mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / net / ipv4 / tcp_fastopen.c
1 #include <linux/crypto.h>
2 #include <linux/err.h>
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/list.h>
6 #include <linux/tcp.h>
7 #include <linux/rcupdate.h>
8 #include <linux/rculist.h>
9 #include <net/inetpeer.h>
10 #include <net/tcp.h>
11
12 int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
13
14 struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
15
16 static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
17
18 void tcp_fastopen_init_key_once(bool publish)
19 {
20 static u8 key[TCP_FASTOPEN_KEY_LENGTH];
21
22 /* tcp_fastopen_reset_cipher publishes the new context
23 * atomically, so we allow this race happening here.
24 *
25 * All call sites of tcp_fastopen_cookie_gen also check
26 * for a valid cookie, so this is an acceptable risk.
27 */
28 if (net_get_random_once(key, sizeof(key)) && publish)
29 tcp_fastopen_reset_cipher(key, sizeof(key));
30 }
31
32 static void tcp_fastopen_ctx_free(struct rcu_head *head)
33 {
34 struct tcp_fastopen_context *ctx =
35 container_of(head, struct tcp_fastopen_context, rcu);
36 crypto_free_cipher(ctx->tfm);
37 kfree(ctx);
38 }
39
40 int tcp_fastopen_reset_cipher(void *key, unsigned int len)
41 {
42 int err;
43 struct tcp_fastopen_context *ctx, *octx;
44
45 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
46 if (!ctx)
47 return -ENOMEM;
48 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
49
50 if (IS_ERR(ctx->tfm)) {
51 err = PTR_ERR(ctx->tfm);
52 error: kfree(ctx);
53 pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
54 return err;
55 }
56 err = crypto_cipher_setkey(ctx->tfm, key, len);
57 if (err) {
58 pr_err("TCP: TFO cipher key error: %d\n", err);
59 crypto_free_cipher(ctx->tfm);
60 goto error;
61 }
62 memcpy(ctx->key, key, len);
63
64 spin_lock(&tcp_fastopen_ctx_lock);
65
66 octx = rcu_dereference_protected(tcp_fastopen_ctx,
67 lockdep_is_held(&tcp_fastopen_ctx_lock));
68 rcu_assign_pointer(tcp_fastopen_ctx, ctx);
69 spin_unlock(&tcp_fastopen_ctx_lock);
70
71 if (octx)
72 call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
73 return err;
74 }
75
76 static bool __tcp_fastopen_cookie_gen(const void *path,
77 struct tcp_fastopen_cookie *foc)
78 {
79 struct tcp_fastopen_context *ctx;
80 bool ok = false;
81
82 rcu_read_lock();
83 ctx = rcu_dereference(tcp_fastopen_ctx);
84 if (ctx) {
85 crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
86 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
87 ok = true;
88 }
89 rcu_read_unlock();
90 return ok;
91 }
92
93 /* Generate the fastopen cookie by doing aes128 encryption on both
94 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
95 * addresses. For the longer IPv6 addresses use CBC-MAC.
96 *
97 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
98 */
99 static bool tcp_fastopen_cookie_gen(struct request_sock *req,
100 struct sk_buff *syn,
101 struct tcp_fastopen_cookie *foc)
102 {
103 if (req->rsk_ops->family == AF_INET) {
104 const struct iphdr *iph = ip_hdr(syn);
105
106 __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
107 return __tcp_fastopen_cookie_gen(path, foc);
108 }
109
110 #if IS_ENABLED(CONFIG_IPV6)
111 if (req->rsk_ops->family == AF_INET6) {
112 const struct ipv6hdr *ip6h = ipv6_hdr(syn);
113 struct tcp_fastopen_cookie tmp;
114
115 if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116 struct in6_addr *buf = (struct in6_addr *) tmp.val;
117 int i;
118
119 for (i = 0; i < 4; i++)
120 buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
121 return __tcp_fastopen_cookie_gen(buf, foc);
122 }
123 }
124 #endif
125 return false;
126 }
127
128
129 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
130 * queue this additional data / FIN.
131 */
132 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
133 {
134 struct tcp_sock *tp = tcp_sk(sk);
135
136 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
137 return;
138
139 skb = skb_clone(skb, GFP_ATOMIC);
140 if (!skb)
141 return;
142
143 skb_dst_drop(skb);
144 /* segs_in has been initialized to 1 in tcp_create_openreq_child().
145 * Hence, reset segs_in to 0 before calling tcp_segs_in()
146 * to avoid double counting. Also, tcp_segs_in() expects
147 * skb->len to include the tcp_hdrlen. Hence, it should
148 * be called before __skb_pull().
149 */
150 tp->segs_in = 0;
151 tcp_segs_in(tp, skb);
152 __skb_pull(skb, tcp_hdrlen(skb));
153 skb_set_owner_r(skb, sk);
154
155 TCP_SKB_CB(skb)->seq++;
156 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
157
158 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
159 __skb_queue_tail(&sk->sk_receive_queue, skb);
160 tp->syn_data_acked = 1;
161
162 /* u64_stats_update_begin(&tp->syncp) not needed here,
163 * as we certainly are not changing upper 32bit value (0)
164 */
165 tp->bytes_received = skb->len;
166
167 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
168 tcp_fin(sk);
169 }
170
171 static struct sock *tcp_fastopen_create_child(struct sock *sk,
172 struct sk_buff *skb,
173 struct dst_entry *dst,
174 struct request_sock *req)
175 {
176 struct tcp_sock *tp;
177 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
178 struct sock *child;
179 bool own_req;
180
181 req->num_retrans = 0;
182 req->num_timeout = 0;
183 req->sk = NULL;
184
185 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
186 NULL, &own_req);
187 if (!child)
188 return NULL;
189
190 spin_lock(&queue->fastopenq.lock);
191 queue->fastopenq.qlen++;
192 spin_unlock(&queue->fastopenq.lock);
193
194 /* Initialize the child socket. Have to fix some values to take
195 * into account the child is a Fast Open socket and is created
196 * only out of the bits carried in the SYN packet.
197 */
198 tp = tcp_sk(child);
199
200 tp->fastopen_rsk = req;
201 tcp_rsk(req)->tfo_listener = true;
202
203 /* RFC1323: The window in SYN & SYN/ACK segments is never
204 * scaled. So correct it appropriately.
205 */
206 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
207
208 /* Activate the retrans timer so that SYNACK can be retransmitted.
209 * The request socket is not added to the ehash
210 * because it's been added to the accept queue directly.
211 */
212 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
213 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
214
215 atomic_set(&req->rsk_refcnt, 2);
216
217 /* Now finish processing the fastopen child socket. */
218 inet_csk(child)->icsk_af_ops->rebuild_header(child);
219 tcp_init_congestion_control(child);
220 tcp_mtup_init(child);
221 tcp_init_metrics(child);
222 tcp_init_buffer_space(child);
223
224 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
225
226 tcp_fastopen_add_skb(child, skb);
227
228 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
229 /* tcp_conn_request() is sending the SYNACK,
230 * and queues the child into listener accept queue.
231 */
232 return child;
233 }
234
235 static bool tcp_fastopen_queue_check(struct sock *sk)
236 {
237 struct fastopen_queue *fastopenq;
238
239 /* Make sure the listener has enabled fastopen, and we don't
240 * exceed the max # of pending TFO requests allowed before trying
241 * to validating the cookie in order to avoid burning CPU cycles
242 * unnecessarily.
243 *
244 * XXX (TFO) - The implication of checking the max_qlen before
245 * processing a cookie request is that clients can't differentiate
246 * between qlen overflow causing Fast Open to be disabled
247 * temporarily vs a server not supporting Fast Open at all.
248 */
249 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
250 if (fastopenq->max_qlen == 0)
251 return false;
252
253 if (fastopenq->qlen >= fastopenq->max_qlen) {
254 struct request_sock *req1;
255 spin_lock(&fastopenq->lock);
256 req1 = fastopenq->rskq_rst_head;
257 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
258 __NET_INC_STATS(sock_net(sk),
259 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
260 spin_unlock(&fastopenq->lock);
261 return false;
262 }
263 fastopenq->rskq_rst_head = req1->dl_next;
264 fastopenq->qlen--;
265 spin_unlock(&fastopenq->lock);
266 reqsk_put(req1);
267 }
268 return true;
269 }
270
271 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
272 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
273 * cookie request (foc->len == 0).
274 */
275 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
276 struct request_sock *req,
277 struct tcp_fastopen_cookie *foc,
278 struct dst_entry *dst)
279 {
280 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
281 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
282 struct sock *child;
283
284 if (foc->len == 0) /* Client requests a cookie */
285 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
286
287 if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
288 (syn_data || foc->len >= 0) &&
289 tcp_fastopen_queue_check(sk))) {
290 foc->len = -1;
291 return NULL;
292 }
293
294 if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
295 goto fastopen;
296
297 if (foc->len >= 0 && /* Client presents or requests a cookie */
298 tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
299 foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
300 foc->len == valid_foc.len &&
301 !memcmp(foc->val, valid_foc.val, foc->len)) {
302 /* Cookie is valid. Create a (full) child socket to accept
303 * the data in SYN before returning a SYN-ACK to ack the
304 * data. If we fail to create the socket, fall back and
305 * ack the ISN only but includes the same cookie.
306 *
307 * Note: Data-less SYN with valid cookie is allowed to send
308 * data in SYN_RECV state.
309 */
310 fastopen:
311 child = tcp_fastopen_create_child(sk, skb, dst, req);
312 if (child) {
313 foc->len = -1;
314 NET_INC_STATS(sock_net(sk),
315 LINUX_MIB_TCPFASTOPENPASSIVE);
316 return child;
317 }
318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
319 } else if (foc->len > 0) /* Client presents an invalid cookie */
320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
321
322 valid_foc.exp = foc->exp;
323 *foc = valid_foc;
324 return NULL;
325 }
This page took 0.039139 seconds and 5 git commands to generate.