RDMA/nes: don't leak skb if carrier down
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = TCP_INIT_CWND * 2;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > 65535 && (*rcv_wscale) < 14) {
242 space >>= 1;
243 (*rcv_wscale)++;
244 }
245 }
246
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 }
252
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 }
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
286
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
289 */
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
297
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 }
307
308 return new_win;
309 }
310
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 const struct tcp_sock *tp = tcp_sk(sk);
315
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk))
320 INET_ECN_xmit(sk);
321 }
322
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk);
329
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
332
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
335 }
336
337 tp->ecn_flags = 0;
338
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
344 }
345 }
346
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
352 */
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
361 }
362
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
365 */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 int tcp_header_len)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 tcp_hdr(skb)->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 }
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
384 }
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 tcp_hdr(skb)->ece = 1;
387 }
388 }
389
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
392 */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 skb->ip_summed = CHECKSUM_PARTIAL;
396 skb->csum = 0;
397
398 TCP_SKB_CB(skb)->tcp_flags = flags;
399 TCP_SKB_CB(skb)->sacked = 0;
400
401 tcp_skb_pcount_set(skb, 1);
402
403 TCP_SKB_CB(skb)->seq = seq;
404 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 seq++;
406 TCP_SKB_CB(skb)->end_seq = seq;
407 }
408
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 return tp->snd_una != tp->snd_up;
412 }
413
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
419
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
429 };
430
431 /* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446 {
447 u16 options = opts->options; /* mungable copy */
448
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
455 }
456
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
461 }
462
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
475 }
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
478 }
479
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
485 }
486
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
492 }
493
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
498
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
504
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
509 }
510
511 tp->rx_opt.dsack = 0;
512 }
513
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
518
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
528 }
529
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
534 }
535 ptr += (len + 3) >> 2;
536 }
537 }
538
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
541 */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 struct tcp_out_options *opts,
544 struct tcp_md5sig_key **md5)
545 {
546 struct tcp_sock *tp = tcp_sk(sk);
547 unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5 = tp->af_specific->md5_lookup(sk, sk);
552 if (*md5) {
553 opts->options |= OPTION_MD5;
554 remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 }
556 #else
557 *md5 = NULL;
558 #endif
559
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
568 * going out. */
569 opts->mss = tcp_advertise_mss(sk);
570 remaining -= TCPOLEN_MSS_ALIGNED;
571
572 if (likely(sysctl_tcp_timestamps && !*md5)) {
573 opts->options |= OPTION_TS;
574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 opts->tsecr = tp->rx_opt.ts_recent;
576 remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 }
578 if (likely(sysctl_tcp_window_scaling)) {
579 opts->ws = tp->rx_opt.rcv_wscale;
580 opts->options |= OPTION_WSCALE;
581 remaining -= TCPOLEN_WSCALE_ALIGNED;
582 }
583 if (likely(sysctl_tcp_sack)) {
584 opts->options |= OPTION_SACK_ADVERTISE;
585 if (unlikely(!(OPTION_TS & opts->options)))
586 remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 }
588
589 if (fastopen && fastopen->cookie.len >= 0) {
590 u32 need = fastopen->cookie.len;
591
592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 TCPOLEN_FASTOPEN_BASE;
594 need = (need + 3) & ~3U; /* Align to 32 bits */
595 if (remaining >= need) {
596 opts->options |= OPTION_FAST_OPEN_COOKIE;
597 opts->fastopen_cookie = &fastopen->cookie;
598 remaining -= need;
599 tp->syn_fastopen = 1;
600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 }
602 }
603
604 return MAX_TCP_OPTION_SPACE - remaining;
605 }
606
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 unsigned int mss, struct sk_buff *skb,
610 struct tcp_out_options *opts,
611 const struct tcp_md5sig_key *md5,
612 struct tcp_fastopen_cookie *foc)
613 {
614 struct inet_request_sock *ireq = inet_rsk(req);
615 unsigned int remaining = MAX_TCP_OPTION_SPACE;
616
617 #ifdef CONFIG_TCP_MD5SIG
618 if (md5) {
619 opts->options |= OPTION_MD5;
620 remaining -= TCPOLEN_MD5SIG_ALIGNED;
621
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
626 */
627 ireq->tstamp_ok &= !ireq->sack_ok;
628 }
629 #endif
630
631 /* We always send an MSS option. */
632 opts->mss = mss;
633 remaining -= TCPOLEN_MSS_ALIGNED;
634
635 if (likely(ireq->wscale_ok)) {
636 opts->ws = ireq->rcv_wscale;
637 opts->options |= OPTION_WSCALE;
638 remaining -= TCPOLEN_WSCALE_ALIGNED;
639 }
640 if (likely(ireq->tstamp_ok)) {
641 opts->options |= OPTION_TS;
642 opts->tsval = tcp_skb_timestamp(skb);
643 opts->tsecr = req->ts_recent;
644 remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 }
646 if (likely(ireq->sack_ok)) {
647 opts->options |= OPTION_SACK_ADVERTISE;
648 if (unlikely(!ireq->tstamp_ok))
649 remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 }
651 if (foc != NULL && foc->len >= 0) {
652 u32 need = foc->len;
653
654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 TCPOLEN_FASTOPEN_BASE;
656 need = (need + 3) & ~3U; /* Align to 32 bits */
657 if (remaining >= need) {
658 opts->options |= OPTION_FAST_OPEN_COOKIE;
659 opts->fastopen_cookie = foc;
660 remaining -= need;
661 }
662 }
663
664 return MAX_TCP_OPTION_SPACE - remaining;
665 }
666
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
669 */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 struct tcp_out_options *opts,
672 struct tcp_md5sig_key **md5)
673 {
674 struct tcp_sock *tp = tcp_sk(sk);
675 unsigned int size = 0;
676 unsigned int eff_sacks;
677
678 opts->options = 0;
679
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5 = tp->af_specific->md5_lookup(sk, sk);
682 if (unlikely(*md5)) {
683 opts->options |= OPTION_MD5;
684 size += TCPOLEN_MD5SIG_ALIGNED;
685 }
686 #else
687 *md5 = NULL;
688 #endif
689
690 if (likely(tp->rx_opt.tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 opts->tsecr = tp->rx_opt.ts_recent;
694 size += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 if (unlikely(eff_sacks)) {
699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 opts->num_sack_blocks =
701 min_t(unsigned int, eff_sacks,
702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 TCPOLEN_SACK_PERBLOCK);
704 size += TCPOLEN_SACK_BASE_ALIGNED +
705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 }
707
708 return size;
709 }
710
711
712 /* TCP SMALL QUEUES (TSQ)
713 *
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
717 *
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721 *
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
725 */
726 struct tsq_tasklet {
727 struct tasklet_struct tasklet;
728 struct list_head head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 if ((1 << sk->sk_state) &
735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
737 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
738 0, GFP_ATOMIC);
739 }
740 /*
741 * One tasklet per cpu tries to send more skbs.
742 * We run in tasklet context but need to disable irqs when
743 * transferring tsq->head because tcp_wfree() might
744 * interrupt us (non NAPI drivers)
745 */
746 static void tcp_tasklet_func(unsigned long data)
747 {
748 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
749 LIST_HEAD(list);
750 unsigned long flags;
751 struct list_head *q, *n;
752 struct tcp_sock *tp;
753 struct sock *sk;
754
755 local_irq_save(flags);
756 list_splice_init(&tsq->head, &list);
757 local_irq_restore(flags);
758
759 list_for_each_safe(q, n, &list) {
760 tp = list_entry(q, struct tcp_sock, tsq_node);
761 list_del(&tp->tsq_node);
762
763 sk = (struct sock *)tp;
764 bh_lock_sock(sk);
765
766 if (!sock_owned_by_user(sk)) {
767 tcp_tsq_handler(sk);
768 } else {
769 /* defer the work to tcp_release_cb() */
770 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
771 }
772 bh_unlock_sock(sk);
773
774 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
775 sk_free(sk);
776 }
777 }
778
779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
780 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
781 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
782 (1UL << TCP_MTU_REDUCED_DEFERRED))
783 /**
784 * tcp_release_cb - tcp release_sock() callback
785 * @sk: socket
786 *
787 * called from release_sock() to perform protocol dependent
788 * actions before socket release.
789 */
790 void tcp_release_cb(struct sock *sk)
791 {
792 struct tcp_sock *tp = tcp_sk(sk);
793 unsigned long flags, nflags;
794
795 /* perform an atomic operation only if at least one flag is set */
796 do {
797 flags = tp->tsq_flags;
798 if (!(flags & TCP_DEFERRED_ALL))
799 return;
800 nflags = flags & ~TCP_DEFERRED_ALL;
801 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
802
803 if (flags & (1UL << TCP_TSQ_DEFERRED))
804 tcp_tsq_handler(sk);
805
806 /* Here begins the tricky part :
807 * We are called from release_sock() with :
808 * 1) BH disabled
809 * 2) sk_lock.slock spinlock held
810 * 3) socket owned by us (sk->sk_lock.owned == 1)
811 *
812 * But following code is meant to be called from BH handlers,
813 * so we should keep BH disabled, but early release socket ownership
814 */
815 sock_release_ownership(sk);
816
817 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
818 tcp_write_timer_handler(sk);
819 __sock_put(sk);
820 }
821 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
822 tcp_delack_timer_handler(sk);
823 __sock_put(sk);
824 }
825 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
826 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
827 __sock_put(sk);
828 }
829 }
830 EXPORT_SYMBOL(tcp_release_cb);
831
832 void __init tcp_tasklet_init(void)
833 {
834 int i;
835
836 for_each_possible_cpu(i) {
837 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
838
839 INIT_LIST_HEAD(&tsq->head);
840 tasklet_init(&tsq->tasklet,
841 tcp_tasklet_func,
842 (unsigned long)tsq);
843 }
844 }
845
846 /*
847 * Write buffer destructor automatically called from kfree_skb.
848 * We can't xmit new skbs from this context, as we might already
849 * hold qdisc lock.
850 */
851 void tcp_wfree(struct sk_buff *skb)
852 {
853 struct sock *sk = skb->sk;
854 struct tcp_sock *tp = tcp_sk(sk);
855 int wmem;
856
857 /* Keep one reference on sk_wmem_alloc.
858 * Will be released by sk_free() from here or tcp_tasklet_func()
859 */
860 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
861
862 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
863 * Wait until our queues (qdisc + devices) are drained.
864 * This gives :
865 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
866 * - chance for incoming ACK (processed by another cpu maybe)
867 * to migrate this flow (skb->ooo_okay will be eventually set)
868 */
869 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
870 goto out;
871
872 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
873 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
874 unsigned long flags;
875 struct tsq_tasklet *tsq;
876
877 /* queue this socket to tasklet queue */
878 local_irq_save(flags);
879 tsq = this_cpu_ptr(&tsq_tasklet);
880 list_add(&tp->tsq_node, &tsq->head);
881 tasklet_schedule(&tsq->tasklet);
882 local_irq_restore(flags);
883 return;
884 }
885 out:
886 sk_free(sk);
887 }
888
889 /* This routine actually transmits TCP packets queued in by
890 * tcp_do_sendmsg(). This is used by both the initial
891 * transmission and possible later retransmissions.
892 * All SKB's seen here are completely headerless. It is our
893 * job to build the TCP header, and pass the packet down to
894 * IP so it can do the same plus pass the packet off to the
895 * device.
896 *
897 * We are working here with either a clone of the original
898 * SKB, or a fresh unique copy made by the retransmit engine.
899 */
900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
901 gfp_t gfp_mask)
902 {
903 const struct inet_connection_sock *icsk = inet_csk(sk);
904 struct inet_sock *inet;
905 struct tcp_sock *tp;
906 struct tcp_skb_cb *tcb;
907 struct tcp_out_options opts;
908 unsigned int tcp_options_size, tcp_header_size;
909 struct tcp_md5sig_key *md5;
910 struct tcphdr *th;
911 int err;
912
913 BUG_ON(!skb || !tcp_skb_pcount(skb));
914
915 if (clone_it) {
916 skb_mstamp_get(&skb->skb_mstamp);
917
918 if (unlikely(skb_cloned(skb)))
919 skb = pskb_copy(skb, gfp_mask);
920 else
921 skb = skb_clone(skb, gfp_mask);
922 if (unlikely(!skb))
923 return -ENOBUFS;
924 }
925
926 inet = inet_sk(sk);
927 tp = tcp_sk(sk);
928 tcb = TCP_SKB_CB(skb);
929 memset(&opts, 0, sizeof(opts));
930
931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
932 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
933 else
934 tcp_options_size = tcp_established_options(sk, skb, &opts,
935 &md5);
936 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
937
938 /* if no packet is in qdisc/device queue, then allow XPS to select
939 * another queue. We can be called from tcp_tsq_handler()
940 * which holds one reference to sk_wmem_alloc.
941 *
942 * TODO: Ideally, in-flight pure ACK packets should not matter here.
943 * One way to get this would be to set skb->truesize = 2 on them.
944 */
945 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
946
947 skb_push(skb, tcp_header_size);
948 skb_reset_transport_header(skb);
949
950 skb_orphan(skb);
951 skb->sk = sk;
952 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
953 skb_set_hash_from_sk(skb, sk);
954 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
955
956 /* Build TCP header and checksum it. */
957 th = tcp_hdr(skb);
958 th->source = inet->inet_sport;
959 th->dest = inet->inet_dport;
960 th->seq = htonl(tcb->seq);
961 th->ack_seq = htonl(tp->rcv_nxt);
962 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
963 tcb->tcp_flags);
964
965 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
966 /* RFC1323: The window in SYN & SYN/ACK segments
967 * is never scaled.
968 */
969 th->window = htons(min(tp->rcv_wnd, 65535U));
970 } else {
971 th->window = htons(tcp_select_window(sk));
972 }
973 th->check = 0;
974 th->urg_ptr = 0;
975
976 /* The urg_mode check is necessary during a below snd_una win probe */
977 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
978 if (before(tp->snd_up, tcb->seq + 0x10000)) {
979 th->urg_ptr = htons(tp->snd_up - tcb->seq);
980 th->urg = 1;
981 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
982 th->urg_ptr = htons(0xFFFF);
983 th->urg = 1;
984 }
985 }
986
987 tcp_options_write((__be32 *)(th + 1), tp, &opts);
988 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
989 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
990 tcp_ecn_send(sk, skb, tcp_header_size);
991
992 #ifdef CONFIG_TCP_MD5SIG
993 /* Calculate the MD5 hash, as we have all we need now */
994 if (md5) {
995 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
996 tp->af_specific->calc_md5_hash(opts.hash_location,
997 md5, sk, skb);
998 }
999 #endif
1000
1001 icsk->icsk_af_ops->send_check(sk, skb);
1002
1003 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1004 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1005
1006 if (skb->len != tcp_header_size) {
1007 tcp_event_data_sent(tp, sk);
1008 tp->data_segs_out += tcp_skb_pcount(skb);
1009 }
1010
1011 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1012 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1013 tcp_skb_pcount(skb));
1014
1015 tp->segs_out += tcp_skb_pcount(skb);
1016 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1017 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1018 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1019
1020 /* Our usage of tstamp should remain private */
1021 skb->tstamp.tv64 = 0;
1022
1023 /* Cleanup our debris for IP stacks */
1024 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1025 sizeof(struct inet6_skb_parm)));
1026
1027 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1028
1029 if (likely(err <= 0))
1030 return err;
1031
1032 tcp_enter_cwr(sk);
1033
1034 return net_xmit_eval(err);
1035 }
1036
1037 /* This routine just queues the buffer for sending.
1038 *
1039 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1040 * otherwise socket can stall.
1041 */
1042 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1043 {
1044 struct tcp_sock *tp = tcp_sk(sk);
1045
1046 /* Advance write_seq and place onto the write_queue. */
1047 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1048 __skb_header_release(skb);
1049 tcp_add_write_queue_tail(sk, skb);
1050 sk->sk_wmem_queued += skb->truesize;
1051 sk_mem_charge(sk, skb->truesize);
1052 }
1053
1054 /* Initialize TSO segments for a packet. */
1055 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1056 {
1057 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1058 /* Avoid the costly divide in the normal
1059 * non-TSO case.
1060 */
1061 tcp_skb_pcount_set(skb, 1);
1062 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1063 } else {
1064 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1065 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1066 }
1067 }
1068
1069 /* When a modification to fackets out becomes necessary, we need to check
1070 * skb is counted to fackets_out or not.
1071 */
1072 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1073 int decr)
1074 {
1075 struct tcp_sock *tp = tcp_sk(sk);
1076
1077 if (!tp->sacked_out || tcp_is_reno(tp))
1078 return;
1079
1080 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1081 tp->fackets_out -= decr;
1082 }
1083
1084 /* Pcount in the middle of the write queue got changed, we need to do various
1085 * tweaks to fix counters
1086 */
1087 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1088 {
1089 struct tcp_sock *tp = tcp_sk(sk);
1090
1091 tp->packets_out -= decr;
1092
1093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1094 tp->sacked_out -= decr;
1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1096 tp->retrans_out -= decr;
1097 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1098 tp->lost_out -= decr;
1099
1100 /* Reno case is special. Sigh... */
1101 if (tcp_is_reno(tp) && decr > 0)
1102 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1103
1104 tcp_adjust_fackets_out(sk, skb, decr);
1105
1106 if (tp->lost_skb_hint &&
1107 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1108 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1109 tp->lost_cnt_hint -= decr;
1110
1111 tcp_verify_left_out(tp);
1112 }
1113
1114 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1115 {
1116 struct skb_shared_info *shinfo = skb_shinfo(skb);
1117
1118 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1119 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1120 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1121 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1122
1123 shinfo->tx_flags &= ~tsflags;
1124 shinfo2->tx_flags |= tsflags;
1125 swap(shinfo->tskey, shinfo2->tskey);
1126 }
1127 }
1128
1129 /* Function to create two new TCP segments. Shrinks the given segment
1130 * to the specified size and appends a new segment with the rest of the
1131 * packet to the list. This won't be called frequently, I hope.
1132 * Remember, these are still headerless SKBs at this point.
1133 */
1134 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1135 unsigned int mss_now, gfp_t gfp)
1136 {
1137 struct tcp_sock *tp = tcp_sk(sk);
1138 struct sk_buff *buff;
1139 int nsize, old_factor;
1140 int nlen;
1141 u8 flags;
1142
1143 if (WARN_ON(len > skb->len))
1144 return -EINVAL;
1145
1146 nsize = skb_headlen(skb) - len;
1147 if (nsize < 0)
1148 nsize = 0;
1149
1150 if (skb_unclone(skb, gfp))
1151 return -ENOMEM;
1152
1153 /* Get a new skb... force flag on. */
1154 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1155 if (!buff)
1156 return -ENOMEM; /* We'll just try again later. */
1157
1158 sk->sk_wmem_queued += buff->truesize;
1159 sk_mem_charge(sk, buff->truesize);
1160 nlen = skb->len - len - nsize;
1161 buff->truesize += nlen;
1162 skb->truesize -= nlen;
1163
1164 /* Correct the sequence numbers. */
1165 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1166 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1167 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1168
1169 /* PSH and FIN should only be set in the second packet. */
1170 flags = TCP_SKB_CB(skb)->tcp_flags;
1171 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1172 TCP_SKB_CB(buff)->tcp_flags = flags;
1173 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1174
1175 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1176 /* Copy and checksum data tail into the new buffer. */
1177 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1178 skb_put(buff, nsize),
1179 nsize, 0);
1180
1181 skb_trim(skb, len);
1182
1183 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1184 } else {
1185 skb->ip_summed = CHECKSUM_PARTIAL;
1186 skb_split(skb, buff, len);
1187 }
1188
1189 buff->ip_summed = skb->ip_summed;
1190
1191 buff->tstamp = skb->tstamp;
1192 tcp_fragment_tstamp(skb, buff);
1193
1194 old_factor = tcp_skb_pcount(skb);
1195
1196 /* Fix up tso_factor for both original and new SKB. */
1197 tcp_set_skb_tso_segs(skb, mss_now);
1198 tcp_set_skb_tso_segs(buff, mss_now);
1199
1200 /* If this packet has been sent out already, we must
1201 * adjust the various packet counters.
1202 */
1203 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1204 int diff = old_factor - tcp_skb_pcount(skb) -
1205 tcp_skb_pcount(buff);
1206
1207 if (diff)
1208 tcp_adjust_pcount(sk, skb, diff);
1209 }
1210
1211 /* Link BUFF into the send queue. */
1212 __skb_header_release(buff);
1213 tcp_insert_write_queue_after(skb, buff, sk);
1214
1215 return 0;
1216 }
1217
1218 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1219 * eventually). The difference is that pulled data not copied, but
1220 * immediately discarded.
1221 */
1222 static void __pskb_trim_head(struct sk_buff *skb, int len)
1223 {
1224 struct skb_shared_info *shinfo;
1225 int i, k, eat;
1226
1227 eat = min_t(int, len, skb_headlen(skb));
1228 if (eat) {
1229 __skb_pull(skb, eat);
1230 len -= eat;
1231 if (!len)
1232 return;
1233 }
1234 eat = len;
1235 k = 0;
1236 shinfo = skb_shinfo(skb);
1237 for (i = 0; i < shinfo->nr_frags; i++) {
1238 int size = skb_frag_size(&shinfo->frags[i]);
1239
1240 if (size <= eat) {
1241 skb_frag_unref(skb, i);
1242 eat -= size;
1243 } else {
1244 shinfo->frags[k] = shinfo->frags[i];
1245 if (eat) {
1246 shinfo->frags[k].page_offset += eat;
1247 skb_frag_size_sub(&shinfo->frags[k], eat);
1248 eat = 0;
1249 }
1250 k++;
1251 }
1252 }
1253 shinfo->nr_frags = k;
1254
1255 skb_reset_tail_pointer(skb);
1256 skb->data_len -= len;
1257 skb->len = skb->data_len;
1258 }
1259
1260 /* Remove acked data from a packet in the transmit queue. */
1261 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1262 {
1263 if (skb_unclone(skb, GFP_ATOMIC))
1264 return -ENOMEM;
1265
1266 __pskb_trim_head(skb, len);
1267
1268 TCP_SKB_CB(skb)->seq += len;
1269 skb->ip_summed = CHECKSUM_PARTIAL;
1270
1271 skb->truesize -= len;
1272 sk->sk_wmem_queued -= len;
1273 sk_mem_uncharge(sk, len);
1274 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1275
1276 /* Any change of skb->len requires recalculation of tso factor. */
1277 if (tcp_skb_pcount(skb) > 1)
1278 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1279
1280 return 0;
1281 }
1282
1283 /* Calculate MSS not accounting any TCP options. */
1284 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1285 {
1286 const struct tcp_sock *tp = tcp_sk(sk);
1287 const struct inet_connection_sock *icsk = inet_csk(sk);
1288 int mss_now;
1289
1290 /* Calculate base mss without TCP options:
1291 It is MMS_S - sizeof(tcphdr) of rfc1122
1292 */
1293 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1294
1295 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1296 if (icsk->icsk_af_ops->net_frag_header_len) {
1297 const struct dst_entry *dst = __sk_dst_get(sk);
1298
1299 if (dst && dst_allfrag(dst))
1300 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1301 }
1302
1303 /* Clamp it (mss_clamp does not include tcp options) */
1304 if (mss_now > tp->rx_opt.mss_clamp)
1305 mss_now = tp->rx_opt.mss_clamp;
1306
1307 /* Now subtract optional transport overhead */
1308 mss_now -= icsk->icsk_ext_hdr_len;
1309
1310 /* Then reserve room for full set of TCP options and 8 bytes of data */
1311 if (mss_now < 48)
1312 mss_now = 48;
1313 return mss_now;
1314 }
1315
1316 /* Calculate MSS. Not accounting for SACKs here. */
1317 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1318 {
1319 /* Subtract TCP options size, not including SACKs */
1320 return __tcp_mtu_to_mss(sk, pmtu) -
1321 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1322 }
1323
1324 /* Inverse of above */
1325 int tcp_mss_to_mtu(struct sock *sk, int mss)
1326 {
1327 const struct tcp_sock *tp = tcp_sk(sk);
1328 const struct inet_connection_sock *icsk = inet_csk(sk);
1329 int mtu;
1330
1331 mtu = mss +
1332 tp->tcp_header_len +
1333 icsk->icsk_ext_hdr_len +
1334 icsk->icsk_af_ops->net_header_len;
1335
1336 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1337 if (icsk->icsk_af_ops->net_frag_header_len) {
1338 const struct dst_entry *dst = __sk_dst_get(sk);
1339
1340 if (dst && dst_allfrag(dst))
1341 mtu += icsk->icsk_af_ops->net_frag_header_len;
1342 }
1343 return mtu;
1344 }
1345
1346 /* MTU probing init per socket */
1347 void tcp_mtup_init(struct sock *sk)
1348 {
1349 struct tcp_sock *tp = tcp_sk(sk);
1350 struct inet_connection_sock *icsk = inet_csk(sk);
1351 struct net *net = sock_net(sk);
1352
1353 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1354 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1355 icsk->icsk_af_ops->net_header_len;
1356 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1357 icsk->icsk_mtup.probe_size = 0;
1358 if (icsk->icsk_mtup.enabled)
1359 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1360 }
1361 EXPORT_SYMBOL(tcp_mtup_init);
1362
1363 /* This function synchronize snd mss to current pmtu/exthdr set.
1364
1365 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1366 for TCP options, but includes only bare TCP header.
1367
1368 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1369 It is minimum of user_mss and mss received with SYN.
1370 It also does not include TCP options.
1371
1372 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1373
1374 tp->mss_cache is current effective sending mss, including
1375 all tcp options except for SACKs. It is evaluated,
1376 taking into account current pmtu, but never exceeds
1377 tp->rx_opt.mss_clamp.
1378
1379 NOTE1. rfc1122 clearly states that advertised MSS
1380 DOES NOT include either tcp or ip options.
1381
1382 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1383 are READ ONLY outside this function. --ANK (980731)
1384 */
1385 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1386 {
1387 struct tcp_sock *tp = tcp_sk(sk);
1388 struct inet_connection_sock *icsk = inet_csk(sk);
1389 int mss_now;
1390
1391 if (icsk->icsk_mtup.search_high > pmtu)
1392 icsk->icsk_mtup.search_high = pmtu;
1393
1394 mss_now = tcp_mtu_to_mss(sk, pmtu);
1395 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1396
1397 /* And store cached results */
1398 icsk->icsk_pmtu_cookie = pmtu;
1399 if (icsk->icsk_mtup.enabled)
1400 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1401 tp->mss_cache = mss_now;
1402
1403 return mss_now;
1404 }
1405 EXPORT_SYMBOL(tcp_sync_mss);
1406
1407 /* Compute the current effective MSS, taking SACKs and IP options,
1408 * and even PMTU discovery events into account.
1409 */
1410 unsigned int tcp_current_mss(struct sock *sk)
1411 {
1412 const struct tcp_sock *tp = tcp_sk(sk);
1413 const struct dst_entry *dst = __sk_dst_get(sk);
1414 u32 mss_now;
1415 unsigned int header_len;
1416 struct tcp_out_options opts;
1417 struct tcp_md5sig_key *md5;
1418
1419 mss_now = tp->mss_cache;
1420
1421 if (dst) {
1422 u32 mtu = dst_mtu(dst);
1423 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1424 mss_now = tcp_sync_mss(sk, mtu);
1425 }
1426
1427 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1428 sizeof(struct tcphdr);
1429 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1430 * some common options. If this is an odd packet (because we have SACK
1431 * blocks etc) then our calculated header_len will be different, and
1432 * we have to adjust mss_now correspondingly */
1433 if (header_len != tp->tcp_header_len) {
1434 int delta = (int) header_len - tp->tcp_header_len;
1435 mss_now -= delta;
1436 }
1437
1438 return mss_now;
1439 }
1440
1441 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1442 * As additional protections, we do not touch cwnd in retransmission phases,
1443 * and if application hit its sndbuf limit recently.
1444 */
1445 static void tcp_cwnd_application_limited(struct sock *sk)
1446 {
1447 struct tcp_sock *tp = tcp_sk(sk);
1448
1449 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1450 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1451 /* Limited by application or receiver window. */
1452 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1453 u32 win_used = max(tp->snd_cwnd_used, init_win);
1454 if (win_used < tp->snd_cwnd) {
1455 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1456 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1457 }
1458 tp->snd_cwnd_used = 0;
1459 }
1460 tp->snd_cwnd_stamp = tcp_time_stamp;
1461 }
1462
1463 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1464 {
1465 struct tcp_sock *tp = tcp_sk(sk);
1466
1467 /* Track the maximum number of outstanding packets in each
1468 * window, and remember whether we were cwnd-limited then.
1469 */
1470 if (!before(tp->snd_una, tp->max_packets_seq) ||
1471 tp->packets_out > tp->max_packets_out) {
1472 tp->max_packets_out = tp->packets_out;
1473 tp->max_packets_seq = tp->snd_nxt;
1474 tp->is_cwnd_limited = is_cwnd_limited;
1475 }
1476
1477 if (tcp_is_cwnd_limited(sk)) {
1478 /* Network is feed fully. */
1479 tp->snd_cwnd_used = 0;
1480 tp->snd_cwnd_stamp = tcp_time_stamp;
1481 } else {
1482 /* Network starves. */
1483 if (tp->packets_out > tp->snd_cwnd_used)
1484 tp->snd_cwnd_used = tp->packets_out;
1485
1486 if (sysctl_tcp_slow_start_after_idle &&
1487 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1488 tcp_cwnd_application_limited(sk);
1489 }
1490 }
1491
1492 /* Minshall's variant of the Nagle send check. */
1493 static bool tcp_minshall_check(const struct tcp_sock *tp)
1494 {
1495 return after(tp->snd_sml, tp->snd_una) &&
1496 !after(tp->snd_sml, tp->snd_nxt);
1497 }
1498
1499 /* Update snd_sml if this skb is under mss
1500 * Note that a TSO packet might end with a sub-mss segment
1501 * The test is really :
1502 * if ((skb->len % mss) != 0)
1503 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1504 * But we can avoid doing the divide again given we already have
1505 * skb_pcount = skb->len / mss_now
1506 */
1507 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1508 const struct sk_buff *skb)
1509 {
1510 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1511 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1512 }
1513
1514 /* Return false, if packet can be sent now without violation Nagle's rules:
1515 * 1. It is full sized. (provided by caller in %partial bool)
1516 * 2. Or it contains FIN. (already checked by caller)
1517 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1518 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1519 * With Minshall's modification: all sent small packets are ACKed.
1520 */
1521 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1522 int nonagle)
1523 {
1524 return partial &&
1525 ((nonagle & TCP_NAGLE_CORK) ||
1526 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1527 }
1528
1529 /* Return how many segs we'd like on a TSO packet,
1530 * to send one TSO packet per ms
1531 */
1532 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1533 {
1534 u32 bytes, segs;
1535
1536 bytes = min(sk->sk_pacing_rate >> 10,
1537 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1538
1539 /* Goal is to send at least one packet per ms,
1540 * not one big TSO packet every 100 ms.
1541 * This preserves ACK clocking and is consistent
1542 * with tcp_tso_should_defer() heuristic.
1543 */
1544 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1545
1546 return min_t(u32, segs, sk->sk_gso_max_segs);
1547 }
1548
1549 /* Returns the portion of skb which can be sent right away */
1550 static unsigned int tcp_mss_split_point(const struct sock *sk,
1551 const struct sk_buff *skb,
1552 unsigned int mss_now,
1553 unsigned int max_segs,
1554 int nonagle)
1555 {
1556 const struct tcp_sock *tp = tcp_sk(sk);
1557 u32 partial, needed, window, max_len;
1558
1559 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1560 max_len = mss_now * max_segs;
1561
1562 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1563 return max_len;
1564
1565 needed = min(skb->len, window);
1566
1567 if (max_len <= needed)
1568 return max_len;
1569
1570 partial = needed % mss_now;
1571 /* If last segment is not a full MSS, check if Nagle rules allow us
1572 * to include this last segment in this skb.
1573 * Otherwise, we'll split the skb at last MSS boundary
1574 */
1575 if (tcp_nagle_check(partial != 0, tp, nonagle))
1576 return needed - partial;
1577
1578 return needed;
1579 }
1580
1581 /* Can at least one segment of SKB be sent right now, according to the
1582 * congestion window rules? If so, return how many segments are allowed.
1583 */
1584 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1585 const struct sk_buff *skb)
1586 {
1587 u32 in_flight, cwnd, halfcwnd;
1588
1589 /* Don't be strict about the congestion window for the final FIN. */
1590 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1591 tcp_skb_pcount(skb) == 1)
1592 return 1;
1593
1594 in_flight = tcp_packets_in_flight(tp);
1595 cwnd = tp->snd_cwnd;
1596 if (in_flight >= cwnd)
1597 return 0;
1598
1599 /* For better scheduling, ensure we have at least
1600 * 2 GSO packets in flight.
1601 */
1602 halfcwnd = max(cwnd >> 1, 1U);
1603 return min(halfcwnd, cwnd - in_flight);
1604 }
1605
1606 /* Initialize TSO state of a skb.
1607 * This must be invoked the first time we consider transmitting
1608 * SKB onto the wire.
1609 */
1610 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1611 {
1612 int tso_segs = tcp_skb_pcount(skb);
1613
1614 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1615 tcp_set_skb_tso_segs(skb, mss_now);
1616 tso_segs = tcp_skb_pcount(skb);
1617 }
1618 return tso_segs;
1619 }
1620
1621
1622 /* Return true if the Nagle test allows this packet to be
1623 * sent now.
1624 */
1625 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1626 unsigned int cur_mss, int nonagle)
1627 {
1628 /* Nagle rule does not apply to frames, which sit in the middle of the
1629 * write_queue (they have no chances to get new data).
1630 *
1631 * This is implemented in the callers, where they modify the 'nonagle'
1632 * argument based upon the location of SKB in the send queue.
1633 */
1634 if (nonagle & TCP_NAGLE_PUSH)
1635 return true;
1636
1637 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1638 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1639 return true;
1640
1641 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1642 return true;
1643
1644 return false;
1645 }
1646
1647 /* Does at least the first segment of SKB fit into the send window? */
1648 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1649 const struct sk_buff *skb,
1650 unsigned int cur_mss)
1651 {
1652 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1653
1654 if (skb->len > cur_mss)
1655 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1656
1657 return !after(end_seq, tcp_wnd_end(tp));
1658 }
1659
1660 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now. If so, it returns the number of
1662 * packets allowed by the congestion window.
1663 */
1664 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1665 unsigned int cur_mss, int nonagle)
1666 {
1667 const struct tcp_sock *tp = tcp_sk(sk);
1668 unsigned int cwnd_quota;
1669
1670 tcp_init_tso_segs(skb, cur_mss);
1671
1672 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1673 return 0;
1674
1675 cwnd_quota = tcp_cwnd_test(tp, skb);
1676 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1677 cwnd_quota = 0;
1678
1679 return cwnd_quota;
1680 }
1681
1682 /* Test if sending is allowed right now. */
1683 bool tcp_may_send_now(struct sock *sk)
1684 {
1685 const struct tcp_sock *tp = tcp_sk(sk);
1686 struct sk_buff *skb = tcp_send_head(sk);
1687
1688 return skb &&
1689 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1690 (tcp_skb_is_last(sk, skb) ?
1691 tp->nonagle : TCP_NAGLE_PUSH));
1692 }
1693
1694 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list. It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation. In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1700 */
1701 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1702 unsigned int mss_now, gfp_t gfp)
1703 {
1704 struct sk_buff *buff;
1705 int nlen = skb->len - len;
1706 u8 flags;
1707
1708 /* All of a TSO frame must be composed of paged data. */
1709 if (skb->len != skb->data_len)
1710 return tcp_fragment(sk, skb, len, mss_now, gfp);
1711
1712 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1713 if (unlikely(!buff))
1714 return -ENOMEM;
1715
1716 sk->sk_wmem_queued += buff->truesize;
1717 sk_mem_charge(sk, buff->truesize);
1718 buff->truesize += nlen;
1719 skb->truesize -= nlen;
1720
1721 /* Correct the sequence numbers. */
1722 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1723 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1724 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1725
1726 /* PSH and FIN should only be set in the second packet. */
1727 flags = TCP_SKB_CB(skb)->tcp_flags;
1728 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1729 TCP_SKB_CB(buff)->tcp_flags = flags;
1730
1731 /* This packet was never sent out yet, so no SACK bits. */
1732 TCP_SKB_CB(buff)->sacked = 0;
1733
1734 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1735 skb_split(skb, buff, len);
1736 tcp_fragment_tstamp(skb, buff);
1737
1738 /* Fix up tso_factor for both original and new SKB. */
1739 tcp_set_skb_tso_segs(skb, mss_now);
1740 tcp_set_skb_tso_segs(buff, mss_now);
1741
1742 /* Link BUFF into the send queue. */
1743 __skb_header_release(buff);
1744 tcp_insert_write_queue_after(skb, buff, sk);
1745
1746 return 0;
1747 }
1748
1749 /* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1751 *
1752 * This algorithm is from John Heffner.
1753 */
1754 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1755 bool *is_cwnd_limited, u32 max_segs)
1756 {
1757 const struct inet_connection_sock *icsk = inet_csk(sk);
1758 u32 age, send_win, cong_win, limit, in_flight;
1759 struct tcp_sock *tp = tcp_sk(sk);
1760 struct skb_mstamp now;
1761 struct sk_buff *head;
1762 int win_divisor;
1763
1764 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1765 goto send_now;
1766
1767 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1768 goto send_now;
1769
1770 /* Avoid bursty behavior by allowing defer
1771 * only if the last write was recent.
1772 */
1773 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1774 goto send_now;
1775
1776 in_flight = tcp_packets_in_flight(tp);
1777
1778 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1779
1780 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1781
1782 /* From in_flight test above, we know that cwnd > in_flight. */
1783 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1784
1785 limit = min(send_win, cong_win);
1786
1787 /* If a full-sized TSO skb can be sent, do it. */
1788 if (limit >= max_segs * tp->mss_cache)
1789 goto send_now;
1790
1791 /* Middle in queue won't get any more data, full sendable already? */
1792 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1793 goto send_now;
1794
1795 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1796 if (win_divisor) {
1797 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1798
1799 /* If at least some fraction of a window is available,
1800 * just use it.
1801 */
1802 chunk /= win_divisor;
1803 if (limit >= chunk)
1804 goto send_now;
1805 } else {
1806 /* Different approach, try not to defer past a single
1807 * ACK. Receiver should ACK every other full sized
1808 * frame, so if we have space for more than 3 frames
1809 * then send now.
1810 */
1811 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1812 goto send_now;
1813 }
1814
1815 head = tcp_write_queue_head(sk);
1816 skb_mstamp_get(&now);
1817 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1818 /* If next ACK is likely to come too late (half srtt), do not defer */
1819 if (age < (tp->srtt_us >> 4))
1820 goto send_now;
1821
1822 /* Ok, it looks like it is advisable to defer. */
1823
1824 if (cong_win < send_win && cong_win <= skb->len)
1825 *is_cwnd_limited = true;
1826
1827 return true;
1828
1829 send_now:
1830 return false;
1831 }
1832
1833 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1834 {
1835 struct inet_connection_sock *icsk = inet_csk(sk);
1836 struct tcp_sock *tp = tcp_sk(sk);
1837 struct net *net = sock_net(sk);
1838 u32 interval;
1839 s32 delta;
1840
1841 interval = net->ipv4.sysctl_tcp_probe_interval;
1842 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1843 if (unlikely(delta >= interval * HZ)) {
1844 int mss = tcp_current_mss(sk);
1845
1846 /* Update current search range */
1847 icsk->icsk_mtup.probe_size = 0;
1848 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1849 sizeof(struct tcphdr) +
1850 icsk->icsk_af_ops->net_header_len;
1851 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1852
1853 /* Update probe time stamp */
1854 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1855 }
1856 }
1857
1858 /* Create a new MTU probe if we are ready.
1859 * MTU probe is regularly attempting to increase the path MTU by
1860 * deliberately sending larger packets. This discovers routing
1861 * changes resulting in larger path MTUs.
1862 *
1863 * Returns 0 if we should wait to probe (no cwnd available),
1864 * 1 if a probe was sent,
1865 * -1 otherwise
1866 */
1867 static int tcp_mtu_probe(struct sock *sk)
1868 {
1869 struct tcp_sock *tp = tcp_sk(sk);
1870 struct inet_connection_sock *icsk = inet_csk(sk);
1871 struct sk_buff *skb, *nskb, *next;
1872 struct net *net = sock_net(sk);
1873 int len;
1874 int probe_size;
1875 int size_needed;
1876 int copy;
1877 int mss_now;
1878 int interval;
1879
1880 /* Not currently probing/verifying,
1881 * not in recovery,
1882 * have enough cwnd, and
1883 * not SACKing (the variable headers throw things off) */
1884 if (!icsk->icsk_mtup.enabled ||
1885 icsk->icsk_mtup.probe_size ||
1886 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1887 tp->snd_cwnd < 11 ||
1888 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1889 return -1;
1890
1891 /* Use binary search for probe_size between tcp_mss_base,
1892 * and current mss_clamp. if (search_high - search_low)
1893 * smaller than a threshold, backoff from probing.
1894 */
1895 mss_now = tcp_current_mss(sk);
1896 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1897 icsk->icsk_mtup.search_low) >> 1);
1898 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1899 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1900 /* When misfortune happens, we are reprobing actively,
1901 * and then reprobe timer has expired. We stick with current
1902 * probing process by not resetting search range to its orignal.
1903 */
1904 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1905 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1906 /* Check whether enough time has elaplased for
1907 * another round of probing.
1908 */
1909 tcp_mtu_check_reprobe(sk);
1910 return -1;
1911 }
1912
1913 /* Have enough data in the send queue to probe? */
1914 if (tp->write_seq - tp->snd_nxt < size_needed)
1915 return -1;
1916
1917 if (tp->snd_wnd < size_needed)
1918 return -1;
1919 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1920 return 0;
1921
1922 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1923 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1924 if (!tcp_packets_in_flight(tp))
1925 return -1;
1926 else
1927 return 0;
1928 }
1929
1930 /* We're allowed to probe. Build it now. */
1931 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1932 if (!nskb)
1933 return -1;
1934 sk->sk_wmem_queued += nskb->truesize;
1935 sk_mem_charge(sk, nskb->truesize);
1936
1937 skb = tcp_send_head(sk);
1938
1939 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1940 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1941 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1942 TCP_SKB_CB(nskb)->sacked = 0;
1943 nskb->csum = 0;
1944 nskb->ip_summed = skb->ip_summed;
1945
1946 tcp_insert_write_queue_before(nskb, skb, sk);
1947
1948 len = 0;
1949 tcp_for_write_queue_from_safe(skb, next, sk) {
1950 copy = min_t(int, skb->len, probe_size - len);
1951 if (nskb->ip_summed)
1952 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1953 else
1954 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1955 skb_put(nskb, copy),
1956 copy, nskb->csum);
1957
1958 if (skb->len <= copy) {
1959 /* We've eaten all the data from this skb.
1960 * Throw it away. */
1961 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1962 tcp_unlink_write_queue(skb, sk);
1963 sk_wmem_free_skb(sk, skb);
1964 } else {
1965 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1966 ~(TCPHDR_FIN|TCPHDR_PSH);
1967 if (!skb_shinfo(skb)->nr_frags) {
1968 skb_pull(skb, copy);
1969 if (skb->ip_summed != CHECKSUM_PARTIAL)
1970 skb->csum = csum_partial(skb->data,
1971 skb->len, 0);
1972 } else {
1973 __pskb_trim_head(skb, copy);
1974 tcp_set_skb_tso_segs(skb, mss_now);
1975 }
1976 TCP_SKB_CB(skb)->seq += copy;
1977 }
1978
1979 len += copy;
1980
1981 if (len >= probe_size)
1982 break;
1983 }
1984 tcp_init_tso_segs(nskb, nskb->len);
1985
1986 /* We're ready to send. If this fails, the probe will
1987 * be resegmented into mss-sized pieces by tcp_write_xmit().
1988 */
1989 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1990 /* Decrement cwnd here because we are sending
1991 * effectively two packets. */
1992 tp->snd_cwnd--;
1993 tcp_event_new_data_sent(sk, nskb);
1994
1995 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1996 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1997 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1998
1999 return 1;
2000 }
2001
2002 return -1;
2003 }
2004
2005 /* This routine writes packets to the network. It advances the
2006 * send_head. This happens as incoming acks open up the remote
2007 * window for us.
2008 *
2009 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2010 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2011 * account rare use of URG, this is not a big flaw.
2012 *
2013 * Send at most one packet when push_one > 0. Temporarily ignore
2014 * cwnd limit to force at most one packet out when push_one == 2.
2015
2016 * Returns true, if no segments are in flight and we have queued segments,
2017 * but cannot send anything now because of SWS or another problem.
2018 */
2019 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2020 int push_one, gfp_t gfp)
2021 {
2022 struct tcp_sock *tp = tcp_sk(sk);
2023 struct sk_buff *skb;
2024 unsigned int tso_segs, sent_pkts;
2025 int cwnd_quota;
2026 int result;
2027 bool is_cwnd_limited = false;
2028 u32 max_segs;
2029
2030 sent_pkts = 0;
2031
2032 if (!push_one) {
2033 /* Do MTU probing. */
2034 result = tcp_mtu_probe(sk);
2035 if (!result) {
2036 return false;
2037 } else if (result > 0) {
2038 sent_pkts = 1;
2039 }
2040 }
2041
2042 max_segs = tcp_tso_autosize(sk, mss_now);
2043 while ((skb = tcp_send_head(sk))) {
2044 unsigned int limit;
2045
2046 tso_segs = tcp_init_tso_segs(skb, mss_now);
2047 BUG_ON(!tso_segs);
2048
2049 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2050 /* "skb_mstamp" is used as a start point for the retransmit timer */
2051 skb_mstamp_get(&skb->skb_mstamp);
2052 goto repair; /* Skip network transmission */
2053 }
2054
2055 cwnd_quota = tcp_cwnd_test(tp, skb);
2056 if (!cwnd_quota) {
2057 if (push_one == 2)
2058 /* Force out a loss probe pkt. */
2059 cwnd_quota = 1;
2060 else
2061 break;
2062 }
2063
2064 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2065 break;
2066
2067 if (tso_segs == 1) {
2068 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2069 (tcp_skb_is_last(sk, skb) ?
2070 nonagle : TCP_NAGLE_PUSH))))
2071 break;
2072 } else {
2073 if (!push_one &&
2074 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2075 max_segs))
2076 break;
2077 }
2078
2079 limit = mss_now;
2080 if (tso_segs > 1 && !tcp_urg_mode(tp))
2081 limit = tcp_mss_split_point(sk, skb, mss_now,
2082 min_t(unsigned int,
2083 cwnd_quota,
2084 max_segs),
2085 nonagle);
2086
2087 if (skb->len > limit &&
2088 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2089 break;
2090
2091 /* TCP Small Queues :
2092 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2093 * This allows for :
2094 * - better RTT estimation and ACK scheduling
2095 * - faster recovery
2096 * - high rates
2097 * Alas, some drivers / subsystems require a fair amount
2098 * of queued bytes to ensure line rate.
2099 * One example is wifi aggregation (802.11 AMPDU)
2100 */
2101 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2102 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2103
2104 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2106 /* It is possible TX completion already happened
2107 * before we set TSQ_THROTTLED, so we must
2108 * test again the condition.
2109 */
2110 smp_mb__after_atomic();
2111 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2112 break;
2113 }
2114
2115 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2116 break;
2117
2118 repair:
2119 /* Advance the send_head. This one is sent out.
2120 * This call will increment packets_out.
2121 */
2122 tcp_event_new_data_sent(sk, skb);
2123
2124 tcp_minshall_update(tp, mss_now, skb);
2125 sent_pkts += tcp_skb_pcount(skb);
2126
2127 if (push_one)
2128 break;
2129 }
2130
2131 if (likely(sent_pkts)) {
2132 if (tcp_in_cwnd_reduction(sk))
2133 tp->prr_out += sent_pkts;
2134
2135 /* Send one loss probe per tail loss episode. */
2136 if (push_one != 2)
2137 tcp_schedule_loss_probe(sk);
2138 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2139 tcp_cwnd_validate(sk, is_cwnd_limited);
2140 return false;
2141 }
2142 return !tp->packets_out && tcp_send_head(sk);
2143 }
2144
2145 bool tcp_schedule_loss_probe(struct sock *sk)
2146 {
2147 struct inet_connection_sock *icsk = inet_csk(sk);
2148 struct tcp_sock *tp = tcp_sk(sk);
2149 u32 timeout, tlp_time_stamp, rto_time_stamp;
2150 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2151
2152 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2153 return false;
2154 /* No consecutive loss probes. */
2155 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2156 tcp_rearm_rto(sk);
2157 return false;
2158 }
2159 /* Don't do any loss probe on a Fast Open connection before 3WHS
2160 * finishes.
2161 */
2162 if (tp->fastopen_rsk)
2163 return false;
2164
2165 /* TLP is only scheduled when next timer event is RTO. */
2166 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2167 return false;
2168
2169 /* Schedule a loss probe in 2*RTT for SACK capable connections
2170 * in Open state, that are either limited by cwnd or application.
2171 */
2172 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2173 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2174 return false;
2175
2176 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2177 tcp_send_head(sk))
2178 return false;
2179
2180 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2181 * for delayed ack when there's one outstanding packet. If no RTT
2182 * sample is available then probe after TCP_TIMEOUT_INIT.
2183 */
2184 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2185 if (tp->packets_out == 1)
2186 timeout = max_t(u32, timeout,
2187 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2188 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2189
2190 /* If RTO is shorter, just schedule TLP in its place. */
2191 tlp_time_stamp = tcp_time_stamp + timeout;
2192 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2193 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2194 s32 delta = rto_time_stamp - tcp_time_stamp;
2195 if (delta > 0)
2196 timeout = delta;
2197 }
2198
2199 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2200 TCP_RTO_MAX);
2201 return true;
2202 }
2203
2204 /* Thanks to skb fast clones, we can detect if a prior transmit of
2205 * a packet is still in a qdisc or driver queue.
2206 * In this case, there is very little point doing a retransmit !
2207 * Note: This is called from BH context only.
2208 */
2209 static bool skb_still_in_host_queue(const struct sock *sk,
2210 const struct sk_buff *skb)
2211 {
2212 if (unlikely(skb_fclone_busy(sk, skb))) {
2213 NET_INC_STATS_BH(sock_net(sk),
2214 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2215 return true;
2216 }
2217 return false;
2218 }
2219
2220 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2221 * retransmit the last segment.
2222 */
2223 void tcp_send_loss_probe(struct sock *sk)
2224 {
2225 struct tcp_sock *tp = tcp_sk(sk);
2226 struct sk_buff *skb;
2227 int pcount;
2228 int mss = tcp_current_mss(sk);
2229
2230 skb = tcp_send_head(sk);
2231 if (skb) {
2232 if (tcp_snd_wnd_test(tp, skb, mss)) {
2233 pcount = tp->packets_out;
2234 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2235 if (tp->packets_out > pcount)
2236 goto probe_sent;
2237 goto rearm_timer;
2238 }
2239 skb = tcp_write_queue_prev(sk, skb);
2240 } else {
2241 skb = tcp_write_queue_tail(sk);
2242 }
2243
2244 /* At most one outstanding TLP retransmission. */
2245 if (tp->tlp_high_seq)
2246 goto rearm_timer;
2247
2248 /* Retransmit last segment. */
2249 if (WARN_ON(!skb))
2250 goto rearm_timer;
2251
2252 if (skb_still_in_host_queue(sk, skb))
2253 goto rearm_timer;
2254
2255 pcount = tcp_skb_pcount(skb);
2256 if (WARN_ON(!pcount))
2257 goto rearm_timer;
2258
2259 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2260 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2261 GFP_ATOMIC)))
2262 goto rearm_timer;
2263 skb = tcp_write_queue_next(sk, skb);
2264 }
2265
2266 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2267 goto rearm_timer;
2268
2269 if (__tcp_retransmit_skb(sk, skb))
2270 goto rearm_timer;
2271
2272 /* Record snd_nxt for loss detection. */
2273 tp->tlp_high_seq = tp->snd_nxt;
2274
2275 probe_sent:
2276 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2277 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2278 inet_csk(sk)->icsk_pending = 0;
2279 rearm_timer:
2280 tcp_rearm_rto(sk);
2281 }
2282
2283 /* Push out any pending frames which were held back due to
2284 * TCP_CORK or attempt at coalescing tiny packets.
2285 * The socket must be locked by the caller.
2286 */
2287 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2288 int nonagle)
2289 {
2290 /* If we are closed, the bytes will have to remain here.
2291 * In time closedown will finish, we empty the write queue and
2292 * all will be happy.
2293 */
2294 if (unlikely(sk->sk_state == TCP_CLOSE))
2295 return;
2296
2297 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2298 sk_gfp_mask(sk, GFP_ATOMIC)))
2299 tcp_check_probe_timer(sk);
2300 }
2301
2302 /* Send _single_ skb sitting at the send head. This function requires
2303 * true push pending frames to setup probe timer etc.
2304 */
2305 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2306 {
2307 struct sk_buff *skb = tcp_send_head(sk);
2308
2309 BUG_ON(!skb || skb->len < mss_now);
2310
2311 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2312 }
2313
2314 /* This function returns the amount that we can raise the
2315 * usable window based on the following constraints
2316 *
2317 * 1. The window can never be shrunk once it is offered (RFC 793)
2318 * 2. We limit memory per socket
2319 *
2320 * RFC 1122:
2321 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2322 * RECV.NEXT + RCV.WIN fixed until:
2323 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2324 *
2325 * i.e. don't raise the right edge of the window until you can raise
2326 * it at least MSS bytes.
2327 *
2328 * Unfortunately, the recommended algorithm breaks header prediction,
2329 * since header prediction assumes th->window stays fixed.
2330 *
2331 * Strictly speaking, keeping th->window fixed violates the receiver
2332 * side SWS prevention criteria. The problem is that under this rule
2333 * a stream of single byte packets will cause the right side of the
2334 * window to always advance by a single byte.
2335 *
2336 * Of course, if the sender implements sender side SWS prevention
2337 * then this will not be a problem.
2338 *
2339 * BSD seems to make the following compromise:
2340 *
2341 * If the free space is less than the 1/4 of the maximum
2342 * space available and the free space is less than 1/2 mss,
2343 * then set the window to 0.
2344 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2345 * Otherwise, just prevent the window from shrinking
2346 * and from being larger than the largest representable value.
2347 *
2348 * This prevents incremental opening of the window in the regime
2349 * where TCP is limited by the speed of the reader side taking
2350 * data out of the TCP receive queue. It does nothing about
2351 * those cases where the window is constrained on the sender side
2352 * because the pipeline is full.
2353 *
2354 * BSD also seems to "accidentally" limit itself to windows that are a
2355 * multiple of MSS, at least until the free space gets quite small.
2356 * This would appear to be a side effect of the mbuf implementation.
2357 * Combining these two algorithms results in the observed behavior
2358 * of having a fixed window size at almost all times.
2359 *
2360 * Below we obtain similar behavior by forcing the offered window to
2361 * a multiple of the mss when it is feasible to do so.
2362 *
2363 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2364 * Regular options like TIMESTAMP are taken into account.
2365 */
2366 u32 __tcp_select_window(struct sock *sk)
2367 {
2368 struct inet_connection_sock *icsk = inet_csk(sk);
2369 struct tcp_sock *tp = tcp_sk(sk);
2370 /* MSS for the peer's data. Previous versions used mss_clamp
2371 * here. I don't know if the value based on our guesses
2372 * of peer's MSS is better for the performance. It's more correct
2373 * but may be worse for the performance because of rcv_mss
2374 * fluctuations. --SAW 1998/11/1
2375 */
2376 int mss = icsk->icsk_ack.rcv_mss;
2377 int free_space = tcp_space(sk);
2378 int allowed_space = tcp_full_space(sk);
2379 int full_space = min_t(int, tp->window_clamp, allowed_space);
2380 int window;
2381
2382 if (mss > full_space)
2383 mss = full_space;
2384
2385 if (free_space < (full_space >> 1)) {
2386 icsk->icsk_ack.quick = 0;
2387
2388 if (tcp_under_memory_pressure(sk))
2389 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2390 4U * tp->advmss);
2391
2392 /* free_space might become our new window, make sure we don't
2393 * increase it due to wscale.
2394 */
2395 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2396
2397 /* if free space is less than mss estimate, or is below 1/16th
2398 * of the maximum allowed, try to move to zero-window, else
2399 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2400 * new incoming data is dropped due to memory limits.
2401 * With large window, mss test triggers way too late in order
2402 * to announce zero window in time before rmem limit kicks in.
2403 */
2404 if (free_space < (allowed_space >> 4) || free_space < mss)
2405 return 0;
2406 }
2407
2408 if (free_space > tp->rcv_ssthresh)
2409 free_space = tp->rcv_ssthresh;
2410
2411 /* Don't do rounding if we are using window scaling, since the
2412 * scaled window will not line up with the MSS boundary anyway.
2413 */
2414 window = tp->rcv_wnd;
2415 if (tp->rx_opt.rcv_wscale) {
2416 window = free_space;
2417
2418 /* Advertise enough space so that it won't get scaled away.
2419 * Import case: prevent zero window announcement if
2420 * 1<<rcv_wscale > mss.
2421 */
2422 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2423 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2424 << tp->rx_opt.rcv_wscale);
2425 } else {
2426 /* Get the largest window that is a nice multiple of mss.
2427 * Window clamp already applied above.
2428 * If our current window offering is within 1 mss of the
2429 * free space we just keep it. This prevents the divide
2430 * and multiply from happening most of the time.
2431 * We also don't do any window rounding when the free space
2432 * is too small.
2433 */
2434 if (window <= free_space - mss || window > free_space)
2435 window = (free_space / mss) * mss;
2436 else if (mss == full_space &&
2437 free_space > window + (full_space >> 1))
2438 window = free_space;
2439 }
2440
2441 return window;
2442 }
2443
2444 /* Collapses two adjacent SKB's during retransmission. */
2445 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2446 {
2447 struct tcp_sock *tp = tcp_sk(sk);
2448 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2449 int skb_size, next_skb_size;
2450
2451 skb_size = skb->len;
2452 next_skb_size = next_skb->len;
2453
2454 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2455
2456 tcp_highest_sack_combine(sk, next_skb, skb);
2457
2458 tcp_unlink_write_queue(next_skb, sk);
2459
2460 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2461 next_skb_size);
2462
2463 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2464 skb->ip_summed = CHECKSUM_PARTIAL;
2465
2466 if (skb->ip_summed != CHECKSUM_PARTIAL)
2467 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2468
2469 /* Update sequence range on original skb. */
2470 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2471
2472 /* Merge over control information. This moves PSH/FIN etc. over */
2473 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2474
2475 /* All done, get rid of second SKB and account for it so
2476 * packet counting does not break.
2477 */
2478 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2479
2480 /* changed transmit queue under us so clear hints */
2481 tcp_clear_retrans_hints_partial(tp);
2482 if (next_skb == tp->retransmit_skb_hint)
2483 tp->retransmit_skb_hint = skb;
2484
2485 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2486
2487 sk_wmem_free_skb(sk, next_skb);
2488 }
2489
2490 /* Check if coalescing SKBs is legal. */
2491 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2492 {
2493 if (tcp_skb_pcount(skb) > 1)
2494 return false;
2495 /* TODO: SACK collapsing could be used to remove this condition */
2496 if (skb_shinfo(skb)->nr_frags != 0)
2497 return false;
2498 if (skb_cloned(skb))
2499 return false;
2500 if (skb == tcp_send_head(sk))
2501 return false;
2502 /* Some heurestics for collapsing over SACK'd could be invented */
2503 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2504 return false;
2505
2506 return true;
2507 }
2508
2509 /* Collapse packets in the retransmit queue to make to create
2510 * less packets on the wire. This is only done on retransmission.
2511 */
2512 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2513 int space)
2514 {
2515 struct tcp_sock *tp = tcp_sk(sk);
2516 struct sk_buff *skb = to, *tmp;
2517 bool first = true;
2518
2519 if (!sysctl_tcp_retrans_collapse)
2520 return;
2521 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2522 return;
2523
2524 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2525 if (!tcp_can_collapse(sk, skb))
2526 break;
2527
2528 space -= skb->len;
2529
2530 if (first) {
2531 first = false;
2532 continue;
2533 }
2534
2535 if (space < 0)
2536 break;
2537 /* Punt if not enough space exists in the first SKB for
2538 * the data in the second
2539 */
2540 if (skb->len > skb_availroom(to))
2541 break;
2542
2543 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2544 break;
2545
2546 tcp_collapse_retrans(sk, to);
2547 }
2548 }
2549
2550 /* This retransmits one SKB. Policy decisions and retransmit queue
2551 * state updates are done by the caller. Returns non-zero if an
2552 * error occurred which prevented the send.
2553 */
2554 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2555 {
2556 struct tcp_sock *tp = tcp_sk(sk);
2557 struct inet_connection_sock *icsk = inet_csk(sk);
2558 unsigned int cur_mss;
2559 int err;
2560
2561 /* Inconslusive MTU probe */
2562 if (icsk->icsk_mtup.probe_size) {
2563 icsk->icsk_mtup.probe_size = 0;
2564 }
2565
2566 /* Do not sent more than we queued. 1/4 is reserved for possible
2567 * copying overhead: fragmentation, tunneling, mangling etc.
2568 */
2569 if (atomic_read(&sk->sk_wmem_alloc) >
2570 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2571 return -EAGAIN;
2572
2573 if (skb_still_in_host_queue(sk, skb))
2574 return -EBUSY;
2575
2576 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2577 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2578 BUG();
2579 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2580 return -ENOMEM;
2581 }
2582
2583 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2584 return -EHOSTUNREACH; /* Routing failure or similar. */
2585
2586 cur_mss = tcp_current_mss(sk);
2587
2588 /* If receiver has shrunk his window, and skb is out of
2589 * new window, do not retransmit it. The exception is the
2590 * case, when window is shrunk to zero. In this case
2591 * our retransmit serves as a zero window probe.
2592 */
2593 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2594 TCP_SKB_CB(skb)->seq != tp->snd_una)
2595 return -EAGAIN;
2596
2597 if (skb->len > cur_mss) {
2598 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2599 return -ENOMEM; /* We'll try again later. */
2600 } else {
2601 int oldpcount = tcp_skb_pcount(skb);
2602
2603 if (unlikely(oldpcount > 1)) {
2604 if (skb_unclone(skb, GFP_ATOMIC))
2605 return -ENOMEM;
2606 tcp_init_tso_segs(skb, cur_mss);
2607 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2608 }
2609 }
2610
2611 /* RFC3168, section 6.1.1.1. ECN fallback */
2612 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2613 tcp_ecn_clear_syn(sk, skb);
2614
2615 tcp_retrans_try_collapse(sk, skb, cur_mss);
2616
2617 /* Make a copy, if the first transmission SKB clone we made
2618 * is still in somebody's hands, else make a clone.
2619 */
2620
2621 /* make sure skb->data is aligned on arches that require it
2622 * and check if ack-trimming & collapsing extended the headroom
2623 * beyond what csum_start can cover.
2624 */
2625 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2626 skb_headroom(skb) >= 0xFFFF)) {
2627 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2628 GFP_ATOMIC);
2629 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2630 -ENOBUFS;
2631 } else {
2632 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2633 }
2634
2635 if (likely(!err)) {
2636 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2637 /* Update global TCP statistics. */
2638 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2639 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2640 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2641 tp->total_retrans++;
2642 }
2643 return err;
2644 }
2645
2646 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2647 {
2648 struct tcp_sock *tp = tcp_sk(sk);
2649 int err = __tcp_retransmit_skb(sk, skb);
2650
2651 if (err == 0) {
2652 #if FASTRETRANS_DEBUG > 0
2653 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2654 net_dbg_ratelimited("retrans_out leaked\n");
2655 }
2656 #endif
2657 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2658 tp->retrans_out += tcp_skb_pcount(skb);
2659
2660 /* Save stamp of the first retransmit. */
2661 if (!tp->retrans_stamp)
2662 tp->retrans_stamp = tcp_skb_timestamp(skb);
2663
2664 } else if (err != -EBUSY) {
2665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2666 }
2667
2668 if (tp->undo_retrans < 0)
2669 tp->undo_retrans = 0;
2670 tp->undo_retrans += tcp_skb_pcount(skb);
2671 return err;
2672 }
2673
2674 /* Check if we forward retransmits are possible in the current
2675 * window/congestion state.
2676 */
2677 static bool tcp_can_forward_retransmit(struct sock *sk)
2678 {
2679 const struct inet_connection_sock *icsk = inet_csk(sk);
2680 const struct tcp_sock *tp = tcp_sk(sk);
2681
2682 /* Forward retransmissions are possible only during Recovery. */
2683 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2684 return false;
2685
2686 /* No forward retransmissions in Reno are possible. */
2687 if (tcp_is_reno(tp))
2688 return false;
2689
2690 /* Yeah, we have to make difficult choice between forward transmission
2691 * and retransmission... Both ways have their merits...
2692 *
2693 * For now we do not retransmit anything, while we have some new
2694 * segments to send. In the other cases, follow rule 3 for
2695 * NextSeg() specified in RFC3517.
2696 */
2697
2698 if (tcp_may_send_now(sk))
2699 return false;
2700
2701 return true;
2702 }
2703
2704 /* This gets called after a retransmit timeout, and the initially
2705 * retransmitted data is acknowledged. It tries to continue
2706 * resending the rest of the retransmit queue, until either
2707 * we've sent it all or the congestion window limit is reached.
2708 * If doing SACK, the first ACK which comes back for a timeout
2709 * based retransmit packet might feed us FACK information again.
2710 * If so, we use it to avoid unnecessarily retransmissions.
2711 */
2712 void tcp_xmit_retransmit_queue(struct sock *sk)
2713 {
2714 const struct inet_connection_sock *icsk = inet_csk(sk);
2715 struct tcp_sock *tp = tcp_sk(sk);
2716 struct sk_buff *skb;
2717 struct sk_buff *hole = NULL;
2718 u32 last_lost;
2719 int mib_idx;
2720 int fwd_rexmitting = 0;
2721
2722 if (!tp->packets_out)
2723 return;
2724
2725 if (!tp->lost_out)
2726 tp->retransmit_high = tp->snd_una;
2727
2728 if (tp->retransmit_skb_hint) {
2729 skb = tp->retransmit_skb_hint;
2730 last_lost = TCP_SKB_CB(skb)->end_seq;
2731 if (after(last_lost, tp->retransmit_high))
2732 last_lost = tp->retransmit_high;
2733 } else {
2734 skb = tcp_write_queue_head(sk);
2735 last_lost = tp->snd_una;
2736 }
2737
2738 tcp_for_write_queue_from(skb, sk) {
2739 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2740
2741 if (skb == tcp_send_head(sk))
2742 break;
2743 /* we could do better than to assign each time */
2744 if (!hole)
2745 tp->retransmit_skb_hint = skb;
2746
2747 /* Assume this retransmit will generate
2748 * only one packet for congestion window
2749 * calculation purposes. This works because
2750 * tcp_retransmit_skb() will chop up the
2751 * packet to be MSS sized and all the
2752 * packet counting works out.
2753 */
2754 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2755 return;
2756
2757 if (fwd_rexmitting) {
2758 begin_fwd:
2759 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2760 break;
2761 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2762
2763 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2764 tp->retransmit_high = last_lost;
2765 if (!tcp_can_forward_retransmit(sk))
2766 break;
2767 /* Backtrack if necessary to non-L'ed skb */
2768 if (hole) {
2769 skb = hole;
2770 hole = NULL;
2771 }
2772 fwd_rexmitting = 1;
2773 goto begin_fwd;
2774
2775 } else if (!(sacked & TCPCB_LOST)) {
2776 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2777 hole = skb;
2778 continue;
2779
2780 } else {
2781 last_lost = TCP_SKB_CB(skb)->end_seq;
2782 if (icsk->icsk_ca_state != TCP_CA_Loss)
2783 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2784 else
2785 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2786 }
2787
2788 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2789 continue;
2790
2791 if (tcp_retransmit_skb(sk, skb))
2792 return;
2793
2794 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2795
2796 if (tcp_in_cwnd_reduction(sk))
2797 tp->prr_out += tcp_skb_pcount(skb);
2798
2799 if (skb == tcp_write_queue_head(sk))
2800 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2801 inet_csk(sk)->icsk_rto,
2802 TCP_RTO_MAX);
2803 }
2804 }
2805
2806 /* We allow to exceed memory limits for FIN packets to expedite
2807 * connection tear down and (memory) recovery.
2808 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2809 * or even be forced to close flow without any FIN.
2810 * In general, we want to allow one skb per socket to avoid hangs
2811 * with edge trigger epoll()
2812 */
2813 void sk_forced_mem_schedule(struct sock *sk, int size)
2814 {
2815 int amt;
2816
2817 if (size <= sk->sk_forward_alloc)
2818 return;
2819 amt = sk_mem_pages(size);
2820 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2821 sk_memory_allocated_add(sk, amt);
2822
2823 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2824 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2825 }
2826
2827 /* Send a FIN. The caller locks the socket for us.
2828 * We should try to send a FIN packet really hard, but eventually give up.
2829 */
2830 void tcp_send_fin(struct sock *sk)
2831 {
2832 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2833 struct tcp_sock *tp = tcp_sk(sk);
2834
2835 /* Optimization, tack on the FIN if we have one skb in write queue and
2836 * this skb was not yet sent, or we are under memory pressure.
2837 * Note: in the latter case, FIN packet will be sent after a timeout,
2838 * as TCP stack thinks it has already been transmitted.
2839 */
2840 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2841 coalesce:
2842 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2843 TCP_SKB_CB(tskb)->end_seq++;
2844 tp->write_seq++;
2845 if (!tcp_send_head(sk)) {
2846 /* This means tskb was already sent.
2847 * Pretend we included the FIN on previous transmit.
2848 * We need to set tp->snd_nxt to the value it would have
2849 * if FIN had been sent. This is because retransmit path
2850 * does not change tp->snd_nxt.
2851 */
2852 tp->snd_nxt++;
2853 return;
2854 }
2855 } else {
2856 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2857 if (unlikely(!skb)) {
2858 if (tskb)
2859 goto coalesce;
2860 return;
2861 }
2862 skb_reserve(skb, MAX_TCP_HEADER);
2863 sk_forced_mem_schedule(sk, skb->truesize);
2864 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2865 tcp_init_nondata_skb(skb, tp->write_seq,
2866 TCPHDR_ACK | TCPHDR_FIN);
2867 tcp_queue_skb(sk, skb);
2868 }
2869 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2870 }
2871
2872 /* We get here when a process closes a file descriptor (either due to
2873 * an explicit close() or as a byproduct of exit()'ing) and there
2874 * was unread data in the receive queue. This behavior is recommended
2875 * by RFC 2525, section 2.17. -DaveM
2876 */
2877 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2878 {
2879 struct sk_buff *skb;
2880
2881 /* NOTE: No TCP options attached and we never retransmit this. */
2882 skb = alloc_skb(MAX_TCP_HEADER, priority);
2883 if (!skb) {
2884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2885 return;
2886 }
2887
2888 /* Reserve space for headers and prepare control bits. */
2889 skb_reserve(skb, MAX_TCP_HEADER);
2890 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2891 TCPHDR_ACK | TCPHDR_RST);
2892 skb_mstamp_get(&skb->skb_mstamp);
2893 /* Send it off. */
2894 if (tcp_transmit_skb(sk, skb, 0, priority))
2895 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2896
2897 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2898 }
2899
2900 /* Send a crossed SYN-ACK during socket establishment.
2901 * WARNING: This routine must only be called when we have already sent
2902 * a SYN packet that crossed the incoming SYN that caused this routine
2903 * to get called. If this assumption fails then the initial rcv_wnd
2904 * and rcv_wscale values will not be correct.
2905 */
2906 int tcp_send_synack(struct sock *sk)
2907 {
2908 struct sk_buff *skb;
2909
2910 skb = tcp_write_queue_head(sk);
2911 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2912 pr_debug("%s: wrong queue state\n", __func__);
2913 return -EFAULT;
2914 }
2915 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2916 if (skb_cloned(skb)) {
2917 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2918 if (!nskb)
2919 return -ENOMEM;
2920 tcp_unlink_write_queue(skb, sk);
2921 __skb_header_release(nskb);
2922 __tcp_add_write_queue_head(sk, nskb);
2923 sk_wmem_free_skb(sk, skb);
2924 sk->sk_wmem_queued += nskb->truesize;
2925 sk_mem_charge(sk, nskb->truesize);
2926 skb = nskb;
2927 }
2928
2929 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2930 tcp_ecn_send_synack(sk, skb);
2931 }
2932 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2933 }
2934
2935 /**
2936 * tcp_make_synack - Prepare a SYN-ACK.
2937 * sk: listener socket
2938 * dst: dst entry attached to the SYNACK
2939 * req: request_sock pointer
2940 *
2941 * Allocate one skb and build a SYNACK packet.
2942 * @dst is consumed : Caller should not use it again.
2943 */
2944 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2945 struct request_sock *req,
2946 struct tcp_fastopen_cookie *foc,
2947 bool attach_req)
2948 {
2949 struct inet_request_sock *ireq = inet_rsk(req);
2950 const struct tcp_sock *tp = tcp_sk(sk);
2951 struct tcp_md5sig_key *md5 = NULL;
2952 struct tcp_out_options opts;
2953 struct sk_buff *skb;
2954 int tcp_header_size;
2955 struct tcphdr *th;
2956 u16 user_mss;
2957 int mss;
2958
2959 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2960 if (unlikely(!skb)) {
2961 dst_release(dst);
2962 return NULL;
2963 }
2964 /* Reserve space for headers. */
2965 skb_reserve(skb, MAX_TCP_HEADER);
2966
2967 if (attach_req) {
2968 skb_set_owner_w(skb, req_to_sk(req));
2969 } else {
2970 /* sk is a const pointer, because we want to express multiple
2971 * cpu might call us concurrently.
2972 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2973 */
2974 skb_set_owner_w(skb, (struct sock *)sk);
2975 }
2976 skb_dst_set(skb, dst);
2977
2978 mss = dst_metric_advmss(dst);
2979 user_mss = READ_ONCE(tp->rx_opt.user_mss);
2980 if (user_mss && user_mss < mss)
2981 mss = user_mss;
2982
2983 memset(&opts, 0, sizeof(opts));
2984 #ifdef CONFIG_SYN_COOKIES
2985 if (unlikely(req->cookie_ts))
2986 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2987 else
2988 #endif
2989 skb_mstamp_get(&skb->skb_mstamp);
2990
2991 #ifdef CONFIG_TCP_MD5SIG
2992 rcu_read_lock();
2993 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2994 #endif
2995 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
2996 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
2997 sizeof(*th);
2998
2999 skb_push(skb, tcp_header_size);
3000 skb_reset_transport_header(skb);
3001
3002 th = tcp_hdr(skb);
3003 memset(th, 0, sizeof(struct tcphdr));
3004 th->syn = 1;
3005 th->ack = 1;
3006 tcp_ecn_make_synack(req, th);
3007 th->source = htons(ireq->ir_num);
3008 th->dest = ireq->ir_rmt_port;
3009 /* Setting of flags are superfluous here for callers (and ECE is
3010 * not even correctly set)
3011 */
3012 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3013 TCPHDR_SYN | TCPHDR_ACK);
3014
3015 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3016 /* XXX data is queued and acked as is. No buffer/window check */
3017 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3018
3019 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3020 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3021 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3022 th->doff = (tcp_header_size >> 2);
3023 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3024
3025 #ifdef CONFIG_TCP_MD5SIG
3026 /* Okay, we have all we need - do the md5 hash if needed */
3027 if (md5)
3028 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3029 md5, req_to_sk(req), skb);
3030 rcu_read_unlock();
3031 #endif
3032
3033 /* Do not fool tcpdump (if any), clean our debris */
3034 skb->tstamp.tv64 = 0;
3035 return skb;
3036 }
3037 EXPORT_SYMBOL(tcp_make_synack);
3038
3039 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3040 {
3041 struct inet_connection_sock *icsk = inet_csk(sk);
3042 const struct tcp_congestion_ops *ca;
3043 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3044
3045 if (ca_key == TCP_CA_UNSPEC)
3046 return;
3047
3048 rcu_read_lock();
3049 ca = tcp_ca_find_key(ca_key);
3050 if (likely(ca && try_module_get(ca->owner))) {
3051 module_put(icsk->icsk_ca_ops->owner);
3052 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3053 icsk->icsk_ca_ops = ca;
3054 }
3055 rcu_read_unlock();
3056 }
3057
3058 /* Do all connect socket setups that can be done AF independent. */
3059 static void tcp_connect_init(struct sock *sk)
3060 {
3061 const struct dst_entry *dst = __sk_dst_get(sk);
3062 struct tcp_sock *tp = tcp_sk(sk);
3063 __u8 rcv_wscale;
3064
3065 /* We'll fix this up when we get a response from the other end.
3066 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3067 */
3068 tp->tcp_header_len = sizeof(struct tcphdr) +
3069 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3070
3071 #ifdef CONFIG_TCP_MD5SIG
3072 if (tp->af_specific->md5_lookup(sk, sk))
3073 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3074 #endif
3075
3076 /* If user gave his TCP_MAXSEG, record it to clamp */
3077 if (tp->rx_opt.user_mss)
3078 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3079 tp->max_window = 0;
3080 tcp_mtup_init(sk);
3081 tcp_sync_mss(sk, dst_mtu(dst));
3082
3083 tcp_ca_dst_init(sk, dst);
3084
3085 if (!tp->window_clamp)
3086 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3087 tp->advmss = dst_metric_advmss(dst);
3088 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3089 tp->advmss = tp->rx_opt.user_mss;
3090
3091 tcp_initialize_rcv_mss(sk);
3092
3093 /* limit the window selection if the user enforce a smaller rx buffer */
3094 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3095 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3096 tp->window_clamp = tcp_full_space(sk);
3097
3098 tcp_select_initial_window(tcp_full_space(sk),
3099 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3100 &tp->rcv_wnd,
3101 &tp->window_clamp,
3102 sysctl_tcp_window_scaling,
3103 &rcv_wscale,
3104 dst_metric(dst, RTAX_INITRWND));
3105
3106 tp->rx_opt.rcv_wscale = rcv_wscale;
3107 tp->rcv_ssthresh = tp->rcv_wnd;
3108
3109 sk->sk_err = 0;
3110 sock_reset_flag(sk, SOCK_DONE);
3111 tp->snd_wnd = 0;
3112 tcp_init_wl(tp, 0);
3113 tp->snd_una = tp->write_seq;
3114 tp->snd_sml = tp->write_seq;
3115 tp->snd_up = tp->write_seq;
3116 tp->snd_nxt = tp->write_seq;
3117
3118 if (likely(!tp->repair))
3119 tp->rcv_nxt = 0;
3120 else
3121 tp->rcv_tstamp = tcp_time_stamp;
3122 tp->rcv_wup = tp->rcv_nxt;
3123 tp->copied_seq = tp->rcv_nxt;
3124
3125 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3126 inet_csk(sk)->icsk_retransmits = 0;
3127 tcp_clear_retrans(tp);
3128 }
3129
3130 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3131 {
3132 struct tcp_sock *tp = tcp_sk(sk);
3133 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3134
3135 tcb->end_seq += skb->len;
3136 __skb_header_release(skb);
3137 __tcp_add_write_queue_tail(sk, skb);
3138 sk->sk_wmem_queued += skb->truesize;
3139 sk_mem_charge(sk, skb->truesize);
3140 tp->write_seq = tcb->end_seq;
3141 tp->packets_out += tcp_skb_pcount(skb);
3142 }
3143
3144 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3145 * queue a data-only packet after the regular SYN, such that regular SYNs
3146 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3147 * only the SYN sequence, the data are retransmitted in the first ACK.
3148 * If cookie is not cached or other error occurs, falls back to send a
3149 * regular SYN with Fast Open cookie request option.
3150 */
3151 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3152 {
3153 struct tcp_sock *tp = tcp_sk(sk);
3154 struct tcp_fastopen_request *fo = tp->fastopen_req;
3155 int syn_loss = 0, space, err = 0;
3156 unsigned long last_syn_loss = 0;
3157 struct sk_buff *syn_data;
3158
3159 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3160 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3161 &syn_loss, &last_syn_loss);
3162 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3163 if (syn_loss > 1 &&
3164 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3165 fo->cookie.len = -1;
3166 goto fallback;
3167 }
3168
3169 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3170 fo->cookie.len = -1;
3171 else if (fo->cookie.len <= 0)
3172 goto fallback;
3173
3174 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3175 * user-MSS. Reserve maximum option space for middleboxes that add
3176 * private TCP options. The cost is reduced data space in SYN :(
3177 */
3178 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3179 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3180 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3181 MAX_TCP_OPTION_SPACE;
3182
3183 space = min_t(size_t, space, fo->size);
3184
3185 /* limit to order-0 allocations */
3186 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3187
3188 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3189 if (!syn_data)
3190 goto fallback;
3191 syn_data->ip_summed = CHECKSUM_PARTIAL;
3192 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3193 if (space) {
3194 int copied = copy_from_iter(skb_put(syn_data, space), space,
3195 &fo->data->msg_iter);
3196 if (unlikely(!copied)) {
3197 kfree_skb(syn_data);
3198 goto fallback;
3199 }
3200 if (copied != space) {
3201 skb_trim(syn_data, copied);
3202 space = copied;
3203 }
3204 }
3205 /* No more data pending in inet_wait_for_connect() */
3206 if (space == fo->size)
3207 fo->data = NULL;
3208 fo->copied = space;
3209
3210 tcp_connect_queue_skb(sk, syn_data);
3211
3212 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3213
3214 syn->skb_mstamp = syn_data->skb_mstamp;
3215
3216 /* Now full SYN+DATA was cloned and sent (or not),
3217 * remove the SYN from the original skb (syn_data)
3218 * we keep in write queue in case of a retransmit, as we
3219 * also have the SYN packet (with no data) in the same queue.
3220 */
3221 TCP_SKB_CB(syn_data)->seq++;
3222 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3223 if (!err) {
3224 tp->syn_data = (fo->copied > 0);
3225 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3226 goto done;
3227 }
3228
3229 fallback:
3230 /* Send a regular SYN with Fast Open cookie request option */
3231 if (fo->cookie.len > 0)
3232 fo->cookie.len = 0;
3233 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3234 if (err)
3235 tp->syn_fastopen = 0;
3236 done:
3237 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3238 return err;
3239 }
3240
3241 /* Build a SYN and send it off. */
3242 int tcp_connect(struct sock *sk)
3243 {
3244 struct tcp_sock *tp = tcp_sk(sk);
3245 struct sk_buff *buff;
3246 int err;
3247
3248 tcp_connect_init(sk);
3249
3250 if (unlikely(tp->repair)) {
3251 tcp_finish_connect(sk, NULL);
3252 return 0;
3253 }
3254
3255 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3256 if (unlikely(!buff))
3257 return -ENOBUFS;
3258
3259 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3260 tp->retrans_stamp = tcp_time_stamp;
3261 tcp_connect_queue_skb(sk, buff);
3262 tcp_ecn_send_syn(sk, buff);
3263
3264 /* Send off SYN; include data in Fast Open. */
3265 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3266 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3267 if (err == -ECONNREFUSED)
3268 return err;
3269
3270 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3271 * in order to make this packet get counted in tcpOutSegs.
3272 */
3273 tp->snd_nxt = tp->write_seq;
3274 tp->pushed_seq = tp->write_seq;
3275 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3276
3277 /* Timer for repeating the SYN until an answer. */
3278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3279 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3280 return 0;
3281 }
3282 EXPORT_SYMBOL(tcp_connect);
3283
3284 /* Send out a delayed ack, the caller does the policy checking
3285 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3286 * for details.
3287 */
3288 void tcp_send_delayed_ack(struct sock *sk)
3289 {
3290 struct inet_connection_sock *icsk = inet_csk(sk);
3291 int ato = icsk->icsk_ack.ato;
3292 unsigned long timeout;
3293
3294 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3295
3296 if (ato > TCP_DELACK_MIN) {
3297 const struct tcp_sock *tp = tcp_sk(sk);
3298 int max_ato = HZ / 2;
3299
3300 if (icsk->icsk_ack.pingpong ||
3301 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3302 max_ato = TCP_DELACK_MAX;
3303
3304 /* Slow path, intersegment interval is "high". */
3305
3306 /* If some rtt estimate is known, use it to bound delayed ack.
3307 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3308 * directly.
3309 */
3310 if (tp->srtt_us) {
3311 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3312 TCP_DELACK_MIN);
3313
3314 if (rtt < max_ato)
3315 max_ato = rtt;
3316 }
3317
3318 ato = min(ato, max_ato);
3319 }
3320
3321 /* Stay within the limit we were given */
3322 timeout = jiffies + ato;
3323
3324 /* Use new timeout only if there wasn't a older one earlier. */
3325 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3326 /* If delack timer was blocked or is about to expire,
3327 * send ACK now.
3328 */
3329 if (icsk->icsk_ack.blocked ||
3330 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3331 tcp_send_ack(sk);
3332 return;
3333 }
3334
3335 if (!time_before(timeout, icsk->icsk_ack.timeout))
3336 timeout = icsk->icsk_ack.timeout;
3337 }
3338 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3339 icsk->icsk_ack.timeout = timeout;
3340 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3341 }
3342
3343 /* This routine sends an ack and also updates the window. */
3344 void tcp_send_ack(struct sock *sk)
3345 {
3346 struct sk_buff *buff;
3347
3348 /* If we have been reset, we may not send again. */
3349 if (sk->sk_state == TCP_CLOSE)
3350 return;
3351
3352 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3353
3354 /* We are not putting this on the write queue, so
3355 * tcp_transmit_skb() will set the ownership to this
3356 * sock.
3357 */
3358 buff = alloc_skb(MAX_TCP_HEADER,
3359 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3360 if (unlikely(!buff)) {
3361 inet_csk_schedule_ack(sk);
3362 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3363 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3364 TCP_DELACK_MAX, TCP_RTO_MAX);
3365 return;
3366 }
3367
3368 /* Reserve space for headers and prepare control bits. */
3369 skb_reserve(buff, MAX_TCP_HEADER);
3370 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3371
3372 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3373 * too much.
3374 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3375 * We also avoid tcp_wfree() overhead (cache line miss accessing
3376 * tp->tsq_flags) by using regular sock_wfree()
3377 */
3378 skb_set_tcp_pure_ack(buff);
3379
3380 /* Send it off, this clears delayed acks for us. */
3381 skb_mstamp_get(&buff->skb_mstamp);
3382 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3383 }
3384 EXPORT_SYMBOL_GPL(tcp_send_ack);
3385
3386 /* This routine sends a packet with an out of date sequence
3387 * number. It assumes the other end will try to ack it.
3388 *
3389 * Question: what should we make while urgent mode?
3390 * 4.4BSD forces sending single byte of data. We cannot send
3391 * out of window data, because we have SND.NXT==SND.MAX...
3392 *
3393 * Current solution: to send TWO zero-length segments in urgent mode:
3394 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3395 * out-of-date with SND.UNA-1 to probe window.
3396 */
3397 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3398 {
3399 struct tcp_sock *tp = tcp_sk(sk);
3400 struct sk_buff *skb;
3401
3402 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3403 skb = alloc_skb(MAX_TCP_HEADER,
3404 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3405 if (!skb)
3406 return -1;
3407
3408 /* Reserve space for headers and set control bits. */
3409 skb_reserve(skb, MAX_TCP_HEADER);
3410 /* Use a previous sequence. This should cause the other
3411 * end to send an ack. Don't queue or clone SKB, just
3412 * send it.
3413 */
3414 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3415 skb_mstamp_get(&skb->skb_mstamp);
3416 NET_INC_STATS(sock_net(sk), mib);
3417 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3418 }
3419
3420 void tcp_send_window_probe(struct sock *sk)
3421 {
3422 if (sk->sk_state == TCP_ESTABLISHED) {
3423 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3424 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3425 }
3426 }
3427
3428 /* Initiate keepalive or window probe from timer. */
3429 int tcp_write_wakeup(struct sock *sk, int mib)
3430 {
3431 struct tcp_sock *tp = tcp_sk(sk);
3432 struct sk_buff *skb;
3433
3434 if (sk->sk_state == TCP_CLOSE)
3435 return -1;
3436
3437 skb = tcp_send_head(sk);
3438 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3439 int err;
3440 unsigned int mss = tcp_current_mss(sk);
3441 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3442
3443 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3444 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3445
3446 /* We are probing the opening of a window
3447 * but the window size is != 0
3448 * must have been a result SWS avoidance ( sender )
3449 */
3450 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3451 skb->len > mss) {
3452 seg_size = min(seg_size, mss);
3453 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3454 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3455 return -1;
3456 } else if (!tcp_skb_pcount(skb))
3457 tcp_set_skb_tso_segs(skb, mss);
3458
3459 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3460 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3461 if (!err)
3462 tcp_event_new_data_sent(sk, skb);
3463 return err;
3464 } else {
3465 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3466 tcp_xmit_probe_skb(sk, 1, mib);
3467 return tcp_xmit_probe_skb(sk, 0, mib);
3468 }
3469 }
3470
3471 /* A window probe timeout has occurred. If window is not closed send
3472 * a partial packet else a zero probe.
3473 */
3474 void tcp_send_probe0(struct sock *sk)
3475 {
3476 struct inet_connection_sock *icsk = inet_csk(sk);
3477 struct tcp_sock *tp = tcp_sk(sk);
3478 struct net *net = sock_net(sk);
3479 unsigned long probe_max;
3480 int err;
3481
3482 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3483
3484 if (tp->packets_out || !tcp_send_head(sk)) {
3485 /* Cancel probe timer, if it is not required. */
3486 icsk->icsk_probes_out = 0;
3487 icsk->icsk_backoff = 0;
3488 return;
3489 }
3490
3491 if (err <= 0) {
3492 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3493 icsk->icsk_backoff++;
3494 icsk->icsk_probes_out++;
3495 probe_max = TCP_RTO_MAX;
3496 } else {
3497 /* If packet was not sent due to local congestion,
3498 * do not backoff and do not remember icsk_probes_out.
3499 * Let local senders to fight for local resources.
3500 *
3501 * Use accumulated backoff yet.
3502 */
3503 if (!icsk->icsk_probes_out)
3504 icsk->icsk_probes_out = 1;
3505 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3506 }
3507 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3508 tcp_probe0_when(sk, probe_max),
3509 TCP_RTO_MAX);
3510 }
3511
3512 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3513 {
3514 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3515 struct flowi fl;
3516 int res;
3517
3518 tcp_rsk(req)->txhash = net_tx_rndhash();
3519 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3520 if (!res) {
3521 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3523 }
3524 return res;
3525 }
3526 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.105218 seconds and 5 git commands to generate.