Merge remote-tracking branch 'xen-tip/linux-next'
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
130
131 /* Adapt the MSS value used to make delayed ack decision to the
132 * real world.
133 */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 struct inet_connection_sock *icsk = inet_csk(sk);
137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 unsigned int len;
139
140 icsk->icsk_ack.last_seg_size = 0;
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
145 len = skb_shinfo(skb)->gso_size ? : skb->len;
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
154 len += skb->data - skb_transport_header(skb);
155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
169 if (len == lss) {
170 icsk->icsk_ack.rcv_mss = len;
171 return;
172 }
173 }
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 }
178 }
179
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184
185 if (quickacks == 0)
186 quickacks = 2;
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198
199 /* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
201 */
202
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 const struct inet_connection_sock *icsk = inet_csk(sk);
206 const struct dst_entry *dst = __sk_dst_get(sk);
207
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 if (tp->ecn_flags & TCP_ECN_OK)
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 case INET_ECN_NOT_ECT:
233 /* Funny extension: if ECT is not set on a segment,
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
236 */
237 if (tp->ecn_flags & TCP_ECN_SEEN)
238 tcp_enter_quickack_mode((struct sock *)tp);
239 break;
240 case INET_ECN_CE:
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 }
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
251 default:
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 tp->ecn_flags |= TCP_ECN_SEEN;
255 break;
256 }
257 }
258
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
263 }
264
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 return true;
281 return false;
282 }
283
284 /* Buffer size and advertised window tuning.
285 *
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 */
288
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 const struct tcp_sock *tp = tcp_sk(sk);
292 int sndmem, per_mss;
293 u32 nr_segs;
294
295 /* Worst case is non GSO/TSO : each frame consumes one skb
296 * and skb->head is kmalloced using power of two area of memory
297 */
298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 MAX_TCP_HEADER +
300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301
302 per_mss = roundup_pow_of_two(per_mss) +
303 SKB_DATA_ALIGN(sizeof(struct sk_buff));
304
305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307
308 /* Fast Recovery (RFC 5681 3.2) :
309 * Cubic needs 1.7 factor, rounded to 2 to include
310 * extra cushion (application might react slowly to POLLOUT)
311 */
312 sndmem = 2 * nr_segs * per_mss;
313
314 if (sk->sk_sndbuf < sndmem)
315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319 *
320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
321 * forward and advertised in receiver window (tp->rcv_wnd) and
322 * "application buffer", required to isolate scheduling/application
323 * latencies from network.
324 * window_clamp is maximal advertised window. It can be less than
325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
326 * is reserved for "application" buffer. The less window_clamp is
327 * the smoother our behaviour from viewpoint of network, but the lower
328 * throughput and the higher sensitivity of the connection to losses. 8)
329 *
330 * rcv_ssthresh is more strict window_clamp used at "slow start"
331 * phase to predict further behaviour of this connection.
332 * It is used for two goals:
333 * - to enforce header prediction at sender, even when application
334 * requires some significant "application buffer". It is check #1.
335 * - to prevent pruning of receive queue because of misprediction
336 * of receiver window. Check #2.
337 *
338 * The scheme does not work when sender sends good segments opening
339 * window and then starts to feed us spaghetti. But it should work
340 * in common situations. Otherwise, we have to rely on queue collapsing.
341 */
342
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 struct tcp_sock *tp = tcp_sk(sk);
347 /* Optimize this! */
348 int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350
351 while (tp->rcv_ssthresh <= window) {
352 if (truesize <= skb->len)
353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354
355 truesize >>= 1;
356 window >>= 1;
357 }
358 return 0;
359 }
360
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 struct tcp_sock *tp = tcp_sk(sk);
364
365 /* Check #1 */
366 if (tp->rcv_ssthresh < tp->window_clamp &&
367 (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 !tcp_under_memory_pressure(sk)) {
369 int incr;
370
371 /* Check #2. Increase window, if skb with such overhead
372 * will fit to rcvbuf in future.
373 */
374 if (tcp_win_from_space(skb->truesize) <= skb->len)
375 incr = 2 * tp->advmss;
376 else
377 incr = __tcp_grow_window(sk, skb);
378
379 if (incr) {
380 incr = max_t(int, incr, 2 * skb->len);
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 tp->window_clamp);
383 inet_csk(sk)->icsk_ack.quick |= 1;
384 }
385 }
386 }
387
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 u32 mss = tcp_sk(sk)->advmss;
392 int rcvmem;
393
394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 tcp_default_init_rwnd(mss);
396
397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 * Allow enough cushion so that sender is not limited by our window
399 */
400 if (sysctl_tcp_moderate_rcvbuf)
401 rcvmem <<= 2;
402
403 if (sk->sk_rcvbuf < rcvmem)
404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406
407 /* 4. Try to fixup all. It is made immediately after connection enters
408 * established state.
409 */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 int maxwin;
414
415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 tcp_fixup_rcvbuf(sk);
417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 tcp_sndbuf_expand(sk);
419
420 tp->rcvq_space.space = tp->rcv_wnd;
421 tp->rcvq_space.time = tcp_time_stamp;
422 tp->rcvq_space.seq = tp->copied_seq;
423
424 maxwin = tcp_full_space(sk);
425
426 if (tp->window_clamp >= maxwin) {
427 tp->window_clamp = maxwin;
428
429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 tp->window_clamp = max(maxwin -
431 (maxwin >> sysctl_tcp_app_win),
432 4 * tp->advmss);
433 }
434
435 /* Force reservation of one segment. */
436 if (sysctl_tcp_app_win &&
437 tp->window_clamp > 2 * tp->advmss &&
438 tp->window_clamp + tp->advmss > maxwin)
439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440
441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 struct tcp_sock *tp = tcp_sk(sk);
449 struct inet_connection_sock *icsk = inet_csk(sk);
450
451 icsk->icsk_ack.quick = 0;
452
453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 !tcp_under_memory_pressure(sk) &&
456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 sysctl_tcp_rmem[2]);
459 }
460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463
464 /* Initialize RCV_MSS value.
465 * RCV_MSS is an our guess about MSS used by the peer.
466 * We haven't any direct information about the MSS.
467 * It's better to underestimate the RCV_MSS rather than overestimate.
468 * Overestimations make us ACKing less frequently than needed.
469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470 */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 const struct tcp_sock *tp = tcp_sk(sk);
474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475
476 hint = min(hint, tp->rcv_wnd / 2);
477 hint = min(hint, TCP_MSS_DEFAULT);
478 hint = max(hint, TCP_MIN_MSS);
479
480 inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483
484 /* Receiver "autotuning" code.
485 *
486 * The algorithm for RTT estimation w/o timestamps is based on
487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
489 *
490 * More detail on this code can be found at
491 * <http://staff.psc.edu/jheffner/>,
492 * though this reference is out of date. A new paper
493 * is pending.
494 */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 u32 new_sample = tp->rcv_rtt_est.rtt;
498 long m = sample;
499
500 if (m == 0)
501 m = 1;
502
503 if (new_sample != 0) {
504 /* If we sample in larger samples in the non-timestamp
505 * case, we could grossly overestimate the RTT especially
506 * with chatty applications or bulk transfer apps which
507 * are stalled on filesystem I/O.
508 *
509 * Also, since we are only going for a minimum in the
510 * non-timestamp case, we do not smooth things out
511 * else with timestamps disabled convergence takes too
512 * long.
513 */
514 if (!win_dep) {
515 m -= (new_sample >> 3);
516 new_sample += m;
517 } else {
518 m <<= 3;
519 if (m < new_sample)
520 new_sample = m;
521 }
522 } else {
523 /* No previous measure. */
524 new_sample = m << 3;
525 }
526
527 if (tp->rcv_rtt_est.rtt != new_sample)
528 tp->rcv_rtt_est.rtt = new_sample;
529 }
530
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 if (tp->rcv_rtt_est.time == 0)
534 goto new_measure;
535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 return;
537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538
539 new_measure:
540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 const struct sk_buff *skb)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 if (tp->rx_opt.rcv_tsecr &&
549 (TCP_SKB_CB(skb)->end_seq -
550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553
554 /*
555 * This function should be called every time data is copied to user space.
556 * It calculates the appropriate TCP receive buffer space.
557 */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 struct tcp_sock *tp = tcp_sk(sk);
561 int time;
562 int copied;
563
564 time = tcp_time_stamp - tp->rcvq_space.time;
565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 return;
567
568 /* Number of bytes copied to user in last RTT */
569 copied = tp->copied_seq - tp->rcvq_space.seq;
570 if (copied <= tp->rcvq_space.space)
571 goto new_measure;
572
573 /* A bit of theory :
574 * copied = bytes received in previous RTT, our base window
575 * To cope with packet losses, we need a 2x factor
576 * To cope with slow start, and sender growing its cwin by 100 %
577 * every RTT, we need a 4x factor, because the ACK we are sending
578 * now is for the next RTT, not the current one :
579 * <prev RTT . ><current RTT .. ><next RTT .... >
580 */
581
582 if (sysctl_tcp_moderate_rcvbuf &&
583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 int rcvwin, rcvmem, rcvbuf;
585
586 /* minimal window to cope with packet losses, assuming
587 * steady state. Add some cushion because of small variations.
588 */
589 rcvwin = (copied << 1) + 16 * tp->advmss;
590
591 /* If rate increased by 25%,
592 * assume slow start, rcvwin = 3 * copied
593 * If rate increased by 50%,
594 * assume sender can use 2x growth, rcvwin = 4 * copied
595 */
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 rcvwin <<= 1;
601 else
602 rcvwin += (rcvwin >> 1);
603 }
604
605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 while (tcp_win_from_space(rcvmem) < tp->advmss)
607 rcvmem += 128;
608
609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 if (rcvbuf > sk->sk_rcvbuf) {
611 sk->sk_rcvbuf = rcvbuf;
612
613 /* Make the window clamp follow along. */
614 tp->window_clamp = rcvwin;
615 }
616 }
617 tp->rcvq_space.space = copied;
618
619 new_measure:
620 tp->rcvq_space.seq = tp->copied_seq;
621 tp->rcvq_space.time = tcp_time_stamp;
622 }
623
624 /* There is something which you must keep in mind when you analyze the
625 * behavior of the tp->ato delayed ack timeout interval. When a
626 * connection starts up, we want to ack as quickly as possible. The
627 * problem is that "good" TCP's do slow start at the beginning of data
628 * transmission. The means that until we send the first few ACK's the
629 * sender will sit on his end and only queue most of his data, because
630 * he can only send snd_cwnd unacked packets at any given time. For
631 * each ACK we send, he increments snd_cwnd and transmits more of his
632 * queue. -DaveM
633 */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 struct tcp_sock *tp = tcp_sk(sk);
637 struct inet_connection_sock *icsk = inet_csk(sk);
638 u32 now;
639
640 inet_csk_schedule_ack(sk);
641
642 tcp_measure_rcv_mss(sk, skb);
643
644 tcp_rcv_rtt_measure(tp);
645
646 now = tcp_time_stamp;
647
648 if (!icsk->icsk_ack.ato) {
649 /* The _first_ data packet received, initialize
650 * delayed ACK engine.
651 */
652 tcp_incr_quickack(sk);
653 icsk->icsk_ack.ato = TCP_ATO_MIN;
654 } else {
655 int m = now - icsk->icsk_ack.lrcvtime;
656
657 if (m <= TCP_ATO_MIN / 2) {
658 /* The fastest case is the first. */
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 } else if (m < icsk->icsk_ack.ato) {
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 icsk->icsk_ack.ato = icsk->icsk_rto;
664 } else if (m > icsk->icsk_rto) {
665 /* Too long gap. Apparently sender failed to
666 * restart window, so that we send ACKs quickly.
667 */
668 tcp_incr_quickack(sk);
669 sk_mem_reclaim(sk);
670 }
671 }
672 icsk->icsk_ack.lrcvtime = now;
673
674 tcp_ecn_check_ce(tp, skb);
675
676 if (skb->len >= 128)
677 tcp_grow_window(sk, skb);
678 }
679
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681 * routine either comes from timestamps, or from segments that were
682 * known _not_ to have been retransmitted [see Karn/Partridge
683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684 * piece by Van Jacobson.
685 * NOTE: the next three routines used to be one big routine.
686 * To save cycles in the RFC 1323 implementation it was better to break
687 * it up into three procedures. -- erics
688 */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 struct tcp_sock *tp = tcp_sk(sk);
692 long m = mrtt_us; /* RTT */
693 u32 srtt = tp->srtt_us;
694
695 /* The following amusing code comes from Jacobson's
696 * article in SIGCOMM '88. Note that rtt and mdev
697 * are scaled versions of rtt and mean deviation.
698 * This is designed to be as fast as possible
699 * m stands for "measurement".
700 *
701 * On a 1990 paper the rto value is changed to:
702 * RTO = rtt + 4 * mdev
703 *
704 * Funny. This algorithm seems to be very broken.
705 * These formulae increase RTO, when it should be decreased, increase
706 * too slowly, when it should be increased quickly, decrease too quickly
707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 * does not matter how to _calculate_ it. Seems, it was trap
709 * that VJ failed to avoid. 8)
710 */
711 if (srtt != 0) {
712 m -= (srtt >> 3); /* m is now error in rtt est */
713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
714 if (m < 0) {
715 m = -m; /* m is now abs(error) */
716 m -= (tp->mdev_us >> 2); /* similar update on mdev */
717 /* This is similar to one of Eifel findings.
718 * Eifel blocks mdev updates when rtt decreases.
719 * This solution is a bit different: we use finer gain
720 * for mdev in this case (alpha*beta).
721 * Like Eifel it also prevents growth of rto,
722 * but also it limits too fast rto decreases,
723 * happening in pure Eifel.
724 */
725 if (m > 0)
726 m >>= 3;
727 } else {
728 m -= (tp->mdev_us >> 2); /* similar update on mdev */
729 }
730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
731 if (tp->mdev_us > tp->mdev_max_us) {
732 tp->mdev_max_us = tp->mdev_us;
733 if (tp->mdev_max_us > tp->rttvar_us)
734 tp->rttvar_us = tp->mdev_max_us;
735 }
736 if (after(tp->snd_una, tp->rtt_seq)) {
737 if (tp->mdev_max_us < tp->rttvar_us)
738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 tp->rtt_seq = tp->snd_nxt;
740 tp->mdev_max_us = tcp_rto_min_us(sk);
741 }
742 } else {
743 /* no previous measure. */
744 srtt = m << 3; /* take the measured time to be rtt */
745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 tp->mdev_max_us = tp->rttvar_us;
748 tp->rtt_seq = tp->snd_nxt;
749 }
750 tp->srtt_us = max(1U, srtt);
751 }
752
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754 * Note: TCP stack does not yet implement pacing.
755 * FQ packet scheduler can be used to implement cheap but effective
756 * TCP pacing, to smooth the burst on large writes when packets
757 * in flight is significantly lower than cwnd (or rwin)
758 */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 const struct tcp_sock *tp = tcp_sk(sk);
765 u64 rate;
766
767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769
770 /* current rate is (cwnd * mss) / srtt
771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 *
774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 * end of slow start and should slow down.
777 */
778 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 rate *= sysctl_tcp_pacing_ss_ratio;
780 else
781 rate *= sysctl_tcp_pacing_ca_ratio;
782
783 rate *= max(tp->snd_cwnd, tp->packets_out);
784
785 if (likely(tp->srtt_us))
786 do_div(rate, tp->srtt_us);
787
788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 * without any lock. We want to make sure compiler wont store
790 * intermediate values in this location.
791 */
792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 sk->sk_max_pacing_rate);
794 }
795
796 /* Calculate rto without backoff. This is the second half of Van Jacobson's
797 * routine referred to above.
798 */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 const struct tcp_sock *tp = tcp_sk(sk);
802 /* Old crap is replaced with new one. 8)
803 *
804 * More seriously:
805 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 * It cannot be less due to utterly erratic ACK generation made
807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 * to do with delayed acks, because at cwnd>2 true delack timeout
809 * is invisible. Actually, Linux-2.4 also generates erratic
810 * ACKs in some circumstances.
811 */
812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813
814 /* 2. Fixups made earlier cannot be right.
815 * If we do not estimate RTO correctly without them,
816 * all the algo is pure shit and should be replaced
817 * with correct one. It is exactly, which we pretend to do.
818 */
819
820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 * guarantees that rto is higher.
822 */
823 tcp_bound_rto(sk);
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /*
836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
837 * disables it when reordering is detected
838 */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 /* RFC3517 uses different metric in lost marker => reset on change */
842 if (tcp_is_fack(tp))
843 tp->lost_skb_hint = NULL;
844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
855 {
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 int mib_idx;
859
860 tp->reordering = min(sysctl_tcp_max_reordering, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 mib_idx = LINUX_MIB_TCPTSREORDER;
865 else if (tcp_is_reno(tp))
866 mib_idx = LINUX_MIB_TCPRENOREORDER;
867 else if (tcp_is_fack(tp))
868 mib_idx = LINUX_MIB_TCPFACKREORDER;
869 else
870 mib_idx = LINUX_MIB_TCPSACKREORDER;
871
872 NET_INC_STATS(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 tp->reordering,
877 tp->fackets_out,
878 tp->sacked_out,
879 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 tcp_disable_fack(tp);
882 }
883
884 if (metric > 0)
885 tcp_disable_early_retrans(tp);
886 tp->rack.reord = 1;
887 }
888
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 if (!tp->retransmit_skb_hint ||
893 before(TCP_SKB_CB(skb)->seq,
894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 tp->retransmit_skb_hint = skb;
896
897 if (!tp->lost_out ||
898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 tcp_verify_retransmit_hint(tp, skb);
906
907 tp->lost_out += tcp_skb_pcount(skb);
908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 }
910 }
911
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 tcp_verify_retransmit_hint(tp, skb);
915
916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 tp->lost_out += tcp_skb_pcount(skb);
918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 }
920 }
921
922 /* This procedure tags the retransmission queue when SACKs arrive.
923 *
924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925 * Packets in queue with these bits set are counted in variables
926 * sacked_out, retrans_out and lost_out, correspondingly.
927 *
928 * Valid combinations are:
929 * Tag InFlight Description
930 * 0 1 - orig segment is in flight.
931 * S 0 - nothing flies, orig reached receiver.
932 * L 0 - nothing flies, orig lost by net.
933 * R 2 - both orig and retransmit are in flight.
934 * L|R 1 - orig is lost, retransmit is in flight.
935 * S|R 1 - orig reached receiver, retrans is still in flight.
936 * (L|S|R is logically valid, it could occur when L|R is sacked,
937 * but it is equivalent to plain S and code short-curcuits it to S.
938 * L|S is logically invalid, it would mean -1 packet in flight 8))
939 *
940 * These 6 states form finite state machine, controlled by the following events:
941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943 * 3. Loss detection event of two flavors:
944 * A. Scoreboard estimator decided the packet is lost.
945 * A'. Reno "three dupacks" marks head of queue lost.
946 * A''. Its FACK modification, head until snd.fack is lost.
947 * B. SACK arrives sacking SND.NXT at the moment, when the
948 * segment was retransmitted.
949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
950 *
951 * It is pleasant to note, that state diagram turns out to be commutative,
952 * so that we are allowed not to be bothered by order of our actions,
953 * when multiple events arrive simultaneously. (see the function below).
954 *
955 * Reordering detection.
956 * --------------------
957 * Reordering metric is maximal distance, which a packet can be displaced
958 * in packet stream. With SACKs we can estimate it:
959 *
960 * 1. SACK fills old hole and the corresponding segment was not
961 * ever retransmitted -> reordering. Alas, we cannot use it
962 * when segment was retransmitted.
963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
964 * for retransmitted and already SACKed segment -> reordering..
965 * Both of these heuristics are not used in Loss state, when we cannot
966 * account for retransmits accurately.
967 *
968 * SACK block validation.
969 * ----------------------
970 *
971 * SACK block range validation checks that the received SACK block fits to
972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973 * Note that SND.UNA is not included to the range though being valid because
974 * it means that the receiver is rather inconsistent with itself reporting
975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
976 * perfectly valid, however, in light of RFC2018 which explicitly states
977 * that "SACK block MUST reflect the newest segment. Even if the newest
978 * segment is going to be discarded ...", not that it looks very clever
979 * in case of head skb. Due to potentional receiver driven attacks, we
980 * choose to avoid immediate execution of a walk in write queue due to
981 * reneging and defer head skb's loss recovery to standard loss recovery
982 * procedure that will eventually trigger (nothing forbids us doing this).
983 *
984 * Implements also blockage to start_seq wrap-around. Problem lies in the
985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986 * there's no guarantee that it will be before snd_nxt (n). The problem
987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * wrap (s_w):
989 *
990 * <- outs wnd -> <- wrapzone ->
991 * u e n u_w e_w s n_w
992 * | | | | | | |
993 * |<------------+------+----- TCP seqno space --------------+---------->|
994 * ...-- <2^31 ->| |<--------...
995 * ...---- >2^31 ------>| |<--------...
996 *
997 * Current code wouldn't be vulnerable but it's better still to discard such
998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 u32 start_seq, u32 end_seq)
1018 {
1019 /* Too far in future, or reversed (interpretation is ambiguous) */
1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 return false;
1022
1023 /* Nasty start_seq wrap-around check (see comments above) */
1024 if (!before(start_seq, tp->snd_nxt))
1025 return false;
1026
1027 /* In outstanding window? ...This is valid exit for D-SACKs too.
1028 * start_seq == snd_una is non-sensical (see comments above)
1029 */
1030 if (after(start_seq, tp->snd_una))
1031 return true;
1032
1033 if (!is_dsack || !tp->undo_marker)
1034 return false;
1035
1036 /* ...Then it's D-SACK, and must reside below snd_una completely */
1037 if (after(end_seq, tp->snd_una))
1038 return false;
1039
1040 if (!before(start_seq, tp->undo_marker))
1041 return true;
1042
1043 /* Too old */
1044 if (!after(end_seq, tp->undo_marker))
1045 return false;
1046
1047 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 * start_seq < undo_marker and end_seq >= undo_marker.
1049 */
1050 return !before(start_seq, end_seq - tp->max_window);
1051 }
1052
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 struct tcp_sack_block_wire *sp, int num_sacks,
1055 u32 prior_snd_una)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 bool dup_sack = false;
1061
1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 dup_sack = true;
1064 tcp_dsack_seen(tp);
1065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 } else if (num_sacks > 1) {
1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070 if (!after(end_seq_0, end_seq_1) &&
1071 !before(start_seq_0, start_seq_1)) {
1072 dup_sack = true;
1073 tcp_dsack_seen(tp);
1074 NET_INC_STATS(sock_net(sk),
1075 LINUX_MIB_TCPDSACKOFORECV);
1076 }
1077 }
1078
1079 /* D-SACK for already forgotten data... Do dumb counting. */
1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 !after(end_seq_0, prior_snd_una) &&
1082 after(end_seq_0, tp->undo_marker))
1083 tp->undo_retrans--;
1084
1085 return dup_sack;
1086 }
1087
1088 struct tcp_sacktag_state {
1089 int reord;
1090 int fack_count;
1091 /* Timestamps for earliest and latest never-retransmitted segment
1092 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 * but congestion control should still get an accurate delay signal.
1094 */
1095 struct skb_mstamp first_sackt;
1096 struct skb_mstamp last_sackt;
1097 int flag;
1098 };
1099
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 u32 start_seq, u32 end_seq)
1110 {
1111 int err;
1112 bool in_sack;
1113 unsigned int pkt_len;
1114 unsigned int mss;
1115
1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 mss = tcp_skb_mss(skb);
1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124 if (!in_sack) {
1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 if (pkt_len < mss)
1127 pkt_len = mss;
1128 } else {
1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 if (pkt_len < mss)
1131 return -EINVAL;
1132 }
1133
1134 /* Round if necessary so that SACKs cover only full MSSes
1135 * and/or the remaining small portion (if present)
1136 */
1137 if (pkt_len > mss) {
1138 unsigned int new_len = (pkt_len / mss) * mss;
1139 if (!in_sack && new_len < pkt_len) {
1140 new_len += mss;
1141 if (new_len >= skb->len)
1142 return 0;
1143 }
1144 pkt_len = new_len;
1145 }
1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 if (err < 0)
1148 return err;
1149 }
1150
1151 return in_sack;
1152 }
1153
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 struct tcp_sacktag_state *state, u8 sacked,
1157 u32 start_seq, u32 end_seq,
1158 int dup_sack, int pcount,
1159 const struct skb_mstamp *xmit_time)
1160 {
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 int fack_count = state->fack_count;
1163
1164 /* Account D-SACK for retransmitted packet. */
1165 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 after(end_seq, tp->undo_marker))
1168 tp->undo_retrans--;
1169 if (sacked & TCPCB_SACKED_ACKED)
1170 state->reord = min(fack_count, state->reord);
1171 }
1172
1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 if (!after(end_seq, tp->snd_una))
1175 return sacked;
1176
1177 if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 tcp_rack_advance(tp, xmit_time, sacked);
1179
1180 if (sacked & TCPCB_SACKED_RETRANS) {
1181 /* If the segment is not tagged as lost,
1182 * we do not clear RETRANS, believing
1183 * that retransmission is still in flight.
1184 */
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 tp->lost_out -= pcount;
1188 tp->retrans_out -= pcount;
1189 }
1190 } else {
1191 if (!(sacked & TCPCB_RETRANS)) {
1192 /* New sack for not retransmitted frame,
1193 * which was in hole. It is reordering.
1194 */
1195 if (before(start_seq,
1196 tcp_highest_sack_seq(tp)))
1197 state->reord = min(fack_count,
1198 state->reord);
1199 if (!after(end_seq, tp->high_seq))
1200 state->flag |= FLAG_ORIG_SACK_ACKED;
1201 if (state->first_sackt.v64 == 0)
1202 state->first_sackt = *xmit_time;
1203 state->last_sackt = *xmit_time;
1204 }
1205
1206 if (sacked & TCPCB_LOST) {
1207 sacked &= ~TCPCB_LOST;
1208 tp->lost_out -= pcount;
1209 }
1210 }
1211
1212 sacked |= TCPCB_SACKED_ACKED;
1213 state->flag |= FLAG_DATA_SACKED;
1214 tp->sacked_out += pcount;
1215 tp->delivered += pcount; /* Out-of-order packets delivered */
1216
1217 fack_count += pcount;
1218
1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 tp->lost_cnt_hint += pcount;
1223
1224 if (fack_count > tp->fackets_out)
1225 tp->fackets_out = fack_count;
1226 }
1227
1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 * are accounted above as well.
1231 */
1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 sacked &= ~TCPCB_SACKED_RETRANS;
1234 tp->retrans_out -= pcount;
1235 }
1236
1237 return sacked;
1238 }
1239
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 struct tcp_sacktag_state *state,
1245 unsigned int pcount, int shifted, int mss,
1246 bool dup_sack)
1247 {
1248 struct tcp_sock *tp = tcp_sk(sk);
1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1252
1253 BUG_ON(!pcount);
1254
1255 /* Adjust counters and hints for the newly sacked sequence
1256 * range but discard the return value since prev is already
1257 * marked. We must tag the range first because the seq
1258 * advancement below implicitly advances
1259 * tcp_highest_sack_seq() when skb is highest_sack.
1260 */
1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 start_seq, end_seq, dup_sack, pcount,
1263 &skb->skb_mstamp);
1264
1265 if (skb == tp->lost_skb_hint)
1266 tp->lost_cnt_hint += pcount;
1267
1268 TCP_SKB_CB(prev)->end_seq += shifted;
1269 TCP_SKB_CB(skb)->seq += shifted;
1270
1271 tcp_skb_pcount_add(prev, pcount);
1272 BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 tcp_skb_pcount_add(skb, -pcount);
1274
1275 /* When we're adding to gso_segs == 1, gso_size will be zero,
1276 * in theory this shouldn't be necessary but as long as DSACK
1277 * code can come after this skb later on it's better to keep
1278 * setting gso_size to something.
1279 */
1280 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 if (tcp_skb_pcount(skb) <= 1)
1285 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290 if (skb->len > 0) {
1291 BUG_ON(!tcp_skb_pcount(skb));
1292 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 return false;
1294 }
1295
1296 /* Whole SKB was eaten :-) */
1297
1298 if (skb == tp->retransmit_skb_hint)
1299 tp->retransmit_skb_hint = prev;
1300 if (skb == tp->lost_skb_hint) {
1301 tp->lost_skb_hint = prev;
1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 }
1304
1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1307 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1308 TCP_SKB_CB(prev)->end_seq++;
1309
1310 if (skb == tcp_highest_sack(sk))
1311 tcp_advance_highest_sack(sk, skb);
1312
1313 tcp_skb_collapse_tstamp(prev, skb);
1314 tcp_unlink_write_queue(skb, sk);
1315 sk_wmem_free_skb(sk, skb);
1316
1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1318
1319 return true;
1320 }
1321
1322 /* I wish gso_size would have a bit more sane initialization than
1323 * something-or-zero which complicates things
1324 */
1325 static int tcp_skb_seglen(const struct sk_buff *skb)
1326 {
1327 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1328 }
1329
1330 /* Shifting pages past head area doesn't work */
1331 static int skb_can_shift(const struct sk_buff *skb)
1332 {
1333 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1334 }
1335
1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1337 * skb.
1338 */
1339 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1340 struct tcp_sacktag_state *state,
1341 u32 start_seq, u32 end_seq,
1342 bool dup_sack)
1343 {
1344 struct tcp_sock *tp = tcp_sk(sk);
1345 struct sk_buff *prev;
1346 int mss;
1347 int pcount = 0;
1348 int len;
1349 int in_sack;
1350
1351 if (!sk_can_gso(sk))
1352 goto fallback;
1353
1354 /* Normally R but no L won't result in plain S */
1355 if (!dup_sack &&
1356 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1357 goto fallback;
1358 if (!skb_can_shift(skb))
1359 goto fallback;
1360 /* This frame is about to be dropped (was ACKed). */
1361 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1362 goto fallback;
1363
1364 /* Can only happen with delayed DSACK + discard craziness */
1365 if (unlikely(skb == tcp_write_queue_head(sk)))
1366 goto fallback;
1367 prev = tcp_write_queue_prev(sk, skb);
1368
1369 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1370 goto fallback;
1371
1372 if (!tcp_skb_can_collapse_to(prev))
1373 goto fallback;
1374
1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1376 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1377
1378 if (in_sack) {
1379 len = skb->len;
1380 pcount = tcp_skb_pcount(skb);
1381 mss = tcp_skb_seglen(skb);
1382
1383 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 * drop this restriction as unnecessary
1385 */
1386 if (mss != tcp_skb_seglen(prev))
1387 goto fallback;
1388 } else {
1389 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1390 goto noop;
1391 /* CHECKME: This is non-MSS split case only?, this will
1392 * cause skipped skbs due to advancing loop btw, original
1393 * has that feature too
1394 */
1395 if (tcp_skb_pcount(skb) <= 1)
1396 goto noop;
1397
1398 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1399 if (!in_sack) {
1400 /* TODO: head merge to next could be attempted here
1401 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1402 * though it might not be worth of the additional hassle
1403 *
1404 * ...we can probably just fallback to what was done
1405 * previously. We could try merging non-SACKed ones
1406 * as well but it probably isn't going to buy off
1407 * because later SACKs might again split them, and
1408 * it would make skb timestamp tracking considerably
1409 * harder problem.
1410 */
1411 goto fallback;
1412 }
1413
1414 len = end_seq - TCP_SKB_CB(skb)->seq;
1415 BUG_ON(len < 0);
1416 BUG_ON(len > skb->len);
1417
1418 /* MSS boundaries should be honoured or else pcount will
1419 * severely break even though it makes things bit trickier.
1420 * Optimize common case to avoid most of the divides
1421 */
1422 mss = tcp_skb_mss(skb);
1423
1424 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 * drop this restriction as unnecessary
1426 */
1427 if (mss != tcp_skb_seglen(prev))
1428 goto fallback;
1429
1430 if (len == mss) {
1431 pcount = 1;
1432 } else if (len < mss) {
1433 goto noop;
1434 } else {
1435 pcount = len / mss;
1436 len = pcount * mss;
1437 }
1438 }
1439
1440 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1441 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1442 goto fallback;
1443
1444 if (!skb_shift(prev, skb, len))
1445 goto fallback;
1446 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1447 goto out;
1448
1449 /* Hole filled allows collapsing with the next as well, this is very
1450 * useful when hole on every nth skb pattern happens
1451 */
1452 if (prev == tcp_write_queue_tail(sk))
1453 goto out;
1454 skb = tcp_write_queue_next(sk, prev);
1455
1456 if (!skb_can_shift(skb) ||
1457 (skb == tcp_send_head(sk)) ||
1458 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1459 (mss != tcp_skb_seglen(skb)))
1460 goto out;
1461
1462 len = skb->len;
1463 if (skb_shift(prev, skb, len)) {
1464 pcount += tcp_skb_pcount(skb);
1465 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1466 }
1467
1468 out:
1469 state->fack_count += pcount;
1470 return prev;
1471
1472 noop:
1473 return skb;
1474
1475 fallback:
1476 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1477 return NULL;
1478 }
1479
1480 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1481 struct tcp_sack_block *next_dup,
1482 struct tcp_sacktag_state *state,
1483 u32 start_seq, u32 end_seq,
1484 bool dup_sack_in)
1485 {
1486 struct tcp_sock *tp = tcp_sk(sk);
1487 struct sk_buff *tmp;
1488
1489 tcp_for_write_queue_from(skb, sk) {
1490 int in_sack = 0;
1491 bool dup_sack = dup_sack_in;
1492
1493 if (skb == tcp_send_head(sk))
1494 break;
1495
1496 /* queue is in-order => we can short-circuit the walk early */
1497 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1498 break;
1499
1500 if (next_dup &&
1501 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1502 in_sack = tcp_match_skb_to_sack(sk, skb,
1503 next_dup->start_seq,
1504 next_dup->end_seq);
1505 if (in_sack > 0)
1506 dup_sack = true;
1507 }
1508
1509 /* skb reference here is a bit tricky to get right, since
1510 * shifting can eat and free both this skb and the next,
1511 * so not even _safe variant of the loop is enough.
1512 */
1513 if (in_sack <= 0) {
1514 tmp = tcp_shift_skb_data(sk, skb, state,
1515 start_seq, end_seq, dup_sack);
1516 if (tmp) {
1517 if (tmp != skb) {
1518 skb = tmp;
1519 continue;
1520 }
1521
1522 in_sack = 0;
1523 } else {
1524 in_sack = tcp_match_skb_to_sack(sk, skb,
1525 start_seq,
1526 end_seq);
1527 }
1528 }
1529
1530 if (unlikely(in_sack < 0))
1531 break;
1532
1533 if (in_sack) {
1534 TCP_SKB_CB(skb)->sacked =
1535 tcp_sacktag_one(sk,
1536 state,
1537 TCP_SKB_CB(skb)->sacked,
1538 TCP_SKB_CB(skb)->seq,
1539 TCP_SKB_CB(skb)->end_seq,
1540 dup_sack,
1541 tcp_skb_pcount(skb),
1542 &skb->skb_mstamp);
1543
1544 if (!before(TCP_SKB_CB(skb)->seq,
1545 tcp_highest_sack_seq(tp)))
1546 tcp_advance_highest_sack(sk, skb);
1547 }
1548
1549 state->fack_count += tcp_skb_pcount(skb);
1550 }
1551 return skb;
1552 }
1553
1554 /* Avoid all extra work that is being done by sacktag while walking in
1555 * a normal way
1556 */
1557 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1558 struct tcp_sacktag_state *state,
1559 u32 skip_to_seq)
1560 {
1561 tcp_for_write_queue_from(skb, sk) {
1562 if (skb == tcp_send_head(sk))
1563 break;
1564
1565 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1566 break;
1567
1568 state->fack_count += tcp_skb_pcount(skb);
1569 }
1570 return skb;
1571 }
1572
1573 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1574 struct sock *sk,
1575 struct tcp_sack_block *next_dup,
1576 struct tcp_sacktag_state *state,
1577 u32 skip_to_seq)
1578 {
1579 if (!next_dup)
1580 return skb;
1581
1582 if (before(next_dup->start_seq, skip_to_seq)) {
1583 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1584 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1585 next_dup->start_seq, next_dup->end_seq,
1586 1);
1587 }
1588
1589 return skb;
1590 }
1591
1592 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1593 {
1594 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1595 }
1596
1597 static int
1598 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1599 u32 prior_snd_una, struct tcp_sacktag_state *state)
1600 {
1601 struct tcp_sock *tp = tcp_sk(sk);
1602 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1603 TCP_SKB_CB(ack_skb)->sacked);
1604 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1605 struct tcp_sack_block sp[TCP_NUM_SACKS];
1606 struct tcp_sack_block *cache;
1607 struct sk_buff *skb;
1608 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1609 int used_sacks;
1610 bool found_dup_sack = false;
1611 int i, j;
1612 int first_sack_index;
1613
1614 state->flag = 0;
1615 state->reord = tp->packets_out;
1616
1617 if (!tp->sacked_out) {
1618 if (WARN_ON(tp->fackets_out))
1619 tp->fackets_out = 0;
1620 tcp_highest_sack_reset(sk);
1621 }
1622
1623 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1624 num_sacks, prior_snd_una);
1625 if (found_dup_sack)
1626 state->flag |= FLAG_DSACKING_ACK;
1627
1628 /* Eliminate too old ACKs, but take into
1629 * account more or less fresh ones, they can
1630 * contain valid SACK info.
1631 */
1632 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1633 return 0;
1634
1635 if (!tp->packets_out)
1636 goto out;
1637
1638 used_sacks = 0;
1639 first_sack_index = 0;
1640 for (i = 0; i < num_sacks; i++) {
1641 bool dup_sack = !i && found_dup_sack;
1642
1643 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1644 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1645
1646 if (!tcp_is_sackblock_valid(tp, dup_sack,
1647 sp[used_sacks].start_seq,
1648 sp[used_sacks].end_seq)) {
1649 int mib_idx;
1650
1651 if (dup_sack) {
1652 if (!tp->undo_marker)
1653 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1654 else
1655 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1656 } else {
1657 /* Don't count olds caused by ACK reordering */
1658 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1659 !after(sp[used_sacks].end_seq, tp->snd_una))
1660 continue;
1661 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1662 }
1663
1664 NET_INC_STATS(sock_net(sk), mib_idx);
1665 if (i == 0)
1666 first_sack_index = -1;
1667 continue;
1668 }
1669
1670 /* Ignore very old stuff early */
1671 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1672 continue;
1673
1674 used_sacks++;
1675 }
1676
1677 /* order SACK blocks to allow in order walk of the retrans queue */
1678 for (i = used_sacks - 1; i > 0; i--) {
1679 for (j = 0; j < i; j++) {
1680 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1681 swap(sp[j], sp[j + 1]);
1682
1683 /* Track where the first SACK block goes to */
1684 if (j == first_sack_index)
1685 first_sack_index = j + 1;
1686 }
1687 }
1688 }
1689
1690 skb = tcp_write_queue_head(sk);
1691 state->fack_count = 0;
1692 i = 0;
1693
1694 if (!tp->sacked_out) {
1695 /* It's already past, so skip checking against it */
1696 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1697 } else {
1698 cache = tp->recv_sack_cache;
1699 /* Skip empty blocks in at head of the cache */
1700 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1701 !cache->end_seq)
1702 cache++;
1703 }
1704
1705 while (i < used_sacks) {
1706 u32 start_seq = sp[i].start_seq;
1707 u32 end_seq = sp[i].end_seq;
1708 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1709 struct tcp_sack_block *next_dup = NULL;
1710
1711 if (found_dup_sack && ((i + 1) == first_sack_index))
1712 next_dup = &sp[i + 1];
1713
1714 /* Skip too early cached blocks */
1715 while (tcp_sack_cache_ok(tp, cache) &&
1716 !before(start_seq, cache->end_seq))
1717 cache++;
1718
1719 /* Can skip some work by looking recv_sack_cache? */
1720 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1721 after(end_seq, cache->start_seq)) {
1722
1723 /* Head todo? */
1724 if (before(start_seq, cache->start_seq)) {
1725 skb = tcp_sacktag_skip(skb, sk, state,
1726 start_seq);
1727 skb = tcp_sacktag_walk(skb, sk, next_dup,
1728 state,
1729 start_seq,
1730 cache->start_seq,
1731 dup_sack);
1732 }
1733
1734 /* Rest of the block already fully processed? */
1735 if (!after(end_seq, cache->end_seq))
1736 goto advance_sp;
1737
1738 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1739 state,
1740 cache->end_seq);
1741
1742 /* ...tail remains todo... */
1743 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1744 /* ...but better entrypoint exists! */
1745 skb = tcp_highest_sack(sk);
1746 if (!skb)
1747 break;
1748 state->fack_count = tp->fackets_out;
1749 cache++;
1750 goto walk;
1751 }
1752
1753 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1754 /* Check overlap against next cached too (past this one already) */
1755 cache++;
1756 continue;
1757 }
1758
1759 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1760 skb = tcp_highest_sack(sk);
1761 if (!skb)
1762 break;
1763 state->fack_count = tp->fackets_out;
1764 }
1765 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1766
1767 walk:
1768 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1769 start_seq, end_seq, dup_sack);
1770
1771 advance_sp:
1772 i++;
1773 }
1774
1775 /* Clear the head of the cache sack blocks so we can skip it next time */
1776 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1777 tp->recv_sack_cache[i].start_seq = 0;
1778 tp->recv_sack_cache[i].end_seq = 0;
1779 }
1780 for (j = 0; j < used_sacks; j++)
1781 tp->recv_sack_cache[i++] = sp[j];
1782
1783 if ((state->reord < tp->fackets_out) &&
1784 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1785 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1786
1787 tcp_verify_left_out(tp);
1788 out:
1789
1790 #if FASTRETRANS_DEBUG > 0
1791 WARN_ON((int)tp->sacked_out < 0);
1792 WARN_ON((int)tp->lost_out < 0);
1793 WARN_ON((int)tp->retrans_out < 0);
1794 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1795 #endif
1796 return state->flag;
1797 }
1798
1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1800 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1801 */
1802 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1803 {
1804 u32 holes;
1805
1806 holes = max(tp->lost_out, 1U);
1807 holes = min(holes, tp->packets_out);
1808
1809 if ((tp->sacked_out + holes) > tp->packets_out) {
1810 tp->sacked_out = tp->packets_out - holes;
1811 return true;
1812 }
1813 return false;
1814 }
1815
1816 /* If we receive more dupacks than we expected counting segments
1817 * in assumption of absent reordering, interpret this as reordering.
1818 * The only another reason could be bug in receiver TCP.
1819 */
1820 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1821 {
1822 struct tcp_sock *tp = tcp_sk(sk);
1823 if (tcp_limit_reno_sacked(tp))
1824 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1825 }
1826
1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1828
1829 static void tcp_add_reno_sack(struct sock *sk)
1830 {
1831 struct tcp_sock *tp = tcp_sk(sk);
1832 u32 prior_sacked = tp->sacked_out;
1833
1834 tp->sacked_out++;
1835 tcp_check_reno_reordering(sk, 0);
1836 if (tp->sacked_out > prior_sacked)
1837 tp->delivered++; /* Some out-of-order packet is delivered */
1838 tcp_verify_left_out(tp);
1839 }
1840
1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1842
1843 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1844 {
1845 struct tcp_sock *tp = tcp_sk(sk);
1846
1847 if (acked > 0) {
1848 /* One ACK acked hole. The rest eat duplicate ACKs. */
1849 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1850 if (acked - 1 >= tp->sacked_out)
1851 tp->sacked_out = 0;
1852 else
1853 tp->sacked_out -= acked - 1;
1854 }
1855 tcp_check_reno_reordering(sk, acked);
1856 tcp_verify_left_out(tp);
1857 }
1858
1859 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1860 {
1861 tp->sacked_out = 0;
1862 }
1863
1864 void tcp_clear_retrans(struct tcp_sock *tp)
1865 {
1866 tp->retrans_out = 0;
1867 tp->lost_out = 0;
1868 tp->undo_marker = 0;
1869 tp->undo_retrans = -1;
1870 tp->fackets_out = 0;
1871 tp->sacked_out = 0;
1872 }
1873
1874 static inline void tcp_init_undo(struct tcp_sock *tp)
1875 {
1876 tp->undo_marker = tp->snd_una;
1877 /* Retransmission still in flight may cause DSACKs later. */
1878 tp->undo_retrans = tp->retrans_out ? : -1;
1879 }
1880
1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1882 * and reset tags completely, otherwise preserve SACKs. If receiver
1883 * dropped its ofo queue, we will know this due to reneging detection.
1884 */
1885 void tcp_enter_loss(struct sock *sk)
1886 {
1887 const struct inet_connection_sock *icsk = inet_csk(sk);
1888 struct tcp_sock *tp = tcp_sk(sk);
1889 struct net *net = sock_net(sk);
1890 struct sk_buff *skb;
1891 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1892 bool is_reneg; /* is receiver reneging on SACKs? */
1893
1894 /* Reduce ssthresh if it has not yet been made inside this window. */
1895 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1896 !after(tp->high_seq, tp->snd_una) ||
1897 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1898 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1899 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1900 tcp_ca_event(sk, CA_EVENT_LOSS);
1901 tcp_init_undo(tp);
1902 }
1903 tp->snd_cwnd = 1;
1904 tp->snd_cwnd_cnt = 0;
1905 tp->snd_cwnd_stamp = tcp_time_stamp;
1906
1907 tp->retrans_out = 0;
1908 tp->lost_out = 0;
1909
1910 if (tcp_is_reno(tp))
1911 tcp_reset_reno_sack(tp);
1912
1913 skb = tcp_write_queue_head(sk);
1914 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1915 if (is_reneg) {
1916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1917 tp->sacked_out = 0;
1918 tp->fackets_out = 0;
1919 }
1920 tcp_clear_all_retrans_hints(tp);
1921
1922 tcp_for_write_queue(skb, sk) {
1923 if (skb == tcp_send_head(sk))
1924 break;
1925
1926 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1928 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930 tp->lost_out += tcp_skb_pcount(skb);
1931 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1932 }
1933 }
1934 tcp_verify_left_out(tp);
1935
1936 /* Timeout in disordered state after receiving substantial DUPACKs
1937 * suggests that the degree of reordering is over-estimated.
1938 */
1939 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1940 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1941 tp->reordering = min_t(unsigned int, tp->reordering,
1942 net->ipv4.sysctl_tcp_reordering);
1943 tcp_set_ca_state(sk, TCP_CA_Loss);
1944 tp->high_seq = tp->snd_nxt;
1945 tcp_ecn_queue_cwr(tp);
1946
1947 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1948 * loss recovery is underway except recurring timeout(s) on
1949 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1950 */
1951 tp->frto = sysctl_tcp_frto &&
1952 (new_recovery || icsk->icsk_retransmits) &&
1953 !inet_csk(sk)->icsk_mtup.probe_size;
1954 }
1955
1956 /* If ACK arrived pointing to a remembered SACK, it means that our
1957 * remembered SACKs do not reflect real state of receiver i.e.
1958 * receiver _host_ is heavily congested (or buggy).
1959 *
1960 * To avoid big spurious retransmission bursts due to transient SACK
1961 * scoreboard oddities that look like reneging, we give the receiver a
1962 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1963 * restore sanity to the SACK scoreboard. If the apparent reneging
1964 * persists until this RTO then we'll clear the SACK scoreboard.
1965 */
1966 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1967 {
1968 if (flag & FLAG_SACK_RENEGING) {
1969 struct tcp_sock *tp = tcp_sk(sk);
1970 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1971 msecs_to_jiffies(10));
1972
1973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1974 delay, TCP_RTO_MAX);
1975 return true;
1976 }
1977 return false;
1978 }
1979
1980 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1981 {
1982 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1983 }
1984
1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1986 * counter when SACK is enabled (without SACK, sacked_out is used for
1987 * that purpose).
1988 *
1989 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1990 * segments up to the highest received SACK block so far and holes in
1991 * between them.
1992 *
1993 * With reordering, holes may still be in flight, so RFC3517 recovery
1994 * uses pure sacked_out (total number of SACKed segments) even though
1995 * it violates the RFC that uses duplicate ACKs, often these are equal
1996 * but when e.g. out-of-window ACKs or packet duplication occurs,
1997 * they differ. Since neither occurs due to loss, TCP should really
1998 * ignore them.
1999 */
2000 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2001 {
2002 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2003 }
2004
2005 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2006 {
2007 struct tcp_sock *tp = tcp_sk(sk);
2008 unsigned long delay;
2009
2010 /* Delay early retransmit and entering fast recovery for
2011 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2012 * available, or RTO is scheduled to fire first.
2013 */
2014 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2015 (flag & FLAG_ECE) || !tp->srtt_us)
2016 return false;
2017
2018 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2019 msecs_to_jiffies(2));
2020
2021 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2022 return false;
2023
2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2025 TCP_RTO_MAX);
2026 return true;
2027 }
2028
2029 /* Linux NewReno/SACK/FACK/ECN state machine.
2030 * --------------------------------------
2031 *
2032 * "Open" Normal state, no dubious events, fast path.
2033 * "Disorder" In all the respects it is "Open",
2034 * but requires a bit more attention. It is entered when
2035 * we see some SACKs or dupacks. It is split of "Open"
2036 * mainly to move some processing from fast path to slow one.
2037 * "CWR" CWND was reduced due to some Congestion Notification event.
2038 * It can be ECN, ICMP source quench, local device congestion.
2039 * "Recovery" CWND was reduced, we are fast-retransmitting.
2040 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2041 *
2042 * tcp_fastretrans_alert() is entered:
2043 * - each incoming ACK, if state is not "Open"
2044 * - when arrived ACK is unusual, namely:
2045 * * SACK
2046 * * Duplicate ACK.
2047 * * ECN ECE.
2048 *
2049 * Counting packets in flight is pretty simple.
2050 *
2051 * in_flight = packets_out - left_out + retrans_out
2052 *
2053 * packets_out is SND.NXT-SND.UNA counted in packets.
2054 *
2055 * retrans_out is number of retransmitted segments.
2056 *
2057 * left_out is number of segments left network, but not ACKed yet.
2058 *
2059 * left_out = sacked_out + lost_out
2060 *
2061 * sacked_out: Packets, which arrived to receiver out of order
2062 * and hence not ACKed. With SACKs this number is simply
2063 * amount of SACKed data. Even without SACKs
2064 * it is easy to give pretty reliable estimate of this number,
2065 * counting duplicate ACKs.
2066 *
2067 * lost_out: Packets lost by network. TCP has no explicit
2068 * "loss notification" feedback from network (for now).
2069 * It means that this number can be only _guessed_.
2070 * Actually, it is the heuristics to predict lossage that
2071 * distinguishes different algorithms.
2072 *
2073 * F.e. after RTO, when all the queue is considered as lost,
2074 * lost_out = packets_out and in_flight = retrans_out.
2075 *
2076 * Essentially, we have now two algorithms counting
2077 * lost packets.
2078 *
2079 * FACK: It is the simplest heuristics. As soon as we decided
2080 * that something is lost, we decide that _all_ not SACKed
2081 * packets until the most forward SACK are lost. I.e.
2082 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2083 * It is absolutely correct estimate, if network does not reorder
2084 * packets. And it loses any connection to reality when reordering
2085 * takes place. We use FACK by default until reordering
2086 * is suspected on the path to this destination.
2087 *
2088 * NewReno: when Recovery is entered, we assume that one segment
2089 * is lost (classic Reno). While we are in Recovery and
2090 * a partial ACK arrives, we assume that one more packet
2091 * is lost (NewReno). This heuristics are the same in NewReno
2092 * and SACK.
2093 *
2094 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2095 * deflation etc. CWND is real congestion window, never inflated, changes
2096 * only according to classic VJ rules.
2097 *
2098 * Really tricky (and requiring careful tuning) part of algorithm
2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100 * The first determines the moment _when_ we should reduce CWND and,
2101 * hence, slow down forward transmission. In fact, it determines the moment
2102 * when we decide that hole is caused by loss, rather than by a reorder.
2103 *
2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105 * holes, caused by lost packets.
2106 *
2107 * And the most logically complicated part of algorithm is undo
2108 * heuristics. We detect false retransmits due to both too early
2109 * fast retransmit (reordering) and underestimated RTO, analyzing
2110 * timestamps and D-SACKs. When we detect that some segments were
2111 * retransmitted by mistake and CWND reduction was wrong, we undo
2112 * window reduction and abort recovery phase. This logic is hidden
2113 * inside several functions named tcp_try_undo_<something>.
2114 */
2115
2116 /* This function decides, when we should leave Disordered state
2117 * and enter Recovery phase, reducing congestion window.
2118 *
2119 * Main question: may we further continue forward transmission
2120 * with the same cwnd?
2121 */
2122 static bool tcp_time_to_recover(struct sock *sk, int flag)
2123 {
2124 struct tcp_sock *tp = tcp_sk(sk);
2125 __u32 packets_out;
2126 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2127
2128 /* Trick#1: The loss is proven. */
2129 if (tp->lost_out)
2130 return true;
2131
2132 /* Not-A-Trick#2 : Classic rule... */
2133 if (tcp_dupack_heuristics(tp) > tp->reordering)
2134 return true;
2135
2136 /* Trick#4: It is still not OK... But will it be useful to delay
2137 * recovery more?
2138 */
2139 packets_out = tp->packets_out;
2140 if (packets_out <= tp->reordering &&
2141 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2142 !tcp_may_send_now(sk)) {
2143 /* We have nothing to send. This connection is limited
2144 * either by receiver window or by application.
2145 */
2146 return true;
2147 }
2148
2149 /* If a thin stream is detected, retransmit after first
2150 * received dupack. Employ only if SACK is supported in order
2151 * to avoid possible corner-case series of spurious retransmissions
2152 * Use only if there are no unsent data.
2153 */
2154 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2155 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2156 tcp_is_sack(tp) && !tcp_send_head(sk))
2157 return true;
2158
2159 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2160 * retransmissions due to small network reorderings, we implement
2161 * Mitigation A.3 in the RFC and delay the retransmission for a short
2162 * interval if appropriate.
2163 */
2164 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2165 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2166 !tcp_may_send_now(sk))
2167 return !tcp_pause_early_retransmit(sk, flag);
2168
2169 return false;
2170 }
2171
2172 /* Detect loss in event "A" above by marking head of queue up as lost.
2173 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2174 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2175 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2176 * the maximum SACKed segments to pass before reaching this limit.
2177 */
2178 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2179 {
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct sk_buff *skb;
2182 int cnt, oldcnt, lost;
2183 unsigned int mss;
2184 /* Use SACK to deduce losses of new sequences sent during recovery */
2185 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2186
2187 WARN_ON(packets > tp->packets_out);
2188 if (tp->lost_skb_hint) {
2189 skb = tp->lost_skb_hint;
2190 cnt = tp->lost_cnt_hint;
2191 /* Head already handled? */
2192 if (mark_head && skb != tcp_write_queue_head(sk))
2193 return;
2194 } else {
2195 skb = tcp_write_queue_head(sk);
2196 cnt = 0;
2197 }
2198
2199 tcp_for_write_queue_from(skb, sk) {
2200 if (skb == tcp_send_head(sk))
2201 break;
2202 /* TODO: do this better */
2203 /* this is not the most efficient way to do this... */
2204 tp->lost_skb_hint = skb;
2205 tp->lost_cnt_hint = cnt;
2206
2207 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208 break;
2209
2210 oldcnt = cnt;
2211 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 cnt += tcp_skb_pcount(skb);
2214
2215 if (cnt > packets) {
2216 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2217 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 (oldcnt >= packets))
2219 break;
2220
2221 mss = tcp_skb_mss(skb);
2222 /* If needed, chop off the prefix to mark as lost. */
2223 lost = (packets - oldcnt) * mss;
2224 if (lost < skb->len &&
2225 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2226 break;
2227 cnt = packets;
2228 }
2229
2230 tcp_skb_mark_lost(tp, skb);
2231
2232 if (mark_head)
2233 break;
2234 }
2235 tcp_verify_left_out(tp);
2236 }
2237
2238 /* Account newly detected lost packet(s) */
2239
2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241 {
2242 struct tcp_sock *tp = tcp_sk(sk);
2243
2244 if (tcp_is_reno(tp)) {
2245 tcp_mark_head_lost(sk, 1, 1);
2246 } else if (tcp_is_fack(tp)) {
2247 int lost = tp->fackets_out - tp->reordering;
2248 if (lost <= 0)
2249 lost = 1;
2250 tcp_mark_head_lost(sk, lost, 0);
2251 } else {
2252 int sacked_upto = tp->sacked_out - tp->reordering;
2253 if (sacked_upto >= 0)
2254 tcp_mark_head_lost(sk, sacked_upto, 0);
2255 else if (fast_rexmit)
2256 tcp_mark_head_lost(sk, 1, 1);
2257 }
2258 }
2259
2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261 {
2262 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263 before(tp->rx_opt.rcv_tsecr, when);
2264 }
2265
2266 /* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2268 */
2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270 const struct sk_buff *skb)
2271 {
2272 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274 }
2275
2276 /* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2278 */
2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280 {
2281 return !tp->retrans_stamp ||
2282 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283 }
2284
2285 /* Undo procedures. */
2286
2287 /* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2295 *
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2300 */
2301 static bool tcp_any_retrans_done(const struct sock *sk)
2302 {
2303 const struct tcp_sock *tp = tcp_sk(sk);
2304 struct sk_buff *skb;
2305
2306 if (tp->retrans_out)
2307 return true;
2308
2309 skb = tcp_write_queue_head(sk);
2310 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311 return true;
2312
2313 return false;
2314 }
2315
2316 #if FASTRETRANS_DEBUG > 1
2317 static void DBGUNDO(struct sock *sk, const char *msg)
2318 {
2319 struct tcp_sock *tp = tcp_sk(sk);
2320 struct inet_sock *inet = inet_sk(sk);
2321
2322 if (sk->sk_family == AF_INET) {
2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324 msg,
2325 &inet->inet_daddr, ntohs(inet->inet_dport),
2326 tp->snd_cwnd, tcp_left_out(tp),
2327 tp->snd_ssthresh, tp->prior_ssthresh,
2328 tp->packets_out);
2329 }
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 else if (sk->sk_family == AF_INET6) {
2332 struct ipv6_pinfo *np = inet6_sk(sk);
2333 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2334 msg,
2335 &np->daddr, ntohs(inet->inet_dport),
2336 tp->snd_cwnd, tcp_left_out(tp),
2337 tp->snd_ssthresh, tp->prior_ssthresh,
2338 tp->packets_out);
2339 }
2340 #endif
2341 }
2342 #else
2343 #define DBGUNDO(x...) do { } while (0)
2344 #endif
2345
2346 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2347 {
2348 struct tcp_sock *tp = tcp_sk(sk);
2349
2350 if (unmark_loss) {
2351 struct sk_buff *skb;
2352
2353 tcp_for_write_queue(skb, sk) {
2354 if (skb == tcp_send_head(sk))
2355 break;
2356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2357 }
2358 tp->lost_out = 0;
2359 tcp_clear_all_retrans_hints(tp);
2360 }
2361
2362 if (tp->prior_ssthresh) {
2363 const struct inet_connection_sock *icsk = inet_csk(sk);
2364
2365 if (icsk->icsk_ca_ops->undo_cwnd)
2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2367 else
2368 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2369
2370 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2371 tp->snd_ssthresh = tp->prior_ssthresh;
2372 tcp_ecn_withdraw_cwr(tp);
2373 }
2374 }
2375 tp->snd_cwnd_stamp = tcp_time_stamp;
2376 tp->undo_marker = 0;
2377 }
2378
2379 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2380 {
2381 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2382 }
2383
2384 /* People celebrate: "We love our President!" */
2385 static bool tcp_try_undo_recovery(struct sock *sk)
2386 {
2387 struct tcp_sock *tp = tcp_sk(sk);
2388
2389 if (tcp_may_undo(tp)) {
2390 int mib_idx;
2391
2392 /* Happy end! We did not retransmit anything
2393 * or our original transmission succeeded.
2394 */
2395 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2396 tcp_undo_cwnd_reduction(sk, false);
2397 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2398 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2399 else
2400 mib_idx = LINUX_MIB_TCPFULLUNDO;
2401
2402 NET_INC_STATS(sock_net(sk), mib_idx);
2403 }
2404 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2405 /* Hold old state until something *above* high_seq
2406 * is ACKed. For Reno it is MUST to prevent false
2407 * fast retransmits (RFC2582). SACK TCP is safe. */
2408 if (!tcp_any_retrans_done(sk))
2409 tp->retrans_stamp = 0;
2410 return true;
2411 }
2412 tcp_set_ca_state(sk, TCP_CA_Open);
2413 return false;
2414 }
2415
2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2417 static bool tcp_try_undo_dsack(struct sock *sk)
2418 {
2419 struct tcp_sock *tp = tcp_sk(sk);
2420
2421 if (tp->undo_marker && !tp->undo_retrans) {
2422 DBGUNDO(sk, "D-SACK");
2423 tcp_undo_cwnd_reduction(sk, false);
2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2425 return true;
2426 }
2427 return false;
2428 }
2429
2430 /* Undo during loss recovery after partial ACK or using F-RTO. */
2431 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2432 {
2433 struct tcp_sock *tp = tcp_sk(sk);
2434
2435 if (frto_undo || tcp_may_undo(tp)) {
2436 tcp_undo_cwnd_reduction(sk, true);
2437
2438 DBGUNDO(sk, "partial loss");
2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2440 if (frto_undo)
2441 NET_INC_STATS(sock_net(sk),
2442 LINUX_MIB_TCPSPURIOUSRTOS);
2443 inet_csk(sk)->icsk_retransmits = 0;
2444 if (frto_undo || tcp_is_sack(tp))
2445 tcp_set_ca_state(sk, TCP_CA_Open);
2446 return true;
2447 }
2448 return false;
2449 }
2450
2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452 * It computes the number of packets to send (sndcnt) based on packets newly
2453 * delivered:
2454 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2455 * cwnd reductions across a full RTT.
2456 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2457 * But when the retransmits are acked without further losses, PRR
2458 * slow starts cwnd up to ssthresh to speed up the recovery.
2459 */
2460 static void tcp_init_cwnd_reduction(struct sock *sk)
2461 {
2462 struct tcp_sock *tp = tcp_sk(sk);
2463
2464 tp->high_seq = tp->snd_nxt;
2465 tp->tlp_high_seq = 0;
2466 tp->snd_cwnd_cnt = 0;
2467 tp->prior_cwnd = tp->snd_cwnd;
2468 tp->prr_delivered = 0;
2469 tp->prr_out = 0;
2470 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471 tcp_ecn_queue_cwr(tp);
2472 }
2473
2474 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2475 int flag)
2476 {
2477 struct tcp_sock *tp = tcp_sk(sk);
2478 int sndcnt = 0;
2479 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2480
2481 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2482 return;
2483
2484 tp->prr_delivered += newly_acked_sacked;
2485 if (delta < 0) {
2486 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2487 tp->prior_cwnd - 1;
2488 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2489 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2490 !(flag & FLAG_LOST_RETRANS)) {
2491 sndcnt = min_t(int, delta,
2492 max_t(int, tp->prr_delivered - tp->prr_out,
2493 newly_acked_sacked) + 1);
2494 } else {
2495 sndcnt = min(delta, newly_acked_sacked);
2496 }
2497 /* Force a fast retransmit upon entering fast recovery */
2498 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2499 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2500 }
2501
2502 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505
2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2508 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2509 tp->snd_cwnd = tp->snd_ssthresh;
2510 tp->snd_cwnd_stamp = tcp_time_stamp;
2511 }
2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513 }
2514
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock *sk)
2517 {
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 tp->prior_ssthresh = 0;
2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522 tp->undo_marker = 0;
2523 tcp_init_cwnd_reduction(sk);
2524 tcp_set_ca_state(sk, TCP_CA_CWR);
2525 }
2526 }
2527 EXPORT_SYMBOL(tcp_enter_cwr);
2528
2529 static void tcp_try_keep_open(struct sock *sk)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 int state = TCP_CA_Open;
2533
2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535 state = TCP_CA_Disorder;
2536
2537 if (inet_csk(sk)->icsk_ca_state != state) {
2538 tcp_set_ca_state(sk, state);
2539 tp->high_seq = tp->snd_nxt;
2540 }
2541 }
2542
2543 static void tcp_try_to_open(struct sock *sk, int flag)
2544 {
2545 struct tcp_sock *tp = tcp_sk(sk);
2546
2547 tcp_verify_left_out(tp);
2548
2549 if (!tcp_any_retrans_done(sk))
2550 tp->retrans_stamp = 0;
2551
2552 if (flag & FLAG_ECE)
2553 tcp_enter_cwr(sk);
2554
2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556 tcp_try_keep_open(sk);
2557 }
2558 }
2559
2560 static void tcp_mtup_probe_failed(struct sock *sk)
2561 {
2562 struct inet_connection_sock *icsk = inet_csk(sk);
2563
2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565 icsk->icsk_mtup.probe_size = 0;
2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567 }
2568
2569 static void tcp_mtup_probe_success(struct sock *sk)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572 struct inet_connection_sock *icsk = inet_csk(sk);
2573
2574 /* FIXME: breaks with very large cwnd */
2575 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576 tp->snd_cwnd = tp->snd_cwnd *
2577 tcp_mss_to_mtu(sk, tp->mss_cache) /
2578 icsk->icsk_mtup.probe_size;
2579 tp->snd_cwnd_cnt = 0;
2580 tp->snd_cwnd_stamp = tcp_time_stamp;
2581 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582
2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584 icsk->icsk_mtup.probe_size = 0;
2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587 }
2588
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590 * tcp_timer. This is used for path mtu discovery.
2591 * The socket is already locked here.
2592 */
2593 void tcp_simple_retransmit(struct sock *sk)
2594 {
2595 const struct inet_connection_sock *icsk = inet_csk(sk);
2596 struct tcp_sock *tp = tcp_sk(sk);
2597 struct sk_buff *skb;
2598 unsigned int mss = tcp_current_mss(sk);
2599 u32 prior_lost = tp->lost_out;
2600
2601 tcp_for_write_queue(skb, sk) {
2602 if (skb == tcp_send_head(sk))
2603 break;
2604 if (tcp_skb_seglen(skb) > mss &&
2605 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2607 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2608 tp->retrans_out -= tcp_skb_pcount(skb);
2609 }
2610 tcp_skb_mark_lost_uncond_verify(tp, skb);
2611 }
2612 }
2613
2614 tcp_clear_retrans_hints_partial(tp);
2615
2616 if (prior_lost == tp->lost_out)
2617 return;
2618
2619 if (tcp_is_reno(tp))
2620 tcp_limit_reno_sacked(tp);
2621
2622 tcp_verify_left_out(tp);
2623
2624 /* Don't muck with the congestion window here.
2625 * Reason is that we do not increase amount of _data_
2626 * in network, but units changed and effective
2627 * cwnd/ssthresh really reduced now.
2628 */
2629 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2630 tp->high_seq = tp->snd_nxt;
2631 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632 tp->prior_ssthresh = 0;
2633 tp->undo_marker = 0;
2634 tcp_set_ca_state(sk, TCP_CA_Loss);
2635 }
2636 tcp_xmit_retransmit_queue(sk);
2637 }
2638 EXPORT_SYMBOL(tcp_simple_retransmit);
2639
2640 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2641 {
2642 struct tcp_sock *tp = tcp_sk(sk);
2643 int mib_idx;
2644
2645 if (tcp_is_reno(tp))
2646 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2647 else
2648 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2649
2650 NET_INC_STATS(sock_net(sk), mib_idx);
2651
2652 tp->prior_ssthresh = 0;
2653 tcp_init_undo(tp);
2654
2655 if (!tcp_in_cwnd_reduction(sk)) {
2656 if (!ece_ack)
2657 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2658 tcp_init_cwnd_reduction(sk);
2659 }
2660 tcp_set_ca_state(sk, TCP_CA_Recovery);
2661 }
2662
2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2665 */
2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2667 int *rexmit)
2668 {
2669 struct tcp_sock *tp = tcp_sk(sk);
2670 bool recovered = !before(tp->snd_una, tp->high_seq);
2671
2672 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673 tcp_try_undo_loss(sk, false))
2674 return;
2675
2676 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677 /* Step 3.b. A timeout is spurious if not all data are
2678 * lost, i.e., never-retransmitted data are (s)acked.
2679 */
2680 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2681 tcp_try_undo_loss(sk, true))
2682 return;
2683
2684 if (after(tp->snd_nxt, tp->high_seq)) {
2685 if (flag & FLAG_DATA_SACKED || is_dupack)
2686 tp->frto = 0; /* Step 3.a. loss was real */
2687 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2688 tp->high_seq = tp->snd_nxt;
2689 /* Step 2.b. Try send new data (but deferred until cwnd
2690 * is updated in tcp_ack()). Otherwise fall back to
2691 * the conventional recovery.
2692 */
2693 if (tcp_send_head(sk) &&
2694 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2695 *rexmit = REXMIT_NEW;
2696 return;
2697 }
2698 tp->frto = 0;
2699 }
2700 }
2701
2702 if (recovered) {
2703 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2704 tcp_try_undo_recovery(sk);
2705 return;
2706 }
2707 if (tcp_is_reno(tp)) {
2708 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2709 * delivered. Lower inflight to clock out (re)tranmissions.
2710 */
2711 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2712 tcp_add_reno_sack(sk);
2713 else if (flag & FLAG_SND_UNA_ADVANCED)
2714 tcp_reset_reno_sack(tp);
2715 }
2716 *rexmit = REXMIT_LOST;
2717 }
2718
2719 /* Undo during fast recovery after partial ACK. */
2720 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2721 {
2722 struct tcp_sock *tp = tcp_sk(sk);
2723
2724 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2725 /* Plain luck! Hole if filled with delayed
2726 * packet, rather than with a retransmit.
2727 */
2728 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2729
2730 /* We are getting evidence that the reordering degree is higher
2731 * than we realized. If there are no retransmits out then we
2732 * can undo. Otherwise we clock out new packets but do not
2733 * mark more packets lost or retransmit more.
2734 */
2735 if (tp->retrans_out)
2736 return true;
2737
2738 if (!tcp_any_retrans_done(sk))
2739 tp->retrans_stamp = 0;
2740
2741 DBGUNDO(sk, "partial recovery");
2742 tcp_undo_cwnd_reduction(sk, true);
2743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2744 tcp_try_keep_open(sk);
2745 return true;
2746 }
2747 return false;
2748 }
2749
2750 /* Process an event, which can update packets-in-flight not trivially.
2751 * Main goal of this function is to calculate new estimate for left_out,
2752 * taking into account both packets sitting in receiver's buffer and
2753 * packets lost by network.
2754 *
2755 * Besides that it updates the congestion state when packet loss or ECN
2756 * is detected. But it does not reduce the cwnd, it is done by the
2757 * congestion control later.
2758 *
2759 * It does _not_ decide what to send, it is made in function
2760 * tcp_xmit_retransmit_queue().
2761 */
2762 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2763 bool is_dupack, int *ack_flag, int *rexmit)
2764 {
2765 struct inet_connection_sock *icsk = inet_csk(sk);
2766 struct tcp_sock *tp = tcp_sk(sk);
2767 int fast_rexmit = 0, flag = *ack_flag;
2768 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2769 (tcp_fackets_out(tp) > tp->reordering));
2770
2771 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2772 tp->sacked_out = 0;
2773 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2774 tp->fackets_out = 0;
2775
2776 /* Now state machine starts.
2777 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2778 if (flag & FLAG_ECE)
2779 tp->prior_ssthresh = 0;
2780
2781 /* B. In all the states check for reneging SACKs. */
2782 if (tcp_check_sack_reneging(sk, flag))
2783 return;
2784
2785 /* C. Check consistency of the current state. */
2786 tcp_verify_left_out(tp);
2787
2788 /* D. Check state exit conditions. State can be terminated
2789 * when high_seq is ACKed. */
2790 if (icsk->icsk_ca_state == TCP_CA_Open) {
2791 WARN_ON(tp->retrans_out != 0);
2792 tp->retrans_stamp = 0;
2793 } else if (!before(tp->snd_una, tp->high_seq)) {
2794 switch (icsk->icsk_ca_state) {
2795 case TCP_CA_CWR:
2796 /* CWR is to be held something *above* high_seq
2797 * is ACKed for CWR bit to reach receiver. */
2798 if (tp->snd_una != tp->high_seq) {
2799 tcp_end_cwnd_reduction(sk);
2800 tcp_set_ca_state(sk, TCP_CA_Open);
2801 }
2802 break;
2803
2804 case TCP_CA_Recovery:
2805 if (tcp_is_reno(tp))
2806 tcp_reset_reno_sack(tp);
2807 if (tcp_try_undo_recovery(sk))
2808 return;
2809 tcp_end_cwnd_reduction(sk);
2810 break;
2811 }
2812 }
2813
2814 /* Use RACK to detect loss */
2815 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2816 tcp_rack_mark_lost(sk)) {
2817 flag |= FLAG_LOST_RETRANS;
2818 *ack_flag |= FLAG_LOST_RETRANS;
2819 }
2820
2821 /* E. Process state. */
2822 switch (icsk->icsk_ca_state) {
2823 case TCP_CA_Recovery:
2824 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2825 if (tcp_is_reno(tp) && is_dupack)
2826 tcp_add_reno_sack(sk);
2827 } else {
2828 if (tcp_try_undo_partial(sk, acked))
2829 return;
2830 /* Partial ACK arrived. Force fast retransmit. */
2831 do_lost = tcp_is_reno(tp) ||
2832 tcp_fackets_out(tp) > tp->reordering;
2833 }
2834 if (tcp_try_undo_dsack(sk)) {
2835 tcp_try_keep_open(sk);
2836 return;
2837 }
2838 break;
2839 case TCP_CA_Loss:
2840 tcp_process_loss(sk, flag, is_dupack, rexmit);
2841 if (icsk->icsk_ca_state != TCP_CA_Open &&
2842 !(flag & FLAG_LOST_RETRANS))
2843 return;
2844 /* Change state if cwnd is undone or retransmits are lost */
2845 default:
2846 if (tcp_is_reno(tp)) {
2847 if (flag & FLAG_SND_UNA_ADVANCED)
2848 tcp_reset_reno_sack(tp);
2849 if (is_dupack)
2850 tcp_add_reno_sack(sk);
2851 }
2852
2853 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2854 tcp_try_undo_dsack(sk);
2855
2856 if (!tcp_time_to_recover(sk, flag)) {
2857 tcp_try_to_open(sk, flag);
2858 return;
2859 }
2860
2861 /* MTU probe failure: don't reduce cwnd */
2862 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2863 icsk->icsk_mtup.probe_size &&
2864 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2865 tcp_mtup_probe_failed(sk);
2866 /* Restores the reduction we did in tcp_mtup_probe() */
2867 tp->snd_cwnd++;
2868 tcp_simple_retransmit(sk);
2869 return;
2870 }
2871
2872 /* Otherwise enter Recovery state */
2873 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2874 fast_rexmit = 1;
2875 }
2876
2877 if (do_lost)
2878 tcp_update_scoreboard(sk, fast_rexmit);
2879 *rexmit = REXMIT_LOST;
2880 }
2881
2882 /* Kathleen Nichols' algorithm for tracking the minimum value of
2883 * a data stream over some fixed time interval. (E.g., the minimum
2884 * RTT over the past five minutes.) It uses constant space and constant
2885 * time per update yet almost always delivers the same minimum as an
2886 * implementation that has to keep all the data in the window.
2887 *
2888 * The algorithm keeps track of the best, 2nd best & 3rd best min
2889 * values, maintaining an invariant that the measurement time of the
2890 * n'th best >= n-1'th best. It also makes sure that the three values
2891 * are widely separated in the time window since that bounds the worse
2892 * case error when that data is monotonically increasing over the window.
2893 *
2894 * Upon getting a new min, we can forget everything earlier because it
2895 * has no value - the new min is <= everything else in the window by
2896 * definition and it's the most recent. So we restart fresh on every new min
2897 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2898 * best.
2899 */
2900 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2901 {
2902 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2903 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2904 struct rtt_meas rttm = {
2905 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2906 .ts = now,
2907 };
2908 u32 elapsed;
2909
2910 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2911 if (unlikely(rttm.rtt <= m[0].rtt))
2912 m[0] = m[1] = m[2] = rttm;
2913 else if (rttm.rtt <= m[1].rtt)
2914 m[1] = m[2] = rttm;
2915 else if (rttm.rtt <= m[2].rtt)
2916 m[2] = rttm;
2917
2918 elapsed = now - m[0].ts;
2919 if (unlikely(elapsed > wlen)) {
2920 /* Passed entire window without a new min so make 2nd choice
2921 * the new min & 3rd choice the new 2nd. So forth and so on.
2922 */
2923 m[0] = m[1];
2924 m[1] = m[2];
2925 m[2] = rttm;
2926 if (now - m[0].ts > wlen) {
2927 m[0] = m[1];
2928 m[1] = rttm;
2929 if (now - m[0].ts > wlen)
2930 m[0] = rttm;
2931 }
2932 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2933 /* Passed a quarter of the window without a new min so
2934 * take 2nd choice from the 2nd quarter of the window.
2935 */
2936 m[2] = m[1] = rttm;
2937 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2938 /* Passed half the window without a new min so take the 3rd
2939 * choice from the last half of the window.
2940 */
2941 m[2] = rttm;
2942 }
2943 }
2944
2945 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2946 long seq_rtt_us, long sack_rtt_us,
2947 long ca_rtt_us)
2948 {
2949 const struct tcp_sock *tp = tcp_sk(sk);
2950
2951 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2952 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2953 * Karn's algorithm forbids taking RTT if some retransmitted data
2954 * is acked (RFC6298).
2955 */
2956 if (seq_rtt_us < 0)
2957 seq_rtt_us = sack_rtt_us;
2958
2959 /* RTTM Rule: A TSecr value received in a segment is used to
2960 * update the averaged RTT measurement only if the segment
2961 * acknowledges some new data, i.e., only if it advances the
2962 * left edge of the send window.
2963 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2964 */
2965 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2966 flag & FLAG_ACKED)
2967 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2968 tp->rx_opt.rcv_tsecr);
2969 if (seq_rtt_us < 0)
2970 return false;
2971
2972 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2973 * always taken together with ACK, SACK, or TS-opts. Any negative
2974 * values will be skipped with the seq_rtt_us < 0 check above.
2975 */
2976 tcp_update_rtt_min(sk, ca_rtt_us);
2977 tcp_rtt_estimator(sk, seq_rtt_us);
2978 tcp_set_rto(sk);
2979
2980 /* RFC6298: only reset backoff on valid RTT measurement. */
2981 inet_csk(sk)->icsk_backoff = 0;
2982 return true;
2983 }
2984
2985 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2986 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2987 {
2988 long rtt_us = -1L;
2989
2990 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2991 struct skb_mstamp now;
2992
2993 skb_mstamp_get(&now);
2994 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2995 }
2996
2997 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2998 }
2999
3000
3001 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3002 {
3003 const struct inet_connection_sock *icsk = inet_csk(sk);
3004
3005 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3006 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3007 }
3008
3009 /* Restart timer after forward progress on connection.
3010 * RFC2988 recommends to restart timer to now+rto.
3011 */
3012 void tcp_rearm_rto(struct sock *sk)
3013 {
3014 const struct inet_connection_sock *icsk = inet_csk(sk);
3015 struct tcp_sock *tp = tcp_sk(sk);
3016
3017 /* If the retrans timer is currently being used by Fast Open
3018 * for SYN-ACK retrans purpose, stay put.
3019 */
3020 if (tp->fastopen_rsk)
3021 return;
3022
3023 if (!tp->packets_out) {
3024 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3025 } else {
3026 u32 rto = inet_csk(sk)->icsk_rto;
3027 /* Offset the time elapsed after installing regular RTO */
3028 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3029 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3030 struct sk_buff *skb = tcp_write_queue_head(sk);
3031 const u32 rto_time_stamp =
3032 tcp_skb_timestamp(skb) + rto;
3033 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3034 /* delta may not be positive if the socket is locked
3035 * when the retrans timer fires and is rescheduled.
3036 */
3037 if (delta > 0)
3038 rto = delta;
3039 }
3040 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3041 TCP_RTO_MAX);
3042 }
3043 }
3044
3045 /* This function is called when the delayed ER timer fires. TCP enters
3046 * fast recovery and performs fast-retransmit.
3047 */
3048 void tcp_resume_early_retransmit(struct sock *sk)
3049 {
3050 struct tcp_sock *tp = tcp_sk(sk);
3051
3052 tcp_rearm_rto(sk);
3053
3054 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3055 if (!tp->do_early_retrans)
3056 return;
3057
3058 tcp_enter_recovery(sk, false);
3059 tcp_update_scoreboard(sk, 1);
3060 tcp_xmit_retransmit_queue(sk);
3061 }
3062
3063 /* If we get here, the whole TSO packet has not been acked. */
3064 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3065 {
3066 struct tcp_sock *tp = tcp_sk(sk);
3067 u32 packets_acked;
3068
3069 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3070
3071 packets_acked = tcp_skb_pcount(skb);
3072 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3073 return 0;
3074 packets_acked -= tcp_skb_pcount(skb);
3075
3076 if (packets_acked) {
3077 BUG_ON(tcp_skb_pcount(skb) == 0);
3078 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3079 }
3080
3081 return packets_acked;
3082 }
3083
3084 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3085 u32 prior_snd_una)
3086 {
3087 const struct skb_shared_info *shinfo;
3088
3089 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3090 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3091 return;
3092
3093 shinfo = skb_shinfo(skb);
3094 if (!before(shinfo->tskey, prior_snd_una) &&
3095 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3096 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3097 }
3098
3099 /* Remove acknowledged frames from the retransmission queue. If our packet
3100 * is before the ack sequence we can discard it as it's confirmed to have
3101 * arrived at the other end.
3102 */
3103 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3104 u32 prior_snd_una, int *acked,
3105 struct tcp_sacktag_state *sack)
3106 {
3107 const struct inet_connection_sock *icsk = inet_csk(sk);
3108 struct skb_mstamp first_ackt, last_ackt, now;
3109 struct tcp_sock *tp = tcp_sk(sk);
3110 u32 prior_sacked = tp->sacked_out;
3111 u32 reord = tp->packets_out;
3112 bool fully_acked = true;
3113 long sack_rtt_us = -1L;
3114 long seq_rtt_us = -1L;
3115 long ca_rtt_us = -1L;
3116 struct sk_buff *skb;
3117 u32 pkts_acked = 0;
3118 u32 last_in_flight = 0;
3119 bool rtt_update;
3120 int flag = 0;
3121
3122 first_ackt.v64 = 0;
3123
3124 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3125 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3126 u8 sacked = scb->sacked;
3127 u32 acked_pcount;
3128
3129 tcp_ack_tstamp(sk, skb, prior_snd_una);
3130
3131 /* Determine how many packets and what bytes were acked, tso and else */
3132 if (after(scb->end_seq, tp->snd_una)) {
3133 if (tcp_skb_pcount(skb) == 1 ||
3134 !after(tp->snd_una, scb->seq))
3135 break;
3136
3137 acked_pcount = tcp_tso_acked(sk, skb);
3138 if (!acked_pcount)
3139 break;
3140
3141 fully_acked = false;
3142 } else {
3143 /* Speedup tcp_unlink_write_queue() and next loop */
3144 prefetchw(skb->next);
3145 acked_pcount = tcp_skb_pcount(skb);
3146 }
3147
3148 if (unlikely(sacked & TCPCB_RETRANS)) {
3149 if (sacked & TCPCB_SACKED_RETRANS)
3150 tp->retrans_out -= acked_pcount;
3151 flag |= FLAG_RETRANS_DATA_ACKED;
3152 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3153 last_ackt = skb->skb_mstamp;
3154 WARN_ON_ONCE(last_ackt.v64 == 0);
3155 if (!first_ackt.v64)
3156 first_ackt = last_ackt;
3157
3158 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3159 reord = min(pkts_acked, reord);
3160 if (!after(scb->end_seq, tp->high_seq))
3161 flag |= FLAG_ORIG_SACK_ACKED;
3162 }
3163
3164 if (sacked & TCPCB_SACKED_ACKED) {
3165 tp->sacked_out -= acked_pcount;
3166 } else if (tcp_is_sack(tp)) {
3167 tp->delivered += acked_pcount;
3168 if (!tcp_skb_spurious_retrans(tp, skb))
3169 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3170 }
3171 if (sacked & TCPCB_LOST)
3172 tp->lost_out -= acked_pcount;
3173
3174 tp->packets_out -= acked_pcount;
3175 pkts_acked += acked_pcount;
3176
3177 /* Initial outgoing SYN's get put onto the write_queue
3178 * just like anything else we transmit. It is not
3179 * true data, and if we misinform our callers that
3180 * this ACK acks real data, we will erroneously exit
3181 * connection startup slow start one packet too
3182 * quickly. This is severely frowned upon behavior.
3183 */
3184 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3185 flag |= FLAG_DATA_ACKED;
3186 } else {
3187 flag |= FLAG_SYN_ACKED;
3188 tp->retrans_stamp = 0;
3189 }
3190
3191 if (!fully_acked)
3192 break;
3193
3194 tcp_unlink_write_queue(skb, sk);
3195 sk_wmem_free_skb(sk, skb);
3196 if (unlikely(skb == tp->retransmit_skb_hint))
3197 tp->retransmit_skb_hint = NULL;
3198 if (unlikely(skb == tp->lost_skb_hint))
3199 tp->lost_skb_hint = NULL;
3200 }
3201
3202 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3203 tp->snd_up = tp->snd_una;
3204
3205 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3206 flag |= FLAG_SACK_RENEGING;
3207
3208 skb_mstamp_get(&now);
3209 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3210 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3211 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3212 }
3213 if (sack->first_sackt.v64) {
3214 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3215 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3216 }
3217
3218 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3219 ca_rtt_us);
3220
3221 if (flag & FLAG_ACKED) {
3222 tcp_rearm_rto(sk);
3223 if (unlikely(icsk->icsk_mtup.probe_size &&
3224 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3225 tcp_mtup_probe_success(sk);
3226 }
3227
3228 if (tcp_is_reno(tp)) {
3229 tcp_remove_reno_sacks(sk, pkts_acked);
3230 } else {
3231 int delta;
3232
3233 /* Non-retransmitted hole got filled? That's reordering */
3234 if (reord < prior_fackets)
3235 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3236
3237 delta = tcp_is_fack(tp) ? pkts_acked :
3238 prior_sacked - tp->sacked_out;
3239 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3240 }
3241
3242 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3243
3244 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3245 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3246 /* Do not re-arm RTO if the sack RTT is measured from data sent
3247 * after when the head was last (re)transmitted. Otherwise the
3248 * timeout may continue to extend in loss recovery.
3249 */
3250 tcp_rearm_rto(sk);
3251 }
3252
3253 if (icsk->icsk_ca_ops->pkts_acked) {
3254 struct ack_sample sample = { .pkts_acked = pkts_acked,
3255 .rtt_us = ca_rtt_us,
3256 .in_flight = last_in_flight };
3257
3258 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3259 }
3260
3261 #if FASTRETRANS_DEBUG > 0
3262 WARN_ON((int)tp->sacked_out < 0);
3263 WARN_ON((int)tp->lost_out < 0);
3264 WARN_ON((int)tp->retrans_out < 0);
3265 if (!tp->packets_out && tcp_is_sack(tp)) {
3266 icsk = inet_csk(sk);
3267 if (tp->lost_out) {
3268 pr_debug("Leak l=%u %d\n",
3269 tp->lost_out, icsk->icsk_ca_state);
3270 tp->lost_out = 0;
3271 }
3272 if (tp->sacked_out) {
3273 pr_debug("Leak s=%u %d\n",
3274 tp->sacked_out, icsk->icsk_ca_state);
3275 tp->sacked_out = 0;
3276 }
3277 if (tp->retrans_out) {
3278 pr_debug("Leak r=%u %d\n",
3279 tp->retrans_out, icsk->icsk_ca_state);
3280 tp->retrans_out = 0;
3281 }
3282 }
3283 #endif
3284 *acked = pkts_acked;
3285 return flag;
3286 }
3287
3288 static void tcp_ack_probe(struct sock *sk)
3289 {
3290 const struct tcp_sock *tp = tcp_sk(sk);
3291 struct inet_connection_sock *icsk = inet_csk(sk);
3292
3293 /* Was it a usable window open? */
3294
3295 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3296 icsk->icsk_backoff = 0;
3297 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3298 /* Socket must be waked up by subsequent tcp_data_snd_check().
3299 * This function is not for random using!
3300 */
3301 } else {
3302 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3303
3304 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3305 when, TCP_RTO_MAX);
3306 }
3307 }
3308
3309 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3310 {
3311 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3312 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3313 }
3314
3315 /* Decide wheather to run the increase function of congestion control. */
3316 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3317 {
3318 /* If reordering is high then always grow cwnd whenever data is
3319 * delivered regardless of its ordering. Otherwise stay conservative
3320 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3321 * new SACK or ECE mark may first advance cwnd here and later reduce
3322 * cwnd in tcp_fastretrans_alert() based on more states.
3323 */
3324 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3325 return flag & FLAG_FORWARD_PROGRESS;
3326
3327 return flag & FLAG_DATA_ACKED;
3328 }
3329
3330 /* The "ultimate" congestion control function that aims to replace the rigid
3331 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3332 * It's called toward the end of processing an ACK with precise rate
3333 * information. All transmission or retransmission are delayed afterwards.
3334 */
3335 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3336 int flag)
3337 {
3338 if (tcp_in_cwnd_reduction(sk)) {
3339 /* Reduce cwnd if state mandates */
3340 tcp_cwnd_reduction(sk, acked_sacked, flag);
3341 } else if (tcp_may_raise_cwnd(sk, flag)) {
3342 /* Advance cwnd if state allows */
3343 tcp_cong_avoid(sk, ack, acked_sacked);
3344 }
3345 tcp_update_pacing_rate(sk);
3346 }
3347
3348 /* Check that window update is acceptable.
3349 * The function assumes that snd_una<=ack<=snd_next.
3350 */
3351 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3352 const u32 ack, const u32 ack_seq,
3353 const u32 nwin)
3354 {
3355 return after(ack, tp->snd_una) ||
3356 after(ack_seq, tp->snd_wl1) ||
3357 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3358 }
3359
3360 /* If we update tp->snd_una, also update tp->bytes_acked */
3361 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3362 {
3363 u32 delta = ack - tp->snd_una;
3364
3365 sock_owned_by_me((struct sock *)tp);
3366 u64_stats_update_begin_raw(&tp->syncp);
3367 tp->bytes_acked += delta;
3368 u64_stats_update_end_raw(&tp->syncp);
3369 tp->snd_una = ack;
3370 }
3371
3372 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3373 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374 {
3375 u32 delta = seq - tp->rcv_nxt;
3376
3377 sock_owned_by_me((struct sock *)tp);
3378 u64_stats_update_begin_raw(&tp->syncp);
3379 tp->bytes_received += delta;
3380 u64_stats_update_end_raw(&tp->syncp);
3381 tp->rcv_nxt = seq;
3382 }
3383
3384 /* Update our send window.
3385 *
3386 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3387 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3388 */
3389 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3390 u32 ack_seq)
3391 {
3392 struct tcp_sock *tp = tcp_sk(sk);
3393 int flag = 0;
3394 u32 nwin = ntohs(tcp_hdr(skb)->window);
3395
3396 if (likely(!tcp_hdr(skb)->syn))
3397 nwin <<= tp->rx_opt.snd_wscale;
3398
3399 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3400 flag |= FLAG_WIN_UPDATE;
3401 tcp_update_wl(tp, ack_seq);
3402
3403 if (tp->snd_wnd != nwin) {
3404 tp->snd_wnd = nwin;
3405
3406 /* Note, it is the only place, where
3407 * fast path is recovered for sending TCP.
3408 */
3409 tp->pred_flags = 0;
3410 tcp_fast_path_check(sk);
3411
3412 if (tcp_send_head(sk))
3413 tcp_slow_start_after_idle_check(sk);
3414
3415 if (nwin > tp->max_window) {
3416 tp->max_window = nwin;
3417 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3418 }
3419 }
3420 }
3421
3422 tcp_snd_una_update(tp, ack);
3423
3424 return flag;
3425 }
3426
3427 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3428 u32 *last_oow_ack_time)
3429 {
3430 if (*last_oow_ack_time) {
3431 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3432
3433 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3434 NET_INC_STATS(net, mib_idx);
3435 return true; /* rate-limited: don't send yet! */
3436 }
3437 }
3438
3439 *last_oow_ack_time = tcp_time_stamp;
3440
3441 return false; /* not rate-limited: go ahead, send dupack now! */
3442 }
3443
3444 /* Return true if we're currently rate-limiting out-of-window ACKs and
3445 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3446 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3447 * attacks that send repeated SYNs or ACKs for the same connection. To
3448 * do this, we do not send a duplicate SYNACK or ACK if the remote
3449 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3450 */
3451 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3452 int mib_idx, u32 *last_oow_ack_time)
3453 {
3454 /* Data packets without SYNs are not likely part of an ACK loop. */
3455 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3456 !tcp_hdr(skb)->syn)
3457 return false;
3458
3459 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3460 }
3461
3462 /* RFC 5961 7 [ACK Throttling] */
3463 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3464 {
3465 /* unprotected vars, we dont care of overwrites */
3466 static u32 challenge_timestamp;
3467 static unsigned int challenge_count;
3468 struct tcp_sock *tp = tcp_sk(sk);
3469 u32 count, now;
3470
3471 /* First check our per-socket dupack rate limit. */
3472 if (__tcp_oow_rate_limited(sock_net(sk),
3473 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3474 &tp->last_oow_ack_time))
3475 return;
3476
3477 /* Then check host-wide RFC 5961 rate limit. */
3478 now = jiffies / HZ;
3479 if (now != challenge_timestamp) {
3480 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3481
3482 challenge_timestamp = now;
3483 WRITE_ONCE(challenge_count, half +
3484 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3485 }
3486 count = READ_ONCE(challenge_count);
3487 if (count > 0) {
3488 WRITE_ONCE(challenge_count, count - 1);
3489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3490 tcp_send_ack(sk);
3491 }
3492 }
3493
3494 static void tcp_store_ts_recent(struct tcp_sock *tp)
3495 {
3496 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3497 tp->rx_opt.ts_recent_stamp = get_seconds();
3498 }
3499
3500 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3501 {
3502 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3503 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3504 * extra check below makes sure this can only happen
3505 * for pure ACK frames. -DaveM
3506 *
3507 * Not only, also it occurs for expired timestamps.
3508 */
3509
3510 if (tcp_paws_check(&tp->rx_opt, 0))
3511 tcp_store_ts_recent(tp);
3512 }
3513 }
3514
3515 /* This routine deals with acks during a TLP episode.
3516 * We mark the end of a TLP episode on receiving TLP dupack or when
3517 * ack is after tlp_high_seq.
3518 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3519 */
3520 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3521 {
3522 struct tcp_sock *tp = tcp_sk(sk);
3523
3524 if (before(ack, tp->tlp_high_seq))
3525 return;
3526
3527 if (flag & FLAG_DSACKING_ACK) {
3528 /* This DSACK means original and TLP probe arrived; no loss */
3529 tp->tlp_high_seq = 0;
3530 } else if (after(ack, tp->tlp_high_seq)) {
3531 /* ACK advances: there was a loss, so reduce cwnd. Reset
3532 * tlp_high_seq in tcp_init_cwnd_reduction()
3533 */
3534 tcp_init_cwnd_reduction(sk);
3535 tcp_set_ca_state(sk, TCP_CA_CWR);
3536 tcp_end_cwnd_reduction(sk);
3537 tcp_try_keep_open(sk);
3538 NET_INC_STATS(sock_net(sk),
3539 LINUX_MIB_TCPLOSSPROBERECOVERY);
3540 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3541 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3542 /* Pure dupack: original and TLP probe arrived; no loss */
3543 tp->tlp_high_seq = 0;
3544 }
3545 }
3546
3547 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3548 {
3549 const struct inet_connection_sock *icsk = inet_csk(sk);
3550
3551 if (icsk->icsk_ca_ops->in_ack_event)
3552 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3553 }
3554
3555 /* Congestion control has updated the cwnd already. So if we're in
3556 * loss recovery then now we do any new sends (for FRTO) or
3557 * retransmits (for CA_Loss or CA_recovery) that make sense.
3558 */
3559 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3560 {
3561 struct tcp_sock *tp = tcp_sk(sk);
3562
3563 if (rexmit == REXMIT_NONE)
3564 return;
3565
3566 if (unlikely(rexmit == 2)) {
3567 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3568 TCP_NAGLE_OFF);
3569 if (after(tp->snd_nxt, tp->high_seq))
3570 return;
3571 tp->frto = 0;
3572 }
3573 tcp_xmit_retransmit_queue(sk);
3574 }
3575
3576 /* This routine deals with incoming acks, but not outgoing ones. */
3577 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3578 {
3579 struct inet_connection_sock *icsk = inet_csk(sk);
3580 struct tcp_sock *tp = tcp_sk(sk);
3581 struct tcp_sacktag_state sack_state;
3582 u32 prior_snd_una = tp->snd_una;
3583 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3584 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3585 bool is_dupack = false;
3586 u32 prior_fackets;
3587 int prior_packets = tp->packets_out;
3588 u32 prior_delivered = tp->delivered;
3589 int acked = 0; /* Number of packets newly acked */
3590 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3591
3592 sack_state.first_sackt.v64 = 0;
3593
3594 /* We very likely will need to access write queue head. */
3595 prefetchw(sk->sk_write_queue.next);
3596
3597 /* If the ack is older than previous acks
3598 * then we can probably ignore it.
3599 */
3600 if (before(ack, prior_snd_una)) {
3601 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3602 if (before(ack, prior_snd_una - tp->max_window)) {
3603 tcp_send_challenge_ack(sk, skb);
3604 return -1;
3605 }
3606 goto old_ack;
3607 }
3608
3609 /* If the ack includes data we haven't sent yet, discard
3610 * this segment (RFC793 Section 3.9).
3611 */
3612 if (after(ack, tp->snd_nxt))
3613 goto invalid_ack;
3614
3615 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3616 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3617 tcp_rearm_rto(sk);
3618
3619 if (after(ack, prior_snd_una)) {
3620 flag |= FLAG_SND_UNA_ADVANCED;
3621 icsk->icsk_retransmits = 0;
3622 }
3623
3624 prior_fackets = tp->fackets_out;
3625
3626 /* ts_recent update must be made after we are sure that the packet
3627 * is in window.
3628 */
3629 if (flag & FLAG_UPDATE_TS_RECENT)
3630 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3631
3632 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3633 /* Window is constant, pure forward advance.
3634 * No more checks are required.
3635 * Note, we use the fact that SND.UNA>=SND.WL2.
3636 */
3637 tcp_update_wl(tp, ack_seq);
3638 tcp_snd_una_update(tp, ack);
3639 flag |= FLAG_WIN_UPDATE;
3640
3641 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3642
3643 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3644 } else {
3645 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3646
3647 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3648 flag |= FLAG_DATA;
3649 else
3650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3651
3652 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3653
3654 if (TCP_SKB_CB(skb)->sacked)
3655 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3656 &sack_state);
3657
3658 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3659 flag |= FLAG_ECE;
3660 ack_ev_flags |= CA_ACK_ECE;
3661 }
3662
3663 if (flag & FLAG_WIN_UPDATE)
3664 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3665
3666 tcp_in_ack_event(sk, ack_ev_flags);
3667 }
3668
3669 /* We passed data and got it acked, remove any soft error
3670 * log. Something worked...
3671 */
3672 sk->sk_err_soft = 0;
3673 icsk->icsk_probes_out = 0;
3674 tp->rcv_tstamp = tcp_time_stamp;
3675 if (!prior_packets)
3676 goto no_queue;
3677
3678 /* See if we can take anything off of the retransmit queue. */
3679 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3680 &sack_state);
3681
3682 if (tcp_ack_is_dubious(sk, flag)) {
3683 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3684 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3685 }
3686 if (tp->tlp_high_seq)
3687 tcp_process_tlp_ack(sk, ack, flag);
3688
3689 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3690 struct dst_entry *dst = __sk_dst_get(sk);
3691 if (dst)
3692 dst_confirm(dst);
3693 }
3694
3695 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3696 tcp_schedule_loss_probe(sk);
3697 tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3698 tcp_xmit_recovery(sk, rexmit);
3699 return 1;
3700
3701 no_queue:
3702 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3703 if (flag & FLAG_DSACKING_ACK)
3704 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3705 /* If this ack opens up a zero window, clear backoff. It was
3706 * being used to time the probes, and is probably far higher than
3707 * it needs to be for normal retransmission.
3708 */
3709 if (tcp_send_head(sk))
3710 tcp_ack_probe(sk);
3711
3712 if (tp->tlp_high_seq)
3713 tcp_process_tlp_ack(sk, ack, flag);
3714 return 1;
3715
3716 invalid_ack:
3717 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3718 return -1;
3719
3720 old_ack:
3721 /* If data was SACKed, tag it and see if we should send more data.
3722 * If data was DSACKed, see if we can undo a cwnd reduction.
3723 */
3724 if (TCP_SKB_CB(skb)->sacked) {
3725 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3726 &sack_state);
3727 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3728 tcp_xmit_recovery(sk, rexmit);
3729 }
3730
3731 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3732 return 0;
3733 }
3734
3735 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3736 bool syn, struct tcp_fastopen_cookie *foc,
3737 bool exp_opt)
3738 {
3739 /* Valid only in SYN or SYN-ACK with an even length. */
3740 if (!foc || !syn || len < 0 || (len & 1))
3741 return;
3742
3743 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3744 len <= TCP_FASTOPEN_COOKIE_MAX)
3745 memcpy(foc->val, cookie, len);
3746 else if (len != 0)
3747 len = -1;
3748 foc->len = len;
3749 foc->exp = exp_opt;
3750 }
3751
3752 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3753 * But, this can also be called on packets in the established flow when
3754 * the fast version below fails.
3755 */
3756 void tcp_parse_options(const struct sk_buff *skb,
3757 struct tcp_options_received *opt_rx, int estab,
3758 struct tcp_fastopen_cookie *foc)
3759 {
3760 const unsigned char *ptr;
3761 const struct tcphdr *th = tcp_hdr(skb);
3762 int length = (th->doff * 4) - sizeof(struct tcphdr);
3763
3764 ptr = (const unsigned char *)(th + 1);
3765 opt_rx->saw_tstamp = 0;
3766
3767 while (length > 0) {
3768 int opcode = *ptr++;
3769 int opsize;
3770
3771 switch (opcode) {
3772 case TCPOPT_EOL:
3773 return;
3774 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3775 length--;
3776 continue;
3777 default:
3778 opsize = *ptr++;
3779 if (opsize < 2) /* "silly options" */
3780 return;
3781 if (opsize > length)
3782 return; /* don't parse partial options */
3783 switch (opcode) {
3784 case TCPOPT_MSS:
3785 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3786 u16 in_mss = get_unaligned_be16(ptr);
3787 if (in_mss) {
3788 if (opt_rx->user_mss &&
3789 opt_rx->user_mss < in_mss)
3790 in_mss = opt_rx->user_mss;
3791 opt_rx->mss_clamp = in_mss;
3792 }
3793 }
3794 break;
3795 case TCPOPT_WINDOW:
3796 if (opsize == TCPOLEN_WINDOW && th->syn &&
3797 !estab && sysctl_tcp_window_scaling) {
3798 __u8 snd_wscale = *(__u8 *)ptr;
3799 opt_rx->wscale_ok = 1;
3800 if (snd_wscale > 14) {
3801 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3802 __func__,
3803 snd_wscale);
3804 snd_wscale = 14;
3805 }
3806 opt_rx->snd_wscale = snd_wscale;
3807 }
3808 break;
3809 case TCPOPT_TIMESTAMP:
3810 if ((opsize == TCPOLEN_TIMESTAMP) &&
3811 ((estab && opt_rx->tstamp_ok) ||
3812 (!estab && sysctl_tcp_timestamps))) {
3813 opt_rx->saw_tstamp = 1;
3814 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3815 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3816 }
3817 break;
3818 case TCPOPT_SACK_PERM:
3819 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3820 !estab && sysctl_tcp_sack) {
3821 opt_rx->sack_ok = TCP_SACK_SEEN;
3822 tcp_sack_reset(opt_rx);
3823 }
3824 break;
3825
3826 case TCPOPT_SACK:
3827 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3828 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3829 opt_rx->sack_ok) {
3830 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3831 }
3832 break;
3833 #ifdef CONFIG_TCP_MD5SIG
3834 case TCPOPT_MD5SIG:
3835 /*
3836 * The MD5 Hash has already been
3837 * checked (see tcp_v{4,6}_do_rcv()).
3838 */
3839 break;
3840 #endif
3841 case TCPOPT_FASTOPEN:
3842 tcp_parse_fastopen_option(
3843 opsize - TCPOLEN_FASTOPEN_BASE,
3844 ptr, th->syn, foc, false);
3845 break;
3846
3847 case TCPOPT_EXP:
3848 /* Fast Open option shares code 254 using a
3849 * 16 bits magic number.
3850 */
3851 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3852 get_unaligned_be16(ptr) ==
3853 TCPOPT_FASTOPEN_MAGIC)
3854 tcp_parse_fastopen_option(opsize -
3855 TCPOLEN_EXP_FASTOPEN_BASE,
3856 ptr + 2, th->syn, foc, true);
3857 break;
3858
3859 }
3860 ptr += opsize-2;
3861 length -= opsize;
3862 }
3863 }
3864 }
3865 EXPORT_SYMBOL(tcp_parse_options);
3866
3867 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3868 {
3869 const __be32 *ptr = (const __be32 *)(th + 1);
3870
3871 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3872 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3873 tp->rx_opt.saw_tstamp = 1;
3874 ++ptr;
3875 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3876 ++ptr;
3877 if (*ptr)
3878 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3879 else
3880 tp->rx_opt.rcv_tsecr = 0;
3881 return true;
3882 }
3883 return false;
3884 }
3885
3886 /* Fast parse options. This hopes to only see timestamps.
3887 * If it is wrong it falls back on tcp_parse_options().
3888 */
3889 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3890 const struct tcphdr *th, struct tcp_sock *tp)
3891 {
3892 /* In the spirit of fast parsing, compare doff directly to constant
3893 * values. Because equality is used, short doff can be ignored here.
3894 */
3895 if (th->doff == (sizeof(*th) / 4)) {
3896 tp->rx_opt.saw_tstamp = 0;
3897 return false;
3898 } else if (tp->rx_opt.tstamp_ok &&
3899 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3900 if (tcp_parse_aligned_timestamp(tp, th))
3901 return true;
3902 }
3903
3904 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3905 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3906 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3907
3908 return true;
3909 }
3910
3911 #ifdef CONFIG_TCP_MD5SIG
3912 /*
3913 * Parse MD5 Signature option
3914 */
3915 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3916 {
3917 int length = (th->doff << 2) - sizeof(*th);
3918 const u8 *ptr = (const u8 *)(th + 1);
3919
3920 /* If the TCP option is too short, we can short cut */
3921 if (length < TCPOLEN_MD5SIG)
3922 return NULL;
3923
3924 while (length > 0) {
3925 int opcode = *ptr++;
3926 int opsize;
3927
3928 switch (opcode) {
3929 case TCPOPT_EOL:
3930 return NULL;
3931 case TCPOPT_NOP:
3932 length--;
3933 continue;
3934 default:
3935 opsize = *ptr++;
3936 if (opsize < 2 || opsize > length)
3937 return NULL;
3938 if (opcode == TCPOPT_MD5SIG)
3939 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3940 }
3941 ptr += opsize - 2;
3942 length -= opsize;
3943 }
3944 return NULL;
3945 }
3946 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3947 #endif
3948
3949 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3950 *
3951 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3952 * it can pass through stack. So, the following predicate verifies that
3953 * this segment is not used for anything but congestion avoidance or
3954 * fast retransmit. Moreover, we even are able to eliminate most of such
3955 * second order effects, if we apply some small "replay" window (~RTO)
3956 * to timestamp space.
3957 *
3958 * All these measures still do not guarantee that we reject wrapped ACKs
3959 * on networks with high bandwidth, when sequence space is recycled fastly,
3960 * but it guarantees that such events will be very rare and do not affect
3961 * connection seriously. This doesn't look nice, but alas, PAWS is really
3962 * buggy extension.
3963 *
3964 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3965 * states that events when retransmit arrives after original data are rare.
3966 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3967 * the biggest problem on large power networks even with minor reordering.
3968 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3969 * up to bandwidth of 18Gigabit/sec. 8) ]
3970 */
3971
3972 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3973 {
3974 const struct tcp_sock *tp = tcp_sk(sk);
3975 const struct tcphdr *th = tcp_hdr(skb);
3976 u32 seq = TCP_SKB_CB(skb)->seq;
3977 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3978
3979 return (/* 1. Pure ACK with correct sequence number. */
3980 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3981
3982 /* 2. ... and duplicate ACK. */
3983 ack == tp->snd_una &&
3984
3985 /* 3. ... and does not update window. */
3986 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3987
3988 /* 4. ... and sits in replay window. */
3989 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3990 }
3991
3992 static inline bool tcp_paws_discard(const struct sock *sk,
3993 const struct sk_buff *skb)
3994 {
3995 const struct tcp_sock *tp = tcp_sk(sk);
3996
3997 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3998 !tcp_disordered_ack(sk, skb);
3999 }
4000
4001 /* Check segment sequence number for validity.
4002 *
4003 * Segment controls are considered valid, if the segment
4004 * fits to the window after truncation to the window. Acceptability
4005 * of data (and SYN, FIN, of course) is checked separately.
4006 * See tcp_data_queue(), for example.
4007 *
4008 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4009 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4010 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4011 * (borrowed from freebsd)
4012 */
4013
4014 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4015 {
4016 return !before(end_seq, tp->rcv_wup) &&
4017 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4018 }
4019
4020 /* When we get a reset we do this. */
4021 void tcp_reset(struct sock *sk)
4022 {
4023 /* We want the right error as BSD sees it (and indeed as we do). */
4024 switch (sk->sk_state) {
4025 case TCP_SYN_SENT:
4026 sk->sk_err = ECONNREFUSED;
4027 break;
4028 case TCP_CLOSE_WAIT:
4029 sk->sk_err = EPIPE;
4030 break;
4031 case TCP_CLOSE:
4032 return;
4033 default:
4034 sk->sk_err = ECONNRESET;
4035 }
4036 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4037 smp_wmb();
4038
4039 if (!sock_flag(sk, SOCK_DEAD))
4040 sk->sk_error_report(sk);
4041
4042 tcp_done(sk);
4043 }
4044
4045 /*
4046 * Process the FIN bit. This now behaves as it is supposed to work
4047 * and the FIN takes effect when it is validly part of sequence
4048 * space. Not before when we get holes.
4049 *
4050 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4051 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4052 * TIME-WAIT)
4053 *
4054 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4055 * close and we go into CLOSING (and later onto TIME-WAIT)
4056 *
4057 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4058 */
4059 void tcp_fin(struct sock *sk)
4060 {
4061 struct tcp_sock *tp = tcp_sk(sk);
4062
4063 inet_csk_schedule_ack(sk);
4064
4065 sk->sk_shutdown |= RCV_SHUTDOWN;
4066 sock_set_flag(sk, SOCK_DONE);
4067
4068 switch (sk->sk_state) {
4069 case TCP_SYN_RECV:
4070 case TCP_ESTABLISHED:
4071 /* Move to CLOSE_WAIT */
4072 tcp_set_state(sk, TCP_CLOSE_WAIT);
4073 inet_csk(sk)->icsk_ack.pingpong = 1;
4074 break;
4075
4076 case TCP_CLOSE_WAIT:
4077 case TCP_CLOSING:
4078 /* Received a retransmission of the FIN, do
4079 * nothing.
4080 */
4081 break;
4082 case TCP_LAST_ACK:
4083 /* RFC793: Remain in the LAST-ACK state. */
4084 break;
4085
4086 case TCP_FIN_WAIT1:
4087 /* This case occurs when a simultaneous close
4088 * happens, we must ack the received FIN and
4089 * enter the CLOSING state.
4090 */
4091 tcp_send_ack(sk);
4092 tcp_set_state(sk, TCP_CLOSING);
4093 break;
4094 case TCP_FIN_WAIT2:
4095 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4096 tcp_send_ack(sk);
4097 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4098 break;
4099 default:
4100 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4101 * cases we should never reach this piece of code.
4102 */
4103 pr_err("%s: Impossible, sk->sk_state=%d\n",
4104 __func__, sk->sk_state);
4105 break;
4106 }
4107
4108 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4109 * Probably, we should reset in this case. For now drop them.
4110 */
4111 skb_rbtree_purge(&tp->out_of_order_queue);
4112 if (tcp_is_sack(tp))
4113 tcp_sack_reset(&tp->rx_opt);
4114 sk_mem_reclaim(sk);
4115
4116 if (!sock_flag(sk, SOCK_DEAD)) {
4117 sk->sk_state_change(sk);
4118
4119 /* Do not send POLL_HUP for half duplex close. */
4120 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4121 sk->sk_state == TCP_CLOSE)
4122 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4123 else
4124 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4125 }
4126 }
4127
4128 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4129 u32 end_seq)
4130 {
4131 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4132 if (before(seq, sp->start_seq))
4133 sp->start_seq = seq;
4134 if (after(end_seq, sp->end_seq))
4135 sp->end_seq = end_seq;
4136 return true;
4137 }
4138 return false;
4139 }
4140
4141 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4142 {
4143 struct tcp_sock *tp = tcp_sk(sk);
4144
4145 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4146 int mib_idx;
4147
4148 if (before(seq, tp->rcv_nxt))
4149 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4150 else
4151 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4152
4153 NET_INC_STATS(sock_net(sk), mib_idx);
4154
4155 tp->rx_opt.dsack = 1;
4156 tp->duplicate_sack[0].start_seq = seq;
4157 tp->duplicate_sack[0].end_seq = end_seq;
4158 }
4159 }
4160
4161 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4162 {
4163 struct tcp_sock *tp = tcp_sk(sk);
4164
4165 if (!tp->rx_opt.dsack)
4166 tcp_dsack_set(sk, seq, end_seq);
4167 else
4168 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4169 }
4170
4171 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4172 {
4173 struct tcp_sock *tp = tcp_sk(sk);
4174
4175 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4176 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4177 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4178 tcp_enter_quickack_mode(sk);
4179
4180 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4181 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4182
4183 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4184 end_seq = tp->rcv_nxt;
4185 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4186 }
4187 }
4188
4189 tcp_send_ack(sk);
4190 }
4191
4192 /* These routines update the SACK block as out-of-order packets arrive or
4193 * in-order packets close up the sequence space.
4194 */
4195 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4196 {
4197 int this_sack;
4198 struct tcp_sack_block *sp = &tp->selective_acks[0];
4199 struct tcp_sack_block *swalk = sp + 1;
4200
4201 /* See if the recent change to the first SACK eats into
4202 * or hits the sequence space of other SACK blocks, if so coalesce.
4203 */
4204 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4205 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4206 int i;
4207
4208 /* Zap SWALK, by moving every further SACK up by one slot.
4209 * Decrease num_sacks.
4210 */
4211 tp->rx_opt.num_sacks--;
4212 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4213 sp[i] = sp[i + 1];
4214 continue;
4215 }
4216 this_sack++, swalk++;
4217 }
4218 }
4219
4220 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4221 {
4222 struct tcp_sock *tp = tcp_sk(sk);
4223 struct tcp_sack_block *sp = &tp->selective_acks[0];
4224 int cur_sacks = tp->rx_opt.num_sacks;
4225 int this_sack;
4226
4227 if (!cur_sacks)
4228 goto new_sack;
4229
4230 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4231 if (tcp_sack_extend(sp, seq, end_seq)) {
4232 /* Rotate this_sack to the first one. */
4233 for (; this_sack > 0; this_sack--, sp--)
4234 swap(*sp, *(sp - 1));
4235 if (cur_sacks > 1)
4236 tcp_sack_maybe_coalesce(tp);
4237 return;
4238 }
4239 }
4240
4241 /* Could not find an adjacent existing SACK, build a new one,
4242 * put it at the front, and shift everyone else down. We
4243 * always know there is at least one SACK present already here.
4244 *
4245 * If the sack array is full, forget about the last one.
4246 */
4247 if (this_sack >= TCP_NUM_SACKS) {
4248 this_sack--;
4249 tp->rx_opt.num_sacks--;
4250 sp--;
4251 }
4252 for (; this_sack > 0; this_sack--, sp--)
4253 *sp = *(sp - 1);
4254
4255 new_sack:
4256 /* Build the new head SACK, and we're done. */
4257 sp->start_seq = seq;
4258 sp->end_seq = end_seq;
4259 tp->rx_opt.num_sacks++;
4260 }
4261
4262 /* RCV.NXT advances, some SACKs should be eaten. */
4263
4264 static void tcp_sack_remove(struct tcp_sock *tp)
4265 {
4266 struct tcp_sack_block *sp = &tp->selective_acks[0];
4267 int num_sacks = tp->rx_opt.num_sacks;
4268 int this_sack;
4269
4270 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4271 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4272 tp->rx_opt.num_sacks = 0;
4273 return;
4274 }
4275
4276 for (this_sack = 0; this_sack < num_sacks;) {
4277 /* Check if the start of the sack is covered by RCV.NXT. */
4278 if (!before(tp->rcv_nxt, sp->start_seq)) {
4279 int i;
4280
4281 /* RCV.NXT must cover all the block! */
4282 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4283
4284 /* Zap this SACK, by moving forward any other SACKS. */
4285 for (i = this_sack+1; i < num_sacks; i++)
4286 tp->selective_acks[i-1] = tp->selective_acks[i];
4287 num_sacks--;
4288 continue;
4289 }
4290 this_sack++;
4291 sp++;
4292 }
4293 tp->rx_opt.num_sacks = num_sacks;
4294 }
4295
4296 /**
4297 * tcp_try_coalesce - try to merge skb to prior one
4298 * @sk: socket
4299 * @to: prior buffer
4300 * @from: buffer to add in queue
4301 * @fragstolen: pointer to boolean
4302 *
4303 * Before queueing skb @from after @to, try to merge them
4304 * to reduce overall memory use and queue lengths, if cost is small.
4305 * Packets in ofo or receive queues can stay a long time.
4306 * Better try to coalesce them right now to avoid future collapses.
4307 * Returns true if caller should free @from instead of queueing it
4308 */
4309 static bool tcp_try_coalesce(struct sock *sk,
4310 struct sk_buff *to,
4311 struct sk_buff *from,
4312 bool *fragstolen)
4313 {
4314 int delta;
4315
4316 *fragstolen = false;
4317
4318 /* Its possible this segment overlaps with prior segment in queue */
4319 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4320 return false;
4321
4322 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4323 return false;
4324
4325 atomic_add(delta, &sk->sk_rmem_alloc);
4326 sk_mem_charge(sk, delta);
4327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4328 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4329 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4330 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4331 return true;
4332 }
4333
4334 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4335 {
4336 sk_drops_add(sk, skb);
4337 __kfree_skb(skb);
4338 }
4339
4340 /* This one checks to see if we can put data from the
4341 * out_of_order queue into the receive_queue.
4342 */
4343 static void tcp_ofo_queue(struct sock *sk)
4344 {
4345 struct tcp_sock *tp = tcp_sk(sk);
4346 __u32 dsack_high = tp->rcv_nxt;
4347 bool fin, fragstolen, eaten;
4348 struct sk_buff *skb, *tail;
4349 struct rb_node *p;
4350
4351 p = rb_first(&tp->out_of_order_queue);
4352 while (p) {
4353 skb = rb_entry(p, struct sk_buff, rbnode);
4354 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4355 break;
4356
4357 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4358 __u32 dsack = dsack_high;
4359 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4360 dsack_high = TCP_SKB_CB(skb)->end_seq;
4361 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4362 }
4363 p = rb_next(p);
4364 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4365
4366 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4367 SOCK_DEBUG(sk, "ofo packet was already received\n");
4368 tcp_drop(sk, skb);
4369 continue;
4370 }
4371 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4372 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4373 TCP_SKB_CB(skb)->end_seq);
4374
4375 tail = skb_peek_tail(&sk->sk_receive_queue);
4376 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4377 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4378 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4379 if (!eaten)
4380 __skb_queue_tail(&sk->sk_receive_queue, skb);
4381 else
4382 kfree_skb_partial(skb, fragstolen);
4383
4384 if (unlikely(fin)) {
4385 tcp_fin(sk);
4386 /* tcp_fin() purges tp->out_of_order_queue,
4387 * so we must end this loop right now.
4388 */
4389 break;
4390 }
4391 }
4392 }
4393
4394 static bool tcp_prune_ofo_queue(struct sock *sk);
4395 static int tcp_prune_queue(struct sock *sk);
4396
4397 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4398 unsigned int size)
4399 {
4400 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4401 !sk_rmem_schedule(sk, skb, size)) {
4402
4403 if (tcp_prune_queue(sk) < 0)
4404 return -1;
4405
4406 while (!sk_rmem_schedule(sk, skb, size)) {
4407 if (!tcp_prune_ofo_queue(sk))
4408 return -1;
4409 }
4410 }
4411 return 0;
4412 }
4413
4414 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4415 {
4416 struct tcp_sock *tp = tcp_sk(sk);
4417 struct rb_node **p, *q, *parent;
4418 struct sk_buff *skb1;
4419 u32 seq, end_seq;
4420 bool fragstolen;
4421
4422 tcp_ecn_check_ce(tp, skb);
4423
4424 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4425 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4426 tcp_drop(sk, skb);
4427 return;
4428 }
4429
4430 /* Disable header prediction. */
4431 tp->pred_flags = 0;
4432 inet_csk_schedule_ack(sk);
4433
4434 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4435 seq = TCP_SKB_CB(skb)->seq;
4436 end_seq = TCP_SKB_CB(skb)->end_seq;
4437 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4438 tp->rcv_nxt, seq, end_seq);
4439
4440 p = &tp->out_of_order_queue.rb_node;
4441 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4442 /* Initial out of order segment, build 1 SACK. */
4443 if (tcp_is_sack(tp)) {
4444 tp->rx_opt.num_sacks = 1;
4445 tp->selective_acks[0].start_seq = seq;
4446 tp->selective_acks[0].end_seq = end_seq;
4447 }
4448 rb_link_node(&skb->rbnode, NULL, p);
4449 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4450 tp->ooo_last_skb = skb;
4451 goto end;
4452 }
4453
4454 /* In the typical case, we are adding an skb to the end of the list.
4455 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4456 */
4457 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4458 coalesce_done:
4459 tcp_grow_window(sk, skb);
4460 kfree_skb_partial(skb, fragstolen);
4461 skb = NULL;
4462 goto add_sack;
4463 }
4464 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4465 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4466 parent = &tp->ooo_last_skb->rbnode;
4467 p = &parent->rb_right;
4468 goto insert;
4469 }
4470
4471 /* Find place to insert this segment. Handle overlaps on the way. */
4472 parent = NULL;
4473 while (*p) {
4474 parent = *p;
4475 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4476 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4477 p = &parent->rb_left;
4478 continue;
4479 }
4480 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4481 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4482 /* All the bits are present. Drop. */
4483 NET_INC_STATS(sock_net(sk),
4484 LINUX_MIB_TCPOFOMERGE);
4485 __kfree_skb(skb);
4486 skb = NULL;
4487 tcp_dsack_set(sk, seq, end_seq);
4488 goto add_sack;
4489 }
4490 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4491 /* Partial overlap. */
4492 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4493 } else {
4494 /* skb's seq == skb1's seq and skb covers skb1.
4495 * Replace skb1 with skb.
4496 */
4497 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4498 &tp->out_of_order_queue);
4499 tcp_dsack_extend(sk,
4500 TCP_SKB_CB(skb1)->seq,
4501 TCP_SKB_CB(skb1)->end_seq);
4502 NET_INC_STATS(sock_net(sk),
4503 LINUX_MIB_TCPOFOMERGE);
4504 __kfree_skb(skb1);
4505 goto add_sack;
4506 }
4507 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4508 goto coalesce_done;
4509 }
4510 p = &parent->rb_right;
4511 }
4512 insert:
4513 /* Insert segment into RB tree. */
4514 rb_link_node(&skb->rbnode, parent, p);
4515 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4516
4517 /* Remove other segments covered by skb. */
4518 while ((q = rb_next(&skb->rbnode)) != NULL) {
4519 skb1 = rb_entry(q, struct sk_buff, rbnode);
4520
4521 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4522 break;
4523 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4524 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4525 end_seq);
4526 break;
4527 }
4528 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4529 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4530 TCP_SKB_CB(skb1)->end_seq);
4531 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4532 tcp_drop(sk, skb1);
4533 }
4534 /* If there is no skb after us, we are the last_skb ! */
4535 if (!q)
4536 tp->ooo_last_skb = skb;
4537
4538 add_sack:
4539 if (tcp_is_sack(tp))
4540 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4541 end:
4542 if (skb) {
4543 tcp_grow_window(sk, skb);
4544 skb_set_owner_r(skb, sk);
4545 }
4546 }
4547
4548 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4549 bool *fragstolen)
4550 {
4551 int eaten;
4552 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4553
4554 __skb_pull(skb, hdrlen);
4555 eaten = (tail &&
4556 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4557 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4558 if (!eaten) {
4559 __skb_queue_tail(&sk->sk_receive_queue, skb);
4560 skb_set_owner_r(skb, sk);
4561 }
4562 return eaten;
4563 }
4564
4565 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4566 {
4567 struct sk_buff *skb;
4568 int err = -ENOMEM;
4569 int data_len = 0;
4570 bool fragstolen;
4571
4572 if (size == 0)
4573 return 0;
4574
4575 if (size > PAGE_SIZE) {
4576 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4577
4578 data_len = npages << PAGE_SHIFT;
4579 size = data_len + (size & ~PAGE_MASK);
4580 }
4581 skb = alloc_skb_with_frags(size - data_len, data_len,
4582 PAGE_ALLOC_COSTLY_ORDER,
4583 &err, sk->sk_allocation);
4584 if (!skb)
4585 goto err;
4586
4587 skb_put(skb, size - data_len);
4588 skb->data_len = data_len;
4589 skb->len = size;
4590
4591 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4592 goto err_free;
4593
4594 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4595 if (err)
4596 goto err_free;
4597
4598 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4599 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4600 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4601
4602 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4603 WARN_ON_ONCE(fragstolen); /* should not happen */
4604 __kfree_skb(skb);
4605 }
4606 return size;
4607
4608 err_free:
4609 kfree_skb(skb);
4610 err:
4611 return err;
4612
4613 }
4614
4615 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4616 {
4617 struct tcp_sock *tp = tcp_sk(sk);
4618 bool fragstolen = false;
4619 int eaten = -1;
4620
4621 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4622 __kfree_skb(skb);
4623 return;
4624 }
4625 skb_dst_drop(skb);
4626 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4627
4628 tcp_ecn_accept_cwr(tp, skb);
4629
4630 tp->rx_opt.dsack = 0;
4631
4632 /* Queue data for delivery to the user.
4633 * Packets in sequence go to the receive queue.
4634 * Out of sequence packets to the out_of_order_queue.
4635 */
4636 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4637 if (tcp_receive_window(tp) == 0)
4638 goto out_of_window;
4639
4640 /* Ok. In sequence. In window. */
4641 if (tp->ucopy.task == current &&
4642 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4643 sock_owned_by_user(sk) && !tp->urg_data) {
4644 int chunk = min_t(unsigned int, skb->len,
4645 tp->ucopy.len);
4646
4647 __set_current_state(TASK_RUNNING);
4648
4649 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4650 tp->ucopy.len -= chunk;
4651 tp->copied_seq += chunk;
4652 eaten = (chunk == skb->len);
4653 tcp_rcv_space_adjust(sk);
4654 }
4655 }
4656
4657 if (eaten <= 0) {
4658 queue_and_out:
4659 if (eaten < 0) {
4660 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4661 sk_forced_mem_schedule(sk, skb->truesize);
4662 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4663 goto drop;
4664 }
4665 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4666 }
4667 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4668 if (skb->len)
4669 tcp_event_data_recv(sk, skb);
4670 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4671 tcp_fin(sk);
4672
4673 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4674 tcp_ofo_queue(sk);
4675
4676 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4677 * gap in queue is filled.
4678 */
4679 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4680 inet_csk(sk)->icsk_ack.pingpong = 0;
4681 }
4682
4683 if (tp->rx_opt.num_sacks)
4684 tcp_sack_remove(tp);
4685
4686 tcp_fast_path_check(sk);
4687
4688 if (eaten > 0)
4689 kfree_skb_partial(skb, fragstolen);
4690 if (!sock_flag(sk, SOCK_DEAD))
4691 sk->sk_data_ready(sk);
4692 return;
4693 }
4694
4695 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4696 /* A retransmit, 2nd most common case. Force an immediate ack. */
4697 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4698 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4699
4700 out_of_window:
4701 tcp_enter_quickack_mode(sk);
4702 inet_csk_schedule_ack(sk);
4703 drop:
4704 tcp_drop(sk, skb);
4705 return;
4706 }
4707
4708 /* Out of window. F.e. zero window probe. */
4709 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4710 goto out_of_window;
4711
4712 tcp_enter_quickack_mode(sk);
4713
4714 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4715 /* Partial packet, seq < rcv_next < end_seq */
4716 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4717 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4718 TCP_SKB_CB(skb)->end_seq);
4719
4720 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4721
4722 /* If window is closed, drop tail of packet. But after
4723 * remembering D-SACK for its head made in previous line.
4724 */
4725 if (!tcp_receive_window(tp))
4726 goto out_of_window;
4727 goto queue_and_out;
4728 }
4729
4730 tcp_data_queue_ofo(sk, skb);
4731 }
4732
4733 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4734 {
4735 if (list)
4736 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4737
4738 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4739 }
4740
4741 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4742 struct sk_buff_head *list,
4743 struct rb_root *root)
4744 {
4745 struct sk_buff *next = tcp_skb_next(skb, list);
4746
4747 if (list)
4748 __skb_unlink(skb, list);
4749 else
4750 rb_erase(&skb->rbnode, root);
4751
4752 __kfree_skb(skb);
4753 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4754
4755 return next;
4756 }
4757
4758 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4759 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4760 {
4761 struct rb_node **p = &root->rb_node;
4762 struct rb_node *parent = NULL;
4763 struct sk_buff *skb1;
4764
4765 while (*p) {
4766 parent = *p;
4767 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4768 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4769 p = &parent->rb_left;
4770 else
4771 p = &parent->rb_right;
4772 }
4773 rb_link_node(&skb->rbnode, parent, p);
4774 rb_insert_color(&skb->rbnode, root);
4775 }
4776
4777 /* Collapse contiguous sequence of skbs head..tail with
4778 * sequence numbers start..end.
4779 *
4780 * If tail is NULL, this means until the end of the queue.
4781 *
4782 * Segments with FIN/SYN are not collapsed (only because this
4783 * simplifies code)
4784 */
4785 static void
4786 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4787 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4788 {
4789 struct sk_buff *skb = head, *n;
4790 struct sk_buff_head tmp;
4791 bool end_of_skbs;
4792
4793 /* First, check that queue is collapsible and find
4794 * the point where collapsing can be useful.
4795 */
4796 restart:
4797 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4798 n = tcp_skb_next(skb, list);
4799
4800 /* No new bits? It is possible on ofo queue. */
4801 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4802 skb = tcp_collapse_one(sk, skb, list, root);
4803 if (!skb)
4804 break;
4805 goto restart;
4806 }
4807
4808 /* The first skb to collapse is:
4809 * - not SYN/FIN and
4810 * - bloated or contains data before "start" or
4811 * overlaps to the next one.
4812 */
4813 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4814 (tcp_win_from_space(skb->truesize) > skb->len ||
4815 before(TCP_SKB_CB(skb)->seq, start))) {
4816 end_of_skbs = false;
4817 break;
4818 }
4819
4820 if (n && n != tail &&
4821 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4822 end_of_skbs = false;
4823 break;
4824 }
4825
4826 /* Decided to skip this, advance start seq. */
4827 start = TCP_SKB_CB(skb)->end_seq;
4828 }
4829 if (end_of_skbs ||
4830 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4831 return;
4832
4833 __skb_queue_head_init(&tmp);
4834
4835 while (before(start, end)) {
4836 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4837 struct sk_buff *nskb;
4838
4839 nskb = alloc_skb(copy, GFP_ATOMIC);
4840 if (!nskb)
4841 break;
4842
4843 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4844 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4845 if (list)
4846 __skb_queue_before(list, skb, nskb);
4847 else
4848 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4849 skb_set_owner_r(nskb, sk);
4850
4851 /* Copy data, releasing collapsed skbs. */
4852 while (copy > 0) {
4853 int offset = start - TCP_SKB_CB(skb)->seq;
4854 int size = TCP_SKB_CB(skb)->end_seq - start;
4855
4856 BUG_ON(offset < 0);
4857 if (size > 0) {
4858 size = min(copy, size);
4859 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4860 BUG();
4861 TCP_SKB_CB(nskb)->end_seq += size;
4862 copy -= size;
4863 start += size;
4864 }
4865 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4866 skb = tcp_collapse_one(sk, skb, list, root);
4867 if (!skb ||
4868 skb == tail ||
4869 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4870 goto end;
4871 }
4872 }
4873 }
4874 end:
4875 skb_queue_walk_safe(&tmp, skb, n)
4876 tcp_rbtree_insert(root, skb);
4877 }
4878
4879 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4880 * and tcp_collapse() them until all the queue is collapsed.
4881 */
4882 static void tcp_collapse_ofo_queue(struct sock *sk)
4883 {
4884 struct tcp_sock *tp = tcp_sk(sk);
4885 struct sk_buff *skb, *head;
4886 struct rb_node *p;
4887 u32 start, end;
4888
4889 p = rb_first(&tp->out_of_order_queue);
4890 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4891 new_range:
4892 if (!skb) {
4893 p = rb_last(&tp->out_of_order_queue);
4894 /* Note: This is possible p is NULL here. We do not
4895 * use rb_entry_safe(), as ooo_last_skb is valid only
4896 * if rbtree is not empty.
4897 */
4898 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4899 return;
4900 }
4901 start = TCP_SKB_CB(skb)->seq;
4902 end = TCP_SKB_CB(skb)->end_seq;
4903
4904 for (head = skb;;) {
4905 skb = tcp_skb_next(skb, NULL);
4906
4907 /* Range is terminated when we see a gap or when
4908 * we are at the queue end.
4909 */
4910 if (!skb ||
4911 after(TCP_SKB_CB(skb)->seq, end) ||
4912 before(TCP_SKB_CB(skb)->end_seq, start)) {
4913 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4914 head, skb, start, end);
4915 goto new_range;
4916 }
4917
4918 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4919 start = TCP_SKB_CB(skb)->seq;
4920 if (after(TCP_SKB_CB(skb)->end_seq, end))
4921 end = TCP_SKB_CB(skb)->end_seq;
4922 }
4923 }
4924
4925 /*
4926 * Clean the out-of-order queue to make room.
4927 * We drop high sequences packets to :
4928 * 1) Let a chance for holes to be filled.
4929 * 2) not add too big latencies if thousands of packets sit there.
4930 * (But if application shrinks SO_RCVBUF, we could still end up
4931 * freeing whole queue here)
4932 *
4933 * Return true if queue has shrunk.
4934 */
4935 static bool tcp_prune_ofo_queue(struct sock *sk)
4936 {
4937 struct tcp_sock *tp = tcp_sk(sk);
4938 struct rb_node *node, *prev;
4939
4940 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4941 return false;
4942
4943 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4944 node = &tp->ooo_last_skb->rbnode;
4945 do {
4946 prev = rb_prev(node);
4947 rb_erase(node, &tp->out_of_order_queue);
4948 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4949 sk_mem_reclaim(sk);
4950 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4951 !tcp_under_memory_pressure(sk))
4952 break;
4953 node = prev;
4954 } while (node);
4955 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4956
4957 /* Reset SACK state. A conforming SACK implementation will
4958 * do the same at a timeout based retransmit. When a connection
4959 * is in a sad state like this, we care only about integrity
4960 * of the connection not performance.
4961 */
4962 if (tp->rx_opt.sack_ok)
4963 tcp_sack_reset(&tp->rx_opt);
4964 return true;
4965 }
4966
4967 /* Reduce allocated memory if we can, trying to get
4968 * the socket within its memory limits again.
4969 *
4970 * Return less than zero if we should start dropping frames
4971 * until the socket owning process reads some of the data
4972 * to stabilize the situation.
4973 */
4974 static int tcp_prune_queue(struct sock *sk)
4975 {
4976 struct tcp_sock *tp = tcp_sk(sk);
4977
4978 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4979
4980 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4981
4982 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4983 tcp_clamp_window(sk);
4984 else if (tcp_under_memory_pressure(sk))
4985 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4986
4987 tcp_collapse_ofo_queue(sk);
4988 if (!skb_queue_empty(&sk->sk_receive_queue))
4989 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4990 skb_peek(&sk->sk_receive_queue),
4991 NULL,
4992 tp->copied_seq, tp->rcv_nxt);
4993 sk_mem_reclaim(sk);
4994
4995 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4996 return 0;
4997
4998 /* Collapsing did not help, destructive actions follow.
4999 * This must not ever occur. */
5000
5001 tcp_prune_ofo_queue(sk);
5002
5003 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5004 return 0;
5005
5006 /* If we are really being abused, tell the caller to silently
5007 * drop receive data on the floor. It will get retransmitted
5008 * and hopefully then we'll have sufficient space.
5009 */
5010 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5011
5012 /* Massive buffer overcommit. */
5013 tp->pred_flags = 0;
5014 return -1;
5015 }
5016
5017 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5018 {
5019 const struct tcp_sock *tp = tcp_sk(sk);
5020
5021 /* If the user specified a specific send buffer setting, do
5022 * not modify it.
5023 */
5024 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5025 return false;
5026
5027 /* If we are under global TCP memory pressure, do not expand. */
5028 if (tcp_under_memory_pressure(sk))
5029 return false;
5030
5031 /* If we are under soft global TCP memory pressure, do not expand. */
5032 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5033 return false;
5034
5035 /* If we filled the congestion window, do not expand. */
5036 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5037 return false;
5038
5039 return true;
5040 }
5041
5042 /* When incoming ACK allowed to free some skb from write_queue,
5043 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5044 * on the exit from tcp input handler.
5045 *
5046 * PROBLEM: sndbuf expansion does not work well with largesend.
5047 */
5048 static void tcp_new_space(struct sock *sk)
5049 {
5050 struct tcp_sock *tp = tcp_sk(sk);
5051
5052 if (tcp_should_expand_sndbuf(sk)) {
5053 tcp_sndbuf_expand(sk);
5054 tp->snd_cwnd_stamp = tcp_time_stamp;
5055 }
5056
5057 sk->sk_write_space(sk);
5058 }
5059
5060 static void tcp_check_space(struct sock *sk)
5061 {
5062 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5063 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5064 /* pairs with tcp_poll() */
5065 smp_mb__after_atomic();
5066 if (sk->sk_socket &&
5067 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5068 tcp_new_space(sk);
5069 }
5070 }
5071
5072 static inline void tcp_data_snd_check(struct sock *sk)
5073 {
5074 tcp_push_pending_frames(sk);
5075 tcp_check_space(sk);
5076 }
5077
5078 /*
5079 * Check if sending an ack is needed.
5080 */
5081 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5082 {
5083 struct tcp_sock *tp = tcp_sk(sk);
5084
5085 /* More than one full frame received... */
5086 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5087 /* ... and right edge of window advances far enough.
5088 * (tcp_recvmsg() will send ACK otherwise). Or...
5089 */
5090 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5091 /* We ACK each frame or... */
5092 tcp_in_quickack_mode(sk) ||
5093 /* We have out of order data. */
5094 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5095 /* Then ack it now */
5096 tcp_send_ack(sk);
5097 } else {
5098 /* Else, send delayed ack. */
5099 tcp_send_delayed_ack(sk);
5100 }
5101 }
5102
5103 static inline void tcp_ack_snd_check(struct sock *sk)
5104 {
5105 if (!inet_csk_ack_scheduled(sk)) {
5106 /* We sent a data segment already. */
5107 return;
5108 }
5109 __tcp_ack_snd_check(sk, 1);
5110 }
5111
5112 /*
5113 * This routine is only called when we have urgent data
5114 * signaled. Its the 'slow' part of tcp_urg. It could be
5115 * moved inline now as tcp_urg is only called from one
5116 * place. We handle URGent data wrong. We have to - as
5117 * BSD still doesn't use the correction from RFC961.
5118 * For 1003.1g we should support a new option TCP_STDURG to permit
5119 * either form (or just set the sysctl tcp_stdurg).
5120 */
5121
5122 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5123 {
5124 struct tcp_sock *tp = tcp_sk(sk);
5125 u32 ptr = ntohs(th->urg_ptr);
5126
5127 if (ptr && !sysctl_tcp_stdurg)
5128 ptr--;
5129 ptr += ntohl(th->seq);
5130
5131 /* Ignore urgent data that we've already seen and read. */
5132 if (after(tp->copied_seq, ptr))
5133 return;
5134
5135 /* Do not replay urg ptr.
5136 *
5137 * NOTE: interesting situation not covered by specs.
5138 * Misbehaving sender may send urg ptr, pointing to segment,
5139 * which we already have in ofo queue. We are not able to fetch
5140 * such data and will stay in TCP_URG_NOTYET until will be eaten
5141 * by recvmsg(). Seems, we are not obliged to handle such wicked
5142 * situations. But it is worth to think about possibility of some
5143 * DoSes using some hypothetical application level deadlock.
5144 */
5145 if (before(ptr, tp->rcv_nxt))
5146 return;
5147
5148 /* Do we already have a newer (or duplicate) urgent pointer? */
5149 if (tp->urg_data && !after(ptr, tp->urg_seq))
5150 return;
5151
5152 /* Tell the world about our new urgent pointer. */
5153 sk_send_sigurg(sk);
5154
5155 /* We may be adding urgent data when the last byte read was
5156 * urgent. To do this requires some care. We cannot just ignore
5157 * tp->copied_seq since we would read the last urgent byte again
5158 * as data, nor can we alter copied_seq until this data arrives
5159 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5160 *
5161 * NOTE. Double Dutch. Rendering to plain English: author of comment
5162 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5163 * and expect that both A and B disappear from stream. This is _wrong_.
5164 * Though this happens in BSD with high probability, this is occasional.
5165 * Any application relying on this is buggy. Note also, that fix "works"
5166 * only in this artificial test. Insert some normal data between A and B and we will
5167 * decline of BSD again. Verdict: it is better to remove to trap
5168 * buggy users.
5169 */
5170 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5171 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5172 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5173 tp->copied_seq++;
5174 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5175 __skb_unlink(skb, &sk->sk_receive_queue);
5176 __kfree_skb(skb);
5177 }
5178 }
5179
5180 tp->urg_data = TCP_URG_NOTYET;
5181 tp->urg_seq = ptr;
5182
5183 /* Disable header prediction. */
5184 tp->pred_flags = 0;
5185 }
5186
5187 /* This is the 'fast' part of urgent handling. */
5188 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5189 {
5190 struct tcp_sock *tp = tcp_sk(sk);
5191
5192 /* Check if we get a new urgent pointer - normally not. */
5193 if (th->urg)
5194 tcp_check_urg(sk, th);
5195
5196 /* Do we wait for any urgent data? - normally not... */
5197 if (tp->urg_data == TCP_URG_NOTYET) {
5198 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5199 th->syn;
5200
5201 /* Is the urgent pointer pointing into this packet? */
5202 if (ptr < skb->len) {
5203 u8 tmp;
5204 if (skb_copy_bits(skb, ptr, &tmp, 1))
5205 BUG();
5206 tp->urg_data = TCP_URG_VALID | tmp;
5207 if (!sock_flag(sk, SOCK_DEAD))
5208 sk->sk_data_ready(sk);
5209 }
5210 }
5211 }
5212
5213 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5214 {
5215 struct tcp_sock *tp = tcp_sk(sk);
5216 int chunk = skb->len - hlen;
5217 int err;
5218
5219 if (skb_csum_unnecessary(skb))
5220 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5221 else
5222 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5223
5224 if (!err) {
5225 tp->ucopy.len -= chunk;
5226 tp->copied_seq += chunk;
5227 tcp_rcv_space_adjust(sk);
5228 }
5229
5230 return err;
5231 }
5232
5233 /* Does PAWS and seqno based validation of an incoming segment, flags will
5234 * play significant role here.
5235 */
5236 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5237 const struct tcphdr *th, int syn_inerr)
5238 {
5239 struct tcp_sock *tp = tcp_sk(sk);
5240 bool rst_seq_match = false;
5241
5242 /* RFC1323: H1. Apply PAWS check first. */
5243 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5244 tcp_paws_discard(sk, skb)) {
5245 if (!th->rst) {
5246 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5247 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5248 LINUX_MIB_TCPACKSKIPPEDPAWS,
5249 &tp->last_oow_ack_time))
5250 tcp_send_dupack(sk, skb);
5251 goto discard;
5252 }
5253 /* Reset is accepted even if it did not pass PAWS. */
5254 }
5255
5256 /* Step 1: check sequence number */
5257 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5258 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5259 * (RST) segments are validated by checking their SEQ-fields."
5260 * And page 69: "If an incoming segment is not acceptable,
5261 * an acknowledgment should be sent in reply (unless the RST
5262 * bit is set, if so drop the segment and return)".
5263 */
5264 if (!th->rst) {
5265 if (th->syn)
5266 goto syn_challenge;
5267 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5268 LINUX_MIB_TCPACKSKIPPEDSEQ,
5269 &tp->last_oow_ack_time))
5270 tcp_send_dupack(sk, skb);
5271 }
5272 goto discard;
5273 }
5274
5275 /* Step 2: check RST bit */
5276 if (th->rst) {
5277 /* RFC 5961 3.2 (extend to match against SACK too if available):
5278 * If seq num matches RCV.NXT or the right-most SACK block,
5279 * then
5280 * RESET the connection
5281 * else
5282 * Send a challenge ACK
5283 */
5284 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5285 rst_seq_match = true;
5286 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5287 struct tcp_sack_block *sp = &tp->selective_acks[0];
5288 int max_sack = sp[0].end_seq;
5289 int this_sack;
5290
5291 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5292 ++this_sack) {
5293 max_sack = after(sp[this_sack].end_seq,
5294 max_sack) ?
5295 sp[this_sack].end_seq : max_sack;
5296 }
5297
5298 if (TCP_SKB_CB(skb)->seq == max_sack)
5299 rst_seq_match = true;
5300 }
5301
5302 if (rst_seq_match)
5303 tcp_reset(sk);
5304 else
5305 tcp_send_challenge_ack(sk, skb);
5306 goto discard;
5307 }
5308
5309 /* step 3: check security and precedence [ignored] */
5310
5311 /* step 4: Check for a SYN
5312 * RFC 5961 4.2 : Send a challenge ack
5313 */
5314 if (th->syn) {
5315 syn_challenge:
5316 if (syn_inerr)
5317 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5319 tcp_send_challenge_ack(sk, skb);
5320 goto discard;
5321 }
5322
5323 return true;
5324
5325 discard:
5326 tcp_drop(sk, skb);
5327 return false;
5328 }
5329
5330 /*
5331 * TCP receive function for the ESTABLISHED state.
5332 *
5333 * It is split into a fast path and a slow path. The fast path is
5334 * disabled when:
5335 * - A zero window was announced from us - zero window probing
5336 * is only handled properly in the slow path.
5337 * - Out of order segments arrived.
5338 * - Urgent data is expected.
5339 * - There is no buffer space left
5340 * - Unexpected TCP flags/window values/header lengths are received
5341 * (detected by checking the TCP header against pred_flags)
5342 * - Data is sent in both directions. Fast path only supports pure senders
5343 * or pure receivers (this means either the sequence number or the ack
5344 * value must stay constant)
5345 * - Unexpected TCP option.
5346 *
5347 * When these conditions are not satisfied it drops into a standard
5348 * receive procedure patterned after RFC793 to handle all cases.
5349 * The first three cases are guaranteed by proper pred_flags setting,
5350 * the rest is checked inline. Fast processing is turned on in
5351 * tcp_data_queue when everything is OK.
5352 */
5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5354 const struct tcphdr *th, unsigned int len)
5355 {
5356 struct tcp_sock *tp = tcp_sk(sk);
5357
5358 if (unlikely(!sk->sk_rx_dst))
5359 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5360 /*
5361 * Header prediction.
5362 * The code loosely follows the one in the famous
5363 * "30 instruction TCP receive" Van Jacobson mail.
5364 *
5365 * Van's trick is to deposit buffers into socket queue
5366 * on a device interrupt, to call tcp_recv function
5367 * on the receive process context and checksum and copy
5368 * the buffer to user space. smart...
5369 *
5370 * Our current scheme is not silly either but we take the
5371 * extra cost of the net_bh soft interrupt processing...
5372 * We do checksum and copy also but from device to kernel.
5373 */
5374
5375 tp->rx_opt.saw_tstamp = 0;
5376
5377 /* pred_flags is 0xS?10 << 16 + snd_wnd
5378 * if header_prediction is to be made
5379 * 'S' will always be tp->tcp_header_len >> 2
5380 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5381 * turn it off (when there are holes in the receive
5382 * space for instance)
5383 * PSH flag is ignored.
5384 */
5385
5386 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5387 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5388 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5389 int tcp_header_len = tp->tcp_header_len;
5390
5391 /* Timestamp header prediction: tcp_header_len
5392 * is automatically equal to th->doff*4 due to pred_flags
5393 * match.
5394 */
5395
5396 /* Check timestamp */
5397 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5398 /* No? Slow path! */
5399 if (!tcp_parse_aligned_timestamp(tp, th))
5400 goto slow_path;
5401
5402 /* If PAWS failed, check it more carefully in slow path */
5403 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5404 goto slow_path;
5405
5406 /* DO NOT update ts_recent here, if checksum fails
5407 * and timestamp was corrupted part, it will result
5408 * in a hung connection since we will drop all
5409 * future packets due to the PAWS test.
5410 */
5411 }
5412
5413 if (len <= tcp_header_len) {
5414 /* Bulk data transfer: sender */
5415 if (len == tcp_header_len) {
5416 /* Predicted packet is in window by definition.
5417 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5418 * Hence, check seq<=rcv_wup reduces to:
5419 */
5420 if (tcp_header_len ==
5421 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5422 tp->rcv_nxt == tp->rcv_wup)
5423 tcp_store_ts_recent(tp);
5424
5425 /* We know that such packets are checksummed
5426 * on entry.
5427 */
5428 tcp_ack(sk, skb, 0);
5429 __kfree_skb(skb);
5430 tcp_data_snd_check(sk);
5431 return;
5432 } else { /* Header too small */
5433 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5434 goto discard;
5435 }
5436 } else {
5437 int eaten = 0;
5438 bool fragstolen = false;
5439
5440 if (tp->ucopy.task == current &&
5441 tp->copied_seq == tp->rcv_nxt &&
5442 len - tcp_header_len <= tp->ucopy.len &&
5443 sock_owned_by_user(sk)) {
5444 __set_current_state(TASK_RUNNING);
5445
5446 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5447 /* Predicted packet is in window by definition.
5448 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5449 * Hence, check seq<=rcv_wup reduces to:
5450 */
5451 if (tcp_header_len ==
5452 (sizeof(struct tcphdr) +
5453 TCPOLEN_TSTAMP_ALIGNED) &&
5454 tp->rcv_nxt == tp->rcv_wup)
5455 tcp_store_ts_recent(tp);
5456
5457 tcp_rcv_rtt_measure_ts(sk, skb);
5458
5459 __skb_pull(skb, tcp_header_len);
5460 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5461 NET_INC_STATS(sock_net(sk),
5462 LINUX_MIB_TCPHPHITSTOUSER);
5463 eaten = 1;
5464 }
5465 }
5466 if (!eaten) {
5467 if (tcp_checksum_complete(skb))
5468 goto csum_error;
5469
5470 if ((int)skb->truesize > sk->sk_forward_alloc)
5471 goto step5;
5472
5473 /* Predicted packet is in window by definition.
5474 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5475 * Hence, check seq<=rcv_wup reduces to:
5476 */
5477 if (tcp_header_len ==
5478 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5479 tp->rcv_nxt == tp->rcv_wup)
5480 tcp_store_ts_recent(tp);
5481
5482 tcp_rcv_rtt_measure_ts(sk, skb);
5483
5484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5485
5486 /* Bulk data transfer: receiver */
5487 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5488 &fragstolen);
5489 }
5490
5491 tcp_event_data_recv(sk, skb);
5492
5493 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5494 /* Well, only one small jumplet in fast path... */
5495 tcp_ack(sk, skb, FLAG_DATA);
5496 tcp_data_snd_check(sk);
5497 if (!inet_csk_ack_scheduled(sk))
5498 goto no_ack;
5499 }
5500
5501 __tcp_ack_snd_check(sk, 0);
5502 no_ack:
5503 if (eaten)
5504 kfree_skb_partial(skb, fragstolen);
5505 sk->sk_data_ready(sk);
5506 return;
5507 }
5508 }
5509
5510 slow_path:
5511 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5512 goto csum_error;
5513
5514 if (!th->ack && !th->rst && !th->syn)
5515 goto discard;
5516
5517 /*
5518 * Standard slow path.
5519 */
5520
5521 if (!tcp_validate_incoming(sk, skb, th, 1))
5522 return;
5523
5524 step5:
5525 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5526 goto discard;
5527
5528 tcp_rcv_rtt_measure_ts(sk, skb);
5529
5530 /* Process urgent data. */
5531 tcp_urg(sk, skb, th);
5532
5533 /* step 7: process the segment text */
5534 tcp_data_queue(sk, skb);
5535
5536 tcp_data_snd_check(sk);
5537 tcp_ack_snd_check(sk);
5538 return;
5539
5540 csum_error:
5541 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5542 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5543
5544 discard:
5545 tcp_drop(sk, skb);
5546 }
5547 EXPORT_SYMBOL(tcp_rcv_established);
5548
5549 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5550 {
5551 struct tcp_sock *tp = tcp_sk(sk);
5552 struct inet_connection_sock *icsk = inet_csk(sk);
5553
5554 tcp_set_state(sk, TCP_ESTABLISHED);
5555
5556 if (skb) {
5557 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5558 security_inet_conn_established(sk, skb);
5559 }
5560
5561 /* Make sure socket is routed, for correct metrics. */
5562 icsk->icsk_af_ops->rebuild_header(sk);
5563
5564 tcp_init_metrics(sk);
5565
5566 tcp_init_congestion_control(sk);
5567
5568 /* Prevent spurious tcp_cwnd_restart() on first data
5569 * packet.
5570 */
5571 tp->lsndtime = tcp_time_stamp;
5572
5573 tcp_init_buffer_space(sk);
5574
5575 if (sock_flag(sk, SOCK_KEEPOPEN))
5576 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5577
5578 if (!tp->rx_opt.snd_wscale)
5579 __tcp_fast_path_on(tp, tp->snd_wnd);
5580 else
5581 tp->pred_flags = 0;
5582
5583 if (!sock_flag(sk, SOCK_DEAD)) {
5584 sk->sk_state_change(sk);
5585 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5586 }
5587 }
5588
5589 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5590 struct tcp_fastopen_cookie *cookie)
5591 {
5592 struct tcp_sock *tp = tcp_sk(sk);
5593 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5594 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5595 bool syn_drop = false;
5596
5597 if (mss == tp->rx_opt.user_mss) {
5598 struct tcp_options_received opt;
5599
5600 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5601 tcp_clear_options(&opt);
5602 opt.user_mss = opt.mss_clamp = 0;
5603 tcp_parse_options(synack, &opt, 0, NULL);
5604 mss = opt.mss_clamp;
5605 }
5606
5607 if (!tp->syn_fastopen) {
5608 /* Ignore an unsolicited cookie */
5609 cookie->len = -1;
5610 } else if (tp->total_retrans) {
5611 /* SYN timed out and the SYN-ACK neither has a cookie nor
5612 * acknowledges data. Presumably the remote received only
5613 * the retransmitted (regular) SYNs: either the original
5614 * SYN-data or the corresponding SYN-ACK was dropped.
5615 */
5616 syn_drop = (cookie->len < 0 && data);
5617 } else if (cookie->len < 0 && !tp->syn_data) {
5618 /* We requested a cookie but didn't get it. If we did not use
5619 * the (old) exp opt format then try so next time (try_exp=1).
5620 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5621 */
5622 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5623 }
5624
5625 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5626
5627 if (data) { /* Retransmit unacked data in SYN */
5628 tcp_for_write_queue_from(data, sk) {
5629 if (data == tcp_send_head(sk) ||
5630 __tcp_retransmit_skb(sk, data, 1))
5631 break;
5632 }
5633 tcp_rearm_rto(sk);
5634 NET_INC_STATS(sock_net(sk),
5635 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5636 return true;
5637 }
5638 tp->syn_data_acked = tp->syn_data;
5639 if (tp->syn_data_acked)
5640 NET_INC_STATS(sock_net(sk),
5641 LINUX_MIB_TCPFASTOPENACTIVE);
5642
5643 tcp_fastopen_add_skb(sk, synack);
5644
5645 return false;
5646 }
5647
5648 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5649 const struct tcphdr *th)
5650 {
5651 struct inet_connection_sock *icsk = inet_csk(sk);
5652 struct tcp_sock *tp = tcp_sk(sk);
5653 struct tcp_fastopen_cookie foc = { .len = -1 };
5654 int saved_clamp = tp->rx_opt.mss_clamp;
5655
5656 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5657 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5658 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5659
5660 if (th->ack) {
5661 /* rfc793:
5662 * "If the state is SYN-SENT then
5663 * first check the ACK bit
5664 * If the ACK bit is set
5665 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5666 * a reset (unless the RST bit is set, if so drop
5667 * the segment and return)"
5668 */
5669 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5670 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5671 goto reset_and_undo;
5672
5673 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5674 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5675 tcp_time_stamp)) {
5676 NET_INC_STATS(sock_net(sk),
5677 LINUX_MIB_PAWSACTIVEREJECTED);
5678 goto reset_and_undo;
5679 }
5680
5681 /* Now ACK is acceptable.
5682 *
5683 * "If the RST bit is set
5684 * If the ACK was acceptable then signal the user "error:
5685 * connection reset", drop the segment, enter CLOSED state,
5686 * delete TCB, and return."
5687 */
5688
5689 if (th->rst) {
5690 tcp_reset(sk);
5691 goto discard;
5692 }
5693
5694 /* rfc793:
5695 * "fifth, if neither of the SYN or RST bits is set then
5696 * drop the segment and return."
5697 *
5698 * See note below!
5699 * --ANK(990513)
5700 */
5701 if (!th->syn)
5702 goto discard_and_undo;
5703
5704 /* rfc793:
5705 * "If the SYN bit is on ...
5706 * are acceptable then ...
5707 * (our SYN has been ACKed), change the connection
5708 * state to ESTABLISHED..."
5709 */
5710
5711 tcp_ecn_rcv_synack(tp, th);
5712
5713 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5714 tcp_ack(sk, skb, FLAG_SLOWPATH);
5715
5716 /* Ok.. it's good. Set up sequence numbers and
5717 * move to established.
5718 */
5719 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5720 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5721
5722 /* RFC1323: The window in SYN & SYN/ACK segments is
5723 * never scaled.
5724 */
5725 tp->snd_wnd = ntohs(th->window);
5726
5727 if (!tp->rx_opt.wscale_ok) {
5728 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5729 tp->window_clamp = min(tp->window_clamp, 65535U);
5730 }
5731
5732 if (tp->rx_opt.saw_tstamp) {
5733 tp->rx_opt.tstamp_ok = 1;
5734 tp->tcp_header_len =
5735 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5736 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5737 tcp_store_ts_recent(tp);
5738 } else {
5739 tp->tcp_header_len = sizeof(struct tcphdr);
5740 }
5741
5742 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5743 tcp_enable_fack(tp);
5744
5745 tcp_mtup_init(sk);
5746 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5747 tcp_initialize_rcv_mss(sk);
5748
5749 /* Remember, tcp_poll() does not lock socket!
5750 * Change state from SYN-SENT only after copied_seq
5751 * is initialized. */
5752 tp->copied_seq = tp->rcv_nxt;
5753
5754 smp_mb();
5755
5756 tcp_finish_connect(sk, skb);
5757
5758 if ((tp->syn_fastopen || tp->syn_data) &&
5759 tcp_rcv_fastopen_synack(sk, skb, &foc))
5760 return -1;
5761
5762 if (sk->sk_write_pending ||
5763 icsk->icsk_accept_queue.rskq_defer_accept ||
5764 icsk->icsk_ack.pingpong) {
5765 /* Save one ACK. Data will be ready after
5766 * several ticks, if write_pending is set.
5767 *
5768 * It may be deleted, but with this feature tcpdumps
5769 * look so _wonderfully_ clever, that I was not able
5770 * to stand against the temptation 8) --ANK
5771 */
5772 inet_csk_schedule_ack(sk);
5773 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5774 tcp_enter_quickack_mode(sk);
5775 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5776 TCP_DELACK_MAX, TCP_RTO_MAX);
5777
5778 discard:
5779 tcp_drop(sk, skb);
5780 return 0;
5781 } else {
5782 tcp_send_ack(sk);
5783 }
5784 return -1;
5785 }
5786
5787 /* No ACK in the segment */
5788
5789 if (th->rst) {
5790 /* rfc793:
5791 * "If the RST bit is set
5792 *
5793 * Otherwise (no ACK) drop the segment and return."
5794 */
5795
5796 goto discard_and_undo;
5797 }
5798
5799 /* PAWS check. */
5800 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5801 tcp_paws_reject(&tp->rx_opt, 0))
5802 goto discard_and_undo;
5803
5804 if (th->syn) {
5805 /* We see SYN without ACK. It is attempt of
5806 * simultaneous connect with crossed SYNs.
5807 * Particularly, it can be connect to self.
5808 */
5809 tcp_set_state(sk, TCP_SYN_RECV);
5810
5811 if (tp->rx_opt.saw_tstamp) {
5812 tp->rx_opt.tstamp_ok = 1;
5813 tcp_store_ts_recent(tp);
5814 tp->tcp_header_len =
5815 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5816 } else {
5817 tp->tcp_header_len = sizeof(struct tcphdr);
5818 }
5819
5820 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5821 tp->copied_seq = tp->rcv_nxt;
5822 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5823
5824 /* RFC1323: The window in SYN & SYN/ACK segments is
5825 * never scaled.
5826 */
5827 tp->snd_wnd = ntohs(th->window);
5828 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5829 tp->max_window = tp->snd_wnd;
5830
5831 tcp_ecn_rcv_syn(tp, th);
5832
5833 tcp_mtup_init(sk);
5834 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5835 tcp_initialize_rcv_mss(sk);
5836
5837 tcp_send_synack(sk);
5838 #if 0
5839 /* Note, we could accept data and URG from this segment.
5840 * There are no obstacles to make this (except that we must
5841 * either change tcp_recvmsg() to prevent it from returning data
5842 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5843 *
5844 * However, if we ignore data in ACKless segments sometimes,
5845 * we have no reasons to accept it sometimes.
5846 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5847 * is not flawless. So, discard packet for sanity.
5848 * Uncomment this return to process the data.
5849 */
5850 return -1;
5851 #else
5852 goto discard;
5853 #endif
5854 }
5855 /* "fifth, if neither of the SYN or RST bits is set then
5856 * drop the segment and return."
5857 */
5858
5859 discard_and_undo:
5860 tcp_clear_options(&tp->rx_opt);
5861 tp->rx_opt.mss_clamp = saved_clamp;
5862 goto discard;
5863
5864 reset_and_undo:
5865 tcp_clear_options(&tp->rx_opt);
5866 tp->rx_opt.mss_clamp = saved_clamp;
5867 return 1;
5868 }
5869
5870 /*
5871 * This function implements the receiving procedure of RFC 793 for
5872 * all states except ESTABLISHED and TIME_WAIT.
5873 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5874 * address independent.
5875 */
5876
5877 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5878 {
5879 struct tcp_sock *tp = tcp_sk(sk);
5880 struct inet_connection_sock *icsk = inet_csk(sk);
5881 const struct tcphdr *th = tcp_hdr(skb);
5882 struct request_sock *req;
5883 int queued = 0;
5884 bool acceptable;
5885
5886 switch (sk->sk_state) {
5887 case TCP_CLOSE:
5888 goto discard;
5889
5890 case TCP_LISTEN:
5891 if (th->ack)
5892 return 1;
5893
5894 if (th->rst)
5895 goto discard;
5896
5897 if (th->syn) {
5898 if (th->fin)
5899 goto discard;
5900 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5901 return 1;
5902
5903 consume_skb(skb);
5904 return 0;
5905 }
5906 goto discard;
5907
5908 case TCP_SYN_SENT:
5909 tp->rx_opt.saw_tstamp = 0;
5910 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5911 if (queued >= 0)
5912 return queued;
5913
5914 /* Do step6 onward by hand. */
5915 tcp_urg(sk, skb, th);
5916 __kfree_skb(skb);
5917 tcp_data_snd_check(sk);
5918 return 0;
5919 }
5920
5921 tp->rx_opt.saw_tstamp = 0;
5922 req = tp->fastopen_rsk;
5923 if (req) {
5924 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5925 sk->sk_state != TCP_FIN_WAIT1);
5926
5927 if (!tcp_check_req(sk, skb, req, true))
5928 goto discard;
5929 }
5930
5931 if (!th->ack && !th->rst && !th->syn)
5932 goto discard;
5933
5934 if (!tcp_validate_incoming(sk, skb, th, 0))
5935 return 0;
5936
5937 /* step 5: check the ACK field */
5938 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5939 FLAG_UPDATE_TS_RECENT) > 0;
5940
5941 switch (sk->sk_state) {
5942 case TCP_SYN_RECV:
5943 if (!acceptable)
5944 return 1;
5945
5946 if (!tp->srtt_us)
5947 tcp_synack_rtt_meas(sk, req);
5948
5949 /* Once we leave TCP_SYN_RECV, we no longer need req
5950 * so release it.
5951 */
5952 if (req) {
5953 tp->total_retrans = req->num_retrans;
5954 reqsk_fastopen_remove(sk, req, false);
5955 } else {
5956 /* Make sure socket is routed, for correct metrics. */
5957 icsk->icsk_af_ops->rebuild_header(sk);
5958 tcp_init_congestion_control(sk);
5959
5960 tcp_mtup_init(sk);
5961 tp->copied_seq = tp->rcv_nxt;
5962 tcp_init_buffer_space(sk);
5963 }
5964 smp_mb();
5965 tcp_set_state(sk, TCP_ESTABLISHED);
5966 sk->sk_state_change(sk);
5967
5968 /* Note, that this wakeup is only for marginal crossed SYN case.
5969 * Passively open sockets are not waked up, because
5970 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5971 */
5972 if (sk->sk_socket)
5973 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5974
5975 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5976 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5977 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5978
5979 if (tp->rx_opt.tstamp_ok)
5980 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5981
5982 if (req) {
5983 /* Re-arm the timer because data may have been sent out.
5984 * This is similar to the regular data transmission case
5985 * when new data has just been ack'ed.
5986 *
5987 * (TFO) - we could try to be more aggressive and
5988 * retransmitting any data sooner based on when they
5989 * are sent out.
5990 */
5991 tcp_rearm_rto(sk);
5992 } else
5993 tcp_init_metrics(sk);
5994
5995 tcp_update_pacing_rate(sk);
5996
5997 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5998 tp->lsndtime = tcp_time_stamp;
5999
6000 tcp_initialize_rcv_mss(sk);
6001 tcp_fast_path_on(tp);
6002 break;
6003
6004 case TCP_FIN_WAIT1: {
6005 struct dst_entry *dst;
6006 int tmo;
6007
6008 /* If we enter the TCP_FIN_WAIT1 state and we are a
6009 * Fast Open socket and this is the first acceptable
6010 * ACK we have received, this would have acknowledged
6011 * our SYNACK so stop the SYNACK timer.
6012 */
6013 if (req) {
6014 /* Return RST if ack_seq is invalid.
6015 * Note that RFC793 only says to generate a
6016 * DUPACK for it but for TCP Fast Open it seems
6017 * better to treat this case like TCP_SYN_RECV
6018 * above.
6019 */
6020 if (!acceptable)
6021 return 1;
6022 /* We no longer need the request sock. */
6023 reqsk_fastopen_remove(sk, req, false);
6024 tcp_rearm_rto(sk);
6025 }
6026 if (tp->snd_una != tp->write_seq)
6027 break;
6028
6029 tcp_set_state(sk, TCP_FIN_WAIT2);
6030 sk->sk_shutdown |= SEND_SHUTDOWN;
6031
6032 dst = __sk_dst_get(sk);
6033 if (dst)
6034 dst_confirm(dst);
6035
6036 if (!sock_flag(sk, SOCK_DEAD)) {
6037 /* Wake up lingering close() */
6038 sk->sk_state_change(sk);
6039 break;
6040 }
6041
6042 if (tp->linger2 < 0 ||
6043 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6044 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6045 tcp_done(sk);
6046 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6047 return 1;
6048 }
6049
6050 tmo = tcp_fin_time(sk);
6051 if (tmo > TCP_TIMEWAIT_LEN) {
6052 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6053 } else if (th->fin || sock_owned_by_user(sk)) {
6054 /* Bad case. We could lose such FIN otherwise.
6055 * It is not a big problem, but it looks confusing
6056 * and not so rare event. We still can lose it now,
6057 * if it spins in bh_lock_sock(), but it is really
6058 * marginal case.
6059 */
6060 inet_csk_reset_keepalive_timer(sk, tmo);
6061 } else {
6062 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6063 goto discard;
6064 }
6065 break;
6066 }
6067
6068 case TCP_CLOSING:
6069 if (tp->snd_una == tp->write_seq) {
6070 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6071 goto discard;
6072 }
6073 break;
6074
6075 case TCP_LAST_ACK:
6076 if (tp->snd_una == tp->write_seq) {
6077 tcp_update_metrics(sk);
6078 tcp_done(sk);
6079 goto discard;
6080 }
6081 break;
6082 }
6083
6084 /* step 6: check the URG bit */
6085 tcp_urg(sk, skb, th);
6086
6087 /* step 7: process the segment text */
6088 switch (sk->sk_state) {
6089 case TCP_CLOSE_WAIT:
6090 case TCP_CLOSING:
6091 case TCP_LAST_ACK:
6092 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6093 break;
6094 case TCP_FIN_WAIT1:
6095 case TCP_FIN_WAIT2:
6096 /* RFC 793 says to queue data in these states,
6097 * RFC 1122 says we MUST send a reset.
6098 * BSD 4.4 also does reset.
6099 */
6100 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6101 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6102 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 tcp_reset(sk);
6105 return 1;
6106 }
6107 }
6108 /* Fall through */
6109 case TCP_ESTABLISHED:
6110 tcp_data_queue(sk, skb);
6111 queued = 1;
6112 break;
6113 }
6114
6115 /* tcp_data could move socket to TIME-WAIT */
6116 if (sk->sk_state != TCP_CLOSE) {
6117 tcp_data_snd_check(sk);
6118 tcp_ack_snd_check(sk);
6119 }
6120
6121 if (!queued) {
6122 discard:
6123 tcp_drop(sk, skb);
6124 }
6125 return 0;
6126 }
6127 EXPORT_SYMBOL(tcp_rcv_state_process);
6128
6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6130 {
6131 struct inet_request_sock *ireq = inet_rsk(req);
6132
6133 if (family == AF_INET)
6134 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6135 &ireq->ir_rmt_addr, port);
6136 #if IS_ENABLED(CONFIG_IPV6)
6137 else if (family == AF_INET6)
6138 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6139 &ireq->ir_v6_rmt_addr, port);
6140 #endif
6141 }
6142
6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6144 *
6145 * If we receive a SYN packet with these bits set, it means a
6146 * network is playing bad games with TOS bits. In order to
6147 * avoid possible false congestion notifications, we disable
6148 * TCP ECN negotiation.
6149 *
6150 * Exception: tcp_ca wants ECN. This is required for DCTCP
6151 * congestion control: Linux DCTCP asserts ECT on all packets,
6152 * including SYN, which is most optimal solution; however,
6153 * others, such as FreeBSD do not.
6154 */
6155 static void tcp_ecn_create_request(struct request_sock *req,
6156 const struct sk_buff *skb,
6157 const struct sock *listen_sk,
6158 const struct dst_entry *dst)
6159 {
6160 const struct tcphdr *th = tcp_hdr(skb);
6161 const struct net *net = sock_net(listen_sk);
6162 bool th_ecn = th->ece && th->cwr;
6163 bool ect, ecn_ok;
6164 u32 ecn_ok_dst;
6165
6166 if (!th_ecn)
6167 return;
6168
6169 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6170 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6171 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6172
6173 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6174 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6175 inet_rsk(req)->ecn_ok = 1;
6176 }
6177
6178 static void tcp_openreq_init(struct request_sock *req,
6179 const struct tcp_options_received *rx_opt,
6180 struct sk_buff *skb, const struct sock *sk)
6181 {
6182 struct inet_request_sock *ireq = inet_rsk(req);
6183
6184 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6185 req->cookie_ts = 0;
6186 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6187 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6188 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6189 tcp_rsk(req)->last_oow_ack_time = 0;
6190 req->mss = rx_opt->mss_clamp;
6191 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6192 ireq->tstamp_ok = rx_opt->tstamp_ok;
6193 ireq->sack_ok = rx_opt->sack_ok;
6194 ireq->snd_wscale = rx_opt->snd_wscale;
6195 ireq->wscale_ok = rx_opt->wscale_ok;
6196 ireq->acked = 0;
6197 ireq->ecn_ok = 0;
6198 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6199 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6200 ireq->ir_mark = inet_request_mark(sk, skb);
6201 }
6202
6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6204 struct sock *sk_listener,
6205 bool attach_listener)
6206 {
6207 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6208 attach_listener);
6209
6210 if (req) {
6211 struct inet_request_sock *ireq = inet_rsk(req);
6212
6213 kmemcheck_annotate_bitfield(ireq, flags);
6214 ireq->opt = NULL;
6215 #if IS_ENABLED(CONFIG_IPV6)
6216 ireq->pktopts = NULL;
6217 #endif
6218 atomic64_set(&ireq->ir_cookie, 0);
6219 ireq->ireq_state = TCP_NEW_SYN_RECV;
6220 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6221 ireq->ireq_family = sk_listener->sk_family;
6222 }
6223
6224 return req;
6225 }
6226 EXPORT_SYMBOL(inet_reqsk_alloc);
6227
6228 /*
6229 * Return true if a syncookie should be sent
6230 */
6231 static bool tcp_syn_flood_action(const struct sock *sk,
6232 const struct sk_buff *skb,
6233 const char *proto)
6234 {
6235 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6236 const char *msg = "Dropping request";
6237 bool want_cookie = false;
6238 struct net *net = sock_net(sk);
6239
6240 #ifdef CONFIG_SYN_COOKIES
6241 if (net->ipv4.sysctl_tcp_syncookies) {
6242 msg = "Sending cookies";
6243 want_cookie = true;
6244 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6245 } else
6246 #endif
6247 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6248
6249 if (!queue->synflood_warned &&
6250 net->ipv4.sysctl_tcp_syncookies != 2 &&
6251 xchg(&queue->synflood_warned, 1) == 0)
6252 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6253 proto, ntohs(tcp_hdr(skb)->dest), msg);
6254
6255 return want_cookie;
6256 }
6257
6258 static void tcp_reqsk_record_syn(const struct sock *sk,
6259 struct request_sock *req,
6260 const struct sk_buff *skb)
6261 {
6262 if (tcp_sk(sk)->save_syn) {
6263 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6264 u32 *copy;
6265
6266 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6267 if (copy) {
6268 copy[0] = len;
6269 memcpy(&copy[1], skb_network_header(skb), len);
6270 req->saved_syn = copy;
6271 }
6272 }
6273 }
6274
6275 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6276 const struct tcp_request_sock_ops *af_ops,
6277 struct sock *sk, struct sk_buff *skb)
6278 {
6279 struct tcp_fastopen_cookie foc = { .len = -1 };
6280 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6281 struct tcp_options_received tmp_opt;
6282 struct tcp_sock *tp = tcp_sk(sk);
6283 struct net *net = sock_net(sk);
6284 struct sock *fastopen_sk = NULL;
6285 struct dst_entry *dst = NULL;
6286 struct request_sock *req;
6287 bool want_cookie = false;
6288 struct flowi fl;
6289
6290 /* TW buckets are converted to open requests without
6291 * limitations, they conserve resources and peer is
6292 * evidently real one.
6293 */
6294 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6295 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6296 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6297 if (!want_cookie)
6298 goto drop;
6299 }
6300
6301
6302 /* Accept backlog is full. If we have already queued enough
6303 * of warm entries in syn queue, drop request. It is better than
6304 * clogging syn queue with openreqs with exponentially increasing
6305 * timeout.
6306 */
6307 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6308 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6309 goto drop;
6310 }
6311
6312 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6313 if (!req)
6314 goto drop;
6315
6316 tcp_rsk(req)->af_specific = af_ops;
6317
6318 tcp_clear_options(&tmp_opt);
6319 tmp_opt.mss_clamp = af_ops->mss_clamp;
6320 tmp_opt.user_mss = tp->rx_opt.user_mss;
6321 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6322
6323 if (want_cookie && !tmp_opt.saw_tstamp)
6324 tcp_clear_options(&tmp_opt);
6325
6326 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6327 tcp_openreq_init(req, &tmp_opt, skb, sk);
6328
6329 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6330 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6331
6332 af_ops->init_req(req, sk, skb);
6333
6334 if (security_inet_conn_request(sk, skb, req))
6335 goto drop_and_free;
6336
6337 if (!want_cookie && !isn) {
6338 /* VJ's idea. We save last timestamp seen
6339 * from the destination in peer table, when entering
6340 * state TIME-WAIT, and check against it before
6341 * accepting new connection request.
6342 *
6343 * If "isn" is not zero, this request hit alive
6344 * timewait bucket, so that all the necessary checks
6345 * are made in the function processing timewait state.
6346 */
6347 if (tcp_death_row.sysctl_tw_recycle) {
6348 bool strict;
6349
6350 dst = af_ops->route_req(sk, &fl, req, &strict);
6351
6352 if (dst && strict &&
6353 !tcp_peer_is_proven(req, dst, true,
6354 tmp_opt.saw_tstamp)) {
6355 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6356 goto drop_and_release;
6357 }
6358 }
6359 /* Kill the following clause, if you dislike this way. */
6360 else if (!net->ipv4.sysctl_tcp_syncookies &&
6361 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6362 (sysctl_max_syn_backlog >> 2)) &&
6363 !tcp_peer_is_proven(req, dst, false,
6364 tmp_opt.saw_tstamp)) {
6365 /* Without syncookies last quarter of
6366 * backlog is filled with destinations,
6367 * proven to be alive.
6368 * It means that we continue to communicate
6369 * to destinations, already remembered
6370 * to the moment of synflood.
6371 */
6372 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6373 rsk_ops->family);
6374 goto drop_and_release;
6375 }
6376
6377 isn = af_ops->init_seq(skb);
6378 }
6379 if (!dst) {
6380 dst = af_ops->route_req(sk, &fl, req, NULL);
6381 if (!dst)
6382 goto drop_and_free;
6383 }
6384
6385 tcp_ecn_create_request(req, skb, sk, dst);
6386
6387 if (want_cookie) {
6388 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6389 req->cookie_ts = tmp_opt.tstamp_ok;
6390 if (!tmp_opt.tstamp_ok)
6391 inet_rsk(req)->ecn_ok = 0;
6392 }
6393
6394 tcp_rsk(req)->snt_isn = isn;
6395 tcp_rsk(req)->txhash = net_tx_rndhash();
6396 tcp_openreq_init_rwin(req, sk, dst);
6397 if (!want_cookie) {
6398 tcp_reqsk_record_syn(sk, req, skb);
6399 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6400 }
6401 if (fastopen_sk) {
6402 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6403 &foc, TCP_SYNACK_FASTOPEN);
6404 /* Add the child socket directly into the accept queue */
6405 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6406 sk->sk_data_ready(sk);
6407 bh_unlock_sock(fastopen_sk);
6408 sock_put(fastopen_sk);
6409 } else {
6410 tcp_rsk(req)->tfo_listener = false;
6411 if (!want_cookie)
6412 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6413 af_ops->send_synack(sk, dst, &fl, req, &foc,
6414 !want_cookie ? TCP_SYNACK_NORMAL :
6415 TCP_SYNACK_COOKIE);
6416 if (want_cookie) {
6417 reqsk_free(req);
6418 return 0;
6419 }
6420 }
6421 reqsk_put(req);
6422 return 0;
6423
6424 drop_and_release:
6425 dst_release(dst);
6426 drop_and_free:
6427 reqsk_free(req);
6428 drop:
6429 tcp_listendrop(sk);
6430 return 0;
6431 }
6432 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.166915 seconds and 5 git commands to generate.