1515
1516 __skb_queue_head_init(&queue);
1517
1518 cork.flags = 0;
1519 cork.addr = 0;
1520 cork.opt = NULL;
1521 err = ip_setup_cork(sk, &cork, ipc, rtp);
1522 if (err)
1523 return ERR_PTR(err);
1524
1525 err = __ip_append_data(sk, fl4, &queue, &cork,
1526 &current->task_frag, getfrag,
1527 from, length, transhdrlen, flags);
1528 if (err) {
1529 __ip_flush_pending_frames(sk, &queue, &cork);
1530 return ERR_PTR(err);
1531 }
1532
1533 return __ip_make_skb(sk, fl4, &queue, &cork);
1534 }
1535
1536 /*
1537 * Fetch data from kernel space and fill in checksum if needed.
1538 */
1539 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1540 int len, int odd, struct sk_buff *skb)
1541 {
1542 __wsum csum;
1543
1544 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1545 skb->csum = csum_block_add(skb->csum, csum, odd);
1546 return 0;
1547 }
1548
1549 /*
1550 * Generic function to send a packet as reply to another packet.
1551 * Used to send some TCP resets/acks so far.
1552 */
1553 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1554 const struct ip_options *sopt,
1555 __be32 daddr, __be32 saddr,
1556 const struct ip_reply_arg *arg,
1557 unsigned int len)
1558 {
1559 struct ip_options_data replyopts;
1560 struct ipcm_cookie ipc;
1561 struct flowi4 fl4;
1562 struct rtable *rt = skb_rtable(skb);
1563 struct net *net = sock_net(sk);
1564 struct sk_buff *nskb;
1565 int err;
1566 int oif;
1567
1568 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1569 return;
1570
1571 ipc.addr = daddr;
1572 ipc.opt = NULL;
1573 ipc.tx_flags = 0;
1574 ipc.ttl = 0;
1575 ipc.tos = -1;
1576
1577 if (replyopts.opt.opt.optlen) {
1578 ipc.opt = &replyopts.opt;
1579
1580 if (replyopts.opt.opt.srr)
1581 daddr = replyopts.opt.opt.faddr;
1582 }
1583
1584 oif = arg->bound_dev_if;
1585 oif = oif ? : skb->skb_iif;
1586
1587 flowi4_init_output(&fl4, oif,
1588 IP4_REPLY_MARK(net, skb->mark),
1589 RT_TOS(arg->tos),
1590 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1591 ip_reply_arg_flowi_flags(arg),
1592 daddr, saddr,
1593 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1594 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1595 rt = ip_route_output_key(net, &fl4);
1596 if (IS_ERR(rt))
1597 return;
1598
1599 inet_sk(sk)->tos = arg->tos;
1600
1601 sk->sk_priority = skb->priority;
1602 sk->sk_protocol = ip_hdr(skb)->protocol;
1603 sk->sk_bound_dev_if = arg->bound_dev_if;
1604 sk->sk_sndbuf = sysctl_wmem_default;
1605 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1606 len, 0, &ipc, &rt, MSG_DONTWAIT);
1607 if (unlikely(err)) {
1608 ip_flush_pending_frames(sk);
1609 goto out;
1610 }
1611
1612 nskb = skb_peek(&sk->sk_write_queue);
1613 if (nskb) {
1614 if (arg->csumoffset >= 0)
1615 *((__sum16 *)skb_transport_header(nskb) +
1616 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1617 arg->csum));
1618 nskb->ip_summed = CHECKSUM_NONE;
1619 ip_push_pending_frames(sk, &fl4);
1620 }
1621 out:
1622 ip_rt_put(rt);
1623 }
1624
1625 void __init ip_init(void)
1626 {
1627 ip_rt_init();
1628 inet_initpeers();
1629
1630 #if defined(CONFIG_IP_MULTICAST)
1631 igmp_mc_init();
1632 #endif
1633 }
This page took 0.080039 seconds and 5 git commands to generate.