gpiolib-acpi: Duplicate con_id string when adding it to the crs lookup list
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
130
131 /* Adapt the MSS value used to make delayed ack decision to the
132 * real world.
133 */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 struct inet_connection_sock *icsk = inet_csk(sk);
137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 unsigned int len;
139
140 icsk->icsk_ack.last_seg_size = 0;
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
145 len = skb_shinfo(skb)->gso_size ? : skb->len;
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
154 len += skb->data - skb_transport_header(skb);
155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
169 if (len == lss) {
170 icsk->icsk_ack.rcv_mss = len;
171 return;
172 }
173 }
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 }
178 }
179
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184
185 if (quickacks == 0)
186 quickacks = 2;
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198
199 /* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
201 */
202
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 const struct inet_connection_sock *icsk = inet_csk(sk);
206 const struct dst_entry *dst = __sk_dst_get(sk);
207
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 if (tp->ecn_flags & TCP_ECN_OK)
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 case INET_ECN_NOT_ECT:
233 /* Funny extension: if ECT is not set on a segment,
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
236 */
237 if (tp->ecn_flags & TCP_ECN_SEEN)
238 tcp_enter_quickack_mode((struct sock *)tp);
239 break;
240 case INET_ECN_CE:
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 }
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
251 default:
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 tp->ecn_flags |= TCP_ECN_SEEN;
255 break;
256 }
257 }
258
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
263 }
264
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 return true;
281 return false;
282 }
283
284 /* Buffer size and advertised window tuning.
285 *
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 */
288
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 const struct tcp_sock *tp = tcp_sk(sk);
292 int sndmem, per_mss;
293 u32 nr_segs;
294
295 /* Worst case is non GSO/TSO : each frame consumes one skb
296 * and skb->head is kmalloced using power of two area of memory
297 */
298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 MAX_TCP_HEADER +
300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301
302 per_mss = roundup_pow_of_two(per_mss) +
303 SKB_DATA_ALIGN(sizeof(struct sk_buff));
304
305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307
308 /* Fast Recovery (RFC 5681 3.2) :
309 * Cubic needs 1.7 factor, rounded to 2 to include
310 * extra cushion (application might react slowly to POLLOUT)
311 */
312 sndmem = 2 * nr_segs * per_mss;
313
314 if (sk->sk_sndbuf < sndmem)
315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319 *
320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
321 * forward and advertised in receiver window (tp->rcv_wnd) and
322 * "application buffer", required to isolate scheduling/application
323 * latencies from network.
324 * window_clamp is maximal advertised window. It can be less than
325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
326 * is reserved for "application" buffer. The less window_clamp is
327 * the smoother our behaviour from viewpoint of network, but the lower
328 * throughput and the higher sensitivity of the connection to losses. 8)
329 *
330 * rcv_ssthresh is more strict window_clamp used at "slow start"
331 * phase to predict further behaviour of this connection.
332 * It is used for two goals:
333 * - to enforce header prediction at sender, even when application
334 * requires some significant "application buffer". It is check #1.
335 * - to prevent pruning of receive queue because of misprediction
336 * of receiver window. Check #2.
337 *
338 * The scheme does not work when sender sends good segments opening
339 * window and then starts to feed us spaghetti. But it should work
340 * in common situations. Otherwise, we have to rely on queue collapsing.
341 */
342
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 struct tcp_sock *tp = tcp_sk(sk);
347 /* Optimize this! */
348 int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350
351 while (tp->rcv_ssthresh <= window) {
352 if (truesize <= skb->len)
353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354
355 truesize >>= 1;
356 window >>= 1;
357 }
358 return 0;
359 }
360
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 struct tcp_sock *tp = tcp_sk(sk);
364
365 /* Check #1 */
366 if (tp->rcv_ssthresh < tp->window_clamp &&
367 (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 !tcp_under_memory_pressure(sk)) {
369 int incr;
370
371 /* Check #2. Increase window, if skb with such overhead
372 * will fit to rcvbuf in future.
373 */
374 if (tcp_win_from_space(skb->truesize) <= skb->len)
375 incr = 2 * tp->advmss;
376 else
377 incr = __tcp_grow_window(sk, skb);
378
379 if (incr) {
380 incr = max_t(int, incr, 2 * skb->len);
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 tp->window_clamp);
383 inet_csk(sk)->icsk_ack.quick |= 1;
384 }
385 }
386 }
387
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 u32 mss = tcp_sk(sk)->advmss;
392 int rcvmem;
393
394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 tcp_default_init_rwnd(mss);
396
397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 * Allow enough cushion so that sender is not limited by our window
399 */
400 if (sysctl_tcp_moderate_rcvbuf)
401 rcvmem <<= 2;
402
403 if (sk->sk_rcvbuf < rcvmem)
404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406
407 /* 4. Try to fixup all. It is made immediately after connection enters
408 * established state.
409 */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 int maxwin;
414
415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 tcp_fixup_rcvbuf(sk);
417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 tcp_sndbuf_expand(sk);
419
420 tp->rcvq_space.space = tp->rcv_wnd;
421 tp->rcvq_space.time = tcp_time_stamp;
422 tp->rcvq_space.seq = tp->copied_seq;
423
424 maxwin = tcp_full_space(sk);
425
426 if (tp->window_clamp >= maxwin) {
427 tp->window_clamp = maxwin;
428
429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 tp->window_clamp = max(maxwin -
431 (maxwin >> sysctl_tcp_app_win),
432 4 * tp->advmss);
433 }
434
435 /* Force reservation of one segment. */
436 if (sysctl_tcp_app_win &&
437 tp->window_clamp > 2 * tp->advmss &&
438 tp->window_clamp + tp->advmss > maxwin)
439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440
441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 struct tcp_sock *tp = tcp_sk(sk);
449 struct inet_connection_sock *icsk = inet_csk(sk);
450
451 icsk->icsk_ack.quick = 0;
452
453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 !tcp_under_memory_pressure(sk) &&
456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 sysctl_tcp_rmem[2]);
459 }
460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463
464 /* Initialize RCV_MSS value.
465 * RCV_MSS is an our guess about MSS used by the peer.
466 * We haven't any direct information about the MSS.
467 * It's better to underestimate the RCV_MSS rather than overestimate.
468 * Overestimations make us ACKing less frequently than needed.
469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470 */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 const struct tcp_sock *tp = tcp_sk(sk);
474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475
476 hint = min(hint, tp->rcv_wnd / 2);
477 hint = min(hint, TCP_MSS_DEFAULT);
478 hint = max(hint, TCP_MIN_MSS);
479
480 inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483
484 /* Receiver "autotuning" code.
485 *
486 * The algorithm for RTT estimation w/o timestamps is based on
487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
489 *
490 * More detail on this code can be found at
491 * <http://staff.psc.edu/jheffner/>,
492 * though this reference is out of date. A new paper
493 * is pending.
494 */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 u32 new_sample = tp->rcv_rtt_est.rtt;
498 long m = sample;
499
500 if (m == 0)
501 m = 1;
502
503 if (new_sample != 0) {
504 /* If we sample in larger samples in the non-timestamp
505 * case, we could grossly overestimate the RTT especially
506 * with chatty applications or bulk transfer apps which
507 * are stalled on filesystem I/O.
508 *
509 * Also, since we are only going for a minimum in the
510 * non-timestamp case, we do not smooth things out
511 * else with timestamps disabled convergence takes too
512 * long.
513 */
514 if (!win_dep) {
515 m -= (new_sample >> 3);
516 new_sample += m;
517 } else {
518 m <<= 3;
519 if (m < new_sample)
520 new_sample = m;
521 }
522 } else {
523 /* No previous measure. */
524 new_sample = m << 3;
525 }
526
527 if (tp->rcv_rtt_est.rtt != new_sample)
528 tp->rcv_rtt_est.rtt = new_sample;
529 }
530
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 if (tp->rcv_rtt_est.time == 0)
534 goto new_measure;
535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 return;
537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538
539 new_measure:
540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 const struct sk_buff *skb)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 if (tp->rx_opt.rcv_tsecr &&
549 (TCP_SKB_CB(skb)->end_seq -
550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553
554 /*
555 * This function should be called every time data is copied to user space.
556 * It calculates the appropriate TCP receive buffer space.
557 */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 struct tcp_sock *tp = tcp_sk(sk);
561 int time;
562 int copied;
563
564 time = tcp_time_stamp - tp->rcvq_space.time;
565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 return;
567
568 /* Number of bytes copied to user in last RTT */
569 copied = tp->copied_seq - tp->rcvq_space.seq;
570 if (copied <= tp->rcvq_space.space)
571 goto new_measure;
572
573 /* A bit of theory :
574 * copied = bytes received in previous RTT, our base window
575 * To cope with packet losses, we need a 2x factor
576 * To cope with slow start, and sender growing its cwin by 100 %
577 * every RTT, we need a 4x factor, because the ACK we are sending
578 * now is for the next RTT, not the current one :
579 * <prev RTT . ><current RTT .. ><next RTT .... >
580 */
581
582 if (sysctl_tcp_moderate_rcvbuf &&
583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 int rcvwin, rcvmem, rcvbuf;
585
586 /* minimal window to cope with packet losses, assuming
587 * steady state. Add some cushion because of small variations.
588 */
589 rcvwin = (copied << 1) + 16 * tp->advmss;
590
591 /* If rate increased by 25%,
592 * assume slow start, rcvwin = 3 * copied
593 * If rate increased by 50%,
594 * assume sender can use 2x growth, rcvwin = 4 * copied
595 */
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 rcvwin <<= 1;
601 else
602 rcvwin += (rcvwin >> 1);
603 }
604
605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 while (tcp_win_from_space(rcvmem) < tp->advmss)
607 rcvmem += 128;
608
609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 if (rcvbuf > sk->sk_rcvbuf) {
611 sk->sk_rcvbuf = rcvbuf;
612
613 /* Make the window clamp follow along. */
614 tp->window_clamp = rcvwin;
615 }
616 }
617 tp->rcvq_space.space = copied;
618
619 new_measure:
620 tp->rcvq_space.seq = tp->copied_seq;
621 tp->rcvq_space.time = tcp_time_stamp;
622 }
623
624 /* There is something which you must keep in mind when you analyze the
625 * behavior of the tp->ato delayed ack timeout interval. When a
626 * connection starts up, we want to ack as quickly as possible. The
627 * problem is that "good" TCP's do slow start at the beginning of data
628 * transmission. The means that until we send the first few ACK's the
629 * sender will sit on his end and only queue most of his data, because
630 * he can only send snd_cwnd unacked packets at any given time. For
631 * each ACK we send, he increments snd_cwnd and transmits more of his
632 * queue. -DaveM
633 */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 struct tcp_sock *tp = tcp_sk(sk);
637 struct inet_connection_sock *icsk = inet_csk(sk);
638 u32 now;
639
640 inet_csk_schedule_ack(sk);
641
642 tcp_measure_rcv_mss(sk, skb);
643
644 tcp_rcv_rtt_measure(tp);
645
646 now = tcp_time_stamp;
647
648 if (!icsk->icsk_ack.ato) {
649 /* The _first_ data packet received, initialize
650 * delayed ACK engine.
651 */
652 tcp_incr_quickack(sk);
653 icsk->icsk_ack.ato = TCP_ATO_MIN;
654 } else {
655 int m = now - icsk->icsk_ack.lrcvtime;
656
657 if (m <= TCP_ATO_MIN / 2) {
658 /* The fastest case is the first. */
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 } else if (m < icsk->icsk_ack.ato) {
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 icsk->icsk_ack.ato = icsk->icsk_rto;
664 } else if (m > icsk->icsk_rto) {
665 /* Too long gap. Apparently sender failed to
666 * restart window, so that we send ACKs quickly.
667 */
668 tcp_incr_quickack(sk);
669 sk_mem_reclaim(sk);
670 }
671 }
672 icsk->icsk_ack.lrcvtime = now;
673
674 tcp_ecn_check_ce(tp, skb);
675
676 if (skb->len >= 128)
677 tcp_grow_window(sk, skb);
678 }
679
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681 * routine either comes from timestamps, or from segments that were
682 * known _not_ to have been retransmitted [see Karn/Partridge
683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684 * piece by Van Jacobson.
685 * NOTE: the next three routines used to be one big routine.
686 * To save cycles in the RFC 1323 implementation it was better to break
687 * it up into three procedures. -- erics
688 */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 struct tcp_sock *tp = tcp_sk(sk);
692 long m = mrtt_us; /* RTT */
693 u32 srtt = tp->srtt_us;
694
695 /* The following amusing code comes from Jacobson's
696 * article in SIGCOMM '88. Note that rtt and mdev
697 * are scaled versions of rtt and mean deviation.
698 * This is designed to be as fast as possible
699 * m stands for "measurement".
700 *
701 * On a 1990 paper the rto value is changed to:
702 * RTO = rtt + 4 * mdev
703 *
704 * Funny. This algorithm seems to be very broken.
705 * These formulae increase RTO, when it should be decreased, increase
706 * too slowly, when it should be increased quickly, decrease too quickly
707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 * does not matter how to _calculate_ it. Seems, it was trap
709 * that VJ failed to avoid. 8)
710 */
711 if (srtt != 0) {
712 m -= (srtt >> 3); /* m is now error in rtt est */
713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
714 if (m < 0) {
715 m = -m; /* m is now abs(error) */
716 m -= (tp->mdev_us >> 2); /* similar update on mdev */
717 /* This is similar to one of Eifel findings.
718 * Eifel blocks mdev updates when rtt decreases.
719 * This solution is a bit different: we use finer gain
720 * for mdev in this case (alpha*beta).
721 * Like Eifel it also prevents growth of rto,
722 * but also it limits too fast rto decreases,
723 * happening in pure Eifel.
724 */
725 if (m > 0)
726 m >>= 3;
727 } else {
728 m -= (tp->mdev_us >> 2); /* similar update on mdev */
729 }
730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
731 if (tp->mdev_us > tp->mdev_max_us) {
732 tp->mdev_max_us = tp->mdev_us;
733 if (tp->mdev_max_us > tp->rttvar_us)
734 tp->rttvar_us = tp->mdev_max_us;
735 }
736 if (after(tp->snd_una, tp->rtt_seq)) {
737 if (tp->mdev_max_us < tp->rttvar_us)
738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 tp->rtt_seq = tp->snd_nxt;
740 tp->mdev_max_us = tcp_rto_min_us(sk);
741 }
742 } else {
743 /* no previous measure. */
744 srtt = m << 3; /* take the measured time to be rtt */
745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 tp->mdev_max_us = tp->rttvar_us;
748 tp->rtt_seq = tp->snd_nxt;
749 }
750 tp->srtt_us = max(1U, srtt);
751 }
752
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754 * Note: TCP stack does not yet implement pacing.
755 * FQ packet scheduler can be used to implement cheap but effective
756 * TCP pacing, to smooth the burst on large writes when packets
757 * in flight is significantly lower than cwnd (or rwin)
758 */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 const struct tcp_sock *tp = tcp_sk(sk);
765 u64 rate;
766
767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769
770 /* current rate is (cwnd * mss) / srtt
771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 *
774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 * end of slow start and should slow down.
777 */
778 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 rate *= sysctl_tcp_pacing_ss_ratio;
780 else
781 rate *= sysctl_tcp_pacing_ca_ratio;
782
783 rate *= max(tp->snd_cwnd, tp->packets_out);
784
785 if (likely(tp->srtt_us))
786 do_div(rate, tp->srtt_us);
787
788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 * without any lock. We want to make sure compiler wont store
790 * intermediate values in this location.
791 */
792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 sk->sk_max_pacing_rate);
794 }
795
796 /* Calculate rto without backoff. This is the second half of Van Jacobson's
797 * routine referred to above.
798 */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 const struct tcp_sock *tp = tcp_sk(sk);
802 /* Old crap is replaced with new one. 8)
803 *
804 * More seriously:
805 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 * It cannot be less due to utterly erratic ACK generation made
807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 * to do with delayed acks, because at cwnd>2 true delack timeout
809 * is invisible. Actually, Linux-2.4 also generates erratic
810 * ACKs in some circumstances.
811 */
812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813
814 /* 2. Fixups made earlier cannot be right.
815 * If we do not estimate RTO correctly without them,
816 * all the algo is pure shit and should be replaced
817 * with correct one. It is exactly, which we pretend to do.
818 */
819
820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 * guarantees that rto is higher.
822 */
823 tcp_bound_rto(sk);
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /*
836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
837 * disables it when reordering is detected
838 */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 /* RFC3517 uses different metric in lost marker => reset on change */
842 if (tcp_is_fack(tp))
843 tp->lost_skb_hint = NULL;
844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
855 {
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 int mib_idx;
859
860 tp->reordering = min(sysctl_tcp_max_reordering, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 mib_idx = LINUX_MIB_TCPTSREORDER;
865 else if (tcp_is_reno(tp))
866 mib_idx = LINUX_MIB_TCPRENOREORDER;
867 else if (tcp_is_fack(tp))
868 mib_idx = LINUX_MIB_TCPFACKREORDER;
869 else
870 mib_idx = LINUX_MIB_TCPSACKREORDER;
871
872 NET_INC_STATS_BH(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 tp->reordering,
877 tp->fackets_out,
878 tp->sacked_out,
879 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 tcp_disable_fack(tp);
882 }
883
884 if (metric > 0)
885 tcp_disable_early_retrans(tp);
886 tp->rack.reord = 1;
887 }
888
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 if (!tp->retransmit_skb_hint ||
893 before(TCP_SKB_CB(skb)->seq,
894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 tp->retransmit_skb_hint = skb;
896
897 if (!tp->lost_out ||
898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 tcp_verify_retransmit_hint(tp, skb);
906
907 tp->lost_out += tcp_skb_pcount(skb);
908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 }
910 }
911
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 tcp_verify_retransmit_hint(tp, skb);
915
916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 tp->lost_out += tcp_skb_pcount(skb);
918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 }
920 }
921
922 /* This procedure tags the retransmission queue when SACKs arrive.
923 *
924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925 * Packets in queue with these bits set are counted in variables
926 * sacked_out, retrans_out and lost_out, correspondingly.
927 *
928 * Valid combinations are:
929 * Tag InFlight Description
930 * 0 1 - orig segment is in flight.
931 * S 0 - nothing flies, orig reached receiver.
932 * L 0 - nothing flies, orig lost by net.
933 * R 2 - both orig and retransmit are in flight.
934 * L|R 1 - orig is lost, retransmit is in flight.
935 * S|R 1 - orig reached receiver, retrans is still in flight.
936 * (L|S|R is logically valid, it could occur when L|R is sacked,
937 * but it is equivalent to plain S and code short-curcuits it to S.
938 * L|S is logically invalid, it would mean -1 packet in flight 8))
939 *
940 * These 6 states form finite state machine, controlled by the following events:
941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943 * 3. Loss detection event of two flavors:
944 * A. Scoreboard estimator decided the packet is lost.
945 * A'. Reno "three dupacks" marks head of queue lost.
946 * A''. Its FACK modification, head until snd.fack is lost.
947 * B. SACK arrives sacking SND.NXT at the moment, when the
948 * segment was retransmitted.
949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
950 *
951 * It is pleasant to note, that state diagram turns out to be commutative,
952 * so that we are allowed not to be bothered by order of our actions,
953 * when multiple events arrive simultaneously. (see the function below).
954 *
955 * Reordering detection.
956 * --------------------
957 * Reordering metric is maximal distance, which a packet can be displaced
958 * in packet stream. With SACKs we can estimate it:
959 *
960 * 1. SACK fills old hole and the corresponding segment was not
961 * ever retransmitted -> reordering. Alas, we cannot use it
962 * when segment was retransmitted.
963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
964 * for retransmitted and already SACKed segment -> reordering..
965 * Both of these heuristics are not used in Loss state, when we cannot
966 * account for retransmits accurately.
967 *
968 * SACK block validation.
969 * ----------------------
970 *
971 * SACK block range validation checks that the received SACK block fits to
972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973 * Note that SND.UNA is not included to the range though being valid because
974 * it means that the receiver is rather inconsistent with itself reporting
975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
976 * perfectly valid, however, in light of RFC2018 which explicitly states
977 * that "SACK block MUST reflect the newest segment. Even if the newest
978 * segment is going to be discarded ...", not that it looks very clever
979 * in case of head skb. Due to potentional receiver driven attacks, we
980 * choose to avoid immediate execution of a walk in write queue due to
981 * reneging and defer head skb's loss recovery to standard loss recovery
982 * procedure that will eventually trigger (nothing forbids us doing this).
983 *
984 * Implements also blockage to start_seq wrap-around. Problem lies in the
985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986 * there's no guarantee that it will be before snd_nxt (n). The problem
987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * wrap (s_w):
989 *
990 * <- outs wnd -> <- wrapzone ->
991 * u e n u_w e_w s n_w
992 * | | | | | | |
993 * |<------------+------+----- TCP seqno space --------------+---------->|
994 * ...-- <2^31 ->| |<--------...
995 * ...---- >2^31 ------>| |<--------...
996 *
997 * Current code wouldn't be vulnerable but it's better still to discard such
998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 u32 start_seq, u32 end_seq)
1018 {
1019 /* Too far in future, or reversed (interpretation is ambiguous) */
1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 return false;
1022
1023 /* Nasty start_seq wrap-around check (see comments above) */
1024 if (!before(start_seq, tp->snd_nxt))
1025 return false;
1026
1027 /* In outstanding window? ...This is valid exit for D-SACKs too.
1028 * start_seq == snd_una is non-sensical (see comments above)
1029 */
1030 if (after(start_seq, tp->snd_una))
1031 return true;
1032
1033 if (!is_dsack || !tp->undo_marker)
1034 return false;
1035
1036 /* ...Then it's D-SACK, and must reside below snd_una completely */
1037 if (after(end_seq, tp->snd_una))
1038 return false;
1039
1040 if (!before(start_seq, tp->undo_marker))
1041 return true;
1042
1043 /* Too old */
1044 if (!after(end_seq, tp->undo_marker))
1045 return false;
1046
1047 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 * start_seq < undo_marker and end_seq >= undo_marker.
1049 */
1050 return !before(start_seq, end_seq - tp->max_window);
1051 }
1052
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 struct tcp_sack_block_wire *sp, int num_sacks,
1055 u32 prior_snd_una)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 bool dup_sack = false;
1061
1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 dup_sack = true;
1064 tcp_dsack_seen(tp);
1065 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 } else if (num_sacks > 1) {
1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070 if (!after(end_seq_0, end_seq_1) &&
1071 !before(start_seq_0, start_seq_1)) {
1072 dup_sack = true;
1073 tcp_dsack_seen(tp);
1074 NET_INC_STATS_BH(sock_net(sk),
1075 LINUX_MIB_TCPDSACKOFORECV);
1076 }
1077 }
1078
1079 /* D-SACK for already forgotten data... Do dumb counting. */
1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 !after(end_seq_0, prior_snd_una) &&
1082 after(end_seq_0, tp->undo_marker))
1083 tp->undo_retrans--;
1084
1085 return dup_sack;
1086 }
1087
1088 struct tcp_sacktag_state {
1089 int reord;
1090 int fack_count;
1091 /* Timestamps for earliest and latest never-retransmitted segment
1092 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 * but congestion control should still get an accurate delay signal.
1094 */
1095 struct skb_mstamp first_sackt;
1096 struct skb_mstamp last_sackt;
1097 int flag;
1098 };
1099
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 u32 start_seq, u32 end_seq)
1110 {
1111 int err;
1112 bool in_sack;
1113 unsigned int pkt_len;
1114 unsigned int mss;
1115
1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 mss = tcp_skb_mss(skb);
1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124 if (!in_sack) {
1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 if (pkt_len < mss)
1127 pkt_len = mss;
1128 } else {
1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 if (pkt_len < mss)
1131 return -EINVAL;
1132 }
1133
1134 /* Round if necessary so that SACKs cover only full MSSes
1135 * and/or the remaining small portion (if present)
1136 */
1137 if (pkt_len > mss) {
1138 unsigned int new_len = (pkt_len / mss) * mss;
1139 if (!in_sack && new_len < pkt_len) {
1140 new_len += mss;
1141 if (new_len >= skb->len)
1142 return 0;
1143 }
1144 pkt_len = new_len;
1145 }
1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 if (err < 0)
1148 return err;
1149 }
1150
1151 return in_sack;
1152 }
1153
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 struct tcp_sacktag_state *state, u8 sacked,
1157 u32 start_seq, u32 end_seq,
1158 int dup_sack, int pcount,
1159 const struct skb_mstamp *xmit_time)
1160 {
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 int fack_count = state->fack_count;
1163
1164 /* Account D-SACK for retransmitted packet. */
1165 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 after(end_seq, tp->undo_marker))
1168 tp->undo_retrans--;
1169 if (sacked & TCPCB_SACKED_ACKED)
1170 state->reord = min(fack_count, state->reord);
1171 }
1172
1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 if (!after(end_seq, tp->snd_una))
1175 return sacked;
1176
1177 if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 tcp_rack_advance(tp, xmit_time, sacked);
1179
1180 if (sacked & TCPCB_SACKED_RETRANS) {
1181 /* If the segment is not tagged as lost,
1182 * we do not clear RETRANS, believing
1183 * that retransmission is still in flight.
1184 */
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 tp->lost_out -= pcount;
1188 tp->retrans_out -= pcount;
1189 }
1190 } else {
1191 if (!(sacked & TCPCB_RETRANS)) {
1192 /* New sack for not retransmitted frame,
1193 * which was in hole. It is reordering.
1194 */
1195 if (before(start_seq,
1196 tcp_highest_sack_seq(tp)))
1197 state->reord = min(fack_count,
1198 state->reord);
1199 if (!after(end_seq, tp->high_seq))
1200 state->flag |= FLAG_ORIG_SACK_ACKED;
1201 if (state->first_sackt.v64 == 0)
1202 state->first_sackt = *xmit_time;
1203 state->last_sackt = *xmit_time;
1204 }
1205
1206 if (sacked & TCPCB_LOST) {
1207 sacked &= ~TCPCB_LOST;
1208 tp->lost_out -= pcount;
1209 }
1210 }
1211
1212 sacked |= TCPCB_SACKED_ACKED;
1213 state->flag |= FLAG_DATA_SACKED;
1214 tp->sacked_out += pcount;
1215 tp->delivered += pcount; /* Out-of-order packets delivered */
1216
1217 fack_count += pcount;
1218
1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 tp->lost_cnt_hint += pcount;
1223
1224 if (fack_count > tp->fackets_out)
1225 tp->fackets_out = fack_count;
1226 }
1227
1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 * are accounted above as well.
1231 */
1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 sacked &= ~TCPCB_SACKED_RETRANS;
1234 tp->retrans_out -= pcount;
1235 }
1236
1237 return sacked;
1238 }
1239
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 struct tcp_sacktag_state *state,
1245 unsigned int pcount, int shifted, int mss,
1246 bool dup_sack)
1247 {
1248 struct tcp_sock *tp = tcp_sk(sk);
1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1252
1253 BUG_ON(!pcount);
1254
1255 /* Adjust counters and hints for the newly sacked sequence
1256 * range but discard the return value since prev is already
1257 * marked. We must tag the range first because the seq
1258 * advancement below implicitly advances
1259 * tcp_highest_sack_seq() when skb is highest_sack.
1260 */
1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 start_seq, end_seq, dup_sack, pcount,
1263 &skb->skb_mstamp);
1264
1265 if (skb == tp->lost_skb_hint)
1266 tp->lost_cnt_hint += pcount;
1267
1268 TCP_SKB_CB(prev)->end_seq += shifted;
1269 TCP_SKB_CB(skb)->seq += shifted;
1270
1271 tcp_skb_pcount_add(prev, pcount);
1272 BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 tcp_skb_pcount_add(skb, -pcount);
1274
1275 /* When we're adding to gso_segs == 1, gso_size will be zero,
1276 * in theory this shouldn't be necessary but as long as DSACK
1277 * code can come after this skb later on it's better to keep
1278 * setting gso_size to something.
1279 */
1280 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 if (tcp_skb_pcount(skb) <= 1)
1285 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290 if (skb->len > 0) {
1291 BUG_ON(!tcp_skb_pcount(skb));
1292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 return false;
1294 }
1295
1296 /* Whole SKB was eaten :-) */
1297
1298 if (skb == tp->retransmit_skb_hint)
1299 tp->retransmit_skb_hint = prev;
1300 if (skb == tp->lost_skb_hint) {
1301 tp->lost_skb_hint = prev;
1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 }
1304
1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307 TCP_SKB_CB(prev)->end_seq++;
1308
1309 if (skb == tcp_highest_sack(sk))
1310 tcp_advance_highest_sack(sk, skb);
1311
1312 tcp_unlink_write_queue(skb, sk);
1313 sk_wmem_free_skb(sk, skb);
1314
1315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1316
1317 return true;
1318 }
1319
1320 /* I wish gso_size would have a bit more sane initialization than
1321 * something-or-zero which complicates things
1322 */
1323 static int tcp_skb_seglen(const struct sk_buff *skb)
1324 {
1325 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1326 }
1327
1328 /* Shifting pages past head area doesn't work */
1329 static int skb_can_shift(const struct sk_buff *skb)
1330 {
1331 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1332 }
1333
1334 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1335 * skb.
1336 */
1337 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1338 struct tcp_sacktag_state *state,
1339 u32 start_seq, u32 end_seq,
1340 bool dup_sack)
1341 {
1342 struct tcp_sock *tp = tcp_sk(sk);
1343 struct sk_buff *prev;
1344 int mss;
1345 int pcount = 0;
1346 int len;
1347 int in_sack;
1348
1349 if (!sk_can_gso(sk))
1350 goto fallback;
1351
1352 /* Normally R but no L won't result in plain S */
1353 if (!dup_sack &&
1354 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1355 goto fallback;
1356 if (!skb_can_shift(skb))
1357 goto fallback;
1358 /* This frame is about to be dropped (was ACKed). */
1359 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1360 goto fallback;
1361
1362 /* Can only happen with delayed DSACK + discard craziness */
1363 if (unlikely(skb == tcp_write_queue_head(sk)))
1364 goto fallback;
1365 prev = tcp_write_queue_prev(sk, skb);
1366
1367 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1368 goto fallback;
1369
1370 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1371 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1372
1373 if (in_sack) {
1374 len = skb->len;
1375 pcount = tcp_skb_pcount(skb);
1376 mss = tcp_skb_seglen(skb);
1377
1378 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 * drop this restriction as unnecessary
1380 */
1381 if (mss != tcp_skb_seglen(prev))
1382 goto fallback;
1383 } else {
1384 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1385 goto noop;
1386 /* CHECKME: This is non-MSS split case only?, this will
1387 * cause skipped skbs due to advancing loop btw, original
1388 * has that feature too
1389 */
1390 if (tcp_skb_pcount(skb) <= 1)
1391 goto noop;
1392
1393 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1394 if (!in_sack) {
1395 /* TODO: head merge to next could be attempted here
1396 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1397 * though it might not be worth of the additional hassle
1398 *
1399 * ...we can probably just fallback to what was done
1400 * previously. We could try merging non-SACKed ones
1401 * as well but it probably isn't going to buy off
1402 * because later SACKs might again split them, and
1403 * it would make skb timestamp tracking considerably
1404 * harder problem.
1405 */
1406 goto fallback;
1407 }
1408
1409 len = end_seq - TCP_SKB_CB(skb)->seq;
1410 BUG_ON(len < 0);
1411 BUG_ON(len > skb->len);
1412
1413 /* MSS boundaries should be honoured or else pcount will
1414 * severely break even though it makes things bit trickier.
1415 * Optimize common case to avoid most of the divides
1416 */
1417 mss = tcp_skb_mss(skb);
1418
1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 * drop this restriction as unnecessary
1421 */
1422 if (mss != tcp_skb_seglen(prev))
1423 goto fallback;
1424
1425 if (len == mss) {
1426 pcount = 1;
1427 } else if (len < mss) {
1428 goto noop;
1429 } else {
1430 pcount = len / mss;
1431 len = pcount * mss;
1432 }
1433 }
1434
1435 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1436 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1437 goto fallback;
1438
1439 if (!skb_shift(prev, skb, len))
1440 goto fallback;
1441 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1442 goto out;
1443
1444 /* Hole filled allows collapsing with the next as well, this is very
1445 * useful when hole on every nth skb pattern happens
1446 */
1447 if (prev == tcp_write_queue_tail(sk))
1448 goto out;
1449 skb = tcp_write_queue_next(sk, prev);
1450
1451 if (!skb_can_shift(skb) ||
1452 (skb == tcp_send_head(sk)) ||
1453 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1454 (mss != tcp_skb_seglen(skb)))
1455 goto out;
1456
1457 len = skb->len;
1458 if (skb_shift(prev, skb, len)) {
1459 pcount += tcp_skb_pcount(skb);
1460 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1461 }
1462
1463 out:
1464 state->fack_count += pcount;
1465 return prev;
1466
1467 noop:
1468 return skb;
1469
1470 fallback:
1471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1472 return NULL;
1473 }
1474
1475 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1476 struct tcp_sack_block *next_dup,
1477 struct tcp_sacktag_state *state,
1478 u32 start_seq, u32 end_seq,
1479 bool dup_sack_in)
1480 {
1481 struct tcp_sock *tp = tcp_sk(sk);
1482 struct sk_buff *tmp;
1483
1484 tcp_for_write_queue_from(skb, sk) {
1485 int in_sack = 0;
1486 bool dup_sack = dup_sack_in;
1487
1488 if (skb == tcp_send_head(sk))
1489 break;
1490
1491 /* queue is in-order => we can short-circuit the walk early */
1492 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1493 break;
1494
1495 if (next_dup &&
1496 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1497 in_sack = tcp_match_skb_to_sack(sk, skb,
1498 next_dup->start_seq,
1499 next_dup->end_seq);
1500 if (in_sack > 0)
1501 dup_sack = true;
1502 }
1503
1504 /* skb reference here is a bit tricky to get right, since
1505 * shifting can eat and free both this skb and the next,
1506 * so not even _safe variant of the loop is enough.
1507 */
1508 if (in_sack <= 0) {
1509 tmp = tcp_shift_skb_data(sk, skb, state,
1510 start_seq, end_seq, dup_sack);
1511 if (tmp) {
1512 if (tmp != skb) {
1513 skb = tmp;
1514 continue;
1515 }
1516
1517 in_sack = 0;
1518 } else {
1519 in_sack = tcp_match_skb_to_sack(sk, skb,
1520 start_seq,
1521 end_seq);
1522 }
1523 }
1524
1525 if (unlikely(in_sack < 0))
1526 break;
1527
1528 if (in_sack) {
1529 TCP_SKB_CB(skb)->sacked =
1530 tcp_sacktag_one(sk,
1531 state,
1532 TCP_SKB_CB(skb)->sacked,
1533 TCP_SKB_CB(skb)->seq,
1534 TCP_SKB_CB(skb)->end_seq,
1535 dup_sack,
1536 tcp_skb_pcount(skb),
1537 &skb->skb_mstamp);
1538
1539 if (!before(TCP_SKB_CB(skb)->seq,
1540 tcp_highest_sack_seq(tp)))
1541 tcp_advance_highest_sack(sk, skb);
1542 }
1543
1544 state->fack_count += tcp_skb_pcount(skb);
1545 }
1546 return skb;
1547 }
1548
1549 /* Avoid all extra work that is being done by sacktag while walking in
1550 * a normal way
1551 */
1552 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1553 struct tcp_sacktag_state *state,
1554 u32 skip_to_seq)
1555 {
1556 tcp_for_write_queue_from(skb, sk) {
1557 if (skb == tcp_send_head(sk))
1558 break;
1559
1560 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1561 break;
1562
1563 state->fack_count += tcp_skb_pcount(skb);
1564 }
1565 return skb;
1566 }
1567
1568 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1569 struct sock *sk,
1570 struct tcp_sack_block *next_dup,
1571 struct tcp_sacktag_state *state,
1572 u32 skip_to_seq)
1573 {
1574 if (!next_dup)
1575 return skb;
1576
1577 if (before(next_dup->start_seq, skip_to_seq)) {
1578 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1579 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1580 next_dup->start_seq, next_dup->end_seq,
1581 1);
1582 }
1583
1584 return skb;
1585 }
1586
1587 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1588 {
1589 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1590 }
1591
1592 static int
1593 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1594 u32 prior_snd_una, struct tcp_sacktag_state *state)
1595 {
1596 struct tcp_sock *tp = tcp_sk(sk);
1597 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1598 TCP_SKB_CB(ack_skb)->sacked);
1599 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1600 struct tcp_sack_block sp[TCP_NUM_SACKS];
1601 struct tcp_sack_block *cache;
1602 struct sk_buff *skb;
1603 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1604 int used_sacks;
1605 bool found_dup_sack = false;
1606 int i, j;
1607 int first_sack_index;
1608
1609 state->flag = 0;
1610 state->reord = tp->packets_out;
1611
1612 if (!tp->sacked_out) {
1613 if (WARN_ON(tp->fackets_out))
1614 tp->fackets_out = 0;
1615 tcp_highest_sack_reset(sk);
1616 }
1617
1618 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1619 num_sacks, prior_snd_una);
1620 if (found_dup_sack)
1621 state->flag |= FLAG_DSACKING_ACK;
1622
1623 /* Eliminate too old ACKs, but take into
1624 * account more or less fresh ones, they can
1625 * contain valid SACK info.
1626 */
1627 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1628 return 0;
1629
1630 if (!tp->packets_out)
1631 goto out;
1632
1633 used_sacks = 0;
1634 first_sack_index = 0;
1635 for (i = 0; i < num_sacks; i++) {
1636 bool dup_sack = !i && found_dup_sack;
1637
1638 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1639 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1640
1641 if (!tcp_is_sackblock_valid(tp, dup_sack,
1642 sp[used_sacks].start_seq,
1643 sp[used_sacks].end_seq)) {
1644 int mib_idx;
1645
1646 if (dup_sack) {
1647 if (!tp->undo_marker)
1648 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1649 else
1650 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1651 } else {
1652 /* Don't count olds caused by ACK reordering */
1653 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1654 !after(sp[used_sacks].end_seq, tp->snd_una))
1655 continue;
1656 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1657 }
1658
1659 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1660 if (i == 0)
1661 first_sack_index = -1;
1662 continue;
1663 }
1664
1665 /* Ignore very old stuff early */
1666 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1667 continue;
1668
1669 used_sacks++;
1670 }
1671
1672 /* order SACK blocks to allow in order walk of the retrans queue */
1673 for (i = used_sacks - 1; i > 0; i--) {
1674 for (j = 0; j < i; j++) {
1675 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1676 swap(sp[j], sp[j + 1]);
1677
1678 /* Track where the first SACK block goes to */
1679 if (j == first_sack_index)
1680 first_sack_index = j + 1;
1681 }
1682 }
1683 }
1684
1685 skb = tcp_write_queue_head(sk);
1686 state->fack_count = 0;
1687 i = 0;
1688
1689 if (!tp->sacked_out) {
1690 /* It's already past, so skip checking against it */
1691 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1692 } else {
1693 cache = tp->recv_sack_cache;
1694 /* Skip empty blocks in at head of the cache */
1695 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1696 !cache->end_seq)
1697 cache++;
1698 }
1699
1700 while (i < used_sacks) {
1701 u32 start_seq = sp[i].start_seq;
1702 u32 end_seq = sp[i].end_seq;
1703 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1704 struct tcp_sack_block *next_dup = NULL;
1705
1706 if (found_dup_sack && ((i + 1) == first_sack_index))
1707 next_dup = &sp[i + 1];
1708
1709 /* Skip too early cached blocks */
1710 while (tcp_sack_cache_ok(tp, cache) &&
1711 !before(start_seq, cache->end_seq))
1712 cache++;
1713
1714 /* Can skip some work by looking recv_sack_cache? */
1715 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1716 after(end_seq, cache->start_seq)) {
1717
1718 /* Head todo? */
1719 if (before(start_seq, cache->start_seq)) {
1720 skb = tcp_sacktag_skip(skb, sk, state,
1721 start_seq);
1722 skb = tcp_sacktag_walk(skb, sk, next_dup,
1723 state,
1724 start_seq,
1725 cache->start_seq,
1726 dup_sack);
1727 }
1728
1729 /* Rest of the block already fully processed? */
1730 if (!after(end_seq, cache->end_seq))
1731 goto advance_sp;
1732
1733 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1734 state,
1735 cache->end_seq);
1736
1737 /* ...tail remains todo... */
1738 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1739 /* ...but better entrypoint exists! */
1740 skb = tcp_highest_sack(sk);
1741 if (!skb)
1742 break;
1743 state->fack_count = tp->fackets_out;
1744 cache++;
1745 goto walk;
1746 }
1747
1748 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1749 /* Check overlap against next cached too (past this one already) */
1750 cache++;
1751 continue;
1752 }
1753
1754 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1755 skb = tcp_highest_sack(sk);
1756 if (!skb)
1757 break;
1758 state->fack_count = tp->fackets_out;
1759 }
1760 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1761
1762 walk:
1763 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1764 start_seq, end_seq, dup_sack);
1765
1766 advance_sp:
1767 i++;
1768 }
1769
1770 /* Clear the head of the cache sack blocks so we can skip it next time */
1771 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1772 tp->recv_sack_cache[i].start_seq = 0;
1773 tp->recv_sack_cache[i].end_seq = 0;
1774 }
1775 for (j = 0; j < used_sacks; j++)
1776 tp->recv_sack_cache[i++] = sp[j];
1777
1778 if ((state->reord < tp->fackets_out) &&
1779 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1780 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1781
1782 tcp_verify_left_out(tp);
1783 out:
1784
1785 #if FASTRETRANS_DEBUG > 0
1786 WARN_ON((int)tp->sacked_out < 0);
1787 WARN_ON((int)tp->lost_out < 0);
1788 WARN_ON((int)tp->retrans_out < 0);
1789 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1790 #endif
1791 return state->flag;
1792 }
1793
1794 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1795 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1796 */
1797 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1798 {
1799 u32 holes;
1800
1801 holes = max(tp->lost_out, 1U);
1802 holes = min(holes, tp->packets_out);
1803
1804 if ((tp->sacked_out + holes) > tp->packets_out) {
1805 tp->sacked_out = tp->packets_out - holes;
1806 return true;
1807 }
1808 return false;
1809 }
1810
1811 /* If we receive more dupacks than we expected counting segments
1812 * in assumption of absent reordering, interpret this as reordering.
1813 * The only another reason could be bug in receiver TCP.
1814 */
1815 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1816 {
1817 struct tcp_sock *tp = tcp_sk(sk);
1818 if (tcp_limit_reno_sacked(tp))
1819 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1820 }
1821
1822 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1823
1824 static void tcp_add_reno_sack(struct sock *sk)
1825 {
1826 struct tcp_sock *tp = tcp_sk(sk);
1827 u32 prior_sacked = tp->sacked_out;
1828
1829 tp->sacked_out++;
1830 tcp_check_reno_reordering(sk, 0);
1831 if (tp->sacked_out > prior_sacked)
1832 tp->delivered++; /* Some out-of-order packet is delivered */
1833 tcp_verify_left_out(tp);
1834 }
1835
1836 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1837
1838 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1839 {
1840 struct tcp_sock *tp = tcp_sk(sk);
1841
1842 if (acked > 0) {
1843 /* One ACK acked hole. The rest eat duplicate ACKs. */
1844 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1845 if (acked - 1 >= tp->sacked_out)
1846 tp->sacked_out = 0;
1847 else
1848 tp->sacked_out -= acked - 1;
1849 }
1850 tcp_check_reno_reordering(sk, acked);
1851 tcp_verify_left_out(tp);
1852 }
1853
1854 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1855 {
1856 tp->sacked_out = 0;
1857 }
1858
1859 void tcp_clear_retrans(struct tcp_sock *tp)
1860 {
1861 tp->retrans_out = 0;
1862 tp->lost_out = 0;
1863 tp->undo_marker = 0;
1864 tp->undo_retrans = -1;
1865 tp->fackets_out = 0;
1866 tp->sacked_out = 0;
1867 }
1868
1869 static inline void tcp_init_undo(struct tcp_sock *tp)
1870 {
1871 tp->undo_marker = tp->snd_una;
1872 /* Retransmission still in flight may cause DSACKs later. */
1873 tp->undo_retrans = tp->retrans_out ? : -1;
1874 }
1875
1876 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1877 * and reset tags completely, otherwise preserve SACKs. If receiver
1878 * dropped its ofo queue, we will know this due to reneging detection.
1879 */
1880 void tcp_enter_loss(struct sock *sk)
1881 {
1882 const struct inet_connection_sock *icsk = inet_csk(sk);
1883 struct tcp_sock *tp = tcp_sk(sk);
1884 struct net *net = sock_net(sk);
1885 struct sk_buff *skb;
1886 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1887 bool is_reneg; /* is receiver reneging on SACKs? */
1888
1889 /* Reduce ssthresh if it has not yet been made inside this window. */
1890 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1891 !after(tp->high_seq, tp->snd_una) ||
1892 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1893 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1894 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1895 tcp_ca_event(sk, CA_EVENT_LOSS);
1896 tcp_init_undo(tp);
1897 }
1898 tp->snd_cwnd = 1;
1899 tp->snd_cwnd_cnt = 0;
1900 tp->snd_cwnd_stamp = tcp_time_stamp;
1901
1902 tp->retrans_out = 0;
1903 tp->lost_out = 0;
1904
1905 if (tcp_is_reno(tp))
1906 tcp_reset_reno_sack(tp);
1907
1908 skb = tcp_write_queue_head(sk);
1909 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1910 if (is_reneg) {
1911 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1912 tp->sacked_out = 0;
1913 tp->fackets_out = 0;
1914 }
1915 tcp_clear_all_retrans_hints(tp);
1916
1917 tcp_for_write_queue(skb, sk) {
1918 if (skb == tcp_send_head(sk))
1919 break;
1920
1921 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1922 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1923 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1924 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1925 tp->lost_out += tcp_skb_pcount(skb);
1926 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1927 }
1928 }
1929 tcp_verify_left_out(tp);
1930
1931 /* Timeout in disordered state after receiving substantial DUPACKs
1932 * suggests that the degree of reordering is over-estimated.
1933 */
1934 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1935 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1936 tp->reordering = min_t(unsigned int, tp->reordering,
1937 net->ipv4.sysctl_tcp_reordering);
1938 tcp_set_ca_state(sk, TCP_CA_Loss);
1939 tp->high_seq = tp->snd_nxt;
1940 tcp_ecn_queue_cwr(tp);
1941
1942 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1943 * loss recovery is underway except recurring timeout(s) on
1944 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1945 */
1946 tp->frto = sysctl_tcp_frto &&
1947 (new_recovery || icsk->icsk_retransmits) &&
1948 !inet_csk(sk)->icsk_mtup.probe_size;
1949 }
1950
1951 /* If ACK arrived pointing to a remembered SACK, it means that our
1952 * remembered SACKs do not reflect real state of receiver i.e.
1953 * receiver _host_ is heavily congested (or buggy).
1954 *
1955 * To avoid big spurious retransmission bursts due to transient SACK
1956 * scoreboard oddities that look like reneging, we give the receiver a
1957 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1958 * restore sanity to the SACK scoreboard. If the apparent reneging
1959 * persists until this RTO then we'll clear the SACK scoreboard.
1960 */
1961 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1962 {
1963 if (flag & FLAG_SACK_RENEGING) {
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1966 msecs_to_jiffies(10));
1967
1968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1969 delay, TCP_RTO_MAX);
1970 return true;
1971 }
1972 return false;
1973 }
1974
1975 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1976 {
1977 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1978 }
1979
1980 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1981 * counter when SACK is enabled (without SACK, sacked_out is used for
1982 * that purpose).
1983 *
1984 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1985 * segments up to the highest received SACK block so far and holes in
1986 * between them.
1987 *
1988 * With reordering, holes may still be in flight, so RFC3517 recovery
1989 * uses pure sacked_out (total number of SACKed segments) even though
1990 * it violates the RFC that uses duplicate ACKs, often these are equal
1991 * but when e.g. out-of-window ACKs or packet duplication occurs,
1992 * they differ. Since neither occurs due to loss, TCP should really
1993 * ignore them.
1994 */
1995 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1996 {
1997 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1998 }
1999
2000 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2001 {
2002 struct tcp_sock *tp = tcp_sk(sk);
2003 unsigned long delay;
2004
2005 /* Delay early retransmit and entering fast recovery for
2006 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2007 * available, or RTO is scheduled to fire first.
2008 */
2009 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2010 (flag & FLAG_ECE) || !tp->srtt_us)
2011 return false;
2012
2013 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2014 msecs_to_jiffies(2));
2015
2016 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2017 return false;
2018
2019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2020 TCP_RTO_MAX);
2021 return true;
2022 }
2023
2024 /* Linux NewReno/SACK/FACK/ECN state machine.
2025 * --------------------------------------
2026 *
2027 * "Open" Normal state, no dubious events, fast path.
2028 * "Disorder" In all the respects it is "Open",
2029 * but requires a bit more attention. It is entered when
2030 * we see some SACKs or dupacks. It is split of "Open"
2031 * mainly to move some processing from fast path to slow one.
2032 * "CWR" CWND was reduced due to some Congestion Notification event.
2033 * It can be ECN, ICMP source quench, local device congestion.
2034 * "Recovery" CWND was reduced, we are fast-retransmitting.
2035 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2036 *
2037 * tcp_fastretrans_alert() is entered:
2038 * - each incoming ACK, if state is not "Open"
2039 * - when arrived ACK is unusual, namely:
2040 * * SACK
2041 * * Duplicate ACK.
2042 * * ECN ECE.
2043 *
2044 * Counting packets in flight is pretty simple.
2045 *
2046 * in_flight = packets_out - left_out + retrans_out
2047 *
2048 * packets_out is SND.NXT-SND.UNA counted in packets.
2049 *
2050 * retrans_out is number of retransmitted segments.
2051 *
2052 * left_out is number of segments left network, but not ACKed yet.
2053 *
2054 * left_out = sacked_out + lost_out
2055 *
2056 * sacked_out: Packets, which arrived to receiver out of order
2057 * and hence not ACKed. With SACKs this number is simply
2058 * amount of SACKed data. Even without SACKs
2059 * it is easy to give pretty reliable estimate of this number,
2060 * counting duplicate ACKs.
2061 *
2062 * lost_out: Packets lost by network. TCP has no explicit
2063 * "loss notification" feedback from network (for now).
2064 * It means that this number can be only _guessed_.
2065 * Actually, it is the heuristics to predict lossage that
2066 * distinguishes different algorithms.
2067 *
2068 * F.e. after RTO, when all the queue is considered as lost,
2069 * lost_out = packets_out and in_flight = retrans_out.
2070 *
2071 * Essentially, we have now two algorithms counting
2072 * lost packets.
2073 *
2074 * FACK: It is the simplest heuristics. As soon as we decided
2075 * that something is lost, we decide that _all_ not SACKed
2076 * packets until the most forward SACK are lost. I.e.
2077 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2078 * It is absolutely correct estimate, if network does not reorder
2079 * packets. And it loses any connection to reality when reordering
2080 * takes place. We use FACK by default until reordering
2081 * is suspected on the path to this destination.
2082 *
2083 * NewReno: when Recovery is entered, we assume that one segment
2084 * is lost (classic Reno). While we are in Recovery and
2085 * a partial ACK arrives, we assume that one more packet
2086 * is lost (NewReno). This heuristics are the same in NewReno
2087 * and SACK.
2088 *
2089 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2090 * deflation etc. CWND is real congestion window, never inflated, changes
2091 * only according to classic VJ rules.
2092 *
2093 * Really tricky (and requiring careful tuning) part of algorithm
2094 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2095 * The first determines the moment _when_ we should reduce CWND and,
2096 * hence, slow down forward transmission. In fact, it determines the moment
2097 * when we decide that hole is caused by loss, rather than by a reorder.
2098 *
2099 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2100 * holes, caused by lost packets.
2101 *
2102 * And the most logically complicated part of algorithm is undo
2103 * heuristics. We detect false retransmits due to both too early
2104 * fast retransmit (reordering) and underestimated RTO, analyzing
2105 * timestamps and D-SACKs. When we detect that some segments were
2106 * retransmitted by mistake and CWND reduction was wrong, we undo
2107 * window reduction and abort recovery phase. This logic is hidden
2108 * inside several functions named tcp_try_undo_<something>.
2109 */
2110
2111 /* This function decides, when we should leave Disordered state
2112 * and enter Recovery phase, reducing congestion window.
2113 *
2114 * Main question: may we further continue forward transmission
2115 * with the same cwnd?
2116 */
2117 static bool tcp_time_to_recover(struct sock *sk, int flag)
2118 {
2119 struct tcp_sock *tp = tcp_sk(sk);
2120 __u32 packets_out;
2121 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2122
2123 /* Trick#1: The loss is proven. */
2124 if (tp->lost_out)
2125 return true;
2126
2127 /* Not-A-Trick#2 : Classic rule... */
2128 if (tcp_dupack_heuristics(tp) > tp->reordering)
2129 return true;
2130
2131 /* Trick#4: It is still not OK... But will it be useful to delay
2132 * recovery more?
2133 */
2134 packets_out = tp->packets_out;
2135 if (packets_out <= tp->reordering &&
2136 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2137 !tcp_may_send_now(sk)) {
2138 /* We have nothing to send. This connection is limited
2139 * either by receiver window or by application.
2140 */
2141 return true;
2142 }
2143
2144 /* If a thin stream is detected, retransmit after first
2145 * received dupack. Employ only if SACK is supported in order
2146 * to avoid possible corner-case series of spurious retransmissions
2147 * Use only if there are no unsent data.
2148 */
2149 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2150 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2151 tcp_is_sack(tp) && !tcp_send_head(sk))
2152 return true;
2153
2154 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2155 * retransmissions due to small network reorderings, we implement
2156 * Mitigation A.3 in the RFC and delay the retransmission for a short
2157 * interval if appropriate.
2158 */
2159 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2160 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2161 !tcp_may_send_now(sk))
2162 return !tcp_pause_early_retransmit(sk, flag);
2163
2164 return false;
2165 }
2166
2167 /* Detect loss in event "A" above by marking head of queue up as lost.
2168 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2169 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2170 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2171 * the maximum SACKed segments to pass before reaching this limit.
2172 */
2173 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2174 {
2175 struct tcp_sock *tp = tcp_sk(sk);
2176 struct sk_buff *skb;
2177 int cnt, oldcnt, lost;
2178 unsigned int mss;
2179 /* Use SACK to deduce losses of new sequences sent during recovery */
2180 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2181
2182 WARN_ON(packets > tp->packets_out);
2183 if (tp->lost_skb_hint) {
2184 skb = tp->lost_skb_hint;
2185 cnt = tp->lost_cnt_hint;
2186 /* Head already handled? */
2187 if (mark_head && skb != tcp_write_queue_head(sk))
2188 return;
2189 } else {
2190 skb = tcp_write_queue_head(sk);
2191 cnt = 0;
2192 }
2193
2194 tcp_for_write_queue_from(skb, sk) {
2195 if (skb == tcp_send_head(sk))
2196 break;
2197 /* TODO: do this better */
2198 /* this is not the most efficient way to do this... */
2199 tp->lost_skb_hint = skb;
2200 tp->lost_cnt_hint = cnt;
2201
2202 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2203 break;
2204
2205 oldcnt = cnt;
2206 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2207 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2208 cnt += tcp_skb_pcount(skb);
2209
2210 if (cnt > packets) {
2211 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2213 (oldcnt >= packets))
2214 break;
2215
2216 mss = tcp_skb_mss(skb);
2217 /* If needed, chop off the prefix to mark as lost. */
2218 lost = (packets - oldcnt) * mss;
2219 if (lost < skb->len &&
2220 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2221 break;
2222 cnt = packets;
2223 }
2224
2225 tcp_skb_mark_lost(tp, skb);
2226
2227 if (mark_head)
2228 break;
2229 }
2230 tcp_verify_left_out(tp);
2231 }
2232
2233 /* Account newly detected lost packet(s) */
2234
2235 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2236 {
2237 struct tcp_sock *tp = tcp_sk(sk);
2238
2239 if (tcp_is_reno(tp)) {
2240 tcp_mark_head_lost(sk, 1, 1);
2241 } else if (tcp_is_fack(tp)) {
2242 int lost = tp->fackets_out - tp->reordering;
2243 if (lost <= 0)
2244 lost = 1;
2245 tcp_mark_head_lost(sk, lost, 0);
2246 } else {
2247 int sacked_upto = tp->sacked_out - tp->reordering;
2248 if (sacked_upto >= 0)
2249 tcp_mark_head_lost(sk, sacked_upto, 0);
2250 else if (fast_rexmit)
2251 tcp_mark_head_lost(sk, 1, 1);
2252 }
2253 }
2254
2255 /* CWND moderation, preventing bursts due to too big ACKs
2256 * in dubious situations.
2257 */
2258 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259 {
2260 tp->snd_cwnd = min(tp->snd_cwnd,
2261 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2262 tp->snd_cwnd_stamp = tcp_time_stamp;
2263 }
2264
2265 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2266 {
2267 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268 before(tp->rx_opt.rcv_tsecr, when);
2269 }
2270
2271 /* skb is spurious retransmitted if the returned timestamp echo
2272 * reply is prior to the skb transmission time
2273 */
2274 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2275 const struct sk_buff *skb)
2276 {
2277 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2278 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2279 }
2280
2281 /* Nothing was retransmitted or returned timestamp is less
2282 * than timestamp of the first retransmission.
2283 */
2284 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2285 {
2286 return !tp->retrans_stamp ||
2287 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2288 }
2289
2290 /* Undo procedures. */
2291
2292 /* We can clear retrans_stamp when there are no retransmissions in the
2293 * window. It would seem that it is trivially available for us in
2294 * tp->retrans_out, however, that kind of assumptions doesn't consider
2295 * what will happen if errors occur when sending retransmission for the
2296 * second time. ...It could the that such segment has only
2297 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2298 * the head skb is enough except for some reneging corner cases that
2299 * are not worth the effort.
2300 *
2301 * Main reason for all this complexity is the fact that connection dying
2302 * time now depends on the validity of the retrans_stamp, in particular,
2303 * that successive retransmissions of a segment must not advance
2304 * retrans_stamp under any conditions.
2305 */
2306 static bool tcp_any_retrans_done(const struct sock *sk)
2307 {
2308 const struct tcp_sock *tp = tcp_sk(sk);
2309 struct sk_buff *skb;
2310
2311 if (tp->retrans_out)
2312 return true;
2313
2314 skb = tcp_write_queue_head(sk);
2315 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2316 return true;
2317
2318 return false;
2319 }
2320
2321 #if FASTRETRANS_DEBUG > 1
2322 static void DBGUNDO(struct sock *sk, const char *msg)
2323 {
2324 struct tcp_sock *tp = tcp_sk(sk);
2325 struct inet_sock *inet = inet_sk(sk);
2326
2327 if (sk->sk_family == AF_INET) {
2328 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2329 msg,
2330 &inet->inet_daddr, ntohs(inet->inet_dport),
2331 tp->snd_cwnd, tcp_left_out(tp),
2332 tp->snd_ssthresh, tp->prior_ssthresh,
2333 tp->packets_out);
2334 }
2335 #if IS_ENABLED(CONFIG_IPV6)
2336 else if (sk->sk_family == AF_INET6) {
2337 struct ipv6_pinfo *np = inet6_sk(sk);
2338 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2339 msg,
2340 &np->daddr, ntohs(inet->inet_dport),
2341 tp->snd_cwnd, tcp_left_out(tp),
2342 tp->snd_ssthresh, tp->prior_ssthresh,
2343 tp->packets_out);
2344 }
2345 #endif
2346 }
2347 #else
2348 #define DBGUNDO(x...) do { } while (0)
2349 #endif
2350
2351 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2352 {
2353 struct tcp_sock *tp = tcp_sk(sk);
2354
2355 if (unmark_loss) {
2356 struct sk_buff *skb;
2357
2358 tcp_for_write_queue(skb, sk) {
2359 if (skb == tcp_send_head(sk))
2360 break;
2361 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2362 }
2363 tp->lost_out = 0;
2364 tcp_clear_all_retrans_hints(tp);
2365 }
2366
2367 if (tp->prior_ssthresh) {
2368 const struct inet_connection_sock *icsk = inet_csk(sk);
2369
2370 if (icsk->icsk_ca_ops->undo_cwnd)
2371 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2372 else
2373 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2374
2375 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2376 tp->snd_ssthresh = tp->prior_ssthresh;
2377 tcp_ecn_withdraw_cwr(tp);
2378 }
2379 }
2380 tp->snd_cwnd_stamp = tcp_time_stamp;
2381 tp->undo_marker = 0;
2382 }
2383
2384 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2385 {
2386 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2387 }
2388
2389 /* People celebrate: "We love our President!" */
2390 static bool tcp_try_undo_recovery(struct sock *sk)
2391 {
2392 struct tcp_sock *tp = tcp_sk(sk);
2393
2394 if (tcp_may_undo(tp)) {
2395 int mib_idx;
2396
2397 /* Happy end! We did not retransmit anything
2398 * or our original transmission succeeded.
2399 */
2400 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2401 tcp_undo_cwnd_reduction(sk, false);
2402 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2403 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2404 else
2405 mib_idx = LINUX_MIB_TCPFULLUNDO;
2406
2407 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2408 }
2409 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2410 /* Hold old state until something *above* high_seq
2411 * is ACKed. For Reno it is MUST to prevent false
2412 * fast retransmits (RFC2582). SACK TCP is safe. */
2413 tcp_moderate_cwnd(tp);
2414 if (!tcp_any_retrans_done(sk))
2415 tp->retrans_stamp = 0;
2416 return true;
2417 }
2418 tcp_set_ca_state(sk, TCP_CA_Open);
2419 return false;
2420 }
2421
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static bool tcp_try_undo_dsack(struct sock *sk)
2424 {
2425 struct tcp_sock *tp = tcp_sk(sk);
2426
2427 if (tp->undo_marker && !tp->undo_retrans) {
2428 DBGUNDO(sk, "D-SACK");
2429 tcp_undo_cwnd_reduction(sk, false);
2430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2431 return true;
2432 }
2433 return false;
2434 }
2435
2436 /* Undo during loss recovery after partial ACK or using F-RTO. */
2437 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2438 {
2439 struct tcp_sock *tp = tcp_sk(sk);
2440
2441 if (frto_undo || tcp_may_undo(tp)) {
2442 tcp_undo_cwnd_reduction(sk, true);
2443
2444 DBGUNDO(sk, "partial loss");
2445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2446 if (frto_undo)
2447 NET_INC_STATS_BH(sock_net(sk),
2448 LINUX_MIB_TCPSPURIOUSRTOS);
2449 inet_csk(sk)->icsk_retransmits = 0;
2450 if (frto_undo || tcp_is_sack(tp))
2451 tcp_set_ca_state(sk, TCP_CA_Open);
2452 return true;
2453 }
2454 return false;
2455 }
2456
2457 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2458 * It computes the number of packets to send (sndcnt) based on packets newly
2459 * delivered:
2460 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2461 * cwnd reductions across a full RTT.
2462 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2463 * But when the retransmits are acked without further losses, PRR
2464 * slow starts cwnd up to ssthresh to speed up the recovery.
2465 */
2466 static void tcp_init_cwnd_reduction(struct sock *sk)
2467 {
2468 struct tcp_sock *tp = tcp_sk(sk);
2469
2470 tp->high_seq = tp->snd_nxt;
2471 tp->tlp_high_seq = 0;
2472 tp->snd_cwnd_cnt = 0;
2473 tp->prior_cwnd = tp->snd_cwnd;
2474 tp->prr_delivered = 0;
2475 tp->prr_out = 0;
2476 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2477 tcp_ecn_queue_cwr(tp);
2478 }
2479
2480 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2481 int flag)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 int sndcnt = 0;
2485 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2486
2487 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2488 return;
2489
2490 tp->prr_delivered += newly_acked_sacked;
2491 if (delta < 0) {
2492 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2493 tp->prior_cwnd - 1;
2494 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2495 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2496 !(flag & FLAG_LOST_RETRANS)) {
2497 sndcnt = min_t(int, delta,
2498 max_t(int, tp->prr_delivered - tp->prr_out,
2499 newly_acked_sacked) + 1);
2500 } else {
2501 sndcnt = min(delta, newly_acked_sacked);
2502 }
2503 /* Force a fast retransmit upon entering fast recovery */
2504 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2505 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2506 }
2507
2508 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2509 {
2510 struct tcp_sock *tp = tcp_sk(sk);
2511
2512 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2513 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2514 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2515 tp->snd_cwnd = tp->snd_ssthresh;
2516 tp->snd_cwnd_stamp = tcp_time_stamp;
2517 }
2518 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2519 }
2520
2521 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2522 void tcp_enter_cwr(struct sock *sk)
2523 {
2524 struct tcp_sock *tp = tcp_sk(sk);
2525
2526 tp->prior_ssthresh = 0;
2527 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2528 tp->undo_marker = 0;
2529 tcp_init_cwnd_reduction(sk);
2530 tcp_set_ca_state(sk, TCP_CA_CWR);
2531 }
2532 }
2533 EXPORT_SYMBOL(tcp_enter_cwr);
2534
2535 static void tcp_try_keep_open(struct sock *sk)
2536 {
2537 struct tcp_sock *tp = tcp_sk(sk);
2538 int state = TCP_CA_Open;
2539
2540 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2541 state = TCP_CA_Disorder;
2542
2543 if (inet_csk(sk)->icsk_ca_state != state) {
2544 tcp_set_ca_state(sk, state);
2545 tp->high_seq = tp->snd_nxt;
2546 }
2547 }
2548
2549 static void tcp_try_to_open(struct sock *sk, int flag)
2550 {
2551 struct tcp_sock *tp = tcp_sk(sk);
2552
2553 tcp_verify_left_out(tp);
2554
2555 if (!tcp_any_retrans_done(sk))
2556 tp->retrans_stamp = 0;
2557
2558 if (flag & FLAG_ECE)
2559 tcp_enter_cwr(sk);
2560
2561 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2562 tcp_try_keep_open(sk);
2563 }
2564 }
2565
2566 static void tcp_mtup_probe_failed(struct sock *sk)
2567 {
2568 struct inet_connection_sock *icsk = inet_csk(sk);
2569
2570 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2571 icsk->icsk_mtup.probe_size = 0;
2572 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2573 }
2574
2575 static void tcp_mtup_probe_success(struct sock *sk)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578 struct inet_connection_sock *icsk = inet_csk(sk);
2579
2580 /* FIXME: breaks with very large cwnd */
2581 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2582 tp->snd_cwnd = tp->snd_cwnd *
2583 tcp_mss_to_mtu(sk, tp->mss_cache) /
2584 icsk->icsk_mtup.probe_size;
2585 tp->snd_cwnd_cnt = 0;
2586 tp->snd_cwnd_stamp = tcp_time_stamp;
2587 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2588
2589 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2590 icsk->icsk_mtup.probe_size = 0;
2591 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2593 }
2594
2595 /* Do a simple retransmit without using the backoff mechanisms in
2596 * tcp_timer. This is used for path mtu discovery.
2597 * The socket is already locked here.
2598 */
2599 void tcp_simple_retransmit(struct sock *sk)
2600 {
2601 const struct inet_connection_sock *icsk = inet_csk(sk);
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct sk_buff *skb;
2604 unsigned int mss = tcp_current_mss(sk);
2605 u32 prior_lost = tp->lost_out;
2606
2607 tcp_for_write_queue(skb, sk) {
2608 if (skb == tcp_send_head(sk))
2609 break;
2610 if (tcp_skb_seglen(skb) > mss &&
2611 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2612 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2613 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2614 tp->retrans_out -= tcp_skb_pcount(skb);
2615 }
2616 tcp_skb_mark_lost_uncond_verify(tp, skb);
2617 }
2618 }
2619
2620 tcp_clear_retrans_hints_partial(tp);
2621
2622 if (prior_lost == tp->lost_out)
2623 return;
2624
2625 if (tcp_is_reno(tp))
2626 tcp_limit_reno_sacked(tp);
2627
2628 tcp_verify_left_out(tp);
2629
2630 /* Don't muck with the congestion window here.
2631 * Reason is that we do not increase amount of _data_
2632 * in network, but units changed and effective
2633 * cwnd/ssthresh really reduced now.
2634 */
2635 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2636 tp->high_seq = tp->snd_nxt;
2637 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2638 tp->prior_ssthresh = 0;
2639 tp->undo_marker = 0;
2640 tcp_set_ca_state(sk, TCP_CA_Loss);
2641 }
2642 tcp_xmit_retransmit_queue(sk);
2643 }
2644 EXPORT_SYMBOL(tcp_simple_retransmit);
2645
2646 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2647 {
2648 struct tcp_sock *tp = tcp_sk(sk);
2649 int mib_idx;
2650
2651 if (tcp_is_reno(tp))
2652 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2653 else
2654 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2655
2656 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2657
2658 tp->prior_ssthresh = 0;
2659 tcp_init_undo(tp);
2660
2661 if (!tcp_in_cwnd_reduction(sk)) {
2662 if (!ece_ack)
2663 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2664 tcp_init_cwnd_reduction(sk);
2665 }
2666 tcp_set_ca_state(sk, TCP_CA_Recovery);
2667 }
2668
2669 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2670 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2671 */
2672 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2673 int *rexmit)
2674 {
2675 struct tcp_sock *tp = tcp_sk(sk);
2676 bool recovered = !before(tp->snd_una, tp->high_seq);
2677
2678 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2679 tcp_try_undo_loss(sk, false))
2680 return;
2681
2682 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2683 /* Step 3.b. A timeout is spurious if not all data are
2684 * lost, i.e., never-retransmitted data are (s)acked.
2685 */
2686 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2687 tcp_try_undo_loss(sk, true))
2688 return;
2689
2690 if (after(tp->snd_nxt, tp->high_seq)) {
2691 if (flag & FLAG_DATA_SACKED || is_dupack)
2692 tp->frto = 0; /* Step 3.a. loss was real */
2693 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2694 tp->high_seq = tp->snd_nxt;
2695 /* Step 2.b. Try send new data (but deferred until cwnd
2696 * is updated in tcp_ack()). Otherwise fall back to
2697 * the conventional recovery.
2698 */
2699 if (tcp_send_head(sk) &&
2700 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2701 *rexmit = REXMIT_NEW;
2702 return;
2703 }
2704 tp->frto = 0;
2705 }
2706 }
2707
2708 if (recovered) {
2709 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2710 tcp_try_undo_recovery(sk);
2711 return;
2712 }
2713 if (tcp_is_reno(tp)) {
2714 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2715 * delivered. Lower inflight to clock out (re)tranmissions.
2716 */
2717 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2718 tcp_add_reno_sack(sk);
2719 else if (flag & FLAG_SND_UNA_ADVANCED)
2720 tcp_reset_reno_sack(tp);
2721 }
2722 *rexmit = REXMIT_LOST;
2723 }
2724
2725 /* Undo during fast recovery after partial ACK. */
2726 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2727 {
2728 struct tcp_sock *tp = tcp_sk(sk);
2729
2730 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2731 /* Plain luck! Hole if filled with delayed
2732 * packet, rather than with a retransmit.
2733 */
2734 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2735
2736 /* We are getting evidence that the reordering degree is higher
2737 * than we realized. If there are no retransmits out then we
2738 * can undo. Otherwise we clock out new packets but do not
2739 * mark more packets lost or retransmit more.
2740 */
2741 if (tp->retrans_out)
2742 return true;
2743
2744 if (!tcp_any_retrans_done(sk))
2745 tp->retrans_stamp = 0;
2746
2747 DBGUNDO(sk, "partial recovery");
2748 tcp_undo_cwnd_reduction(sk, true);
2749 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2750 tcp_try_keep_open(sk);
2751 return true;
2752 }
2753 return false;
2754 }
2755
2756 /* Process an event, which can update packets-in-flight not trivially.
2757 * Main goal of this function is to calculate new estimate for left_out,
2758 * taking into account both packets sitting in receiver's buffer and
2759 * packets lost by network.
2760 *
2761 * Besides that it updates the congestion state when packet loss or ECN
2762 * is detected. But it does not reduce the cwnd, it is done by the
2763 * congestion control later.
2764 *
2765 * It does _not_ decide what to send, it is made in function
2766 * tcp_xmit_retransmit_queue().
2767 */
2768 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2769 bool is_dupack, int *ack_flag, int *rexmit)
2770 {
2771 struct inet_connection_sock *icsk = inet_csk(sk);
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 int fast_rexmit = 0, flag = *ack_flag;
2774 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2775 (tcp_fackets_out(tp) > tp->reordering));
2776
2777 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2778 tp->sacked_out = 0;
2779 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2780 tp->fackets_out = 0;
2781
2782 /* Now state machine starts.
2783 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2784 if (flag & FLAG_ECE)
2785 tp->prior_ssthresh = 0;
2786
2787 /* B. In all the states check for reneging SACKs. */
2788 if (tcp_check_sack_reneging(sk, flag))
2789 return;
2790
2791 /* C. Check consistency of the current state. */
2792 tcp_verify_left_out(tp);
2793
2794 /* D. Check state exit conditions. State can be terminated
2795 * when high_seq is ACKed. */
2796 if (icsk->icsk_ca_state == TCP_CA_Open) {
2797 WARN_ON(tp->retrans_out != 0);
2798 tp->retrans_stamp = 0;
2799 } else if (!before(tp->snd_una, tp->high_seq)) {
2800 switch (icsk->icsk_ca_state) {
2801 case TCP_CA_CWR:
2802 /* CWR is to be held something *above* high_seq
2803 * is ACKed for CWR bit to reach receiver. */
2804 if (tp->snd_una != tp->high_seq) {
2805 tcp_end_cwnd_reduction(sk);
2806 tcp_set_ca_state(sk, TCP_CA_Open);
2807 }
2808 break;
2809
2810 case TCP_CA_Recovery:
2811 if (tcp_is_reno(tp))
2812 tcp_reset_reno_sack(tp);
2813 if (tcp_try_undo_recovery(sk))
2814 return;
2815 tcp_end_cwnd_reduction(sk);
2816 break;
2817 }
2818 }
2819
2820 /* Use RACK to detect loss */
2821 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2822 tcp_rack_mark_lost(sk)) {
2823 flag |= FLAG_LOST_RETRANS;
2824 *ack_flag |= FLAG_LOST_RETRANS;
2825 }
2826
2827 /* E. Process state. */
2828 switch (icsk->icsk_ca_state) {
2829 case TCP_CA_Recovery:
2830 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2831 if (tcp_is_reno(tp) && is_dupack)
2832 tcp_add_reno_sack(sk);
2833 } else {
2834 if (tcp_try_undo_partial(sk, acked))
2835 return;
2836 /* Partial ACK arrived. Force fast retransmit. */
2837 do_lost = tcp_is_reno(tp) ||
2838 tcp_fackets_out(tp) > tp->reordering;
2839 }
2840 if (tcp_try_undo_dsack(sk)) {
2841 tcp_try_keep_open(sk);
2842 return;
2843 }
2844 break;
2845 case TCP_CA_Loss:
2846 tcp_process_loss(sk, flag, is_dupack, rexmit);
2847 if (icsk->icsk_ca_state != TCP_CA_Open &&
2848 !(flag & FLAG_LOST_RETRANS))
2849 return;
2850 /* Change state if cwnd is undone or retransmits are lost */
2851 default:
2852 if (tcp_is_reno(tp)) {
2853 if (flag & FLAG_SND_UNA_ADVANCED)
2854 tcp_reset_reno_sack(tp);
2855 if (is_dupack)
2856 tcp_add_reno_sack(sk);
2857 }
2858
2859 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2860 tcp_try_undo_dsack(sk);
2861
2862 if (!tcp_time_to_recover(sk, flag)) {
2863 tcp_try_to_open(sk, flag);
2864 return;
2865 }
2866
2867 /* MTU probe failure: don't reduce cwnd */
2868 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2869 icsk->icsk_mtup.probe_size &&
2870 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2871 tcp_mtup_probe_failed(sk);
2872 /* Restores the reduction we did in tcp_mtup_probe() */
2873 tp->snd_cwnd++;
2874 tcp_simple_retransmit(sk);
2875 return;
2876 }
2877
2878 /* Otherwise enter Recovery state */
2879 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2880 fast_rexmit = 1;
2881 }
2882
2883 if (do_lost)
2884 tcp_update_scoreboard(sk, fast_rexmit);
2885 *rexmit = REXMIT_LOST;
2886 }
2887
2888 /* Kathleen Nichols' algorithm for tracking the minimum value of
2889 * a data stream over some fixed time interval. (E.g., the minimum
2890 * RTT over the past five minutes.) It uses constant space and constant
2891 * time per update yet almost always delivers the same minimum as an
2892 * implementation that has to keep all the data in the window.
2893 *
2894 * The algorithm keeps track of the best, 2nd best & 3rd best min
2895 * values, maintaining an invariant that the measurement time of the
2896 * n'th best >= n-1'th best. It also makes sure that the three values
2897 * are widely separated in the time window since that bounds the worse
2898 * case error when that data is monotonically increasing over the window.
2899 *
2900 * Upon getting a new min, we can forget everything earlier because it
2901 * has no value - the new min is <= everything else in the window by
2902 * definition and it's the most recent. So we restart fresh on every new min
2903 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2904 * best.
2905 */
2906 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2907 {
2908 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2909 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2910 struct rtt_meas rttm = {
2911 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2912 .ts = now,
2913 };
2914 u32 elapsed;
2915
2916 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2917 if (unlikely(rttm.rtt <= m[0].rtt))
2918 m[0] = m[1] = m[2] = rttm;
2919 else if (rttm.rtt <= m[1].rtt)
2920 m[1] = m[2] = rttm;
2921 else if (rttm.rtt <= m[2].rtt)
2922 m[2] = rttm;
2923
2924 elapsed = now - m[0].ts;
2925 if (unlikely(elapsed > wlen)) {
2926 /* Passed entire window without a new min so make 2nd choice
2927 * the new min & 3rd choice the new 2nd. So forth and so on.
2928 */
2929 m[0] = m[1];
2930 m[1] = m[2];
2931 m[2] = rttm;
2932 if (now - m[0].ts > wlen) {
2933 m[0] = m[1];
2934 m[1] = rttm;
2935 if (now - m[0].ts > wlen)
2936 m[0] = rttm;
2937 }
2938 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2939 /* Passed a quarter of the window without a new min so
2940 * take 2nd choice from the 2nd quarter of the window.
2941 */
2942 m[2] = m[1] = rttm;
2943 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2944 /* Passed half the window without a new min so take the 3rd
2945 * choice from the last half of the window.
2946 */
2947 m[2] = rttm;
2948 }
2949 }
2950
2951 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2952 long seq_rtt_us, long sack_rtt_us,
2953 long ca_rtt_us)
2954 {
2955 const struct tcp_sock *tp = tcp_sk(sk);
2956
2957 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2958 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2959 * Karn's algorithm forbids taking RTT if some retransmitted data
2960 * is acked (RFC6298).
2961 */
2962 if (seq_rtt_us < 0)
2963 seq_rtt_us = sack_rtt_us;
2964
2965 /* RTTM Rule: A TSecr value received in a segment is used to
2966 * update the averaged RTT measurement only if the segment
2967 * acknowledges some new data, i.e., only if it advances the
2968 * left edge of the send window.
2969 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2970 */
2971 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2972 flag & FLAG_ACKED)
2973 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2974 tp->rx_opt.rcv_tsecr);
2975 if (seq_rtt_us < 0)
2976 return false;
2977
2978 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2979 * always taken together with ACK, SACK, or TS-opts. Any negative
2980 * values will be skipped with the seq_rtt_us < 0 check above.
2981 */
2982 tcp_update_rtt_min(sk, ca_rtt_us);
2983 tcp_rtt_estimator(sk, seq_rtt_us);
2984 tcp_set_rto(sk);
2985
2986 /* RFC6298: only reset backoff on valid RTT measurement. */
2987 inet_csk(sk)->icsk_backoff = 0;
2988 return true;
2989 }
2990
2991 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2992 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2993 {
2994 long rtt_us = -1L;
2995
2996 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2997 struct skb_mstamp now;
2998
2999 skb_mstamp_get(&now);
3000 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3001 }
3002
3003 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3004 }
3005
3006
3007 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3008 {
3009 const struct inet_connection_sock *icsk = inet_csk(sk);
3010
3011 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3012 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3013 }
3014
3015 /* Restart timer after forward progress on connection.
3016 * RFC2988 recommends to restart timer to now+rto.
3017 */
3018 void tcp_rearm_rto(struct sock *sk)
3019 {
3020 const struct inet_connection_sock *icsk = inet_csk(sk);
3021 struct tcp_sock *tp = tcp_sk(sk);
3022
3023 /* If the retrans timer is currently being used by Fast Open
3024 * for SYN-ACK retrans purpose, stay put.
3025 */
3026 if (tp->fastopen_rsk)
3027 return;
3028
3029 if (!tp->packets_out) {
3030 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3031 } else {
3032 u32 rto = inet_csk(sk)->icsk_rto;
3033 /* Offset the time elapsed after installing regular RTO */
3034 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3035 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3036 struct sk_buff *skb = tcp_write_queue_head(sk);
3037 const u32 rto_time_stamp =
3038 tcp_skb_timestamp(skb) + rto;
3039 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3040 /* delta may not be positive if the socket is locked
3041 * when the retrans timer fires and is rescheduled.
3042 */
3043 if (delta > 0)
3044 rto = delta;
3045 }
3046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3047 TCP_RTO_MAX);
3048 }
3049 }
3050
3051 /* This function is called when the delayed ER timer fires. TCP enters
3052 * fast recovery and performs fast-retransmit.
3053 */
3054 void tcp_resume_early_retransmit(struct sock *sk)
3055 {
3056 struct tcp_sock *tp = tcp_sk(sk);
3057
3058 tcp_rearm_rto(sk);
3059
3060 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3061 if (!tp->do_early_retrans)
3062 return;
3063
3064 tcp_enter_recovery(sk, false);
3065 tcp_update_scoreboard(sk, 1);
3066 tcp_xmit_retransmit_queue(sk);
3067 }
3068
3069 /* If we get here, the whole TSO packet has not been acked. */
3070 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3071 {
3072 struct tcp_sock *tp = tcp_sk(sk);
3073 u32 packets_acked;
3074
3075 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3076
3077 packets_acked = tcp_skb_pcount(skb);
3078 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3079 return 0;
3080 packets_acked -= tcp_skb_pcount(skb);
3081
3082 if (packets_acked) {
3083 BUG_ON(tcp_skb_pcount(skb) == 0);
3084 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3085 }
3086
3087 return packets_acked;
3088 }
3089
3090 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3091 u32 prior_snd_una)
3092 {
3093 const struct skb_shared_info *shinfo;
3094
3095 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3096 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3097 return;
3098
3099 shinfo = skb_shinfo(skb);
3100 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3101 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3102 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3103 }
3104
3105 /* Remove acknowledged frames from the retransmission queue. If our packet
3106 * is before the ack sequence we can discard it as it's confirmed to have
3107 * arrived at the other end.
3108 */
3109 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3110 u32 prior_snd_una, int *acked,
3111 struct tcp_sacktag_state *sack)
3112 {
3113 const struct inet_connection_sock *icsk = inet_csk(sk);
3114 struct skb_mstamp first_ackt, last_ackt, now;
3115 struct tcp_sock *tp = tcp_sk(sk);
3116 u32 prior_sacked = tp->sacked_out;
3117 u32 reord = tp->packets_out;
3118 bool fully_acked = true;
3119 long sack_rtt_us = -1L;
3120 long seq_rtt_us = -1L;
3121 long ca_rtt_us = -1L;
3122 struct sk_buff *skb;
3123 u32 pkts_acked = 0;
3124 bool rtt_update;
3125 int flag = 0;
3126
3127 first_ackt.v64 = 0;
3128
3129 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3130 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3131 u8 sacked = scb->sacked;
3132 u32 acked_pcount;
3133
3134 tcp_ack_tstamp(sk, skb, prior_snd_una);
3135
3136 /* Determine how many packets and what bytes were acked, tso and else */
3137 if (after(scb->end_seq, tp->snd_una)) {
3138 if (tcp_skb_pcount(skb) == 1 ||
3139 !after(tp->snd_una, scb->seq))
3140 break;
3141
3142 acked_pcount = tcp_tso_acked(sk, skb);
3143 if (!acked_pcount)
3144 break;
3145
3146 fully_acked = false;
3147 } else {
3148 /* Speedup tcp_unlink_write_queue() and next loop */
3149 prefetchw(skb->next);
3150 acked_pcount = tcp_skb_pcount(skb);
3151 }
3152
3153 if (unlikely(sacked & TCPCB_RETRANS)) {
3154 if (sacked & TCPCB_SACKED_RETRANS)
3155 tp->retrans_out -= acked_pcount;
3156 flag |= FLAG_RETRANS_DATA_ACKED;
3157 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3158 last_ackt = skb->skb_mstamp;
3159 WARN_ON_ONCE(last_ackt.v64 == 0);
3160 if (!first_ackt.v64)
3161 first_ackt = last_ackt;
3162
3163 reord = min(pkts_acked, reord);
3164 if (!after(scb->end_seq, tp->high_seq))
3165 flag |= FLAG_ORIG_SACK_ACKED;
3166 }
3167
3168 if (sacked & TCPCB_SACKED_ACKED) {
3169 tp->sacked_out -= acked_pcount;
3170 } else if (tcp_is_sack(tp)) {
3171 tp->delivered += acked_pcount;
3172 if (!tcp_skb_spurious_retrans(tp, skb))
3173 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3174 }
3175 if (sacked & TCPCB_LOST)
3176 tp->lost_out -= acked_pcount;
3177
3178 tp->packets_out -= acked_pcount;
3179 pkts_acked += acked_pcount;
3180
3181 /* Initial outgoing SYN's get put onto the write_queue
3182 * just like anything else we transmit. It is not
3183 * true data, and if we misinform our callers that
3184 * this ACK acks real data, we will erroneously exit
3185 * connection startup slow start one packet too
3186 * quickly. This is severely frowned upon behavior.
3187 */
3188 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3189 flag |= FLAG_DATA_ACKED;
3190 } else {
3191 flag |= FLAG_SYN_ACKED;
3192 tp->retrans_stamp = 0;
3193 }
3194
3195 if (!fully_acked)
3196 break;
3197
3198 tcp_unlink_write_queue(skb, sk);
3199 sk_wmem_free_skb(sk, skb);
3200 if (unlikely(skb == tp->retransmit_skb_hint))
3201 tp->retransmit_skb_hint = NULL;
3202 if (unlikely(skb == tp->lost_skb_hint))
3203 tp->lost_skb_hint = NULL;
3204 }
3205
3206 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3207 tp->snd_up = tp->snd_una;
3208
3209 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3210 flag |= FLAG_SACK_RENEGING;
3211
3212 skb_mstamp_get(&now);
3213 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3214 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3215 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3216 }
3217 if (sack->first_sackt.v64) {
3218 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3219 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3220 }
3221
3222 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3223 ca_rtt_us);
3224
3225 if (flag & FLAG_ACKED) {
3226 tcp_rearm_rto(sk);
3227 if (unlikely(icsk->icsk_mtup.probe_size &&
3228 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3229 tcp_mtup_probe_success(sk);
3230 }
3231
3232 if (tcp_is_reno(tp)) {
3233 tcp_remove_reno_sacks(sk, pkts_acked);
3234 } else {
3235 int delta;
3236
3237 /* Non-retransmitted hole got filled? That's reordering */
3238 if (reord < prior_fackets)
3239 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3240
3241 delta = tcp_is_fack(tp) ? pkts_acked :
3242 prior_sacked - tp->sacked_out;
3243 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3244 }
3245
3246 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3247
3248 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3249 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3250 /* Do not re-arm RTO if the sack RTT is measured from data sent
3251 * after when the head was last (re)transmitted. Otherwise the
3252 * timeout may continue to extend in loss recovery.
3253 */
3254 tcp_rearm_rto(sk);
3255 }
3256
3257 if (icsk->icsk_ca_ops->pkts_acked)
3258 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3259
3260 #if FASTRETRANS_DEBUG > 0
3261 WARN_ON((int)tp->sacked_out < 0);
3262 WARN_ON((int)tp->lost_out < 0);
3263 WARN_ON((int)tp->retrans_out < 0);
3264 if (!tp->packets_out && tcp_is_sack(tp)) {
3265 icsk = inet_csk(sk);
3266 if (tp->lost_out) {
3267 pr_debug("Leak l=%u %d\n",
3268 tp->lost_out, icsk->icsk_ca_state);
3269 tp->lost_out = 0;
3270 }
3271 if (tp->sacked_out) {
3272 pr_debug("Leak s=%u %d\n",
3273 tp->sacked_out, icsk->icsk_ca_state);
3274 tp->sacked_out = 0;
3275 }
3276 if (tp->retrans_out) {
3277 pr_debug("Leak r=%u %d\n",
3278 tp->retrans_out, icsk->icsk_ca_state);
3279 tp->retrans_out = 0;
3280 }
3281 }
3282 #endif
3283 *acked = pkts_acked;
3284 return flag;
3285 }
3286
3287 static void tcp_ack_probe(struct sock *sk)
3288 {
3289 const struct tcp_sock *tp = tcp_sk(sk);
3290 struct inet_connection_sock *icsk = inet_csk(sk);
3291
3292 /* Was it a usable window open? */
3293
3294 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3295 icsk->icsk_backoff = 0;
3296 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3297 /* Socket must be waked up by subsequent tcp_data_snd_check().
3298 * This function is not for random using!
3299 */
3300 } else {
3301 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3302
3303 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3304 when, TCP_RTO_MAX);
3305 }
3306 }
3307
3308 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3309 {
3310 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3311 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3312 }
3313
3314 /* Decide wheather to run the increase function of congestion control. */
3315 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3316 {
3317 /* If reordering is high then always grow cwnd whenever data is
3318 * delivered regardless of its ordering. Otherwise stay conservative
3319 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3320 * new SACK or ECE mark may first advance cwnd here and later reduce
3321 * cwnd in tcp_fastretrans_alert() based on more states.
3322 */
3323 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3324 return flag & FLAG_FORWARD_PROGRESS;
3325
3326 return flag & FLAG_DATA_ACKED;
3327 }
3328
3329 /* The "ultimate" congestion control function that aims to replace the rigid
3330 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3331 * It's called toward the end of processing an ACK with precise rate
3332 * information. All transmission or retransmission are delayed afterwards.
3333 */
3334 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3335 int flag)
3336 {
3337 if (tcp_in_cwnd_reduction(sk)) {
3338 /* Reduce cwnd if state mandates */
3339 tcp_cwnd_reduction(sk, acked_sacked, flag);
3340 } else if (tcp_may_raise_cwnd(sk, flag)) {
3341 /* Advance cwnd if state allows */
3342 tcp_cong_avoid(sk, ack, acked_sacked);
3343 }
3344 tcp_update_pacing_rate(sk);
3345 }
3346
3347 /* Check that window update is acceptable.
3348 * The function assumes that snd_una<=ack<=snd_next.
3349 */
3350 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3351 const u32 ack, const u32 ack_seq,
3352 const u32 nwin)
3353 {
3354 return after(ack, tp->snd_una) ||
3355 after(ack_seq, tp->snd_wl1) ||
3356 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3357 }
3358
3359 /* If we update tp->snd_una, also update tp->bytes_acked */
3360 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3361 {
3362 u32 delta = ack - tp->snd_una;
3363
3364 u64_stats_update_begin(&tp->syncp);
3365 tp->bytes_acked += delta;
3366 u64_stats_update_end(&tp->syncp);
3367 tp->snd_una = ack;
3368 }
3369
3370 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3371 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3372 {
3373 u32 delta = seq - tp->rcv_nxt;
3374
3375 u64_stats_update_begin(&tp->syncp);
3376 tp->bytes_received += delta;
3377 u64_stats_update_end(&tp->syncp);
3378 tp->rcv_nxt = seq;
3379 }
3380
3381 /* Update our send window.
3382 *
3383 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3384 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3385 */
3386 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3387 u32 ack_seq)
3388 {
3389 struct tcp_sock *tp = tcp_sk(sk);
3390 int flag = 0;
3391 u32 nwin = ntohs(tcp_hdr(skb)->window);
3392
3393 if (likely(!tcp_hdr(skb)->syn))
3394 nwin <<= tp->rx_opt.snd_wscale;
3395
3396 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3397 flag |= FLAG_WIN_UPDATE;
3398 tcp_update_wl(tp, ack_seq);
3399
3400 if (tp->snd_wnd != nwin) {
3401 tp->snd_wnd = nwin;
3402
3403 /* Note, it is the only place, where
3404 * fast path is recovered for sending TCP.
3405 */
3406 tp->pred_flags = 0;
3407 tcp_fast_path_check(sk);
3408
3409 if (tcp_send_head(sk))
3410 tcp_slow_start_after_idle_check(sk);
3411
3412 if (nwin > tp->max_window) {
3413 tp->max_window = nwin;
3414 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3415 }
3416 }
3417 }
3418
3419 tcp_snd_una_update(tp, ack);
3420
3421 return flag;
3422 }
3423
3424 /* Return true if we're currently rate-limiting out-of-window ACKs and
3425 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3426 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3427 * attacks that send repeated SYNs or ACKs for the same connection. To
3428 * do this, we do not send a duplicate SYNACK or ACK if the remote
3429 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3430 */
3431 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3432 int mib_idx, u32 *last_oow_ack_time)
3433 {
3434 /* Data packets without SYNs are not likely part of an ACK loop. */
3435 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3436 !tcp_hdr(skb)->syn)
3437 goto not_rate_limited;
3438
3439 if (*last_oow_ack_time) {
3440 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3441
3442 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3443 NET_INC_STATS_BH(net, mib_idx);
3444 return true; /* rate-limited: don't send yet! */
3445 }
3446 }
3447
3448 *last_oow_ack_time = tcp_time_stamp;
3449
3450 not_rate_limited:
3451 return false; /* not rate-limited: go ahead, send dupack now! */
3452 }
3453
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3456 {
3457 /* unprotected vars, we dont care of overwrites */
3458 static u32 challenge_timestamp;
3459 static unsigned int challenge_count;
3460 struct tcp_sock *tp = tcp_sk(sk);
3461 u32 now;
3462
3463 /* First check our per-socket dupack rate limit. */
3464 if (tcp_oow_rate_limited(sock_net(sk), skb,
3465 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3466 &tp->last_oow_ack_time))
3467 return;
3468
3469 /* Then check the check host-wide RFC 5961 rate limit. */
3470 now = jiffies / HZ;
3471 if (now != challenge_timestamp) {
3472 challenge_timestamp = now;
3473 challenge_count = 0;
3474 }
3475 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3476 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3477 tcp_send_ack(sk);
3478 }
3479 }
3480
3481 static void tcp_store_ts_recent(struct tcp_sock *tp)
3482 {
3483 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484 tp->rx_opt.ts_recent_stamp = get_seconds();
3485 }
3486
3487 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488 {
3489 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491 * extra check below makes sure this can only happen
3492 * for pure ACK frames. -DaveM
3493 *
3494 * Not only, also it occurs for expired timestamps.
3495 */
3496
3497 if (tcp_paws_check(&tp->rx_opt, 0))
3498 tcp_store_ts_recent(tp);
3499 }
3500 }
3501
3502 /* This routine deals with acks during a TLP episode.
3503 * We mark the end of a TLP episode on receiving TLP dupack or when
3504 * ack is after tlp_high_seq.
3505 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3506 */
3507 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508 {
3509 struct tcp_sock *tp = tcp_sk(sk);
3510
3511 if (before(ack, tp->tlp_high_seq))
3512 return;
3513
3514 if (flag & FLAG_DSACKING_ACK) {
3515 /* This DSACK means original and TLP probe arrived; no loss */
3516 tp->tlp_high_seq = 0;
3517 } else if (after(ack, tp->tlp_high_seq)) {
3518 /* ACK advances: there was a loss, so reduce cwnd. Reset
3519 * tlp_high_seq in tcp_init_cwnd_reduction()
3520 */
3521 tcp_init_cwnd_reduction(sk);
3522 tcp_set_ca_state(sk, TCP_CA_CWR);
3523 tcp_end_cwnd_reduction(sk);
3524 tcp_try_keep_open(sk);
3525 NET_INC_STATS_BH(sock_net(sk),
3526 LINUX_MIB_TCPLOSSPROBERECOVERY);
3527 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529 /* Pure dupack: original and TLP probe arrived; no loss */
3530 tp->tlp_high_seq = 0;
3531 }
3532 }
3533
3534 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535 {
3536 const struct inet_connection_sock *icsk = inet_csk(sk);
3537
3538 if (icsk->icsk_ca_ops->in_ack_event)
3539 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540 }
3541
3542 /* Congestion control has updated the cwnd already. So if we're in
3543 * loss recovery then now we do any new sends (for FRTO) or
3544 * retransmits (for CA_Loss or CA_recovery) that make sense.
3545 */
3546 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547 {
3548 struct tcp_sock *tp = tcp_sk(sk);
3549
3550 if (rexmit == REXMIT_NONE)
3551 return;
3552
3553 if (unlikely(rexmit == 2)) {
3554 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555 TCP_NAGLE_OFF);
3556 if (after(tp->snd_nxt, tp->high_seq))
3557 return;
3558 tp->frto = 0;
3559 }
3560 tcp_xmit_retransmit_queue(sk);
3561 }
3562
3563 /* This routine deals with incoming acks, but not outgoing ones. */
3564 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3565 {
3566 struct inet_connection_sock *icsk = inet_csk(sk);
3567 struct tcp_sock *tp = tcp_sk(sk);
3568 struct tcp_sacktag_state sack_state;
3569 u32 prior_snd_una = tp->snd_una;
3570 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3571 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3572 bool is_dupack = false;
3573 u32 prior_fackets;
3574 int prior_packets = tp->packets_out;
3575 u32 prior_delivered = tp->delivered;
3576 int acked = 0; /* Number of packets newly acked */
3577 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3578
3579 sack_state.first_sackt.v64 = 0;
3580
3581 /* We very likely will need to access write queue head. */
3582 prefetchw(sk->sk_write_queue.next);
3583
3584 /* If the ack is older than previous acks
3585 * then we can probably ignore it.
3586 */
3587 if (before(ack, prior_snd_una)) {
3588 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3589 if (before(ack, prior_snd_una - tp->max_window)) {
3590 tcp_send_challenge_ack(sk, skb);
3591 return -1;
3592 }
3593 goto old_ack;
3594 }
3595
3596 /* If the ack includes data we haven't sent yet, discard
3597 * this segment (RFC793 Section 3.9).
3598 */
3599 if (after(ack, tp->snd_nxt))
3600 goto invalid_ack;
3601
3602 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3603 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3604 tcp_rearm_rto(sk);
3605
3606 if (after(ack, prior_snd_una)) {
3607 flag |= FLAG_SND_UNA_ADVANCED;
3608 icsk->icsk_retransmits = 0;
3609 }
3610
3611 prior_fackets = tp->fackets_out;
3612
3613 /* ts_recent update must be made after we are sure that the packet
3614 * is in window.
3615 */
3616 if (flag & FLAG_UPDATE_TS_RECENT)
3617 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3618
3619 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3620 /* Window is constant, pure forward advance.
3621 * No more checks are required.
3622 * Note, we use the fact that SND.UNA>=SND.WL2.
3623 */
3624 tcp_update_wl(tp, ack_seq);
3625 tcp_snd_una_update(tp, ack);
3626 flag |= FLAG_WIN_UPDATE;
3627
3628 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3629
3630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3631 } else {
3632 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3633
3634 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3635 flag |= FLAG_DATA;
3636 else
3637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3638
3639 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3640
3641 if (TCP_SKB_CB(skb)->sacked)
3642 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3643 &sack_state);
3644
3645 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3646 flag |= FLAG_ECE;
3647 ack_ev_flags |= CA_ACK_ECE;
3648 }
3649
3650 if (flag & FLAG_WIN_UPDATE)
3651 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3652
3653 tcp_in_ack_event(sk, ack_ev_flags);
3654 }
3655
3656 /* We passed data and got it acked, remove any soft error
3657 * log. Something worked...
3658 */
3659 sk->sk_err_soft = 0;
3660 icsk->icsk_probes_out = 0;
3661 tp->rcv_tstamp = tcp_time_stamp;
3662 if (!prior_packets)
3663 goto no_queue;
3664
3665 /* See if we can take anything off of the retransmit queue. */
3666 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3667 &sack_state);
3668
3669 if (tcp_ack_is_dubious(sk, flag)) {
3670 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3671 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3672 }
3673 if (tp->tlp_high_seq)
3674 tcp_process_tlp_ack(sk, ack, flag);
3675
3676 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3677 struct dst_entry *dst = __sk_dst_get(sk);
3678 if (dst)
3679 dst_confirm(dst);
3680 }
3681
3682 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3683 tcp_schedule_loss_probe(sk);
3684 tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3685 tcp_xmit_recovery(sk, rexmit);
3686 return 1;
3687
3688 no_queue:
3689 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3690 if (flag & FLAG_DSACKING_ACK)
3691 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3692 /* If this ack opens up a zero window, clear backoff. It was
3693 * being used to time the probes, and is probably far higher than
3694 * it needs to be for normal retransmission.
3695 */
3696 if (tcp_send_head(sk))
3697 tcp_ack_probe(sk);
3698
3699 if (tp->tlp_high_seq)
3700 tcp_process_tlp_ack(sk, ack, flag);
3701 return 1;
3702
3703 invalid_ack:
3704 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3705 return -1;
3706
3707 old_ack:
3708 /* If data was SACKed, tag it and see if we should send more data.
3709 * If data was DSACKed, see if we can undo a cwnd reduction.
3710 */
3711 if (TCP_SKB_CB(skb)->sacked) {
3712 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3713 &sack_state);
3714 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3715 tcp_xmit_recovery(sk, rexmit);
3716 }
3717
3718 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3719 return 0;
3720 }
3721
3722 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3723 bool syn, struct tcp_fastopen_cookie *foc,
3724 bool exp_opt)
3725 {
3726 /* Valid only in SYN or SYN-ACK with an even length. */
3727 if (!foc || !syn || len < 0 || (len & 1))
3728 return;
3729
3730 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3731 len <= TCP_FASTOPEN_COOKIE_MAX)
3732 memcpy(foc->val, cookie, len);
3733 else if (len != 0)
3734 len = -1;
3735 foc->len = len;
3736 foc->exp = exp_opt;
3737 }
3738
3739 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3740 * But, this can also be called on packets in the established flow when
3741 * the fast version below fails.
3742 */
3743 void tcp_parse_options(const struct sk_buff *skb,
3744 struct tcp_options_received *opt_rx, int estab,
3745 struct tcp_fastopen_cookie *foc)
3746 {
3747 const unsigned char *ptr;
3748 const struct tcphdr *th = tcp_hdr(skb);
3749 int length = (th->doff * 4) - sizeof(struct tcphdr);
3750
3751 ptr = (const unsigned char *)(th + 1);
3752 opt_rx->saw_tstamp = 0;
3753
3754 while (length > 0) {
3755 int opcode = *ptr++;
3756 int opsize;
3757
3758 switch (opcode) {
3759 case TCPOPT_EOL:
3760 return;
3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3762 length--;
3763 continue;
3764 default:
3765 opsize = *ptr++;
3766 if (opsize < 2) /* "silly options" */
3767 return;
3768 if (opsize > length)
3769 return; /* don't parse partial options */
3770 switch (opcode) {
3771 case TCPOPT_MSS:
3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 u16 in_mss = get_unaligned_be16(ptr);
3774 if (in_mss) {
3775 if (opt_rx->user_mss &&
3776 opt_rx->user_mss < in_mss)
3777 in_mss = opt_rx->user_mss;
3778 opt_rx->mss_clamp = in_mss;
3779 }
3780 }
3781 break;
3782 case TCPOPT_WINDOW:
3783 if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 !estab && sysctl_tcp_window_scaling) {
3785 __u8 snd_wscale = *(__u8 *)ptr;
3786 opt_rx->wscale_ok = 1;
3787 if (snd_wscale > 14) {
3788 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3789 __func__,
3790 snd_wscale);
3791 snd_wscale = 14;
3792 }
3793 opt_rx->snd_wscale = snd_wscale;
3794 }
3795 break;
3796 case TCPOPT_TIMESTAMP:
3797 if ((opsize == TCPOLEN_TIMESTAMP) &&
3798 ((estab && opt_rx->tstamp_ok) ||
3799 (!estab && sysctl_tcp_timestamps))) {
3800 opt_rx->saw_tstamp = 1;
3801 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3802 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3803 }
3804 break;
3805 case TCPOPT_SACK_PERM:
3806 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3807 !estab && sysctl_tcp_sack) {
3808 opt_rx->sack_ok = TCP_SACK_SEEN;
3809 tcp_sack_reset(opt_rx);
3810 }
3811 break;
3812
3813 case TCPOPT_SACK:
3814 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3815 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3816 opt_rx->sack_ok) {
3817 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3818 }
3819 break;
3820 #ifdef CONFIG_TCP_MD5SIG
3821 case TCPOPT_MD5SIG:
3822 /*
3823 * The MD5 Hash has already been
3824 * checked (see tcp_v{4,6}_do_rcv()).
3825 */
3826 break;
3827 #endif
3828 case TCPOPT_FASTOPEN:
3829 tcp_parse_fastopen_option(
3830 opsize - TCPOLEN_FASTOPEN_BASE,
3831 ptr, th->syn, foc, false);
3832 break;
3833
3834 case TCPOPT_EXP:
3835 /* Fast Open option shares code 254 using a
3836 * 16 bits magic number.
3837 */
3838 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3839 get_unaligned_be16(ptr) ==
3840 TCPOPT_FASTOPEN_MAGIC)
3841 tcp_parse_fastopen_option(opsize -
3842 TCPOLEN_EXP_FASTOPEN_BASE,
3843 ptr + 2, th->syn, foc, true);
3844 break;
3845
3846 }
3847 ptr += opsize-2;
3848 length -= opsize;
3849 }
3850 }
3851 }
3852 EXPORT_SYMBOL(tcp_parse_options);
3853
3854 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3855 {
3856 const __be32 *ptr = (const __be32 *)(th + 1);
3857
3858 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3859 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3860 tp->rx_opt.saw_tstamp = 1;
3861 ++ptr;
3862 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3863 ++ptr;
3864 if (*ptr)
3865 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3866 else
3867 tp->rx_opt.rcv_tsecr = 0;
3868 return true;
3869 }
3870 return false;
3871 }
3872
3873 /* Fast parse options. This hopes to only see timestamps.
3874 * If it is wrong it falls back on tcp_parse_options().
3875 */
3876 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3877 const struct tcphdr *th, struct tcp_sock *tp)
3878 {
3879 /* In the spirit of fast parsing, compare doff directly to constant
3880 * values. Because equality is used, short doff can be ignored here.
3881 */
3882 if (th->doff == (sizeof(*th) / 4)) {
3883 tp->rx_opt.saw_tstamp = 0;
3884 return false;
3885 } else if (tp->rx_opt.tstamp_ok &&
3886 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3887 if (tcp_parse_aligned_timestamp(tp, th))
3888 return true;
3889 }
3890
3891 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3892 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3893 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3894
3895 return true;
3896 }
3897
3898 #ifdef CONFIG_TCP_MD5SIG
3899 /*
3900 * Parse MD5 Signature option
3901 */
3902 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3903 {
3904 int length = (th->doff << 2) - sizeof(*th);
3905 const u8 *ptr = (const u8 *)(th + 1);
3906
3907 /* If the TCP option is too short, we can short cut */
3908 if (length < TCPOLEN_MD5SIG)
3909 return NULL;
3910
3911 while (length > 0) {
3912 int opcode = *ptr++;
3913 int opsize;
3914
3915 switch (opcode) {
3916 case TCPOPT_EOL:
3917 return NULL;
3918 case TCPOPT_NOP:
3919 length--;
3920 continue;
3921 default:
3922 opsize = *ptr++;
3923 if (opsize < 2 || opsize > length)
3924 return NULL;
3925 if (opcode == TCPOPT_MD5SIG)
3926 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3927 }
3928 ptr += opsize - 2;
3929 length -= opsize;
3930 }
3931 return NULL;
3932 }
3933 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3934 #endif
3935
3936 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3937 *
3938 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3939 * it can pass through stack. So, the following predicate verifies that
3940 * this segment is not used for anything but congestion avoidance or
3941 * fast retransmit. Moreover, we even are able to eliminate most of such
3942 * second order effects, if we apply some small "replay" window (~RTO)
3943 * to timestamp space.
3944 *
3945 * All these measures still do not guarantee that we reject wrapped ACKs
3946 * on networks with high bandwidth, when sequence space is recycled fastly,
3947 * but it guarantees that such events will be very rare and do not affect
3948 * connection seriously. This doesn't look nice, but alas, PAWS is really
3949 * buggy extension.
3950 *
3951 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3952 * states that events when retransmit arrives after original data are rare.
3953 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3954 * the biggest problem on large power networks even with minor reordering.
3955 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3956 * up to bandwidth of 18Gigabit/sec. 8) ]
3957 */
3958
3959 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3960 {
3961 const struct tcp_sock *tp = tcp_sk(sk);
3962 const struct tcphdr *th = tcp_hdr(skb);
3963 u32 seq = TCP_SKB_CB(skb)->seq;
3964 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3965
3966 return (/* 1. Pure ACK with correct sequence number. */
3967 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3968
3969 /* 2. ... and duplicate ACK. */
3970 ack == tp->snd_una &&
3971
3972 /* 3. ... and does not update window. */
3973 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3974
3975 /* 4. ... and sits in replay window. */
3976 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3977 }
3978
3979 static inline bool tcp_paws_discard(const struct sock *sk,
3980 const struct sk_buff *skb)
3981 {
3982 const struct tcp_sock *tp = tcp_sk(sk);
3983
3984 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3985 !tcp_disordered_ack(sk, skb);
3986 }
3987
3988 /* Check segment sequence number for validity.
3989 *
3990 * Segment controls are considered valid, if the segment
3991 * fits to the window after truncation to the window. Acceptability
3992 * of data (and SYN, FIN, of course) is checked separately.
3993 * See tcp_data_queue(), for example.
3994 *
3995 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3996 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3997 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3998 * (borrowed from freebsd)
3999 */
4000
4001 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4002 {
4003 return !before(end_seq, tp->rcv_wup) &&
4004 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4005 }
4006
4007 /* When we get a reset we do this. */
4008 void tcp_reset(struct sock *sk)
4009 {
4010 /* We want the right error as BSD sees it (and indeed as we do). */
4011 switch (sk->sk_state) {
4012 case TCP_SYN_SENT:
4013 sk->sk_err = ECONNREFUSED;
4014 break;
4015 case TCP_CLOSE_WAIT:
4016 sk->sk_err = EPIPE;
4017 break;
4018 case TCP_CLOSE:
4019 return;
4020 default:
4021 sk->sk_err = ECONNRESET;
4022 }
4023 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4024 smp_wmb();
4025
4026 if (!sock_flag(sk, SOCK_DEAD))
4027 sk->sk_error_report(sk);
4028
4029 tcp_done(sk);
4030 }
4031
4032 /*
4033 * Process the FIN bit. This now behaves as it is supposed to work
4034 * and the FIN takes effect when it is validly part of sequence
4035 * space. Not before when we get holes.
4036 *
4037 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4038 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4039 * TIME-WAIT)
4040 *
4041 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4042 * close and we go into CLOSING (and later onto TIME-WAIT)
4043 *
4044 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4045 */
4046 void tcp_fin(struct sock *sk)
4047 {
4048 struct tcp_sock *tp = tcp_sk(sk);
4049
4050 inet_csk_schedule_ack(sk);
4051
4052 sk->sk_shutdown |= RCV_SHUTDOWN;
4053 sock_set_flag(sk, SOCK_DONE);
4054
4055 switch (sk->sk_state) {
4056 case TCP_SYN_RECV:
4057 case TCP_ESTABLISHED:
4058 /* Move to CLOSE_WAIT */
4059 tcp_set_state(sk, TCP_CLOSE_WAIT);
4060 inet_csk(sk)->icsk_ack.pingpong = 1;
4061 break;
4062
4063 case TCP_CLOSE_WAIT:
4064 case TCP_CLOSING:
4065 /* Received a retransmission of the FIN, do
4066 * nothing.
4067 */
4068 break;
4069 case TCP_LAST_ACK:
4070 /* RFC793: Remain in the LAST-ACK state. */
4071 break;
4072
4073 case TCP_FIN_WAIT1:
4074 /* This case occurs when a simultaneous close
4075 * happens, we must ack the received FIN and
4076 * enter the CLOSING state.
4077 */
4078 tcp_send_ack(sk);
4079 tcp_set_state(sk, TCP_CLOSING);
4080 break;
4081 case TCP_FIN_WAIT2:
4082 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4083 tcp_send_ack(sk);
4084 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4085 break;
4086 default:
4087 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4088 * cases we should never reach this piece of code.
4089 */
4090 pr_err("%s: Impossible, sk->sk_state=%d\n",
4091 __func__, sk->sk_state);
4092 break;
4093 }
4094
4095 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4096 * Probably, we should reset in this case. For now drop them.
4097 */
4098 __skb_queue_purge(&tp->out_of_order_queue);
4099 if (tcp_is_sack(tp))
4100 tcp_sack_reset(&tp->rx_opt);
4101 sk_mem_reclaim(sk);
4102
4103 if (!sock_flag(sk, SOCK_DEAD)) {
4104 sk->sk_state_change(sk);
4105
4106 /* Do not send POLL_HUP for half duplex close. */
4107 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4108 sk->sk_state == TCP_CLOSE)
4109 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4110 else
4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4112 }
4113 }
4114
4115 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4116 u32 end_seq)
4117 {
4118 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4119 if (before(seq, sp->start_seq))
4120 sp->start_seq = seq;
4121 if (after(end_seq, sp->end_seq))
4122 sp->end_seq = end_seq;
4123 return true;
4124 }
4125 return false;
4126 }
4127
4128 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4129 {
4130 struct tcp_sock *tp = tcp_sk(sk);
4131
4132 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4133 int mib_idx;
4134
4135 if (before(seq, tp->rcv_nxt))
4136 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4137 else
4138 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4139
4140 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4141
4142 tp->rx_opt.dsack = 1;
4143 tp->duplicate_sack[0].start_seq = seq;
4144 tp->duplicate_sack[0].end_seq = end_seq;
4145 }
4146 }
4147
4148 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4149 {
4150 struct tcp_sock *tp = tcp_sk(sk);
4151
4152 if (!tp->rx_opt.dsack)
4153 tcp_dsack_set(sk, seq, end_seq);
4154 else
4155 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4156 }
4157
4158 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4159 {
4160 struct tcp_sock *tp = tcp_sk(sk);
4161
4162 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4163 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4165 tcp_enter_quickack_mode(sk);
4166
4167 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4168 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4169
4170 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4171 end_seq = tp->rcv_nxt;
4172 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4173 }
4174 }
4175
4176 tcp_send_ack(sk);
4177 }
4178
4179 /* These routines update the SACK block as out-of-order packets arrive or
4180 * in-order packets close up the sequence space.
4181 */
4182 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4183 {
4184 int this_sack;
4185 struct tcp_sack_block *sp = &tp->selective_acks[0];
4186 struct tcp_sack_block *swalk = sp + 1;
4187
4188 /* See if the recent change to the first SACK eats into
4189 * or hits the sequence space of other SACK blocks, if so coalesce.
4190 */
4191 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4192 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4193 int i;
4194
4195 /* Zap SWALK, by moving every further SACK up by one slot.
4196 * Decrease num_sacks.
4197 */
4198 tp->rx_opt.num_sacks--;
4199 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4200 sp[i] = sp[i + 1];
4201 continue;
4202 }
4203 this_sack++, swalk++;
4204 }
4205 }
4206
4207 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4208 {
4209 struct tcp_sock *tp = tcp_sk(sk);
4210 struct tcp_sack_block *sp = &tp->selective_acks[0];
4211 int cur_sacks = tp->rx_opt.num_sacks;
4212 int this_sack;
4213
4214 if (!cur_sacks)
4215 goto new_sack;
4216
4217 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4218 if (tcp_sack_extend(sp, seq, end_seq)) {
4219 /* Rotate this_sack to the first one. */
4220 for (; this_sack > 0; this_sack--, sp--)
4221 swap(*sp, *(sp - 1));
4222 if (cur_sacks > 1)
4223 tcp_sack_maybe_coalesce(tp);
4224 return;
4225 }
4226 }
4227
4228 /* Could not find an adjacent existing SACK, build a new one,
4229 * put it at the front, and shift everyone else down. We
4230 * always know there is at least one SACK present already here.
4231 *
4232 * If the sack array is full, forget about the last one.
4233 */
4234 if (this_sack >= TCP_NUM_SACKS) {
4235 this_sack--;
4236 tp->rx_opt.num_sacks--;
4237 sp--;
4238 }
4239 for (; this_sack > 0; this_sack--, sp--)
4240 *sp = *(sp - 1);
4241
4242 new_sack:
4243 /* Build the new head SACK, and we're done. */
4244 sp->start_seq = seq;
4245 sp->end_seq = end_seq;
4246 tp->rx_opt.num_sacks++;
4247 }
4248
4249 /* RCV.NXT advances, some SACKs should be eaten. */
4250
4251 static void tcp_sack_remove(struct tcp_sock *tp)
4252 {
4253 struct tcp_sack_block *sp = &tp->selective_acks[0];
4254 int num_sacks = tp->rx_opt.num_sacks;
4255 int this_sack;
4256
4257 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4258 if (skb_queue_empty(&tp->out_of_order_queue)) {
4259 tp->rx_opt.num_sacks = 0;
4260 return;
4261 }
4262
4263 for (this_sack = 0; this_sack < num_sacks;) {
4264 /* Check if the start of the sack is covered by RCV.NXT. */
4265 if (!before(tp->rcv_nxt, sp->start_seq)) {
4266 int i;
4267
4268 /* RCV.NXT must cover all the block! */
4269 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4270
4271 /* Zap this SACK, by moving forward any other SACKS. */
4272 for (i = this_sack+1; i < num_sacks; i++)
4273 tp->selective_acks[i-1] = tp->selective_acks[i];
4274 num_sacks--;
4275 continue;
4276 }
4277 this_sack++;
4278 sp++;
4279 }
4280 tp->rx_opt.num_sacks = num_sacks;
4281 }
4282
4283 /**
4284 * tcp_try_coalesce - try to merge skb to prior one
4285 * @sk: socket
4286 * @to: prior buffer
4287 * @from: buffer to add in queue
4288 * @fragstolen: pointer to boolean
4289 *
4290 * Before queueing skb @from after @to, try to merge them
4291 * to reduce overall memory use and queue lengths, if cost is small.
4292 * Packets in ofo or receive queues can stay a long time.
4293 * Better try to coalesce them right now to avoid future collapses.
4294 * Returns true if caller should free @from instead of queueing it
4295 */
4296 static bool tcp_try_coalesce(struct sock *sk,
4297 struct sk_buff *to,
4298 struct sk_buff *from,
4299 bool *fragstolen)
4300 {
4301 int delta;
4302
4303 *fragstolen = false;
4304
4305 /* Its possible this segment overlaps with prior segment in queue */
4306 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4307 return false;
4308
4309 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4310 return false;
4311
4312 atomic_add(delta, &sk->sk_rmem_alloc);
4313 sk_mem_charge(sk, delta);
4314 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4315 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4316 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4317 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4318 return true;
4319 }
4320
4321 /* This one checks to see if we can put data from the
4322 * out_of_order queue into the receive_queue.
4323 */
4324 static void tcp_ofo_queue(struct sock *sk)
4325 {
4326 struct tcp_sock *tp = tcp_sk(sk);
4327 __u32 dsack_high = tp->rcv_nxt;
4328 struct sk_buff *skb, *tail;
4329 bool fragstolen, eaten;
4330
4331 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4332 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4333 break;
4334
4335 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4336 __u32 dsack = dsack_high;
4337 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4338 dsack_high = TCP_SKB_CB(skb)->end_seq;
4339 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4340 }
4341
4342 __skb_unlink(skb, &tp->out_of_order_queue);
4343 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4344 SOCK_DEBUG(sk, "ofo packet was already received\n");
4345 __kfree_skb(skb);
4346 continue;
4347 }
4348 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4349 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4350 TCP_SKB_CB(skb)->end_seq);
4351
4352 tail = skb_peek_tail(&sk->sk_receive_queue);
4353 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4354 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4355 if (!eaten)
4356 __skb_queue_tail(&sk->sk_receive_queue, skb);
4357 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4358 tcp_fin(sk);
4359 if (eaten)
4360 kfree_skb_partial(skb, fragstolen);
4361 }
4362 }
4363
4364 static bool tcp_prune_ofo_queue(struct sock *sk);
4365 static int tcp_prune_queue(struct sock *sk);
4366
4367 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4368 unsigned int size)
4369 {
4370 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4371 !sk_rmem_schedule(sk, skb, size)) {
4372
4373 if (tcp_prune_queue(sk) < 0)
4374 return -1;
4375
4376 if (!sk_rmem_schedule(sk, skb, size)) {
4377 if (!tcp_prune_ofo_queue(sk))
4378 return -1;
4379
4380 if (!sk_rmem_schedule(sk, skb, size))
4381 return -1;
4382 }
4383 }
4384 return 0;
4385 }
4386
4387 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4388 {
4389 struct tcp_sock *tp = tcp_sk(sk);
4390 struct sk_buff *skb1;
4391 u32 seq, end_seq;
4392
4393 tcp_ecn_check_ce(tp, skb);
4394
4395 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4396 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4397 __kfree_skb(skb);
4398 return;
4399 }
4400
4401 /* Disable header prediction. */
4402 tp->pred_flags = 0;
4403 inet_csk_schedule_ack(sk);
4404
4405 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4406 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4407 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4408
4409 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4410 if (!skb1) {
4411 /* Initial out of order segment, build 1 SACK. */
4412 if (tcp_is_sack(tp)) {
4413 tp->rx_opt.num_sacks = 1;
4414 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4415 tp->selective_acks[0].end_seq =
4416 TCP_SKB_CB(skb)->end_seq;
4417 }
4418 __skb_queue_head(&tp->out_of_order_queue, skb);
4419 goto end;
4420 }
4421
4422 seq = TCP_SKB_CB(skb)->seq;
4423 end_seq = TCP_SKB_CB(skb)->end_seq;
4424
4425 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4426 bool fragstolen;
4427
4428 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4429 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4430 } else {
4431 tcp_grow_window(sk, skb);
4432 kfree_skb_partial(skb, fragstolen);
4433 skb = NULL;
4434 }
4435
4436 if (!tp->rx_opt.num_sacks ||
4437 tp->selective_acks[0].end_seq != seq)
4438 goto add_sack;
4439
4440 /* Common case: data arrive in order after hole. */
4441 tp->selective_acks[0].end_seq = end_seq;
4442 goto end;
4443 }
4444
4445 /* Find place to insert this segment. */
4446 while (1) {
4447 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4448 break;
4449 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4450 skb1 = NULL;
4451 break;
4452 }
4453 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4454 }
4455
4456 /* Do skb overlap to previous one? */
4457 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4458 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4459 /* All the bits are present. Drop. */
4460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4461 __kfree_skb(skb);
4462 skb = NULL;
4463 tcp_dsack_set(sk, seq, end_seq);
4464 goto add_sack;
4465 }
4466 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4467 /* Partial overlap. */
4468 tcp_dsack_set(sk, seq,
4469 TCP_SKB_CB(skb1)->end_seq);
4470 } else {
4471 if (skb_queue_is_first(&tp->out_of_order_queue,
4472 skb1))
4473 skb1 = NULL;
4474 else
4475 skb1 = skb_queue_prev(
4476 &tp->out_of_order_queue,
4477 skb1);
4478 }
4479 }
4480 if (!skb1)
4481 __skb_queue_head(&tp->out_of_order_queue, skb);
4482 else
4483 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4484
4485 /* And clean segments covered by new one as whole. */
4486 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4487 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4488
4489 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4490 break;
4491 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4492 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4493 end_seq);
4494 break;
4495 }
4496 __skb_unlink(skb1, &tp->out_of_order_queue);
4497 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4498 TCP_SKB_CB(skb1)->end_seq);
4499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4500 __kfree_skb(skb1);
4501 }
4502
4503 add_sack:
4504 if (tcp_is_sack(tp))
4505 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4506 end:
4507 if (skb) {
4508 tcp_grow_window(sk, skb);
4509 skb_set_owner_r(skb, sk);
4510 }
4511 }
4512
4513 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4514 bool *fragstolen)
4515 {
4516 int eaten;
4517 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4518
4519 __skb_pull(skb, hdrlen);
4520 eaten = (tail &&
4521 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4522 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4523 if (!eaten) {
4524 __skb_queue_tail(&sk->sk_receive_queue, skb);
4525 skb_set_owner_r(skb, sk);
4526 }
4527 return eaten;
4528 }
4529
4530 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4531 {
4532 struct sk_buff *skb;
4533 int err = -ENOMEM;
4534 int data_len = 0;
4535 bool fragstolen;
4536
4537 if (size == 0)
4538 return 0;
4539
4540 if (size > PAGE_SIZE) {
4541 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4542
4543 data_len = npages << PAGE_SHIFT;
4544 size = data_len + (size & ~PAGE_MASK);
4545 }
4546 skb = alloc_skb_with_frags(size - data_len, data_len,
4547 PAGE_ALLOC_COSTLY_ORDER,
4548 &err, sk->sk_allocation);
4549 if (!skb)
4550 goto err;
4551
4552 skb_put(skb, size - data_len);
4553 skb->data_len = data_len;
4554 skb->len = size;
4555
4556 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4557 goto err_free;
4558
4559 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4560 if (err)
4561 goto err_free;
4562
4563 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4564 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4565 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4566
4567 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4568 WARN_ON_ONCE(fragstolen); /* should not happen */
4569 __kfree_skb(skb);
4570 }
4571 return size;
4572
4573 err_free:
4574 kfree_skb(skb);
4575 err:
4576 return err;
4577
4578 }
4579
4580 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4581 {
4582 struct tcp_sock *tp = tcp_sk(sk);
4583 int eaten = -1;
4584 bool fragstolen = false;
4585
4586 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4587 goto drop;
4588
4589 skb_dst_drop(skb);
4590 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4591
4592 tcp_ecn_accept_cwr(tp, skb);
4593
4594 tp->rx_opt.dsack = 0;
4595
4596 /* Queue data for delivery to the user.
4597 * Packets in sequence go to the receive queue.
4598 * Out of sequence packets to the out_of_order_queue.
4599 */
4600 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601 if (tcp_receive_window(tp) == 0)
4602 goto out_of_window;
4603
4604 /* Ok. In sequence. In window. */
4605 if (tp->ucopy.task == current &&
4606 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4607 sock_owned_by_user(sk) && !tp->urg_data) {
4608 int chunk = min_t(unsigned int, skb->len,
4609 tp->ucopy.len);
4610
4611 __set_current_state(TASK_RUNNING);
4612
4613 local_bh_enable();
4614 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4615 tp->ucopy.len -= chunk;
4616 tp->copied_seq += chunk;
4617 eaten = (chunk == skb->len);
4618 tcp_rcv_space_adjust(sk);
4619 }
4620 local_bh_disable();
4621 }
4622
4623 if (eaten <= 0) {
4624 queue_and_out:
4625 if (eaten < 0) {
4626 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4627 sk_forced_mem_schedule(sk, skb->truesize);
4628 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4629 goto drop;
4630 }
4631 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4632 }
4633 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4634 if (skb->len)
4635 tcp_event_data_recv(sk, skb);
4636 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4637 tcp_fin(sk);
4638
4639 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4640 tcp_ofo_queue(sk);
4641
4642 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4643 * gap in queue is filled.
4644 */
4645 if (skb_queue_empty(&tp->out_of_order_queue))
4646 inet_csk(sk)->icsk_ack.pingpong = 0;
4647 }
4648
4649 if (tp->rx_opt.num_sacks)
4650 tcp_sack_remove(tp);
4651
4652 tcp_fast_path_check(sk);
4653
4654 if (eaten > 0)
4655 kfree_skb_partial(skb, fragstolen);
4656 if (!sock_flag(sk, SOCK_DEAD))
4657 sk->sk_data_ready(sk);
4658 return;
4659 }
4660
4661 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4662 /* A retransmit, 2nd most common case. Force an immediate ack. */
4663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4664 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4665
4666 out_of_window:
4667 tcp_enter_quickack_mode(sk);
4668 inet_csk_schedule_ack(sk);
4669 drop:
4670 __kfree_skb(skb);
4671 return;
4672 }
4673
4674 /* Out of window. F.e. zero window probe. */
4675 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4676 goto out_of_window;
4677
4678 tcp_enter_quickack_mode(sk);
4679
4680 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4681 /* Partial packet, seq < rcv_next < end_seq */
4682 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4683 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4684 TCP_SKB_CB(skb)->end_seq);
4685
4686 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4687
4688 /* If window is closed, drop tail of packet. But after
4689 * remembering D-SACK for its head made in previous line.
4690 */
4691 if (!tcp_receive_window(tp))
4692 goto out_of_window;
4693 goto queue_and_out;
4694 }
4695
4696 tcp_data_queue_ofo(sk, skb);
4697 }
4698
4699 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4700 struct sk_buff_head *list)
4701 {
4702 struct sk_buff *next = NULL;
4703
4704 if (!skb_queue_is_last(list, skb))
4705 next = skb_queue_next(list, skb);
4706
4707 __skb_unlink(skb, list);
4708 __kfree_skb(skb);
4709 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4710
4711 return next;
4712 }
4713
4714 /* Collapse contiguous sequence of skbs head..tail with
4715 * sequence numbers start..end.
4716 *
4717 * If tail is NULL, this means until the end of the list.
4718 *
4719 * Segments with FIN/SYN are not collapsed (only because this
4720 * simplifies code)
4721 */
4722 static void
4723 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4724 struct sk_buff *head, struct sk_buff *tail,
4725 u32 start, u32 end)
4726 {
4727 struct sk_buff *skb, *n;
4728 bool end_of_skbs;
4729
4730 /* First, check that queue is collapsible and find
4731 * the point where collapsing can be useful. */
4732 skb = head;
4733 restart:
4734 end_of_skbs = true;
4735 skb_queue_walk_from_safe(list, skb, n) {
4736 if (skb == tail)
4737 break;
4738 /* No new bits? It is possible on ofo queue. */
4739 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4740 skb = tcp_collapse_one(sk, skb, list);
4741 if (!skb)
4742 break;
4743 goto restart;
4744 }
4745
4746 /* The first skb to collapse is:
4747 * - not SYN/FIN and
4748 * - bloated or contains data before "start" or
4749 * overlaps to the next one.
4750 */
4751 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4752 (tcp_win_from_space(skb->truesize) > skb->len ||
4753 before(TCP_SKB_CB(skb)->seq, start))) {
4754 end_of_skbs = false;
4755 break;
4756 }
4757
4758 if (!skb_queue_is_last(list, skb)) {
4759 struct sk_buff *next = skb_queue_next(list, skb);
4760 if (next != tail &&
4761 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4762 end_of_skbs = false;
4763 break;
4764 }
4765 }
4766
4767 /* Decided to skip this, advance start seq. */
4768 start = TCP_SKB_CB(skb)->end_seq;
4769 }
4770 if (end_of_skbs ||
4771 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4772 return;
4773
4774 while (before(start, end)) {
4775 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4776 struct sk_buff *nskb;
4777
4778 nskb = alloc_skb(copy, GFP_ATOMIC);
4779 if (!nskb)
4780 return;
4781
4782 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4783 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4784 __skb_queue_before(list, skb, nskb);
4785 skb_set_owner_r(nskb, sk);
4786
4787 /* Copy data, releasing collapsed skbs. */
4788 while (copy > 0) {
4789 int offset = start - TCP_SKB_CB(skb)->seq;
4790 int size = TCP_SKB_CB(skb)->end_seq - start;
4791
4792 BUG_ON(offset < 0);
4793 if (size > 0) {
4794 size = min(copy, size);
4795 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4796 BUG();
4797 TCP_SKB_CB(nskb)->end_seq += size;
4798 copy -= size;
4799 start += size;
4800 }
4801 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4802 skb = tcp_collapse_one(sk, skb, list);
4803 if (!skb ||
4804 skb == tail ||
4805 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4806 return;
4807 }
4808 }
4809 }
4810 }
4811
4812 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4813 * and tcp_collapse() them until all the queue is collapsed.
4814 */
4815 static void tcp_collapse_ofo_queue(struct sock *sk)
4816 {
4817 struct tcp_sock *tp = tcp_sk(sk);
4818 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4819 struct sk_buff *head;
4820 u32 start, end;
4821
4822 if (!skb)
4823 return;
4824
4825 start = TCP_SKB_CB(skb)->seq;
4826 end = TCP_SKB_CB(skb)->end_seq;
4827 head = skb;
4828
4829 for (;;) {
4830 struct sk_buff *next = NULL;
4831
4832 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4833 next = skb_queue_next(&tp->out_of_order_queue, skb);
4834 skb = next;
4835
4836 /* Segment is terminated when we see gap or when
4837 * we are at the end of all the queue. */
4838 if (!skb ||
4839 after(TCP_SKB_CB(skb)->seq, end) ||
4840 before(TCP_SKB_CB(skb)->end_seq, start)) {
4841 tcp_collapse(sk, &tp->out_of_order_queue,
4842 head, skb, start, end);
4843 head = skb;
4844 if (!skb)
4845 break;
4846 /* Start new segment */
4847 start = TCP_SKB_CB(skb)->seq;
4848 end = TCP_SKB_CB(skb)->end_seq;
4849 } else {
4850 if (before(TCP_SKB_CB(skb)->seq, start))
4851 start = TCP_SKB_CB(skb)->seq;
4852 if (after(TCP_SKB_CB(skb)->end_seq, end))
4853 end = TCP_SKB_CB(skb)->end_seq;
4854 }
4855 }
4856 }
4857
4858 /*
4859 * Purge the out-of-order queue.
4860 * Return true if queue was pruned.
4861 */
4862 static bool tcp_prune_ofo_queue(struct sock *sk)
4863 {
4864 struct tcp_sock *tp = tcp_sk(sk);
4865 bool res = false;
4866
4867 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4868 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4869 __skb_queue_purge(&tp->out_of_order_queue);
4870
4871 /* Reset SACK state. A conforming SACK implementation will
4872 * do the same at a timeout based retransmit. When a connection
4873 * is in a sad state like this, we care only about integrity
4874 * of the connection not performance.
4875 */
4876 if (tp->rx_opt.sack_ok)
4877 tcp_sack_reset(&tp->rx_opt);
4878 sk_mem_reclaim(sk);
4879 res = true;
4880 }
4881 return res;
4882 }
4883
4884 /* Reduce allocated memory if we can, trying to get
4885 * the socket within its memory limits again.
4886 *
4887 * Return less than zero if we should start dropping frames
4888 * until the socket owning process reads some of the data
4889 * to stabilize the situation.
4890 */
4891 static int tcp_prune_queue(struct sock *sk)
4892 {
4893 struct tcp_sock *tp = tcp_sk(sk);
4894
4895 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4896
4897 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4898
4899 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4900 tcp_clamp_window(sk);
4901 else if (tcp_under_memory_pressure(sk))
4902 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4903
4904 tcp_collapse_ofo_queue(sk);
4905 if (!skb_queue_empty(&sk->sk_receive_queue))
4906 tcp_collapse(sk, &sk->sk_receive_queue,
4907 skb_peek(&sk->sk_receive_queue),
4908 NULL,
4909 tp->copied_seq, tp->rcv_nxt);
4910 sk_mem_reclaim(sk);
4911
4912 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4913 return 0;
4914
4915 /* Collapsing did not help, destructive actions follow.
4916 * This must not ever occur. */
4917
4918 tcp_prune_ofo_queue(sk);
4919
4920 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4921 return 0;
4922
4923 /* If we are really being abused, tell the caller to silently
4924 * drop receive data on the floor. It will get retransmitted
4925 * and hopefully then we'll have sufficient space.
4926 */
4927 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4928
4929 /* Massive buffer overcommit. */
4930 tp->pred_flags = 0;
4931 return -1;
4932 }
4933
4934 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4935 {
4936 const struct tcp_sock *tp = tcp_sk(sk);
4937
4938 /* If the user specified a specific send buffer setting, do
4939 * not modify it.
4940 */
4941 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4942 return false;
4943
4944 /* If we are under global TCP memory pressure, do not expand. */
4945 if (tcp_under_memory_pressure(sk))
4946 return false;
4947
4948 /* If we are under soft global TCP memory pressure, do not expand. */
4949 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4950 return false;
4951
4952 /* If we filled the congestion window, do not expand. */
4953 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4954 return false;
4955
4956 return true;
4957 }
4958
4959 /* When incoming ACK allowed to free some skb from write_queue,
4960 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4961 * on the exit from tcp input handler.
4962 *
4963 * PROBLEM: sndbuf expansion does not work well with largesend.
4964 */
4965 static void tcp_new_space(struct sock *sk)
4966 {
4967 struct tcp_sock *tp = tcp_sk(sk);
4968
4969 if (tcp_should_expand_sndbuf(sk)) {
4970 tcp_sndbuf_expand(sk);
4971 tp->snd_cwnd_stamp = tcp_time_stamp;
4972 }
4973
4974 sk->sk_write_space(sk);
4975 }
4976
4977 static void tcp_check_space(struct sock *sk)
4978 {
4979 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4980 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4981 /* pairs with tcp_poll() */
4982 smp_mb__after_atomic();
4983 if (sk->sk_socket &&
4984 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4985 tcp_new_space(sk);
4986 }
4987 }
4988
4989 static inline void tcp_data_snd_check(struct sock *sk)
4990 {
4991 tcp_push_pending_frames(sk);
4992 tcp_check_space(sk);
4993 }
4994
4995 /*
4996 * Check if sending an ack is needed.
4997 */
4998 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4999 {
5000 struct tcp_sock *tp = tcp_sk(sk);
5001
5002 /* More than one full frame received... */
5003 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5004 /* ... and right edge of window advances far enough.
5005 * (tcp_recvmsg() will send ACK otherwise). Or...
5006 */
5007 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5008 /* We ACK each frame or... */
5009 tcp_in_quickack_mode(sk) ||
5010 /* We have out of order data. */
5011 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5012 /* Then ack it now */
5013 tcp_send_ack(sk);
5014 } else {
5015 /* Else, send delayed ack. */
5016 tcp_send_delayed_ack(sk);
5017 }
5018 }
5019
5020 static inline void tcp_ack_snd_check(struct sock *sk)
5021 {
5022 if (!inet_csk_ack_scheduled(sk)) {
5023 /* We sent a data segment already. */
5024 return;
5025 }
5026 __tcp_ack_snd_check(sk, 1);
5027 }
5028
5029 /*
5030 * This routine is only called when we have urgent data
5031 * signaled. Its the 'slow' part of tcp_urg. It could be
5032 * moved inline now as tcp_urg is only called from one
5033 * place. We handle URGent data wrong. We have to - as
5034 * BSD still doesn't use the correction from RFC961.
5035 * For 1003.1g we should support a new option TCP_STDURG to permit
5036 * either form (or just set the sysctl tcp_stdurg).
5037 */
5038
5039 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5040 {
5041 struct tcp_sock *tp = tcp_sk(sk);
5042 u32 ptr = ntohs(th->urg_ptr);
5043
5044 if (ptr && !sysctl_tcp_stdurg)
5045 ptr--;
5046 ptr += ntohl(th->seq);
5047
5048 /* Ignore urgent data that we've already seen and read. */
5049 if (after(tp->copied_seq, ptr))
5050 return;
5051
5052 /* Do not replay urg ptr.
5053 *
5054 * NOTE: interesting situation not covered by specs.
5055 * Misbehaving sender may send urg ptr, pointing to segment,
5056 * which we already have in ofo queue. We are not able to fetch
5057 * such data and will stay in TCP_URG_NOTYET until will be eaten
5058 * by recvmsg(). Seems, we are not obliged to handle such wicked
5059 * situations. But it is worth to think about possibility of some
5060 * DoSes using some hypothetical application level deadlock.
5061 */
5062 if (before(ptr, tp->rcv_nxt))
5063 return;
5064
5065 /* Do we already have a newer (or duplicate) urgent pointer? */
5066 if (tp->urg_data && !after(ptr, tp->urg_seq))
5067 return;
5068
5069 /* Tell the world about our new urgent pointer. */
5070 sk_send_sigurg(sk);
5071
5072 /* We may be adding urgent data when the last byte read was
5073 * urgent. To do this requires some care. We cannot just ignore
5074 * tp->copied_seq since we would read the last urgent byte again
5075 * as data, nor can we alter copied_seq until this data arrives
5076 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5077 *
5078 * NOTE. Double Dutch. Rendering to plain English: author of comment
5079 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5080 * and expect that both A and B disappear from stream. This is _wrong_.
5081 * Though this happens in BSD with high probability, this is occasional.
5082 * Any application relying on this is buggy. Note also, that fix "works"
5083 * only in this artificial test. Insert some normal data between A and B and we will
5084 * decline of BSD again. Verdict: it is better to remove to trap
5085 * buggy users.
5086 */
5087 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5088 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5089 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5090 tp->copied_seq++;
5091 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5092 __skb_unlink(skb, &sk->sk_receive_queue);
5093 __kfree_skb(skb);
5094 }
5095 }
5096
5097 tp->urg_data = TCP_URG_NOTYET;
5098 tp->urg_seq = ptr;
5099
5100 /* Disable header prediction. */
5101 tp->pred_flags = 0;
5102 }
5103
5104 /* This is the 'fast' part of urgent handling. */
5105 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5106 {
5107 struct tcp_sock *tp = tcp_sk(sk);
5108
5109 /* Check if we get a new urgent pointer - normally not. */
5110 if (th->urg)
5111 tcp_check_urg(sk, th);
5112
5113 /* Do we wait for any urgent data? - normally not... */
5114 if (tp->urg_data == TCP_URG_NOTYET) {
5115 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5116 th->syn;
5117
5118 /* Is the urgent pointer pointing into this packet? */
5119 if (ptr < skb->len) {
5120 u8 tmp;
5121 if (skb_copy_bits(skb, ptr, &tmp, 1))
5122 BUG();
5123 tp->urg_data = TCP_URG_VALID | tmp;
5124 if (!sock_flag(sk, SOCK_DEAD))
5125 sk->sk_data_ready(sk);
5126 }
5127 }
5128 }
5129
5130 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5131 {
5132 struct tcp_sock *tp = tcp_sk(sk);
5133 int chunk = skb->len - hlen;
5134 int err;
5135
5136 local_bh_enable();
5137 if (skb_csum_unnecessary(skb))
5138 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5139 else
5140 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5141
5142 if (!err) {
5143 tp->ucopy.len -= chunk;
5144 tp->copied_seq += chunk;
5145 tcp_rcv_space_adjust(sk);
5146 }
5147
5148 local_bh_disable();
5149 return err;
5150 }
5151
5152 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5153 struct sk_buff *skb)
5154 {
5155 __sum16 result;
5156
5157 if (sock_owned_by_user(sk)) {
5158 local_bh_enable();
5159 result = __tcp_checksum_complete(skb);
5160 local_bh_disable();
5161 } else {
5162 result = __tcp_checksum_complete(skb);
5163 }
5164 return result;
5165 }
5166
5167 static inline bool tcp_checksum_complete_user(struct sock *sk,
5168 struct sk_buff *skb)
5169 {
5170 return !skb_csum_unnecessary(skb) &&
5171 __tcp_checksum_complete_user(sk, skb);
5172 }
5173
5174 /* Does PAWS and seqno based validation of an incoming segment, flags will
5175 * play significant role here.
5176 */
5177 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5178 const struct tcphdr *th, int syn_inerr)
5179 {
5180 struct tcp_sock *tp = tcp_sk(sk);
5181
5182 /* RFC1323: H1. Apply PAWS check first. */
5183 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5184 tcp_paws_discard(sk, skb)) {
5185 if (!th->rst) {
5186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5187 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5188 LINUX_MIB_TCPACKSKIPPEDPAWS,
5189 &tp->last_oow_ack_time))
5190 tcp_send_dupack(sk, skb);
5191 goto discard;
5192 }
5193 /* Reset is accepted even if it did not pass PAWS. */
5194 }
5195
5196 /* Step 1: check sequence number */
5197 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5198 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5199 * (RST) segments are validated by checking their SEQ-fields."
5200 * And page 69: "If an incoming segment is not acceptable,
5201 * an acknowledgment should be sent in reply (unless the RST
5202 * bit is set, if so drop the segment and return)".
5203 */
5204 if (!th->rst) {
5205 if (th->syn)
5206 goto syn_challenge;
5207 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5208 LINUX_MIB_TCPACKSKIPPEDSEQ,
5209 &tp->last_oow_ack_time))
5210 tcp_send_dupack(sk, skb);
5211 }
5212 goto discard;
5213 }
5214
5215 /* Step 2: check RST bit */
5216 if (th->rst) {
5217 /* RFC 5961 3.2 :
5218 * If sequence number exactly matches RCV.NXT, then
5219 * RESET the connection
5220 * else
5221 * Send a challenge ACK
5222 */
5223 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5224 tcp_reset(sk);
5225 else
5226 tcp_send_challenge_ack(sk, skb);
5227 goto discard;
5228 }
5229
5230 /* step 3: check security and precedence [ignored] */
5231
5232 /* step 4: Check for a SYN
5233 * RFC 5961 4.2 : Send a challenge ack
5234 */
5235 if (th->syn) {
5236 syn_challenge:
5237 if (syn_inerr)
5238 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5239 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5240 tcp_send_challenge_ack(sk, skb);
5241 goto discard;
5242 }
5243
5244 return true;
5245
5246 discard:
5247 __kfree_skb(skb);
5248 return false;
5249 }
5250
5251 /*
5252 * TCP receive function for the ESTABLISHED state.
5253 *
5254 * It is split into a fast path and a slow path. The fast path is
5255 * disabled when:
5256 * - A zero window was announced from us - zero window probing
5257 * is only handled properly in the slow path.
5258 * - Out of order segments arrived.
5259 * - Urgent data is expected.
5260 * - There is no buffer space left
5261 * - Unexpected TCP flags/window values/header lengths are received
5262 * (detected by checking the TCP header against pred_flags)
5263 * - Data is sent in both directions. Fast path only supports pure senders
5264 * or pure receivers (this means either the sequence number or the ack
5265 * value must stay constant)
5266 * - Unexpected TCP option.
5267 *
5268 * When these conditions are not satisfied it drops into a standard
5269 * receive procedure patterned after RFC793 to handle all cases.
5270 * The first three cases are guaranteed by proper pred_flags setting,
5271 * the rest is checked inline. Fast processing is turned on in
5272 * tcp_data_queue when everything is OK.
5273 */
5274 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5275 const struct tcphdr *th, unsigned int len)
5276 {
5277 struct tcp_sock *tp = tcp_sk(sk);
5278
5279 if (unlikely(!sk->sk_rx_dst))
5280 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5281 /*
5282 * Header prediction.
5283 * The code loosely follows the one in the famous
5284 * "30 instruction TCP receive" Van Jacobson mail.
5285 *
5286 * Van's trick is to deposit buffers into socket queue
5287 * on a device interrupt, to call tcp_recv function
5288 * on the receive process context and checksum and copy
5289 * the buffer to user space. smart...
5290 *
5291 * Our current scheme is not silly either but we take the
5292 * extra cost of the net_bh soft interrupt processing...
5293 * We do checksum and copy also but from device to kernel.
5294 */
5295
5296 tp->rx_opt.saw_tstamp = 0;
5297
5298 /* pred_flags is 0xS?10 << 16 + snd_wnd
5299 * if header_prediction is to be made
5300 * 'S' will always be tp->tcp_header_len >> 2
5301 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5302 * turn it off (when there are holes in the receive
5303 * space for instance)
5304 * PSH flag is ignored.
5305 */
5306
5307 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5308 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5309 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5310 int tcp_header_len = tp->tcp_header_len;
5311
5312 /* Timestamp header prediction: tcp_header_len
5313 * is automatically equal to th->doff*4 due to pred_flags
5314 * match.
5315 */
5316
5317 /* Check timestamp */
5318 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5319 /* No? Slow path! */
5320 if (!tcp_parse_aligned_timestamp(tp, th))
5321 goto slow_path;
5322
5323 /* If PAWS failed, check it more carefully in slow path */
5324 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5325 goto slow_path;
5326
5327 /* DO NOT update ts_recent here, if checksum fails
5328 * and timestamp was corrupted part, it will result
5329 * in a hung connection since we will drop all
5330 * future packets due to the PAWS test.
5331 */
5332 }
5333
5334 if (len <= tcp_header_len) {
5335 /* Bulk data transfer: sender */
5336 if (len == tcp_header_len) {
5337 /* Predicted packet is in window by definition.
5338 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5339 * Hence, check seq<=rcv_wup reduces to:
5340 */
5341 if (tcp_header_len ==
5342 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5343 tp->rcv_nxt == tp->rcv_wup)
5344 tcp_store_ts_recent(tp);
5345
5346 /* We know that such packets are checksummed
5347 * on entry.
5348 */
5349 tcp_ack(sk, skb, 0);
5350 __kfree_skb(skb);
5351 tcp_data_snd_check(sk);
5352 return;
5353 } else { /* Header too small */
5354 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5355 goto discard;
5356 }
5357 } else {
5358 int eaten = 0;
5359 bool fragstolen = false;
5360
5361 if (tp->ucopy.task == current &&
5362 tp->copied_seq == tp->rcv_nxt &&
5363 len - tcp_header_len <= tp->ucopy.len &&
5364 sock_owned_by_user(sk)) {
5365 __set_current_state(TASK_RUNNING);
5366
5367 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5368 /* Predicted packet is in window by definition.
5369 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5370 * Hence, check seq<=rcv_wup reduces to:
5371 */
5372 if (tcp_header_len ==
5373 (sizeof(struct tcphdr) +
5374 TCPOLEN_TSTAMP_ALIGNED) &&
5375 tp->rcv_nxt == tp->rcv_wup)
5376 tcp_store_ts_recent(tp);
5377
5378 tcp_rcv_rtt_measure_ts(sk, skb);
5379
5380 __skb_pull(skb, tcp_header_len);
5381 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5382 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5383 eaten = 1;
5384 }
5385 }
5386 if (!eaten) {
5387 if (tcp_checksum_complete_user(sk, skb))
5388 goto csum_error;
5389
5390 if ((int)skb->truesize > sk->sk_forward_alloc)
5391 goto step5;
5392
5393 /* Predicted packet is in window by definition.
5394 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5395 * Hence, check seq<=rcv_wup reduces to:
5396 */
5397 if (tcp_header_len ==
5398 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5399 tp->rcv_nxt == tp->rcv_wup)
5400 tcp_store_ts_recent(tp);
5401
5402 tcp_rcv_rtt_measure_ts(sk, skb);
5403
5404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5405
5406 /* Bulk data transfer: receiver */
5407 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5408 &fragstolen);
5409 }
5410
5411 tcp_event_data_recv(sk, skb);
5412
5413 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5414 /* Well, only one small jumplet in fast path... */
5415 tcp_ack(sk, skb, FLAG_DATA);
5416 tcp_data_snd_check(sk);
5417 if (!inet_csk_ack_scheduled(sk))
5418 goto no_ack;
5419 }
5420
5421 __tcp_ack_snd_check(sk, 0);
5422 no_ack:
5423 if (eaten)
5424 kfree_skb_partial(skb, fragstolen);
5425 sk->sk_data_ready(sk);
5426 return;
5427 }
5428 }
5429
5430 slow_path:
5431 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5432 goto csum_error;
5433
5434 if (!th->ack && !th->rst && !th->syn)
5435 goto discard;
5436
5437 /*
5438 * Standard slow path.
5439 */
5440
5441 if (!tcp_validate_incoming(sk, skb, th, 1))
5442 return;
5443
5444 step5:
5445 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5446 goto discard;
5447
5448 tcp_rcv_rtt_measure_ts(sk, skb);
5449
5450 /* Process urgent data. */
5451 tcp_urg(sk, skb, th);
5452
5453 /* step 7: process the segment text */
5454 tcp_data_queue(sk, skb);
5455
5456 tcp_data_snd_check(sk);
5457 tcp_ack_snd_check(sk);
5458 return;
5459
5460 csum_error:
5461 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5462 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5463
5464 discard:
5465 __kfree_skb(skb);
5466 }
5467 EXPORT_SYMBOL(tcp_rcv_established);
5468
5469 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5470 {
5471 struct tcp_sock *tp = tcp_sk(sk);
5472 struct inet_connection_sock *icsk = inet_csk(sk);
5473
5474 tcp_set_state(sk, TCP_ESTABLISHED);
5475
5476 if (skb) {
5477 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5478 security_inet_conn_established(sk, skb);
5479 }
5480
5481 /* Make sure socket is routed, for correct metrics. */
5482 icsk->icsk_af_ops->rebuild_header(sk);
5483
5484 tcp_init_metrics(sk);
5485
5486 tcp_init_congestion_control(sk);
5487
5488 /* Prevent spurious tcp_cwnd_restart() on first data
5489 * packet.
5490 */
5491 tp->lsndtime = tcp_time_stamp;
5492
5493 tcp_init_buffer_space(sk);
5494
5495 if (sock_flag(sk, SOCK_KEEPOPEN))
5496 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5497
5498 if (!tp->rx_opt.snd_wscale)
5499 __tcp_fast_path_on(tp, tp->snd_wnd);
5500 else
5501 tp->pred_flags = 0;
5502
5503 if (!sock_flag(sk, SOCK_DEAD)) {
5504 sk->sk_state_change(sk);
5505 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5506 }
5507 }
5508
5509 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5510 struct tcp_fastopen_cookie *cookie)
5511 {
5512 struct tcp_sock *tp = tcp_sk(sk);
5513 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5514 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5515 bool syn_drop = false;
5516
5517 if (mss == tp->rx_opt.user_mss) {
5518 struct tcp_options_received opt;
5519
5520 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5521 tcp_clear_options(&opt);
5522 opt.user_mss = opt.mss_clamp = 0;
5523 tcp_parse_options(synack, &opt, 0, NULL);
5524 mss = opt.mss_clamp;
5525 }
5526
5527 if (!tp->syn_fastopen) {
5528 /* Ignore an unsolicited cookie */
5529 cookie->len = -1;
5530 } else if (tp->total_retrans) {
5531 /* SYN timed out and the SYN-ACK neither has a cookie nor
5532 * acknowledges data. Presumably the remote received only
5533 * the retransmitted (regular) SYNs: either the original
5534 * SYN-data or the corresponding SYN-ACK was dropped.
5535 */
5536 syn_drop = (cookie->len < 0 && data);
5537 } else if (cookie->len < 0 && !tp->syn_data) {
5538 /* We requested a cookie but didn't get it. If we did not use
5539 * the (old) exp opt format then try so next time (try_exp=1).
5540 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5541 */
5542 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5543 }
5544
5545 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5546
5547 if (data) { /* Retransmit unacked data in SYN */
5548 tcp_for_write_queue_from(data, sk) {
5549 if (data == tcp_send_head(sk) ||
5550 __tcp_retransmit_skb(sk, data))
5551 break;
5552 }
5553 tcp_rearm_rto(sk);
5554 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5555 return true;
5556 }
5557 tp->syn_data_acked = tp->syn_data;
5558 if (tp->syn_data_acked)
5559 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5560
5561 tcp_fastopen_add_skb(sk, synack);
5562
5563 return false;
5564 }
5565
5566 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5567 const struct tcphdr *th)
5568 {
5569 struct inet_connection_sock *icsk = inet_csk(sk);
5570 struct tcp_sock *tp = tcp_sk(sk);
5571 struct tcp_fastopen_cookie foc = { .len = -1 };
5572 int saved_clamp = tp->rx_opt.mss_clamp;
5573
5574 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5575 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5576 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5577
5578 if (th->ack) {
5579 /* rfc793:
5580 * "If the state is SYN-SENT then
5581 * first check the ACK bit
5582 * If the ACK bit is set
5583 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5584 * a reset (unless the RST bit is set, if so drop
5585 * the segment and return)"
5586 */
5587 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5588 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5589 goto reset_and_undo;
5590
5591 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5592 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5593 tcp_time_stamp)) {
5594 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5595 goto reset_and_undo;
5596 }
5597
5598 /* Now ACK is acceptable.
5599 *
5600 * "If the RST bit is set
5601 * If the ACK was acceptable then signal the user "error:
5602 * connection reset", drop the segment, enter CLOSED state,
5603 * delete TCB, and return."
5604 */
5605
5606 if (th->rst) {
5607 tcp_reset(sk);
5608 goto discard;
5609 }
5610
5611 /* rfc793:
5612 * "fifth, if neither of the SYN or RST bits is set then
5613 * drop the segment and return."
5614 *
5615 * See note below!
5616 * --ANK(990513)
5617 */
5618 if (!th->syn)
5619 goto discard_and_undo;
5620
5621 /* rfc793:
5622 * "If the SYN bit is on ...
5623 * are acceptable then ...
5624 * (our SYN has been ACKed), change the connection
5625 * state to ESTABLISHED..."
5626 */
5627
5628 tcp_ecn_rcv_synack(tp, th);
5629
5630 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5631 tcp_ack(sk, skb, FLAG_SLOWPATH);
5632
5633 /* Ok.. it's good. Set up sequence numbers and
5634 * move to established.
5635 */
5636 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5637 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5638
5639 /* RFC1323: The window in SYN & SYN/ACK segments is
5640 * never scaled.
5641 */
5642 tp->snd_wnd = ntohs(th->window);
5643
5644 if (!tp->rx_opt.wscale_ok) {
5645 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5646 tp->window_clamp = min(tp->window_clamp, 65535U);
5647 }
5648
5649 if (tp->rx_opt.saw_tstamp) {
5650 tp->rx_opt.tstamp_ok = 1;
5651 tp->tcp_header_len =
5652 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5653 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5654 tcp_store_ts_recent(tp);
5655 } else {
5656 tp->tcp_header_len = sizeof(struct tcphdr);
5657 }
5658
5659 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5660 tcp_enable_fack(tp);
5661
5662 tcp_mtup_init(sk);
5663 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5664 tcp_initialize_rcv_mss(sk);
5665
5666 /* Remember, tcp_poll() does not lock socket!
5667 * Change state from SYN-SENT only after copied_seq
5668 * is initialized. */
5669 tp->copied_seq = tp->rcv_nxt;
5670
5671 smp_mb();
5672
5673 tcp_finish_connect(sk, skb);
5674
5675 if ((tp->syn_fastopen || tp->syn_data) &&
5676 tcp_rcv_fastopen_synack(sk, skb, &foc))
5677 return -1;
5678
5679 if (sk->sk_write_pending ||
5680 icsk->icsk_accept_queue.rskq_defer_accept ||
5681 icsk->icsk_ack.pingpong) {
5682 /* Save one ACK. Data will be ready after
5683 * several ticks, if write_pending is set.
5684 *
5685 * It may be deleted, but with this feature tcpdumps
5686 * look so _wonderfully_ clever, that I was not able
5687 * to stand against the temptation 8) --ANK
5688 */
5689 inet_csk_schedule_ack(sk);
5690 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5691 tcp_enter_quickack_mode(sk);
5692 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5693 TCP_DELACK_MAX, TCP_RTO_MAX);
5694
5695 discard:
5696 __kfree_skb(skb);
5697 return 0;
5698 } else {
5699 tcp_send_ack(sk);
5700 }
5701 return -1;
5702 }
5703
5704 /* No ACK in the segment */
5705
5706 if (th->rst) {
5707 /* rfc793:
5708 * "If the RST bit is set
5709 *
5710 * Otherwise (no ACK) drop the segment and return."
5711 */
5712
5713 goto discard_and_undo;
5714 }
5715
5716 /* PAWS check. */
5717 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5718 tcp_paws_reject(&tp->rx_opt, 0))
5719 goto discard_and_undo;
5720
5721 if (th->syn) {
5722 /* We see SYN without ACK. It is attempt of
5723 * simultaneous connect with crossed SYNs.
5724 * Particularly, it can be connect to self.
5725 */
5726 tcp_set_state(sk, TCP_SYN_RECV);
5727
5728 if (tp->rx_opt.saw_tstamp) {
5729 tp->rx_opt.tstamp_ok = 1;
5730 tcp_store_ts_recent(tp);
5731 tp->tcp_header_len =
5732 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5733 } else {
5734 tp->tcp_header_len = sizeof(struct tcphdr);
5735 }
5736
5737 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5738 tp->copied_seq = tp->rcv_nxt;
5739 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5740
5741 /* RFC1323: The window in SYN & SYN/ACK segments is
5742 * never scaled.
5743 */
5744 tp->snd_wnd = ntohs(th->window);
5745 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5746 tp->max_window = tp->snd_wnd;
5747
5748 tcp_ecn_rcv_syn(tp, th);
5749
5750 tcp_mtup_init(sk);
5751 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5752 tcp_initialize_rcv_mss(sk);
5753
5754 tcp_send_synack(sk);
5755 #if 0
5756 /* Note, we could accept data and URG from this segment.
5757 * There are no obstacles to make this (except that we must
5758 * either change tcp_recvmsg() to prevent it from returning data
5759 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5760 *
5761 * However, if we ignore data in ACKless segments sometimes,
5762 * we have no reasons to accept it sometimes.
5763 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5764 * is not flawless. So, discard packet for sanity.
5765 * Uncomment this return to process the data.
5766 */
5767 return -1;
5768 #else
5769 goto discard;
5770 #endif
5771 }
5772 /* "fifth, if neither of the SYN or RST bits is set then
5773 * drop the segment and return."
5774 */
5775
5776 discard_and_undo:
5777 tcp_clear_options(&tp->rx_opt);
5778 tp->rx_opt.mss_clamp = saved_clamp;
5779 goto discard;
5780
5781 reset_and_undo:
5782 tcp_clear_options(&tp->rx_opt);
5783 tp->rx_opt.mss_clamp = saved_clamp;
5784 return 1;
5785 }
5786
5787 /*
5788 * This function implements the receiving procedure of RFC 793 for
5789 * all states except ESTABLISHED and TIME_WAIT.
5790 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5791 * address independent.
5792 */
5793
5794 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5795 {
5796 struct tcp_sock *tp = tcp_sk(sk);
5797 struct inet_connection_sock *icsk = inet_csk(sk);
5798 const struct tcphdr *th = tcp_hdr(skb);
5799 struct request_sock *req;
5800 int queued = 0;
5801 bool acceptable;
5802
5803 tp->rx_opt.saw_tstamp = 0;
5804
5805 switch (sk->sk_state) {
5806 case TCP_CLOSE:
5807 goto discard;
5808
5809 case TCP_LISTEN:
5810 if (th->ack)
5811 return 1;
5812
5813 if (th->rst)
5814 goto discard;
5815
5816 if (th->syn) {
5817 if (th->fin)
5818 goto discard;
5819 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5820 return 1;
5821
5822 /* Now we have several options: In theory there is
5823 * nothing else in the frame. KA9Q has an option to
5824 * send data with the syn, BSD accepts data with the
5825 * syn up to the [to be] advertised window and
5826 * Solaris 2.1 gives you a protocol error. For now
5827 * we just ignore it, that fits the spec precisely
5828 * and avoids incompatibilities. It would be nice in
5829 * future to drop through and process the data.
5830 *
5831 * Now that TTCP is starting to be used we ought to
5832 * queue this data.
5833 * But, this leaves one open to an easy denial of
5834 * service attack, and SYN cookies can't defend
5835 * against this problem. So, we drop the data
5836 * in the interest of security over speed unless
5837 * it's still in use.
5838 */
5839 kfree_skb(skb);
5840 return 0;
5841 }
5842 goto discard;
5843
5844 case TCP_SYN_SENT:
5845 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5846 if (queued >= 0)
5847 return queued;
5848
5849 /* Do step6 onward by hand. */
5850 tcp_urg(sk, skb, th);
5851 __kfree_skb(skb);
5852 tcp_data_snd_check(sk);
5853 return 0;
5854 }
5855
5856 req = tp->fastopen_rsk;
5857 if (req) {
5858 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5859 sk->sk_state != TCP_FIN_WAIT1);
5860
5861 if (!tcp_check_req(sk, skb, req, true))
5862 goto discard;
5863 }
5864
5865 if (!th->ack && !th->rst && !th->syn)
5866 goto discard;
5867
5868 if (!tcp_validate_incoming(sk, skb, th, 0))
5869 return 0;
5870
5871 /* step 5: check the ACK field */
5872 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5873 FLAG_UPDATE_TS_RECENT) > 0;
5874
5875 switch (sk->sk_state) {
5876 case TCP_SYN_RECV:
5877 if (!acceptable)
5878 return 1;
5879
5880 if (!tp->srtt_us)
5881 tcp_synack_rtt_meas(sk, req);
5882
5883 /* Once we leave TCP_SYN_RECV, we no longer need req
5884 * so release it.
5885 */
5886 if (req) {
5887 tp->total_retrans = req->num_retrans;
5888 reqsk_fastopen_remove(sk, req, false);
5889 } else {
5890 /* Make sure socket is routed, for correct metrics. */
5891 icsk->icsk_af_ops->rebuild_header(sk);
5892 tcp_init_congestion_control(sk);
5893
5894 tcp_mtup_init(sk);
5895 tp->copied_seq = tp->rcv_nxt;
5896 tcp_init_buffer_space(sk);
5897 }
5898 smp_mb();
5899 tcp_set_state(sk, TCP_ESTABLISHED);
5900 sk->sk_state_change(sk);
5901
5902 /* Note, that this wakeup is only for marginal crossed SYN case.
5903 * Passively open sockets are not waked up, because
5904 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5905 */
5906 if (sk->sk_socket)
5907 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5908
5909 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5910 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5911 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5912
5913 if (tp->rx_opt.tstamp_ok)
5914 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5915
5916 if (req) {
5917 /* Re-arm the timer because data may have been sent out.
5918 * This is similar to the regular data transmission case
5919 * when new data has just been ack'ed.
5920 *
5921 * (TFO) - we could try to be more aggressive and
5922 * retransmitting any data sooner based on when they
5923 * are sent out.
5924 */
5925 tcp_rearm_rto(sk);
5926 } else
5927 tcp_init_metrics(sk);
5928
5929 tcp_update_pacing_rate(sk);
5930
5931 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5932 tp->lsndtime = tcp_time_stamp;
5933
5934 tcp_initialize_rcv_mss(sk);
5935 tcp_fast_path_on(tp);
5936 break;
5937
5938 case TCP_FIN_WAIT1: {
5939 struct dst_entry *dst;
5940 int tmo;
5941
5942 /* If we enter the TCP_FIN_WAIT1 state and we are a
5943 * Fast Open socket and this is the first acceptable
5944 * ACK we have received, this would have acknowledged
5945 * our SYNACK so stop the SYNACK timer.
5946 */
5947 if (req) {
5948 /* Return RST if ack_seq is invalid.
5949 * Note that RFC793 only says to generate a
5950 * DUPACK for it but for TCP Fast Open it seems
5951 * better to treat this case like TCP_SYN_RECV
5952 * above.
5953 */
5954 if (!acceptable)
5955 return 1;
5956 /* We no longer need the request sock. */
5957 reqsk_fastopen_remove(sk, req, false);
5958 tcp_rearm_rto(sk);
5959 }
5960 if (tp->snd_una != tp->write_seq)
5961 break;
5962
5963 tcp_set_state(sk, TCP_FIN_WAIT2);
5964 sk->sk_shutdown |= SEND_SHUTDOWN;
5965
5966 dst = __sk_dst_get(sk);
5967 if (dst)
5968 dst_confirm(dst);
5969
5970 if (!sock_flag(sk, SOCK_DEAD)) {
5971 /* Wake up lingering close() */
5972 sk->sk_state_change(sk);
5973 break;
5974 }
5975
5976 if (tp->linger2 < 0 ||
5977 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5978 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5979 tcp_done(sk);
5980 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5981 return 1;
5982 }
5983
5984 tmo = tcp_fin_time(sk);
5985 if (tmo > TCP_TIMEWAIT_LEN) {
5986 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5987 } else if (th->fin || sock_owned_by_user(sk)) {
5988 /* Bad case. We could lose such FIN otherwise.
5989 * It is not a big problem, but it looks confusing
5990 * and not so rare event. We still can lose it now,
5991 * if it spins in bh_lock_sock(), but it is really
5992 * marginal case.
5993 */
5994 inet_csk_reset_keepalive_timer(sk, tmo);
5995 } else {
5996 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5997 goto discard;
5998 }
5999 break;
6000 }
6001
6002 case TCP_CLOSING:
6003 if (tp->snd_una == tp->write_seq) {
6004 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6005 goto discard;
6006 }
6007 break;
6008
6009 case TCP_LAST_ACK:
6010 if (tp->snd_una == tp->write_seq) {
6011 tcp_update_metrics(sk);
6012 tcp_done(sk);
6013 goto discard;
6014 }
6015 break;
6016 }
6017
6018 /* step 6: check the URG bit */
6019 tcp_urg(sk, skb, th);
6020
6021 /* step 7: process the segment text */
6022 switch (sk->sk_state) {
6023 case TCP_CLOSE_WAIT:
6024 case TCP_CLOSING:
6025 case TCP_LAST_ACK:
6026 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6027 break;
6028 case TCP_FIN_WAIT1:
6029 case TCP_FIN_WAIT2:
6030 /* RFC 793 says to queue data in these states,
6031 * RFC 1122 says we MUST send a reset.
6032 * BSD 4.4 also does reset.
6033 */
6034 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6035 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6036 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6038 tcp_reset(sk);
6039 return 1;
6040 }
6041 }
6042 /* Fall through */
6043 case TCP_ESTABLISHED:
6044 tcp_data_queue(sk, skb);
6045 queued = 1;
6046 break;
6047 }
6048
6049 /* tcp_data could move socket to TIME-WAIT */
6050 if (sk->sk_state != TCP_CLOSE) {
6051 tcp_data_snd_check(sk);
6052 tcp_ack_snd_check(sk);
6053 }
6054
6055 if (!queued) {
6056 discard:
6057 __kfree_skb(skb);
6058 }
6059 return 0;
6060 }
6061 EXPORT_SYMBOL(tcp_rcv_state_process);
6062
6063 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6064 {
6065 struct inet_request_sock *ireq = inet_rsk(req);
6066
6067 if (family == AF_INET)
6068 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6069 &ireq->ir_rmt_addr, port);
6070 #if IS_ENABLED(CONFIG_IPV6)
6071 else if (family == AF_INET6)
6072 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6073 &ireq->ir_v6_rmt_addr, port);
6074 #endif
6075 }
6076
6077 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6078 *
6079 * If we receive a SYN packet with these bits set, it means a
6080 * network is playing bad games with TOS bits. In order to
6081 * avoid possible false congestion notifications, we disable
6082 * TCP ECN negotiation.
6083 *
6084 * Exception: tcp_ca wants ECN. This is required for DCTCP
6085 * congestion control: Linux DCTCP asserts ECT on all packets,
6086 * including SYN, which is most optimal solution; however,
6087 * others, such as FreeBSD do not.
6088 */
6089 static void tcp_ecn_create_request(struct request_sock *req,
6090 const struct sk_buff *skb,
6091 const struct sock *listen_sk,
6092 const struct dst_entry *dst)
6093 {
6094 const struct tcphdr *th = tcp_hdr(skb);
6095 const struct net *net = sock_net(listen_sk);
6096 bool th_ecn = th->ece && th->cwr;
6097 bool ect, ecn_ok;
6098 u32 ecn_ok_dst;
6099
6100 if (!th_ecn)
6101 return;
6102
6103 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6104 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6105 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6106
6107 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6108 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6109 inet_rsk(req)->ecn_ok = 1;
6110 }
6111
6112 static void tcp_openreq_init(struct request_sock *req,
6113 const struct tcp_options_received *rx_opt,
6114 struct sk_buff *skb, const struct sock *sk)
6115 {
6116 struct inet_request_sock *ireq = inet_rsk(req);
6117
6118 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6119 req->cookie_ts = 0;
6120 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6121 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6122 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6123 tcp_rsk(req)->last_oow_ack_time = 0;
6124 req->mss = rx_opt->mss_clamp;
6125 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6126 ireq->tstamp_ok = rx_opt->tstamp_ok;
6127 ireq->sack_ok = rx_opt->sack_ok;
6128 ireq->snd_wscale = rx_opt->snd_wscale;
6129 ireq->wscale_ok = rx_opt->wscale_ok;
6130 ireq->acked = 0;
6131 ireq->ecn_ok = 0;
6132 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6133 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6134 ireq->ir_mark = inet_request_mark(sk, skb);
6135 }
6136
6137 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138 struct sock *sk_listener,
6139 bool attach_listener)
6140 {
6141 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142 attach_listener);
6143
6144 if (req) {
6145 struct inet_request_sock *ireq = inet_rsk(req);
6146
6147 kmemcheck_annotate_bitfield(ireq, flags);
6148 ireq->opt = NULL;
6149 atomic64_set(&ireq->ir_cookie, 0);
6150 ireq->ireq_state = TCP_NEW_SYN_RECV;
6151 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6152 ireq->ireq_family = sk_listener->sk_family;
6153 }
6154
6155 return req;
6156 }
6157 EXPORT_SYMBOL(inet_reqsk_alloc);
6158
6159 /*
6160 * Return true if a syncookie should be sent
6161 */
6162 static bool tcp_syn_flood_action(const struct sock *sk,
6163 const struct sk_buff *skb,
6164 const char *proto)
6165 {
6166 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6167 const char *msg = "Dropping request";
6168 bool want_cookie = false;
6169 struct net *net = sock_net(sk);
6170
6171 #ifdef CONFIG_SYN_COOKIES
6172 if (net->ipv4.sysctl_tcp_syncookies) {
6173 msg = "Sending cookies";
6174 want_cookie = true;
6175 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6176 } else
6177 #endif
6178 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6179
6180 if (!queue->synflood_warned &&
6181 net->ipv4.sysctl_tcp_syncookies != 2 &&
6182 xchg(&queue->synflood_warned, 1) == 0)
6183 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6184 proto, ntohs(tcp_hdr(skb)->dest), msg);
6185
6186 return want_cookie;
6187 }
6188
6189 static void tcp_reqsk_record_syn(const struct sock *sk,
6190 struct request_sock *req,
6191 const struct sk_buff *skb)
6192 {
6193 if (tcp_sk(sk)->save_syn) {
6194 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6195 u32 *copy;
6196
6197 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6198 if (copy) {
6199 copy[0] = len;
6200 memcpy(&copy[1], skb_network_header(skb), len);
6201 req->saved_syn = copy;
6202 }
6203 }
6204 }
6205
6206 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6207 const struct tcp_request_sock_ops *af_ops,
6208 struct sock *sk, struct sk_buff *skb)
6209 {
6210 struct tcp_fastopen_cookie foc = { .len = -1 };
6211 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6212 struct tcp_options_received tmp_opt;
6213 struct tcp_sock *tp = tcp_sk(sk);
6214 struct net *net = sock_net(sk);
6215 struct sock *fastopen_sk = NULL;
6216 struct dst_entry *dst = NULL;
6217 struct request_sock *req;
6218 bool want_cookie = false;
6219 struct flowi fl;
6220
6221 /* TW buckets are converted to open requests without
6222 * limitations, they conserve resources and peer is
6223 * evidently real one.
6224 */
6225 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6226 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6227 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6228 if (!want_cookie)
6229 goto drop;
6230 }
6231
6232
6233 /* Accept backlog is full. If we have already queued enough
6234 * of warm entries in syn queue, drop request. It is better than
6235 * clogging syn queue with openreqs with exponentially increasing
6236 * timeout.
6237 */
6238 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6239 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6240 goto drop;
6241 }
6242
6243 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6244 if (!req)
6245 goto drop;
6246
6247 tcp_rsk(req)->af_specific = af_ops;
6248
6249 tcp_clear_options(&tmp_opt);
6250 tmp_opt.mss_clamp = af_ops->mss_clamp;
6251 tmp_opt.user_mss = tp->rx_opt.user_mss;
6252 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6253
6254 if (want_cookie && !tmp_opt.saw_tstamp)
6255 tcp_clear_options(&tmp_opt);
6256
6257 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6258 tcp_openreq_init(req, &tmp_opt, skb, sk);
6259
6260 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6261 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6262
6263 af_ops->init_req(req, sk, skb);
6264
6265 if (security_inet_conn_request(sk, skb, req))
6266 goto drop_and_free;
6267
6268 if (!want_cookie && !isn) {
6269 /* VJ's idea. We save last timestamp seen
6270 * from the destination in peer table, when entering
6271 * state TIME-WAIT, and check against it before
6272 * accepting new connection request.
6273 *
6274 * If "isn" is not zero, this request hit alive
6275 * timewait bucket, so that all the necessary checks
6276 * are made in the function processing timewait state.
6277 */
6278 if (tcp_death_row.sysctl_tw_recycle) {
6279 bool strict;
6280
6281 dst = af_ops->route_req(sk, &fl, req, &strict);
6282
6283 if (dst && strict &&
6284 !tcp_peer_is_proven(req, dst, true,
6285 tmp_opt.saw_tstamp)) {
6286 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6287 goto drop_and_release;
6288 }
6289 }
6290 /* Kill the following clause, if you dislike this way. */
6291 else if (!net->ipv4.sysctl_tcp_syncookies &&
6292 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6293 (sysctl_max_syn_backlog >> 2)) &&
6294 !tcp_peer_is_proven(req, dst, false,
6295 tmp_opt.saw_tstamp)) {
6296 /* Without syncookies last quarter of
6297 * backlog is filled with destinations,
6298 * proven to be alive.
6299 * It means that we continue to communicate
6300 * to destinations, already remembered
6301 * to the moment of synflood.
6302 */
6303 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6304 rsk_ops->family);
6305 goto drop_and_release;
6306 }
6307
6308 isn = af_ops->init_seq(skb);
6309 }
6310 if (!dst) {
6311 dst = af_ops->route_req(sk, &fl, req, NULL);
6312 if (!dst)
6313 goto drop_and_free;
6314 }
6315
6316 tcp_ecn_create_request(req, skb, sk, dst);
6317
6318 if (want_cookie) {
6319 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6320 req->cookie_ts = tmp_opt.tstamp_ok;
6321 if (!tmp_opt.tstamp_ok)
6322 inet_rsk(req)->ecn_ok = 0;
6323 }
6324
6325 tcp_rsk(req)->snt_isn = isn;
6326 tcp_rsk(req)->txhash = net_tx_rndhash();
6327 tcp_openreq_init_rwin(req, sk, dst);
6328 if (!want_cookie) {
6329 tcp_reqsk_record_syn(sk, req, skb);
6330 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6331 }
6332 if (fastopen_sk) {
6333 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6334 &foc, false);
6335 /* Add the child socket directly into the accept queue */
6336 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6337 sk->sk_data_ready(sk);
6338 bh_unlock_sock(fastopen_sk);
6339 sock_put(fastopen_sk);
6340 } else {
6341 tcp_rsk(req)->tfo_listener = false;
6342 if (!want_cookie)
6343 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6344 af_ops->send_synack(sk, dst, &fl, req,
6345 &foc, !want_cookie);
6346 if (want_cookie)
6347 goto drop_and_free;
6348 }
6349 reqsk_put(req);
6350 return 0;
6351
6352 drop_and_release:
6353 dst_release(dst);
6354 drop_and_free:
6355 reqsk_free(req);
6356 drop:
6357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6358 return 0;
6359 }
6360 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.163101 seconds and 5 git commands to generate.