net: Convert net_ratelimit uses to net_<level>_ratelimited
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214 /*
215 * VJ's idea. We save last timestamp seen from
216 * the destination in peer table, when entering state
217 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218 * when trying new connection.
219 */
220 if (peer) {
221 inet_peer_refcheck(peer);
222 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224 tp->rx_opt.ts_recent = peer->tcp_ts;
225 }
226 }
227 }
228
229 inet->inet_dport = usin->sin_port;
230 inet->inet_daddr = daddr;
231
232 inet_csk(sk)->icsk_ext_hdr_len = 0;
233 if (inet_opt)
234 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238 /* Socket identity is still unknown (sport may be zero).
239 * However we set state to SYN-SENT and not releasing socket
240 * lock select source port, enter ourselves into the hash tables and
241 * complete initialization after this.
242 */
243 tcp_set_state(sk, TCP_SYN_SENT);
244 err = inet_hash_connect(&tcp_death_row, sk);
245 if (err)
246 goto failure;
247
248 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249 inet->inet_sport, inet->inet_dport, sk);
250 if (IS_ERR(rt)) {
251 err = PTR_ERR(rt);
252 rt = NULL;
253 goto failure;
254 }
255 /* OK, now commit destination to socket. */
256 sk->sk_gso_type = SKB_GSO_TCPV4;
257 sk_setup_caps(sk, &rt->dst);
258
259 if (!tp->write_seq && likely(!tp->repair))
260 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261 inet->inet_daddr,
262 inet->inet_sport,
263 usin->sin_port);
264
265 inet->inet_id = tp->write_seq ^ jiffies;
266
267 if (likely(!tp->repair))
268 err = tcp_connect(sk);
269 else
270 err = tcp_repair_connect(sk);
271
272 rt = NULL;
273 if (err)
274 goto failure;
275
276 return 0;
277
278 failure:
279 /*
280 * This unhashes the socket and releases the local port,
281 * if necessary.
282 */
283 tcp_set_state(sk, TCP_CLOSE);
284 ip_rt_put(rt);
285 sk->sk_route_caps = 0;
286 inet->inet_dport = 0;
287 return err;
288 }
289 EXPORT_SYMBOL(tcp_v4_connect);
290
291 /*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295 {
296 struct dst_entry *dst;
297 struct inet_sock *inet = inet_sk(sk);
298
299 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300 * send out by Linux are always <576bytes so they should go through
301 * unfragmented).
302 */
303 if (sk->sk_state == TCP_LISTEN)
304 return;
305
306 /* We don't check in the destentry if pmtu discovery is forbidden
307 * on this route. We just assume that no packet_to_big packets
308 * are send back when pmtu discovery is not active.
309 * There is a small race when the user changes this flag in the
310 * route, but I think that's acceptable.
311 */
312 if ((dst = __sk_dst_check(sk, 0)) == NULL)
313 return;
314
315 dst->ops->update_pmtu(dst, mtu);
316
317 /* Something is about to be wrong... Remember soft error
318 * for the case, if this connection will not able to recover.
319 */
320 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321 sk->sk_err_soft = EMSGSIZE;
322
323 mtu = dst_mtu(dst);
324
325 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327 tcp_sync_mss(sk, mtu);
328
329 /* Resend the TCP packet because it's
330 * clear that the old packet has been
331 * dropped. This is the new "fast" path mtu
332 * discovery.
333 */
334 tcp_simple_retransmit(sk);
335 } /* else let the usual retransmit timer handle it */
336 }
337
338 /*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 __u32 seq;
366 __u32 remaining;
367 int err;
368 struct net *net = dev_net(icmp_skb->dev);
369
370 if (icmp_skb->len < (iph->ihl << 2) + 8) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374
375 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376 iph->saddr, th->source, inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385
386 bh_lock_sock(sk);
387 /* If too many ICMPs get dropped on busy
388 * servers this needs to be solved differently.
389 */
390 if (sock_owned_by_user(sk))
391 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393 if (sk->sk_state == TCP_CLOSE)
394 goto out;
395
396 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398 goto out;
399 }
400
401 icsk = inet_csk(sk);
402 tp = tcp_sk(sk);
403 seq = ntohl(th->seq);
404 if (sk->sk_state != TCP_LISTEN &&
405 !between(seq, tp->snd_una, tp->snd_nxt)) {
406 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407 goto out;
408 }
409
410 switch (type) {
411 case ICMP_SOURCE_QUENCH:
412 /* Just silently ignore these. */
413 goto out;
414 case ICMP_PARAMETERPROB:
415 err = EPROTO;
416 break;
417 case ICMP_DEST_UNREACH:
418 if (code > NR_ICMP_UNREACH)
419 goto out;
420
421 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422 if (!sock_owned_by_user(sk))
423 do_pmtu_discovery(sk, iph, info);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537 out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583 }
584
585 /*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687 #endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702 &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724 {
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775 #endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785 &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809 {
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818 }
819
820 /*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp)
828 {
829 const struct inet_request_sock *ireq = inet_rsk(req);
830 struct flowi4 fl4;
831 int err = -1;
832 struct sk_buff * skb;
833
834 /* First, grab a route. */
835 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
836 return -1;
837
838 skb = tcp_make_synack(sk, dst, req, rvp);
839
840 if (skb) {
841 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
842
843 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
844 ireq->rmt_addr,
845 ireq->opt);
846 err = net_xmit_eval(err);
847 }
848
849 dst_release(dst);
850 return err;
851 }
852
853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
854 struct request_values *rvp)
855 {
856 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
857 return tcp_v4_send_synack(sk, NULL, req, rvp);
858 }
859
860 /*
861 * IPv4 request_sock destructor.
862 */
863 static void tcp_v4_reqsk_destructor(struct request_sock *req)
864 {
865 kfree(inet_rsk(req)->opt);
866 }
867
868 /*
869 * Return 1 if a syncookie should be sent
870 */
871 int tcp_syn_flood_action(struct sock *sk,
872 const struct sk_buff *skb,
873 const char *proto)
874 {
875 const char *msg = "Dropping request";
876 int want_cookie = 0;
877 struct listen_sock *lopt;
878
879
880
881 #ifdef CONFIG_SYN_COOKIES
882 if (sysctl_tcp_syncookies) {
883 msg = "Sending cookies";
884 want_cookie = 1;
885 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
886 } else
887 #endif
888 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
889
890 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
891 if (!lopt->synflood_warned) {
892 lopt->synflood_warned = 1;
893 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
894 proto, ntohs(tcp_hdr(skb)->dest), msg);
895 }
896 return want_cookie;
897 }
898 EXPORT_SYMBOL(tcp_syn_flood_action);
899
900 /*
901 * Save and compile IPv4 options into the request_sock if needed.
902 */
903 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
904 struct sk_buff *skb)
905 {
906 const struct ip_options *opt = &(IPCB(skb)->opt);
907 struct ip_options_rcu *dopt = NULL;
908
909 if (opt && opt->optlen) {
910 int opt_size = sizeof(*dopt) + opt->optlen;
911
912 dopt = kmalloc(opt_size, GFP_ATOMIC);
913 if (dopt) {
914 if (ip_options_echo(&dopt->opt, skb)) {
915 kfree(dopt);
916 dopt = NULL;
917 }
918 }
919 }
920 return dopt;
921 }
922
923 #ifdef CONFIG_TCP_MD5SIG
924 /*
925 * RFC2385 MD5 checksumming requires a mapping of
926 * IP address->MD5 Key.
927 * We need to maintain these in the sk structure.
928 */
929
930 /* Find the Key structure for an address. */
931 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
932 const union tcp_md5_addr *addr,
933 int family)
934 {
935 struct tcp_sock *tp = tcp_sk(sk);
936 struct tcp_md5sig_key *key;
937 struct hlist_node *pos;
938 unsigned int size = sizeof(struct in_addr);
939 struct tcp_md5sig_info *md5sig;
940
941 /* caller either holds rcu_read_lock() or socket lock */
942 md5sig = rcu_dereference_check(tp->md5sig_info,
943 sock_owned_by_user(sk) ||
944 lockdep_is_held(&sk->sk_lock.slock));
945 if (!md5sig)
946 return NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948 if (family == AF_INET6)
949 size = sizeof(struct in6_addr);
950 #endif
951 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
952 if (key->family != family)
953 continue;
954 if (!memcmp(&key->addr, addr, size))
955 return key;
956 }
957 return NULL;
958 }
959 EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962 struct sock *addr_sk)
963 {
964 union tcp_md5_addr *addr;
965
966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967 return tcp_md5_do_lookup(sk, addr, AF_INET);
968 }
969 EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972 struct request_sock *req)
973 {
974 union tcp_md5_addr *addr;
975
976 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
977 return tcp_md5_do_lookup(sk, addr, AF_INET);
978 }
979
980 /* This can be called on a newly created socket, from other files */
981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983 {
984 /* Add Key to the list */
985 struct tcp_md5sig_key *key;
986 struct tcp_sock *tp = tcp_sk(sk);
987 struct tcp_md5sig_info *md5sig;
988
989 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
990 if (key) {
991 /* Pre-existing entry - just update that one. */
992 memcpy(key->key, newkey, newkeylen);
993 key->keylen = newkeylen;
994 return 0;
995 }
996
997 md5sig = rcu_dereference_protected(tp->md5sig_info,
998 sock_owned_by_user(sk));
999 if (!md5sig) {
1000 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001 if (!md5sig)
1002 return -ENOMEM;
1003
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 INIT_HLIST_HEAD(&md5sig->head);
1006 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007 }
1008
1009 key = sock_kmalloc(sk, sizeof(*key), gfp);
1010 if (!key)
1011 return -ENOMEM;
1012 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1013 sock_kfree_s(sk, key, sizeof(*key));
1014 return -ENOMEM;
1015 }
1016
1017 memcpy(key->key, newkey, newkeylen);
1018 key->keylen = newkeylen;
1019 key->family = family;
1020 memcpy(&key->addr, addr,
1021 (family == AF_INET6) ? sizeof(struct in6_addr) :
1022 sizeof(struct in_addr));
1023 hlist_add_head_rcu(&key->node, &md5sig->head);
1024 return 0;
1025 }
1026 EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029 {
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 struct tcp_md5sig_key *key;
1032 struct tcp_md5sig_info *md5sig;
1033
1034 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1035 if (!key)
1036 return -ENOENT;
1037 hlist_del_rcu(&key->node);
1038 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1039 kfree_rcu(key, rcu);
1040 md5sig = rcu_dereference_protected(tp->md5sig_info,
1041 sock_owned_by_user(sk));
1042 if (hlist_empty(&md5sig->head))
1043 tcp_free_md5sig_pool();
1044 return 0;
1045 }
1046 EXPORT_SYMBOL(tcp_md5_do_del);
1047
1048 void tcp_clear_md5_list(struct sock *sk)
1049 {
1050 struct tcp_sock *tp = tcp_sk(sk);
1051 struct tcp_md5sig_key *key;
1052 struct hlist_node *pos, *n;
1053 struct tcp_md5sig_info *md5sig;
1054
1055 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1056
1057 if (!hlist_empty(&md5sig->head))
1058 tcp_free_md5sig_pool();
1059 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1060 hlist_del_rcu(&key->node);
1061 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1062 kfree_rcu(key, rcu);
1063 }
1064 }
1065
1066 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1067 int optlen)
1068 {
1069 struct tcp_md5sig cmd;
1070 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1071
1072 if (optlen < sizeof(cmd))
1073 return -EINVAL;
1074
1075 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1076 return -EFAULT;
1077
1078 if (sin->sin_family != AF_INET)
1079 return -EINVAL;
1080
1081 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1082 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1083 AF_INET);
1084
1085 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1086 return -EINVAL;
1087
1088 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1089 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1090 GFP_KERNEL);
1091 }
1092
1093 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1094 __be32 daddr, __be32 saddr, int nbytes)
1095 {
1096 struct tcp4_pseudohdr *bp;
1097 struct scatterlist sg;
1098
1099 bp = &hp->md5_blk.ip4;
1100
1101 /*
1102 * 1. the TCP pseudo-header (in the order: source IP address,
1103 * destination IP address, zero-padded protocol number, and
1104 * segment length)
1105 */
1106 bp->saddr = saddr;
1107 bp->daddr = daddr;
1108 bp->pad = 0;
1109 bp->protocol = IPPROTO_TCP;
1110 bp->len = cpu_to_be16(nbytes);
1111
1112 sg_init_one(&sg, bp, sizeof(*bp));
1113 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1114 }
1115
1116 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1117 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1118 {
1119 struct tcp_md5sig_pool *hp;
1120 struct hash_desc *desc;
1121
1122 hp = tcp_get_md5sig_pool();
1123 if (!hp)
1124 goto clear_hash_noput;
1125 desc = &hp->md5_desc;
1126
1127 if (crypto_hash_init(desc))
1128 goto clear_hash;
1129 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1130 goto clear_hash;
1131 if (tcp_md5_hash_header(hp, th))
1132 goto clear_hash;
1133 if (tcp_md5_hash_key(hp, key))
1134 goto clear_hash;
1135 if (crypto_hash_final(desc, md5_hash))
1136 goto clear_hash;
1137
1138 tcp_put_md5sig_pool();
1139 return 0;
1140
1141 clear_hash:
1142 tcp_put_md5sig_pool();
1143 clear_hash_noput:
1144 memset(md5_hash, 0, 16);
1145 return 1;
1146 }
1147
1148 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1149 const struct sock *sk, const struct request_sock *req,
1150 const struct sk_buff *skb)
1151 {
1152 struct tcp_md5sig_pool *hp;
1153 struct hash_desc *desc;
1154 const struct tcphdr *th = tcp_hdr(skb);
1155 __be32 saddr, daddr;
1156
1157 if (sk) {
1158 saddr = inet_sk(sk)->inet_saddr;
1159 daddr = inet_sk(sk)->inet_daddr;
1160 } else if (req) {
1161 saddr = inet_rsk(req)->loc_addr;
1162 daddr = inet_rsk(req)->rmt_addr;
1163 } else {
1164 const struct iphdr *iph = ip_hdr(skb);
1165 saddr = iph->saddr;
1166 daddr = iph->daddr;
1167 }
1168
1169 hp = tcp_get_md5sig_pool();
1170 if (!hp)
1171 goto clear_hash_noput;
1172 desc = &hp->md5_desc;
1173
1174 if (crypto_hash_init(desc))
1175 goto clear_hash;
1176
1177 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1178 goto clear_hash;
1179 if (tcp_md5_hash_header(hp, th))
1180 goto clear_hash;
1181 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1182 goto clear_hash;
1183 if (tcp_md5_hash_key(hp, key))
1184 goto clear_hash;
1185 if (crypto_hash_final(desc, md5_hash))
1186 goto clear_hash;
1187
1188 tcp_put_md5sig_pool();
1189 return 0;
1190
1191 clear_hash:
1192 tcp_put_md5sig_pool();
1193 clear_hash_noput:
1194 memset(md5_hash, 0, 16);
1195 return 1;
1196 }
1197 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1198
1199 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1200 {
1201 /*
1202 * This gets called for each TCP segment that arrives
1203 * so we want to be efficient.
1204 * We have 3 drop cases:
1205 * o No MD5 hash and one expected.
1206 * o MD5 hash and we're not expecting one.
1207 * o MD5 hash and its wrong.
1208 */
1209 const __u8 *hash_location = NULL;
1210 struct tcp_md5sig_key *hash_expected;
1211 const struct iphdr *iph = ip_hdr(skb);
1212 const struct tcphdr *th = tcp_hdr(skb);
1213 int genhash;
1214 unsigned char newhash[16];
1215
1216 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1217 AF_INET);
1218 hash_location = tcp_parse_md5sig_option(th);
1219
1220 /* We've parsed the options - do we have a hash? */
1221 if (!hash_expected && !hash_location)
1222 return 0;
1223
1224 if (hash_expected && !hash_location) {
1225 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1226 return 1;
1227 }
1228
1229 if (!hash_expected && hash_location) {
1230 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1231 return 1;
1232 }
1233
1234 /* Okay, so this is hash_expected and hash_location -
1235 * so we need to calculate the checksum.
1236 */
1237 genhash = tcp_v4_md5_hash_skb(newhash,
1238 hash_expected,
1239 NULL, NULL, skb);
1240
1241 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1242 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1243 &iph->saddr, ntohs(th->source),
1244 &iph->daddr, ntohs(th->dest),
1245 genhash ? " tcp_v4_calc_md5_hash failed"
1246 : "");
1247 return 1;
1248 }
1249 return 0;
1250 }
1251
1252 #endif
1253
1254 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1255 .family = PF_INET,
1256 .obj_size = sizeof(struct tcp_request_sock),
1257 .rtx_syn_ack = tcp_v4_rtx_synack,
1258 .send_ack = tcp_v4_reqsk_send_ack,
1259 .destructor = tcp_v4_reqsk_destructor,
1260 .send_reset = tcp_v4_send_reset,
1261 .syn_ack_timeout = tcp_syn_ack_timeout,
1262 };
1263
1264 #ifdef CONFIG_TCP_MD5SIG
1265 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1266 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1267 .calc_md5_hash = tcp_v4_md5_hash_skb,
1268 };
1269 #endif
1270
1271 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1272 {
1273 struct tcp_extend_values tmp_ext;
1274 struct tcp_options_received tmp_opt;
1275 const u8 *hash_location;
1276 struct request_sock *req;
1277 struct inet_request_sock *ireq;
1278 struct tcp_sock *tp = tcp_sk(sk);
1279 struct dst_entry *dst = NULL;
1280 __be32 saddr = ip_hdr(skb)->saddr;
1281 __be32 daddr = ip_hdr(skb)->daddr;
1282 __u32 isn = TCP_SKB_CB(skb)->when;
1283 int want_cookie = 0;
1284
1285 /* Never answer to SYNs send to broadcast or multicast */
1286 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1287 goto drop;
1288
1289 /* TW buckets are converted to open requests without
1290 * limitations, they conserve resources and peer is
1291 * evidently real one.
1292 */
1293 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1294 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1295 if (!want_cookie)
1296 goto drop;
1297 }
1298
1299 /* Accept backlog is full. If we have already queued enough
1300 * of warm entries in syn queue, drop request. It is better than
1301 * clogging syn queue with openreqs with exponentially increasing
1302 * timeout.
1303 */
1304 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1305 goto drop;
1306
1307 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1308 if (!req)
1309 goto drop;
1310
1311 #ifdef CONFIG_TCP_MD5SIG
1312 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1313 #endif
1314
1315 tcp_clear_options(&tmp_opt);
1316 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1317 tmp_opt.user_mss = tp->rx_opt.user_mss;
1318 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1319
1320 if (tmp_opt.cookie_plus > 0 &&
1321 tmp_opt.saw_tstamp &&
1322 !tp->rx_opt.cookie_out_never &&
1323 (sysctl_tcp_cookie_size > 0 ||
1324 (tp->cookie_values != NULL &&
1325 tp->cookie_values->cookie_desired > 0))) {
1326 u8 *c;
1327 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1328 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1329
1330 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1331 goto drop_and_release;
1332
1333 /* Secret recipe starts with IP addresses */
1334 *mess++ ^= (__force u32)daddr;
1335 *mess++ ^= (__force u32)saddr;
1336
1337 /* plus variable length Initiator Cookie */
1338 c = (u8 *)mess;
1339 while (l-- > 0)
1340 *c++ ^= *hash_location++;
1341
1342 want_cookie = 0; /* not our kind of cookie */
1343 tmp_ext.cookie_out_never = 0; /* false */
1344 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1345 } else if (!tp->rx_opt.cookie_in_always) {
1346 /* redundant indications, but ensure initialization. */
1347 tmp_ext.cookie_out_never = 1; /* true */
1348 tmp_ext.cookie_plus = 0;
1349 } else {
1350 goto drop_and_release;
1351 }
1352 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1353
1354 if (want_cookie && !tmp_opt.saw_tstamp)
1355 tcp_clear_options(&tmp_opt);
1356
1357 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1358 tcp_openreq_init(req, &tmp_opt, skb);
1359
1360 ireq = inet_rsk(req);
1361 ireq->loc_addr = daddr;
1362 ireq->rmt_addr = saddr;
1363 ireq->no_srccheck = inet_sk(sk)->transparent;
1364 ireq->opt = tcp_v4_save_options(sk, skb);
1365
1366 if (security_inet_conn_request(sk, skb, req))
1367 goto drop_and_free;
1368
1369 if (!want_cookie || tmp_opt.tstamp_ok)
1370 TCP_ECN_create_request(req, skb);
1371
1372 if (want_cookie) {
1373 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1374 req->cookie_ts = tmp_opt.tstamp_ok;
1375 } else if (!isn) {
1376 struct inet_peer *peer = NULL;
1377 struct flowi4 fl4;
1378
1379 /* VJ's idea. We save last timestamp seen
1380 * from the destination in peer table, when entering
1381 * state TIME-WAIT, and check against it before
1382 * accepting new connection request.
1383 *
1384 * If "isn" is not zero, this request hit alive
1385 * timewait bucket, so that all the necessary checks
1386 * are made in the function processing timewait state.
1387 */
1388 if (tmp_opt.saw_tstamp &&
1389 tcp_death_row.sysctl_tw_recycle &&
1390 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1391 fl4.daddr == saddr &&
1392 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1393 inet_peer_refcheck(peer);
1394 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1395 (s32)(peer->tcp_ts - req->ts_recent) >
1396 TCP_PAWS_WINDOW) {
1397 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1398 goto drop_and_release;
1399 }
1400 }
1401 /* Kill the following clause, if you dislike this way. */
1402 else if (!sysctl_tcp_syncookies &&
1403 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1404 (sysctl_max_syn_backlog >> 2)) &&
1405 (!peer || !peer->tcp_ts_stamp) &&
1406 (!dst || !dst_metric(dst, RTAX_RTT))) {
1407 /* Without syncookies last quarter of
1408 * backlog is filled with destinations,
1409 * proven to be alive.
1410 * It means that we continue to communicate
1411 * to destinations, already remembered
1412 * to the moment of synflood.
1413 */
1414 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1415 &saddr, ntohs(tcp_hdr(skb)->source));
1416 goto drop_and_release;
1417 }
1418
1419 isn = tcp_v4_init_sequence(skb);
1420 }
1421 tcp_rsk(req)->snt_isn = isn;
1422 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1423
1424 if (tcp_v4_send_synack(sk, dst, req,
1425 (struct request_values *)&tmp_ext) ||
1426 want_cookie)
1427 goto drop_and_free;
1428
1429 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1430 return 0;
1431
1432 drop_and_release:
1433 dst_release(dst);
1434 drop_and_free:
1435 reqsk_free(req);
1436 drop:
1437 return 0;
1438 }
1439 EXPORT_SYMBOL(tcp_v4_conn_request);
1440
1441
1442 /*
1443 * The three way handshake has completed - we got a valid synack -
1444 * now create the new socket.
1445 */
1446 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1447 struct request_sock *req,
1448 struct dst_entry *dst)
1449 {
1450 struct inet_request_sock *ireq;
1451 struct inet_sock *newinet;
1452 struct tcp_sock *newtp;
1453 struct sock *newsk;
1454 #ifdef CONFIG_TCP_MD5SIG
1455 struct tcp_md5sig_key *key;
1456 #endif
1457 struct ip_options_rcu *inet_opt;
1458
1459 if (sk_acceptq_is_full(sk))
1460 goto exit_overflow;
1461
1462 newsk = tcp_create_openreq_child(sk, req, skb);
1463 if (!newsk)
1464 goto exit_nonewsk;
1465
1466 newsk->sk_gso_type = SKB_GSO_TCPV4;
1467
1468 newtp = tcp_sk(newsk);
1469 newinet = inet_sk(newsk);
1470 ireq = inet_rsk(req);
1471 newinet->inet_daddr = ireq->rmt_addr;
1472 newinet->inet_rcv_saddr = ireq->loc_addr;
1473 newinet->inet_saddr = ireq->loc_addr;
1474 inet_opt = ireq->opt;
1475 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1476 ireq->opt = NULL;
1477 newinet->mc_index = inet_iif(skb);
1478 newinet->mc_ttl = ip_hdr(skb)->ttl;
1479 newinet->rcv_tos = ip_hdr(skb)->tos;
1480 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1481 if (inet_opt)
1482 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1483 newinet->inet_id = newtp->write_seq ^ jiffies;
1484
1485 if (!dst) {
1486 dst = inet_csk_route_child_sock(sk, newsk, req);
1487 if (!dst)
1488 goto put_and_exit;
1489 } else {
1490 /* syncookie case : see end of cookie_v4_check() */
1491 }
1492 sk_setup_caps(newsk, dst);
1493
1494 tcp_mtup_init(newsk);
1495 tcp_sync_mss(newsk, dst_mtu(dst));
1496 newtp->advmss = dst_metric_advmss(dst);
1497 if (tcp_sk(sk)->rx_opt.user_mss &&
1498 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1499 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1500
1501 tcp_initialize_rcv_mss(newsk);
1502 if (tcp_rsk(req)->snt_synack)
1503 tcp_valid_rtt_meas(newsk,
1504 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1505 newtp->total_retrans = req->retrans;
1506
1507 #ifdef CONFIG_TCP_MD5SIG
1508 /* Copy over the MD5 key from the original socket */
1509 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1510 AF_INET);
1511 if (key != NULL) {
1512 /*
1513 * We're using one, so create a matching key
1514 * on the newsk structure. If we fail to get
1515 * memory, then we end up not copying the key
1516 * across. Shucks.
1517 */
1518 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1519 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1520 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1521 }
1522 #endif
1523
1524 if (__inet_inherit_port(sk, newsk) < 0)
1525 goto put_and_exit;
1526 __inet_hash_nolisten(newsk, NULL);
1527
1528 return newsk;
1529
1530 exit_overflow:
1531 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1532 exit_nonewsk:
1533 dst_release(dst);
1534 exit:
1535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1536 return NULL;
1537 put_and_exit:
1538 tcp_clear_xmit_timers(newsk);
1539 tcp_cleanup_congestion_control(newsk);
1540 bh_unlock_sock(newsk);
1541 sock_put(newsk);
1542 goto exit;
1543 }
1544 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1545
1546 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1547 {
1548 struct tcphdr *th = tcp_hdr(skb);
1549 const struct iphdr *iph = ip_hdr(skb);
1550 struct sock *nsk;
1551 struct request_sock **prev;
1552 /* Find possible connection requests. */
1553 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1554 iph->saddr, iph->daddr);
1555 if (req)
1556 return tcp_check_req(sk, skb, req, prev);
1557
1558 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1559 th->source, iph->daddr, th->dest, inet_iif(skb));
1560
1561 if (nsk) {
1562 if (nsk->sk_state != TCP_TIME_WAIT) {
1563 bh_lock_sock(nsk);
1564 return nsk;
1565 }
1566 inet_twsk_put(inet_twsk(nsk));
1567 return NULL;
1568 }
1569
1570 #ifdef CONFIG_SYN_COOKIES
1571 if (!th->syn)
1572 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1573 #endif
1574 return sk;
1575 }
1576
1577 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1578 {
1579 const struct iphdr *iph = ip_hdr(skb);
1580
1581 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1582 if (!tcp_v4_check(skb->len, iph->saddr,
1583 iph->daddr, skb->csum)) {
1584 skb->ip_summed = CHECKSUM_UNNECESSARY;
1585 return 0;
1586 }
1587 }
1588
1589 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1590 skb->len, IPPROTO_TCP, 0);
1591
1592 if (skb->len <= 76) {
1593 return __skb_checksum_complete(skb);
1594 }
1595 return 0;
1596 }
1597
1598
1599 /* The socket must have it's spinlock held when we get
1600 * here.
1601 *
1602 * We have a potential double-lock case here, so even when
1603 * doing backlog processing we use the BH locking scheme.
1604 * This is because we cannot sleep with the original spinlock
1605 * held.
1606 */
1607 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1608 {
1609 struct sock *rsk;
1610 #ifdef CONFIG_TCP_MD5SIG
1611 /*
1612 * We really want to reject the packet as early as possible
1613 * if:
1614 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1615 * o There is an MD5 option and we're not expecting one
1616 */
1617 if (tcp_v4_inbound_md5_hash(sk, skb))
1618 goto discard;
1619 #endif
1620
1621 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1622 sock_rps_save_rxhash(sk, skb);
1623 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1624 rsk = sk;
1625 goto reset;
1626 }
1627 return 0;
1628 }
1629
1630 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1631 goto csum_err;
1632
1633 if (sk->sk_state == TCP_LISTEN) {
1634 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1635 if (!nsk)
1636 goto discard;
1637
1638 if (nsk != sk) {
1639 sock_rps_save_rxhash(nsk, skb);
1640 if (tcp_child_process(sk, nsk, skb)) {
1641 rsk = nsk;
1642 goto reset;
1643 }
1644 return 0;
1645 }
1646 } else
1647 sock_rps_save_rxhash(sk, skb);
1648
1649 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1650 rsk = sk;
1651 goto reset;
1652 }
1653 return 0;
1654
1655 reset:
1656 tcp_v4_send_reset(rsk, skb);
1657 discard:
1658 kfree_skb(skb);
1659 /* Be careful here. If this function gets more complicated and
1660 * gcc suffers from register pressure on the x86, sk (in %ebx)
1661 * might be destroyed here. This current version compiles correctly,
1662 * but you have been warned.
1663 */
1664 return 0;
1665
1666 csum_err:
1667 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1668 goto discard;
1669 }
1670 EXPORT_SYMBOL(tcp_v4_do_rcv);
1671
1672 /*
1673 * From tcp_input.c
1674 */
1675
1676 int tcp_v4_rcv(struct sk_buff *skb)
1677 {
1678 const struct iphdr *iph;
1679 const struct tcphdr *th;
1680 struct sock *sk;
1681 int ret;
1682 struct net *net = dev_net(skb->dev);
1683
1684 if (skb->pkt_type != PACKET_HOST)
1685 goto discard_it;
1686
1687 /* Count it even if it's bad */
1688 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1689
1690 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1691 goto discard_it;
1692
1693 th = tcp_hdr(skb);
1694
1695 if (th->doff < sizeof(struct tcphdr) / 4)
1696 goto bad_packet;
1697 if (!pskb_may_pull(skb, th->doff * 4))
1698 goto discard_it;
1699
1700 /* An explanation is required here, I think.
1701 * Packet length and doff are validated by header prediction,
1702 * provided case of th->doff==0 is eliminated.
1703 * So, we defer the checks. */
1704 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1705 goto bad_packet;
1706
1707 th = tcp_hdr(skb);
1708 iph = ip_hdr(skb);
1709 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1710 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1711 skb->len - th->doff * 4);
1712 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1713 TCP_SKB_CB(skb)->when = 0;
1714 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1715 TCP_SKB_CB(skb)->sacked = 0;
1716
1717 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1718 if (!sk)
1719 goto no_tcp_socket;
1720
1721 process:
1722 if (sk->sk_state == TCP_TIME_WAIT)
1723 goto do_time_wait;
1724
1725 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1726 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1727 goto discard_and_relse;
1728 }
1729
1730 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1731 goto discard_and_relse;
1732 nf_reset(skb);
1733
1734 if (sk_filter(sk, skb))
1735 goto discard_and_relse;
1736
1737 skb->dev = NULL;
1738
1739 bh_lock_sock_nested(sk);
1740 ret = 0;
1741 if (!sock_owned_by_user(sk)) {
1742 #ifdef CONFIG_NET_DMA
1743 struct tcp_sock *tp = tcp_sk(sk);
1744 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1745 tp->ucopy.dma_chan = net_dma_find_channel();
1746 if (tp->ucopy.dma_chan)
1747 ret = tcp_v4_do_rcv(sk, skb);
1748 else
1749 #endif
1750 {
1751 if (!tcp_prequeue(sk, skb))
1752 ret = tcp_v4_do_rcv(sk, skb);
1753 }
1754 } else if (unlikely(sk_add_backlog(sk, skb,
1755 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1756 bh_unlock_sock(sk);
1757 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1758 goto discard_and_relse;
1759 }
1760 bh_unlock_sock(sk);
1761
1762 sock_put(sk);
1763
1764 return ret;
1765
1766 no_tcp_socket:
1767 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1768 goto discard_it;
1769
1770 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1771 bad_packet:
1772 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1773 } else {
1774 tcp_v4_send_reset(NULL, skb);
1775 }
1776
1777 discard_it:
1778 /* Discard frame. */
1779 kfree_skb(skb);
1780 return 0;
1781
1782 discard_and_relse:
1783 sock_put(sk);
1784 goto discard_it;
1785
1786 do_time_wait:
1787 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1788 inet_twsk_put(inet_twsk(sk));
1789 goto discard_it;
1790 }
1791
1792 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1793 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1794 inet_twsk_put(inet_twsk(sk));
1795 goto discard_it;
1796 }
1797 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1798 case TCP_TW_SYN: {
1799 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1800 &tcp_hashinfo,
1801 iph->daddr, th->dest,
1802 inet_iif(skb));
1803 if (sk2) {
1804 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1805 inet_twsk_put(inet_twsk(sk));
1806 sk = sk2;
1807 goto process;
1808 }
1809 /* Fall through to ACK */
1810 }
1811 case TCP_TW_ACK:
1812 tcp_v4_timewait_ack(sk, skb);
1813 break;
1814 case TCP_TW_RST:
1815 goto no_tcp_socket;
1816 case TCP_TW_SUCCESS:;
1817 }
1818 goto discard_it;
1819 }
1820
1821 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1822 {
1823 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1824 struct inet_sock *inet = inet_sk(sk);
1825 struct inet_peer *peer;
1826
1827 if (!rt ||
1828 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1829 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1830 *release_it = true;
1831 } else {
1832 if (!rt->peer)
1833 rt_bind_peer(rt, inet->inet_daddr, 1);
1834 peer = rt->peer;
1835 *release_it = false;
1836 }
1837
1838 return peer;
1839 }
1840 EXPORT_SYMBOL(tcp_v4_get_peer);
1841
1842 void *tcp_v4_tw_get_peer(struct sock *sk)
1843 {
1844 const struct inet_timewait_sock *tw = inet_twsk(sk);
1845
1846 return inet_getpeer_v4(tw->tw_daddr, 1);
1847 }
1848 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1849
1850 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1851 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1852 .twsk_unique = tcp_twsk_unique,
1853 .twsk_destructor= tcp_twsk_destructor,
1854 .twsk_getpeer = tcp_v4_tw_get_peer,
1855 };
1856
1857 const struct inet_connection_sock_af_ops ipv4_specific = {
1858 .queue_xmit = ip_queue_xmit,
1859 .send_check = tcp_v4_send_check,
1860 .rebuild_header = inet_sk_rebuild_header,
1861 .conn_request = tcp_v4_conn_request,
1862 .syn_recv_sock = tcp_v4_syn_recv_sock,
1863 .get_peer = tcp_v4_get_peer,
1864 .net_header_len = sizeof(struct iphdr),
1865 .setsockopt = ip_setsockopt,
1866 .getsockopt = ip_getsockopt,
1867 .addr2sockaddr = inet_csk_addr2sockaddr,
1868 .sockaddr_len = sizeof(struct sockaddr_in),
1869 .bind_conflict = inet_csk_bind_conflict,
1870 #ifdef CONFIG_COMPAT
1871 .compat_setsockopt = compat_ip_setsockopt,
1872 .compat_getsockopt = compat_ip_getsockopt,
1873 #endif
1874 };
1875 EXPORT_SYMBOL(ipv4_specific);
1876
1877 #ifdef CONFIG_TCP_MD5SIG
1878 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1879 .md5_lookup = tcp_v4_md5_lookup,
1880 .calc_md5_hash = tcp_v4_md5_hash_skb,
1881 .md5_parse = tcp_v4_parse_md5_keys,
1882 };
1883 #endif
1884
1885 /* NOTE: A lot of things set to zero explicitly by call to
1886 * sk_alloc() so need not be done here.
1887 */
1888 static int tcp_v4_init_sock(struct sock *sk)
1889 {
1890 struct inet_connection_sock *icsk = inet_csk(sk);
1891
1892 tcp_init_sock(sk);
1893
1894 icsk->icsk_af_ops = &ipv4_specific;
1895
1896 #ifdef CONFIG_TCP_MD5SIG
1897 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1898 #endif
1899
1900 return 0;
1901 }
1902
1903 void tcp_v4_destroy_sock(struct sock *sk)
1904 {
1905 struct tcp_sock *tp = tcp_sk(sk);
1906
1907 tcp_clear_xmit_timers(sk);
1908
1909 tcp_cleanup_congestion_control(sk);
1910
1911 /* Cleanup up the write buffer. */
1912 tcp_write_queue_purge(sk);
1913
1914 /* Cleans up our, hopefully empty, out_of_order_queue. */
1915 __skb_queue_purge(&tp->out_of_order_queue);
1916
1917 #ifdef CONFIG_TCP_MD5SIG
1918 /* Clean up the MD5 key list, if any */
1919 if (tp->md5sig_info) {
1920 tcp_clear_md5_list(sk);
1921 kfree_rcu(tp->md5sig_info, rcu);
1922 tp->md5sig_info = NULL;
1923 }
1924 #endif
1925
1926 #ifdef CONFIG_NET_DMA
1927 /* Cleans up our sk_async_wait_queue */
1928 __skb_queue_purge(&sk->sk_async_wait_queue);
1929 #endif
1930
1931 /* Clean prequeue, it must be empty really */
1932 __skb_queue_purge(&tp->ucopy.prequeue);
1933
1934 /* Clean up a referenced TCP bind bucket. */
1935 if (inet_csk(sk)->icsk_bind_hash)
1936 inet_put_port(sk);
1937
1938 /*
1939 * If sendmsg cached page exists, toss it.
1940 */
1941 if (sk->sk_sndmsg_page) {
1942 __free_page(sk->sk_sndmsg_page);
1943 sk->sk_sndmsg_page = NULL;
1944 }
1945
1946 /* TCP Cookie Transactions */
1947 if (tp->cookie_values != NULL) {
1948 kref_put(&tp->cookie_values->kref,
1949 tcp_cookie_values_release);
1950 tp->cookie_values = NULL;
1951 }
1952
1953 sk_sockets_allocated_dec(sk);
1954 sock_release_memcg(sk);
1955 }
1956 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1957
1958 #ifdef CONFIG_PROC_FS
1959 /* Proc filesystem TCP sock list dumping. */
1960
1961 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1962 {
1963 return hlist_nulls_empty(head) ? NULL :
1964 list_entry(head->first, struct inet_timewait_sock, tw_node);
1965 }
1966
1967 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1968 {
1969 return !is_a_nulls(tw->tw_node.next) ?
1970 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1971 }
1972
1973 /*
1974 * Get next listener socket follow cur. If cur is NULL, get first socket
1975 * starting from bucket given in st->bucket; when st->bucket is zero the
1976 * very first socket in the hash table is returned.
1977 */
1978 static void *listening_get_next(struct seq_file *seq, void *cur)
1979 {
1980 struct inet_connection_sock *icsk;
1981 struct hlist_nulls_node *node;
1982 struct sock *sk = cur;
1983 struct inet_listen_hashbucket *ilb;
1984 struct tcp_iter_state *st = seq->private;
1985 struct net *net = seq_file_net(seq);
1986
1987 if (!sk) {
1988 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1989 spin_lock_bh(&ilb->lock);
1990 sk = sk_nulls_head(&ilb->head);
1991 st->offset = 0;
1992 goto get_sk;
1993 }
1994 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1995 ++st->num;
1996 ++st->offset;
1997
1998 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1999 struct request_sock *req = cur;
2000
2001 icsk = inet_csk(st->syn_wait_sk);
2002 req = req->dl_next;
2003 while (1) {
2004 while (req) {
2005 if (req->rsk_ops->family == st->family) {
2006 cur = req;
2007 goto out;
2008 }
2009 req = req->dl_next;
2010 }
2011 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2012 break;
2013 get_req:
2014 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2015 }
2016 sk = sk_nulls_next(st->syn_wait_sk);
2017 st->state = TCP_SEQ_STATE_LISTENING;
2018 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2019 } else {
2020 icsk = inet_csk(sk);
2021 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2023 goto start_req;
2024 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 sk = sk_nulls_next(sk);
2026 }
2027 get_sk:
2028 sk_nulls_for_each_from(sk, node) {
2029 if (!net_eq(sock_net(sk), net))
2030 continue;
2031 if (sk->sk_family == st->family) {
2032 cur = sk;
2033 goto out;
2034 }
2035 icsk = inet_csk(sk);
2036 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2038 start_req:
2039 st->uid = sock_i_uid(sk);
2040 st->syn_wait_sk = sk;
2041 st->state = TCP_SEQ_STATE_OPENREQ;
2042 st->sbucket = 0;
2043 goto get_req;
2044 }
2045 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046 }
2047 spin_unlock_bh(&ilb->lock);
2048 st->offset = 0;
2049 if (++st->bucket < INET_LHTABLE_SIZE) {
2050 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2051 spin_lock_bh(&ilb->lock);
2052 sk = sk_nulls_head(&ilb->head);
2053 goto get_sk;
2054 }
2055 cur = NULL;
2056 out:
2057 return cur;
2058 }
2059
2060 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2061 {
2062 struct tcp_iter_state *st = seq->private;
2063 void *rc;
2064
2065 st->bucket = 0;
2066 st->offset = 0;
2067 rc = listening_get_next(seq, NULL);
2068
2069 while (rc && *pos) {
2070 rc = listening_get_next(seq, rc);
2071 --*pos;
2072 }
2073 return rc;
2074 }
2075
2076 static inline int empty_bucket(struct tcp_iter_state *st)
2077 {
2078 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2079 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2080 }
2081
2082 /*
2083 * Get first established socket starting from bucket given in st->bucket.
2084 * If st->bucket is zero, the very first socket in the hash is returned.
2085 */
2086 static void *established_get_first(struct seq_file *seq)
2087 {
2088 struct tcp_iter_state *st = seq->private;
2089 struct net *net = seq_file_net(seq);
2090 void *rc = NULL;
2091
2092 st->offset = 0;
2093 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2094 struct sock *sk;
2095 struct hlist_nulls_node *node;
2096 struct inet_timewait_sock *tw;
2097 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2098
2099 /* Lockless fast path for the common case of empty buckets */
2100 if (empty_bucket(st))
2101 continue;
2102
2103 spin_lock_bh(lock);
2104 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2105 if (sk->sk_family != st->family ||
2106 !net_eq(sock_net(sk), net)) {
2107 continue;
2108 }
2109 rc = sk;
2110 goto out;
2111 }
2112 st->state = TCP_SEQ_STATE_TIME_WAIT;
2113 inet_twsk_for_each(tw, node,
2114 &tcp_hashinfo.ehash[st->bucket].twchain) {
2115 if (tw->tw_family != st->family ||
2116 !net_eq(twsk_net(tw), net)) {
2117 continue;
2118 }
2119 rc = tw;
2120 goto out;
2121 }
2122 spin_unlock_bh(lock);
2123 st->state = TCP_SEQ_STATE_ESTABLISHED;
2124 }
2125 out:
2126 return rc;
2127 }
2128
2129 static void *established_get_next(struct seq_file *seq, void *cur)
2130 {
2131 struct sock *sk = cur;
2132 struct inet_timewait_sock *tw;
2133 struct hlist_nulls_node *node;
2134 struct tcp_iter_state *st = seq->private;
2135 struct net *net = seq_file_net(seq);
2136
2137 ++st->num;
2138 ++st->offset;
2139
2140 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2141 tw = cur;
2142 tw = tw_next(tw);
2143 get_tw:
2144 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2145 tw = tw_next(tw);
2146 }
2147 if (tw) {
2148 cur = tw;
2149 goto out;
2150 }
2151 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2152 st->state = TCP_SEQ_STATE_ESTABLISHED;
2153
2154 /* Look for next non empty bucket */
2155 st->offset = 0;
2156 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2157 empty_bucket(st))
2158 ;
2159 if (st->bucket > tcp_hashinfo.ehash_mask)
2160 return NULL;
2161
2162 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2163 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2164 } else
2165 sk = sk_nulls_next(sk);
2166
2167 sk_nulls_for_each_from(sk, node) {
2168 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2169 goto found;
2170 }
2171
2172 st->state = TCP_SEQ_STATE_TIME_WAIT;
2173 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2174 goto get_tw;
2175 found:
2176 cur = sk;
2177 out:
2178 return cur;
2179 }
2180
2181 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2182 {
2183 struct tcp_iter_state *st = seq->private;
2184 void *rc;
2185
2186 st->bucket = 0;
2187 rc = established_get_first(seq);
2188
2189 while (rc && pos) {
2190 rc = established_get_next(seq, rc);
2191 --pos;
2192 }
2193 return rc;
2194 }
2195
2196 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2197 {
2198 void *rc;
2199 struct tcp_iter_state *st = seq->private;
2200
2201 st->state = TCP_SEQ_STATE_LISTENING;
2202 rc = listening_get_idx(seq, &pos);
2203
2204 if (!rc) {
2205 st->state = TCP_SEQ_STATE_ESTABLISHED;
2206 rc = established_get_idx(seq, pos);
2207 }
2208
2209 return rc;
2210 }
2211
2212 static void *tcp_seek_last_pos(struct seq_file *seq)
2213 {
2214 struct tcp_iter_state *st = seq->private;
2215 int offset = st->offset;
2216 int orig_num = st->num;
2217 void *rc = NULL;
2218
2219 switch (st->state) {
2220 case TCP_SEQ_STATE_OPENREQ:
2221 case TCP_SEQ_STATE_LISTENING:
2222 if (st->bucket >= INET_LHTABLE_SIZE)
2223 break;
2224 st->state = TCP_SEQ_STATE_LISTENING;
2225 rc = listening_get_next(seq, NULL);
2226 while (offset-- && rc)
2227 rc = listening_get_next(seq, rc);
2228 if (rc)
2229 break;
2230 st->bucket = 0;
2231 /* Fallthrough */
2232 case TCP_SEQ_STATE_ESTABLISHED:
2233 case TCP_SEQ_STATE_TIME_WAIT:
2234 st->state = TCP_SEQ_STATE_ESTABLISHED;
2235 if (st->bucket > tcp_hashinfo.ehash_mask)
2236 break;
2237 rc = established_get_first(seq);
2238 while (offset-- && rc)
2239 rc = established_get_next(seq, rc);
2240 }
2241
2242 st->num = orig_num;
2243
2244 return rc;
2245 }
2246
2247 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2248 {
2249 struct tcp_iter_state *st = seq->private;
2250 void *rc;
2251
2252 if (*pos && *pos == st->last_pos) {
2253 rc = tcp_seek_last_pos(seq);
2254 if (rc)
2255 goto out;
2256 }
2257
2258 st->state = TCP_SEQ_STATE_LISTENING;
2259 st->num = 0;
2260 st->bucket = 0;
2261 st->offset = 0;
2262 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2263
2264 out:
2265 st->last_pos = *pos;
2266 return rc;
2267 }
2268
2269 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2270 {
2271 struct tcp_iter_state *st = seq->private;
2272 void *rc = NULL;
2273
2274 if (v == SEQ_START_TOKEN) {
2275 rc = tcp_get_idx(seq, 0);
2276 goto out;
2277 }
2278
2279 switch (st->state) {
2280 case TCP_SEQ_STATE_OPENREQ:
2281 case TCP_SEQ_STATE_LISTENING:
2282 rc = listening_get_next(seq, v);
2283 if (!rc) {
2284 st->state = TCP_SEQ_STATE_ESTABLISHED;
2285 st->bucket = 0;
2286 st->offset = 0;
2287 rc = established_get_first(seq);
2288 }
2289 break;
2290 case TCP_SEQ_STATE_ESTABLISHED:
2291 case TCP_SEQ_STATE_TIME_WAIT:
2292 rc = established_get_next(seq, v);
2293 break;
2294 }
2295 out:
2296 ++*pos;
2297 st->last_pos = *pos;
2298 return rc;
2299 }
2300
2301 static void tcp_seq_stop(struct seq_file *seq, void *v)
2302 {
2303 struct tcp_iter_state *st = seq->private;
2304
2305 switch (st->state) {
2306 case TCP_SEQ_STATE_OPENREQ:
2307 if (v) {
2308 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2309 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2310 }
2311 case TCP_SEQ_STATE_LISTENING:
2312 if (v != SEQ_START_TOKEN)
2313 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2314 break;
2315 case TCP_SEQ_STATE_TIME_WAIT:
2316 case TCP_SEQ_STATE_ESTABLISHED:
2317 if (v)
2318 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2319 break;
2320 }
2321 }
2322
2323 int tcp_seq_open(struct inode *inode, struct file *file)
2324 {
2325 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2326 struct tcp_iter_state *s;
2327 int err;
2328
2329 err = seq_open_net(inode, file, &afinfo->seq_ops,
2330 sizeof(struct tcp_iter_state));
2331 if (err < 0)
2332 return err;
2333
2334 s = ((struct seq_file *)file->private_data)->private;
2335 s->family = afinfo->family;
2336 s->last_pos = 0;
2337 return 0;
2338 }
2339 EXPORT_SYMBOL(tcp_seq_open);
2340
2341 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2342 {
2343 int rc = 0;
2344 struct proc_dir_entry *p;
2345
2346 afinfo->seq_ops.start = tcp_seq_start;
2347 afinfo->seq_ops.next = tcp_seq_next;
2348 afinfo->seq_ops.stop = tcp_seq_stop;
2349
2350 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2351 afinfo->seq_fops, afinfo);
2352 if (!p)
2353 rc = -ENOMEM;
2354 return rc;
2355 }
2356 EXPORT_SYMBOL(tcp_proc_register);
2357
2358 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2359 {
2360 proc_net_remove(net, afinfo->name);
2361 }
2362 EXPORT_SYMBOL(tcp_proc_unregister);
2363
2364 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2365 struct seq_file *f, int i, int uid, int *len)
2366 {
2367 const struct inet_request_sock *ireq = inet_rsk(req);
2368 int ttd = req->expires - jiffies;
2369
2370 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2371 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2372 i,
2373 ireq->loc_addr,
2374 ntohs(inet_sk(sk)->inet_sport),
2375 ireq->rmt_addr,
2376 ntohs(ireq->rmt_port),
2377 TCP_SYN_RECV,
2378 0, 0, /* could print option size, but that is af dependent. */
2379 1, /* timers active (only the expire timer) */
2380 jiffies_to_clock_t(ttd),
2381 req->retrans,
2382 uid,
2383 0, /* non standard timer */
2384 0, /* open_requests have no inode */
2385 atomic_read(&sk->sk_refcnt),
2386 req,
2387 len);
2388 }
2389
2390 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2391 {
2392 int timer_active;
2393 unsigned long timer_expires;
2394 const struct tcp_sock *tp = tcp_sk(sk);
2395 const struct inet_connection_sock *icsk = inet_csk(sk);
2396 const struct inet_sock *inet = inet_sk(sk);
2397 __be32 dest = inet->inet_daddr;
2398 __be32 src = inet->inet_rcv_saddr;
2399 __u16 destp = ntohs(inet->inet_dport);
2400 __u16 srcp = ntohs(inet->inet_sport);
2401 int rx_queue;
2402
2403 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2404 timer_active = 1;
2405 timer_expires = icsk->icsk_timeout;
2406 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2407 timer_active = 4;
2408 timer_expires = icsk->icsk_timeout;
2409 } else if (timer_pending(&sk->sk_timer)) {
2410 timer_active = 2;
2411 timer_expires = sk->sk_timer.expires;
2412 } else {
2413 timer_active = 0;
2414 timer_expires = jiffies;
2415 }
2416
2417 if (sk->sk_state == TCP_LISTEN)
2418 rx_queue = sk->sk_ack_backlog;
2419 else
2420 /*
2421 * because we dont lock socket, we might find a transient negative value
2422 */
2423 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2424
2425 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2426 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2427 i, src, srcp, dest, destp, sk->sk_state,
2428 tp->write_seq - tp->snd_una,
2429 rx_queue,
2430 timer_active,
2431 jiffies_to_clock_t(timer_expires - jiffies),
2432 icsk->icsk_retransmits,
2433 sock_i_uid(sk),
2434 icsk->icsk_probes_out,
2435 sock_i_ino(sk),
2436 atomic_read(&sk->sk_refcnt), sk,
2437 jiffies_to_clock_t(icsk->icsk_rto),
2438 jiffies_to_clock_t(icsk->icsk_ack.ato),
2439 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2440 tp->snd_cwnd,
2441 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2442 len);
2443 }
2444
2445 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2446 struct seq_file *f, int i, int *len)
2447 {
2448 __be32 dest, src;
2449 __u16 destp, srcp;
2450 int ttd = tw->tw_ttd - jiffies;
2451
2452 if (ttd < 0)
2453 ttd = 0;
2454
2455 dest = tw->tw_daddr;
2456 src = tw->tw_rcv_saddr;
2457 destp = ntohs(tw->tw_dport);
2458 srcp = ntohs(tw->tw_sport);
2459
2460 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2461 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2462 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2463 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2464 atomic_read(&tw->tw_refcnt), tw, len);
2465 }
2466
2467 #define TMPSZ 150
2468
2469 static int tcp4_seq_show(struct seq_file *seq, void *v)
2470 {
2471 struct tcp_iter_state *st;
2472 int len;
2473
2474 if (v == SEQ_START_TOKEN) {
2475 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2476 " sl local_address rem_address st tx_queue "
2477 "rx_queue tr tm->when retrnsmt uid timeout "
2478 "inode");
2479 goto out;
2480 }
2481 st = seq->private;
2482
2483 switch (st->state) {
2484 case TCP_SEQ_STATE_LISTENING:
2485 case TCP_SEQ_STATE_ESTABLISHED:
2486 get_tcp4_sock(v, seq, st->num, &len);
2487 break;
2488 case TCP_SEQ_STATE_OPENREQ:
2489 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2490 break;
2491 case TCP_SEQ_STATE_TIME_WAIT:
2492 get_timewait4_sock(v, seq, st->num, &len);
2493 break;
2494 }
2495 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2496 out:
2497 return 0;
2498 }
2499
2500 static const struct file_operations tcp_afinfo_seq_fops = {
2501 .owner = THIS_MODULE,
2502 .open = tcp_seq_open,
2503 .read = seq_read,
2504 .llseek = seq_lseek,
2505 .release = seq_release_net
2506 };
2507
2508 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2509 .name = "tcp",
2510 .family = AF_INET,
2511 .seq_fops = &tcp_afinfo_seq_fops,
2512 .seq_ops = {
2513 .show = tcp4_seq_show,
2514 },
2515 };
2516
2517 static int __net_init tcp4_proc_init_net(struct net *net)
2518 {
2519 return tcp_proc_register(net, &tcp4_seq_afinfo);
2520 }
2521
2522 static void __net_exit tcp4_proc_exit_net(struct net *net)
2523 {
2524 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2525 }
2526
2527 static struct pernet_operations tcp4_net_ops = {
2528 .init = tcp4_proc_init_net,
2529 .exit = tcp4_proc_exit_net,
2530 };
2531
2532 int __init tcp4_proc_init(void)
2533 {
2534 return register_pernet_subsys(&tcp4_net_ops);
2535 }
2536
2537 void tcp4_proc_exit(void)
2538 {
2539 unregister_pernet_subsys(&tcp4_net_ops);
2540 }
2541 #endif /* CONFIG_PROC_FS */
2542
2543 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2544 {
2545 const struct iphdr *iph = skb_gro_network_header(skb);
2546
2547 switch (skb->ip_summed) {
2548 case CHECKSUM_COMPLETE:
2549 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2550 skb->csum)) {
2551 skb->ip_summed = CHECKSUM_UNNECESSARY;
2552 break;
2553 }
2554
2555 /* fall through */
2556 case CHECKSUM_NONE:
2557 NAPI_GRO_CB(skb)->flush = 1;
2558 return NULL;
2559 }
2560
2561 return tcp_gro_receive(head, skb);
2562 }
2563
2564 int tcp4_gro_complete(struct sk_buff *skb)
2565 {
2566 const struct iphdr *iph = ip_hdr(skb);
2567 struct tcphdr *th = tcp_hdr(skb);
2568
2569 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2570 iph->saddr, iph->daddr, 0);
2571 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2572
2573 return tcp_gro_complete(skb);
2574 }
2575
2576 struct proto tcp_prot = {
2577 .name = "TCP",
2578 .owner = THIS_MODULE,
2579 .close = tcp_close,
2580 .connect = tcp_v4_connect,
2581 .disconnect = tcp_disconnect,
2582 .accept = inet_csk_accept,
2583 .ioctl = tcp_ioctl,
2584 .init = tcp_v4_init_sock,
2585 .destroy = tcp_v4_destroy_sock,
2586 .shutdown = tcp_shutdown,
2587 .setsockopt = tcp_setsockopt,
2588 .getsockopt = tcp_getsockopt,
2589 .recvmsg = tcp_recvmsg,
2590 .sendmsg = tcp_sendmsg,
2591 .sendpage = tcp_sendpage,
2592 .backlog_rcv = tcp_v4_do_rcv,
2593 .hash = inet_hash,
2594 .unhash = inet_unhash,
2595 .get_port = inet_csk_get_port,
2596 .enter_memory_pressure = tcp_enter_memory_pressure,
2597 .sockets_allocated = &tcp_sockets_allocated,
2598 .orphan_count = &tcp_orphan_count,
2599 .memory_allocated = &tcp_memory_allocated,
2600 .memory_pressure = &tcp_memory_pressure,
2601 .sysctl_wmem = sysctl_tcp_wmem,
2602 .sysctl_rmem = sysctl_tcp_rmem,
2603 .max_header = MAX_TCP_HEADER,
2604 .obj_size = sizeof(struct tcp_sock),
2605 .slab_flags = SLAB_DESTROY_BY_RCU,
2606 .twsk_prot = &tcp_timewait_sock_ops,
2607 .rsk_prot = &tcp_request_sock_ops,
2608 .h.hashinfo = &tcp_hashinfo,
2609 .no_autobind = true,
2610 #ifdef CONFIG_COMPAT
2611 .compat_setsockopt = compat_tcp_setsockopt,
2612 .compat_getsockopt = compat_tcp_getsockopt,
2613 #endif
2614 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2615 .init_cgroup = tcp_init_cgroup,
2616 .destroy_cgroup = tcp_destroy_cgroup,
2617 .proto_cgroup = tcp_proto_cgroup,
2618 #endif
2619 };
2620 EXPORT_SYMBOL(tcp_prot);
2621
2622 static int __net_init tcp_sk_init(struct net *net)
2623 {
2624 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2625 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2626 }
2627
2628 static void __net_exit tcp_sk_exit(struct net *net)
2629 {
2630 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2631 }
2632
2633 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2634 {
2635 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2636 }
2637
2638 static struct pernet_operations __net_initdata tcp_sk_ops = {
2639 .init = tcp_sk_init,
2640 .exit = tcp_sk_exit,
2641 .exit_batch = tcp_sk_exit_batch,
2642 };
2643
2644 void __init tcp_v4_init(void)
2645 {
2646 inet_hashinfo_init(&tcp_hashinfo);
2647 if (register_pernet_subsys(&tcp_sk_ops))
2648 panic("Failed to create the TCP control socket.\n");
2649 }
This page took 0.098462 seconds and 5 git commands to generate.