Merge remote-tracking branch 'omap_dss2/for-next'
[deliverable/linux.git] / net / ipv4 / tcp_minisocks.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31
32 struct inet_timewait_death_row tcp_death_row = {
33 .sysctl_max_tw_buckets = NR_FILE * 2,
34 .hashinfo = &tcp_hashinfo,
35 };
36 EXPORT_SYMBOL_GPL(tcp_death_row);
37
38 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
39 {
40 if (seq == s_win)
41 return true;
42 if (after(end_seq, s_win) && before(seq, e_win))
43 return true;
44 return seq == e_win && seq == end_seq;
45 }
46
47 static enum tcp_tw_status
48 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
49 const struct sk_buff *skb, int mib_idx)
50 {
51 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
52
53 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
54 &tcptw->tw_last_oow_ack_time)) {
55 /* Send ACK. Note, we do not put the bucket,
56 * it will be released by caller.
57 */
58 return TCP_TW_ACK;
59 }
60
61 /* We are rate-limiting, so just release the tw sock and drop skb. */
62 inet_twsk_put(tw);
63 return TCP_TW_SUCCESS;
64 }
65
66 /*
67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
68 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69 * (and, probably, tail of data) and one or more our ACKs are lost.
70 * * What is TIME-WAIT timeout? It is associated with maximal packet
71 * lifetime in the internet, which results in wrong conclusion, that
72 * it is set to catch "old duplicate segments" wandering out of their path.
73 * It is not quite correct. This timeout is calculated so that it exceeds
74 * maximal retransmission timeout enough to allow to lose one (or more)
75 * segments sent by peer and our ACKs. This time may be calculated from RTO.
76 * * When TIME-WAIT socket receives RST, it means that another end
77 * finally closed and we are allowed to kill TIME-WAIT too.
78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
79 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
80 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81 * * If we invented some more clever way to catch duplicates
82 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83 *
84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86 * from the very beginning.
87 *
88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
89 * is _not_ stateless. It means, that strictly speaking we must
90 * spinlock it. I do not want! Well, probability of misbehaviour
91 * is ridiculously low and, seems, we could use some mb() tricks
92 * to avoid misread sequence numbers, states etc. --ANK
93 *
94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
95 */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 const struct tcphdr *th)
99 {
100 struct tcp_options_received tmp_opt;
101 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 bool paws_reject = false;
103
104 tmp_opt.saw_tstamp = 0;
105 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108 if (tmp_opt.saw_tstamp) {
109 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
110 tmp_opt.ts_recent = tcptw->tw_ts_recent;
111 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
112 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113 }
114 }
115
116 if (tw->tw_substate == TCP_FIN_WAIT2) {
117 /* Just repeat all the checks of tcp_rcv_state_process() */
118
119 /* Out of window, send ACK */
120 if (paws_reject ||
121 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 tcptw->tw_rcv_nxt,
123 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 return tcp_timewait_check_oow_rate_limit(
125 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127 if (th->rst)
128 goto kill;
129
130 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131 return TCP_TW_RST;
132
133 /* Dup ACK? */
134 if (!th->ack ||
135 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137 inet_twsk_put(tw);
138 return TCP_TW_SUCCESS;
139 }
140
141 /* New data or FIN. If new data arrive after half-duplex close,
142 * reset.
143 */
144 if (!th->fin ||
145 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146 return TCP_TW_RST;
147
148 /* FIN arrived, enter true time-wait state. */
149 tw->tw_substate = TCP_TIME_WAIT;
150 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 if (tmp_opt.saw_tstamp) {
152 tcptw->tw_ts_recent_stamp = get_seconds();
153 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
154 }
155
156 if (tcp_death_row.sysctl_tw_recycle &&
157 tcptw->tw_ts_recent_stamp &&
158 tcp_tw_remember_stamp(tw))
159 inet_twsk_reschedule(tw, tw->tw_timeout);
160 else
161 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162 return TCP_TW_ACK;
163 }
164
165 /*
166 * Now real TIME-WAIT state.
167 *
168 * RFC 1122:
169 * "When a connection is [...] on TIME-WAIT state [...]
170 * [a TCP] MAY accept a new SYN from the remote TCP to
171 * reopen the connection directly, if it:
172 *
173 * (1) assigns its initial sequence number for the new
174 * connection to be larger than the largest sequence
175 * number it used on the previous connection incarnation,
176 * and
177 *
178 * (2) returns to TIME-WAIT state if the SYN turns out
179 * to be an old duplicate".
180 */
181
182 if (!paws_reject &&
183 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 /* In window segment, it may be only reset or bare ack. */
186
187 if (th->rst) {
188 /* This is TIME_WAIT assassination, in two flavors.
189 * Oh well... nobody has a sufficient solution to this
190 * protocol bug yet.
191 */
192 if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 inet_twsk_deschedule_put(tw);
195 return TCP_TW_SUCCESS;
196 }
197 }
198 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199
200 if (tmp_opt.saw_tstamp) {
201 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
202 tcptw->tw_ts_recent_stamp = get_seconds();
203 }
204
205 inet_twsk_put(tw);
206 return TCP_TW_SUCCESS;
207 }
208
209 /* Out of window segment.
210
211 All the segments are ACKed immediately.
212
213 The only exception is new SYN. We accept it, if it is
214 not old duplicate and we are not in danger to be killed
215 by delayed old duplicates. RFC check is that it has
216 newer sequence number works at rates <40Mbit/sec.
217 However, if paws works, it is reliable AND even more,
218 we even may relax silly seq space cutoff.
219
220 RED-PEN: we violate main RFC requirement, if this SYN will appear
221 old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 we must return socket to time-wait state. It is not good,
223 but not fatal yet.
224 */
225
226 if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 (tmp_opt.saw_tstamp &&
229 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 if (isn == 0)
232 isn++;
233 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234 return TCP_TW_SYN;
235 }
236
237 if (paws_reject)
238 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240 if (!th->rst) {
241 /* In this case we must reset the TIMEWAIT timer.
242 *
243 * If it is ACKless SYN it may be both old duplicate
244 * and new good SYN with random sequence number <rcv_nxt.
245 * Do not reschedule in the last case.
246 */
247 if (paws_reject || th->ack)
248 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249
250 return tcp_timewait_check_oow_rate_limit(
251 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252 }
253 inet_twsk_put(tw);
254 return TCP_TW_SUCCESS;
255 }
256 EXPORT_SYMBOL(tcp_timewait_state_process);
257
258 /*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261 void tcp_time_wait(struct sock *sk, int state, int timeo)
262 {
263 const struct inet_connection_sock *icsk = inet_csk(sk);
264 const struct tcp_sock *tp = tcp_sk(sk);
265 struct inet_timewait_sock *tw;
266 bool recycle_ok = false;
267
268 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269 recycle_ok = tcp_remember_stamp(sk);
270
271 tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272
273 if (tw) {
274 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276 struct inet_sock *inet = inet_sk(sk);
277
278 tw->tw_transparent = inet->transparent;
279 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
280 tcptw->tw_rcv_nxt = tp->rcv_nxt;
281 tcptw->tw_snd_nxt = tp->snd_nxt;
282 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
283 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
284 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285 tcptw->tw_ts_offset = tp->tsoffset;
286 tcptw->tw_last_oow_ack_time = 0;
287
288 #if IS_ENABLED(CONFIG_IPV6)
289 if (tw->tw_family == PF_INET6) {
290 struct ipv6_pinfo *np = inet6_sk(sk);
291
292 tw->tw_v6_daddr = sk->sk_v6_daddr;
293 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294 tw->tw_tclass = np->tclass;
295 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296 tw->tw_ipv6only = sk->sk_ipv6only;
297 }
298 #endif
299
300 #ifdef CONFIG_TCP_MD5SIG
301 /*
302 * The timewait bucket does not have the key DB from the
303 * sock structure. We just make a quick copy of the
304 * md5 key being used (if indeed we are using one)
305 * so the timewait ack generating code has the key.
306 */
307 do {
308 struct tcp_md5sig_key *key;
309 tcptw->tw_md5_key = NULL;
310 key = tp->af_specific->md5_lookup(sk, sk);
311 if (key) {
312 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313 if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314 BUG();
315 }
316 } while (0);
317 #endif
318
319 /* Get the TIME_WAIT timeout firing. */
320 if (timeo < rto)
321 timeo = rto;
322
323 if (recycle_ok) {
324 tw->tw_timeout = rto;
325 } else {
326 tw->tw_timeout = TCP_TIMEWAIT_LEN;
327 if (state == TCP_TIME_WAIT)
328 timeo = TCP_TIMEWAIT_LEN;
329 }
330
331 inet_twsk_schedule(tw, timeo);
332 /* Linkage updates. */
333 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334 inet_twsk_put(tw);
335 } else {
336 /* Sorry, if we're out of memory, just CLOSE this
337 * socket up. We've got bigger problems than
338 * non-graceful socket closings.
339 */
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341 }
342
343 tcp_update_metrics(sk);
344 tcp_done(sk);
345 }
346
347 void tcp_twsk_destructor(struct sock *sk)
348 {
349 #ifdef CONFIG_TCP_MD5SIG
350 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351
352 if (twsk->tw_md5_key)
353 kfree_rcu(twsk->tw_md5_key, rcu);
354 #endif
355 }
356 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
358 /* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361 void tcp_openreq_init_rwin(struct request_sock *req,
362 const struct sock *sk_listener,
363 const struct dst_entry *dst)
364 {
365 struct inet_request_sock *ireq = inet_rsk(req);
366 const struct tcp_sock *tp = tcp_sk(sk_listener);
367 u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368 int full_space = tcp_full_space(sk_listener);
369 int mss = dst_metric_advmss(dst);
370 u32 window_clamp;
371 __u8 rcv_wscale;
372
373 if (user_mss && user_mss < mss)
374 mss = user_mss;
375
376 window_clamp = READ_ONCE(tp->window_clamp);
377 /* Set this up on the first call only */
378 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380 /* limit the window selection if the user enforce a smaller rx buffer */
381 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383 req->rsk_window_clamp = full_space;
384
385 /* tcp_full_space because it is guaranteed to be the first packet */
386 tcp_select_initial_window(full_space,
387 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388 &req->rsk_rcv_wnd,
389 &req->rsk_window_clamp,
390 ireq->wscale_ok,
391 &rcv_wscale,
392 dst_metric(dst, RTAX_INITRWND));
393 ireq->rcv_wscale = rcv_wscale;
394 }
395 EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398 const struct request_sock *req)
399 {
400 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401 }
402
403 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404 {
405 struct inet_connection_sock *icsk = inet_csk(sk);
406 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407 bool ca_got_dst = false;
408
409 if (ca_key != TCP_CA_UNSPEC) {
410 const struct tcp_congestion_ops *ca;
411
412 rcu_read_lock();
413 ca = tcp_ca_find_key(ca_key);
414 if (likely(ca && try_module_get(ca->owner))) {
415 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416 icsk->icsk_ca_ops = ca;
417 ca_got_dst = true;
418 }
419 rcu_read_unlock();
420 }
421
422 /* If no valid choice made yet, assign current system default ca. */
423 if (!ca_got_dst &&
424 (!icsk->icsk_ca_setsockopt ||
425 !try_module_get(icsk->icsk_ca_ops->owner)))
426 tcp_assign_congestion_control(sk);
427
428 tcp_set_ca_state(sk, TCP_CA_Open);
429 }
430 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
432 /* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 struct request_sock *req,
440 struct sk_buff *skb)
441 {
442 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443
444 if (newsk) {
445 const struct inet_request_sock *ireq = inet_rsk(req);
446 struct tcp_request_sock *treq = tcp_rsk(req);
447 struct inet_connection_sock *newicsk = inet_csk(newsk);
448 struct tcp_sock *newtp = tcp_sk(newsk);
449
450 /* Now setup tcp_sock */
451 newtp->pred_flags = 0;
452
453 newtp->rcv_wup = newtp->copied_seq =
454 newtp->rcv_nxt = treq->rcv_isn + 1;
455 newtp->segs_in = 1;
456
457 newtp->snd_sml = newtp->snd_una =
458 newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459
460 tcp_prequeue_init(newtp);
461 INIT_LIST_HEAD(&newtp->tsq_node);
462
463 tcp_init_wl(newtp, treq->rcv_isn);
464
465 newtp->srtt_us = 0;
466 newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467 newtp->rtt_min[0].rtt = ~0U;
468 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469
470 newtp->packets_out = 0;
471 newtp->retrans_out = 0;
472 newtp->sacked_out = 0;
473 newtp->fackets_out = 0;
474 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475 tcp_enable_early_retrans(newtp);
476 newtp->tlp_high_seq = 0;
477 newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478 newsk->sk_txhash = treq->txhash;
479 newtp->last_oow_ack_time = 0;
480 newtp->total_retrans = req->num_retrans;
481
482 /* So many TCP implementations out there (incorrectly) count the
483 * initial SYN frame in their delayed-ACK and congestion control
484 * algorithms that we must have the following bandaid to talk
485 * efficiently to them. -DaveM
486 */
487 newtp->snd_cwnd = TCP_INIT_CWND;
488 newtp->snd_cwnd_cnt = 0;
489
490 tcp_init_xmit_timers(newsk);
491 newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
492
493 newtp->rx_opt.saw_tstamp = 0;
494
495 newtp->rx_opt.dsack = 0;
496 newtp->rx_opt.num_sacks = 0;
497
498 newtp->urg_data = 0;
499
500 if (sock_flag(newsk, SOCK_KEEPOPEN))
501 inet_csk_reset_keepalive_timer(newsk,
502 keepalive_time_when(newtp));
503
504 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
505 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
506 if (sysctl_tcp_fack)
507 tcp_enable_fack(newtp);
508 }
509 newtp->window_clamp = req->rsk_window_clamp;
510 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
511 newtp->rcv_wnd = req->rsk_rcv_wnd;
512 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
513 if (newtp->rx_opt.wscale_ok) {
514 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
515 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
516 } else {
517 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
518 newtp->window_clamp = min(newtp->window_clamp, 65535U);
519 }
520 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
521 newtp->rx_opt.snd_wscale);
522 newtp->max_window = newtp->snd_wnd;
523
524 if (newtp->rx_opt.tstamp_ok) {
525 newtp->rx_opt.ts_recent = req->ts_recent;
526 newtp->rx_opt.ts_recent_stamp = get_seconds();
527 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
528 } else {
529 newtp->rx_opt.ts_recent_stamp = 0;
530 newtp->tcp_header_len = sizeof(struct tcphdr);
531 }
532 newtp->tsoffset = 0;
533 #ifdef CONFIG_TCP_MD5SIG
534 newtp->md5sig_info = NULL; /*XXX*/
535 if (newtp->af_specific->md5_lookup(sk, newsk))
536 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
537 #endif
538 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
539 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
540 newtp->rx_opt.mss_clamp = req->mss;
541 tcp_ecn_openreq_child(newtp, req);
542 newtp->fastopen_rsk = NULL;
543 newtp->syn_data_acked = 0;
544 newtp->rack.mstamp.v64 = 0;
545 newtp->rack.advanced = 0;
546
547 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
548 }
549 return newsk;
550 }
551 EXPORT_SYMBOL(tcp_create_openreq_child);
552
553 /*
554 * Process an incoming packet for SYN_RECV sockets represented as a
555 * request_sock. Normally sk is the listener socket but for TFO it
556 * points to the child socket.
557 *
558 * XXX (TFO) - The current impl contains a special check for ack
559 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
560 *
561 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
562 */
563
564 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
565 struct request_sock *req,
566 bool fastopen)
567 {
568 struct tcp_options_received tmp_opt;
569 struct sock *child;
570 const struct tcphdr *th = tcp_hdr(skb);
571 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
572 bool paws_reject = false;
573 bool own_req;
574
575 tmp_opt.saw_tstamp = 0;
576 if (th->doff > (sizeof(struct tcphdr)>>2)) {
577 tcp_parse_options(skb, &tmp_opt, 0, NULL);
578
579 if (tmp_opt.saw_tstamp) {
580 tmp_opt.ts_recent = req->ts_recent;
581 /* We do not store true stamp, but it is not required,
582 * it can be estimated (approximately)
583 * from another data.
584 */
585 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
586 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
587 }
588 }
589
590 /* Check for pure retransmitted SYN. */
591 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
592 flg == TCP_FLAG_SYN &&
593 !paws_reject) {
594 /*
595 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
596 * this case on figure 6 and figure 8, but formal
597 * protocol description says NOTHING.
598 * To be more exact, it says that we should send ACK,
599 * because this segment (at least, if it has no data)
600 * is out of window.
601 *
602 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
603 * describe SYN-RECV state. All the description
604 * is wrong, we cannot believe to it and should
605 * rely only on common sense and implementation
606 * experience.
607 *
608 * Enforce "SYN-ACK" according to figure 8, figure 6
609 * of RFC793, fixed by RFC1122.
610 *
611 * Note that even if there is new data in the SYN packet
612 * they will be thrown away too.
613 *
614 * Reset timer after retransmitting SYNACK, similar to
615 * the idea of fast retransmit in recovery.
616 */
617 if (!tcp_oow_rate_limited(sock_net(sk), skb,
618 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
619 &tcp_rsk(req)->last_oow_ack_time) &&
620
621 !inet_rtx_syn_ack(sk, req)) {
622 unsigned long expires = jiffies;
623
624 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
625 TCP_RTO_MAX);
626 if (!fastopen)
627 mod_timer_pending(&req->rsk_timer, expires);
628 else
629 req->rsk_timer.expires = expires;
630 }
631 return NULL;
632 }
633
634 /* Further reproduces section "SEGMENT ARRIVES"
635 for state SYN-RECEIVED of RFC793.
636 It is broken, however, it does not work only
637 when SYNs are crossed.
638
639 You would think that SYN crossing is impossible here, since
640 we should have a SYN_SENT socket (from connect()) on our end,
641 but this is not true if the crossed SYNs were sent to both
642 ends by a malicious third party. We must defend against this,
643 and to do that we first verify the ACK (as per RFC793, page
644 36) and reset if it is invalid. Is this a true full defense?
645 To convince ourselves, let us consider a way in which the ACK
646 test can still pass in this 'malicious crossed SYNs' case.
647 Malicious sender sends identical SYNs (and thus identical sequence
648 numbers) to both A and B:
649
650 A: gets SYN, seq=7
651 B: gets SYN, seq=7
652
653 By our good fortune, both A and B select the same initial
654 send sequence number of seven :-)
655
656 A: sends SYN|ACK, seq=7, ack_seq=8
657 B: sends SYN|ACK, seq=7, ack_seq=8
658
659 So we are now A eating this SYN|ACK, ACK test passes. So
660 does sequence test, SYN is truncated, and thus we consider
661 it a bare ACK.
662
663 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
664 bare ACK. Otherwise, we create an established connection. Both
665 ends (listening sockets) accept the new incoming connection and try
666 to talk to each other. 8-)
667
668 Note: This case is both harmless, and rare. Possibility is about the
669 same as us discovering intelligent life on another plant tomorrow.
670
671 But generally, we should (RFC lies!) to accept ACK
672 from SYNACK both here and in tcp_rcv_state_process().
673 tcp_rcv_state_process() does not, hence, we do not too.
674
675 Note that the case is absolutely generic:
676 we cannot optimize anything here without
677 violating protocol. All the checks must be made
678 before attempt to create socket.
679 */
680
681 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
682 * and the incoming segment acknowledges something not yet
683 * sent (the segment carries an unacceptable ACK) ...
684 * a reset is sent."
685 *
686 * Invalid ACK: reset will be sent by listening socket.
687 * Note that the ACK validity check for a Fast Open socket is done
688 * elsewhere and is checked directly against the child socket rather
689 * than req because user data may have been sent out.
690 */
691 if ((flg & TCP_FLAG_ACK) && !fastopen &&
692 (TCP_SKB_CB(skb)->ack_seq !=
693 tcp_rsk(req)->snt_isn + 1))
694 return sk;
695
696 /* Also, it would be not so bad idea to check rcv_tsecr, which
697 * is essentially ACK extension and too early or too late values
698 * should cause reset in unsynchronized states.
699 */
700
701 /* RFC793: "first check sequence number". */
702
703 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
704 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
705 /* Out of window: send ACK and drop. */
706 if (!(flg & TCP_FLAG_RST) &&
707 !tcp_oow_rate_limited(sock_net(sk), skb,
708 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
709 &tcp_rsk(req)->last_oow_ack_time))
710 req->rsk_ops->send_ack(sk, skb, req);
711 if (paws_reject)
712 __NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
713 return NULL;
714 }
715
716 /* In sequence, PAWS is OK. */
717
718 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
719 req->ts_recent = tmp_opt.rcv_tsval;
720
721 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
722 /* Truncate SYN, it is out of window starting
723 at tcp_rsk(req)->rcv_isn + 1. */
724 flg &= ~TCP_FLAG_SYN;
725 }
726
727 /* RFC793: "second check the RST bit" and
728 * "fourth, check the SYN bit"
729 */
730 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
731 __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
732 goto embryonic_reset;
733 }
734
735 /* ACK sequence verified above, just make sure ACK is
736 * set. If ACK not set, just silently drop the packet.
737 *
738 * XXX (TFO) - if we ever allow "data after SYN", the
739 * following check needs to be removed.
740 */
741 if (!(flg & TCP_FLAG_ACK))
742 return NULL;
743
744 /* For Fast Open no more processing is needed (sk is the
745 * child socket).
746 */
747 if (fastopen)
748 return sk;
749
750 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
751 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
752 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
753 inet_rsk(req)->acked = 1;
754 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
755 return NULL;
756 }
757
758 /* OK, ACK is valid, create big socket and
759 * feed this segment to it. It will repeat all
760 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
761 * ESTABLISHED STATE. If it will be dropped after
762 * socket is created, wait for troubles.
763 */
764 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
765 req, &own_req);
766 if (!child)
767 goto listen_overflow;
768
769 sock_rps_save_rxhash(child, skb);
770 tcp_synack_rtt_meas(child, req);
771 return inet_csk_complete_hashdance(sk, child, req, own_req);
772
773 listen_overflow:
774 if (!sysctl_tcp_abort_on_overflow) {
775 inet_rsk(req)->acked = 1;
776 return NULL;
777 }
778
779 embryonic_reset:
780 if (!(flg & TCP_FLAG_RST)) {
781 /* Received a bad SYN pkt - for TFO We try not to reset
782 * the local connection unless it's really necessary to
783 * avoid becoming vulnerable to outside attack aiming at
784 * resetting legit local connections.
785 */
786 req->rsk_ops->send_reset(sk, skb);
787 } else if (fastopen) { /* received a valid RST pkt */
788 reqsk_fastopen_remove(sk, req, true);
789 tcp_reset(sk);
790 }
791 if (!fastopen) {
792 inet_csk_reqsk_queue_drop(sk, req);
793 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
794 }
795 return NULL;
796 }
797 EXPORT_SYMBOL(tcp_check_req);
798
799 /*
800 * Queue segment on the new socket if the new socket is active,
801 * otherwise we just shortcircuit this and continue with
802 * the new socket.
803 *
804 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
805 * when entering. But other states are possible due to a race condition
806 * where after __inet_lookup_established() fails but before the listener
807 * locked is obtained, other packets cause the same connection to
808 * be created.
809 */
810
811 int tcp_child_process(struct sock *parent, struct sock *child,
812 struct sk_buff *skb)
813 {
814 int ret = 0;
815 int state = child->sk_state;
816
817 tcp_segs_in(tcp_sk(child), skb);
818 if (!sock_owned_by_user(child)) {
819 ret = tcp_rcv_state_process(child, skb);
820 /* Wakeup parent, send SIGIO */
821 if (state == TCP_SYN_RECV && child->sk_state != state)
822 parent->sk_data_ready(parent);
823 } else {
824 /* Alas, it is possible again, because we do lookup
825 * in main socket hash table and lock on listening
826 * socket does not protect us more.
827 */
828 __sk_add_backlog(child, skb);
829 }
830
831 bh_unlock_sock(child);
832 sock_put(child);
833 return ret;
834 }
835 EXPORT_SYMBOL(tcp_child_process);
This page took 0.078192 seconds and 5 git commands to generate.