Merge remote-tracking branch 'spi/for-next'
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286
287 int sysctl_tcp_autocorking __read_mostly = 1;
288
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
332 }
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 u8 res = 0;
340
341 if (seconds > 0) {
342 int period = timeout;
343
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
351 }
352 }
353 return res;
354 }
355
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 int period = 0;
360
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return period;
371 }
372
373 /* Address-family independent initialization for a tcp_sock.
374 *
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
377 */
378 void tcp_init_sock(struct sock *sk)
379 {
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
382
383 tp->out_of_order_queue = RB_ROOT;
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
387
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 tp->rtt_min[0].rtt = ~0U;
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
406
407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 if (mem_cgroup_sockets_enabled)
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430
431 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
432 {
433 if (tsflags) {
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
435 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
436
437 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
438 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
439 tcb->txstamp_ack = 1;
440 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
441 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
442 }
443 }
444
445 /*
446 * Wait for a TCP event.
447 *
448 * Note that we don't need to lock the socket, as the upper poll layers
449 * take care of normal races (between the test and the event) and we don't
450 * go look at any of the socket buffers directly.
451 */
452 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
453 {
454 unsigned int mask;
455 struct sock *sk = sock->sk;
456 const struct tcp_sock *tp = tcp_sk(sk);
457 int state;
458
459 sock_rps_record_flow(sk);
460
461 sock_poll_wait(file, sk_sleep(sk), wait);
462
463 state = sk_state_load(sk);
464 if (state == TCP_LISTEN)
465 return inet_csk_listen_poll(sk);
466
467 /* Socket is not locked. We are protected from async events
468 * by poll logic and correct handling of state changes
469 * made by other threads is impossible in any case.
470 */
471
472 mask = 0;
473
474 /*
475 * POLLHUP is certainly not done right. But poll() doesn't
476 * have a notion of HUP in just one direction, and for a
477 * socket the read side is more interesting.
478 *
479 * Some poll() documentation says that POLLHUP is incompatible
480 * with the POLLOUT/POLLWR flags, so somebody should check this
481 * all. But careful, it tends to be safer to return too many
482 * bits than too few, and you can easily break real applications
483 * if you don't tell them that something has hung up!
484 *
485 * Check-me.
486 *
487 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
488 * our fs/select.c). It means that after we received EOF,
489 * poll always returns immediately, making impossible poll() on write()
490 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
491 * if and only if shutdown has been made in both directions.
492 * Actually, it is interesting to look how Solaris and DUX
493 * solve this dilemma. I would prefer, if POLLHUP were maskable,
494 * then we could set it on SND_SHUTDOWN. BTW examples given
495 * in Stevens' books assume exactly this behaviour, it explains
496 * why POLLHUP is incompatible with POLLOUT. --ANK
497 *
498 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
499 * blocking on fresh not-connected or disconnected socket. --ANK
500 */
501 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
502 mask |= POLLHUP;
503 if (sk->sk_shutdown & RCV_SHUTDOWN)
504 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
505
506 /* Connected or passive Fast Open socket? */
507 if (state != TCP_SYN_SENT &&
508 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
509 int target = sock_rcvlowat(sk, 0, INT_MAX);
510
511 if (tp->urg_seq == tp->copied_seq &&
512 !sock_flag(sk, SOCK_URGINLINE) &&
513 tp->urg_data)
514 target++;
515
516 if (tp->rcv_nxt - tp->copied_seq >= target)
517 mask |= POLLIN | POLLRDNORM;
518
519 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
520 if (sk_stream_is_writeable(sk)) {
521 mask |= POLLOUT | POLLWRNORM;
522 } else { /* send SIGIO later */
523 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
524 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
525
526 /* Race breaker. If space is freed after
527 * wspace test but before the flags are set,
528 * IO signal will be lost. Memory barrier
529 * pairs with the input side.
530 */
531 smp_mb__after_atomic();
532 if (sk_stream_is_writeable(sk))
533 mask |= POLLOUT | POLLWRNORM;
534 }
535 } else
536 mask |= POLLOUT | POLLWRNORM;
537
538 if (tp->urg_data & TCP_URG_VALID)
539 mask |= POLLPRI;
540 }
541 /* This barrier is coupled with smp_wmb() in tcp_reset() */
542 smp_rmb();
543 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
544 mask |= POLLERR;
545
546 return mask;
547 }
548 EXPORT_SYMBOL(tcp_poll);
549
550 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
551 {
552 struct tcp_sock *tp = tcp_sk(sk);
553 int answ;
554 bool slow;
555
556 switch (cmd) {
557 case SIOCINQ:
558 if (sk->sk_state == TCP_LISTEN)
559 return -EINVAL;
560
561 slow = lock_sock_fast(sk);
562 answ = tcp_inq(sk);
563 unlock_sock_fast(sk, slow);
564 break;
565 case SIOCATMARK:
566 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
567 break;
568 case SIOCOUTQ:
569 if (sk->sk_state == TCP_LISTEN)
570 return -EINVAL;
571
572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
573 answ = 0;
574 else
575 answ = tp->write_seq - tp->snd_una;
576 break;
577 case SIOCOUTQNSD:
578 if (sk->sk_state == TCP_LISTEN)
579 return -EINVAL;
580
581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 answ = 0;
583 else
584 answ = tp->write_seq - tp->snd_nxt;
585 break;
586 default:
587 return -ENOIOCTLCMD;
588 }
589
590 return put_user(answ, (int __user *)arg);
591 }
592 EXPORT_SYMBOL(tcp_ioctl);
593
594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
595 {
596 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
597 tp->pushed_seq = tp->write_seq;
598 }
599
600 static inline bool forced_push(const struct tcp_sock *tp)
601 {
602 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 }
604
605 static void skb_entail(struct sock *sk, struct sk_buff *skb)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
609
610 skb->csum = 0;
611 tcb->seq = tcb->end_seq = tp->write_seq;
612 tcb->tcp_flags = TCPHDR_ACK;
613 tcb->sacked = 0;
614 __skb_header_release(skb);
615 tcp_add_write_queue_tail(sk, skb);
616 sk->sk_wmem_queued += skb->truesize;
617 sk_mem_charge(sk, skb->truesize);
618 if (tp->nonagle & TCP_NAGLE_PUSH)
619 tp->nonagle &= ~TCP_NAGLE_PUSH;
620
621 tcp_slow_start_after_idle_check(sk);
622 }
623
624 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
625 {
626 if (flags & MSG_OOB)
627 tp->snd_up = tp->write_seq;
628 }
629
630 /* If a not yet filled skb is pushed, do not send it if
631 * we have data packets in Qdisc or NIC queues :
632 * Because TX completion will happen shortly, it gives a chance
633 * to coalesce future sendmsg() payload into this skb, without
634 * need for a timer, and with no latency trade off.
635 * As packets containing data payload have a bigger truesize
636 * than pure acks (dataless) packets, the last checks prevent
637 * autocorking if we only have an ACK in Qdisc/NIC queues,
638 * or if TX completion was delayed after we processed ACK packet.
639 */
640 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
641 int size_goal)
642 {
643 return skb->len < size_goal &&
644 sysctl_tcp_autocorking &&
645 skb != tcp_write_queue_head(sk) &&
646 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
647 }
648
649 static void tcp_push(struct sock *sk, int flags, int mss_now,
650 int nonagle, int size_goal)
651 {
652 struct tcp_sock *tp = tcp_sk(sk);
653 struct sk_buff *skb;
654
655 if (!tcp_send_head(sk))
656 return;
657
658 skb = tcp_write_queue_tail(sk);
659 if (!(flags & MSG_MORE) || forced_push(tp))
660 tcp_mark_push(tp, skb);
661
662 tcp_mark_urg(tp, flags);
663
664 if (tcp_should_autocork(sk, skb, size_goal)) {
665
666 /* avoid atomic op if TSQ_THROTTLED bit is already set */
667 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
669 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
670 }
671 /* It is possible TX completion already happened
672 * before we set TSQ_THROTTLED.
673 */
674 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
675 return;
676 }
677
678 if (flags & MSG_MORE)
679 nonagle = TCP_NAGLE_CORK;
680
681 __tcp_push_pending_frames(sk, mss_now, nonagle);
682 }
683
684 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
685 unsigned int offset, size_t len)
686 {
687 struct tcp_splice_state *tss = rd_desc->arg.data;
688 int ret;
689
690 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
691 min(rd_desc->count, len), tss->flags,
692 skb_socket_splice);
693 if (ret > 0)
694 rd_desc->count -= ret;
695 return ret;
696 }
697
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
699 {
700 /* Store TCP splice context information in read_descriptor_t. */
701 read_descriptor_t rd_desc = {
702 .arg.data = tss,
703 .count = tss->len,
704 };
705
706 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
707 }
708
709 /**
710 * tcp_splice_read - splice data from TCP socket to a pipe
711 * @sock: socket to splice from
712 * @ppos: position (not valid)
713 * @pipe: pipe to splice to
714 * @len: number of bytes to splice
715 * @flags: splice modifier flags
716 *
717 * Description:
718 * Will read pages from given socket and fill them into a pipe.
719 *
720 **/
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 struct pipe_inode_info *pipe, size_t len,
723 unsigned int flags)
724 {
725 struct sock *sk = sock->sk;
726 struct tcp_splice_state tss = {
727 .pipe = pipe,
728 .len = len,
729 .flags = flags,
730 };
731 long timeo;
732 ssize_t spliced;
733 int ret;
734
735 sock_rps_record_flow(sk);
736 /*
737 * We can't seek on a socket input
738 */
739 if (unlikely(*ppos))
740 return -ESPIPE;
741
742 ret = spliced = 0;
743
744 lock_sock(sk);
745
746 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
747 while (tss.len) {
748 ret = __tcp_splice_read(sk, &tss);
749 if (ret < 0)
750 break;
751 else if (!ret) {
752 if (spliced)
753 break;
754 if (sock_flag(sk, SOCK_DONE))
755 break;
756 if (sk->sk_err) {
757 ret = sock_error(sk);
758 break;
759 }
760 if (sk->sk_shutdown & RCV_SHUTDOWN)
761 break;
762 if (sk->sk_state == TCP_CLOSE) {
763 /*
764 * This occurs when user tries to read
765 * from never connected socket.
766 */
767 if (!sock_flag(sk, SOCK_DONE))
768 ret = -ENOTCONN;
769 break;
770 }
771 if (!timeo) {
772 ret = -EAGAIN;
773 break;
774 }
775 sk_wait_data(sk, &timeo, NULL);
776 if (signal_pending(current)) {
777 ret = sock_intr_errno(timeo);
778 break;
779 }
780 continue;
781 }
782 tss.len -= ret;
783 spliced += ret;
784
785 if (!timeo)
786 break;
787 release_sock(sk);
788 lock_sock(sk);
789
790 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
791 (sk->sk_shutdown & RCV_SHUTDOWN) ||
792 signal_pending(current))
793 break;
794 }
795
796 release_sock(sk);
797
798 if (spliced)
799 return spliced;
800
801 return ret;
802 }
803 EXPORT_SYMBOL(tcp_splice_read);
804
805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
806 bool force_schedule)
807 {
808 struct sk_buff *skb;
809
810 /* The TCP header must be at least 32-bit aligned. */
811 size = ALIGN(size, 4);
812
813 if (unlikely(tcp_under_memory_pressure(sk)))
814 sk_mem_reclaim_partial(sk);
815
816 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817 if (likely(skb)) {
818 bool mem_scheduled;
819
820 if (force_schedule) {
821 mem_scheduled = true;
822 sk_forced_mem_schedule(sk, skb->truesize);
823 } else {
824 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
825 }
826 if (likely(mem_scheduled)) {
827 skb_reserve(skb, sk->sk_prot->max_header);
828 /*
829 * Make sure that we have exactly size bytes
830 * available to the caller, no more, no less.
831 */
832 skb->reserved_tailroom = skb->end - skb->tail - size;
833 return skb;
834 }
835 __kfree_skb(skb);
836 } else {
837 sk->sk_prot->enter_memory_pressure(sk);
838 sk_stream_moderate_sndbuf(sk);
839 }
840 return NULL;
841 }
842
843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
844 int large_allowed)
845 {
846 struct tcp_sock *tp = tcp_sk(sk);
847 u32 new_size_goal, size_goal;
848
849 if (!large_allowed || !sk_can_gso(sk))
850 return mss_now;
851
852 /* Note : tcp_tso_autosize() will eventually split this later */
853 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
854 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
855
856 /* We try hard to avoid divides here */
857 size_goal = tp->gso_segs * mss_now;
858 if (unlikely(new_size_goal < size_goal ||
859 new_size_goal >= size_goal + mss_now)) {
860 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
861 sk->sk_gso_max_segs);
862 size_goal = tp->gso_segs * mss_now;
863 }
864
865 return max(size_goal, mss_now);
866 }
867
868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
869 {
870 int mss_now;
871
872 mss_now = tcp_current_mss(sk);
873 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
874
875 return mss_now;
876 }
877
878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
879 size_t size, int flags)
880 {
881 struct tcp_sock *tp = tcp_sk(sk);
882 int mss_now, size_goal;
883 int err;
884 ssize_t copied;
885 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
886
887 /* Wait for a connection to finish. One exception is TCP Fast Open
888 * (passive side) where data is allowed to be sent before a connection
889 * is fully established.
890 */
891 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
892 !tcp_passive_fastopen(sk)) {
893 err = sk_stream_wait_connect(sk, &timeo);
894 if (err != 0)
895 goto out_err;
896 }
897
898 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
899
900 mss_now = tcp_send_mss(sk, &size_goal, flags);
901 copied = 0;
902
903 err = -EPIPE;
904 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
905 goto out_err;
906
907 while (size > 0) {
908 struct sk_buff *skb = tcp_write_queue_tail(sk);
909 int copy, i;
910 bool can_coalesce;
911
912 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
913 !tcp_skb_can_collapse_to(skb)) {
914 new_segment:
915 if (!sk_stream_memory_free(sk))
916 goto wait_for_sndbuf;
917
918 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
919 skb_queue_empty(&sk->sk_write_queue));
920 if (!skb)
921 goto wait_for_memory;
922
923 skb_entail(sk, skb);
924 copy = size_goal;
925 }
926
927 if (copy > size)
928 copy = size;
929
930 i = skb_shinfo(skb)->nr_frags;
931 can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 if (!can_coalesce && i >= sysctl_max_skb_frags) {
933 tcp_mark_push(tp, skb);
934 goto new_segment;
935 }
936 if (!sk_wmem_schedule(sk, copy))
937 goto wait_for_memory;
938
939 if (can_coalesce) {
940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941 } else {
942 get_page(page);
943 skb_fill_page_desc(skb, i, page, offset, copy);
944 }
945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
946
947 skb->len += copy;
948 skb->data_len += copy;
949 skb->truesize += copy;
950 sk->sk_wmem_queued += copy;
951 sk_mem_charge(sk, copy);
952 skb->ip_summed = CHECKSUM_PARTIAL;
953 tp->write_seq += copy;
954 TCP_SKB_CB(skb)->end_seq += copy;
955 tcp_skb_pcount_set(skb, 0);
956
957 if (!copied)
958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
959
960 copied += copy;
961 offset += copy;
962 size -= copy;
963 if (!size) {
964 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
965 goto out;
966 }
967
968 if (skb->len < size_goal || (flags & MSG_OOB))
969 continue;
970
971 if (forced_push(tp)) {
972 tcp_mark_push(tp, skb);
973 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
974 } else if (skb == tcp_send_head(sk))
975 tcp_push_one(sk, mss_now);
976 continue;
977
978 wait_for_sndbuf:
979 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
980 wait_for_memory:
981 tcp_push(sk, flags & ~MSG_MORE, mss_now,
982 TCP_NAGLE_PUSH, size_goal);
983
984 err = sk_stream_wait_memory(sk, &timeo);
985 if (err != 0)
986 goto do_error;
987
988 mss_now = tcp_send_mss(sk, &size_goal, flags);
989 }
990
991 out:
992 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
993 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
994 return copied;
995
996 do_error:
997 if (copied)
998 goto out;
999 out_err:
1000 /* make sure we wake any epoll edge trigger waiter */
1001 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1002 sk->sk_write_space(sk);
1003 return sk_stream_error(sk, flags, err);
1004 }
1005
1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1007 size_t size, int flags)
1008 {
1009 ssize_t res;
1010
1011 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1012 !sk_check_csum_caps(sk))
1013 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1014 flags);
1015
1016 lock_sock(sk);
1017 res = do_tcp_sendpages(sk, page, offset, size, flags);
1018 release_sock(sk);
1019 return res;
1020 }
1021 EXPORT_SYMBOL(tcp_sendpage);
1022
1023 static inline int select_size(const struct sock *sk, bool sg)
1024 {
1025 const struct tcp_sock *tp = tcp_sk(sk);
1026 int tmp = tp->mss_cache;
1027
1028 if (sg) {
1029 if (sk_can_gso(sk)) {
1030 /* Small frames wont use a full page:
1031 * Payload will immediately follow tcp header.
1032 */
1033 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1034 } else {
1035 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1036
1037 if (tmp >= pgbreak &&
1038 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1039 tmp = pgbreak;
1040 }
1041 }
1042
1043 return tmp;
1044 }
1045
1046 void tcp_free_fastopen_req(struct tcp_sock *tp)
1047 {
1048 if (tp->fastopen_req) {
1049 kfree(tp->fastopen_req);
1050 tp->fastopen_req = NULL;
1051 }
1052 }
1053
1054 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1055 int *copied, size_t size)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 int err, flags;
1059
1060 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1061 return -EOPNOTSUPP;
1062 if (tp->fastopen_req)
1063 return -EALREADY; /* Another Fast Open is in progress */
1064
1065 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1066 sk->sk_allocation);
1067 if (unlikely(!tp->fastopen_req))
1068 return -ENOBUFS;
1069 tp->fastopen_req->data = msg;
1070 tp->fastopen_req->size = size;
1071
1072 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1073 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1074 msg->msg_namelen, flags);
1075 *copied = tp->fastopen_req->copied;
1076 tcp_free_fastopen_req(tp);
1077 return err;
1078 }
1079
1080 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1081 {
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 struct sk_buff *skb;
1084 struct sockcm_cookie sockc;
1085 int flags, err, copied = 0;
1086 int mss_now = 0, size_goal, copied_syn = 0;
1087 bool process_backlog = false;
1088 bool sg;
1089 long timeo;
1090
1091 lock_sock(sk);
1092
1093 flags = msg->msg_flags;
1094 if (flags & MSG_FASTOPEN) {
1095 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1096 if (err == -EINPROGRESS && copied_syn > 0)
1097 goto out;
1098 else if (err)
1099 goto out_err;
1100 }
1101
1102 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1103
1104 /* Wait for a connection to finish. One exception is TCP Fast Open
1105 * (passive side) where data is allowed to be sent before a connection
1106 * is fully established.
1107 */
1108 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1109 !tcp_passive_fastopen(sk)) {
1110 err = sk_stream_wait_connect(sk, &timeo);
1111 if (err != 0)
1112 goto do_error;
1113 }
1114
1115 if (unlikely(tp->repair)) {
1116 if (tp->repair_queue == TCP_RECV_QUEUE) {
1117 copied = tcp_send_rcvq(sk, msg, size);
1118 goto out_nopush;
1119 }
1120
1121 err = -EINVAL;
1122 if (tp->repair_queue == TCP_NO_QUEUE)
1123 goto out_err;
1124
1125 /* 'common' sending to sendq */
1126 }
1127
1128 sockc.tsflags = sk->sk_tsflags;
1129 if (msg->msg_controllen) {
1130 err = sock_cmsg_send(sk, msg, &sockc);
1131 if (unlikely(err)) {
1132 err = -EINVAL;
1133 goto out_err;
1134 }
1135 }
1136
1137 /* This should be in poll */
1138 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1139
1140 /* Ok commence sending. */
1141 copied = 0;
1142
1143 restart:
1144 mss_now = tcp_send_mss(sk, &size_goal, flags);
1145
1146 err = -EPIPE;
1147 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1148 goto out_err;
1149
1150 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1151
1152 while (msg_data_left(msg)) {
1153 int copy = 0;
1154 int max = size_goal;
1155
1156 skb = tcp_write_queue_tail(sk);
1157 if (tcp_send_head(sk)) {
1158 if (skb->ip_summed == CHECKSUM_NONE)
1159 max = mss_now;
1160 copy = max - skb->len;
1161 }
1162
1163 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1164 new_segment:
1165 /* Allocate new segment. If the interface is SG,
1166 * allocate skb fitting to single page.
1167 */
1168 if (!sk_stream_memory_free(sk))
1169 goto wait_for_sndbuf;
1170
1171 if (process_backlog && sk_flush_backlog(sk)) {
1172 process_backlog = false;
1173 goto restart;
1174 }
1175 skb = sk_stream_alloc_skb(sk,
1176 select_size(sk, sg),
1177 sk->sk_allocation,
1178 skb_queue_empty(&sk->sk_write_queue));
1179 if (!skb)
1180 goto wait_for_memory;
1181
1182 process_backlog = true;
1183 /*
1184 * Check whether we can use HW checksum.
1185 */
1186 if (sk_check_csum_caps(sk))
1187 skb->ip_summed = CHECKSUM_PARTIAL;
1188
1189 skb_entail(sk, skb);
1190 copy = size_goal;
1191 max = size_goal;
1192
1193 /* All packets are restored as if they have
1194 * already been sent. skb_mstamp isn't set to
1195 * avoid wrong rtt estimation.
1196 */
1197 if (tp->repair)
1198 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1199 }
1200
1201 /* Try to append data to the end of skb. */
1202 if (copy > msg_data_left(msg))
1203 copy = msg_data_left(msg);
1204
1205 /* Where to copy to? */
1206 if (skb_availroom(skb) > 0) {
1207 /* We have some space in skb head. Superb! */
1208 copy = min_t(int, copy, skb_availroom(skb));
1209 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1210 if (err)
1211 goto do_fault;
1212 } else {
1213 bool merge = true;
1214 int i = skb_shinfo(skb)->nr_frags;
1215 struct page_frag *pfrag = sk_page_frag(sk);
1216
1217 if (!sk_page_frag_refill(sk, pfrag))
1218 goto wait_for_memory;
1219
1220 if (!skb_can_coalesce(skb, i, pfrag->page,
1221 pfrag->offset)) {
1222 if (i == sysctl_max_skb_frags || !sg) {
1223 tcp_mark_push(tp, skb);
1224 goto new_segment;
1225 }
1226 merge = false;
1227 }
1228
1229 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1230
1231 if (!sk_wmem_schedule(sk, copy))
1232 goto wait_for_memory;
1233
1234 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1235 pfrag->page,
1236 pfrag->offset,
1237 copy);
1238 if (err)
1239 goto do_error;
1240
1241 /* Update the skb. */
1242 if (merge) {
1243 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1244 } else {
1245 skb_fill_page_desc(skb, i, pfrag->page,
1246 pfrag->offset, copy);
1247 get_page(pfrag->page);
1248 }
1249 pfrag->offset += copy;
1250 }
1251
1252 if (!copied)
1253 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1254
1255 tp->write_seq += copy;
1256 TCP_SKB_CB(skb)->end_seq += copy;
1257 tcp_skb_pcount_set(skb, 0);
1258
1259 copied += copy;
1260 if (!msg_data_left(msg)) {
1261 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1262 if (unlikely(flags & MSG_EOR))
1263 TCP_SKB_CB(skb)->eor = 1;
1264 goto out;
1265 }
1266
1267 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1268 continue;
1269
1270 if (forced_push(tp)) {
1271 tcp_mark_push(tp, skb);
1272 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1273 } else if (skb == tcp_send_head(sk))
1274 tcp_push_one(sk, mss_now);
1275 continue;
1276
1277 wait_for_sndbuf:
1278 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1279 wait_for_memory:
1280 if (copied)
1281 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1282 TCP_NAGLE_PUSH, size_goal);
1283
1284 err = sk_stream_wait_memory(sk, &timeo);
1285 if (err != 0)
1286 goto do_error;
1287
1288 mss_now = tcp_send_mss(sk, &size_goal, flags);
1289 }
1290
1291 out:
1292 if (copied)
1293 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1294 out_nopush:
1295 release_sock(sk);
1296 return copied + copied_syn;
1297
1298 do_fault:
1299 if (!skb->len) {
1300 tcp_unlink_write_queue(skb, sk);
1301 /* It is the one place in all of TCP, except connection
1302 * reset, where we can be unlinking the send_head.
1303 */
1304 tcp_check_send_head(sk, skb);
1305 sk_wmem_free_skb(sk, skb);
1306 }
1307
1308 do_error:
1309 if (copied + copied_syn)
1310 goto out;
1311 out_err:
1312 err = sk_stream_error(sk, flags, err);
1313 /* make sure we wake any epoll edge trigger waiter */
1314 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1315 sk->sk_write_space(sk);
1316 release_sock(sk);
1317 return err;
1318 }
1319 EXPORT_SYMBOL(tcp_sendmsg);
1320
1321 /*
1322 * Handle reading urgent data. BSD has very simple semantics for
1323 * this, no blocking and very strange errors 8)
1324 */
1325
1326 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1327 {
1328 struct tcp_sock *tp = tcp_sk(sk);
1329
1330 /* No URG data to read. */
1331 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1332 tp->urg_data == TCP_URG_READ)
1333 return -EINVAL; /* Yes this is right ! */
1334
1335 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1336 return -ENOTCONN;
1337
1338 if (tp->urg_data & TCP_URG_VALID) {
1339 int err = 0;
1340 char c = tp->urg_data;
1341
1342 if (!(flags & MSG_PEEK))
1343 tp->urg_data = TCP_URG_READ;
1344
1345 /* Read urgent data. */
1346 msg->msg_flags |= MSG_OOB;
1347
1348 if (len > 0) {
1349 if (!(flags & MSG_TRUNC))
1350 err = memcpy_to_msg(msg, &c, 1);
1351 len = 1;
1352 } else
1353 msg->msg_flags |= MSG_TRUNC;
1354
1355 return err ? -EFAULT : len;
1356 }
1357
1358 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1359 return 0;
1360
1361 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1362 * the available implementations agree in this case:
1363 * this call should never block, independent of the
1364 * blocking state of the socket.
1365 * Mike <pall@rz.uni-karlsruhe.de>
1366 */
1367 return -EAGAIN;
1368 }
1369
1370 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1371 {
1372 struct sk_buff *skb;
1373 int copied = 0, err = 0;
1374
1375 /* XXX -- need to support SO_PEEK_OFF */
1376
1377 skb_queue_walk(&sk->sk_write_queue, skb) {
1378 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1379 if (err)
1380 break;
1381
1382 copied += skb->len;
1383 }
1384
1385 return err ?: copied;
1386 }
1387
1388 /* Clean up the receive buffer for full frames taken by the user,
1389 * then send an ACK if necessary. COPIED is the number of bytes
1390 * tcp_recvmsg has given to the user so far, it speeds up the
1391 * calculation of whether or not we must ACK for the sake of
1392 * a window update.
1393 */
1394 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 bool time_to_ack = false;
1398
1399 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1400
1401 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1402 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1403 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1404
1405 if (inet_csk_ack_scheduled(sk)) {
1406 const struct inet_connection_sock *icsk = inet_csk(sk);
1407 /* Delayed ACKs frequently hit locked sockets during bulk
1408 * receive. */
1409 if (icsk->icsk_ack.blocked ||
1410 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1411 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1412 /*
1413 * If this read emptied read buffer, we send ACK, if
1414 * connection is not bidirectional, user drained
1415 * receive buffer and there was a small segment
1416 * in queue.
1417 */
1418 (copied > 0 &&
1419 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1420 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1421 !icsk->icsk_ack.pingpong)) &&
1422 !atomic_read(&sk->sk_rmem_alloc)))
1423 time_to_ack = true;
1424 }
1425
1426 /* We send an ACK if we can now advertise a non-zero window
1427 * which has been raised "significantly".
1428 *
1429 * Even if window raised up to infinity, do not send window open ACK
1430 * in states, where we will not receive more. It is useless.
1431 */
1432 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1433 __u32 rcv_window_now = tcp_receive_window(tp);
1434
1435 /* Optimize, __tcp_select_window() is not cheap. */
1436 if (2*rcv_window_now <= tp->window_clamp) {
1437 __u32 new_window = __tcp_select_window(sk);
1438
1439 /* Send ACK now, if this read freed lots of space
1440 * in our buffer. Certainly, new_window is new window.
1441 * We can advertise it now, if it is not less than current one.
1442 * "Lots" means "at least twice" here.
1443 */
1444 if (new_window && new_window >= 2 * rcv_window_now)
1445 time_to_ack = true;
1446 }
1447 }
1448 if (time_to_ack)
1449 tcp_send_ack(sk);
1450 }
1451
1452 static void tcp_prequeue_process(struct sock *sk)
1453 {
1454 struct sk_buff *skb;
1455 struct tcp_sock *tp = tcp_sk(sk);
1456
1457 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1458
1459 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1460 sk_backlog_rcv(sk, skb);
1461
1462 /* Clear memory counter. */
1463 tp->ucopy.memory = 0;
1464 }
1465
1466 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1467 {
1468 struct sk_buff *skb;
1469 u32 offset;
1470
1471 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1472 offset = seq - TCP_SKB_CB(skb)->seq;
1473 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1474 pr_err_once("%s: found a SYN, please report !\n", __func__);
1475 offset--;
1476 }
1477 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1478 *off = offset;
1479 return skb;
1480 }
1481 /* This looks weird, but this can happen if TCP collapsing
1482 * splitted a fat GRO packet, while we released socket lock
1483 * in skb_splice_bits()
1484 */
1485 sk_eat_skb(sk, skb);
1486 }
1487 return NULL;
1488 }
1489
1490 /*
1491 * This routine provides an alternative to tcp_recvmsg() for routines
1492 * that would like to handle copying from skbuffs directly in 'sendfile'
1493 * fashion.
1494 * Note:
1495 * - It is assumed that the socket was locked by the caller.
1496 * - The routine does not block.
1497 * - At present, there is no support for reading OOB data
1498 * or for 'peeking' the socket using this routine
1499 * (although both would be easy to implement).
1500 */
1501 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1502 sk_read_actor_t recv_actor)
1503 {
1504 struct sk_buff *skb;
1505 struct tcp_sock *tp = tcp_sk(sk);
1506 u32 seq = tp->copied_seq;
1507 u32 offset;
1508 int copied = 0;
1509
1510 if (sk->sk_state == TCP_LISTEN)
1511 return -ENOTCONN;
1512 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1513 if (offset < skb->len) {
1514 int used;
1515 size_t len;
1516
1517 len = skb->len - offset;
1518 /* Stop reading if we hit a patch of urgent data */
1519 if (tp->urg_data) {
1520 u32 urg_offset = tp->urg_seq - seq;
1521 if (urg_offset < len)
1522 len = urg_offset;
1523 if (!len)
1524 break;
1525 }
1526 used = recv_actor(desc, skb, offset, len);
1527 if (used <= 0) {
1528 if (!copied)
1529 copied = used;
1530 break;
1531 } else if (used <= len) {
1532 seq += used;
1533 copied += used;
1534 offset += used;
1535 }
1536 /* If recv_actor drops the lock (e.g. TCP splice
1537 * receive) the skb pointer might be invalid when
1538 * getting here: tcp_collapse might have deleted it
1539 * while aggregating skbs from the socket queue.
1540 */
1541 skb = tcp_recv_skb(sk, seq - 1, &offset);
1542 if (!skb)
1543 break;
1544 /* TCP coalescing might have appended data to the skb.
1545 * Try to splice more frags
1546 */
1547 if (offset + 1 != skb->len)
1548 continue;
1549 }
1550 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1551 sk_eat_skb(sk, skb);
1552 ++seq;
1553 break;
1554 }
1555 sk_eat_skb(sk, skb);
1556 if (!desc->count)
1557 break;
1558 tp->copied_seq = seq;
1559 }
1560 tp->copied_seq = seq;
1561
1562 tcp_rcv_space_adjust(sk);
1563
1564 /* Clean up data we have read: This will do ACK frames. */
1565 if (copied > 0) {
1566 tcp_recv_skb(sk, seq, &offset);
1567 tcp_cleanup_rbuf(sk, copied);
1568 }
1569 return copied;
1570 }
1571 EXPORT_SYMBOL(tcp_read_sock);
1572
1573 int tcp_peek_len(struct socket *sock)
1574 {
1575 return tcp_inq(sock->sk);
1576 }
1577 EXPORT_SYMBOL(tcp_peek_len);
1578
1579 /*
1580 * This routine copies from a sock struct into the user buffer.
1581 *
1582 * Technical note: in 2.3 we work on _locked_ socket, so that
1583 * tricks with *seq access order and skb->users are not required.
1584 * Probably, code can be easily improved even more.
1585 */
1586
1587 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1588 int flags, int *addr_len)
1589 {
1590 struct tcp_sock *tp = tcp_sk(sk);
1591 int copied = 0;
1592 u32 peek_seq;
1593 u32 *seq;
1594 unsigned long used;
1595 int err;
1596 int target; /* Read at least this many bytes */
1597 long timeo;
1598 struct task_struct *user_recv = NULL;
1599 struct sk_buff *skb, *last;
1600 u32 urg_hole = 0;
1601
1602 if (unlikely(flags & MSG_ERRQUEUE))
1603 return inet_recv_error(sk, msg, len, addr_len);
1604
1605 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1606 (sk->sk_state == TCP_ESTABLISHED))
1607 sk_busy_loop(sk, nonblock);
1608
1609 lock_sock(sk);
1610
1611 err = -ENOTCONN;
1612 if (sk->sk_state == TCP_LISTEN)
1613 goto out;
1614
1615 timeo = sock_rcvtimeo(sk, nonblock);
1616
1617 /* Urgent data needs to be handled specially. */
1618 if (flags & MSG_OOB)
1619 goto recv_urg;
1620
1621 if (unlikely(tp->repair)) {
1622 err = -EPERM;
1623 if (!(flags & MSG_PEEK))
1624 goto out;
1625
1626 if (tp->repair_queue == TCP_SEND_QUEUE)
1627 goto recv_sndq;
1628
1629 err = -EINVAL;
1630 if (tp->repair_queue == TCP_NO_QUEUE)
1631 goto out;
1632
1633 /* 'common' recv queue MSG_PEEK-ing */
1634 }
1635
1636 seq = &tp->copied_seq;
1637 if (flags & MSG_PEEK) {
1638 peek_seq = tp->copied_seq;
1639 seq = &peek_seq;
1640 }
1641
1642 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1643
1644 do {
1645 u32 offset;
1646
1647 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1648 if (tp->urg_data && tp->urg_seq == *seq) {
1649 if (copied)
1650 break;
1651 if (signal_pending(current)) {
1652 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1653 break;
1654 }
1655 }
1656
1657 /* Next get a buffer. */
1658
1659 last = skb_peek_tail(&sk->sk_receive_queue);
1660 skb_queue_walk(&sk->sk_receive_queue, skb) {
1661 last = skb;
1662 /* Now that we have two receive queues this
1663 * shouldn't happen.
1664 */
1665 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1666 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1667 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1668 flags))
1669 break;
1670
1671 offset = *seq - TCP_SKB_CB(skb)->seq;
1672 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1673 pr_err_once("%s: found a SYN, please report !\n", __func__);
1674 offset--;
1675 }
1676 if (offset < skb->len)
1677 goto found_ok_skb;
1678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1679 goto found_fin_ok;
1680 WARN(!(flags & MSG_PEEK),
1681 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1682 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1683 }
1684
1685 /* Well, if we have backlog, try to process it now yet. */
1686
1687 if (copied >= target && !sk->sk_backlog.tail)
1688 break;
1689
1690 if (copied) {
1691 if (sk->sk_err ||
1692 sk->sk_state == TCP_CLOSE ||
1693 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1694 !timeo ||
1695 signal_pending(current))
1696 break;
1697 } else {
1698 if (sock_flag(sk, SOCK_DONE))
1699 break;
1700
1701 if (sk->sk_err) {
1702 copied = sock_error(sk);
1703 break;
1704 }
1705
1706 if (sk->sk_shutdown & RCV_SHUTDOWN)
1707 break;
1708
1709 if (sk->sk_state == TCP_CLOSE) {
1710 if (!sock_flag(sk, SOCK_DONE)) {
1711 /* This occurs when user tries to read
1712 * from never connected socket.
1713 */
1714 copied = -ENOTCONN;
1715 break;
1716 }
1717 break;
1718 }
1719
1720 if (!timeo) {
1721 copied = -EAGAIN;
1722 break;
1723 }
1724
1725 if (signal_pending(current)) {
1726 copied = sock_intr_errno(timeo);
1727 break;
1728 }
1729 }
1730
1731 tcp_cleanup_rbuf(sk, copied);
1732
1733 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1734 /* Install new reader */
1735 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1736 user_recv = current;
1737 tp->ucopy.task = user_recv;
1738 tp->ucopy.msg = msg;
1739 }
1740
1741 tp->ucopy.len = len;
1742
1743 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1744 !(flags & (MSG_PEEK | MSG_TRUNC)));
1745
1746 /* Ugly... If prequeue is not empty, we have to
1747 * process it before releasing socket, otherwise
1748 * order will be broken at second iteration.
1749 * More elegant solution is required!!!
1750 *
1751 * Look: we have the following (pseudo)queues:
1752 *
1753 * 1. packets in flight
1754 * 2. backlog
1755 * 3. prequeue
1756 * 4. receive_queue
1757 *
1758 * Each queue can be processed only if the next ones
1759 * are empty. At this point we have empty receive_queue.
1760 * But prequeue _can_ be not empty after 2nd iteration,
1761 * when we jumped to start of loop because backlog
1762 * processing added something to receive_queue.
1763 * We cannot release_sock(), because backlog contains
1764 * packets arrived _after_ prequeued ones.
1765 *
1766 * Shortly, algorithm is clear --- to process all
1767 * the queues in order. We could make it more directly,
1768 * requeueing packets from backlog to prequeue, if
1769 * is not empty. It is more elegant, but eats cycles,
1770 * unfortunately.
1771 */
1772 if (!skb_queue_empty(&tp->ucopy.prequeue))
1773 goto do_prequeue;
1774
1775 /* __ Set realtime policy in scheduler __ */
1776 }
1777
1778 if (copied >= target) {
1779 /* Do not sleep, just process backlog. */
1780 release_sock(sk);
1781 lock_sock(sk);
1782 } else {
1783 sk_wait_data(sk, &timeo, last);
1784 }
1785
1786 if (user_recv) {
1787 int chunk;
1788
1789 /* __ Restore normal policy in scheduler __ */
1790
1791 chunk = len - tp->ucopy.len;
1792 if (chunk != 0) {
1793 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1794 len -= chunk;
1795 copied += chunk;
1796 }
1797
1798 if (tp->rcv_nxt == tp->copied_seq &&
1799 !skb_queue_empty(&tp->ucopy.prequeue)) {
1800 do_prequeue:
1801 tcp_prequeue_process(sk);
1802
1803 chunk = len - tp->ucopy.len;
1804 if (chunk != 0) {
1805 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1806 len -= chunk;
1807 copied += chunk;
1808 }
1809 }
1810 }
1811 if ((flags & MSG_PEEK) &&
1812 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1813 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1814 current->comm,
1815 task_pid_nr(current));
1816 peek_seq = tp->copied_seq;
1817 }
1818 continue;
1819
1820 found_ok_skb:
1821 /* Ok so how much can we use? */
1822 used = skb->len - offset;
1823 if (len < used)
1824 used = len;
1825
1826 /* Do we have urgent data here? */
1827 if (tp->urg_data) {
1828 u32 urg_offset = tp->urg_seq - *seq;
1829 if (urg_offset < used) {
1830 if (!urg_offset) {
1831 if (!sock_flag(sk, SOCK_URGINLINE)) {
1832 ++*seq;
1833 urg_hole++;
1834 offset++;
1835 used--;
1836 if (!used)
1837 goto skip_copy;
1838 }
1839 } else
1840 used = urg_offset;
1841 }
1842 }
1843
1844 if (!(flags & MSG_TRUNC)) {
1845 err = skb_copy_datagram_msg(skb, offset, msg, used);
1846 if (err) {
1847 /* Exception. Bailout! */
1848 if (!copied)
1849 copied = -EFAULT;
1850 break;
1851 }
1852 }
1853
1854 *seq += used;
1855 copied += used;
1856 len -= used;
1857
1858 tcp_rcv_space_adjust(sk);
1859
1860 skip_copy:
1861 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1862 tp->urg_data = 0;
1863 tcp_fast_path_check(sk);
1864 }
1865 if (used + offset < skb->len)
1866 continue;
1867
1868 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1869 goto found_fin_ok;
1870 if (!(flags & MSG_PEEK))
1871 sk_eat_skb(sk, skb);
1872 continue;
1873
1874 found_fin_ok:
1875 /* Process the FIN. */
1876 ++*seq;
1877 if (!(flags & MSG_PEEK))
1878 sk_eat_skb(sk, skb);
1879 break;
1880 } while (len > 0);
1881
1882 if (user_recv) {
1883 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1884 int chunk;
1885
1886 tp->ucopy.len = copied > 0 ? len : 0;
1887
1888 tcp_prequeue_process(sk);
1889
1890 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1891 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1892 len -= chunk;
1893 copied += chunk;
1894 }
1895 }
1896
1897 tp->ucopy.task = NULL;
1898 tp->ucopy.len = 0;
1899 }
1900
1901 /* According to UNIX98, msg_name/msg_namelen are ignored
1902 * on connected socket. I was just happy when found this 8) --ANK
1903 */
1904
1905 /* Clean up data we have read: This will do ACK frames. */
1906 tcp_cleanup_rbuf(sk, copied);
1907
1908 release_sock(sk);
1909 return copied;
1910
1911 out:
1912 release_sock(sk);
1913 return err;
1914
1915 recv_urg:
1916 err = tcp_recv_urg(sk, msg, len, flags);
1917 goto out;
1918
1919 recv_sndq:
1920 err = tcp_peek_sndq(sk, msg, len);
1921 goto out;
1922 }
1923 EXPORT_SYMBOL(tcp_recvmsg);
1924
1925 void tcp_set_state(struct sock *sk, int state)
1926 {
1927 int oldstate = sk->sk_state;
1928
1929 switch (state) {
1930 case TCP_ESTABLISHED:
1931 if (oldstate != TCP_ESTABLISHED)
1932 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1933 break;
1934
1935 case TCP_CLOSE:
1936 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1937 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1938
1939 sk->sk_prot->unhash(sk);
1940 if (inet_csk(sk)->icsk_bind_hash &&
1941 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1942 inet_put_port(sk);
1943 /* fall through */
1944 default:
1945 if (oldstate == TCP_ESTABLISHED)
1946 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1947 }
1948
1949 /* Change state AFTER socket is unhashed to avoid closed
1950 * socket sitting in hash tables.
1951 */
1952 sk_state_store(sk, state);
1953
1954 #ifdef STATE_TRACE
1955 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1956 #endif
1957 }
1958 EXPORT_SYMBOL_GPL(tcp_set_state);
1959
1960 /*
1961 * State processing on a close. This implements the state shift for
1962 * sending our FIN frame. Note that we only send a FIN for some
1963 * states. A shutdown() may have already sent the FIN, or we may be
1964 * closed.
1965 */
1966
1967 static const unsigned char new_state[16] = {
1968 /* current state: new state: action: */
1969 [0 /* (Invalid) */] = TCP_CLOSE,
1970 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1971 [TCP_SYN_SENT] = TCP_CLOSE,
1972 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1973 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1974 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1975 [TCP_TIME_WAIT] = TCP_CLOSE,
1976 [TCP_CLOSE] = TCP_CLOSE,
1977 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1978 [TCP_LAST_ACK] = TCP_LAST_ACK,
1979 [TCP_LISTEN] = TCP_CLOSE,
1980 [TCP_CLOSING] = TCP_CLOSING,
1981 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1982 };
1983
1984 static int tcp_close_state(struct sock *sk)
1985 {
1986 int next = (int)new_state[sk->sk_state];
1987 int ns = next & TCP_STATE_MASK;
1988
1989 tcp_set_state(sk, ns);
1990
1991 return next & TCP_ACTION_FIN;
1992 }
1993
1994 /*
1995 * Shutdown the sending side of a connection. Much like close except
1996 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1997 */
1998
1999 void tcp_shutdown(struct sock *sk, int how)
2000 {
2001 /* We need to grab some memory, and put together a FIN,
2002 * and then put it into the queue to be sent.
2003 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2004 */
2005 if (!(how & SEND_SHUTDOWN))
2006 return;
2007
2008 /* If we've already sent a FIN, or it's a closed state, skip this. */
2009 if ((1 << sk->sk_state) &
2010 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2011 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2012 /* Clear out any half completed packets. FIN if needed. */
2013 if (tcp_close_state(sk))
2014 tcp_send_fin(sk);
2015 }
2016 }
2017 EXPORT_SYMBOL(tcp_shutdown);
2018
2019 bool tcp_check_oom(struct sock *sk, int shift)
2020 {
2021 bool too_many_orphans, out_of_socket_memory;
2022
2023 too_many_orphans = tcp_too_many_orphans(sk, shift);
2024 out_of_socket_memory = tcp_out_of_memory(sk);
2025
2026 if (too_many_orphans)
2027 net_info_ratelimited("too many orphaned sockets\n");
2028 if (out_of_socket_memory)
2029 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2030 return too_many_orphans || out_of_socket_memory;
2031 }
2032
2033 void tcp_close(struct sock *sk, long timeout)
2034 {
2035 struct sk_buff *skb;
2036 int data_was_unread = 0;
2037 int state;
2038
2039 lock_sock(sk);
2040 sk->sk_shutdown = SHUTDOWN_MASK;
2041
2042 if (sk->sk_state == TCP_LISTEN) {
2043 tcp_set_state(sk, TCP_CLOSE);
2044
2045 /* Special case. */
2046 inet_csk_listen_stop(sk);
2047
2048 goto adjudge_to_death;
2049 }
2050
2051 /* We need to flush the recv. buffs. We do this only on the
2052 * descriptor close, not protocol-sourced closes, because the
2053 * reader process may not have drained the data yet!
2054 */
2055 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2056 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2057
2058 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2059 len--;
2060 data_was_unread += len;
2061 __kfree_skb(skb);
2062 }
2063
2064 sk_mem_reclaim(sk);
2065
2066 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2067 if (sk->sk_state == TCP_CLOSE)
2068 goto adjudge_to_death;
2069
2070 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2071 * data was lost. To witness the awful effects of the old behavior of
2072 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2073 * GET in an FTP client, suspend the process, wait for the client to
2074 * advertise a zero window, then kill -9 the FTP client, wheee...
2075 * Note: timeout is always zero in such a case.
2076 */
2077 if (unlikely(tcp_sk(sk)->repair)) {
2078 sk->sk_prot->disconnect(sk, 0);
2079 } else if (data_was_unread) {
2080 /* Unread data was tossed, zap the connection. */
2081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2082 tcp_set_state(sk, TCP_CLOSE);
2083 tcp_send_active_reset(sk, sk->sk_allocation);
2084 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2085 /* Check zero linger _after_ checking for unread data. */
2086 sk->sk_prot->disconnect(sk, 0);
2087 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2088 } else if (tcp_close_state(sk)) {
2089 /* We FIN if the application ate all the data before
2090 * zapping the connection.
2091 */
2092
2093 /* RED-PEN. Formally speaking, we have broken TCP state
2094 * machine. State transitions:
2095 *
2096 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2097 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2098 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2099 *
2100 * are legal only when FIN has been sent (i.e. in window),
2101 * rather than queued out of window. Purists blame.
2102 *
2103 * F.e. "RFC state" is ESTABLISHED,
2104 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2105 *
2106 * The visible declinations are that sometimes
2107 * we enter time-wait state, when it is not required really
2108 * (harmless), do not send active resets, when they are
2109 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2110 * they look as CLOSING or LAST_ACK for Linux)
2111 * Probably, I missed some more holelets.
2112 * --ANK
2113 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2114 * in a single packet! (May consider it later but will
2115 * probably need API support or TCP_CORK SYN-ACK until
2116 * data is written and socket is closed.)
2117 */
2118 tcp_send_fin(sk);
2119 }
2120
2121 sk_stream_wait_close(sk, timeout);
2122
2123 adjudge_to_death:
2124 state = sk->sk_state;
2125 sock_hold(sk);
2126 sock_orphan(sk);
2127
2128 /* It is the last release_sock in its life. It will remove backlog. */
2129 release_sock(sk);
2130
2131
2132 /* Now socket is owned by kernel and we acquire BH lock
2133 to finish close. No need to check for user refs.
2134 */
2135 local_bh_disable();
2136 bh_lock_sock(sk);
2137 WARN_ON(sock_owned_by_user(sk));
2138
2139 percpu_counter_inc(sk->sk_prot->orphan_count);
2140
2141 /* Have we already been destroyed by a softirq or backlog? */
2142 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2143 goto out;
2144
2145 /* This is a (useful) BSD violating of the RFC. There is a
2146 * problem with TCP as specified in that the other end could
2147 * keep a socket open forever with no application left this end.
2148 * We use a 1 minute timeout (about the same as BSD) then kill
2149 * our end. If they send after that then tough - BUT: long enough
2150 * that we won't make the old 4*rto = almost no time - whoops
2151 * reset mistake.
2152 *
2153 * Nope, it was not mistake. It is really desired behaviour
2154 * f.e. on http servers, when such sockets are useless, but
2155 * consume significant resources. Let's do it with special
2156 * linger2 option. --ANK
2157 */
2158
2159 if (sk->sk_state == TCP_FIN_WAIT2) {
2160 struct tcp_sock *tp = tcp_sk(sk);
2161 if (tp->linger2 < 0) {
2162 tcp_set_state(sk, TCP_CLOSE);
2163 tcp_send_active_reset(sk, GFP_ATOMIC);
2164 __NET_INC_STATS(sock_net(sk),
2165 LINUX_MIB_TCPABORTONLINGER);
2166 } else {
2167 const int tmo = tcp_fin_time(sk);
2168
2169 if (tmo > TCP_TIMEWAIT_LEN) {
2170 inet_csk_reset_keepalive_timer(sk,
2171 tmo - TCP_TIMEWAIT_LEN);
2172 } else {
2173 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2174 goto out;
2175 }
2176 }
2177 }
2178 if (sk->sk_state != TCP_CLOSE) {
2179 sk_mem_reclaim(sk);
2180 if (tcp_check_oom(sk, 0)) {
2181 tcp_set_state(sk, TCP_CLOSE);
2182 tcp_send_active_reset(sk, GFP_ATOMIC);
2183 __NET_INC_STATS(sock_net(sk),
2184 LINUX_MIB_TCPABORTONMEMORY);
2185 }
2186 }
2187
2188 if (sk->sk_state == TCP_CLOSE) {
2189 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2190 /* We could get here with a non-NULL req if the socket is
2191 * aborted (e.g., closed with unread data) before 3WHS
2192 * finishes.
2193 */
2194 if (req)
2195 reqsk_fastopen_remove(sk, req, false);
2196 inet_csk_destroy_sock(sk);
2197 }
2198 /* Otherwise, socket is reprieved until protocol close. */
2199
2200 out:
2201 bh_unlock_sock(sk);
2202 local_bh_enable();
2203 sock_put(sk);
2204 }
2205 EXPORT_SYMBOL(tcp_close);
2206
2207 /* These states need RST on ABORT according to RFC793 */
2208
2209 static inline bool tcp_need_reset(int state)
2210 {
2211 return (1 << state) &
2212 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2213 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2214 }
2215
2216 int tcp_disconnect(struct sock *sk, int flags)
2217 {
2218 struct inet_sock *inet = inet_sk(sk);
2219 struct inet_connection_sock *icsk = inet_csk(sk);
2220 struct tcp_sock *tp = tcp_sk(sk);
2221 int err = 0;
2222 int old_state = sk->sk_state;
2223
2224 if (old_state != TCP_CLOSE)
2225 tcp_set_state(sk, TCP_CLOSE);
2226
2227 /* ABORT function of RFC793 */
2228 if (old_state == TCP_LISTEN) {
2229 inet_csk_listen_stop(sk);
2230 } else if (unlikely(tp->repair)) {
2231 sk->sk_err = ECONNABORTED;
2232 } else if (tcp_need_reset(old_state) ||
2233 (tp->snd_nxt != tp->write_seq &&
2234 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2235 /* The last check adjusts for discrepancy of Linux wrt. RFC
2236 * states
2237 */
2238 tcp_send_active_reset(sk, gfp_any());
2239 sk->sk_err = ECONNRESET;
2240 } else if (old_state == TCP_SYN_SENT)
2241 sk->sk_err = ECONNRESET;
2242
2243 tcp_clear_xmit_timers(sk);
2244 __skb_queue_purge(&sk->sk_receive_queue);
2245 tcp_write_queue_purge(sk);
2246 skb_rbtree_purge(&tp->out_of_order_queue);
2247
2248 inet->inet_dport = 0;
2249
2250 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2251 inet_reset_saddr(sk);
2252
2253 sk->sk_shutdown = 0;
2254 sock_reset_flag(sk, SOCK_DONE);
2255 tp->srtt_us = 0;
2256 tp->write_seq += tp->max_window + 2;
2257 if (tp->write_seq == 0)
2258 tp->write_seq = 1;
2259 icsk->icsk_backoff = 0;
2260 tp->snd_cwnd = 2;
2261 icsk->icsk_probes_out = 0;
2262 tp->packets_out = 0;
2263 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2264 tp->snd_cwnd_cnt = 0;
2265 tp->window_clamp = 0;
2266 tcp_set_ca_state(sk, TCP_CA_Open);
2267 tcp_clear_retrans(tp);
2268 inet_csk_delack_init(sk);
2269 tcp_init_send_head(sk);
2270 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2271 __sk_dst_reset(sk);
2272
2273 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2274
2275 sk->sk_error_report(sk);
2276 return err;
2277 }
2278 EXPORT_SYMBOL(tcp_disconnect);
2279
2280 static inline bool tcp_can_repair_sock(const struct sock *sk)
2281 {
2282 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2283 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2284 }
2285
2286 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2287 {
2288 struct tcp_repair_window opt;
2289
2290 if (!tp->repair)
2291 return -EPERM;
2292
2293 if (len != sizeof(opt))
2294 return -EINVAL;
2295
2296 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2297 return -EFAULT;
2298
2299 if (opt.max_window < opt.snd_wnd)
2300 return -EINVAL;
2301
2302 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2303 return -EINVAL;
2304
2305 if (after(opt.rcv_wup, tp->rcv_nxt))
2306 return -EINVAL;
2307
2308 tp->snd_wl1 = opt.snd_wl1;
2309 tp->snd_wnd = opt.snd_wnd;
2310 tp->max_window = opt.max_window;
2311
2312 tp->rcv_wnd = opt.rcv_wnd;
2313 tp->rcv_wup = opt.rcv_wup;
2314
2315 return 0;
2316 }
2317
2318 static int tcp_repair_options_est(struct tcp_sock *tp,
2319 struct tcp_repair_opt __user *optbuf, unsigned int len)
2320 {
2321 struct tcp_repair_opt opt;
2322
2323 while (len >= sizeof(opt)) {
2324 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2325 return -EFAULT;
2326
2327 optbuf++;
2328 len -= sizeof(opt);
2329
2330 switch (opt.opt_code) {
2331 case TCPOPT_MSS:
2332 tp->rx_opt.mss_clamp = opt.opt_val;
2333 break;
2334 case TCPOPT_WINDOW:
2335 {
2336 u16 snd_wscale = opt.opt_val & 0xFFFF;
2337 u16 rcv_wscale = opt.opt_val >> 16;
2338
2339 if (snd_wscale > 14 || rcv_wscale > 14)
2340 return -EFBIG;
2341
2342 tp->rx_opt.snd_wscale = snd_wscale;
2343 tp->rx_opt.rcv_wscale = rcv_wscale;
2344 tp->rx_opt.wscale_ok = 1;
2345 }
2346 break;
2347 case TCPOPT_SACK_PERM:
2348 if (opt.opt_val != 0)
2349 return -EINVAL;
2350
2351 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2352 if (sysctl_tcp_fack)
2353 tcp_enable_fack(tp);
2354 break;
2355 case TCPOPT_TIMESTAMP:
2356 if (opt.opt_val != 0)
2357 return -EINVAL;
2358
2359 tp->rx_opt.tstamp_ok = 1;
2360 break;
2361 }
2362 }
2363
2364 return 0;
2365 }
2366
2367 /*
2368 * Socket option code for TCP.
2369 */
2370 static int do_tcp_setsockopt(struct sock *sk, int level,
2371 int optname, char __user *optval, unsigned int optlen)
2372 {
2373 struct tcp_sock *tp = tcp_sk(sk);
2374 struct inet_connection_sock *icsk = inet_csk(sk);
2375 struct net *net = sock_net(sk);
2376 int val;
2377 int err = 0;
2378
2379 /* These are data/string values, all the others are ints */
2380 switch (optname) {
2381 case TCP_CONGESTION: {
2382 char name[TCP_CA_NAME_MAX];
2383
2384 if (optlen < 1)
2385 return -EINVAL;
2386
2387 val = strncpy_from_user(name, optval,
2388 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2389 if (val < 0)
2390 return -EFAULT;
2391 name[val] = 0;
2392
2393 lock_sock(sk);
2394 err = tcp_set_congestion_control(sk, name);
2395 release_sock(sk);
2396 return err;
2397 }
2398 default:
2399 /* fallthru */
2400 break;
2401 }
2402
2403 if (optlen < sizeof(int))
2404 return -EINVAL;
2405
2406 if (get_user(val, (int __user *)optval))
2407 return -EFAULT;
2408
2409 lock_sock(sk);
2410
2411 switch (optname) {
2412 case TCP_MAXSEG:
2413 /* Values greater than interface MTU won't take effect. However
2414 * at the point when this call is done we typically don't yet
2415 * know which interface is going to be used */
2416 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2417 err = -EINVAL;
2418 break;
2419 }
2420 tp->rx_opt.user_mss = val;
2421 break;
2422
2423 case TCP_NODELAY:
2424 if (val) {
2425 /* TCP_NODELAY is weaker than TCP_CORK, so that
2426 * this option on corked socket is remembered, but
2427 * it is not activated until cork is cleared.
2428 *
2429 * However, when TCP_NODELAY is set we make
2430 * an explicit push, which overrides even TCP_CORK
2431 * for currently queued segments.
2432 */
2433 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2434 tcp_push_pending_frames(sk);
2435 } else {
2436 tp->nonagle &= ~TCP_NAGLE_OFF;
2437 }
2438 break;
2439
2440 case TCP_THIN_LINEAR_TIMEOUTS:
2441 if (val < 0 || val > 1)
2442 err = -EINVAL;
2443 else
2444 tp->thin_lto = val;
2445 break;
2446
2447 case TCP_THIN_DUPACK:
2448 if (val < 0 || val > 1)
2449 err = -EINVAL;
2450 else {
2451 tp->thin_dupack = val;
2452 if (tp->thin_dupack)
2453 tcp_disable_early_retrans(tp);
2454 }
2455 break;
2456
2457 case TCP_REPAIR:
2458 if (!tcp_can_repair_sock(sk))
2459 err = -EPERM;
2460 else if (val == 1) {
2461 tp->repair = 1;
2462 sk->sk_reuse = SK_FORCE_REUSE;
2463 tp->repair_queue = TCP_NO_QUEUE;
2464 } else if (val == 0) {
2465 tp->repair = 0;
2466 sk->sk_reuse = SK_NO_REUSE;
2467 tcp_send_window_probe(sk);
2468 } else
2469 err = -EINVAL;
2470
2471 break;
2472
2473 case TCP_REPAIR_QUEUE:
2474 if (!tp->repair)
2475 err = -EPERM;
2476 else if (val < TCP_QUEUES_NR)
2477 tp->repair_queue = val;
2478 else
2479 err = -EINVAL;
2480 break;
2481
2482 case TCP_QUEUE_SEQ:
2483 if (sk->sk_state != TCP_CLOSE)
2484 err = -EPERM;
2485 else if (tp->repair_queue == TCP_SEND_QUEUE)
2486 tp->write_seq = val;
2487 else if (tp->repair_queue == TCP_RECV_QUEUE)
2488 tp->rcv_nxt = val;
2489 else
2490 err = -EINVAL;
2491 break;
2492
2493 case TCP_REPAIR_OPTIONS:
2494 if (!tp->repair)
2495 err = -EINVAL;
2496 else if (sk->sk_state == TCP_ESTABLISHED)
2497 err = tcp_repair_options_est(tp,
2498 (struct tcp_repair_opt __user *)optval,
2499 optlen);
2500 else
2501 err = -EPERM;
2502 break;
2503
2504 case TCP_CORK:
2505 /* When set indicates to always queue non-full frames.
2506 * Later the user clears this option and we transmit
2507 * any pending partial frames in the queue. This is
2508 * meant to be used alongside sendfile() to get properly
2509 * filled frames when the user (for example) must write
2510 * out headers with a write() call first and then use
2511 * sendfile to send out the data parts.
2512 *
2513 * TCP_CORK can be set together with TCP_NODELAY and it is
2514 * stronger than TCP_NODELAY.
2515 */
2516 if (val) {
2517 tp->nonagle |= TCP_NAGLE_CORK;
2518 } else {
2519 tp->nonagle &= ~TCP_NAGLE_CORK;
2520 if (tp->nonagle&TCP_NAGLE_OFF)
2521 tp->nonagle |= TCP_NAGLE_PUSH;
2522 tcp_push_pending_frames(sk);
2523 }
2524 break;
2525
2526 case TCP_KEEPIDLE:
2527 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2528 err = -EINVAL;
2529 else {
2530 tp->keepalive_time = val * HZ;
2531 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2532 !((1 << sk->sk_state) &
2533 (TCPF_CLOSE | TCPF_LISTEN))) {
2534 u32 elapsed = keepalive_time_elapsed(tp);
2535 if (tp->keepalive_time > elapsed)
2536 elapsed = tp->keepalive_time - elapsed;
2537 else
2538 elapsed = 0;
2539 inet_csk_reset_keepalive_timer(sk, elapsed);
2540 }
2541 }
2542 break;
2543 case TCP_KEEPINTVL:
2544 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2545 err = -EINVAL;
2546 else
2547 tp->keepalive_intvl = val * HZ;
2548 break;
2549 case TCP_KEEPCNT:
2550 if (val < 1 || val > MAX_TCP_KEEPCNT)
2551 err = -EINVAL;
2552 else
2553 tp->keepalive_probes = val;
2554 break;
2555 case TCP_SYNCNT:
2556 if (val < 1 || val > MAX_TCP_SYNCNT)
2557 err = -EINVAL;
2558 else
2559 icsk->icsk_syn_retries = val;
2560 break;
2561
2562 case TCP_SAVE_SYN:
2563 if (val < 0 || val > 1)
2564 err = -EINVAL;
2565 else
2566 tp->save_syn = val;
2567 break;
2568
2569 case TCP_LINGER2:
2570 if (val < 0)
2571 tp->linger2 = -1;
2572 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2573 tp->linger2 = 0;
2574 else
2575 tp->linger2 = val * HZ;
2576 break;
2577
2578 case TCP_DEFER_ACCEPT:
2579 /* Translate value in seconds to number of retransmits */
2580 icsk->icsk_accept_queue.rskq_defer_accept =
2581 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2582 TCP_RTO_MAX / HZ);
2583 break;
2584
2585 case TCP_WINDOW_CLAMP:
2586 if (!val) {
2587 if (sk->sk_state != TCP_CLOSE) {
2588 err = -EINVAL;
2589 break;
2590 }
2591 tp->window_clamp = 0;
2592 } else
2593 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2594 SOCK_MIN_RCVBUF / 2 : val;
2595 break;
2596
2597 case TCP_QUICKACK:
2598 if (!val) {
2599 icsk->icsk_ack.pingpong = 1;
2600 } else {
2601 icsk->icsk_ack.pingpong = 0;
2602 if ((1 << sk->sk_state) &
2603 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2604 inet_csk_ack_scheduled(sk)) {
2605 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2606 tcp_cleanup_rbuf(sk, 1);
2607 if (!(val & 1))
2608 icsk->icsk_ack.pingpong = 1;
2609 }
2610 }
2611 break;
2612
2613 #ifdef CONFIG_TCP_MD5SIG
2614 case TCP_MD5SIG:
2615 /* Read the IP->Key mappings from userspace */
2616 err = tp->af_specific->md5_parse(sk, optval, optlen);
2617 break;
2618 #endif
2619 case TCP_USER_TIMEOUT:
2620 /* Cap the max time in ms TCP will retry or probe the window
2621 * before giving up and aborting (ETIMEDOUT) a connection.
2622 */
2623 if (val < 0)
2624 err = -EINVAL;
2625 else
2626 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2627 break;
2628
2629 case TCP_FASTOPEN:
2630 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2631 TCPF_LISTEN))) {
2632 tcp_fastopen_init_key_once(true);
2633
2634 fastopen_queue_tune(sk, val);
2635 } else {
2636 err = -EINVAL;
2637 }
2638 break;
2639 case TCP_TIMESTAMP:
2640 if (!tp->repair)
2641 err = -EPERM;
2642 else
2643 tp->tsoffset = val - tcp_time_stamp;
2644 break;
2645 case TCP_REPAIR_WINDOW:
2646 err = tcp_repair_set_window(tp, optval, optlen);
2647 break;
2648 case TCP_NOTSENT_LOWAT:
2649 tp->notsent_lowat = val;
2650 sk->sk_write_space(sk);
2651 break;
2652 default:
2653 err = -ENOPROTOOPT;
2654 break;
2655 }
2656
2657 release_sock(sk);
2658 return err;
2659 }
2660
2661 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2662 unsigned int optlen)
2663 {
2664 const struct inet_connection_sock *icsk = inet_csk(sk);
2665
2666 if (level != SOL_TCP)
2667 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2668 optval, optlen);
2669 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2670 }
2671 EXPORT_SYMBOL(tcp_setsockopt);
2672
2673 #ifdef CONFIG_COMPAT
2674 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2675 char __user *optval, unsigned int optlen)
2676 {
2677 if (level != SOL_TCP)
2678 return inet_csk_compat_setsockopt(sk, level, optname,
2679 optval, optlen);
2680 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2681 }
2682 EXPORT_SYMBOL(compat_tcp_setsockopt);
2683 #endif
2684
2685 /* Return information about state of tcp endpoint in API format. */
2686 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2687 {
2688 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2689 const struct inet_connection_sock *icsk = inet_csk(sk);
2690 u32 now = tcp_time_stamp;
2691 unsigned int start;
2692 int notsent_bytes;
2693 u64 rate64;
2694 u32 rate;
2695
2696 memset(info, 0, sizeof(*info));
2697 if (sk->sk_type != SOCK_STREAM)
2698 return;
2699
2700 info->tcpi_state = sk_state_load(sk);
2701
2702 info->tcpi_ca_state = icsk->icsk_ca_state;
2703 info->tcpi_retransmits = icsk->icsk_retransmits;
2704 info->tcpi_probes = icsk->icsk_probes_out;
2705 info->tcpi_backoff = icsk->icsk_backoff;
2706
2707 if (tp->rx_opt.tstamp_ok)
2708 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2709 if (tcp_is_sack(tp))
2710 info->tcpi_options |= TCPI_OPT_SACK;
2711 if (tp->rx_opt.wscale_ok) {
2712 info->tcpi_options |= TCPI_OPT_WSCALE;
2713 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2714 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2715 }
2716
2717 if (tp->ecn_flags & TCP_ECN_OK)
2718 info->tcpi_options |= TCPI_OPT_ECN;
2719 if (tp->ecn_flags & TCP_ECN_SEEN)
2720 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2721 if (tp->syn_data_acked)
2722 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2723
2724 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2725 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2726 info->tcpi_snd_mss = tp->mss_cache;
2727 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2728
2729 if (info->tcpi_state == TCP_LISTEN) {
2730 info->tcpi_unacked = sk->sk_ack_backlog;
2731 info->tcpi_sacked = sk->sk_max_ack_backlog;
2732 } else {
2733 info->tcpi_unacked = tp->packets_out;
2734 info->tcpi_sacked = tp->sacked_out;
2735 }
2736 info->tcpi_lost = tp->lost_out;
2737 info->tcpi_retrans = tp->retrans_out;
2738 info->tcpi_fackets = tp->fackets_out;
2739
2740 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2741 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2742 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2743
2744 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2745 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2746 info->tcpi_rtt = tp->srtt_us >> 3;
2747 info->tcpi_rttvar = tp->mdev_us >> 2;
2748 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2749 info->tcpi_snd_cwnd = tp->snd_cwnd;
2750 info->tcpi_advmss = tp->advmss;
2751 info->tcpi_reordering = tp->reordering;
2752
2753 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2754 info->tcpi_rcv_space = tp->rcvq_space.space;
2755
2756 info->tcpi_total_retrans = tp->total_retrans;
2757
2758 rate = READ_ONCE(sk->sk_pacing_rate);
2759 rate64 = rate != ~0U ? rate : ~0ULL;
2760 put_unaligned(rate64, &info->tcpi_pacing_rate);
2761
2762 rate = READ_ONCE(sk->sk_max_pacing_rate);
2763 rate64 = rate != ~0U ? rate : ~0ULL;
2764 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2765
2766 do {
2767 start = u64_stats_fetch_begin_irq(&tp->syncp);
2768 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2769 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2770 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2771 info->tcpi_segs_out = tp->segs_out;
2772 info->tcpi_segs_in = tp->segs_in;
2773
2774 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2775 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2776
2777 info->tcpi_min_rtt = tcp_min_rtt(tp);
2778 info->tcpi_data_segs_in = tp->data_segs_in;
2779 info->tcpi_data_segs_out = tp->data_segs_out;
2780 }
2781 EXPORT_SYMBOL_GPL(tcp_get_info);
2782
2783 static int do_tcp_getsockopt(struct sock *sk, int level,
2784 int optname, char __user *optval, int __user *optlen)
2785 {
2786 struct inet_connection_sock *icsk = inet_csk(sk);
2787 struct tcp_sock *tp = tcp_sk(sk);
2788 struct net *net = sock_net(sk);
2789 int val, len;
2790
2791 if (get_user(len, optlen))
2792 return -EFAULT;
2793
2794 len = min_t(unsigned int, len, sizeof(int));
2795
2796 if (len < 0)
2797 return -EINVAL;
2798
2799 switch (optname) {
2800 case TCP_MAXSEG:
2801 val = tp->mss_cache;
2802 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2803 val = tp->rx_opt.user_mss;
2804 if (tp->repair)
2805 val = tp->rx_opt.mss_clamp;
2806 break;
2807 case TCP_NODELAY:
2808 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2809 break;
2810 case TCP_CORK:
2811 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2812 break;
2813 case TCP_KEEPIDLE:
2814 val = keepalive_time_when(tp) / HZ;
2815 break;
2816 case TCP_KEEPINTVL:
2817 val = keepalive_intvl_when(tp) / HZ;
2818 break;
2819 case TCP_KEEPCNT:
2820 val = keepalive_probes(tp);
2821 break;
2822 case TCP_SYNCNT:
2823 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2824 break;
2825 case TCP_LINGER2:
2826 val = tp->linger2;
2827 if (val >= 0)
2828 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2829 break;
2830 case TCP_DEFER_ACCEPT:
2831 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2832 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2833 break;
2834 case TCP_WINDOW_CLAMP:
2835 val = tp->window_clamp;
2836 break;
2837 case TCP_INFO: {
2838 struct tcp_info info;
2839
2840 if (get_user(len, optlen))
2841 return -EFAULT;
2842
2843 tcp_get_info(sk, &info);
2844
2845 len = min_t(unsigned int, len, sizeof(info));
2846 if (put_user(len, optlen))
2847 return -EFAULT;
2848 if (copy_to_user(optval, &info, len))
2849 return -EFAULT;
2850 return 0;
2851 }
2852 case TCP_CC_INFO: {
2853 const struct tcp_congestion_ops *ca_ops;
2854 union tcp_cc_info info;
2855 size_t sz = 0;
2856 int attr;
2857
2858 if (get_user(len, optlen))
2859 return -EFAULT;
2860
2861 ca_ops = icsk->icsk_ca_ops;
2862 if (ca_ops && ca_ops->get_info)
2863 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2864
2865 len = min_t(unsigned int, len, sz);
2866 if (put_user(len, optlen))
2867 return -EFAULT;
2868 if (copy_to_user(optval, &info, len))
2869 return -EFAULT;
2870 return 0;
2871 }
2872 case TCP_QUICKACK:
2873 val = !icsk->icsk_ack.pingpong;
2874 break;
2875
2876 case TCP_CONGESTION:
2877 if (get_user(len, optlen))
2878 return -EFAULT;
2879 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2880 if (put_user(len, optlen))
2881 return -EFAULT;
2882 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2883 return -EFAULT;
2884 return 0;
2885
2886 case TCP_THIN_LINEAR_TIMEOUTS:
2887 val = tp->thin_lto;
2888 break;
2889 case TCP_THIN_DUPACK:
2890 val = tp->thin_dupack;
2891 break;
2892
2893 case TCP_REPAIR:
2894 val = tp->repair;
2895 break;
2896
2897 case TCP_REPAIR_QUEUE:
2898 if (tp->repair)
2899 val = tp->repair_queue;
2900 else
2901 return -EINVAL;
2902 break;
2903
2904 case TCP_REPAIR_WINDOW: {
2905 struct tcp_repair_window opt;
2906
2907 if (get_user(len, optlen))
2908 return -EFAULT;
2909
2910 if (len != sizeof(opt))
2911 return -EINVAL;
2912
2913 if (!tp->repair)
2914 return -EPERM;
2915
2916 opt.snd_wl1 = tp->snd_wl1;
2917 opt.snd_wnd = tp->snd_wnd;
2918 opt.max_window = tp->max_window;
2919 opt.rcv_wnd = tp->rcv_wnd;
2920 opt.rcv_wup = tp->rcv_wup;
2921
2922 if (copy_to_user(optval, &opt, len))
2923 return -EFAULT;
2924 return 0;
2925 }
2926 case TCP_QUEUE_SEQ:
2927 if (tp->repair_queue == TCP_SEND_QUEUE)
2928 val = tp->write_seq;
2929 else if (tp->repair_queue == TCP_RECV_QUEUE)
2930 val = tp->rcv_nxt;
2931 else
2932 return -EINVAL;
2933 break;
2934
2935 case TCP_USER_TIMEOUT:
2936 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2937 break;
2938
2939 case TCP_FASTOPEN:
2940 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2941 break;
2942
2943 case TCP_TIMESTAMP:
2944 val = tcp_time_stamp + tp->tsoffset;
2945 break;
2946 case TCP_NOTSENT_LOWAT:
2947 val = tp->notsent_lowat;
2948 break;
2949 case TCP_SAVE_SYN:
2950 val = tp->save_syn;
2951 break;
2952 case TCP_SAVED_SYN: {
2953 if (get_user(len, optlen))
2954 return -EFAULT;
2955
2956 lock_sock(sk);
2957 if (tp->saved_syn) {
2958 if (len < tp->saved_syn[0]) {
2959 if (put_user(tp->saved_syn[0], optlen)) {
2960 release_sock(sk);
2961 return -EFAULT;
2962 }
2963 release_sock(sk);
2964 return -EINVAL;
2965 }
2966 len = tp->saved_syn[0];
2967 if (put_user(len, optlen)) {
2968 release_sock(sk);
2969 return -EFAULT;
2970 }
2971 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2972 release_sock(sk);
2973 return -EFAULT;
2974 }
2975 tcp_saved_syn_free(tp);
2976 release_sock(sk);
2977 } else {
2978 release_sock(sk);
2979 len = 0;
2980 if (put_user(len, optlen))
2981 return -EFAULT;
2982 }
2983 return 0;
2984 }
2985 default:
2986 return -ENOPROTOOPT;
2987 }
2988
2989 if (put_user(len, optlen))
2990 return -EFAULT;
2991 if (copy_to_user(optval, &val, len))
2992 return -EFAULT;
2993 return 0;
2994 }
2995
2996 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2997 int __user *optlen)
2998 {
2999 struct inet_connection_sock *icsk = inet_csk(sk);
3000
3001 if (level != SOL_TCP)
3002 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3003 optval, optlen);
3004 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3005 }
3006 EXPORT_SYMBOL(tcp_getsockopt);
3007
3008 #ifdef CONFIG_COMPAT
3009 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3010 char __user *optval, int __user *optlen)
3011 {
3012 if (level != SOL_TCP)
3013 return inet_csk_compat_getsockopt(sk, level, optname,
3014 optval, optlen);
3015 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3016 }
3017 EXPORT_SYMBOL(compat_tcp_getsockopt);
3018 #endif
3019
3020 #ifdef CONFIG_TCP_MD5SIG
3021 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3022 static DEFINE_MUTEX(tcp_md5sig_mutex);
3023 static bool tcp_md5sig_pool_populated = false;
3024
3025 static void __tcp_alloc_md5sig_pool(void)
3026 {
3027 struct crypto_ahash *hash;
3028 int cpu;
3029
3030 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3031 if (IS_ERR(hash))
3032 return;
3033
3034 for_each_possible_cpu(cpu) {
3035 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3036 struct ahash_request *req;
3037
3038 if (!scratch) {
3039 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3040 sizeof(struct tcphdr),
3041 GFP_KERNEL,
3042 cpu_to_node(cpu));
3043 if (!scratch)
3044 return;
3045 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3046 }
3047 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3048 continue;
3049
3050 req = ahash_request_alloc(hash, GFP_KERNEL);
3051 if (!req)
3052 return;
3053
3054 ahash_request_set_callback(req, 0, NULL, NULL);
3055
3056 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3057 }
3058 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3059 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3060 */
3061 smp_wmb();
3062 tcp_md5sig_pool_populated = true;
3063 }
3064
3065 bool tcp_alloc_md5sig_pool(void)
3066 {
3067 if (unlikely(!tcp_md5sig_pool_populated)) {
3068 mutex_lock(&tcp_md5sig_mutex);
3069
3070 if (!tcp_md5sig_pool_populated)
3071 __tcp_alloc_md5sig_pool();
3072
3073 mutex_unlock(&tcp_md5sig_mutex);
3074 }
3075 return tcp_md5sig_pool_populated;
3076 }
3077 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3078
3079
3080 /**
3081 * tcp_get_md5sig_pool - get md5sig_pool for this user
3082 *
3083 * We use percpu structure, so if we succeed, we exit with preemption
3084 * and BH disabled, to make sure another thread or softirq handling
3085 * wont try to get same context.
3086 */
3087 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3088 {
3089 local_bh_disable();
3090
3091 if (tcp_md5sig_pool_populated) {
3092 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3093 smp_rmb();
3094 return this_cpu_ptr(&tcp_md5sig_pool);
3095 }
3096 local_bh_enable();
3097 return NULL;
3098 }
3099 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3100
3101 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3102 const struct sk_buff *skb, unsigned int header_len)
3103 {
3104 struct scatterlist sg;
3105 const struct tcphdr *tp = tcp_hdr(skb);
3106 struct ahash_request *req = hp->md5_req;
3107 unsigned int i;
3108 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3109 skb_headlen(skb) - header_len : 0;
3110 const struct skb_shared_info *shi = skb_shinfo(skb);
3111 struct sk_buff *frag_iter;
3112
3113 sg_init_table(&sg, 1);
3114
3115 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3116 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3117 if (crypto_ahash_update(req))
3118 return 1;
3119
3120 for (i = 0; i < shi->nr_frags; ++i) {
3121 const struct skb_frag_struct *f = &shi->frags[i];
3122 unsigned int offset = f->page_offset;
3123 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3124
3125 sg_set_page(&sg, page, skb_frag_size(f),
3126 offset_in_page(offset));
3127 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3128 if (crypto_ahash_update(req))
3129 return 1;
3130 }
3131
3132 skb_walk_frags(skb, frag_iter)
3133 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3134 return 1;
3135
3136 return 0;
3137 }
3138 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3139
3140 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3141 {
3142 struct scatterlist sg;
3143
3144 sg_init_one(&sg, key->key, key->keylen);
3145 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3146 return crypto_ahash_update(hp->md5_req);
3147 }
3148 EXPORT_SYMBOL(tcp_md5_hash_key);
3149
3150 #endif
3151
3152 void tcp_done(struct sock *sk)
3153 {
3154 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3155
3156 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3157 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3158
3159 tcp_set_state(sk, TCP_CLOSE);
3160 tcp_clear_xmit_timers(sk);
3161 if (req)
3162 reqsk_fastopen_remove(sk, req, false);
3163
3164 sk->sk_shutdown = SHUTDOWN_MASK;
3165
3166 if (!sock_flag(sk, SOCK_DEAD))
3167 sk->sk_state_change(sk);
3168 else
3169 inet_csk_destroy_sock(sk);
3170 }
3171 EXPORT_SYMBOL_GPL(tcp_done);
3172
3173 int tcp_abort(struct sock *sk, int err)
3174 {
3175 if (!sk_fullsock(sk)) {
3176 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3177 struct request_sock *req = inet_reqsk(sk);
3178
3179 local_bh_disable();
3180 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3181 req);
3182 local_bh_enable();
3183 return 0;
3184 }
3185 return -EOPNOTSUPP;
3186 }
3187
3188 /* Don't race with userspace socket closes such as tcp_close. */
3189 lock_sock(sk);
3190
3191 if (sk->sk_state == TCP_LISTEN) {
3192 tcp_set_state(sk, TCP_CLOSE);
3193 inet_csk_listen_stop(sk);
3194 }
3195
3196 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3197 local_bh_disable();
3198 bh_lock_sock(sk);
3199
3200 if (!sock_flag(sk, SOCK_DEAD)) {
3201 sk->sk_err = err;
3202 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3203 smp_wmb();
3204 sk->sk_error_report(sk);
3205 if (tcp_need_reset(sk->sk_state))
3206 tcp_send_active_reset(sk, GFP_ATOMIC);
3207 tcp_done(sk);
3208 }
3209
3210 bh_unlock_sock(sk);
3211 local_bh_enable();
3212 release_sock(sk);
3213 return 0;
3214 }
3215 EXPORT_SYMBOL_GPL(tcp_abort);
3216
3217 extern struct tcp_congestion_ops tcp_reno;
3218
3219 static __initdata unsigned long thash_entries;
3220 static int __init set_thash_entries(char *str)
3221 {
3222 ssize_t ret;
3223
3224 if (!str)
3225 return 0;
3226
3227 ret = kstrtoul(str, 0, &thash_entries);
3228 if (ret)
3229 return 0;
3230
3231 return 1;
3232 }
3233 __setup("thash_entries=", set_thash_entries);
3234
3235 static void __init tcp_init_mem(void)
3236 {
3237 unsigned long limit = nr_free_buffer_pages() / 16;
3238
3239 limit = max(limit, 128UL);
3240 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3241 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3242 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3243 }
3244
3245 void __init tcp_init(void)
3246 {
3247 unsigned long limit;
3248 int max_rshare, max_wshare, cnt;
3249 unsigned int i;
3250
3251 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3252
3253 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3254 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3255 tcp_hashinfo.bind_bucket_cachep =
3256 kmem_cache_create("tcp_bind_bucket",
3257 sizeof(struct inet_bind_bucket), 0,
3258 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3259
3260 /* Size and allocate the main established and bind bucket
3261 * hash tables.
3262 *
3263 * The methodology is similar to that of the buffer cache.
3264 */
3265 tcp_hashinfo.ehash =
3266 alloc_large_system_hash("TCP established",
3267 sizeof(struct inet_ehash_bucket),
3268 thash_entries,
3269 17, /* one slot per 128 KB of memory */
3270 0,
3271 NULL,
3272 &tcp_hashinfo.ehash_mask,
3273 0,
3274 thash_entries ? 0 : 512 * 1024);
3275 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3276 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3277
3278 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3279 panic("TCP: failed to alloc ehash_locks");
3280 tcp_hashinfo.bhash =
3281 alloc_large_system_hash("TCP bind",
3282 sizeof(struct inet_bind_hashbucket),
3283 tcp_hashinfo.ehash_mask + 1,
3284 17, /* one slot per 128 KB of memory */
3285 0,
3286 &tcp_hashinfo.bhash_size,
3287 NULL,
3288 0,
3289 64 * 1024);
3290 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3291 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3292 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3293 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3294 }
3295
3296
3297 cnt = tcp_hashinfo.ehash_mask + 1;
3298
3299 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3300 sysctl_tcp_max_orphans = cnt / 2;
3301 sysctl_max_syn_backlog = max(128, cnt / 256);
3302
3303 tcp_init_mem();
3304 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3305 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3306 max_wshare = min(4UL*1024*1024, limit);
3307 max_rshare = min(6UL*1024*1024, limit);
3308
3309 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3310 sysctl_tcp_wmem[1] = 16*1024;
3311 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3312
3313 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3314 sysctl_tcp_rmem[1] = 87380;
3315 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3316
3317 pr_info("Hash tables configured (established %u bind %u)\n",
3318 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3319
3320 tcp_metrics_init();
3321 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3322 tcp_tasklet_init();
3323 }
This page took 0.101559 seconds and 5 git commands to generate.