Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
130
131 /* Adapt the MSS value used to make delayed ack decision to the
132 * real world.
133 */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 struct inet_connection_sock *icsk = inet_csk(sk);
137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 unsigned int len;
139
140 icsk->icsk_ack.last_seg_size = 0;
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
145 len = skb_shinfo(skb)->gso_size ? : skb->len;
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
154 len += skb->data - skb_transport_header(skb);
155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
169 if (len == lss) {
170 icsk->icsk_ack.rcv_mss = len;
171 return;
172 }
173 }
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 }
178 }
179
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184
185 if (quickacks == 0)
186 quickacks = 2;
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198
199 /* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
201 */
202
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 const struct inet_connection_sock *icsk = inet_csk(sk);
206 const struct dst_entry *dst = __sk_dst_get(sk);
207
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 if (tp->ecn_flags & TCP_ECN_OK)
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 case INET_ECN_NOT_ECT:
233 /* Funny extension: if ECT is not set on a segment,
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
236 */
237 if (tp->ecn_flags & TCP_ECN_SEEN)
238 tcp_enter_quickack_mode((struct sock *)tp);
239 break;
240 case INET_ECN_CE:
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 }
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
251 default:
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 tp->ecn_flags |= TCP_ECN_SEEN;
255 break;
256 }
257 }
258
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
263 }
264
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 return true;
281 return false;
282 }
283
284 /* Buffer size and advertised window tuning.
285 *
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 */
288
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 const struct tcp_sock *tp = tcp_sk(sk);
292 int sndmem, per_mss;
293 u32 nr_segs;
294
295 /* Worst case is non GSO/TSO : each frame consumes one skb
296 * and skb->head is kmalloced using power of two area of memory
297 */
298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 MAX_TCP_HEADER +
300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301
302 per_mss = roundup_pow_of_two(per_mss) +
303 SKB_DATA_ALIGN(sizeof(struct sk_buff));
304
305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307
308 /* Fast Recovery (RFC 5681 3.2) :
309 * Cubic needs 1.7 factor, rounded to 2 to include
310 * extra cushion (application might react slowly to POLLOUT)
311 */
312 sndmem = 2 * nr_segs * per_mss;
313
314 if (sk->sk_sndbuf < sndmem)
315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319 *
320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
321 * forward and advertised in receiver window (tp->rcv_wnd) and
322 * "application buffer", required to isolate scheduling/application
323 * latencies from network.
324 * window_clamp is maximal advertised window. It can be less than
325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
326 * is reserved for "application" buffer. The less window_clamp is
327 * the smoother our behaviour from viewpoint of network, but the lower
328 * throughput and the higher sensitivity of the connection to losses. 8)
329 *
330 * rcv_ssthresh is more strict window_clamp used at "slow start"
331 * phase to predict further behaviour of this connection.
332 * It is used for two goals:
333 * - to enforce header prediction at sender, even when application
334 * requires some significant "application buffer". It is check #1.
335 * - to prevent pruning of receive queue because of misprediction
336 * of receiver window. Check #2.
337 *
338 * The scheme does not work when sender sends good segments opening
339 * window and then starts to feed us spaghetti. But it should work
340 * in common situations. Otherwise, we have to rely on queue collapsing.
341 */
342
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 struct tcp_sock *tp = tcp_sk(sk);
347 /* Optimize this! */
348 int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350
351 while (tp->rcv_ssthresh <= window) {
352 if (truesize <= skb->len)
353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354
355 truesize >>= 1;
356 window >>= 1;
357 }
358 return 0;
359 }
360
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 struct tcp_sock *tp = tcp_sk(sk);
364
365 /* Check #1 */
366 if (tp->rcv_ssthresh < tp->window_clamp &&
367 (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 !tcp_under_memory_pressure(sk)) {
369 int incr;
370
371 /* Check #2. Increase window, if skb with such overhead
372 * will fit to rcvbuf in future.
373 */
374 if (tcp_win_from_space(skb->truesize) <= skb->len)
375 incr = 2 * tp->advmss;
376 else
377 incr = __tcp_grow_window(sk, skb);
378
379 if (incr) {
380 incr = max_t(int, incr, 2 * skb->len);
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 tp->window_clamp);
383 inet_csk(sk)->icsk_ack.quick |= 1;
384 }
385 }
386 }
387
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 u32 mss = tcp_sk(sk)->advmss;
392 int rcvmem;
393
394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 tcp_default_init_rwnd(mss);
396
397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 * Allow enough cushion so that sender is not limited by our window
399 */
400 if (sysctl_tcp_moderate_rcvbuf)
401 rcvmem <<= 2;
402
403 if (sk->sk_rcvbuf < rcvmem)
404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406
407 /* 4. Try to fixup all. It is made immediately after connection enters
408 * established state.
409 */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 int maxwin;
414
415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 tcp_fixup_rcvbuf(sk);
417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 tcp_sndbuf_expand(sk);
419
420 tp->rcvq_space.space = tp->rcv_wnd;
421 tp->rcvq_space.time = tcp_time_stamp;
422 tp->rcvq_space.seq = tp->copied_seq;
423
424 maxwin = tcp_full_space(sk);
425
426 if (tp->window_clamp >= maxwin) {
427 tp->window_clamp = maxwin;
428
429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 tp->window_clamp = max(maxwin -
431 (maxwin >> sysctl_tcp_app_win),
432 4 * tp->advmss);
433 }
434
435 /* Force reservation of one segment. */
436 if (sysctl_tcp_app_win &&
437 tp->window_clamp > 2 * tp->advmss &&
438 tp->window_clamp + tp->advmss > maxwin)
439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440
441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 struct tcp_sock *tp = tcp_sk(sk);
449 struct inet_connection_sock *icsk = inet_csk(sk);
450
451 icsk->icsk_ack.quick = 0;
452
453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 !tcp_under_memory_pressure(sk) &&
456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 sysctl_tcp_rmem[2]);
459 }
460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463
464 /* Initialize RCV_MSS value.
465 * RCV_MSS is an our guess about MSS used by the peer.
466 * We haven't any direct information about the MSS.
467 * It's better to underestimate the RCV_MSS rather than overestimate.
468 * Overestimations make us ACKing less frequently than needed.
469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470 */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 const struct tcp_sock *tp = tcp_sk(sk);
474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475
476 hint = min(hint, tp->rcv_wnd / 2);
477 hint = min(hint, TCP_MSS_DEFAULT);
478 hint = max(hint, TCP_MIN_MSS);
479
480 inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483
484 /* Receiver "autotuning" code.
485 *
486 * The algorithm for RTT estimation w/o timestamps is based on
487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
489 *
490 * More detail on this code can be found at
491 * <http://staff.psc.edu/jheffner/>,
492 * though this reference is out of date. A new paper
493 * is pending.
494 */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 u32 new_sample = tp->rcv_rtt_est.rtt;
498 long m = sample;
499
500 if (m == 0)
501 m = 1;
502
503 if (new_sample != 0) {
504 /* If we sample in larger samples in the non-timestamp
505 * case, we could grossly overestimate the RTT especially
506 * with chatty applications or bulk transfer apps which
507 * are stalled on filesystem I/O.
508 *
509 * Also, since we are only going for a minimum in the
510 * non-timestamp case, we do not smooth things out
511 * else with timestamps disabled convergence takes too
512 * long.
513 */
514 if (!win_dep) {
515 m -= (new_sample >> 3);
516 new_sample += m;
517 } else {
518 m <<= 3;
519 if (m < new_sample)
520 new_sample = m;
521 }
522 } else {
523 /* No previous measure. */
524 new_sample = m << 3;
525 }
526
527 if (tp->rcv_rtt_est.rtt != new_sample)
528 tp->rcv_rtt_est.rtt = new_sample;
529 }
530
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 if (tp->rcv_rtt_est.time == 0)
534 goto new_measure;
535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 return;
537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538
539 new_measure:
540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 const struct sk_buff *skb)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 if (tp->rx_opt.rcv_tsecr &&
549 (TCP_SKB_CB(skb)->end_seq -
550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553
554 /*
555 * This function should be called every time data is copied to user space.
556 * It calculates the appropriate TCP receive buffer space.
557 */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 struct tcp_sock *tp = tcp_sk(sk);
561 int time;
562 int copied;
563
564 time = tcp_time_stamp - tp->rcvq_space.time;
565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 return;
567
568 /* Number of bytes copied to user in last RTT */
569 copied = tp->copied_seq - tp->rcvq_space.seq;
570 if (copied <= tp->rcvq_space.space)
571 goto new_measure;
572
573 /* A bit of theory :
574 * copied = bytes received in previous RTT, our base window
575 * To cope with packet losses, we need a 2x factor
576 * To cope with slow start, and sender growing its cwin by 100 %
577 * every RTT, we need a 4x factor, because the ACK we are sending
578 * now is for the next RTT, not the current one :
579 * <prev RTT . ><current RTT .. ><next RTT .... >
580 */
581
582 if (sysctl_tcp_moderate_rcvbuf &&
583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 int rcvwin, rcvmem, rcvbuf;
585
586 /* minimal window to cope with packet losses, assuming
587 * steady state. Add some cushion because of small variations.
588 */
589 rcvwin = (copied << 1) + 16 * tp->advmss;
590
591 /* If rate increased by 25%,
592 * assume slow start, rcvwin = 3 * copied
593 * If rate increased by 50%,
594 * assume sender can use 2x growth, rcvwin = 4 * copied
595 */
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 rcvwin <<= 1;
601 else
602 rcvwin += (rcvwin >> 1);
603 }
604
605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 while (tcp_win_from_space(rcvmem) < tp->advmss)
607 rcvmem += 128;
608
609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 if (rcvbuf > sk->sk_rcvbuf) {
611 sk->sk_rcvbuf = rcvbuf;
612
613 /* Make the window clamp follow along. */
614 tp->window_clamp = rcvwin;
615 }
616 }
617 tp->rcvq_space.space = copied;
618
619 new_measure:
620 tp->rcvq_space.seq = tp->copied_seq;
621 tp->rcvq_space.time = tcp_time_stamp;
622 }
623
624 /* There is something which you must keep in mind when you analyze the
625 * behavior of the tp->ato delayed ack timeout interval. When a
626 * connection starts up, we want to ack as quickly as possible. The
627 * problem is that "good" TCP's do slow start at the beginning of data
628 * transmission. The means that until we send the first few ACK's the
629 * sender will sit on his end and only queue most of his data, because
630 * he can only send snd_cwnd unacked packets at any given time. For
631 * each ACK we send, he increments snd_cwnd and transmits more of his
632 * queue. -DaveM
633 */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 struct tcp_sock *tp = tcp_sk(sk);
637 struct inet_connection_sock *icsk = inet_csk(sk);
638 u32 now;
639
640 inet_csk_schedule_ack(sk);
641
642 tcp_measure_rcv_mss(sk, skb);
643
644 tcp_rcv_rtt_measure(tp);
645
646 now = tcp_time_stamp;
647
648 if (!icsk->icsk_ack.ato) {
649 /* The _first_ data packet received, initialize
650 * delayed ACK engine.
651 */
652 tcp_incr_quickack(sk);
653 icsk->icsk_ack.ato = TCP_ATO_MIN;
654 } else {
655 int m = now - icsk->icsk_ack.lrcvtime;
656
657 if (m <= TCP_ATO_MIN / 2) {
658 /* The fastest case is the first. */
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 } else if (m < icsk->icsk_ack.ato) {
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 icsk->icsk_ack.ato = icsk->icsk_rto;
664 } else if (m > icsk->icsk_rto) {
665 /* Too long gap. Apparently sender failed to
666 * restart window, so that we send ACKs quickly.
667 */
668 tcp_incr_quickack(sk);
669 sk_mem_reclaim(sk);
670 }
671 }
672 icsk->icsk_ack.lrcvtime = now;
673
674 tcp_ecn_check_ce(tp, skb);
675
676 if (skb->len >= 128)
677 tcp_grow_window(sk, skb);
678 }
679
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681 * routine either comes from timestamps, or from segments that were
682 * known _not_ to have been retransmitted [see Karn/Partridge
683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684 * piece by Van Jacobson.
685 * NOTE: the next three routines used to be one big routine.
686 * To save cycles in the RFC 1323 implementation it was better to break
687 * it up into three procedures. -- erics
688 */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 struct tcp_sock *tp = tcp_sk(sk);
692 long m = mrtt_us; /* RTT */
693 u32 srtt = tp->srtt_us;
694
695 /* The following amusing code comes from Jacobson's
696 * article in SIGCOMM '88. Note that rtt and mdev
697 * are scaled versions of rtt and mean deviation.
698 * This is designed to be as fast as possible
699 * m stands for "measurement".
700 *
701 * On a 1990 paper the rto value is changed to:
702 * RTO = rtt + 4 * mdev
703 *
704 * Funny. This algorithm seems to be very broken.
705 * These formulae increase RTO, when it should be decreased, increase
706 * too slowly, when it should be increased quickly, decrease too quickly
707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 * does not matter how to _calculate_ it. Seems, it was trap
709 * that VJ failed to avoid. 8)
710 */
711 if (srtt != 0) {
712 m -= (srtt >> 3); /* m is now error in rtt est */
713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
714 if (m < 0) {
715 m = -m; /* m is now abs(error) */
716 m -= (tp->mdev_us >> 2); /* similar update on mdev */
717 /* This is similar to one of Eifel findings.
718 * Eifel blocks mdev updates when rtt decreases.
719 * This solution is a bit different: we use finer gain
720 * for mdev in this case (alpha*beta).
721 * Like Eifel it also prevents growth of rto,
722 * but also it limits too fast rto decreases,
723 * happening in pure Eifel.
724 */
725 if (m > 0)
726 m >>= 3;
727 } else {
728 m -= (tp->mdev_us >> 2); /* similar update on mdev */
729 }
730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
731 if (tp->mdev_us > tp->mdev_max_us) {
732 tp->mdev_max_us = tp->mdev_us;
733 if (tp->mdev_max_us > tp->rttvar_us)
734 tp->rttvar_us = tp->mdev_max_us;
735 }
736 if (after(tp->snd_una, tp->rtt_seq)) {
737 if (tp->mdev_max_us < tp->rttvar_us)
738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 tp->rtt_seq = tp->snd_nxt;
740 tp->mdev_max_us = tcp_rto_min_us(sk);
741 }
742 } else {
743 /* no previous measure. */
744 srtt = m << 3; /* take the measured time to be rtt */
745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 tp->mdev_max_us = tp->rttvar_us;
748 tp->rtt_seq = tp->snd_nxt;
749 }
750 tp->srtt_us = max(1U, srtt);
751 }
752
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754 * Note: TCP stack does not yet implement pacing.
755 * FQ packet scheduler can be used to implement cheap but effective
756 * TCP pacing, to smooth the burst on large writes when packets
757 * in flight is significantly lower than cwnd (or rwin)
758 */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 const struct tcp_sock *tp = tcp_sk(sk);
765 u64 rate;
766
767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769
770 /* current rate is (cwnd * mss) / srtt
771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 *
774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 * end of slow start and should slow down.
777 */
778 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 rate *= sysctl_tcp_pacing_ss_ratio;
780 else
781 rate *= sysctl_tcp_pacing_ca_ratio;
782
783 rate *= max(tp->snd_cwnd, tp->packets_out);
784
785 if (likely(tp->srtt_us))
786 do_div(rate, tp->srtt_us);
787
788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 * without any lock. We want to make sure compiler wont store
790 * intermediate values in this location.
791 */
792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 sk->sk_max_pacing_rate);
794 }
795
796 /* Calculate rto without backoff. This is the second half of Van Jacobson's
797 * routine referred to above.
798 */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 const struct tcp_sock *tp = tcp_sk(sk);
802 /* Old crap is replaced with new one. 8)
803 *
804 * More seriously:
805 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 * It cannot be less due to utterly erratic ACK generation made
807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 * to do with delayed acks, because at cwnd>2 true delack timeout
809 * is invisible. Actually, Linux-2.4 also generates erratic
810 * ACKs in some circumstances.
811 */
812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813
814 /* 2. Fixups made earlier cannot be right.
815 * If we do not estimate RTO correctly without them,
816 * all the algo is pure shit and should be replaced
817 * with correct one. It is exactly, which we pretend to do.
818 */
819
820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 * guarantees that rto is higher.
822 */
823 tcp_bound_rto(sk);
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /*
836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
837 * disables it when reordering is detected
838 */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 /* RFC3517 uses different metric in lost marker => reset on change */
842 if (tcp_is_fack(tp))
843 tp->lost_skb_hint = NULL;
844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
855 {
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 int mib_idx;
859
860 tp->reordering = min(sysctl_tcp_max_reordering, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 mib_idx = LINUX_MIB_TCPTSREORDER;
865 else if (tcp_is_reno(tp))
866 mib_idx = LINUX_MIB_TCPRENOREORDER;
867 else if (tcp_is_fack(tp))
868 mib_idx = LINUX_MIB_TCPFACKREORDER;
869 else
870 mib_idx = LINUX_MIB_TCPSACKREORDER;
871
872 NET_INC_STATS(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 tp->reordering,
877 tp->fackets_out,
878 tp->sacked_out,
879 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 tcp_disable_fack(tp);
882 }
883
884 if (metric > 0)
885 tcp_disable_early_retrans(tp);
886 tp->rack.reord = 1;
887 }
888
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 if (!tp->retransmit_skb_hint ||
893 before(TCP_SKB_CB(skb)->seq,
894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 tp->retransmit_skb_hint = skb;
896
897 if (!tp->lost_out ||
898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 tcp_verify_retransmit_hint(tp, skb);
906
907 tp->lost_out += tcp_skb_pcount(skb);
908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 }
910 }
911
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 tcp_verify_retransmit_hint(tp, skb);
915
916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 tp->lost_out += tcp_skb_pcount(skb);
918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 }
920 }
921
922 /* This procedure tags the retransmission queue when SACKs arrive.
923 *
924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925 * Packets in queue with these bits set are counted in variables
926 * sacked_out, retrans_out and lost_out, correspondingly.
927 *
928 * Valid combinations are:
929 * Tag InFlight Description
930 * 0 1 - orig segment is in flight.
931 * S 0 - nothing flies, orig reached receiver.
932 * L 0 - nothing flies, orig lost by net.
933 * R 2 - both orig and retransmit are in flight.
934 * L|R 1 - orig is lost, retransmit is in flight.
935 * S|R 1 - orig reached receiver, retrans is still in flight.
936 * (L|S|R is logically valid, it could occur when L|R is sacked,
937 * but it is equivalent to plain S and code short-curcuits it to S.
938 * L|S is logically invalid, it would mean -1 packet in flight 8))
939 *
940 * These 6 states form finite state machine, controlled by the following events:
941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943 * 3. Loss detection event of two flavors:
944 * A. Scoreboard estimator decided the packet is lost.
945 * A'. Reno "three dupacks" marks head of queue lost.
946 * A''. Its FACK modification, head until snd.fack is lost.
947 * B. SACK arrives sacking SND.NXT at the moment, when the
948 * segment was retransmitted.
949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
950 *
951 * It is pleasant to note, that state diagram turns out to be commutative,
952 * so that we are allowed not to be bothered by order of our actions,
953 * when multiple events arrive simultaneously. (see the function below).
954 *
955 * Reordering detection.
956 * --------------------
957 * Reordering metric is maximal distance, which a packet can be displaced
958 * in packet stream. With SACKs we can estimate it:
959 *
960 * 1. SACK fills old hole and the corresponding segment was not
961 * ever retransmitted -> reordering. Alas, we cannot use it
962 * when segment was retransmitted.
963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
964 * for retransmitted and already SACKed segment -> reordering..
965 * Both of these heuristics are not used in Loss state, when we cannot
966 * account for retransmits accurately.
967 *
968 * SACK block validation.
969 * ----------------------
970 *
971 * SACK block range validation checks that the received SACK block fits to
972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973 * Note that SND.UNA is not included to the range though being valid because
974 * it means that the receiver is rather inconsistent with itself reporting
975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
976 * perfectly valid, however, in light of RFC2018 which explicitly states
977 * that "SACK block MUST reflect the newest segment. Even if the newest
978 * segment is going to be discarded ...", not that it looks very clever
979 * in case of head skb. Due to potentional receiver driven attacks, we
980 * choose to avoid immediate execution of a walk in write queue due to
981 * reneging and defer head skb's loss recovery to standard loss recovery
982 * procedure that will eventually trigger (nothing forbids us doing this).
983 *
984 * Implements also blockage to start_seq wrap-around. Problem lies in the
985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986 * there's no guarantee that it will be before snd_nxt (n). The problem
987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * wrap (s_w):
989 *
990 * <- outs wnd -> <- wrapzone ->
991 * u e n u_w e_w s n_w
992 * | | | | | | |
993 * |<------------+------+----- TCP seqno space --------------+---------->|
994 * ...-- <2^31 ->| |<--------...
995 * ...---- >2^31 ------>| |<--------...
996 *
997 * Current code wouldn't be vulnerable but it's better still to discard such
998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 u32 start_seq, u32 end_seq)
1018 {
1019 /* Too far in future, or reversed (interpretation is ambiguous) */
1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 return false;
1022
1023 /* Nasty start_seq wrap-around check (see comments above) */
1024 if (!before(start_seq, tp->snd_nxt))
1025 return false;
1026
1027 /* In outstanding window? ...This is valid exit for D-SACKs too.
1028 * start_seq == snd_una is non-sensical (see comments above)
1029 */
1030 if (after(start_seq, tp->snd_una))
1031 return true;
1032
1033 if (!is_dsack || !tp->undo_marker)
1034 return false;
1035
1036 /* ...Then it's D-SACK, and must reside below snd_una completely */
1037 if (after(end_seq, tp->snd_una))
1038 return false;
1039
1040 if (!before(start_seq, tp->undo_marker))
1041 return true;
1042
1043 /* Too old */
1044 if (!after(end_seq, tp->undo_marker))
1045 return false;
1046
1047 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 * start_seq < undo_marker and end_seq >= undo_marker.
1049 */
1050 return !before(start_seq, end_seq - tp->max_window);
1051 }
1052
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 struct tcp_sack_block_wire *sp, int num_sacks,
1055 u32 prior_snd_una)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 bool dup_sack = false;
1061
1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 dup_sack = true;
1064 tcp_dsack_seen(tp);
1065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 } else if (num_sacks > 1) {
1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070 if (!after(end_seq_0, end_seq_1) &&
1071 !before(start_seq_0, start_seq_1)) {
1072 dup_sack = true;
1073 tcp_dsack_seen(tp);
1074 NET_INC_STATS(sock_net(sk),
1075 LINUX_MIB_TCPDSACKOFORECV);
1076 }
1077 }
1078
1079 /* D-SACK for already forgotten data... Do dumb counting. */
1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 !after(end_seq_0, prior_snd_una) &&
1082 after(end_seq_0, tp->undo_marker))
1083 tp->undo_retrans--;
1084
1085 return dup_sack;
1086 }
1087
1088 struct tcp_sacktag_state {
1089 int reord;
1090 int fack_count;
1091 /* Timestamps for earliest and latest never-retransmitted segment
1092 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 * but congestion control should still get an accurate delay signal.
1094 */
1095 struct skb_mstamp first_sackt;
1096 struct skb_mstamp last_sackt;
1097 int flag;
1098 };
1099
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 u32 start_seq, u32 end_seq)
1110 {
1111 int err;
1112 bool in_sack;
1113 unsigned int pkt_len;
1114 unsigned int mss;
1115
1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 mss = tcp_skb_mss(skb);
1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124 if (!in_sack) {
1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 if (pkt_len < mss)
1127 pkt_len = mss;
1128 } else {
1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 if (pkt_len < mss)
1131 return -EINVAL;
1132 }
1133
1134 /* Round if necessary so that SACKs cover only full MSSes
1135 * and/or the remaining small portion (if present)
1136 */
1137 if (pkt_len > mss) {
1138 unsigned int new_len = (pkt_len / mss) * mss;
1139 if (!in_sack && new_len < pkt_len) {
1140 new_len += mss;
1141 if (new_len >= skb->len)
1142 return 0;
1143 }
1144 pkt_len = new_len;
1145 }
1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 if (err < 0)
1148 return err;
1149 }
1150
1151 return in_sack;
1152 }
1153
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 struct tcp_sacktag_state *state, u8 sacked,
1157 u32 start_seq, u32 end_seq,
1158 int dup_sack, int pcount,
1159 const struct skb_mstamp *xmit_time)
1160 {
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 int fack_count = state->fack_count;
1163
1164 /* Account D-SACK for retransmitted packet. */
1165 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 after(end_seq, tp->undo_marker))
1168 tp->undo_retrans--;
1169 if (sacked & TCPCB_SACKED_ACKED)
1170 state->reord = min(fack_count, state->reord);
1171 }
1172
1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 if (!after(end_seq, tp->snd_una))
1175 return sacked;
1176
1177 if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 tcp_rack_advance(tp, xmit_time, sacked);
1179
1180 if (sacked & TCPCB_SACKED_RETRANS) {
1181 /* If the segment is not tagged as lost,
1182 * we do not clear RETRANS, believing
1183 * that retransmission is still in flight.
1184 */
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 tp->lost_out -= pcount;
1188 tp->retrans_out -= pcount;
1189 }
1190 } else {
1191 if (!(sacked & TCPCB_RETRANS)) {
1192 /* New sack for not retransmitted frame,
1193 * which was in hole. It is reordering.
1194 */
1195 if (before(start_seq,
1196 tcp_highest_sack_seq(tp)))
1197 state->reord = min(fack_count,
1198 state->reord);
1199 if (!after(end_seq, tp->high_seq))
1200 state->flag |= FLAG_ORIG_SACK_ACKED;
1201 if (state->first_sackt.v64 == 0)
1202 state->first_sackt = *xmit_time;
1203 state->last_sackt = *xmit_time;
1204 }
1205
1206 if (sacked & TCPCB_LOST) {
1207 sacked &= ~TCPCB_LOST;
1208 tp->lost_out -= pcount;
1209 }
1210 }
1211
1212 sacked |= TCPCB_SACKED_ACKED;
1213 state->flag |= FLAG_DATA_SACKED;
1214 tp->sacked_out += pcount;
1215 tp->delivered += pcount; /* Out-of-order packets delivered */
1216
1217 fack_count += pcount;
1218
1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 tp->lost_cnt_hint += pcount;
1223
1224 if (fack_count > tp->fackets_out)
1225 tp->fackets_out = fack_count;
1226 }
1227
1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 * are accounted above as well.
1231 */
1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 sacked &= ~TCPCB_SACKED_RETRANS;
1234 tp->retrans_out -= pcount;
1235 }
1236
1237 return sacked;
1238 }
1239
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 struct tcp_sacktag_state *state,
1245 unsigned int pcount, int shifted, int mss,
1246 bool dup_sack)
1247 {
1248 struct tcp_sock *tp = tcp_sk(sk);
1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1252
1253 BUG_ON(!pcount);
1254
1255 /* Adjust counters and hints for the newly sacked sequence
1256 * range but discard the return value since prev is already
1257 * marked. We must tag the range first because the seq
1258 * advancement below implicitly advances
1259 * tcp_highest_sack_seq() when skb is highest_sack.
1260 */
1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 start_seq, end_seq, dup_sack, pcount,
1263 &skb->skb_mstamp);
1264
1265 if (skb == tp->lost_skb_hint)
1266 tp->lost_cnt_hint += pcount;
1267
1268 TCP_SKB_CB(prev)->end_seq += shifted;
1269 TCP_SKB_CB(skb)->seq += shifted;
1270
1271 tcp_skb_pcount_add(prev, pcount);
1272 BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 tcp_skb_pcount_add(skb, -pcount);
1274
1275 /* When we're adding to gso_segs == 1, gso_size will be zero,
1276 * in theory this shouldn't be necessary but as long as DSACK
1277 * code can come after this skb later on it's better to keep
1278 * setting gso_size to something.
1279 */
1280 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 if (tcp_skb_pcount(skb) <= 1)
1285 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290 if (skb->len > 0) {
1291 BUG_ON(!tcp_skb_pcount(skb));
1292 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 return false;
1294 }
1295
1296 /* Whole SKB was eaten :-) */
1297
1298 if (skb == tp->retransmit_skb_hint)
1299 tp->retransmit_skb_hint = prev;
1300 if (skb == tp->lost_skb_hint) {
1301 tp->lost_skb_hint = prev;
1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 }
1304
1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1307 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1308 TCP_SKB_CB(prev)->end_seq++;
1309
1310 if (skb == tcp_highest_sack(sk))
1311 tcp_advance_highest_sack(sk, skb);
1312
1313 tcp_skb_collapse_tstamp(prev, skb);
1314 tcp_unlink_write_queue(skb, sk);
1315 sk_wmem_free_skb(sk, skb);
1316
1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1318
1319 return true;
1320 }
1321
1322 /* I wish gso_size would have a bit more sane initialization than
1323 * something-or-zero which complicates things
1324 */
1325 static int tcp_skb_seglen(const struct sk_buff *skb)
1326 {
1327 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1328 }
1329
1330 /* Shifting pages past head area doesn't work */
1331 static int skb_can_shift(const struct sk_buff *skb)
1332 {
1333 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1334 }
1335
1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1337 * skb.
1338 */
1339 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1340 struct tcp_sacktag_state *state,
1341 u32 start_seq, u32 end_seq,
1342 bool dup_sack)
1343 {
1344 struct tcp_sock *tp = tcp_sk(sk);
1345 struct sk_buff *prev;
1346 int mss;
1347 int pcount = 0;
1348 int len;
1349 int in_sack;
1350
1351 if (!sk_can_gso(sk))
1352 goto fallback;
1353
1354 /* Normally R but no L won't result in plain S */
1355 if (!dup_sack &&
1356 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1357 goto fallback;
1358 if (!skb_can_shift(skb))
1359 goto fallback;
1360 /* This frame is about to be dropped (was ACKed). */
1361 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1362 goto fallback;
1363
1364 /* Can only happen with delayed DSACK + discard craziness */
1365 if (unlikely(skb == tcp_write_queue_head(sk)))
1366 goto fallback;
1367 prev = tcp_write_queue_prev(sk, skb);
1368
1369 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1370 goto fallback;
1371
1372 if (!tcp_skb_can_collapse_to(prev))
1373 goto fallback;
1374
1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1376 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1377
1378 if (in_sack) {
1379 len = skb->len;
1380 pcount = tcp_skb_pcount(skb);
1381 mss = tcp_skb_seglen(skb);
1382
1383 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 * drop this restriction as unnecessary
1385 */
1386 if (mss != tcp_skb_seglen(prev))
1387 goto fallback;
1388 } else {
1389 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1390 goto noop;
1391 /* CHECKME: This is non-MSS split case only?, this will
1392 * cause skipped skbs due to advancing loop btw, original
1393 * has that feature too
1394 */
1395 if (tcp_skb_pcount(skb) <= 1)
1396 goto noop;
1397
1398 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1399 if (!in_sack) {
1400 /* TODO: head merge to next could be attempted here
1401 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1402 * though it might not be worth of the additional hassle
1403 *
1404 * ...we can probably just fallback to what was done
1405 * previously. We could try merging non-SACKed ones
1406 * as well but it probably isn't going to buy off
1407 * because later SACKs might again split them, and
1408 * it would make skb timestamp tracking considerably
1409 * harder problem.
1410 */
1411 goto fallback;
1412 }
1413
1414 len = end_seq - TCP_SKB_CB(skb)->seq;
1415 BUG_ON(len < 0);
1416 BUG_ON(len > skb->len);
1417
1418 /* MSS boundaries should be honoured or else pcount will
1419 * severely break even though it makes things bit trickier.
1420 * Optimize common case to avoid most of the divides
1421 */
1422 mss = tcp_skb_mss(skb);
1423
1424 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 * drop this restriction as unnecessary
1426 */
1427 if (mss != tcp_skb_seglen(prev))
1428 goto fallback;
1429
1430 if (len == mss) {
1431 pcount = 1;
1432 } else if (len < mss) {
1433 goto noop;
1434 } else {
1435 pcount = len / mss;
1436 len = pcount * mss;
1437 }
1438 }
1439
1440 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1441 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1442 goto fallback;
1443
1444 if (!skb_shift(prev, skb, len))
1445 goto fallback;
1446 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1447 goto out;
1448
1449 /* Hole filled allows collapsing with the next as well, this is very
1450 * useful when hole on every nth skb pattern happens
1451 */
1452 if (prev == tcp_write_queue_tail(sk))
1453 goto out;
1454 skb = tcp_write_queue_next(sk, prev);
1455
1456 if (!skb_can_shift(skb) ||
1457 (skb == tcp_send_head(sk)) ||
1458 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1459 (mss != tcp_skb_seglen(skb)))
1460 goto out;
1461
1462 len = skb->len;
1463 if (skb_shift(prev, skb, len)) {
1464 pcount += tcp_skb_pcount(skb);
1465 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1466 }
1467
1468 out:
1469 state->fack_count += pcount;
1470 return prev;
1471
1472 noop:
1473 return skb;
1474
1475 fallback:
1476 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1477 return NULL;
1478 }
1479
1480 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1481 struct tcp_sack_block *next_dup,
1482 struct tcp_sacktag_state *state,
1483 u32 start_seq, u32 end_seq,
1484 bool dup_sack_in)
1485 {
1486 struct tcp_sock *tp = tcp_sk(sk);
1487 struct sk_buff *tmp;
1488
1489 tcp_for_write_queue_from(skb, sk) {
1490 int in_sack = 0;
1491 bool dup_sack = dup_sack_in;
1492
1493 if (skb == tcp_send_head(sk))
1494 break;
1495
1496 /* queue is in-order => we can short-circuit the walk early */
1497 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1498 break;
1499
1500 if (next_dup &&
1501 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1502 in_sack = tcp_match_skb_to_sack(sk, skb,
1503 next_dup->start_seq,
1504 next_dup->end_seq);
1505 if (in_sack > 0)
1506 dup_sack = true;
1507 }
1508
1509 /* skb reference here is a bit tricky to get right, since
1510 * shifting can eat and free both this skb and the next,
1511 * so not even _safe variant of the loop is enough.
1512 */
1513 if (in_sack <= 0) {
1514 tmp = tcp_shift_skb_data(sk, skb, state,
1515 start_seq, end_seq, dup_sack);
1516 if (tmp) {
1517 if (tmp != skb) {
1518 skb = tmp;
1519 continue;
1520 }
1521
1522 in_sack = 0;
1523 } else {
1524 in_sack = tcp_match_skb_to_sack(sk, skb,
1525 start_seq,
1526 end_seq);
1527 }
1528 }
1529
1530 if (unlikely(in_sack < 0))
1531 break;
1532
1533 if (in_sack) {
1534 TCP_SKB_CB(skb)->sacked =
1535 tcp_sacktag_one(sk,
1536 state,
1537 TCP_SKB_CB(skb)->sacked,
1538 TCP_SKB_CB(skb)->seq,
1539 TCP_SKB_CB(skb)->end_seq,
1540 dup_sack,
1541 tcp_skb_pcount(skb),
1542 &skb->skb_mstamp);
1543
1544 if (!before(TCP_SKB_CB(skb)->seq,
1545 tcp_highest_sack_seq(tp)))
1546 tcp_advance_highest_sack(sk, skb);
1547 }
1548
1549 state->fack_count += tcp_skb_pcount(skb);
1550 }
1551 return skb;
1552 }
1553
1554 /* Avoid all extra work that is being done by sacktag while walking in
1555 * a normal way
1556 */
1557 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1558 struct tcp_sacktag_state *state,
1559 u32 skip_to_seq)
1560 {
1561 tcp_for_write_queue_from(skb, sk) {
1562 if (skb == tcp_send_head(sk))
1563 break;
1564
1565 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1566 break;
1567
1568 state->fack_count += tcp_skb_pcount(skb);
1569 }
1570 return skb;
1571 }
1572
1573 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1574 struct sock *sk,
1575 struct tcp_sack_block *next_dup,
1576 struct tcp_sacktag_state *state,
1577 u32 skip_to_seq)
1578 {
1579 if (!next_dup)
1580 return skb;
1581
1582 if (before(next_dup->start_seq, skip_to_seq)) {
1583 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1584 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1585 next_dup->start_seq, next_dup->end_seq,
1586 1);
1587 }
1588
1589 return skb;
1590 }
1591
1592 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1593 {
1594 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1595 }
1596
1597 static int
1598 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1599 u32 prior_snd_una, struct tcp_sacktag_state *state)
1600 {
1601 struct tcp_sock *tp = tcp_sk(sk);
1602 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1603 TCP_SKB_CB(ack_skb)->sacked);
1604 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1605 struct tcp_sack_block sp[TCP_NUM_SACKS];
1606 struct tcp_sack_block *cache;
1607 struct sk_buff *skb;
1608 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1609 int used_sacks;
1610 bool found_dup_sack = false;
1611 int i, j;
1612 int first_sack_index;
1613
1614 state->flag = 0;
1615 state->reord = tp->packets_out;
1616
1617 if (!tp->sacked_out) {
1618 if (WARN_ON(tp->fackets_out))
1619 tp->fackets_out = 0;
1620 tcp_highest_sack_reset(sk);
1621 }
1622
1623 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1624 num_sacks, prior_snd_una);
1625 if (found_dup_sack)
1626 state->flag |= FLAG_DSACKING_ACK;
1627
1628 /* Eliminate too old ACKs, but take into
1629 * account more or less fresh ones, they can
1630 * contain valid SACK info.
1631 */
1632 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1633 return 0;
1634
1635 if (!tp->packets_out)
1636 goto out;
1637
1638 used_sacks = 0;
1639 first_sack_index = 0;
1640 for (i = 0; i < num_sacks; i++) {
1641 bool dup_sack = !i && found_dup_sack;
1642
1643 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1644 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1645
1646 if (!tcp_is_sackblock_valid(tp, dup_sack,
1647 sp[used_sacks].start_seq,
1648 sp[used_sacks].end_seq)) {
1649 int mib_idx;
1650
1651 if (dup_sack) {
1652 if (!tp->undo_marker)
1653 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1654 else
1655 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1656 } else {
1657 /* Don't count olds caused by ACK reordering */
1658 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1659 !after(sp[used_sacks].end_seq, tp->snd_una))
1660 continue;
1661 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1662 }
1663
1664 NET_INC_STATS(sock_net(sk), mib_idx);
1665 if (i == 0)
1666 first_sack_index = -1;
1667 continue;
1668 }
1669
1670 /* Ignore very old stuff early */
1671 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1672 continue;
1673
1674 used_sacks++;
1675 }
1676
1677 /* order SACK blocks to allow in order walk of the retrans queue */
1678 for (i = used_sacks - 1; i > 0; i--) {
1679 for (j = 0; j < i; j++) {
1680 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1681 swap(sp[j], sp[j + 1]);
1682
1683 /* Track where the first SACK block goes to */
1684 if (j == first_sack_index)
1685 first_sack_index = j + 1;
1686 }
1687 }
1688 }
1689
1690 skb = tcp_write_queue_head(sk);
1691 state->fack_count = 0;
1692 i = 0;
1693
1694 if (!tp->sacked_out) {
1695 /* It's already past, so skip checking against it */
1696 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1697 } else {
1698 cache = tp->recv_sack_cache;
1699 /* Skip empty blocks in at head of the cache */
1700 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1701 !cache->end_seq)
1702 cache++;
1703 }
1704
1705 while (i < used_sacks) {
1706 u32 start_seq = sp[i].start_seq;
1707 u32 end_seq = sp[i].end_seq;
1708 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1709 struct tcp_sack_block *next_dup = NULL;
1710
1711 if (found_dup_sack && ((i + 1) == first_sack_index))
1712 next_dup = &sp[i + 1];
1713
1714 /* Skip too early cached blocks */
1715 while (tcp_sack_cache_ok(tp, cache) &&
1716 !before(start_seq, cache->end_seq))
1717 cache++;
1718
1719 /* Can skip some work by looking recv_sack_cache? */
1720 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1721 after(end_seq, cache->start_seq)) {
1722
1723 /* Head todo? */
1724 if (before(start_seq, cache->start_seq)) {
1725 skb = tcp_sacktag_skip(skb, sk, state,
1726 start_seq);
1727 skb = tcp_sacktag_walk(skb, sk, next_dup,
1728 state,
1729 start_seq,
1730 cache->start_seq,
1731 dup_sack);
1732 }
1733
1734 /* Rest of the block already fully processed? */
1735 if (!after(end_seq, cache->end_seq))
1736 goto advance_sp;
1737
1738 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1739 state,
1740 cache->end_seq);
1741
1742 /* ...tail remains todo... */
1743 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1744 /* ...but better entrypoint exists! */
1745 skb = tcp_highest_sack(sk);
1746 if (!skb)
1747 break;
1748 state->fack_count = tp->fackets_out;
1749 cache++;
1750 goto walk;
1751 }
1752
1753 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1754 /* Check overlap against next cached too (past this one already) */
1755 cache++;
1756 continue;
1757 }
1758
1759 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1760 skb = tcp_highest_sack(sk);
1761 if (!skb)
1762 break;
1763 state->fack_count = tp->fackets_out;
1764 }
1765 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1766
1767 walk:
1768 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1769 start_seq, end_seq, dup_sack);
1770
1771 advance_sp:
1772 i++;
1773 }
1774
1775 /* Clear the head of the cache sack blocks so we can skip it next time */
1776 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1777 tp->recv_sack_cache[i].start_seq = 0;
1778 tp->recv_sack_cache[i].end_seq = 0;
1779 }
1780 for (j = 0; j < used_sacks; j++)
1781 tp->recv_sack_cache[i++] = sp[j];
1782
1783 if ((state->reord < tp->fackets_out) &&
1784 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1785 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1786
1787 tcp_verify_left_out(tp);
1788 out:
1789
1790 #if FASTRETRANS_DEBUG > 0
1791 WARN_ON((int)tp->sacked_out < 0);
1792 WARN_ON((int)tp->lost_out < 0);
1793 WARN_ON((int)tp->retrans_out < 0);
1794 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1795 #endif
1796 return state->flag;
1797 }
1798
1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1800 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1801 */
1802 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1803 {
1804 u32 holes;
1805
1806 holes = max(tp->lost_out, 1U);
1807 holes = min(holes, tp->packets_out);
1808
1809 if ((tp->sacked_out + holes) > tp->packets_out) {
1810 tp->sacked_out = tp->packets_out - holes;
1811 return true;
1812 }
1813 return false;
1814 }
1815
1816 /* If we receive more dupacks than we expected counting segments
1817 * in assumption of absent reordering, interpret this as reordering.
1818 * The only another reason could be bug in receiver TCP.
1819 */
1820 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1821 {
1822 struct tcp_sock *tp = tcp_sk(sk);
1823 if (tcp_limit_reno_sacked(tp))
1824 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1825 }
1826
1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1828
1829 static void tcp_add_reno_sack(struct sock *sk)
1830 {
1831 struct tcp_sock *tp = tcp_sk(sk);
1832 u32 prior_sacked = tp->sacked_out;
1833
1834 tp->sacked_out++;
1835 tcp_check_reno_reordering(sk, 0);
1836 if (tp->sacked_out > prior_sacked)
1837 tp->delivered++; /* Some out-of-order packet is delivered */
1838 tcp_verify_left_out(tp);
1839 }
1840
1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1842
1843 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1844 {
1845 struct tcp_sock *tp = tcp_sk(sk);
1846
1847 if (acked > 0) {
1848 /* One ACK acked hole. The rest eat duplicate ACKs. */
1849 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1850 if (acked - 1 >= tp->sacked_out)
1851 tp->sacked_out = 0;
1852 else
1853 tp->sacked_out -= acked - 1;
1854 }
1855 tcp_check_reno_reordering(sk, acked);
1856 tcp_verify_left_out(tp);
1857 }
1858
1859 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1860 {
1861 tp->sacked_out = 0;
1862 }
1863
1864 void tcp_clear_retrans(struct tcp_sock *tp)
1865 {
1866 tp->retrans_out = 0;
1867 tp->lost_out = 0;
1868 tp->undo_marker = 0;
1869 tp->undo_retrans = -1;
1870 tp->fackets_out = 0;
1871 tp->sacked_out = 0;
1872 }
1873
1874 static inline void tcp_init_undo(struct tcp_sock *tp)
1875 {
1876 tp->undo_marker = tp->snd_una;
1877 /* Retransmission still in flight may cause DSACKs later. */
1878 tp->undo_retrans = tp->retrans_out ? : -1;
1879 }
1880
1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1882 * and reset tags completely, otherwise preserve SACKs. If receiver
1883 * dropped its ofo queue, we will know this due to reneging detection.
1884 */
1885 void tcp_enter_loss(struct sock *sk)
1886 {
1887 const struct inet_connection_sock *icsk = inet_csk(sk);
1888 struct tcp_sock *tp = tcp_sk(sk);
1889 struct net *net = sock_net(sk);
1890 struct sk_buff *skb;
1891 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1892 bool is_reneg; /* is receiver reneging on SACKs? */
1893
1894 /* Reduce ssthresh if it has not yet been made inside this window. */
1895 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1896 !after(tp->high_seq, tp->snd_una) ||
1897 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1898 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1899 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1900 tcp_ca_event(sk, CA_EVENT_LOSS);
1901 tcp_init_undo(tp);
1902 }
1903 tp->snd_cwnd = 1;
1904 tp->snd_cwnd_cnt = 0;
1905 tp->snd_cwnd_stamp = tcp_time_stamp;
1906
1907 tp->retrans_out = 0;
1908 tp->lost_out = 0;
1909
1910 if (tcp_is_reno(tp))
1911 tcp_reset_reno_sack(tp);
1912
1913 skb = tcp_write_queue_head(sk);
1914 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1915 if (is_reneg) {
1916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1917 tp->sacked_out = 0;
1918 tp->fackets_out = 0;
1919 }
1920 tcp_clear_all_retrans_hints(tp);
1921
1922 tcp_for_write_queue(skb, sk) {
1923 if (skb == tcp_send_head(sk))
1924 break;
1925
1926 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1928 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930 tp->lost_out += tcp_skb_pcount(skb);
1931 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1932 }
1933 }
1934 tcp_verify_left_out(tp);
1935
1936 /* Timeout in disordered state after receiving substantial DUPACKs
1937 * suggests that the degree of reordering is over-estimated.
1938 */
1939 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1940 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1941 tp->reordering = min_t(unsigned int, tp->reordering,
1942 net->ipv4.sysctl_tcp_reordering);
1943 tcp_set_ca_state(sk, TCP_CA_Loss);
1944 tp->high_seq = tp->snd_nxt;
1945 tcp_ecn_queue_cwr(tp);
1946
1947 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1948 * loss recovery is underway except recurring timeout(s) on
1949 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1950 */
1951 tp->frto = sysctl_tcp_frto &&
1952 (new_recovery || icsk->icsk_retransmits) &&
1953 !inet_csk(sk)->icsk_mtup.probe_size;
1954 }
1955
1956 /* If ACK arrived pointing to a remembered SACK, it means that our
1957 * remembered SACKs do not reflect real state of receiver i.e.
1958 * receiver _host_ is heavily congested (or buggy).
1959 *
1960 * To avoid big spurious retransmission bursts due to transient SACK
1961 * scoreboard oddities that look like reneging, we give the receiver a
1962 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1963 * restore sanity to the SACK scoreboard. If the apparent reneging
1964 * persists until this RTO then we'll clear the SACK scoreboard.
1965 */
1966 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1967 {
1968 if (flag & FLAG_SACK_RENEGING) {
1969 struct tcp_sock *tp = tcp_sk(sk);
1970 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1971 msecs_to_jiffies(10));
1972
1973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1974 delay, TCP_RTO_MAX);
1975 return true;
1976 }
1977 return false;
1978 }
1979
1980 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1981 {
1982 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1983 }
1984
1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1986 * counter when SACK is enabled (without SACK, sacked_out is used for
1987 * that purpose).
1988 *
1989 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1990 * segments up to the highest received SACK block so far and holes in
1991 * between them.
1992 *
1993 * With reordering, holes may still be in flight, so RFC3517 recovery
1994 * uses pure sacked_out (total number of SACKed segments) even though
1995 * it violates the RFC that uses duplicate ACKs, often these are equal
1996 * but when e.g. out-of-window ACKs or packet duplication occurs,
1997 * they differ. Since neither occurs due to loss, TCP should really
1998 * ignore them.
1999 */
2000 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2001 {
2002 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2003 }
2004
2005 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2006 {
2007 struct tcp_sock *tp = tcp_sk(sk);
2008 unsigned long delay;
2009
2010 /* Delay early retransmit and entering fast recovery for
2011 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2012 * available, or RTO is scheduled to fire first.
2013 */
2014 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2015 (flag & FLAG_ECE) || !tp->srtt_us)
2016 return false;
2017
2018 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2019 msecs_to_jiffies(2));
2020
2021 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2022 return false;
2023
2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2025 TCP_RTO_MAX);
2026 return true;
2027 }
2028
2029 /* Linux NewReno/SACK/FACK/ECN state machine.
2030 * --------------------------------------
2031 *
2032 * "Open" Normal state, no dubious events, fast path.
2033 * "Disorder" In all the respects it is "Open",
2034 * but requires a bit more attention. It is entered when
2035 * we see some SACKs or dupacks. It is split of "Open"
2036 * mainly to move some processing from fast path to slow one.
2037 * "CWR" CWND was reduced due to some Congestion Notification event.
2038 * It can be ECN, ICMP source quench, local device congestion.
2039 * "Recovery" CWND was reduced, we are fast-retransmitting.
2040 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2041 *
2042 * tcp_fastretrans_alert() is entered:
2043 * - each incoming ACK, if state is not "Open"
2044 * - when arrived ACK is unusual, namely:
2045 * * SACK
2046 * * Duplicate ACK.
2047 * * ECN ECE.
2048 *
2049 * Counting packets in flight is pretty simple.
2050 *
2051 * in_flight = packets_out - left_out + retrans_out
2052 *
2053 * packets_out is SND.NXT-SND.UNA counted in packets.
2054 *
2055 * retrans_out is number of retransmitted segments.
2056 *
2057 * left_out is number of segments left network, but not ACKed yet.
2058 *
2059 * left_out = sacked_out + lost_out
2060 *
2061 * sacked_out: Packets, which arrived to receiver out of order
2062 * and hence not ACKed. With SACKs this number is simply
2063 * amount of SACKed data. Even without SACKs
2064 * it is easy to give pretty reliable estimate of this number,
2065 * counting duplicate ACKs.
2066 *
2067 * lost_out: Packets lost by network. TCP has no explicit
2068 * "loss notification" feedback from network (for now).
2069 * It means that this number can be only _guessed_.
2070 * Actually, it is the heuristics to predict lossage that
2071 * distinguishes different algorithms.
2072 *
2073 * F.e. after RTO, when all the queue is considered as lost,
2074 * lost_out = packets_out and in_flight = retrans_out.
2075 *
2076 * Essentially, we have now two algorithms counting
2077 * lost packets.
2078 *
2079 * FACK: It is the simplest heuristics. As soon as we decided
2080 * that something is lost, we decide that _all_ not SACKed
2081 * packets until the most forward SACK are lost. I.e.
2082 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2083 * It is absolutely correct estimate, if network does not reorder
2084 * packets. And it loses any connection to reality when reordering
2085 * takes place. We use FACK by default until reordering
2086 * is suspected on the path to this destination.
2087 *
2088 * NewReno: when Recovery is entered, we assume that one segment
2089 * is lost (classic Reno). While we are in Recovery and
2090 * a partial ACK arrives, we assume that one more packet
2091 * is lost (NewReno). This heuristics are the same in NewReno
2092 * and SACK.
2093 *
2094 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2095 * deflation etc. CWND is real congestion window, never inflated, changes
2096 * only according to classic VJ rules.
2097 *
2098 * Really tricky (and requiring careful tuning) part of algorithm
2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100 * The first determines the moment _when_ we should reduce CWND and,
2101 * hence, slow down forward transmission. In fact, it determines the moment
2102 * when we decide that hole is caused by loss, rather than by a reorder.
2103 *
2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105 * holes, caused by lost packets.
2106 *
2107 * And the most logically complicated part of algorithm is undo
2108 * heuristics. We detect false retransmits due to both too early
2109 * fast retransmit (reordering) and underestimated RTO, analyzing
2110 * timestamps and D-SACKs. When we detect that some segments were
2111 * retransmitted by mistake and CWND reduction was wrong, we undo
2112 * window reduction and abort recovery phase. This logic is hidden
2113 * inside several functions named tcp_try_undo_<something>.
2114 */
2115
2116 /* This function decides, when we should leave Disordered state
2117 * and enter Recovery phase, reducing congestion window.
2118 *
2119 * Main question: may we further continue forward transmission
2120 * with the same cwnd?
2121 */
2122 static bool tcp_time_to_recover(struct sock *sk, int flag)
2123 {
2124 struct tcp_sock *tp = tcp_sk(sk);
2125 __u32 packets_out;
2126 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2127
2128 /* Trick#1: The loss is proven. */
2129 if (tp->lost_out)
2130 return true;
2131
2132 /* Not-A-Trick#2 : Classic rule... */
2133 if (tcp_dupack_heuristics(tp) > tp->reordering)
2134 return true;
2135
2136 /* Trick#4: It is still not OK... But will it be useful to delay
2137 * recovery more?
2138 */
2139 packets_out = tp->packets_out;
2140 if (packets_out <= tp->reordering &&
2141 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2142 !tcp_may_send_now(sk)) {
2143 /* We have nothing to send. This connection is limited
2144 * either by receiver window or by application.
2145 */
2146 return true;
2147 }
2148
2149 /* If a thin stream is detected, retransmit after first
2150 * received dupack. Employ only if SACK is supported in order
2151 * to avoid possible corner-case series of spurious retransmissions
2152 * Use only if there are no unsent data.
2153 */
2154 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2155 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2156 tcp_is_sack(tp) && !tcp_send_head(sk))
2157 return true;
2158
2159 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2160 * retransmissions due to small network reorderings, we implement
2161 * Mitigation A.3 in the RFC and delay the retransmission for a short
2162 * interval if appropriate.
2163 */
2164 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2165 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2166 !tcp_may_send_now(sk))
2167 return !tcp_pause_early_retransmit(sk, flag);
2168
2169 return false;
2170 }
2171
2172 /* Detect loss in event "A" above by marking head of queue up as lost.
2173 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2174 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2175 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2176 * the maximum SACKed segments to pass before reaching this limit.
2177 */
2178 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2179 {
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct sk_buff *skb;
2182 int cnt, oldcnt, lost;
2183 unsigned int mss;
2184 /* Use SACK to deduce losses of new sequences sent during recovery */
2185 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2186
2187 WARN_ON(packets > tp->packets_out);
2188 if (tp->lost_skb_hint) {
2189 skb = tp->lost_skb_hint;
2190 cnt = tp->lost_cnt_hint;
2191 /* Head already handled? */
2192 if (mark_head && skb != tcp_write_queue_head(sk))
2193 return;
2194 } else {
2195 skb = tcp_write_queue_head(sk);
2196 cnt = 0;
2197 }
2198
2199 tcp_for_write_queue_from(skb, sk) {
2200 if (skb == tcp_send_head(sk))
2201 break;
2202 /* TODO: do this better */
2203 /* this is not the most efficient way to do this... */
2204 tp->lost_skb_hint = skb;
2205 tp->lost_cnt_hint = cnt;
2206
2207 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208 break;
2209
2210 oldcnt = cnt;
2211 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 cnt += tcp_skb_pcount(skb);
2214
2215 if (cnt > packets) {
2216 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2217 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 (oldcnt >= packets))
2219 break;
2220
2221 mss = tcp_skb_mss(skb);
2222 /* If needed, chop off the prefix to mark as lost. */
2223 lost = (packets - oldcnt) * mss;
2224 if (lost < skb->len &&
2225 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2226 break;
2227 cnt = packets;
2228 }
2229
2230 tcp_skb_mark_lost(tp, skb);
2231
2232 if (mark_head)
2233 break;
2234 }
2235 tcp_verify_left_out(tp);
2236 }
2237
2238 /* Account newly detected lost packet(s) */
2239
2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241 {
2242 struct tcp_sock *tp = tcp_sk(sk);
2243
2244 if (tcp_is_reno(tp)) {
2245 tcp_mark_head_lost(sk, 1, 1);
2246 } else if (tcp_is_fack(tp)) {
2247 int lost = tp->fackets_out - tp->reordering;
2248 if (lost <= 0)
2249 lost = 1;
2250 tcp_mark_head_lost(sk, lost, 0);
2251 } else {
2252 int sacked_upto = tp->sacked_out - tp->reordering;
2253 if (sacked_upto >= 0)
2254 tcp_mark_head_lost(sk, sacked_upto, 0);
2255 else if (fast_rexmit)
2256 tcp_mark_head_lost(sk, 1, 1);
2257 }
2258 }
2259
2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261 {
2262 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263 before(tp->rx_opt.rcv_tsecr, when);
2264 }
2265
2266 /* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2268 */
2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270 const struct sk_buff *skb)
2271 {
2272 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274 }
2275
2276 /* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2278 */
2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280 {
2281 return !tp->retrans_stamp ||
2282 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283 }
2284
2285 /* Undo procedures. */
2286
2287 /* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2295 *
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2300 */
2301 static bool tcp_any_retrans_done(const struct sock *sk)
2302 {
2303 const struct tcp_sock *tp = tcp_sk(sk);
2304 struct sk_buff *skb;
2305
2306 if (tp->retrans_out)
2307 return true;
2308
2309 skb = tcp_write_queue_head(sk);
2310 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311 return true;
2312
2313 return false;
2314 }
2315
2316 #if FASTRETRANS_DEBUG > 1
2317 static void DBGUNDO(struct sock *sk, const char *msg)
2318 {
2319 struct tcp_sock *tp = tcp_sk(sk);
2320 struct inet_sock *inet = inet_sk(sk);
2321
2322 if (sk->sk_family == AF_INET) {
2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324 msg,
2325 &inet->inet_daddr, ntohs(inet->inet_dport),
2326 tp->snd_cwnd, tcp_left_out(tp),
2327 tp->snd_ssthresh, tp->prior_ssthresh,
2328 tp->packets_out);
2329 }
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 else if (sk->sk_family == AF_INET6) {
2332 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2333 msg,
2334 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2335 tp->snd_cwnd, tcp_left_out(tp),
2336 tp->snd_ssthresh, tp->prior_ssthresh,
2337 tp->packets_out);
2338 }
2339 #endif
2340 }
2341 #else
2342 #define DBGUNDO(x...) do { } while (0)
2343 #endif
2344
2345 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2346 {
2347 struct tcp_sock *tp = tcp_sk(sk);
2348
2349 if (unmark_loss) {
2350 struct sk_buff *skb;
2351
2352 tcp_for_write_queue(skb, sk) {
2353 if (skb == tcp_send_head(sk))
2354 break;
2355 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2356 }
2357 tp->lost_out = 0;
2358 tcp_clear_all_retrans_hints(tp);
2359 }
2360
2361 if (tp->prior_ssthresh) {
2362 const struct inet_connection_sock *icsk = inet_csk(sk);
2363
2364 if (icsk->icsk_ca_ops->undo_cwnd)
2365 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2366 else
2367 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2368
2369 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2370 tp->snd_ssthresh = tp->prior_ssthresh;
2371 tcp_ecn_withdraw_cwr(tp);
2372 }
2373 }
2374 tp->snd_cwnd_stamp = tcp_time_stamp;
2375 tp->undo_marker = 0;
2376 }
2377
2378 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2379 {
2380 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2381 }
2382
2383 /* People celebrate: "We love our President!" */
2384 static bool tcp_try_undo_recovery(struct sock *sk)
2385 {
2386 struct tcp_sock *tp = tcp_sk(sk);
2387
2388 if (tcp_may_undo(tp)) {
2389 int mib_idx;
2390
2391 /* Happy end! We did not retransmit anything
2392 * or our original transmission succeeded.
2393 */
2394 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2395 tcp_undo_cwnd_reduction(sk, false);
2396 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2397 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2398 else
2399 mib_idx = LINUX_MIB_TCPFULLUNDO;
2400
2401 NET_INC_STATS(sock_net(sk), mib_idx);
2402 }
2403 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2404 /* Hold old state until something *above* high_seq
2405 * is ACKed. For Reno it is MUST to prevent false
2406 * fast retransmits (RFC2582). SACK TCP is safe. */
2407 if (!tcp_any_retrans_done(sk))
2408 tp->retrans_stamp = 0;
2409 return true;
2410 }
2411 tcp_set_ca_state(sk, TCP_CA_Open);
2412 return false;
2413 }
2414
2415 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2416 static bool tcp_try_undo_dsack(struct sock *sk)
2417 {
2418 struct tcp_sock *tp = tcp_sk(sk);
2419
2420 if (tp->undo_marker && !tp->undo_retrans) {
2421 DBGUNDO(sk, "D-SACK");
2422 tcp_undo_cwnd_reduction(sk, false);
2423 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2424 return true;
2425 }
2426 return false;
2427 }
2428
2429 /* Undo during loss recovery after partial ACK or using F-RTO. */
2430 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2431 {
2432 struct tcp_sock *tp = tcp_sk(sk);
2433
2434 if (frto_undo || tcp_may_undo(tp)) {
2435 tcp_undo_cwnd_reduction(sk, true);
2436
2437 DBGUNDO(sk, "partial loss");
2438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2439 if (frto_undo)
2440 NET_INC_STATS(sock_net(sk),
2441 LINUX_MIB_TCPSPURIOUSRTOS);
2442 inet_csk(sk)->icsk_retransmits = 0;
2443 if (frto_undo || tcp_is_sack(tp))
2444 tcp_set_ca_state(sk, TCP_CA_Open);
2445 return true;
2446 }
2447 return false;
2448 }
2449
2450 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2451 * It computes the number of packets to send (sndcnt) based on packets newly
2452 * delivered:
2453 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2454 * cwnd reductions across a full RTT.
2455 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2456 * But when the retransmits are acked without further losses, PRR
2457 * slow starts cwnd up to ssthresh to speed up the recovery.
2458 */
2459 static void tcp_init_cwnd_reduction(struct sock *sk)
2460 {
2461 struct tcp_sock *tp = tcp_sk(sk);
2462
2463 tp->high_seq = tp->snd_nxt;
2464 tp->tlp_high_seq = 0;
2465 tp->snd_cwnd_cnt = 0;
2466 tp->prior_cwnd = tp->snd_cwnd;
2467 tp->prr_delivered = 0;
2468 tp->prr_out = 0;
2469 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2470 tcp_ecn_queue_cwr(tp);
2471 }
2472
2473 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2474 int flag)
2475 {
2476 struct tcp_sock *tp = tcp_sk(sk);
2477 int sndcnt = 0;
2478 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2479
2480 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481 return;
2482
2483 tp->prr_delivered += newly_acked_sacked;
2484 if (delta < 0) {
2485 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2486 tp->prior_cwnd - 1;
2487 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2488 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2489 !(flag & FLAG_LOST_RETRANS)) {
2490 sndcnt = min_t(int, delta,
2491 max_t(int, tp->prr_delivered - tp->prr_out,
2492 newly_acked_sacked) + 1);
2493 } else {
2494 sndcnt = min(delta, newly_acked_sacked);
2495 }
2496 /* Force a fast retransmit upon entering fast recovery */
2497 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2498 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499 }
2500
2501 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2502 {
2503 struct tcp_sock *tp = tcp_sk(sk);
2504
2505 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2506 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2507 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2508 tp->snd_cwnd = tp->snd_ssthresh;
2509 tp->snd_cwnd_stamp = tcp_time_stamp;
2510 }
2511 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2512 }
2513
2514 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2515 void tcp_enter_cwr(struct sock *sk)
2516 {
2517 struct tcp_sock *tp = tcp_sk(sk);
2518
2519 tp->prior_ssthresh = 0;
2520 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2521 tp->undo_marker = 0;
2522 tcp_init_cwnd_reduction(sk);
2523 tcp_set_ca_state(sk, TCP_CA_CWR);
2524 }
2525 }
2526 EXPORT_SYMBOL(tcp_enter_cwr);
2527
2528 static void tcp_try_keep_open(struct sock *sk)
2529 {
2530 struct tcp_sock *tp = tcp_sk(sk);
2531 int state = TCP_CA_Open;
2532
2533 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2534 state = TCP_CA_Disorder;
2535
2536 if (inet_csk(sk)->icsk_ca_state != state) {
2537 tcp_set_ca_state(sk, state);
2538 tp->high_seq = tp->snd_nxt;
2539 }
2540 }
2541
2542 static void tcp_try_to_open(struct sock *sk, int flag)
2543 {
2544 struct tcp_sock *tp = tcp_sk(sk);
2545
2546 tcp_verify_left_out(tp);
2547
2548 if (!tcp_any_retrans_done(sk))
2549 tp->retrans_stamp = 0;
2550
2551 if (flag & FLAG_ECE)
2552 tcp_enter_cwr(sk);
2553
2554 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2555 tcp_try_keep_open(sk);
2556 }
2557 }
2558
2559 static void tcp_mtup_probe_failed(struct sock *sk)
2560 {
2561 struct inet_connection_sock *icsk = inet_csk(sk);
2562
2563 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2564 icsk->icsk_mtup.probe_size = 0;
2565 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2566 }
2567
2568 static void tcp_mtup_probe_success(struct sock *sk)
2569 {
2570 struct tcp_sock *tp = tcp_sk(sk);
2571 struct inet_connection_sock *icsk = inet_csk(sk);
2572
2573 /* FIXME: breaks with very large cwnd */
2574 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2575 tp->snd_cwnd = tp->snd_cwnd *
2576 tcp_mss_to_mtu(sk, tp->mss_cache) /
2577 icsk->icsk_mtup.probe_size;
2578 tp->snd_cwnd_cnt = 0;
2579 tp->snd_cwnd_stamp = tcp_time_stamp;
2580 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2581
2582 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2583 icsk->icsk_mtup.probe_size = 0;
2584 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2586 }
2587
2588 /* Do a simple retransmit without using the backoff mechanisms in
2589 * tcp_timer. This is used for path mtu discovery.
2590 * The socket is already locked here.
2591 */
2592 void tcp_simple_retransmit(struct sock *sk)
2593 {
2594 const struct inet_connection_sock *icsk = inet_csk(sk);
2595 struct tcp_sock *tp = tcp_sk(sk);
2596 struct sk_buff *skb;
2597 unsigned int mss = tcp_current_mss(sk);
2598 u32 prior_lost = tp->lost_out;
2599
2600 tcp_for_write_queue(skb, sk) {
2601 if (skb == tcp_send_head(sk))
2602 break;
2603 if (tcp_skb_seglen(skb) > mss &&
2604 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607 tp->retrans_out -= tcp_skb_pcount(skb);
2608 }
2609 tcp_skb_mark_lost_uncond_verify(tp, skb);
2610 }
2611 }
2612
2613 tcp_clear_retrans_hints_partial(tp);
2614
2615 if (prior_lost == tp->lost_out)
2616 return;
2617
2618 if (tcp_is_reno(tp))
2619 tcp_limit_reno_sacked(tp);
2620
2621 tcp_verify_left_out(tp);
2622
2623 /* Don't muck with the congestion window here.
2624 * Reason is that we do not increase amount of _data_
2625 * in network, but units changed and effective
2626 * cwnd/ssthresh really reduced now.
2627 */
2628 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629 tp->high_seq = tp->snd_nxt;
2630 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631 tp->prior_ssthresh = 0;
2632 tp->undo_marker = 0;
2633 tcp_set_ca_state(sk, TCP_CA_Loss);
2634 }
2635 tcp_xmit_retransmit_queue(sk);
2636 }
2637 EXPORT_SYMBOL(tcp_simple_retransmit);
2638
2639 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640 {
2641 struct tcp_sock *tp = tcp_sk(sk);
2642 int mib_idx;
2643
2644 if (tcp_is_reno(tp))
2645 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646 else
2647 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648
2649 NET_INC_STATS(sock_net(sk), mib_idx);
2650
2651 tp->prior_ssthresh = 0;
2652 tcp_init_undo(tp);
2653
2654 if (!tcp_in_cwnd_reduction(sk)) {
2655 if (!ece_ack)
2656 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657 tcp_init_cwnd_reduction(sk);
2658 }
2659 tcp_set_ca_state(sk, TCP_CA_Recovery);
2660 }
2661
2662 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664 */
2665 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2666 int *rexmit)
2667 {
2668 struct tcp_sock *tp = tcp_sk(sk);
2669 bool recovered = !before(tp->snd_una, tp->high_seq);
2670
2671 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2672 tcp_try_undo_loss(sk, false))
2673 return;
2674
2675 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2676 /* Step 3.b. A timeout is spurious if not all data are
2677 * lost, i.e., never-retransmitted data are (s)acked.
2678 */
2679 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2680 tcp_try_undo_loss(sk, true))
2681 return;
2682
2683 if (after(tp->snd_nxt, tp->high_seq)) {
2684 if (flag & FLAG_DATA_SACKED || is_dupack)
2685 tp->frto = 0; /* Step 3.a. loss was real */
2686 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2687 tp->high_seq = tp->snd_nxt;
2688 /* Step 2.b. Try send new data (but deferred until cwnd
2689 * is updated in tcp_ack()). Otherwise fall back to
2690 * the conventional recovery.
2691 */
2692 if (tcp_send_head(sk) &&
2693 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2694 *rexmit = REXMIT_NEW;
2695 return;
2696 }
2697 tp->frto = 0;
2698 }
2699 }
2700
2701 if (recovered) {
2702 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2703 tcp_try_undo_recovery(sk);
2704 return;
2705 }
2706 if (tcp_is_reno(tp)) {
2707 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2708 * delivered. Lower inflight to clock out (re)tranmissions.
2709 */
2710 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2711 tcp_add_reno_sack(sk);
2712 else if (flag & FLAG_SND_UNA_ADVANCED)
2713 tcp_reset_reno_sack(tp);
2714 }
2715 *rexmit = REXMIT_LOST;
2716 }
2717
2718 /* Undo during fast recovery after partial ACK. */
2719 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2720 {
2721 struct tcp_sock *tp = tcp_sk(sk);
2722
2723 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2724 /* Plain luck! Hole if filled with delayed
2725 * packet, rather than with a retransmit.
2726 */
2727 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2728
2729 /* We are getting evidence that the reordering degree is higher
2730 * than we realized. If there are no retransmits out then we
2731 * can undo. Otherwise we clock out new packets but do not
2732 * mark more packets lost or retransmit more.
2733 */
2734 if (tp->retrans_out)
2735 return true;
2736
2737 if (!tcp_any_retrans_done(sk))
2738 tp->retrans_stamp = 0;
2739
2740 DBGUNDO(sk, "partial recovery");
2741 tcp_undo_cwnd_reduction(sk, true);
2742 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2743 tcp_try_keep_open(sk);
2744 return true;
2745 }
2746 return false;
2747 }
2748
2749 /* Process an event, which can update packets-in-flight not trivially.
2750 * Main goal of this function is to calculate new estimate for left_out,
2751 * taking into account both packets sitting in receiver's buffer and
2752 * packets lost by network.
2753 *
2754 * Besides that it updates the congestion state when packet loss or ECN
2755 * is detected. But it does not reduce the cwnd, it is done by the
2756 * congestion control later.
2757 *
2758 * It does _not_ decide what to send, it is made in function
2759 * tcp_xmit_retransmit_queue().
2760 */
2761 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2762 bool is_dupack, int *ack_flag, int *rexmit)
2763 {
2764 struct inet_connection_sock *icsk = inet_csk(sk);
2765 struct tcp_sock *tp = tcp_sk(sk);
2766 int fast_rexmit = 0, flag = *ack_flag;
2767 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2768 (tcp_fackets_out(tp) > tp->reordering));
2769
2770 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2771 tp->sacked_out = 0;
2772 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2773 tp->fackets_out = 0;
2774
2775 /* Now state machine starts.
2776 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2777 if (flag & FLAG_ECE)
2778 tp->prior_ssthresh = 0;
2779
2780 /* B. In all the states check for reneging SACKs. */
2781 if (tcp_check_sack_reneging(sk, flag))
2782 return;
2783
2784 /* C. Check consistency of the current state. */
2785 tcp_verify_left_out(tp);
2786
2787 /* D. Check state exit conditions. State can be terminated
2788 * when high_seq is ACKed. */
2789 if (icsk->icsk_ca_state == TCP_CA_Open) {
2790 WARN_ON(tp->retrans_out != 0);
2791 tp->retrans_stamp = 0;
2792 } else if (!before(tp->snd_una, tp->high_seq)) {
2793 switch (icsk->icsk_ca_state) {
2794 case TCP_CA_CWR:
2795 /* CWR is to be held something *above* high_seq
2796 * is ACKed for CWR bit to reach receiver. */
2797 if (tp->snd_una != tp->high_seq) {
2798 tcp_end_cwnd_reduction(sk);
2799 tcp_set_ca_state(sk, TCP_CA_Open);
2800 }
2801 break;
2802
2803 case TCP_CA_Recovery:
2804 if (tcp_is_reno(tp))
2805 tcp_reset_reno_sack(tp);
2806 if (tcp_try_undo_recovery(sk))
2807 return;
2808 tcp_end_cwnd_reduction(sk);
2809 break;
2810 }
2811 }
2812
2813 /* Use RACK to detect loss */
2814 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2815 tcp_rack_mark_lost(sk)) {
2816 flag |= FLAG_LOST_RETRANS;
2817 *ack_flag |= FLAG_LOST_RETRANS;
2818 }
2819
2820 /* E. Process state. */
2821 switch (icsk->icsk_ca_state) {
2822 case TCP_CA_Recovery:
2823 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2824 if (tcp_is_reno(tp) && is_dupack)
2825 tcp_add_reno_sack(sk);
2826 } else {
2827 if (tcp_try_undo_partial(sk, acked))
2828 return;
2829 /* Partial ACK arrived. Force fast retransmit. */
2830 do_lost = tcp_is_reno(tp) ||
2831 tcp_fackets_out(tp) > tp->reordering;
2832 }
2833 if (tcp_try_undo_dsack(sk)) {
2834 tcp_try_keep_open(sk);
2835 return;
2836 }
2837 break;
2838 case TCP_CA_Loss:
2839 tcp_process_loss(sk, flag, is_dupack, rexmit);
2840 if (icsk->icsk_ca_state != TCP_CA_Open &&
2841 !(flag & FLAG_LOST_RETRANS))
2842 return;
2843 /* Change state if cwnd is undone or retransmits are lost */
2844 default:
2845 if (tcp_is_reno(tp)) {
2846 if (flag & FLAG_SND_UNA_ADVANCED)
2847 tcp_reset_reno_sack(tp);
2848 if (is_dupack)
2849 tcp_add_reno_sack(sk);
2850 }
2851
2852 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2853 tcp_try_undo_dsack(sk);
2854
2855 if (!tcp_time_to_recover(sk, flag)) {
2856 tcp_try_to_open(sk, flag);
2857 return;
2858 }
2859
2860 /* MTU probe failure: don't reduce cwnd */
2861 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2862 icsk->icsk_mtup.probe_size &&
2863 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2864 tcp_mtup_probe_failed(sk);
2865 /* Restores the reduction we did in tcp_mtup_probe() */
2866 tp->snd_cwnd++;
2867 tcp_simple_retransmit(sk);
2868 return;
2869 }
2870
2871 /* Otherwise enter Recovery state */
2872 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2873 fast_rexmit = 1;
2874 }
2875
2876 if (do_lost)
2877 tcp_update_scoreboard(sk, fast_rexmit);
2878 *rexmit = REXMIT_LOST;
2879 }
2880
2881 /* Kathleen Nichols' algorithm for tracking the minimum value of
2882 * a data stream over some fixed time interval. (E.g., the minimum
2883 * RTT over the past five minutes.) It uses constant space and constant
2884 * time per update yet almost always delivers the same minimum as an
2885 * implementation that has to keep all the data in the window.
2886 *
2887 * The algorithm keeps track of the best, 2nd best & 3rd best min
2888 * values, maintaining an invariant that the measurement time of the
2889 * n'th best >= n-1'th best. It also makes sure that the three values
2890 * are widely separated in the time window since that bounds the worse
2891 * case error when that data is monotonically increasing over the window.
2892 *
2893 * Upon getting a new min, we can forget everything earlier because it
2894 * has no value - the new min is <= everything else in the window by
2895 * definition and it's the most recent. So we restart fresh on every new min
2896 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2897 * best.
2898 */
2899 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2900 {
2901 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2902 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2903 struct rtt_meas rttm = {
2904 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2905 .ts = now,
2906 };
2907 u32 elapsed;
2908
2909 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2910 if (unlikely(rttm.rtt <= m[0].rtt))
2911 m[0] = m[1] = m[2] = rttm;
2912 else if (rttm.rtt <= m[1].rtt)
2913 m[1] = m[2] = rttm;
2914 else if (rttm.rtt <= m[2].rtt)
2915 m[2] = rttm;
2916
2917 elapsed = now - m[0].ts;
2918 if (unlikely(elapsed > wlen)) {
2919 /* Passed entire window without a new min so make 2nd choice
2920 * the new min & 3rd choice the new 2nd. So forth and so on.
2921 */
2922 m[0] = m[1];
2923 m[1] = m[2];
2924 m[2] = rttm;
2925 if (now - m[0].ts > wlen) {
2926 m[0] = m[1];
2927 m[1] = rttm;
2928 if (now - m[0].ts > wlen)
2929 m[0] = rttm;
2930 }
2931 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2932 /* Passed a quarter of the window without a new min so
2933 * take 2nd choice from the 2nd quarter of the window.
2934 */
2935 m[2] = m[1] = rttm;
2936 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2937 /* Passed half the window without a new min so take the 3rd
2938 * choice from the last half of the window.
2939 */
2940 m[2] = rttm;
2941 }
2942 }
2943
2944 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2945 long seq_rtt_us, long sack_rtt_us,
2946 long ca_rtt_us)
2947 {
2948 const struct tcp_sock *tp = tcp_sk(sk);
2949
2950 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2951 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2952 * Karn's algorithm forbids taking RTT if some retransmitted data
2953 * is acked (RFC6298).
2954 */
2955 if (seq_rtt_us < 0)
2956 seq_rtt_us = sack_rtt_us;
2957
2958 /* RTTM Rule: A TSecr value received in a segment is used to
2959 * update the averaged RTT measurement only if the segment
2960 * acknowledges some new data, i.e., only if it advances the
2961 * left edge of the send window.
2962 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2963 */
2964 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2965 flag & FLAG_ACKED)
2966 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2967 tp->rx_opt.rcv_tsecr);
2968 if (seq_rtt_us < 0)
2969 return false;
2970
2971 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2972 * always taken together with ACK, SACK, or TS-opts. Any negative
2973 * values will be skipped with the seq_rtt_us < 0 check above.
2974 */
2975 tcp_update_rtt_min(sk, ca_rtt_us);
2976 tcp_rtt_estimator(sk, seq_rtt_us);
2977 tcp_set_rto(sk);
2978
2979 /* RFC6298: only reset backoff on valid RTT measurement. */
2980 inet_csk(sk)->icsk_backoff = 0;
2981 return true;
2982 }
2983
2984 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2985 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2986 {
2987 long rtt_us = -1L;
2988
2989 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2990 struct skb_mstamp now;
2991
2992 skb_mstamp_get(&now);
2993 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2994 }
2995
2996 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2997 }
2998
2999
3000 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3001 {
3002 const struct inet_connection_sock *icsk = inet_csk(sk);
3003
3004 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3005 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3006 }
3007
3008 /* Restart timer after forward progress on connection.
3009 * RFC2988 recommends to restart timer to now+rto.
3010 */
3011 void tcp_rearm_rto(struct sock *sk)
3012 {
3013 const struct inet_connection_sock *icsk = inet_csk(sk);
3014 struct tcp_sock *tp = tcp_sk(sk);
3015
3016 /* If the retrans timer is currently being used by Fast Open
3017 * for SYN-ACK retrans purpose, stay put.
3018 */
3019 if (tp->fastopen_rsk)
3020 return;
3021
3022 if (!tp->packets_out) {
3023 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3024 } else {
3025 u32 rto = inet_csk(sk)->icsk_rto;
3026 /* Offset the time elapsed after installing regular RTO */
3027 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3028 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3029 struct sk_buff *skb = tcp_write_queue_head(sk);
3030 const u32 rto_time_stamp =
3031 tcp_skb_timestamp(skb) + rto;
3032 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3033 /* delta may not be positive if the socket is locked
3034 * when the retrans timer fires and is rescheduled.
3035 */
3036 if (delta > 0)
3037 rto = delta;
3038 }
3039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3040 TCP_RTO_MAX);
3041 }
3042 }
3043
3044 /* This function is called when the delayed ER timer fires. TCP enters
3045 * fast recovery and performs fast-retransmit.
3046 */
3047 void tcp_resume_early_retransmit(struct sock *sk)
3048 {
3049 struct tcp_sock *tp = tcp_sk(sk);
3050
3051 tcp_rearm_rto(sk);
3052
3053 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3054 if (!tp->do_early_retrans)
3055 return;
3056
3057 tcp_enter_recovery(sk, false);
3058 tcp_update_scoreboard(sk, 1);
3059 tcp_xmit_retransmit_queue(sk);
3060 }
3061
3062 /* If we get here, the whole TSO packet has not been acked. */
3063 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3064 {
3065 struct tcp_sock *tp = tcp_sk(sk);
3066 u32 packets_acked;
3067
3068 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3069
3070 packets_acked = tcp_skb_pcount(skb);
3071 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3072 return 0;
3073 packets_acked -= tcp_skb_pcount(skb);
3074
3075 if (packets_acked) {
3076 BUG_ON(tcp_skb_pcount(skb) == 0);
3077 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3078 }
3079
3080 return packets_acked;
3081 }
3082
3083 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3084 u32 prior_snd_una)
3085 {
3086 const struct skb_shared_info *shinfo;
3087
3088 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3089 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3090 return;
3091
3092 shinfo = skb_shinfo(skb);
3093 if (!before(shinfo->tskey, prior_snd_una) &&
3094 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3095 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3096 }
3097
3098 /* Remove acknowledged frames from the retransmission queue. If our packet
3099 * is before the ack sequence we can discard it as it's confirmed to have
3100 * arrived at the other end.
3101 */
3102 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3103 u32 prior_snd_una, int *acked,
3104 struct tcp_sacktag_state *sack)
3105 {
3106 const struct inet_connection_sock *icsk = inet_csk(sk);
3107 struct skb_mstamp first_ackt, last_ackt, now;
3108 struct tcp_sock *tp = tcp_sk(sk);
3109 u32 prior_sacked = tp->sacked_out;
3110 u32 reord = tp->packets_out;
3111 bool fully_acked = true;
3112 long sack_rtt_us = -1L;
3113 long seq_rtt_us = -1L;
3114 long ca_rtt_us = -1L;
3115 struct sk_buff *skb;
3116 u32 pkts_acked = 0;
3117 u32 last_in_flight = 0;
3118 bool rtt_update;
3119 int flag = 0;
3120
3121 first_ackt.v64 = 0;
3122
3123 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3124 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3125 u8 sacked = scb->sacked;
3126 u32 acked_pcount;
3127
3128 tcp_ack_tstamp(sk, skb, prior_snd_una);
3129
3130 /* Determine how many packets and what bytes were acked, tso and else */
3131 if (after(scb->end_seq, tp->snd_una)) {
3132 if (tcp_skb_pcount(skb) == 1 ||
3133 !after(tp->snd_una, scb->seq))
3134 break;
3135
3136 acked_pcount = tcp_tso_acked(sk, skb);
3137 if (!acked_pcount)
3138 break;
3139
3140 fully_acked = false;
3141 } else {
3142 /* Speedup tcp_unlink_write_queue() and next loop */
3143 prefetchw(skb->next);
3144 acked_pcount = tcp_skb_pcount(skb);
3145 }
3146
3147 if (unlikely(sacked & TCPCB_RETRANS)) {
3148 if (sacked & TCPCB_SACKED_RETRANS)
3149 tp->retrans_out -= acked_pcount;
3150 flag |= FLAG_RETRANS_DATA_ACKED;
3151 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3152 last_ackt = skb->skb_mstamp;
3153 WARN_ON_ONCE(last_ackt.v64 == 0);
3154 if (!first_ackt.v64)
3155 first_ackt = last_ackt;
3156
3157 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3158 reord = min(pkts_acked, reord);
3159 if (!after(scb->end_seq, tp->high_seq))
3160 flag |= FLAG_ORIG_SACK_ACKED;
3161 }
3162
3163 if (sacked & TCPCB_SACKED_ACKED) {
3164 tp->sacked_out -= acked_pcount;
3165 } else if (tcp_is_sack(tp)) {
3166 tp->delivered += acked_pcount;
3167 if (!tcp_skb_spurious_retrans(tp, skb))
3168 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3169 }
3170 if (sacked & TCPCB_LOST)
3171 tp->lost_out -= acked_pcount;
3172
3173 tp->packets_out -= acked_pcount;
3174 pkts_acked += acked_pcount;
3175
3176 /* Initial outgoing SYN's get put onto the write_queue
3177 * just like anything else we transmit. It is not
3178 * true data, and if we misinform our callers that
3179 * this ACK acks real data, we will erroneously exit
3180 * connection startup slow start one packet too
3181 * quickly. This is severely frowned upon behavior.
3182 */
3183 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3184 flag |= FLAG_DATA_ACKED;
3185 } else {
3186 flag |= FLAG_SYN_ACKED;
3187 tp->retrans_stamp = 0;
3188 }
3189
3190 if (!fully_acked)
3191 break;
3192
3193 tcp_unlink_write_queue(skb, sk);
3194 sk_wmem_free_skb(sk, skb);
3195 if (unlikely(skb == tp->retransmit_skb_hint))
3196 tp->retransmit_skb_hint = NULL;
3197 if (unlikely(skb == tp->lost_skb_hint))
3198 tp->lost_skb_hint = NULL;
3199 }
3200
3201 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3202 tp->snd_up = tp->snd_una;
3203
3204 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3205 flag |= FLAG_SACK_RENEGING;
3206
3207 skb_mstamp_get(&now);
3208 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3209 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3210 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3211 }
3212 if (sack->first_sackt.v64) {
3213 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3214 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3215 }
3216
3217 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3218 ca_rtt_us);
3219
3220 if (flag & FLAG_ACKED) {
3221 tcp_rearm_rto(sk);
3222 if (unlikely(icsk->icsk_mtup.probe_size &&
3223 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3224 tcp_mtup_probe_success(sk);
3225 }
3226
3227 if (tcp_is_reno(tp)) {
3228 tcp_remove_reno_sacks(sk, pkts_acked);
3229 } else {
3230 int delta;
3231
3232 /* Non-retransmitted hole got filled? That's reordering */
3233 if (reord < prior_fackets)
3234 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3235
3236 delta = tcp_is_fack(tp) ? pkts_acked :
3237 prior_sacked - tp->sacked_out;
3238 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3239 }
3240
3241 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3242
3243 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3244 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3245 /* Do not re-arm RTO if the sack RTT is measured from data sent
3246 * after when the head was last (re)transmitted. Otherwise the
3247 * timeout may continue to extend in loss recovery.
3248 */
3249 tcp_rearm_rto(sk);
3250 }
3251
3252 if (icsk->icsk_ca_ops->pkts_acked) {
3253 struct ack_sample sample = { .pkts_acked = pkts_acked,
3254 .rtt_us = ca_rtt_us,
3255 .in_flight = last_in_flight };
3256
3257 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3258 }
3259
3260 #if FASTRETRANS_DEBUG > 0
3261 WARN_ON((int)tp->sacked_out < 0);
3262 WARN_ON((int)tp->lost_out < 0);
3263 WARN_ON((int)tp->retrans_out < 0);
3264 if (!tp->packets_out && tcp_is_sack(tp)) {
3265 icsk = inet_csk(sk);
3266 if (tp->lost_out) {
3267 pr_debug("Leak l=%u %d\n",
3268 tp->lost_out, icsk->icsk_ca_state);
3269 tp->lost_out = 0;
3270 }
3271 if (tp->sacked_out) {
3272 pr_debug("Leak s=%u %d\n",
3273 tp->sacked_out, icsk->icsk_ca_state);
3274 tp->sacked_out = 0;
3275 }
3276 if (tp->retrans_out) {
3277 pr_debug("Leak r=%u %d\n",
3278 tp->retrans_out, icsk->icsk_ca_state);
3279 tp->retrans_out = 0;
3280 }
3281 }
3282 #endif
3283 *acked = pkts_acked;
3284 return flag;
3285 }
3286
3287 static void tcp_ack_probe(struct sock *sk)
3288 {
3289 const struct tcp_sock *tp = tcp_sk(sk);
3290 struct inet_connection_sock *icsk = inet_csk(sk);
3291
3292 /* Was it a usable window open? */
3293
3294 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3295 icsk->icsk_backoff = 0;
3296 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3297 /* Socket must be waked up by subsequent tcp_data_snd_check().
3298 * This function is not for random using!
3299 */
3300 } else {
3301 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3302
3303 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3304 when, TCP_RTO_MAX);
3305 }
3306 }
3307
3308 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3309 {
3310 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3311 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3312 }
3313
3314 /* Decide wheather to run the increase function of congestion control. */
3315 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3316 {
3317 /* If reordering is high then always grow cwnd whenever data is
3318 * delivered regardless of its ordering. Otherwise stay conservative
3319 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3320 * new SACK or ECE mark may first advance cwnd here and later reduce
3321 * cwnd in tcp_fastretrans_alert() based on more states.
3322 */
3323 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3324 return flag & FLAG_FORWARD_PROGRESS;
3325
3326 return flag & FLAG_DATA_ACKED;
3327 }
3328
3329 /* The "ultimate" congestion control function that aims to replace the rigid
3330 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3331 * It's called toward the end of processing an ACK with precise rate
3332 * information. All transmission or retransmission are delayed afterwards.
3333 */
3334 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3335 int flag)
3336 {
3337 if (tcp_in_cwnd_reduction(sk)) {
3338 /* Reduce cwnd if state mandates */
3339 tcp_cwnd_reduction(sk, acked_sacked, flag);
3340 } else if (tcp_may_raise_cwnd(sk, flag)) {
3341 /* Advance cwnd if state allows */
3342 tcp_cong_avoid(sk, ack, acked_sacked);
3343 }
3344 tcp_update_pacing_rate(sk);
3345 }
3346
3347 /* Check that window update is acceptable.
3348 * The function assumes that snd_una<=ack<=snd_next.
3349 */
3350 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3351 const u32 ack, const u32 ack_seq,
3352 const u32 nwin)
3353 {
3354 return after(ack, tp->snd_una) ||
3355 after(ack_seq, tp->snd_wl1) ||
3356 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3357 }
3358
3359 /* If we update tp->snd_una, also update tp->bytes_acked */
3360 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3361 {
3362 u32 delta = ack - tp->snd_una;
3363
3364 sock_owned_by_me((struct sock *)tp);
3365 u64_stats_update_begin_raw(&tp->syncp);
3366 tp->bytes_acked += delta;
3367 u64_stats_update_end_raw(&tp->syncp);
3368 tp->snd_una = ack;
3369 }
3370
3371 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3372 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3373 {
3374 u32 delta = seq - tp->rcv_nxt;
3375
3376 sock_owned_by_me((struct sock *)tp);
3377 u64_stats_update_begin_raw(&tp->syncp);
3378 tp->bytes_received += delta;
3379 u64_stats_update_end_raw(&tp->syncp);
3380 tp->rcv_nxt = seq;
3381 }
3382
3383 /* Update our send window.
3384 *
3385 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387 */
3388 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389 u32 ack_seq)
3390 {
3391 struct tcp_sock *tp = tcp_sk(sk);
3392 int flag = 0;
3393 u32 nwin = ntohs(tcp_hdr(skb)->window);
3394
3395 if (likely(!tcp_hdr(skb)->syn))
3396 nwin <<= tp->rx_opt.snd_wscale;
3397
3398 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399 flag |= FLAG_WIN_UPDATE;
3400 tcp_update_wl(tp, ack_seq);
3401
3402 if (tp->snd_wnd != nwin) {
3403 tp->snd_wnd = nwin;
3404
3405 /* Note, it is the only place, where
3406 * fast path is recovered for sending TCP.
3407 */
3408 tp->pred_flags = 0;
3409 tcp_fast_path_check(sk);
3410
3411 if (tcp_send_head(sk))
3412 tcp_slow_start_after_idle_check(sk);
3413
3414 if (nwin > tp->max_window) {
3415 tp->max_window = nwin;
3416 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417 }
3418 }
3419 }
3420
3421 tcp_snd_una_update(tp, ack);
3422
3423 return flag;
3424 }
3425
3426 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3427 u32 *last_oow_ack_time)
3428 {
3429 if (*last_oow_ack_time) {
3430 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3431
3432 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3433 NET_INC_STATS(net, mib_idx);
3434 return true; /* rate-limited: don't send yet! */
3435 }
3436 }
3437
3438 *last_oow_ack_time = tcp_time_stamp;
3439
3440 return false; /* not rate-limited: go ahead, send dupack now! */
3441 }
3442
3443 /* Return true if we're currently rate-limiting out-of-window ACKs and
3444 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3445 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3446 * attacks that send repeated SYNs or ACKs for the same connection. To
3447 * do this, we do not send a duplicate SYNACK or ACK if the remote
3448 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3449 */
3450 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3451 int mib_idx, u32 *last_oow_ack_time)
3452 {
3453 /* Data packets without SYNs are not likely part of an ACK loop. */
3454 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3455 !tcp_hdr(skb)->syn)
3456 return false;
3457
3458 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3459 }
3460
3461 /* RFC 5961 7 [ACK Throttling] */
3462 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3463 {
3464 /* unprotected vars, we dont care of overwrites */
3465 static u32 challenge_timestamp;
3466 static unsigned int challenge_count;
3467 struct tcp_sock *tp = tcp_sk(sk);
3468 u32 count, now;
3469
3470 /* First check our per-socket dupack rate limit. */
3471 if (__tcp_oow_rate_limited(sock_net(sk),
3472 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3473 &tp->last_oow_ack_time))
3474 return;
3475
3476 /* Then check host-wide RFC 5961 rate limit. */
3477 now = jiffies / HZ;
3478 if (now != challenge_timestamp) {
3479 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3480
3481 challenge_timestamp = now;
3482 WRITE_ONCE(challenge_count, half +
3483 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3484 }
3485 count = READ_ONCE(challenge_count);
3486 if (count > 0) {
3487 WRITE_ONCE(challenge_count, count - 1);
3488 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3489 tcp_send_ack(sk);
3490 }
3491 }
3492
3493 static void tcp_store_ts_recent(struct tcp_sock *tp)
3494 {
3495 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3496 tp->rx_opt.ts_recent_stamp = get_seconds();
3497 }
3498
3499 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3500 {
3501 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3502 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3503 * extra check below makes sure this can only happen
3504 * for pure ACK frames. -DaveM
3505 *
3506 * Not only, also it occurs for expired timestamps.
3507 */
3508
3509 if (tcp_paws_check(&tp->rx_opt, 0))
3510 tcp_store_ts_recent(tp);
3511 }
3512 }
3513
3514 /* This routine deals with acks during a TLP episode.
3515 * We mark the end of a TLP episode on receiving TLP dupack or when
3516 * ack is after tlp_high_seq.
3517 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3518 */
3519 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3520 {
3521 struct tcp_sock *tp = tcp_sk(sk);
3522
3523 if (before(ack, tp->tlp_high_seq))
3524 return;
3525
3526 if (flag & FLAG_DSACKING_ACK) {
3527 /* This DSACK means original and TLP probe arrived; no loss */
3528 tp->tlp_high_seq = 0;
3529 } else if (after(ack, tp->tlp_high_seq)) {
3530 /* ACK advances: there was a loss, so reduce cwnd. Reset
3531 * tlp_high_seq in tcp_init_cwnd_reduction()
3532 */
3533 tcp_init_cwnd_reduction(sk);
3534 tcp_set_ca_state(sk, TCP_CA_CWR);
3535 tcp_end_cwnd_reduction(sk);
3536 tcp_try_keep_open(sk);
3537 NET_INC_STATS(sock_net(sk),
3538 LINUX_MIB_TCPLOSSPROBERECOVERY);
3539 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3540 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3541 /* Pure dupack: original and TLP probe arrived; no loss */
3542 tp->tlp_high_seq = 0;
3543 }
3544 }
3545
3546 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3547 {
3548 const struct inet_connection_sock *icsk = inet_csk(sk);
3549
3550 if (icsk->icsk_ca_ops->in_ack_event)
3551 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3552 }
3553
3554 /* Congestion control has updated the cwnd already. So if we're in
3555 * loss recovery then now we do any new sends (for FRTO) or
3556 * retransmits (for CA_Loss or CA_recovery) that make sense.
3557 */
3558 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3559 {
3560 struct tcp_sock *tp = tcp_sk(sk);
3561
3562 if (rexmit == REXMIT_NONE)
3563 return;
3564
3565 if (unlikely(rexmit == 2)) {
3566 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3567 TCP_NAGLE_OFF);
3568 if (after(tp->snd_nxt, tp->high_seq))
3569 return;
3570 tp->frto = 0;
3571 }
3572 tcp_xmit_retransmit_queue(sk);
3573 }
3574
3575 /* This routine deals with incoming acks, but not outgoing ones. */
3576 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3577 {
3578 struct inet_connection_sock *icsk = inet_csk(sk);
3579 struct tcp_sock *tp = tcp_sk(sk);
3580 struct tcp_sacktag_state sack_state;
3581 u32 prior_snd_una = tp->snd_una;
3582 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3583 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3584 bool is_dupack = false;
3585 u32 prior_fackets;
3586 int prior_packets = tp->packets_out;
3587 u32 prior_delivered = tp->delivered;
3588 int acked = 0; /* Number of packets newly acked */
3589 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3590
3591 sack_state.first_sackt.v64 = 0;
3592
3593 /* We very likely will need to access write queue head. */
3594 prefetchw(sk->sk_write_queue.next);
3595
3596 /* If the ack is older than previous acks
3597 * then we can probably ignore it.
3598 */
3599 if (before(ack, prior_snd_una)) {
3600 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3601 if (before(ack, prior_snd_una - tp->max_window)) {
3602 tcp_send_challenge_ack(sk, skb);
3603 return -1;
3604 }
3605 goto old_ack;
3606 }
3607
3608 /* If the ack includes data we haven't sent yet, discard
3609 * this segment (RFC793 Section 3.9).
3610 */
3611 if (after(ack, tp->snd_nxt))
3612 goto invalid_ack;
3613
3614 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3615 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3616 tcp_rearm_rto(sk);
3617
3618 if (after(ack, prior_snd_una)) {
3619 flag |= FLAG_SND_UNA_ADVANCED;
3620 icsk->icsk_retransmits = 0;
3621 }
3622
3623 prior_fackets = tp->fackets_out;
3624
3625 /* ts_recent update must be made after we are sure that the packet
3626 * is in window.
3627 */
3628 if (flag & FLAG_UPDATE_TS_RECENT)
3629 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3630
3631 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3632 /* Window is constant, pure forward advance.
3633 * No more checks are required.
3634 * Note, we use the fact that SND.UNA>=SND.WL2.
3635 */
3636 tcp_update_wl(tp, ack_seq);
3637 tcp_snd_una_update(tp, ack);
3638 flag |= FLAG_WIN_UPDATE;
3639
3640 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3641
3642 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3643 } else {
3644 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3645
3646 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3647 flag |= FLAG_DATA;
3648 else
3649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3650
3651 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3652
3653 if (TCP_SKB_CB(skb)->sacked)
3654 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3655 &sack_state);
3656
3657 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3658 flag |= FLAG_ECE;
3659 ack_ev_flags |= CA_ACK_ECE;
3660 }
3661
3662 if (flag & FLAG_WIN_UPDATE)
3663 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3664
3665 tcp_in_ack_event(sk, ack_ev_flags);
3666 }
3667
3668 /* We passed data and got it acked, remove any soft error
3669 * log. Something worked...
3670 */
3671 sk->sk_err_soft = 0;
3672 icsk->icsk_probes_out = 0;
3673 tp->rcv_tstamp = tcp_time_stamp;
3674 if (!prior_packets)
3675 goto no_queue;
3676
3677 /* See if we can take anything off of the retransmit queue. */
3678 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3679 &sack_state);
3680
3681 if (tcp_ack_is_dubious(sk, flag)) {
3682 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3683 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3684 }
3685 if (tp->tlp_high_seq)
3686 tcp_process_tlp_ack(sk, ack, flag);
3687
3688 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3689 struct dst_entry *dst = __sk_dst_get(sk);
3690 if (dst)
3691 dst_confirm(dst);
3692 }
3693
3694 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3695 tcp_schedule_loss_probe(sk);
3696 tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3697 tcp_xmit_recovery(sk, rexmit);
3698 return 1;
3699
3700 no_queue:
3701 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3702 if (flag & FLAG_DSACKING_ACK)
3703 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3704 /* If this ack opens up a zero window, clear backoff. It was
3705 * being used to time the probes, and is probably far higher than
3706 * it needs to be for normal retransmission.
3707 */
3708 if (tcp_send_head(sk))
3709 tcp_ack_probe(sk);
3710
3711 if (tp->tlp_high_seq)
3712 tcp_process_tlp_ack(sk, ack, flag);
3713 return 1;
3714
3715 invalid_ack:
3716 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3717 return -1;
3718
3719 old_ack:
3720 /* If data was SACKed, tag it and see if we should send more data.
3721 * If data was DSACKed, see if we can undo a cwnd reduction.
3722 */
3723 if (TCP_SKB_CB(skb)->sacked) {
3724 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3725 &sack_state);
3726 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3727 tcp_xmit_recovery(sk, rexmit);
3728 }
3729
3730 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3731 return 0;
3732 }
3733
3734 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3735 bool syn, struct tcp_fastopen_cookie *foc,
3736 bool exp_opt)
3737 {
3738 /* Valid only in SYN or SYN-ACK with an even length. */
3739 if (!foc || !syn || len < 0 || (len & 1))
3740 return;
3741
3742 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3743 len <= TCP_FASTOPEN_COOKIE_MAX)
3744 memcpy(foc->val, cookie, len);
3745 else if (len != 0)
3746 len = -1;
3747 foc->len = len;
3748 foc->exp = exp_opt;
3749 }
3750
3751 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3752 * But, this can also be called on packets in the established flow when
3753 * the fast version below fails.
3754 */
3755 void tcp_parse_options(const struct sk_buff *skb,
3756 struct tcp_options_received *opt_rx, int estab,
3757 struct tcp_fastopen_cookie *foc)
3758 {
3759 const unsigned char *ptr;
3760 const struct tcphdr *th = tcp_hdr(skb);
3761 int length = (th->doff * 4) - sizeof(struct tcphdr);
3762
3763 ptr = (const unsigned char *)(th + 1);
3764 opt_rx->saw_tstamp = 0;
3765
3766 while (length > 0) {
3767 int opcode = *ptr++;
3768 int opsize;
3769
3770 switch (opcode) {
3771 case TCPOPT_EOL:
3772 return;
3773 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3774 length--;
3775 continue;
3776 default:
3777 opsize = *ptr++;
3778 if (opsize < 2) /* "silly options" */
3779 return;
3780 if (opsize > length)
3781 return; /* don't parse partial options */
3782 switch (opcode) {
3783 case TCPOPT_MSS:
3784 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3785 u16 in_mss = get_unaligned_be16(ptr);
3786 if (in_mss) {
3787 if (opt_rx->user_mss &&
3788 opt_rx->user_mss < in_mss)
3789 in_mss = opt_rx->user_mss;
3790 opt_rx->mss_clamp = in_mss;
3791 }
3792 }
3793 break;
3794 case TCPOPT_WINDOW:
3795 if (opsize == TCPOLEN_WINDOW && th->syn &&
3796 !estab && sysctl_tcp_window_scaling) {
3797 __u8 snd_wscale = *(__u8 *)ptr;
3798 opt_rx->wscale_ok = 1;
3799 if (snd_wscale > 14) {
3800 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3801 __func__,
3802 snd_wscale);
3803 snd_wscale = 14;
3804 }
3805 opt_rx->snd_wscale = snd_wscale;
3806 }
3807 break;
3808 case TCPOPT_TIMESTAMP:
3809 if ((opsize == TCPOLEN_TIMESTAMP) &&
3810 ((estab && opt_rx->tstamp_ok) ||
3811 (!estab && sysctl_tcp_timestamps))) {
3812 opt_rx->saw_tstamp = 1;
3813 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3814 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3815 }
3816 break;
3817 case TCPOPT_SACK_PERM:
3818 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3819 !estab && sysctl_tcp_sack) {
3820 opt_rx->sack_ok = TCP_SACK_SEEN;
3821 tcp_sack_reset(opt_rx);
3822 }
3823 break;
3824
3825 case TCPOPT_SACK:
3826 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3827 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3828 opt_rx->sack_ok) {
3829 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3830 }
3831 break;
3832 #ifdef CONFIG_TCP_MD5SIG
3833 case TCPOPT_MD5SIG:
3834 /*
3835 * The MD5 Hash has already been
3836 * checked (see tcp_v{4,6}_do_rcv()).
3837 */
3838 break;
3839 #endif
3840 case TCPOPT_FASTOPEN:
3841 tcp_parse_fastopen_option(
3842 opsize - TCPOLEN_FASTOPEN_BASE,
3843 ptr, th->syn, foc, false);
3844 break;
3845
3846 case TCPOPT_EXP:
3847 /* Fast Open option shares code 254 using a
3848 * 16 bits magic number.
3849 */
3850 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3851 get_unaligned_be16(ptr) ==
3852 TCPOPT_FASTOPEN_MAGIC)
3853 tcp_parse_fastopen_option(opsize -
3854 TCPOLEN_EXP_FASTOPEN_BASE,
3855 ptr + 2, th->syn, foc, true);
3856 break;
3857
3858 }
3859 ptr += opsize-2;
3860 length -= opsize;
3861 }
3862 }
3863 }
3864 EXPORT_SYMBOL(tcp_parse_options);
3865
3866 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3867 {
3868 const __be32 *ptr = (const __be32 *)(th + 1);
3869
3870 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3871 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3872 tp->rx_opt.saw_tstamp = 1;
3873 ++ptr;
3874 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3875 ++ptr;
3876 if (*ptr)
3877 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3878 else
3879 tp->rx_opt.rcv_tsecr = 0;
3880 return true;
3881 }
3882 return false;
3883 }
3884
3885 /* Fast parse options. This hopes to only see timestamps.
3886 * If it is wrong it falls back on tcp_parse_options().
3887 */
3888 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3889 const struct tcphdr *th, struct tcp_sock *tp)
3890 {
3891 /* In the spirit of fast parsing, compare doff directly to constant
3892 * values. Because equality is used, short doff can be ignored here.
3893 */
3894 if (th->doff == (sizeof(*th) / 4)) {
3895 tp->rx_opt.saw_tstamp = 0;
3896 return false;
3897 } else if (tp->rx_opt.tstamp_ok &&
3898 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3899 if (tcp_parse_aligned_timestamp(tp, th))
3900 return true;
3901 }
3902
3903 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3904 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3905 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3906
3907 return true;
3908 }
3909
3910 #ifdef CONFIG_TCP_MD5SIG
3911 /*
3912 * Parse MD5 Signature option
3913 */
3914 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3915 {
3916 int length = (th->doff << 2) - sizeof(*th);
3917 const u8 *ptr = (const u8 *)(th + 1);
3918
3919 /* If the TCP option is too short, we can short cut */
3920 if (length < TCPOLEN_MD5SIG)
3921 return NULL;
3922
3923 while (length > 0) {
3924 int opcode = *ptr++;
3925 int opsize;
3926
3927 switch (opcode) {
3928 case TCPOPT_EOL:
3929 return NULL;
3930 case TCPOPT_NOP:
3931 length--;
3932 continue;
3933 default:
3934 opsize = *ptr++;
3935 if (opsize < 2 || opsize > length)
3936 return NULL;
3937 if (opcode == TCPOPT_MD5SIG)
3938 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3939 }
3940 ptr += opsize - 2;
3941 length -= opsize;
3942 }
3943 return NULL;
3944 }
3945 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3946 #endif
3947
3948 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3949 *
3950 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3951 * it can pass through stack. So, the following predicate verifies that
3952 * this segment is not used for anything but congestion avoidance or
3953 * fast retransmit. Moreover, we even are able to eliminate most of such
3954 * second order effects, if we apply some small "replay" window (~RTO)
3955 * to timestamp space.
3956 *
3957 * All these measures still do not guarantee that we reject wrapped ACKs
3958 * on networks with high bandwidth, when sequence space is recycled fastly,
3959 * but it guarantees that such events will be very rare and do not affect
3960 * connection seriously. This doesn't look nice, but alas, PAWS is really
3961 * buggy extension.
3962 *
3963 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3964 * states that events when retransmit arrives after original data are rare.
3965 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3966 * the biggest problem on large power networks even with minor reordering.
3967 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3968 * up to bandwidth of 18Gigabit/sec. 8) ]
3969 */
3970
3971 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3972 {
3973 const struct tcp_sock *tp = tcp_sk(sk);
3974 const struct tcphdr *th = tcp_hdr(skb);
3975 u32 seq = TCP_SKB_CB(skb)->seq;
3976 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3977
3978 return (/* 1. Pure ACK with correct sequence number. */
3979 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3980
3981 /* 2. ... and duplicate ACK. */
3982 ack == tp->snd_una &&
3983
3984 /* 3. ... and does not update window. */
3985 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3986
3987 /* 4. ... and sits in replay window. */
3988 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3989 }
3990
3991 static inline bool tcp_paws_discard(const struct sock *sk,
3992 const struct sk_buff *skb)
3993 {
3994 const struct tcp_sock *tp = tcp_sk(sk);
3995
3996 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3997 !tcp_disordered_ack(sk, skb);
3998 }
3999
4000 /* Check segment sequence number for validity.
4001 *
4002 * Segment controls are considered valid, if the segment
4003 * fits to the window after truncation to the window. Acceptability
4004 * of data (and SYN, FIN, of course) is checked separately.
4005 * See tcp_data_queue(), for example.
4006 *
4007 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4008 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4009 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4010 * (borrowed from freebsd)
4011 */
4012
4013 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4014 {
4015 return !before(end_seq, tp->rcv_wup) &&
4016 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4017 }
4018
4019 /* When we get a reset we do this. */
4020 void tcp_reset(struct sock *sk)
4021 {
4022 /* We want the right error as BSD sees it (and indeed as we do). */
4023 switch (sk->sk_state) {
4024 case TCP_SYN_SENT:
4025 sk->sk_err = ECONNREFUSED;
4026 break;
4027 case TCP_CLOSE_WAIT:
4028 sk->sk_err = EPIPE;
4029 break;
4030 case TCP_CLOSE:
4031 return;
4032 default:
4033 sk->sk_err = ECONNRESET;
4034 }
4035 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4036 smp_wmb();
4037
4038 if (!sock_flag(sk, SOCK_DEAD))
4039 sk->sk_error_report(sk);
4040
4041 tcp_done(sk);
4042 }
4043
4044 /*
4045 * Process the FIN bit. This now behaves as it is supposed to work
4046 * and the FIN takes effect when it is validly part of sequence
4047 * space. Not before when we get holes.
4048 *
4049 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4050 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4051 * TIME-WAIT)
4052 *
4053 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4054 * close and we go into CLOSING (and later onto TIME-WAIT)
4055 *
4056 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4057 */
4058 void tcp_fin(struct sock *sk)
4059 {
4060 struct tcp_sock *tp = tcp_sk(sk);
4061
4062 inet_csk_schedule_ack(sk);
4063
4064 sk->sk_shutdown |= RCV_SHUTDOWN;
4065 sock_set_flag(sk, SOCK_DONE);
4066
4067 switch (sk->sk_state) {
4068 case TCP_SYN_RECV:
4069 case TCP_ESTABLISHED:
4070 /* Move to CLOSE_WAIT */
4071 tcp_set_state(sk, TCP_CLOSE_WAIT);
4072 inet_csk(sk)->icsk_ack.pingpong = 1;
4073 break;
4074
4075 case TCP_CLOSE_WAIT:
4076 case TCP_CLOSING:
4077 /* Received a retransmission of the FIN, do
4078 * nothing.
4079 */
4080 break;
4081 case TCP_LAST_ACK:
4082 /* RFC793: Remain in the LAST-ACK state. */
4083 break;
4084
4085 case TCP_FIN_WAIT1:
4086 /* This case occurs when a simultaneous close
4087 * happens, we must ack the received FIN and
4088 * enter the CLOSING state.
4089 */
4090 tcp_send_ack(sk);
4091 tcp_set_state(sk, TCP_CLOSING);
4092 break;
4093 case TCP_FIN_WAIT2:
4094 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4095 tcp_send_ack(sk);
4096 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4097 break;
4098 default:
4099 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4100 * cases we should never reach this piece of code.
4101 */
4102 pr_err("%s: Impossible, sk->sk_state=%d\n",
4103 __func__, sk->sk_state);
4104 break;
4105 }
4106
4107 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4108 * Probably, we should reset in this case. For now drop them.
4109 */
4110 __skb_queue_purge(&tp->out_of_order_queue);
4111 if (tcp_is_sack(tp))
4112 tcp_sack_reset(&tp->rx_opt);
4113 sk_mem_reclaim(sk);
4114
4115 if (!sock_flag(sk, SOCK_DEAD)) {
4116 sk->sk_state_change(sk);
4117
4118 /* Do not send POLL_HUP for half duplex close. */
4119 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4120 sk->sk_state == TCP_CLOSE)
4121 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4122 else
4123 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4124 }
4125 }
4126
4127 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4128 u32 end_seq)
4129 {
4130 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4131 if (before(seq, sp->start_seq))
4132 sp->start_seq = seq;
4133 if (after(end_seq, sp->end_seq))
4134 sp->end_seq = end_seq;
4135 return true;
4136 }
4137 return false;
4138 }
4139
4140 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4141 {
4142 struct tcp_sock *tp = tcp_sk(sk);
4143
4144 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4145 int mib_idx;
4146
4147 if (before(seq, tp->rcv_nxt))
4148 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4149 else
4150 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4151
4152 NET_INC_STATS(sock_net(sk), mib_idx);
4153
4154 tp->rx_opt.dsack = 1;
4155 tp->duplicate_sack[0].start_seq = seq;
4156 tp->duplicate_sack[0].end_seq = end_seq;
4157 }
4158 }
4159
4160 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4161 {
4162 struct tcp_sock *tp = tcp_sk(sk);
4163
4164 if (!tp->rx_opt.dsack)
4165 tcp_dsack_set(sk, seq, end_seq);
4166 else
4167 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4168 }
4169
4170 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4171 {
4172 struct tcp_sock *tp = tcp_sk(sk);
4173
4174 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4175 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4176 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4177 tcp_enter_quickack_mode(sk);
4178
4179 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4180 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4181
4182 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4183 end_seq = tp->rcv_nxt;
4184 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4185 }
4186 }
4187
4188 tcp_send_ack(sk);
4189 }
4190
4191 /* These routines update the SACK block as out-of-order packets arrive or
4192 * in-order packets close up the sequence space.
4193 */
4194 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4195 {
4196 int this_sack;
4197 struct tcp_sack_block *sp = &tp->selective_acks[0];
4198 struct tcp_sack_block *swalk = sp + 1;
4199
4200 /* See if the recent change to the first SACK eats into
4201 * or hits the sequence space of other SACK blocks, if so coalesce.
4202 */
4203 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4204 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4205 int i;
4206
4207 /* Zap SWALK, by moving every further SACK up by one slot.
4208 * Decrease num_sacks.
4209 */
4210 tp->rx_opt.num_sacks--;
4211 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4212 sp[i] = sp[i + 1];
4213 continue;
4214 }
4215 this_sack++, swalk++;
4216 }
4217 }
4218
4219 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4220 {
4221 struct tcp_sock *tp = tcp_sk(sk);
4222 struct tcp_sack_block *sp = &tp->selective_acks[0];
4223 int cur_sacks = tp->rx_opt.num_sacks;
4224 int this_sack;
4225
4226 if (!cur_sacks)
4227 goto new_sack;
4228
4229 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4230 if (tcp_sack_extend(sp, seq, end_seq)) {
4231 /* Rotate this_sack to the first one. */
4232 for (; this_sack > 0; this_sack--, sp--)
4233 swap(*sp, *(sp - 1));
4234 if (cur_sacks > 1)
4235 tcp_sack_maybe_coalesce(tp);
4236 return;
4237 }
4238 }
4239
4240 /* Could not find an adjacent existing SACK, build a new one,
4241 * put it at the front, and shift everyone else down. We
4242 * always know there is at least one SACK present already here.
4243 *
4244 * If the sack array is full, forget about the last one.
4245 */
4246 if (this_sack >= TCP_NUM_SACKS) {
4247 this_sack--;
4248 tp->rx_opt.num_sacks--;
4249 sp--;
4250 }
4251 for (; this_sack > 0; this_sack--, sp--)
4252 *sp = *(sp - 1);
4253
4254 new_sack:
4255 /* Build the new head SACK, and we're done. */
4256 sp->start_seq = seq;
4257 sp->end_seq = end_seq;
4258 tp->rx_opt.num_sacks++;
4259 }
4260
4261 /* RCV.NXT advances, some SACKs should be eaten. */
4262
4263 static void tcp_sack_remove(struct tcp_sock *tp)
4264 {
4265 struct tcp_sack_block *sp = &tp->selective_acks[0];
4266 int num_sacks = tp->rx_opt.num_sacks;
4267 int this_sack;
4268
4269 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4270 if (skb_queue_empty(&tp->out_of_order_queue)) {
4271 tp->rx_opt.num_sacks = 0;
4272 return;
4273 }
4274
4275 for (this_sack = 0; this_sack < num_sacks;) {
4276 /* Check if the start of the sack is covered by RCV.NXT. */
4277 if (!before(tp->rcv_nxt, sp->start_seq)) {
4278 int i;
4279
4280 /* RCV.NXT must cover all the block! */
4281 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4282
4283 /* Zap this SACK, by moving forward any other SACKS. */
4284 for (i = this_sack+1; i < num_sacks; i++)
4285 tp->selective_acks[i-1] = tp->selective_acks[i];
4286 num_sacks--;
4287 continue;
4288 }
4289 this_sack++;
4290 sp++;
4291 }
4292 tp->rx_opt.num_sacks = num_sacks;
4293 }
4294
4295 /**
4296 * tcp_try_coalesce - try to merge skb to prior one
4297 * @sk: socket
4298 * @to: prior buffer
4299 * @from: buffer to add in queue
4300 * @fragstolen: pointer to boolean
4301 *
4302 * Before queueing skb @from after @to, try to merge them
4303 * to reduce overall memory use and queue lengths, if cost is small.
4304 * Packets in ofo or receive queues can stay a long time.
4305 * Better try to coalesce them right now to avoid future collapses.
4306 * Returns true if caller should free @from instead of queueing it
4307 */
4308 static bool tcp_try_coalesce(struct sock *sk,
4309 struct sk_buff *to,
4310 struct sk_buff *from,
4311 bool *fragstolen)
4312 {
4313 int delta;
4314
4315 *fragstolen = false;
4316
4317 /* Its possible this segment overlaps with prior segment in queue */
4318 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4319 return false;
4320
4321 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4322 return false;
4323
4324 atomic_add(delta, &sk->sk_rmem_alloc);
4325 sk_mem_charge(sk, delta);
4326 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4327 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4328 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4329 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4330 return true;
4331 }
4332
4333 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4334 {
4335 sk_drops_add(sk, skb);
4336 __kfree_skb(skb);
4337 }
4338
4339 /* This one checks to see if we can put data from the
4340 * out_of_order queue into the receive_queue.
4341 */
4342 static void tcp_ofo_queue(struct sock *sk)
4343 {
4344 struct tcp_sock *tp = tcp_sk(sk);
4345 __u32 dsack_high = tp->rcv_nxt;
4346 struct sk_buff *skb, *tail;
4347 bool fragstolen, eaten;
4348
4349 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4350 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4351 break;
4352
4353 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4354 __u32 dsack = dsack_high;
4355 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4356 dsack_high = TCP_SKB_CB(skb)->end_seq;
4357 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4358 }
4359
4360 __skb_unlink(skb, &tp->out_of_order_queue);
4361 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4362 SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 tcp_drop(sk, skb);
4364 continue;
4365 }
4366 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 TCP_SKB_CB(skb)->end_seq);
4369
4370 tail = skb_peek_tail(&sk->sk_receive_queue);
4371 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4372 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 if (!eaten)
4374 __skb_queue_tail(&sk->sk_receive_queue, skb);
4375 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4376 tcp_fin(sk);
4377 if (eaten)
4378 kfree_skb_partial(skb, fragstolen);
4379 }
4380 }
4381
4382 static bool tcp_prune_ofo_queue(struct sock *sk);
4383 static int tcp_prune_queue(struct sock *sk);
4384
4385 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4386 unsigned int size)
4387 {
4388 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4389 !sk_rmem_schedule(sk, skb, size)) {
4390
4391 if (tcp_prune_queue(sk) < 0)
4392 return -1;
4393
4394 if (!sk_rmem_schedule(sk, skb, size)) {
4395 if (!tcp_prune_ofo_queue(sk))
4396 return -1;
4397
4398 if (!sk_rmem_schedule(sk, skb, size))
4399 return -1;
4400 }
4401 }
4402 return 0;
4403 }
4404
4405 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4406 {
4407 struct tcp_sock *tp = tcp_sk(sk);
4408 struct sk_buff *skb1;
4409 u32 seq, end_seq;
4410
4411 tcp_ecn_check_ce(tp, skb);
4412
4413 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4415 tcp_drop(sk, skb);
4416 return;
4417 }
4418
4419 /* Disable header prediction. */
4420 tp->pred_flags = 0;
4421 inet_csk_schedule_ack(sk);
4422
4423 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4424 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4425 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4426
4427 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4428 if (!skb1) {
4429 /* Initial out of order segment, build 1 SACK. */
4430 if (tcp_is_sack(tp)) {
4431 tp->rx_opt.num_sacks = 1;
4432 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4433 tp->selective_acks[0].end_seq =
4434 TCP_SKB_CB(skb)->end_seq;
4435 }
4436 __skb_queue_head(&tp->out_of_order_queue, skb);
4437 goto end;
4438 }
4439
4440 seq = TCP_SKB_CB(skb)->seq;
4441 end_seq = TCP_SKB_CB(skb)->end_seq;
4442
4443 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4444 bool fragstolen;
4445
4446 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4447 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4448 } else {
4449 tcp_grow_window(sk, skb);
4450 kfree_skb_partial(skb, fragstolen);
4451 skb = NULL;
4452 }
4453
4454 if (!tp->rx_opt.num_sacks ||
4455 tp->selective_acks[0].end_seq != seq)
4456 goto add_sack;
4457
4458 /* Common case: data arrive in order after hole. */
4459 tp->selective_acks[0].end_seq = end_seq;
4460 goto end;
4461 }
4462
4463 /* Find place to insert this segment. */
4464 while (1) {
4465 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4466 break;
4467 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4468 skb1 = NULL;
4469 break;
4470 }
4471 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4472 }
4473
4474 /* Do skb overlap to previous one? */
4475 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 /* All the bits are present. Drop. */
4478 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4479 tcp_drop(sk, skb);
4480 skb = NULL;
4481 tcp_dsack_set(sk, seq, end_seq);
4482 goto add_sack;
4483 }
4484 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4485 /* Partial overlap. */
4486 tcp_dsack_set(sk, seq,
4487 TCP_SKB_CB(skb1)->end_seq);
4488 } else {
4489 if (skb_queue_is_first(&tp->out_of_order_queue,
4490 skb1))
4491 skb1 = NULL;
4492 else
4493 skb1 = skb_queue_prev(
4494 &tp->out_of_order_queue,
4495 skb1);
4496 }
4497 }
4498 if (!skb1)
4499 __skb_queue_head(&tp->out_of_order_queue, skb);
4500 else
4501 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4502
4503 /* And clean segments covered by new one as whole. */
4504 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4505 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4506
4507 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4508 break;
4509 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4510 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4511 end_seq);
4512 break;
4513 }
4514 __skb_unlink(skb1, &tp->out_of_order_queue);
4515 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4516 TCP_SKB_CB(skb1)->end_seq);
4517 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4518 tcp_drop(sk, skb1);
4519 }
4520
4521 add_sack:
4522 if (tcp_is_sack(tp))
4523 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4524 end:
4525 if (skb) {
4526 tcp_grow_window(sk, skb);
4527 skb_set_owner_r(skb, sk);
4528 }
4529 }
4530
4531 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4532 bool *fragstolen)
4533 {
4534 int eaten;
4535 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4536
4537 __skb_pull(skb, hdrlen);
4538 eaten = (tail &&
4539 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4540 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4541 if (!eaten) {
4542 __skb_queue_tail(&sk->sk_receive_queue, skb);
4543 skb_set_owner_r(skb, sk);
4544 }
4545 return eaten;
4546 }
4547
4548 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4549 {
4550 struct sk_buff *skb;
4551 int err = -ENOMEM;
4552 int data_len = 0;
4553 bool fragstolen;
4554
4555 if (size == 0)
4556 return 0;
4557
4558 if (size > PAGE_SIZE) {
4559 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4560
4561 data_len = npages << PAGE_SHIFT;
4562 size = data_len + (size & ~PAGE_MASK);
4563 }
4564 skb = alloc_skb_with_frags(size - data_len, data_len,
4565 PAGE_ALLOC_COSTLY_ORDER,
4566 &err, sk->sk_allocation);
4567 if (!skb)
4568 goto err;
4569
4570 skb_put(skb, size - data_len);
4571 skb->data_len = data_len;
4572 skb->len = size;
4573
4574 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4575 goto err_free;
4576
4577 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4578 if (err)
4579 goto err_free;
4580
4581 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4583 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4584
4585 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4586 WARN_ON_ONCE(fragstolen); /* should not happen */
4587 __kfree_skb(skb);
4588 }
4589 return size;
4590
4591 err_free:
4592 kfree_skb(skb);
4593 err:
4594 return err;
4595
4596 }
4597
4598 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4599 {
4600 struct tcp_sock *tp = tcp_sk(sk);
4601 bool fragstolen = false;
4602 int eaten = -1;
4603
4604 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4605 __kfree_skb(skb);
4606 return;
4607 }
4608 skb_dst_drop(skb);
4609 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4610
4611 tcp_ecn_accept_cwr(tp, skb);
4612
4613 tp->rx_opt.dsack = 0;
4614
4615 /* Queue data for delivery to the user.
4616 * Packets in sequence go to the receive queue.
4617 * Out of sequence packets to the out_of_order_queue.
4618 */
4619 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4620 if (tcp_receive_window(tp) == 0)
4621 goto out_of_window;
4622
4623 /* Ok. In sequence. In window. */
4624 if (tp->ucopy.task == current &&
4625 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4626 sock_owned_by_user(sk) && !tp->urg_data) {
4627 int chunk = min_t(unsigned int, skb->len,
4628 tp->ucopy.len);
4629
4630 __set_current_state(TASK_RUNNING);
4631
4632 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4633 tp->ucopy.len -= chunk;
4634 tp->copied_seq += chunk;
4635 eaten = (chunk == skb->len);
4636 tcp_rcv_space_adjust(sk);
4637 }
4638 }
4639
4640 if (eaten <= 0) {
4641 queue_and_out:
4642 if (eaten < 0) {
4643 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4644 sk_forced_mem_schedule(sk, skb->truesize);
4645 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4646 goto drop;
4647 }
4648 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4649 }
4650 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4651 if (skb->len)
4652 tcp_event_data_recv(sk, skb);
4653 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4654 tcp_fin(sk);
4655
4656 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4657 tcp_ofo_queue(sk);
4658
4659 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4660 * gap in queue is filled.
4661 */
4662 if (skb_queue_empty(&tp->out_of_order_queue))
4663 inet_csk(sk)->icsk_ack.pingpong = 0;
4664 }
4665
4666 if (tp->rx_opt.num_sacks)
4667 tcp_sack_remove(tp);
4668
4669 tcp_fast_path_check(sk);
4670
4671 if (eaten > 0)
4672 kfree_skb_partial(skb, fragstolen);
4673 if (!sock_flag(sk, SOCK_DEAD))
4674 sk->sk_data_ready(sk);
4675 return;
4676 }
4677
4678 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4679 /* A retransmit, 2nd most common case. Force an immediate ack. */
4680 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4681 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4682
4683 out_of_window:
4684 tcp_enter_quickack_mode(sk);
4685 inet_csk_schedule_ack(sk);
4686 drop:
4687 tcp_drop(sk, skb);
4688 return;
4689 }
4690
4691 /* Out of window. F.e. zero window probe. */
4692 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4693 goto out_of_window;
4694
4695 tcp_enter_quickack_mode(sk);
4696
4697 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4698 /* Partial packet, seq < rcv_next < end_seq */
4699 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4700 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4701 TCP_SKB_CB(skb)->end_seq);
4702
4703 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4704
4705 /* If window is closed, drop tail of packet. But after
4706 * remembering D-SACK for its head made in previous line.
4707 */
4708 if (!tcp_receive_window(tp))
4709 goto out_of_window;
4710 goto queue_and_out;
4711 }
4712
4713 tcp_data_queue_ofo(sk, skb);
4714 }
4715
4716 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4717 struct sk_buff_head *list)
4718 {
4719 struct sk_buff *next = NULL;
4720
4721 if (!skb_queue_is_last(list, skb))
4722 next = skb_queue_next(list, skb);
4723
4724 __skb_unlink(skb, list);
4725 __kfree_skb(skb);
4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4727
4728 return next;
4729 }
4730
4731 /* Collapse contiguous sequence of skbs head..tail with
4732 * sequence numbers start..end.
4733 *
4734 * If tail is NULL, this means until the end of the list.
4735 *
4736 * Segments with FIN/SYN are not collapsed (only because this
4737 * simplifies code)
4738 */
4739 static void
4740 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4741 struct sk_buff *head, struct sk_buff *tail,
4742 u32 start, u32 end)
4743 {
4744 struct sk_buff *skb, *n;
4745 bool end_of_skbs;
4746
4747 /* First, check that queue is collapsible and find
4748 * the point where collapsing can be useful. */
4749 skb = head;
4750 restart:
4751 end_of_skbs = true;
4752 skb_queue_walk_from_safe(list, skb, n) {
4753 if (skb == tail)
4754 break;
4755 /* No new bits? It is possible on ofo queue. */
4756 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4757 skb = tcp_collapse_one(sk, skb, list);
4758 if (!skb)
4759 break;
4760 goto restart;
4761 }
4762
4763 /* The first skb to collapse is:
4764 * - not SYN/FIN and
4765 * - bloated or contains data before "start" or
4766 * overlaps to the next one.
4767 */
4768 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4769 (tcp_win_from_space(skb->truesize) > skb->len ||
4770 before(TCP_SKB_CB(skb)->seq, start))) {
4771 end_of_skbs = false;
4772 break;
4773 }
4774
4775 if (!skb_queue_is_last(list, skb)) {
4776 struct sk_buff *next = skb_queue_next(list, skb);
4777 if (next != tail &&
4778 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4779 end_of_skbs = false;
4780 break;
4781 }
4782 }
4783
4784 /* Decided to skip this, advance start seq. */
4785 start = TCP_SKB_CB(skb)->end_seq;
4786 }
4787 if (end_of_skbs ||
4788 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4789 return;
4790
4791 while (before(start, end)) {
4792 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4793 struct sk_buff *nskb;
4794
4795 nskb = alloc_skb(copy, GFP_ATOMIC);
4796 if (!nskb)
4797 return;
4798
4799 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4800 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4801 __skb_queue_before(list, skb, nskb);
4802 skb_set_owner_r(nskb, sk);
4803
4804 /* Copy data, releasing collapsed skbs. */
4805 while (copy > 0) {
4806 int offset = start - TCP_SKB_CB(skb)->seq;
4807 int size = TCP_SKB_CB(skb)->end_seq - start;
4808
4809 BUG_ON(offset < 0);
4810 if (size > 0) {
4811 size = min(copy, size);
4812 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4813 BUG();
4814 TCP_SKB_CB(nskb)->end_seq += size;
4815 copy -= size;
4816 start += size;
4817 }
4818 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4819 skb = tcp_collapse_one(sk, skb, list);
4820 if (!skb ||
4821 skb == tail ||
4822 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4823 return;
4824 }
4825 }
4826 }
4827 }
4828
4829 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4830 * and tcp_collapse() them until all the queue is collapsed.
4831 */
4832 static void tcp_collapse_ofo_queue(struct sock *sk)
4833 {
4834 struct tcp_sock *tp = tcp_sk(sk);
4835 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4836 struct sk_buff *head;
4837 u32 start, end;
4838
4839 if (!skb)
4840 return;
4841
4842 start = TCP_SKB_CB(skb)->seq;
4843 end = TCP_SKB_CB(skb)->end_seq;
4844 head = skb;
4845
4846 for (;;) {
4847 struct sk_buff *next = NULL;
4848
4849 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4850 next = skb_queue_next(&tp->out_of_order_queue, skb);
4851 skb = next;
4852
4853 /* Segment is terminated when we see gap or when
4854 * we are at the end of all the queue. */
4855 if (!skb ||
4856 after(TCP_SKB_CB(skb)->seq, end) ||
4857 before(TCP_SKB_CB(skb)->end_seq, start)) {
4858 tcp_collapse(sk, &tp->out_of_order_queue,
4859 head, skb, start, end);
4860 head = skb;
4861 if (!skb)
4862 break;
4863 /* Start new segment */
4864 start = TCP_SKB_CB(skb)->seq;
4865 end = TCP_SKB_CB(skb)->end_seq;
4866 } else {
4867 if (before(TCP_SKB_CB(skb)->seq, start))
4868 start = TCP_SKB_CB(skb)->seq;
4869 if (after(TCP_SKB_CB(skb)->end_seq, end))
4870 end = TCP_SKB_CB(skb)->end_seq;
4871 }
4872 }
4873 }
4874
4875 /*
4876 * Purge the out-of-order queue.
4877 * Return true if queue was pruned.
4878 */
4879 static bool tcp_prune_ofo_queue(struct sock *sk)
4880 {
4881 struct tcp_sock *tp = tcp_sk(sk);
4882 bool res = false;
4883
4884 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4885 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4886 __skb_queue_purge(&tp->out_of_order_queue);
4887
4888 /* Reset SACK state. A conforming SACK implementation will
4889 * do the same at a timeout based retransmit. When a connection
4890 * is in a sad state like this, we care only about integrity
4891 * of the connection not performance.
4892 */
4893 if (tp->rx_opt.sack_ok)
4894 tcp_sack_reset(&tp->rx_opt);
4895 sk_mem_reclaim(sk);
4896 res = true;
4897 }
4898 return res;
4899 }
4900
4901 /* Reduce allocated memory if we can, trying to get
4902 * the socket within its memory limits again.
4903 *
4904 * Return less than zero if we should start dropping frames
4905 * until the socket owning process reads some of the data
4906 * to stabilize the situation.
4907 */
4908 static int tcp_prune_queue(struct sock *sk)
4909 {
4910 struct tcp_sock *tp = tcp_sk(sk);
4911
4912 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4913
4914 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4915
4916 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4917 tcp_clamp_window(sk);
4918 else if (tcp_under_memory_pressure(sk))
4919 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4920
4921 tcp_collapse_ofo_queue(sk);
4922 if (!skb_queue_empty(&sk->sk_receive_queue))
4923 tcp_collapse(sk, &sk->sk_receive_queue,
4924 skb_peek(&sk->sk_receive_queue),
4925 NULL,
4926 tp->copied_seq, tp->rcv_nxt);
4927 sk_mem_reclaim(sk);
4928
4929 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4930 return 0;
4931
4932 /* Collapsing did not help, destructive actions follow.
4933 * This must not ever occur. */
4934
4935 tcp_prune_ofo_queue(sk);
4936
4937 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4938 return 0;
4939
4940 /* If we are really being abused, tell the caller to silently
4941 * drop receive data on the floor. It will get retransmitted
4942 * and hopefully then we'll have sufficient space.
4943 */
4944 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4945
4946 /* Massive buffer overcommit. */
4947 tp->pred_flags = 0;
4948 return -1;
4949 }
4950
4951 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4952 {
4953 const struct tcp_sock *tp = tcp_sk(sk);
4954
4955 /* If the user specified a specific send buffer setting, do
4956 * not modify it.
4957 */
4958 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4959 return false;
4960
4961 /* If we are under global TCP memory pressure, do not expand. */
4962 if (tcp_under_memory_pressure(sk))
4963 return false;
4964
4965 /* If we are under soft global TCP memory pressure, do not expand. */
4966 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4967 return false;
4968
4969 /* If we filled the congestion window, do not expand. */
4970 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4971 return false;
4972
4973 return true;
4974 }
4975
4976 /* When incoming ACK allowed to free some skb from write_queue,
4977 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4978 * on the exit from tcp input handler.
4979 *
4980 * PROBLEM: sndbuf expansion does not work well with largesend.
4981 */
4982 static void tcp_new_space(struct sock *sk)
4983 {
4984 struct tcp_sock *tp = tcp_sk(sk);
4985
4986 if (tcp_should_expand_sndbuf(sk)) {
4987 tcp_sndbuf_expand(sk);
4988 tp->snd_cwnd_stamp = tcp_time_stamp;
4989 }
4990
4991 sk->sk_write_space(sk);
4992 }
4993
4994 static void tcp_check_space(struct sock *sk)
4995 {
4996 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4997 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4998 /* pairs with tcp_poll() */
4999 smp_mb__after_atomic();
5000 if (sk->sk_socket &&
5001 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5002 tcp_new_space(sk);
5003 }
5004 }
5005
5006 static inline void tcp_data_snd_check(struct sock *sk)
5007 {
5008 tcp_push_pending_frames(sk);
5009 tcp_check_space(sk);
5010 }
5011
5012 /*
5013 * Check if sending an ack is needed.
5014 */
5015 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5016 {
5017 struct tcp_sock *tp = tcp_sk(sk);
5018
5019 /* More than one full frame received... */
5020 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5021 /* ... and right edge of window advances far enough.
5022 * (tcp_recvmsg() will send ACK otherwise). Or...
5023 */
5024 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5025 /* We ACK each frame or... */
5026 tcp_in_quickack_mode(sk) ||
5027 /* We have out of order data. */
5028 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5029 /* Then ack it now */
5030 tcp_send_ack(sk);
5031 } else {
5032 /* Else, send delayed ack. */
5033 tcp_send_delayed_ack(sk);
5034 }
5035 }
5036
5037 static inline void tcp_ack_snd_check(struct sock *sk)
5038 {
5039 if (!inet_csk_ack_scheduled(sk)) {
5040 /* We sent a data segment already. */
5041 return;
5042 }
5043 __tcp_ack_snd_check(sk, 1);
5044 }
5045
5046 /*
5047 * This routine is only called when we have urgent data
5048 * signaled. Its the 'slow' part of tcp_urg. It could be
5049 * moved inline now as tcp_urg is only called from one
5050 * place. We handle URGent data wrong. We have to - as
5051 * BSD still doesn't use the correction from RFC961.
5052 * For 1003.1g we should support a new option TCP_STDURG to permit
5053 * either form (or just set the sysctl tcp_stdurg).
5054 */
5055
5056 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5057 {
5058 struct tcp_sock *tp = tcp_sk(sk);
5059 u32 ptr = ntohs(th->urg_ptr);
5060
5061 if (ptr && !sysctl_tcp_stdurg)
5062 ptr--;
5063 ptr += ntohl(th->seq);
5064
5065 /* Ignore urgent data that we've already seen and read. */
5066 if (after(tp->copied_seq, ptr))
5067 return;
5068
5069 /* Do not replay urg ptr.
5070 *
5071 * NOTE: interesting situation not covered by specs.
5072 * Misbehaving sender may send urg ptr, pointing to segment,
5073 * which we already have in ofo queue. We are not able to fetch
5074 * such data and will stay in TCP_URG_NOTYET until will be eaten
5075 * by recvmsg(). Seems, we are not obliged to handle such wicked
5076 * situations. But it is worth to think about possibility of some
5077 * DoSes using some hypothetical application level deadlock.
5078 */
5079 if (before(ptr, tp->rcv_nxt))
5080 return;
5081
5082 /* Do we already have a newer (or duplicate) urgent pointer? */
5083 if (tp->urg_data && !after(ptr, tp->urg_seq))
5084 return;
5085
5086 /* Tell the world about our new urgent pointer. */
5087 sk_send_sigurg(sk);
5088
5089 /* We may be adding urgent data when the last byte read was
5090 * urgent. To do this requires some care. We cannot just ignore
5091 * tp->copied_seq since we would read the last urgent byte again
5092 * as data, nor can we alter copied_seq until this data arrives
5093 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5094 *
5095 * NOTE. Double Dutch. Rendering to plain English: author of comment
5096 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5097 * and expect that both A and B disappear from stream. This is _wrong_.
5098 * Though this happens in BSD with high probability, this is occasional.
5099 * Any application relying on this is buggy. Note also, that fix "works"
5100 * only in this artificial test. Insert some normal data between A and B and we will
5101 * decline of BSD again. Verdict: it is better to remove to trap
5102 * buggy users.
5103 */
5104 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5105 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5106 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5107 tp->copied_seq++;
5108 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5109 __skb_unlink(skb, &sk->sk_receive_queue);
5110 __kfree_skb(skb);
5111 }
5112 }
5113
5114 tp->urg_data = TCP_URG_NOTYET;
5115 tp->urg_seq = ptr;
5116
5117 /* Disable header prediction. */
5118 tp->pred_flags = 0;
5119 }
5120
5121 /* This is the 'fast' part of urgent handling. */
5122 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5123 {
5124 struct tcp_sock *tp = tcp_sk(sk);
5125
5126 /* Check if we get a new urgent pointer - normally not. */
5127 if (th->urg)
5128 tcp_check_urg(sk, th);
5129
5130 /* Do we wait for any urgent data? - normally not... */
5131 if (tp->urg_data == TCP_URG_NOTYET) {
5132 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5133 th->syn;
5134
5135 /* Is the urgent pointer pointing into this packet? */
5136 if (ptr < skb->len) {
5137 u8 tmp;
5138 if (skb_copy_bits(skb, ptr, &tmp, 1))
5139 BUG();
5140 tp->urg_data = TCP_URG_VALID | tmp;
5141 if (!sock_flag(sk, SOCK_DEAD))
5142 sk->sk_data_ready(sk);
5143 }
5144 }
5145 }
5146
5147 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5148 {
5149 struct tcp_sock *tp = tcp_sk(sk);
5150 int chunk = skb->len - hlen;
5151 int err;
5152
5153 if (skb_csum_unnecessary(skb))
5154 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5155 else
5156 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5157
5158 if (!err) {
5159 tp->ucopy.len -= chunk;
5160 tp->copied_seq += chunk;
5161 tcp_rcv_space_adjust(sk);
5162 }
5163
5164 return err;
5165 }
5166
5167 /* Does PAWS and seqno based validation of an incoming segment, flags will
5168 * play significant role here.
5169 */
5170 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5171 const struct tcphdr *th, int syn_inerr)
5172 {
5173 struct tcp_sock *tp = tcp_sk(sk);
5174 bool rst_seq_match = false;
5175
5176 /* RFC1323: H1. Apply PAWS check first. */
5177 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5178 tcp_paws_discard(sk, skb)) {
5179 if (!th->rst) {
5180 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5181 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5182 LINUX_MIB_TCPACKSKIPPEDPAWS,
5183 &tp->last_oow_ack_time))
5184 tcp_send_dupack(sk, skb);
5185 goto discard;
5186 }
5187 /* Reset is accepted even if it did not pass PAWS. */
5188 }
5189
5190 /* Step 1: check sequence number */
5191 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5192 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5193 * (RST) segments are validated by checking their SEQ-fields."
5194 * And page 69: "If an incoming segment is not acceptable,
5195 * an acknowledgment should be sent in reply (unless the RST
5196 * bit is set, if so drop the segment and return)".
5197 */
5198 if (!th->rst) {
5199 if (th->syn)
5200 goto syn_challenge;
5201 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5202 LINUX_MIB_TCPACKSKIPPEDSEQ,
5203 &tp->last_oow_ack_time))
5204 tcp_send_dupack(sk, skb);
5205 }
5206 goto discard;
5207 }
5208
5209 /* Step 2: check RST bit */
5210 if (th->rst) {
5211 /* RFC 5961 3.2 (extend to match against SACK too if available):
5212 * If seq num matches RCV.NXT or the right-most SACK block,
5213 * then
5214 * RESET the connection
5215 * else
5216 * Send a challenge ACK
5217 */
5218 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5219 rst_seq_match = true;
5220 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5221 struct tcp_sack_block *sp = &tp->selective_acks[0];
5222 int max_sack = sp[0].end_seq;
5223 int this_sack;
5224
5225 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5226 ++this_sack) {
5227 max_sack = after(sp[this_sack].end_seq,
5228 max_sack) ?
5229 sp[this_sack].end_seq : max_sack;
5230 }
5231
5232 if (TCP_SKB_CB(skb)->seq == max_sack)
5233 rst_seq_match = true;
5234 }
5235
5236 if (rst_seq_match)
5237 tcp_reset(sk);
5238 else
5239 tcp_send_challenge_ack(sk, skb);
5240 goto discard;
5241 }
5242
5243 /* step 3: check security and precedence [ignored] */
5244
5245 /* step 4: Check for a SYN
5246 * RFC 5961 4.2 : Send a challenge ack
5247 */
5248 if (th->syn) {
5249 syn_challenge:
5250 if (syn_inerr)
5251 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5253 tcp_send_challenge_ack(sk, skb);
5254 goto discard;
5255 }
5256
5257 return true;
5258
5259 discard:
5260 tcp_drop(sk, skb);
5261 return false;
5262 }
5263
5264 /*
5265 * TCP receive function for the ESTABLISHED state.
5266 *
5267 * It is split into a fast path and a slow path. The fast path is
5268 * disabled when:
5269 * - A zero window was announced from us - zero window probing
5270 * is only handled properly in the slow path.
5271 * - Out of order segments arrived.
5272 * - Urgent data is expected.
5273 * - There is no buffer space left
5274 * - Unexpected TCP flags/window values/header lengths are received
5275 * (detected by checking the TCP header against pred_flags)
5276 * - Data is sent in both directions. Fast path only supports pure senders
5277 * or pure receivers (this means either the sequence number or the ack
5278 * value must stay constant)
5279 * - Unexpected TCP option.
5280 *
5281 * When these conditions are not satisfied it drops into a standard
5282 * receive procedure patterned after RFC793 to handle all cases.
5283 * The first three cases are guaranteed by proper pred_flags setting,
5284 * the rest is checked inline. Fast processing is turned on in
5285 * tcp_data_queue when everything is OK.
5286 */
5287 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5288 const struct tcphdr *th, unsigned int len)
5289 {
5290 struct tcp_sock *tp = tcp_sk(sk);
5291
5292 if (unlikely(!sk->sk_rx_dst))
5293 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5294 /*
5295 * Header prediction.
5296 * The code loosely follows the one in the famous
5297 * "30 instruction TCP receive" Van Jacobson mail.
5298 *
5299 * Van's trick is to deposit buffers into socket queue
5300 * on a device interrupt, to call tcp_recv function
5301 * on the receive process context and checksum and copy
5302 * the buffer to user space. smart...
5303 *
5304 * Our current scheme is not silly either but we take the
5305 * extra cost of the net_bh soft interrupt processing...
5306 * We do checksum and copy also but from device to kernel.
5307 */
5308
5309 tp->rx_opt.saw_tstamp = 0;
5310
5311 /* pred_flags is 0xS?10 << 16 + snd_wnd
5312 * if header_prediction is to be made
5313 * 'S' will always be tp->tcp_header_len >> 2
5314 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5315 * turn it off (when there are holes in the receive
5316 * space for instance)
5317 * PSH flag is ignored.
5318 */
5319
5320 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5321 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5322 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5323 int tcp_header_len = tp->tcp_header_len;
5324
5325 /* Timestamp header prediction: tcp_header_len
5326 * is automatically equal to th->doff*4 due to pred_flags
5327 * match.
5328 */
5329
5330 /* Check timestamp */
5331 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5332 /* No? Slow path! */
5333 if (!tcp_parse_aligned_timestamp(tp, th))
5334 goto slow_path;
5335
5336 /* If PAWS failed, check it more carefully in slow path */
5337 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5338 goto slow_path;
5339
5340 /* DO NOT update ts_recent here, if checksum fails
5341 * and timestamp was corrupted part, it will result
5342 * in a hung connection since we will drop all
5343 * future packets due to the PAWS test.
5344 */
5345 }
5346
5347 if (len <= tcp_header_len) {
5348 /* Bulk data transfer: sender */
5349 if (len == tcp_header_len) {
5350 /* Predicted packet is in window by definition.
5351 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5352 * Hence, check seq<=rcv_wup reduces to:
5353 */
5354 if (tcp_header_len ==
5355 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5356 tp->rcv_nxt == tp->rcv_wup)
5357 tcp_store_ts_recent(tp);
5358
5359 /* We know that such packets are checksummed
5360 * on entry.
5361 */
5362 tcp_ack(sk, skb, 0);
5363 __kfree_skb(skb);
5364 tcp_data_snd_check(sk);
5365 return;
5366 } else { /* Header too small */
5367 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5368 goto discard;
5369 }
5370 } else {
5371 int eaten = 0;
5372 bool fragstolen = false;
5373
5374 if (tp->ucopy.task == current &&
5375 tp->copied_seq == tp->rcv_nxt &&
5376 len - tcp_header_len <= tp->ucopy.len &&
5377 sock_owned_by_user(sk)) {
5378 __set_current_state(TASK_RUNNING);
5379
5380 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5381 /* Predicted packet is in window by definition.
5382 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5383 * Hence, check seq<=rcv_wup reduces to:
5384 */
5385 if (tcp_header_len ==
5386 (sizeof(struct tcphdr) +
5387 TCPOLEN_TSTAMP_ALIGNED) &&
5388 tp->rcv_nxt == tp->rcv_wup)
5389 tcp_store_ts_recent(tp);
5390
5391 tcp_rcv_rtt_measure_ts(sk, skb);
5392
5393 __skb_pull(skb, tcp_header_len);
5394 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5395 NET_INC_STATS(sock_net(sk),
5396 LINUX_MIB_TCPHPHITSTOUSER);
5397 eaten = 1;
5398 }
5399 }
5400 if (!eaten) {
5401 if (tcp_checksum_complete(skb))
5402 goto csum_error;
5403
5404 if ((int)skb->truesize > sk->sk_forward_alloc)
5405 goto step5;
5406
5407 /* Predicted packet is in window by definition.
5408 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5409 * Hence, check seq<=rcv_wup reduces to:
5410 */
5411 if (tcp_header_len ==
5412 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5413 tp->rcv_nxt == tp->rcv_wup)
5414 tcp_store_ts_recent(tp);
5415
5416 tcp_rcv_rtt_measure_ts(sk, skb);
5417
5418 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5419
5420 /* Bulk data transfer: receiver */
5421 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5422 &fragstolen);
5423 }
5424
5425 tcp_event_data_recv(sk, skb);
5426
5427 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5428 /* Well, only one small jumplet in fast path... */
5429 tcp_ack(sk, skb, FLAG_DATA);
5430 tcp_data_snd_check(sk);
5431 if (!inet_csk_ack_scheduled(sk))
5432 goto no_ack;
5433 }
5434
5435 __tcp_ack_snd_check(sk, 0);
5436 no_ack:
5437 if (eaten)
5438 kfree_skb_partial(skb, fragstolen);
5439 sk->sk_data_ready(sk);
5440 return;
5441 }
5442 }
5443
5444 slow_path:
5445 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5446 goto csum_error;
5447
5448 if (!th->ack && !th->rst && !th->syn)
5449 goto discard;
5450
5451 /*
5452 * Standard slow path.
5453 */
5454
5455 if (!tcp_validate_incoming(sk, skb, th, 1))
5456 return;
5457
5458 step5:
5459 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5460 goto discard;
5461
5462 tcp_rcv_rtt_measure_ts(sk, skb);
5463
5464 /* Process urgent data. */
5465 tcp_urg(sk, skb, th);
5466
5467 /* step 7: process the segment text */
5468 tcp_data_queue(sk, skb);
5469
5470 tcp_data_snd_check(sk);
5471 tcp_ack_snd_check(sk);
5472 return;
5473
5474 csum_error:
5475 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5476 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5477
5478 discard:
5479 tcp_drop(sk, skb);
5480 }
5481 EXPORT_SYMBOL(tcp_rcv_established);
5482
5483 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5484 {
5485 struct tcp_sock *tp = tcp_sk(sk);
5486 struct inet_connection_sock *icsk = inet_csk(sk);
5487
5488 tcp_set_state(sk, TCP_ESTABLISHED);
5489
5490 if (skb) {
5491 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5492 security_inet_conn_established(sk, skb);
5493 }
5494
5495 /* Make sure socket is routed, for correct metrics. */
5496 icsk->icsk_af_ops->rebuild_header(sk);
5497
5498 tcp_init_metrics(sk);
5499
5500 tcp_init_congestion_control(sk);
5501
5502 /* Prevent spurious tcp_cwnd_restart() on first data
5503 * packet.
5504 */
5505 tp->lsndtime = tcp_time_stamp;
5506
5507 tcp_init_buffer_space(sk);
5508
5509 if (sock_flag(sk, SOCK_KEEPOPEN))
5510 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5511
5512 if (!tp->rx_opt.snd_wscale)
5513 __tcp_fast_path_on(tp, tp->snd_wnd);
5514 else
5515 tp->pred_flags = 0;
5516
5517 if (!sock_flag(sk, SOCK_DEAD)) {
5518 sk->sk_state_change(sk);
5519 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5520 }
5521 }
5522
5523 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5524 struct tcp_fastopen_cookie *cookie)
5525 {
5526 struct tcp_sock *tp = tcp_sk(sk);
5527 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5528 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5529 bool syn_drop = false;
5530
5531 if (mss == tp->rx_opt.user_mss) {
5532 struct tcp_options_received opt;
5533
5534 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5535 tcp_clear_options(&opt);
5536 opt.user_mss = opt.mss_clamp = 0;
5537 tcp_parse_options(synack, &opt, 0, NULL);
5538 mss = opt.mss_clamp;
5539 }
5540
5541 if (!tp->syn_fastopen) {
5542 /* Ignore an unsolicited cookie */
5543 cookie->len = -1;
5544 } else if (tp->total_retrans) {
5545 /* SYN timed out and the SYN-ACK neither has a cookie nor
5546 * acknowledges data. Presumably the remote received only
5547 * the retransmitted (regular) SYNs: either the original
5548 * SYN-data or the corresponding SYN-ACK was dropped.
5549 */
5550 syn_drop = (cookie->len < 0 && data);
5551 } else if (cookie->len < 0 && !tp->syn_data) {
5552 /* We requested a cookie but didn't get it. If we did not use
5553 * the (old) exp opt format then try so next time (try_exp=1).
5554 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5555 */
5556 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5557 }
5558
5559 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5560
5561 if (data) { /* Retransmit unacked data in SYN */
5562 tcp_for_write_queue_from(data, sk) {
5563 if (data == tcp_send_head(sk) ||
5564 __tcp_retransmit_skb(sk, data, 1))
5565 break;
5566 }
5567 tcp_rearm_rto(sk);
5568 NET_INC_STATS(sock_net(sk),
5569 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5570 return true;
5571 }
5572 tp->syn_data_acked = tp->syn_data;
5573 if (tp->syn_data_acked)
5574 NET_INC_STATS(sock_net(sk),
5575 LINUX_MIB_TCPFASTOPENACTIVE);
5576
5577 tcp_fastopen_add_skb(sk, synack);
5578
5579 return false;
5580 }
5581
5582 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5583 const struct tcphdr *th)
5584 {
5585 struct inet_connection_sock *icsk = inet_csk(sk);
5586 struct tcp_sock *tp = tcp_sk(sk);
5587 struct tcp_fastopen_cookie foc = { .len = -1 };
5588 int saved_clamp = tp->rx_opt.mss_clamp;
5589
5590 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5591 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5592 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5593
5594 if (th->ack) {
5595 /* rfc793:
5596 * "If the state is SYN-SENT then
5597 * first check the ACK bit
5598 * If the ACK bit is set
5599 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5600 * a reset (unless the RST bit is set, if so drop
5601 * the segment and return)"
5602 */
5603 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5604 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5605 goto reset_and_undo;
5606
5607 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5608 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5609 tcp_time_stamp)) {
5610 NET_INC_STATS(sock_net(sk),
5611 LINUX_MIB_PAWSACTIVEREJECTED);
5612 goto reset_and_undo;
5613 }
5614
5615 /* Now ACK is acceptable.
5616 *
5617 * "If the RST bit is set
5618 * If the ACK was acceptable then signal the user "error:
5619 * connection reset", drop the segment, enter CLOSED state,
5620 * delete TCB, and return."
5621 */
5622
5623 if (th->rst) {
5624 tcp_reset(sk);
5625 goto discard;
5626 }
5627
5628 /* rfc793:
5629 * "fifth, if neither of the SYN or RST bits is set then
5630 * drop the segment and return."
5631 *
5632 * See note below!
5633 * --ANK(990513)
5634 */
5635 if (!th->syn)
5636 goto discard_and_undo;
5637
5638 /* rfc793:
5639 * "If the SYN bit is on ...
5640 * are acceptable then ...
5641 * (our SYN has been ACKed), change the connection
5642 * state to ESTABLISHED..."
5643 */
5644
5645 tcp_ecn_rcv_synack(tp, th);
5646
5647 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5648 tcp_ack(sk, skb, FLAG_SLOWPATH);
5649
5650 /* Ok.. it's good. Set up sequence numbers and
5651 * move to established.
5652 */
5653 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5654 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5655
5656 /* RFC1323: The window in SYN & SYN/ACK segments is
5657 * never scaled.
5658 */
5659 tp->snd_wnd = ntohs(th->window);
5660
5661 if (!tp->rx_opt.wscale_ok) {
5662 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5663 tp->window_clamp = min(tp->window_clamp, 65535U);
5664 }
5665
5666 if (tp->rx_opt.saw_tstamp) {
5667 tp->rx_opt.tstamp_ok = 1;
5668 tp->tcp_header_len =
5669 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5670 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5671 tcp_store_ts_recent(tp);
5672 } else {
5673 tp->tcp_header_len = sizeof(struct tcphdr);
5674 }
5675
5676 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5677 tcp_enable_fack(tp);
5678
5679 tcp_mtup_init(sk);
5680 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5681 tcp_initialize_rcv_mss(sk);
5682
5683 /* Remember, tcp_poll() does not lock socket!
5684 * Change state from SYN-SENT only after copied_seq
5685 * is initialized. */
5686 tp->copied_seq = tp->rcv_nxt;
5687
5688 smp_mb();
5689
5690 tcp_finish_connect(sk, skb);
5691
5692 if ((tp->syn_fastopen || tp->syn_data) &&
5693 tcp_rcv_fastopen_synack(sk, skb, &foc))
5694 return -1;
5695
5696 if (sk->sk_write_pending ||
5697 icsk->icsk_accept_queue.rskq_defer_accept ||
5698 icsk->icsk_ack.pingpong) {
5699 /* Save one ACK. Data will be ready after
5700 * several ticks, if write_pending is set.
5701 *
5702 * It may be deleted, but with this feature tcpdumps
5703 * look so _wonderfully_ clever, that I was not able
5704 * to stand against the temptation 8) --ANK
5705 */
5706 inet_csk_schedule_ack(sk);
5707 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5708 tcp_enter_quickack_mode(sk);
5709 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5710 TCP_DELACK_MAX, TCP_RTO_MAX);
5711
5712 discard:
5713 tcp_drop(sk, skb);
5714 return 0;
5715 } else {
5716 tcp_send_ack(sk);
5717 }
5718 return -1;
5719 }
5720
5721 /* No ACK in the segment */
5722
5723 if (th->rst) {
5724 /* rfc793:
5725 * "If the RST bit is set
5726 *
5727 * Otherwise (no ACK) drop the segment and return."
5728 */
5729
5730 goto discard_and_undo;
5731 }
5732
5733 /* PAWS check. */
5734 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5735 tcp_paws_reject(&tp->rx_opt, 0))
5736 goto discard_and_undo;
5737
5738 if (th->syn) {
5739 /* We see SYN without ACK. It is attempt of
5740 * simultaneous connect with crossed SYNs.
5741 * Particularly, it can be connect to self.
5742 */
5743 tcp_set_state(sk, TCP_SYN_RECV);
5744
5745 if (tp->rx_opt.saw_tstamp) {
5746 tp->rx_opt.tstamp_ok = 1;
5747 tcp_store_ts_recent(tp);
5748 tp->tcp_header_len =
5749 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5750 } else {
5751 tp->tcp_header_len = sizeof(struct tcphdr);
5752 }
5753
5754 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5755 tp->copied_seq = tp->rcv_nxt;
5756 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5757
5758 /* RFC1323: The window in SYN & SYN/ACK segments is
5759 * never scaled.
5760 */
5761 tp->snd_wnd = ntohs(th->window);
5762 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5763 tp->max_window = tp->snd_wnd;
5764
5765 tcp_ecn_rcv_syn(tp, th);
5766
5767 tcp_mtup_init(sk);
5768 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5769 tcp_initialize_rcv_mss(sk);
5770
5771 tcp_send_synack(sk);
5772 #if 0
5773 /* Note, we could accept data and URG from this segment.
5774 * There are no obstacles to make this (except that we must
5775 * either change tcp_recvmsg() to prevent it from returning data
5776 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5777 *
5778 * However, if we ignore data in ACKless segments sometimes,
5779 * we have no reasons to accept it sometimes.
5780 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5781 * is not flawless. So, discard packet for sanity.
5782 * Uncomment this return to process the data.
5783 */
5784 return -1;
5785 #else
5786 goto discard;
5787 #endif
5788 }
5789 /* "fifth, if neither of the SYN or RST bits is set then
5790 * drop the segment and return."
5791 */
5792
5793 discard_and_undo:
5794 tcp_clear_options(&tp->rx_opt);
5795 tp->rx_opt.mss_clamp = saved_clamp;
5796 goto discard;
5797
5798 reset_and_undo:
5799 tcp_clear_options(&tp->rx_opt);
5800 tp->rx_opt.mss_clamp = saved_clamp;
5801 return 1;
5802 }
5803
5804 /*
5805 * This function implements the receiving procedure of RFC 793 for
5806 * all states except ESTABLISHED and TIME_WAIT.
5807 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5808 * address independent.
5809 */
5810
5811 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5812 {
5813 struct tcp_sock *tp = tcp_sk(sk);
5814 struct inet_connection_sock *icsk = inet_csk(sk);
5815 const struct tcphdr *th = tcp_hdr(skb);
5816 struct request_sock *req;
5817 int queued = 0;
5818 bool acceptable;
5819
5820 switch (sk->sk_state) {
5821 case TCP_CLOSE:
5822 goto discard;
5823
5824 case TCP_LISTEN:
5825 if (th->ack)
5826 return 1;
5827
5828 if (th->rst)
5829 goto discard;
5830
5831 if (th->syn) {
5832 if (th->fin)
5833 goto discard;
5834 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5835 return 1;
5836
5837 consume_skb(skb);
5838 return 0;
5839 }
5840 goto discard;
5841
5842 case TCP_SYN_SENT:
5843 tp->rx_opt.saw_tstamp = 0;
5844 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5845 if (queued >= 0)
5846 return queued;
5847
5848 /* Do step6 onward by hand. */
5849 tcp_urg(sk, skb, th);
5850 __kfree_skb(skb);
5851 tcp_data_snd_check(sk);
5852 return 0;
5853 }
5854
5855 tp->rx_opt.saw_tstamp = 0;
5856 req = tp->fastopen_rsk;
5857 if (req) {
5858 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5859 sk->sk_state != TCP_FIN_WAIT1);
5860
5861 if (!tcp_check_req(sk, skb, req, true))
5862 goto discard;
5863 }
5864
5865 if (!th->ack && !th->rst && !th->syn)
5866 goto discard;
5867
5868 if (!tcp_validate_incoming(sk, skb, th, 0))
5869 return 0;
5870
5871 /* step 5: check the ACK field */
5872 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5873 FLAG_UPDATE_TS_RECENT) > 0;
5874
5875 switch (sk->sk_state) {
5876 case TCP_SYN_RECV:
5877 if (!acceptable)
5878 return 1;
5879
5880 if (!tp->srtt_us)
5881 tcp_synack_rtt_meas(sk, req);
5882
5883 /* Once we leave TCP_SYN_RECV, we no longer need req
5884 * so release it.
5885 */
5886 if (req) {
5887 inet_csk(sk)->icsk_retransmits = 0;
5888 reqsk_fastopen_remove(sk, req, false);
5889 } else {
5890 /* Make sure socket is routed, for correct metrics. */
5891 icsk->icsk_af_ops->rebuild_header(sk);
5892 tcp_init_congestion_control(sk);
5893
5894 tcp_mtup_init(sk);
5895 tp->copied_seq = tp->rcv_nxt;
5896 tcp_init_buffer_space(sk);
5897 }
5898 smp_mb();
5899 tcp_set_state(sk, TCP_ESTABLISHED);
5900 sk->sk_state_change(sk);
5901
5902 /* Note, that this wakeup is only for marginal crossed SYN case.
5903 * Passively open sockets are not waked up, because
5904 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5905 */
5906 if (sk->sk_socket)
5907 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5908
5909 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5910 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5911 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5912
5913 if (tp->rx_opt.tstamp_ok)
5914 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5915
5916 if (req) {
5917 /* Re-arm the timer because data may have been sent out.
5918 * This is similar to the regular data transmission case
5919 * when new data has just been ack'ed.
5920 *
5921 * (TFO) - we could try to be more aggressive and
5922 * retransmitting any data sooner based on when they
5923 * are sent out.
5924 */
5925 tcp_rearm_rto(sk);
5926 } else
5927 tcp_init_metrics(sk);
5928
5929 tcp_update_pacing_rate(sk);
5930
5931 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5932 tp->lsndtime = tcp_time_stamp;
5933
5934 tcp_initialize_rcv_mss(sk);
5935 tcp_fast_path_on(tp);
5936 break;
5937
5938 case TCP_FIN_WAIT1: {
5939 struct dst_entry *dst;
5940 int tmo;
5941
5942 /* If we enter the TCP_FIN_WAIT1 state and we are a
5943 * Fast Open socket and this is the first acceptable
5944 * ACK we have received, this would have acknowledged
5945 * our SYNACK so stop the SYNACK timer.
5946 */
5947 if (req) {
5948 /* Return RST if ack_seq is invalid.
5949 * Note that RFC793 only says to generate a
5950 * DUPACK for it but for TCP Fast Open it seems
5951 * better to treat this case like TCP_SYN_RECV
5952 * above.
5953 */
5954 if (!acceptable)
5955 return 1;
5956 /* We no longer need the request sock. */
5957 reqsk_fastopen_remove(sk, req, false);
5958 tcp_rearm_rto(sk);
5959 }
5960 if (tp->snd_una != tp->write_seq)
5961 break;
5962
5963 tcp_set_state(sk, TCP_FIN_WAIT2);
5964 sk->sk_shutdown |= SEND_SHUTDOWN;
5965
5966 dst = __sk_dst_get(sk);
5967 if (dst)
5968 dst_confirm(dst);
5969
5970 if (!sock_flag(sk, SOCK_DEAD)) {
5971 /* Wake up lingering close() */
5972 sk->sk_state_change(sk);
5973 break;
5974 }
5975
5976 if (tp->linger2 < 0 ||
5977 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5978 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5979 tcp_done(sk);
5980 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5981 return 1;
5982 }
5983
5984 tmo = tcp_fin_time(sk);
5985 if (tmo > TCP_TIMEWAIT_LEN) {
5986 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5987 } else if (th->fin || sock_owned_by_user(sk)) {
5988 /* Bad case. We could lose such FIN otherwise.
5989 * It is not a big problem, but it looks confusing
5990 * and not so rare event. We still can lose it now,
5991 * if it spins in bh_lock_sock(), but it is really
5992 * marginal case.
5993 */
5994 inet_csk_reset_keepalive_timer(sk, tmo);
5995 } else {
5996 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5997 goto discard;
5998 }
5999 break;
6000 }
6001
6002 case TCP_CLOSING:
6003 if (tp->snd_una == tp->write_seq) {
6004 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6005 goto discard;
6006 }
6007 break;
6008
6009 case TCP_LAST_ACK:
6010 if (tp->snd_una == tp->write_seq) {
6011 tcp_update_metrics(sk);
6012 tcp_done(sk);
6013 goto discard;
6014 }
6015 break;
6016 }
6017
6018 /* step 6: check the URG bit */
6019 tcp_urg(sk, skb, th);
6020
6021 /* step 7: process the segment text */
6022 switch (sk->sk_state) {
6023 case TCP_CLOSE_WAIT:
6024 case TCP_CLOSING:
6025 case TCP_LAST_ACK:
6026 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6027 break;
6028 case TCP_FIN_WAIT1:
6029 case TCP_FIN_WAIT2:
6030 /* RFC 793 says to queue data in these states,
6031 * RFC 1122 says we MUST send a reset.
6032 * BSD 4.4 also does reset.
6033 */
6034 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6035 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6036 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6037 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6038 tcp_reset(sk);
6039 return 1;
6040 }
6041 }
6042 /* Fall through */
6043 case TCP_ESTABLISHED:
6044 tcp_data_queue(sk, skb);
6045 queued = 1;
6046 break;
6047 }
6048
6049 /* tcp_data could move socket to TIME-WAIT */
6050 if (sk->sk_state != TCP_CLOSE) {
6051 tcp_data_snd_check(sk);
6052 tcp_ack_snd_check(sk);
6053 }
6054
6055 if (!queued) {
6056 discard:
6057 tcp_drop(sk, skb);
6058 }
6059 return 0;
6060 }
6061 EXPORT_SYMBOL(tcp_rcv_state_process);
6062
6063 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6064 {
6065 struct inet_request_sock *ireq = inet_rsk(req);
6066
6067 if (family == AF_INET)
6068 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6069 &ireq->ir_rmt_addr, port);
6070 #if IS_ENABLED(CONFIG_IPV6)
6071 else if (family == AF_INET6)
6072 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6073 &ireq->ir_v6_rmt_addr, port);
6074 #endif
6075 }
6076
6077 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6078 *
6079 * If we receive a SYN packet with these bits set, it means a
6080 * network is playing bad games with TOS bits. In order to
6081 * avoid possible false congestion notifications, we disable
6082 * TCP ECN negotiation.
6083 *
6084 * Exception: tcp_ca wants ECN. This is required for DCTCP
6085 * congestion control: Linux DCTCP asserts ECT on all packets,
6086 * including SYN, which is most optimal solution; however,
6087 * others, such as FreeBSD do not.
6088 */
6089 static void tcp_ecn_create_request(struct request_sock *req,
6090 const struct sk_buff *skb,
6091 const struct sock *listen_sk,
6092 const struct dst_entry *dst)
6093 {
6094 const struct tcphdr *th = tcp_hdr(skb);
6095 const struct net *net = sock_net(listen_sk);
6096 bool th_ecn = th->ece && th->cwr;
6097 bool ect, ecn_ok;
6098 u32 ecn_ok_dst;
6099
6100 if (!th_ecn)
6101 return;
6102
6103 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6104 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6105 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6106
6107 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6108 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6109 inet_rsk(req)->ecn_ok = 1;
6110 }
6111
6112 static void tcp_openreq_init(struct request_sock *req,
6113 const struct tcp_options_received *rx_opt,
6114 struct sk_buff *skb, const struct sock *sk)
6115 {
6116 struct inet_request_sock *ireq = inet_rsk(req);
6117
6118 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6119 req->cookie_ts = 0;
6120 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6121 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6122 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6123 tcp_rsk(req)->last_oow_ack_time = 0;
6124 req->mss = rx_opt->mss_clamp;
6125 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6126 ireq->tstamp_ok = rx_opt->tstamp_ok;
6127 ireq->sack_ok = rx_opt->sack_ok;
6128 ireq->snd_wscale = rx_opt->snd_wscale;
6129 ireq->wscale_ok = rx_opt->wscale_ok;
6130 ireq->acked = 0;
6131 ireq->ecn_ok = 0;
6132 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6133 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6134 ireq->ir_mark = inet_request_mark(sk, skb);
6135 }
6136
6137 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138 struct sock *sk_listener,
6139 bool attach_listener)
6140 {
6141 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142 attach_listener);
6143
6144 if (req) {
6145 struct inet_request_sock *ireq = inet_rsk(req);
6146
6147 kmemcheck_annotate_bitfield(ireq, flags);
6148 ireq->opt = NULL;
6149 #if IS_ENABLED(CONFIG_IPV6)
6150 ireq->pktopts = NULL;
6151 #endif
6152 atomic64_set(&ireq->ir_cookie, 0);
6153 ireq->ireq_state = TCP_NEW_SYN_RECV;
6154 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6155 ireq->ireq_family = sk_listener->sk_family;
6156 }
6157
6158 return req;
6159 }
6160 EXPORT_SYMBOL(inet_reqsk_alloc);
6161
6162 /*
6163 * Return true if a syncookie should be sent
6164 */
6165 static bool tcp_syn_flood_action(const struct sock *sk,
6166 const struct sk_buff *skb,
6167 const char *proto)
6168 {
6169 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6170 const char *msg = "Dropping request";
6171 bool want_cookie = false;
6172 struct net *net = sock_net(sk);
6173
6174 #ifdef CONFIG_SYN_COOKIES
6175 if (net->ipv4.sysctl_tcp_syncookies) {
6176 msg = "Sending cookies";
6177 want_cookie = true;
6178 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6179 } else
6180 #endif
6181 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6182
6183 if (!queue->synflood_warned &&
6184 net->ipv4.sysctl_tcp_syncookies != 2 &&
6185 xchg(&queue->synflood_warned, 1) == 0)
6186 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6187 proto, ntohs(tcp_hdr(skb)->dest), msg);
6188
6189 return want_cookie;
6190 }
6191
6192 static void tcp_reqsk_record_syn(const struct sock *sk,
6193 struct request_sock *req,
6194 const struct sk_buff *skb)
6195 {
6196 if (tcp_sk(sk)->save_syn) {
6197 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6198 u32 *copy;
6199
6200 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6201 if (copy) {
6202 copy[0] = len;
6203 memcpy(&copy[1], skb_network_header(skb), len);
6204 req->saved_syn = copy;
6205 }
6206 }
6207 }
6208
6209 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6210 const struct tcp_request_sock_ops *af_ops,
6211 struct sock *sk, struct sk_buff *skb)
6212 {
6213 struct tcp_fastopen_cookie foc = { .len = -1 };
6214 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6215 struct tcp_options_received tmp_opt;
6216 struct tcp_sock *tp = tcp_sk(sk);
6217 struct net *net = sock_net(sk);
6218 struct sock *fastopen_sk = NULL;
6219 struct dst_entry *dst = NULL;
6220 struct request_sock *req;
6221 bool want_cookie = false;
6222 struct flowi fl;
6223
6224 /* TW buckets are converted to open requests without
6225 * limitations, they conserve resources and peer is
6226 * evidently real one.
6227 */
6228 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6229 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6230 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6231 if (!want_cookie)
6232 goto drop;
6233 }
6234
6235
6236 /* Accept backlog is full. If we have already queued enough
6237 * of warm entries in syn queue, drop request. It is better than
6238 * clogging syn queue with openreqs with exponentially increasing
6239 * timeout.
6240 */
6241 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6242 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6243 goto drop;
6244 }
6245
6246 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6247 if (!req)
6248 goto drop;
6249
6250 tcp_rsk(req)->af_specific = af_ops;
6251
6252 tcp_clear_options(&tmp_opt);
6253 tmp_opt.mss_clamp = af_ops->mss_clamp;
6254 tmp_opt.user_mss = tp->rx_opt.user_mss;
6255 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6256
6257 if (want_cookie && !tmp_opt.saw_tstamp)
6258 tcp_clear_options(&tmp_opt);
6259
6260 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6261 tcp_openreq_init(req, &tmp_opt, skb, sk);
6262
6263 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6264 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6265
6266 af_ops->init_req(req, sk, skb);
6267
6268 if (security_inet_conn_request(sk, skb, req))
6269 goto drop_and_free;
6270
6271 if (!want_cookie && !isn) {
6272 /* VJ's idea. We save last timestamp seen
6273 * from the destination in peer table, when entering
6274 * state TIME-WAIT, and check against it before
6275 * accepting new connection request.
6276 *
6277 * If "isn" is not zero, this request hit alive
6278 * timewait bucket, so that all the necessary checks
6279 * are made in the function processing timewait state.
6280 */
6281 if (tcp_death_row.sysctl_tw_recycle) {
6282 bool strict;
6283
6284 dst = af_ops->route_req(sk, &fl, req, &strict);
6285
6286 if (dst && strict &&
6287 !tcp_peer_is_proven(req, dst, true,
6288 tmp_opt.saw_tstamp)) {
6289 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6290 goto drop_and_release;
6291 }
6292 }
6293 /* Kill the following clause, if you dislike this way. */
6294 else if (!net->ipv4.sysctl_tcp_syncookies &&
6295 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6296 (sysctl_max_syn_backlog >> 2)) &&
6297 !tcp_peer_is_proven(req, dst, false,
6298 tmp_opt.saw_tstamp)) {
6299 /* Without syncookies last quarter of
6300 * backlog is filled with destinations,
6301 * proven to be alive.
6302 * It means that we continue to communicate
6303 * to destinations, already remembered
6304 * to the moment of synflood.
6305 */
6306 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6307 rsk_ops->family);
6308 goto drop_and_release;
6309 }
6310
6311 isn = af_ops->init_seq(skb);
6312 }
6313 if (!dst) {
6314 dst = af_ops->route_req(sk, &fl, req, NULL);
6315 if (!dst)
6316 goto drop_and_free;
6317 }
6318
6319 tcp_ecn_create_request(req, skb, sk, dst);
6320
6321 if (want_cookie) {
6322 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6323 req->cookie_ts = tmp_opt.tstamp_ok;
6324 if (!tmp_opt.tstamp_ok)
6325 inet_rsk(req)->ecn_ok = 0;
6326 }
6327
6328 tcp_rsk(req)->snt_isn = isn;
6329 tcp_rsk(req)->txhash = net_tx_rndhash();
6330 tcp_openreq_init_rwin(req, sk, dst);
6331 if (!want_cookie) {
6332 tcp_reqsk_record_syn(sk, req, skb);
6333 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6334 }
6335 if (fastopen_sk) {
6336 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6337 &foc, TCP_SYNACK_FASTOPEN);
6338 /* Add the child socket directly into the accept queue */
6339 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6340 sk->sk_data_ready(sk);
6341 bh_unlock_sock(fastopen_sk);
6342 sock_put(fastopen_sk);
6343 } else {
6344 tcp_rsk(req)->tfo_listener = false;
6345 if (!want_cookie)
6346 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6347 af_ops->send_synack(sk, dst, &fl, req, &foc,
6348 !want_cookie ? TCP_SYNACK_NORMAL :
6349 TCP_SYNACK_COOKIE);
6350 if (want_cookie) {
6351 reqsk_free(req);
6352 return 0;
6353 }
6354 }
6355 reqsk_put(req);
6356 return 0;
6357
6358 drop_and_release:
6359 dst_release(dst);
6360 drop_and_free:
6361 reqsk_free(req);
6362 drop:
6363 tcp_listendrop(sk);
6364 return 0;
6365 }
6366 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.191159 seconds and 5 git commands to generate.