Merge remote-tracking branches 'regulator/topic/tps65218' and 'regulator/topic/tps800...
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = TCP_INIT_CWND * 2;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > 65535 && (*rcv_wscale) < 14) {
243 space >>= 1;
244 (*rcv_wscale)++;
245 }
246 }
247
248 if (mss > (1 << *rcv_wscale)) {
249 if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 init_rcv_wnd = tcp_default_init_rwnd(mss);
251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 old_win = tp->rcv_wnd;
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
270
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (new_win == 0)
281 NET_INC_STATS(sock_net(sk),
282 LINUX_MIB_TCPWANTZEROWINDOWADV);
283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 }
285 tp->rcv_wnd = new_win;
286 tp->rcv_wup = tp->rcv_nxt;
287
288 /* Make sure we do not exceed the maximum possible
289 * scaled window.
290 */
291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 new_win = min(new_win, MAX_TCP_WINDOW);
293 else
294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295
296 /* RFC1323 scaling applied */
297 new_win >>= tp->rx_opt.rcv_wscale;
298
299 /* If we advertise zero window, disable fast path. */
300 if (new_win == 0) {
301 tp->pred_flags = 0;
302 if (old_win)
303 NET_INC_STATS(sock_net(sk),
304 LINUX_MIB_TCPTOZEROWINDOWADV);
305 } else if (old_win == 0) {
306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 }
308
309 return new_win;
310 }
311
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 const struct tcp_sock *tp = tcp_sk(sk);
316
317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 if (!(tp->ecn_flags & TCP_ECN_OK))
319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 else if (tcp_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322 }
323
324 /* Packet ECN state for a SYN. */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 tcp_ca_needs_ecn(sk);
330
331 if (!use_ecn) {
332 const struct dst_entry *dst = __sk_dst_get(sk);
333
334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 use_ecn = true;
336 }
337
338 tp->ecn_flags = 0;
339
340 if (use_ecn) {
341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 tp->ecn_flags = TCP_ECN_OK;
343 if (tcp_ca_needs_ecn(sk))
344 INET_ECN_xmit(sk);
345 }
346 }
347
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 /* tp->ecn_flags are cleared at a later point in time when
352 * SYN ACK is ultimatively being received.
353 */
354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 if (inet_rsk(req)->ecn_ok)
361 th->ece = 1;
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 struct tcphdr *th, int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 th->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 th->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 skb->ip_summed = CHECKSUM_PARTIAL;
397 skb->csum = 0;
398
399 TCP_SKB_CB(skb)->tcp_flags = flags;
400 TCP_SKB_CB(skb)->sacked = 0;
401
402 tcp_skb_pcount_set(skb, 1);
403
404 TCP_SKB_CB(skb)->seq = seq;
405 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 seq++;
407 TCP_SKB_CB(skb)->end_seq = seq;
408 }
409
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 return tp->snd_una != tp->snd_up;
413 }
414
415 #define OPTION_SACK_ADVERTISE (1 << 0)
416 #define OPTION_TS (1 << 1)
417 #define OPTION_MD5 (1 << 2)
418 #define OPTION_WSCALE (1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420
421 struct tcp_out_options {
422 u16 options; /* bit field of OPTION_* */
423 u16 mss; /* 0 to disable */
424 u8 ws; /* window scale, 0 to disable */
425 u8 num_sack_blocks; /* number of SACK blocks to include */
426 u8 hash_size; /* bytes in hash_location */
427 __u8 *hash_location; /* temporary pointer, overloaded */
428 __u32 tsval, tsecr; /* need to include OPTION_TS */
429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 };
431
432 /* Write previously computed TCP options to the packet.
433 *
434 * Beware: Something in the Internet is very sensitive to the ordering of
435 * TCP options, we learned this through the hard way, so be careful here.
436 * Luckily we can at least blame others for their non-compliance but from
437 * inter-operability perspective it seems that we're somewhat stuck with
438 * the ordering which we have been using if we want to keep working with
439 * those broken things (not that it currently hurts anybody as there isn't
440 * particular reason why the ordering would need to be changed).
441 *
442 * At least SACK_PERM as the first option is known to lead to a disaster
443 * (but it may well be that other scenarios fail similarly).
444 */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 u16 options = opts->options; /* mungable copy */
449
450 if (unlikely(OPTION_MD5 & options)) {
451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 /* overload cookie hash location */
454 opts->hash_location = (__u8 *)ptr;
455 ptr += 4;
456 }
457
458 if (unlikely(opts->mss)) {
459 *ptr++ = htonl((TCPOPT_MSS << 24) |
460 (TCPOLEN_MSS << 16) |
461 opts->mss);
462 }
463
464 if (likely(OPTION_TS & options)) {
465 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 (TCPOLEN_SACK_PERM << 16) |
468 (TCPOPT_TIMESTAMP << 8) |
469 TCPOLEN_TIMESTAMP);
470 options &= ~OPTION_SACK_ADVERTISE;
471 } else {
472 *ptr++ = htonl((TCPOPT_NOP << 24) |
473 (TCPOPT_NOP << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 }
477 *ptr++ = htonl(opts->tsval);
478 *ptr++ = htonl(opts->tsecr);
479 }
480
481 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 *ptr++ = htonl((TCPOPT_NOP << 24) |
483 (TCPOPT_NOP << 16) |
484 (TCPOPT_SACK_PERM << 8) |
485 TCPOLEN_SACK_PERM);
486 }
487
488 if (unlikely(OPTION_WSCALE & options)) {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_WINDOW << 16) |
491 (TCPOLEN_WINDOW << 8) |
492 opts->ws);
493 }
494
495 if (unlikely(opts->num_sack_blocks)) {
496 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 tp->duplicate_sack : tp->selective_acks;
498 int this_sack;
499
500 *ptr++ = htonl((TCPOPT_NOP << 24) |
501 (TCPOPT_NOP << 16) |
502 (TCPOPT_SACK << 8) |
503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 TCPOLEN_SACK_PERBLOCK)));
505
506 for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 ++this_sack) {
508 *ptr++ = htonl(sp[this_sack].start_seq);
509 *ptr++ = htonl(sp[this_sack].end_seq);
510 }
511
512 tp->rx_opt.dsack = 0;
513 }
514
515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 u8 *p = (u8 *)ptr;
518 u32 len; /* Fast Open option length */
519
520 if (foc->exp) {
521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 TCPOPT_FASTOPEN_MAGIC);
524 p += TCPOLEN_EXP_FASTOPEN_BASE;
525 } else {
526 len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 *p++ = TCPOPT_FASTOPEN;
528 *p++ = len;
529 }
530
531 memcpy(p, foc->val, foc->len);
532 if ((len & 3) == 2) {
533 p[foc->len] = TCPOPT_NOP;
534 p[foc->len + 1] = TCPOPT_NOP;
535 }
536 ptr += (len + 3) >> 2;
537 }
538 }
539
540 /* Compute TCP options for SYN packets. This is not the final
541 * network wire format yet.
542 */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 struct tcp_out_options *opts,
545 struct tcp_md5sig_key **md5)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550
551 #ifdef CONFIG_TCP_MD5SIG
552 *md5 = tp->af_specific->md5_lookup(sk, sk);
553 if (*md5) {
554 opts->options |= OPTION_MD5;
555 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 }
557 #else
558 *md5 = NULL;
559 #endif
560
561 /* We always get an MSS option. The option bytes which will be seen in
562 * normal data packets should timestamps be used, must be in the MSS
563 * advertised. But we subtract them from tp->mss_cache so that
564 * calculations in tcp_sendmsg are simpler etc. So account for this
565 * fact here if necessary. If we don't do this correctly, as a
566 * receiver we won't recognize data packets as being full sized when we
567 * should, and thus we won't abide by the delayed ACK rules correctly.
568 * SACKs don't matter, we never delay an ACK when we have any of those
569 * going out. */
570 opts->mss = tcp_advertise_mss(sk);
571 remaining -= TCPOLEN_MSS_ALIGNED;
572
573 if (likely(sysctl_tcp_timestamps && !*md5)) {
574 opts->options |= OPTION_TS;
575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 opts->tsecr = tp->rx_opt.ts_recent;
577 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 }
579 if (likely(sysctl_tcp_window_scaling)) {
580 opts->ws = tp->rx_opt.rcv_wscale;
581 opts->options |= OPTION_WSCALE;
582 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 }
584 if (likely(sysctl_tcp_sack)) {
585 opts->options |= OPTION_SACK_ADVERTISE;
586 if (unlikely(!(OPTION_TS & opts->options)))
587 remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 }
589
590 if (fastopen && fastopen->cookie.len >= 0) {
591 u32 need = fastopen->cookie.len;
592
593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 TCPOLEN_FASTOPEN_BASE;
595 need = (need + 3) & ~3U; /* Align to 32 bits */
596 if (remaining >= need) {
597 opts->options |= OPTION_FAST_OPEN_COOKIE;
598 opts->fastopen_cookie = &fastopen->cookie;
599 remaining -= need;
600 tp->syn_fastopen = 1;
601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 }
603 }
604
605 return MAX_TCP_OPTION_SPACE - remaining;
606 }
607
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 unsigned int mss, struct sk_buff *skb,
611 struct tcp_out_options *opts,
612 const struct tcp_md5sig_key *md5,
613 struct tcp_fastopen_cookie *foc)
614 {
615 struct inet_request_sock *ireq = inet_rsk(req);
616 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617
618 #ifdef CONFIG_TCP_MD5SIG
619 if (md5) {
620 opts->options |= OPTION_MD5;
621 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622
623 /* We can't fit any SACK blocks in a packet with MD5 + TS
624 * options. There was discussion about disabling SACK
625 * rather than TS in order to fit in better with old,
626 * buggy kernels, but that was deemed to be unnecessary.
627 */
628 ireq->tstamp_ok &= !ireq->sack_ok;
629 }
630 #endif
631
632 /* We always send an MSS option. */
633 opts->mss = mss;
634 remaining -= TCPOLEN_MSS_ALIGNED;
635
636 if (likely(ireq->wscale_ok)) {
637 opts->ws = ireq->rcv_wscale;
638 opts->options |= OPTION_WSCALE;
639 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 }
641 if (likely(ireq->tstamp_ok)) {
642 opts->options |= OPTION_TS;
643 opts->tsval = tcp_skb_timestamp(skb);
644 opts->tsecr = req->ts_recent;
645 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 }
647 if (likely(ireq->sack_ok)) {
648 opts->options |= OPTION_SACK_ADVERTISE;
649 if (unlikely(!ireq->tstamp_ok))
650 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 }
652 if (foc != NULL && foc->len >= 0) {
653 u32 need = foc->len;
654
655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 TCPOLEN_FASTOPEN_BASE;
657 need = (need + 3) & ~3U; /* Align to 32 bits */
658 if (remaining >= need) {
659 opts->options |= OPTION_FAST_OPEN_COOKIE;
660 opts->fastopen_cookie = foc;
661 remaining -= need;
662 }
663 }
664
665 return MAX_TCP_OPTION_SPACE - remaining;
666 }
667
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669 * final wire format yet.
670 */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 struct tcp_out_options *opts,
673 struct tcp_md5sig_key **md5)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676 unsigned int size = 0;
677 unsigned int eff_sacks;
678
679 opts->options = 0;
680
681 #ifdef CONFIG_TCP_MD5SIG
682 *md5 = tp->af_specific->md5_lookup(sk, sk);
683 if (unlikely(*md5)) {
684 opts->options |= OPTION_MD5;
685 size += TCPOLEN_MD5SIG_ALIGNED;
686 }
687 #else
688 *md5 = NULL;
689 #endif
690
691 if (likely(tp->rx_opt.tstamp_ok)) {
692 opts->options |= OPTION_TS;
693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 opts->tsecr = tp->rx_opt.ts_recent;
695 size += TCPOLEN_TSTAMP_ALIGNED;
696 }
697
698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 if (unlikely(eff_sacks)) {
700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 opts->num_sack_blocks =
702 min_t(unsigned int, eff_sacks,
703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 TCPOLEN_SACK_PERBLOCK);
705 size += TCPOLEN_SACK_BASE_ALIGNED +
706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 }
708
709 return size;
710 }
711
712
713 /* TCP SMALL QUEUES (TSQ)
714 *
715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716 * to reduce RTT and bufferbloat.
717 * We do this using a special skb destructor (tcp_wfree).
718 *
719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720 * needs to be reallocated in a driver.
721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 *
723 * Since transmit from skb destructor is forbidden, we use a tasklet
724 * to process all sockets that eventually need to send more skbs.
725 * We use one tasklet per cpu, with its own queue of sockets.
726 */
727 struct tsq_tasklet {
728 struct tasklet_struct tasklet;
729 struct list_head head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 if ((1 << sk->sk_state) &
736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
738 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
739 0, GFP_ATOMIC);
740 }
741 /*
742 * One tasklet per cpu tries to send more skbs.
743 * We run in tasklet context but need to disable irqs when
744 * transferring tsq->head because tcp_wfree() might
745 * interrupt us (non NAPI drivers)
746 */
747 static void tcp_tasklet_func(unsigned long data)
748 {
749 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
750 LIST_HEAD(list);
751 unsigned long flags;
752 struct list_head *q, *n;
753 struct tcp_sock *tp;
754 struct sock *sk;
755
756 local_irq_save(flags);
757 list_splice_init(&tsq->head, &list);
758 local_irq_restore(flags);
759
760 list_for_each_safe(q, n, &list) {
761 tp = list_entry(q, struct tcp_sock, tsq_node);
762 list_del(&tp->tsq_node);
763
764 sk = (struct sock *)tp;
765 bh_lock_sock(sk);
766
767 if (!sock_owned_by_user(sk)) {
768 tcp_tsq_handler(sk);
769 } else {
770 /* defer the work to tcp_release_cb() */
771 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
772 }
773 bh_unlock_sock(sk);
774
775 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
776 sk_free(sk);
777 }
778 }
779
780 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
781 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
782 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
783 (1UL << TCP_MTU_REDUCED_DEFERRED))
784 /**
785 * tcp_release_cb - tcp release_sock() callback
786 * @sk: socket
787 *
788 * called from release_sock() to perform protocol dependent
789 * actions before socket release.
790 */
791 void tcp_release_cb(struct sock *sk)
792 {
793 struct tcp_sock *tp = tcp_sk(sk);
794 unsigned long flags, nflags;
795
796 /* perform an atomic operation only if at least one flag is set */
797 do {
798 flags = tp->tsq_flags;
799 if (!(flags & TCP_DEFERRED_ALL))
800 return;
801 nflags = flags & ~TCP_DEFERRED_ALL;
802 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
803
804 if (flags & (1UL << TCP_TSQ_DEFERRED))
805 tcp_tsq_handler(sk);
806
807 /* Here begins the tricky part :
808 * We are called from release_sock() with :
809 * 1) BH disabled
810 * 2) sk_lock.slock spinlock held
811 * 3) socket owned by us (sk->sk_lock.owned == 1)
812 *
813 * But following code is meant to be called from BH handlers,
814 * so we should keep BH disabled, but early release socket ownership
815 */
816 sock_release_ownership(sk);
817
818 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
819 tcp_write_timer_handler(sk);
820 __sock_put(sk);
821 }
822 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
823 tcp_delack_timer_handler(sk);
824 __sock_put(sk);
825 }
826 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
827 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
828 __sock_put(sk);
829 }
830 }
831 EXPORT_SYMBOL(tcp_release_cb);
832
833 void __init tcp_tasklet_init(void)
834 {
835 int i;
836
837 for_each_possible_cpu(i) {
838 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
839
840 INIT_LIST_HEAD(&tsq->head);
841 tasklet_init(&tsq->tasklet,
842 tcp_tasklet_func,
843 (unsigned long)tsq);
844 }
845 }
846
847 /*
848 * Write buffer destructor automatically called from kfree_skb.
849 * We can't xmit new skbs from this context, as we might already
850 * hold qdisc lock.
851 */
852 void tcp_wfree(struct sk_buff *skb)
853 {
854 struct sock *sk = skb->sk;
855 struct tcp_sock *tp = tcp_sk(sk);
856 int wmem;
857
858 /* Keep one reference on sk_wmem_alloc.
859 * Will be released by sk_free() from here or tcp_tasklet_func()
860 */
861 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
862
863 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
864 * Wait until our queues (qdisc + devices) are drained.
865 * This gives :
866 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
867 * - chance for incoming ACK (processed by another cpu maybe)
868 * to migrate this flow (skb->ooo_okay will be eventually set)
869 */
870 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
871 goto out;
872
873 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
874 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
875 unsigned long flags;
876 struct tsq_tasklet *tsq;
877
878 /* queue this socket to tasklet queue */
879 local_irq_save(flags);
880 tsq = this_cpu_ptr(&tsq_tasklet);
881 list_add(&tp->tsq_node, &tsq->head);
882 tasklet_schedule(&tsq->tasklet);
883 local_irq_restore(flags);
884 return;
885 }
886 out:
887 sk_free(sk);
888 }
889
890 /* This routine actually transmits TCP packets queued in by
891 * tcp_do_sendmsg(). This is used by both the initial
892 * transmission and possible later retransmissions.
893 * All SKB's seen here are completely headerless. It is our
894 * job to build the TCP header, and pass the packet down to
895 * IP so it can do the same plus pass the packet off to the
896 * device.
897 *
898 * We are working here with either a clone of the original
899 * SKB, or a fresh unique copy made by the retransmit engine.
900 */
901 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
902 gfp_t gfp_mask)
903 {
904 const struct inet_connection_sock *icsk = inet_csk(sk);
905 struct inet_sock *inet;
906 struct tcp_sock *tp;
907 struct tcp_skb_cb *tcb;
908 struct tcp_out_options opts;
909 unsigned int tcp_options_size, tcp_header_size;
910 struct tcp_md5sig_key *md5;
911 struct tcphdr *th;
912 int err;
913
914 BUG_ON(!skb || !tcp_skb_pcount(skb));
915 tp = tcp_sk(sk);
916
917 if (clone_it) {
918 skb_mstamp_get(&skb->skb_mstamp);
919 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
920 - tp->snd_una;
921
922 if (unlikely(skb_cloned(skb)))
923 skb = pskb_copy(skb, gfp_mask);
924 else
925 skb = skb_clone(skb, gfp_mask);
926 if (unlikely(!skb))
927 return -ENOBUFS;
928 }
929
930 inet = inet_sk(sk);
931 tcb = TCP_SKB_CB(skb);
932 memset(&opts, 0, sizeof(opts));
933
934 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
935 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
936 else
937 tcp_options_size = tcp_established_options(sk, skb, &opts,
938 &md5);
939 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
940
941 /* if no packet is in qdisc/device queue, then allow XPS to select
942 * another queue. We can be called from tcp_tsq_handler()
943 * which holds one reference to sk_wmem_alloc.
944 *
945 * TODO: Ideally, in-flight pure ACK packets should not matter here.
946 * One way to get this would be to set skb->truesize = 2 on them.
947 */
948 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
949
950 skb_push(skb, tcp_header_size);
951 skb_reset_transport_header(skb);
952
953 skb_orphan(skb);
954 skb->sk = sk;
955 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
956 skb_set_hash_from_sk(skb, sk);
957 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
958
959 /* Build TCP header and checksum it. */
960 th = (struct tcphdr *)skb->data;
961 th->source = inet->inet_sport;
962 th->dest = inet->inet_dport;
963 th->seq = htonl(tcb->seq);
964 th->ack_seq = htonl(tp->rcv_nxt);
965 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
966 tcb->tcp_flags);
967
968 th->check = 0;
969 th->urg_ptr = 0;
970
971 /* The urg_mode check is necessary during a below snd_una win probe */
972 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
973 if (before(tp->snd_up, tcb->seq + 0x10000)) {
974 th->urg_ptr = htons(tp->snd_up - tcb->seq);
975 th->urg = 1;
976 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
977 th->urg_ptr = htons(0xFFFF);
978 th->urg = 1;
979 }
980 }
981
982 tcp_options_write((__be32 *)(th + 1), tp, &opts);
983 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
984 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
985 th->window = htons(tcp_select_window(sk));
986 tcp_ecn_send(sk, skb, th, tcp_header_size);
987 } else {
988 /* RFC1323: The window in SYN & SYN/ACK segments
989 * is never scaled.
990 */
991 th->window = htons(min(tp->rcv_wnd, 65535U));
992 }
993 #ifdef CONFIG_TCP_MD5SIG
994 /* Calculate the MD5 hash, as we have all we need now */
995 if (md5) {
996 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
997 tp->af_specific->calc_md5_hash(opts.hash_location,
998 md5, sk, skb);
999 }
1000 #endif
1001
1002 icsk->icsk_af_ops->send_check(sk, skb);
1003
1004 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1005 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1006
1007 if (skb->len != tcp_header_size) {
1008 tcp_event_data_sent(tp, sk);
1009 tp->data_segs_out += tcp_skb_pcount(skb);
1010 }
1011
1012 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1013 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1014 tcp_skb_pcount(skb));
1015
1016 tp->segs_out += tcp_skb_pcount(skb);
1017 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1018 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1019 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1020
1021 /* Our usage of tstamp should remain private */
1022 skb->tstamp.tv64 = 0;
1023
1024 /* Cleanup our debris for IP stacks */
1025 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1026 sizeof(struct inet6_skb_parm)));
1027
1028 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1029
1030 if (likely(err <= 0))
1031 return err;
1032
1033 tcp_enter_cwr(sk);
1034
1035 return net_xmit_eval(err);
1036 }
1037
1038 /* This routine just queues the buffer for sending.
1039 *
1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1041 * otherwise socket can stall.
1042 */
1043 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045 struct tcp_sock *tp = tcp_sk(sk);
1046
1047 /* Advance write_seq and place onto the write_queue. */
1048 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1049 __skb_header_release(skb);
1050 tcp_add_write_queue_tail(sk, skb);
1051 sk->sk_wmem_queued += skb->truesize;
1052 sk_mem_charge(sk, skb->truesize);
1053 }
1054
1055 /* Initialize TSO segments for a packet. */
1056 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1057 {
1058 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1059 /* Avoid the costly divide in the normal
1060 * non-TSO case.
1061 */
1062 tcp_skb_pcount_set(skb, 1);
1063 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1064 } else {
1065 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1067 }
1068 }
1069
1070 /* When a modification to fackets out becomes necessary, we need to check
1071 * skb is counted to fackets_out or not.
1072 */
1073 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1074 int decr)
1075 {
1076 struct tcp_sock *tp = tcp_sk(sk);
1077
1078 if (!tp->sacked_out || tcp_is_reno(tp))
1079 return;
1080
1081 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1082 tp->fackets_out -= decr;
1083 }
1084
1085 /* Pcount in the middle of the write queue got changed, we need to do various
1086 * tweaks to fix counters
1087 */
1088 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1089 {
1090 struct tcp_sock *tp = tcp_sk(sk);
1091
1092 tp->packets_out -= decr;
1093
1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1095 tp->sacked_out -= decr;
1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1097 tp->retrans_out -= decr;
1098 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1099 tp->lost_out -= decr;
1100
1101 /* Reno case is special. Sigh... */
1102 if (tcp_is_reno(tp) && decr > 0)
1103 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1104
1105 tcp_adjust_fackets_out(sk, skb, decr);
1106
1107 if (tp->lost_skb_hint &&
1108 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1109 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1110 tp->lost_cnt_hint -= decr;
1111
1112 tcp_verify_left_out(tp);
1113 }
1114
1115 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1116 {
1117 return TCP_SKB_CB(skb)->txstamp_ack ||
1118 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1119 }
1120
1121 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1122 {
1123 struct skb_shared_info *shinfo = skb_shinfo(skb);
1124
1125 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1126 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1127 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1128 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1129
1130 shinfo->tx_flags &= ~tsflags;
1131 shinfo2->tx_flags |= tsflags;
1132 swap(shinfo->tskey, shinfo2->tskey);
1133 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1134 TCP_SKB_CB(skb)->txstamp_ack = 0;
1135 }
1136 }
1137
1138 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1139 {
1140 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1141 TCP_SKB_CB(skb)->eor = 0;
1142 }
1143
1144 /* Function to create two new TCP segments. Shrinks the given segment
1145 * to the specified size and appends a new segment with the rest of the
1146 * packet to the list. This won't be called frequently, I hope.
1147 * Remember, these are still headerless SKBs at this point.
1148 */
1149 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1150 unsigned int mss_now, gfp_t gfp)
1151 {
1152 struct tcp_sock *tp = tcp_sk(sk);
1153 struct sk_buff *buff;
1154 int nsize, old_factor;
1155 int nlen;
1156 u8 flags;
1157
1158 if (WARN_ON(len > skb->len))
1159 return -EINVAL;
1160
1161 nsize = skb_headlen(skb) - len;
1162 if (nsize < 0)
1163 nsize = 0;
1164
1165 if (skb_unclone(skb, gfp))
1166 return -ENOMEM;
1167
1168 /* Get a new skb... force flag on. */
1169 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1170 if (!buff)
1171 return -ENOMEM; /* We'll just try again later. */
1172
1173 sk->sk_wmem_queued += buff->truesize;
1174 sk_mem_charge(sk, buff->truesize);
1175 nlen = skb->len - len - nsize;
1176 buff->truesize += nlen;
1177 skb->truesize -= nlen;
1178
1179 /* Correct the sequence numbers. */
1180 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1181 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1182 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1183
1184 /* PSH and FIN should only be set in the second packet. */
1185 flags = TCP_SKB_CB(skb)->tcp_flags;
1186 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1187 TCP_SKB_CB(buff)->tcp_flags = flags;
1188 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1189 tcp_skb_fragment_eor(skb, buff);
1190
1191 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1192 /* Copy and checksum data tail into the new buffer. */
1193 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1194 skb_put(buff, nsize),
1195 nsize, 0);
1196
1197 skb_trim(skb, len);
1198
1199 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1200 } else {
1201 skb->ip_summed = CHECKSUM_PARTIAL;
1202 skb_split(skb, buff, len);
1203 }
1204
1205 buff->ip_summed = skb->ip_summed;
1206
1207 buff->tstamp = skb->tstamp;
1208 tcp_fragment_tstamp(skb, buff);
1209
1210 old_factor = tcp_skb_pcount(skb);
1211
1212 /* Fix up tso_factor for both original and new SKB. */
1213 tcp_set_skb_tso_segs(skb, mss_now);
1214 tcp_set_skb_tso_segs(buff, mss_now);
1215
1216 /* If this packet has been sent out already, we must
1217 * adjust the various packet counters.
1218 */
1219 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1220 int diff = old_factor - tcp_skb_pcount(skb) -
1221 tcp_skb_pcount(buff);
1222
1223 if (diff)
1224 tcp_adjust_pcount(sk, skb, diff);
1225 }
1226
1227 /* Link BUFF into the send queue. */
1228 __skb_header_release(buff);
1229 tcp_insert_write_queue_after(skb, buff, sk);
1230
1231 return 0;
1232 }
1233
1234 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1235 * eventually). The difference is that pulled data not copied, but
1236 * immediately discarded.
1237 */
1238 static void __pskb_trim_head(struct sk_buff *skb, int len)
1239 {
1240 struct skb_shared_info *shinfo;
1241 int i, k, eat;
1242
1243 eat = min_t(int, len, skb_headlen(skb));
1244 if (eat) {
1245 __skb_pull(skb, eat);
1246 len -= eat;
1247 if (!len)
1248 return;
1249 }
1250 eat = len;
1251 k = 0;
1252 shinfo = skb_shinfo(skb);
1253 for (i = 0; i < shinfo->nr_frags; i++) {
1254 int size = skb_frag_size(&shinfo->frags[i]);
1255
1256 if (size <= eat) {
1257 skb_frag_unref(skb, i);
1258 eat -= size;
1259 } else {
1260 shinfo->frags[k] = shinfo->frags[i];
1261 if (eat) {
1262 shinfo->frags[k].page_offset += eat;
1263 skb_frag_size_sub(&shinfo->frags[k], eat);
1264 eat = 0;
1265 }
1266 k++;
1267 }
1268 }
1269 shinfo->nr_frags = k;
1270
1271 skb_reset_tail_pointer(skb);
1272 skb->data_len -= len;
1273 skb->len = skb->data_len;
1274 }
1275
1276 /* Remove acked data from a packet in the transmit queue. */
1277 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1278 {
1279 if (skb_unclone(skb, GFP_ATOMIC))
1280 return -ENOMEM;
1281
1282 __pskb_trim_head(skb, len);
1283
1284 TCP_SKB_CB(skb)->seq += len;
1285 skb->ip_summed = CHECKSUM_PARTIAL;
1286
1287 skb->truesize -= len;
1288 sk->sk_wmem_queued -= len;
1289 sk_mem_uncharge(sk, len);
1290 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1291
1292 /* Any change of skb->len requires recalculation of tso factor. */
1293 if (tcp_skb_pcount(skb) > 1)
1294 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1295
1296 return 0;
1297 }
1298
1299 /* Calculate MSS not accounting any TCP options. */
1300 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1301 {
1302 const struct tcp_sock *tp = tcp_sk(sk);
1303 const struct inet_connection_sock *icsk = inet_csk(sk);
1304 int mss_now;
1305
1306 /* Calculate base mss without TCP options:
1307 It is MMS_S - sizeof(tcphdr) of rfc1122
1308 */
1309 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1310
1311 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1312 if (icsk->icsk_af_ops->net_frag_header_len) {
1313 const struct dst_entry *dst = __sk_dst_get(sk);
1314
1315 if (dst && dst_allfrag(dst))
1316 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1317 }
1318
1319 /* Clamp it (mss_clamp does not include tcp options) */
1320 if (mss_now > tp->rx_opt.mss_clamp)
1321 mss_now = tp->rx_opt.mss_clamp;
1322
1323 /* Now subtract optional transport overhead */
1324 mss_now -= icsk->icsk_ext_hdr_len;
1325
1326 /* Then reserve room for full set of TCP options and 8 bytes of data */
1327 if (mss_now < 48)
1328 mss_now = 48;
1329 return mss_now;
1330 }
1331
1332 /* Calculate MSS. Not accounting for SACKs here. */
1333 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1334 {
1335 /* Subtract TCP options size, not including SACKs */
1336 return __tcp_mtu_to_mss(sk, pmtu) -
1337 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1338 }
1339
1340 /* Inverse of above */
1341 int tcp_mss_to_mtu(struct sock *sk, int mss)
1342 {
1343 const struct tcp_sock *tp = tcp_sk(sk);
1344 const struct inet_connection_sock *icsk = inet_csk(sk);
1345 int mtu;
1346
1347 mtu = mss +
1348 tp->tcp_header_len +
1349 icsk->icsk_ext_hdr_len +
1350 icsk->icsk_af_ops->net_header_len;
1351
1352 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1353 if (icsk->icsk_af_ops->net_frag_header_len) {
1354 const struct dst_entry *dst = __sk_dst_get(sk);
1355
1356 if (dst && dst_allfrag(dst))
1357 mtu += icsk->icsk_af_ops->net_frag_header_len;
1358 }
1359 return mtu;
1360 }
1361
1362 /* MTU probing init per socket */
1363 void tcp_mtup_init(struct sock *sk)
1364 {
1365 struct tcp_sock *tp = tcp_sk(sk);
1366 struct inet_connection_sock *icsk = inet_csk(sk);
1367 struct net *net = sock_net(sk);
1368
1369 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1370 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1371 icsk->icsk_af_ops->net_header_len;
1372 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1373 icsk->icsk_mtup.probe_size = 0;
1374 if (icsk->icsk_mtup.enabled)
1375 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1376 }
1377 EXPORT_SYMBOL(tcp_mtup_init);
1378
1379 /* This function synchronize snd mss to current pmtu/exthdr set.
1380
1381 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1382 for TCP options, but includes only bare TCP header.
1383
1384 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1385 It is minimum of user_mss and mss received with SYN.
1386 It also does not include TCP options.
1387
1388 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1389
1390 tp->mss_cache is current effective sending mss, including
1391 all tcp options except for SACKs. It is evaluated,
1392 taking into account current pmtu, but never exceeds
1393 tp->rx_opt.mss_clamp.
1394
1395 NOTE1. rfc1122 clearly states that advertised MSS
1396 DOES NOT include either tcp or ip options.
1397
1398 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1399 are READ ONLY outside this function. --ANK (980731)
1400 */
1401 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1402 {
1403 struct tcp_sock *tp = tcp_sk(sk);
1404 struct inet_connection_sock *icsk = inet_csk(sk);
1405 int mss_now;
1406
1407 if (icsk->icsk_mtup.search_high > pmtu)
1408 icsk->icsk_mtup.search_high = pmtu;
1409
1410 mss_now = tcp_mtu_to_mss(sk, pmtu);
1411 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1412
1413 /* And store cached results */
1414 icsk->icsk_pmtu_cookie = pmtu;
1415 if (icsk->icsk_mtup.enabled)
1416 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1417 tp->mss_cache = mss_now;
1418
1419 return mss_now;
1420 }
1421 EXPORT_SYMBOL(tcp_sync_mss);
1422
1423 /* Compute the current effective MSS, taking SACKs and IP options,
1424 * and even PMTU discovery events into account.
1425 */
1426 unsigned int tcp_current_mss(struct sock *sk)
1427 {
1428 const struct tcp_sock *tp = tcp_sk(sk);
1429 const struct dst_entry *dst = __sk_dst_get(sk);
1430 u32 mss_now;
1431 unsigned int header_len;
1432 struct tcp_out_options opts;
1433 struct tcp_md5sig_key *md5;
1434
1435 mss_now = tp->mss_cache;
1436
1437 if (dst) {
1438 u32 mtu = dst_mtu(dst);
1439 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1440 mss_now = tcp_sync_mss(sk, mtu);
1441 }
1442
1443 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1444 sizeof(struct tcphdr);
1445 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1446 * some common options. If this is an odd packet (because we have SACK
1447 * blocks etc) then our calculated header_len will be different, and
1448 * we have to adjust mss_now correspondingly */
1449 if (header_len != tp->tcp_header_len) {
1450 int delta = (int) header_len - tp->tcp_header_len;
1451 mss_now -= delta;
1452 }
1453
1454 return mss_now;
1455 }
1456
1457 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1458 * As additional protections, we do not touch cwnd in retransmission phases,
1459 * and if application hit its sndbuf limit recently.
1460 */
1461 static void tcp_cwnd_application_limited(struct sock *sk)
1462 {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1466 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1467 /* Limited by application or receiver window. */
1468 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1469 u32 win_used = max(tp->snd_cwnd_used, init_win);
1470 if (win_used < tp->snd_cwnd) {
1471 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1472 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1473 }
1474 tp->snd_cwnd_used = 0;
1475 }
1476 tp->snd_cwnd_stamp = tcp_time_stamp;
1477 }
1478
1479 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1480 {
1481 struct tcp_sock *tp = tcp_sk(sk);
1482
1483 /* Track the maximum number of outstanding packets in each
1484 * window, and remember whether we were cwnd-limited then.
1485 */
1486 if (!before(tp->snd_una, tp->max_packets_seq) ||
1487 tp->packets_out > tp->max_packets_out) {
1488 tp->max_packets_out = tp->packets_out;
1489 tp->max_packets_seq = tp->snd_nxt;
1490 tp->is_cwnd_limited = is_cwnd_limited;
1491 }
1492
1493 if (tcp_is_cwnd_limited(sk)) {
1494 /* Network is feed fully. */
1495 tp->snd_cwnd_used = 0;
1496 tp->snd_cwnd_stamp = tcp_time_stamp;
1497 } else {
1498 /* Network starves. */
1499 if (tp->packets_out > tp->snd_cwnd_used)
1500 tp->snd_cwnd_used = tp->packets_out;
1501
1502 if (sysctl_tcp_slow_start_after_idle &&
1503 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1504 tcp_cwnd_application_limited(sk);
1505 }
1506 }
1507
1508 /* Minshall's variant of the Nagle send check. */
1509 static bool tcp_minshall_check(const struct tcp_sock *tp)
1510 {
1511 return after(tp->snd_sml, tp->snd_una) &&
1512 !after(tp->snd_sml, tp->snd_nxt);
1513 }
1514
1515 /* Update snd_sml if this skb is under mss
1516 * Note that a TSO packet might end with a sub-mss segment
1517 * The test is really :
1518 * if ((skb->len % mss) != 0)
1519 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1520 * But we can avoid doing the divide again given we already have
1521 * skb_pcount = skb->len / mss_now
1522 */
1523 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1524 const struct sk_buff *skb)
1525 {
1526 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1527 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1528 }
1529
1530 /* Return false, if packet can be sent now without violation Nagle's rules:
1531 * 1. It is full sized. (provided by caller in %partial bool)
1532 * 2. Or it contains FIN. (already checked by caller)
1533 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1534 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1535 * With Minshall's modification: all sent small packets are ACKed.
1536 */
1537 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1538 int nonagle)
1539 {
1540 return partial &&
1541 ((nonagle & TCP_NAGLE_CORK) ||
1542 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1543 }
1544
1545 /* Return how many segs we'd like on a TSO packet,
1546 * to send one TSO packet per ms
1547 */
1548 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1549 {
1550 u32 bytes, segs;
1551
1552 bytes = min(sk->sk_pacing_rate >> 10,
1553 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1554
1555 /* Goal is to send at least one packet per ms,
1556 * not one big TSO packet every 100 ms.
1557 * This preserves ACK clocking and is consistent
1558 * with tcp_tso_should_defer() heuristic.
1559 */
1560 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1561
1562 return min_t(u32, segs, sk->sk_gso_max_segs);
1563 }
1564
1565 /* Returns the portion of skb which can be sent right away */
1566 static unsigned int tcp_mss_split_point(const struct sock *sk,
1567 const struct sk_buff *skb,
1568 unsigned int mss_now,
1569 unsigned int max_segs,
1570 int nonagle)
1571 {
1572 const struct tcp_sock *tp = tcp_sk(sk);
1573 u32 partial, needed, window, max_len;
1574
1575 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1576 max_len = mss_now * max_segs;
1577
1578 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1579 return max_len;
1580
1581 needed = min(skb->len, window);
1582
1583 if (max_len <= needed)
1584 return max_len;
1585
1586 partial = needed % mss_now;
1587 /* If last segment is not a full MSS, check if Nagle rules allow us
1588 * to include this last segment in this skb.
1589 * Otherwise, we'll split the skb at last MSS boundary
1590 */
1591 if (tcp_nagle_check(partial != 0, tp, nonagle))
1592 return needed - partial;
1593
1594 return needed;
1595 }
1596
1597 /* Can at least one segment of SKB be sent right now, according to the
1598 * congestion window rules? If so, return how many segments are allowed.
1599 */
1600 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1601 const struct sk_buff *skb)
1602 {
1603 u32 in_flight, cwnd, halfcwnd;
1604
1605 /* Don't be strict about the congestion window for the final FIN. */
1606 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1607 tcp_skb_pcount(skb) == 1)
1608 return 1;
1609
1610 in_flight = tcp_packets_in_flight(tp);
1611 cwnd = tp->snd_cwnd;
1612 if (in_flight >= cwnd)
1613 return 0;
1614
1615 /* For better scheduling, ensure we have at least
1616 * 2 GSO packets in flight.
1617 */
1618 halfcwnd = max(cwnd >> 1, 1U);
1619 return min(halfcwnd, cwnd - in_flight);
1620 }
1621
1622 /* Initialize TSO state of a skb.
1623 * This must be invoked the first time we consider transmitting
1624 * SKB onto the wire.
1625 */
1626 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1627 {
1628 int tso_segs = tcp_skb_pcount(skb);
1629
1630 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1631 tcp_set_skb_tso_segs(skb, mss_now);
1632 tso_segs = tcp_skb_pcount(skb);
1633 }
1634 return tso_segs;
1635 }
1636
1637
1638 /* Return true if the Nagle test allows this packet to be
1639 * sent now.
1640 */
1641 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1642 unsigned int cur_mss, int nonagle)
1643 {
1644 /* Nagle rule does not apply to frames, which sit in the middle of the
1645 * write_queue (they have no chances to get new data).
1646 *
1647 * This is implemented in the callers, where they modify the 'nonagle'
1648 * argument based upon the location of SKB in the send queue.
1649 */
1650 if (nonagle & TCP_NAGLE_PUSH)
1651 return true;
1652
1653 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1654 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1655 return true;
1656
1657 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1658 return true;
1659
1660 return false;
1661 }
1662
1663 /* Does at least the first segment of SKB fit into the send window? */
1664 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1665 const struct sk_buff *skb,
1666 unsigned int cur_mss)
1667 {
1668 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1669
1670 if (skb->len > cur_mss)
1671 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1672
1673 return !after(end_seq, tcp_wnd_end(tp));
1674 }
1675
1676 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1677 * should be put on the wire right now. If so, it returns the number of
1678 * packets allowed by the congestion window.
1679 */
1680 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1681 unsigned int cur_mss, int nonagle)
1682 {
1683 const struct tcp_sock *tp = tcp_sk(sk);
1684 unsigned int cwnd_quota;
1685
1686 tcp_init_tso_segs(skb, cur_mss);
1687
1688 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1689 return 0;
1690
1691 cwnd_quota = tcp_cwnd_test(tp, skb);
1692 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1693 cwnd_quota = 0;
1694
1695 return cwnd_quota;
1696 }
1697
1698 /* Test if sending is allowed right now. */
1699 bool tcp_may_send_now(struct sock *sk)
1700 {
1701 const struct tcp_sock *tp = tcp_sk(sk);
1702 struct sk_buff *skb = tcp_send_head(sk);
1703
1704 return skb &&
1705 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1706 (tcp_skb_is_last(sk, skb) ?
1707 tp->nonagle : TCP_NAGLE_PUSH));
1708 }
1709
1710 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1711 * which is put after SKB on the list. It is very much like
1712 * tcp_fragment() except that it may make several kinds of assumptions
1713 * in order to speed up the splitting operation. In particular, we
1714 * know that all the data is in scatter-gather pages, and that the
1715 * packet has never been sent out before (and thus is not cloned).
1716 */
1717 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1718 unsigned int mss_now, gfp_t gfp)
1719 {
1720 struct sk_buff *buff;
1721 int nlen = skb->len - len;
1722 u8 flags;
1723
1724 /* All of a TSO frame must be composed of paged data. */
1725 if (skb->len != skb->data_len)
1726 return tcp_fragment(sk, skb, len, mss_now, gfp);
1727
1728 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1729 if (unlikely(!buff))
1730 return -ENOMEM;
1731
1732 sk->sk_wmem_queued += buff->truesize;
1733 sk_mem_charge(sk, buff->truesize);
1734 buff->truesize += nlen;
1735 skb->truesize -= nlen;
1736
1737 /* Correct the sequence numbers. */
1738 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1739 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1740 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1741
1742 /* PSH and FIN should only be set in the second packet. */
1743 flags = TCP_SKB_CB(skb)->tcp_flags;
1744 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1745 TCP_SKB_CB(buff)->tcp_flags = flags;
1746
1747 /* This packet was never sent out yet, so no SACK bits. */
1748 TCP_SKB_CB(buff)->sacked = 0;
1749
1750 tcp_skb_fragment_eor(skb, buff);
1751
1752 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1753 skb_split(skb, buff, len);
1754 tcp_fragment_tstamp(skb, buff);
1755
1756 /* Fix up tso_factor for both original and new SKB. */
1757 tcp_set_skb_tso_segs(skb, mss_now);
1758 tcp_set_skb_tso_segs(buff, mss_now);
1759
1760 /* Link BUFF into the send queue. */
1761 __skb_header_release(buff);
1762 tcp_insert_write_queue_after(skb, buff, sk);
1763
1764 return 0;
1765 }
1766
1767 /* Try to defer sending, if possible, in order to minimize the amount
1768 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1769 *
1770 * This algorithm is from John Heffner.
1771 */
1772 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1773 bool *is_cwnd_limited, u32 max_segs)
1774 {
1775 const struct inet_connection_sock *icsk = inet_csk(sk);
1776 u32 age, send_win, cong_win, limit, in_flight;
1777 struct tcp_sock *tp = tcp_sk(sk);
1778 struct skb_mstamp now;
1779 struct sk_buff *head;
1780 int win_divisor;
1781
1782 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1783 goto send_now;
1784
1785 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1786 goto send_now;
1787
1788 /* Avoid bursty behavior by allowing defer
1789 * only if the last write was recent.
1790 */
1791 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1792 goto send_now;
1793
1794 in_flight = tcp_packets_in_flight(tp);
1795
1796 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1797
1798 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1799
1800 /* From in_flight test above, we know that cwnd > in_flight. */
1801 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1802
1803 limit = min(send_win, cong_win);
1804
1805 /* If a full-sized TSO skb can be sent, do it. */
1806 if (limit >= max_segs * tp->mss_cache)
1807 goto send_now;
1808
1809 /* Middle in queue won't get any more data, full sendable already? */
1810 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1811 goto send_now;
1812
1813 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1814 if (win_divisor) {
1815 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1816
1817 /* If at least some fraction of a window is available,
1818 * just use it.
1819 */
1820 chunk /= win_divisor;
1821 if (limit >= chunk)
1822 goto send_now;
1823 } else {
1824 /* Different approach, try not to defer past a single
1825 * ACK. Receiver should ACK every other full sized
1826 * frame, so if we have space for more than 3 frames
1827 * then send now.
1828 */
1829 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1830 goto send_now;
1831 }
1832
1833 head = tcp_write_queue_head(sk);
1834 skb_mstamp_get(&now);
1835 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1836 /* If next ACK is likely to come too late (half srtt), do not defer */
1837 if (age < (tp->srtt_us >> 4))
1838 goto send_now;
1839
1840 /* Ok, it looks like it is advisable to defer. */
1841
1842 if (cong_win < send_win && cong_win <= skb->len)
1843 *is_cwnd_limited = true;
1844
1845 return true;
1846
1847 send_now:
1848 return false;
1849 }
1850
1851 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1852 {
1853 struct inet_connection_sock *icsk = inet_csk(sk);
1854 struct tcp_sock *tp = tcp_sk(sk);
1855 struct net *net = sock_net(sk);
1856 u32 interval;
1857 s32 delta;
1858
1859 interval = net->ipv4.sysctl_tcp_probe_interval;
1860 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1861 if (unlikely(delta >= interval * HZ)) {
1862 int mss = tcp_current_mss(sk);
1863
1864 /* Update current search range */
1865 icsk->icsk_mtup.probe_size = 0;
1866 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1867 sizeof(struct tcphdr) +
1868 icsk->icsk_af_ops->net_header_len;
1869 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1870
1871 /* Update probe time stamp */
1872 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1873 }
1874 }
1875
1876 /* Create a new MTU probe if we are ready.
1877 * MTU probe is regularly attempting to increase the path MTU by
1878 * deliberately sending larger packets. This discovers routing
1879 * changes resulting in larger path MTUs.
1880 *
1881 * Returns 0 if we should wait to probe (no cwnd available),
1882 * 1 if a probe was sent,
1883 * -1 otherwise
1884 */
1885 static int tcp_mtu_probe(struct sock *sk)
1886 {
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 struct inet_connection_sock *icsk = inet_csk(sk);
1889 struct sk_buff *skb, *nskb, *next;
1890 struct net *net = sock_net(sk);
1891 int len;
1892 int probe_size;
1893 int size_needed;
1894 int copy;
1895 int mss_now;
1896 int interval;
1897
1898 /* Not currently probing/verifying,
1899 * not in recovery,
1900 * have enough cwnd, and
1901 * not SACKing (the variable headers throw things off) */
1902 if (!icsk->icsk_mtup.enabled ||
1903 icsk->icsk_mtup.probe_size ||
1904 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1905 tp->snd_cwnd < 11 ||
1906 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1907 return -1;
1908
1909 /* Use binary search for probe_size between tcp_mss_base,
1910 * and current mss_clamp. if (search_high - search_low)
1911 * smaller than a threshold, backoff from probing.
1912 */
1913 mss_now = tcp_current_mss(sk);
1914 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1915 icsk->icsk_mtup.search_low) >> 1);
1916 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1917 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1918 /* When misfortune happens, we are reprobing actively,
1919 * and then reprobe timer has expired. We stick with current
1920 * probing process by not resetting search range to its orignal.
1921 */
1922 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1923 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1924 /* Check whether enough time has elaplased for
1925 * another round of probing.
1926 */
1927 tcp_mtu_check_reprobe(sk);
1928 return -1;
1929 }
1930
1931 /* Have enough data in the send queue to probe? */
1932 if (tp->write_seq - tp->snd_nxt < size_needed)
1933 return -1;
1934
1935 if (tp->snd_wnd < size_needed)
1936 return -1;
1937 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1938 return 0;
1939
1940 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1941 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1942 if (!tcp_packets_in_flight(tp))
1943 return -1;
1944 else
1945 return 0;
1946 }
1947
1948 /* We're allowed to probe. Build it now. */
1949 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1950 if (!nskb)
1951 return -1;
1952 sk->sk_wmem_queued += nskb->truesize;
1953 sk_mem_charge(sk, nskb->truesize);
1954
1955 skb = tcp_send_head(sk);
1956
1957 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1958 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1959 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1960 TCP_SKB_CB(nskb)->sacked = 0;
1961 nskb->csum = 0;
1962 nskb->ip_summed = skb->ip_summed;
1963
1964 tcp_insert_write_queue_before(nskb, skb, sk);
1965
1966 len = 0;
1967 tcp_for_write_queue_from_safe(skb, next, sk) {
1968 copy = min_t(int, skb->len, probe_size - len);
1969 if (nskb->ip_summed)
1970 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1971 else
1972 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1973 skb_put(nskb, copy),
1974 copy, nskb->csum);
1975
1976 if (skb->len <= copy) {
1977 /* We've eaten all the data from this skb.
1978 * Throw it away. */
1979 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1980 tcp_unlink_write_queue(skb, sk);
1981 sk_wmem_free_skb(sk, skb);
1982 } else {
1983 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1984 ~(TCPHDR_FIN|TCPHDR_PSH);
1985 if (!skb_shinfo(skb)->nr_frags) {
1986 skb_pull(skb, copy);
1987 if (skb->ip_summed != CHECKSUM_PARTIAL)
1988 skb->csum = csum_partial(skb->data,
1989 skb->len, 0);
1990 } else {
1991 __pskb_trim_head(skb, copy);
1992 tcp_set_skb_tso_segs(skb, mss_now);
1993 }
1994 TCP_SKB_CB(skb)->seq += copy;
1995 }
1996
1997 len += copy;
1998
1999 if (len >= probe_size)
2000 break;
2001 }
2002 tcp_init_tso_segs(nskb, nskb->len);
2003
2004 /* We're ready to send. If this fails, the probe will
2005 * be resegmented into mss-sized pieces by tcp_write_xmit().
2006 */
2007 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2008 /* Decrement cwnd here because we are sending
2009 * effectively two packets. */
2010 tp->snd_cwnd--;
2011 tcp_event_new_data_sent(sk, nskb);
2012
2013 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2014 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2015 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2016
2017 return 1;
2018 }
2019
2020 return -1;
2021 }
2022
2023 /* This routine writes packets to the network. It advances the
2024 * send_head. This happens as incoming acks open up the remote
2025 * window for us.
2026 *
2027 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2028 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2029 * account rare use of URG, this is not a big flaw.
2030 *
2031 * Send at most one packet when push_one > 0. Temporarily ignore
2032 * cwnd limit to force at most one packet out when push_one == 2.
2033
2034 * Returns true, if no segments are in flight and we have queued segments,
2035 * but cannot send anything now because of SWS or another problem.
2036 */
2037 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2038 int push_one, gfp_t gfp)
2039 {
2040 struct tcp_sock *tp = tcp_sk(sk);
2041 struct sk_buff *skb;
2042 unsigned int tso_segs, sent_pkts;
2043 int cwnd_quota;
2044 int result;
2045 bool is_cwnd_limited = false;
2046 u32 max_segs;
2047
2048 sent_pkts = 0;
2049
2050 if (!push_one) {
2051 /* Do MTU probing. */
2052 result = tcp_mtu_probe(sk);
2053 if (!result) {
2054 return false;
2055 } else if (result > 0) {
2056 sent_pkts = 1;
2057 }
2058 }
2059
2060 max_segs = tcp_tso_autosize(sk, mss_now);
2061 while ((skb = tcp_send_head(sk))) {
2062 unsigned int limit;
2063
2064 tso_segs = tcp_init_tso_segs(skb, mss_now);
2065 BUG_ON(!tso_segs);
2066
2067 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2068 /* "skb_mstamp" is used as a start point for the retransmit timer */
2069 skb_mstamp_get(&skb->skb_mstamp);
2070 goto repair; /* Skip network transmission */
2071 }
2072
2073 cwnd_quota = tcp_cwnd_test(tp, skb);
2074 if (!cwnd_quota) {
2075 if (push_one == 2)
2076 /* Force out a loss probe pkt. */
2077 cwnd_quota = 1;
2078 else
2079 break;
2080 }
2081
2082 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2083 break;
2084
2085 if (tso_segs == 1) {
2086 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2087 (tcp_skb_is_last(sk, skb) ?
2088 nonagle : TCP_NAGLE_PUSH))))
2089 break;
2090 } else {
2091 if (!push_one &&
2092 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2093 max_segs))
2094 break;
2095 }
2096
2097 limit = mss_now;
2098 if (tso_segs > 1 && !tcp_urg_mode(tp))
2099 limit = tcp_mss_split_point(sk, skb, mss_now,
2100 min_t(unsigned int,
2101 cwnd_quota,
2102 max_segs),
2103 nonagle);
2104
2105 if (skb->len > limit &&
2106 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2107 break;
2108
2109 /* TCP Small Queues :
2110 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2111 * This allows for :
2112 * - better RTT estimation and ACK scheduling
2113 * - faster recovery
2114 * - high rates
2115 * Alas, some drivers / subsystems require a fair amount
2116 * of queued bytes to ensure line rate.
2117 * One example is wifi aggregation (802.11 AMPDU)
2118 */
2119 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2120 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2121
2122 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2123 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2124 /* It is possible TX completion already happened
2125 * before we set TSQ_THROTTLED, so we must
2126 * test again the condition.
2127 */
2128 smp_mb__after_atomic();
2129 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2130 break;
2131 }
2132
2133 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2134 break;
2135
2136 repair:
2137 /* Advance the send_head. This one is sent out.
2138 * This call will increment packets_out.
2139 */
2140 tcp_event_new_data_sent(sk, skb);
2141
2142 tcp_minshall_update(tp, mss_now, skb);
2143 sent_pkts += tcp_skb_pcount(skb);
2144
2145 if (push_one)
2146 break;
2147 }
2148
2149 if (likely(sent_pkts)) {
2150 if (tcp_in_cwnd_reduction(sk))
2151 tp->prr_out += sent_pkts;
2152
2153 /* Send one loss probe per tail loss episode. */
2154 if (push_one != 2)
2155 tcp_schedule_loss_probe(sk);
2156 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2157 tcp_cwnd_validate(sk, is_cwnd_limited);
2158 return false;
2159 }
2160 return !tp->packets_out && tcp_send_head(sk);
2161 }
2162
2163 bool tcp_schedule_loss_probe(struct sock *sk)
2164 {
2165 struct inet_connection_sock *icsk = inet_csk(sk);
2166 struct tcp_sock *tp = tcp_sk(sk);
2167 u32 timeout, tlp_time_stamp, rto_time_stamp;
2168 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2169
2170 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2171 return false;
2172 /* No consecutive loss probes. */
2173 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2174 tcp_rearm_rto(sk);
2175 return false;
2176 }
2177 /* Don't do any loss probe on a Fast Open connection before 3WHS
2178 * finishes.
2179 */
2180 if (tp->fastopen_rsk)
2181 return false;
2182
2183 /* TLP is only scheduled when next timer event is RTO. */
2184 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2185 return false;
2186
2187 /* Schedule a loss probe in 2*RTT for SACK capable connections
2188 * in Open state, that are either limited by cwnd or application.
2189 */
2190 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2191 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2192 return false;
2193
2194 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2195 tcp_send_head(sk))
2196 return false;
2197
2198 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2199 * for delayed ack when there's one outstanding packet. If no RTT
2200 * sample is available then probe after TCP_TIMEOUT_INIT.
2201 */
2202 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2203 if (tp->packets_out == 1)
2204 timeout = max_t(u32, timeout,
2205 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2206 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2207
2208 /* If RTO is shorter, just schedule TLP in its place. */
2209 tlp_time_stamp = tcp_time_stamp + timeout;
2210 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2211 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2212 s32 delta = rto_time_stamp - tcp_time_stamp;
2213 if (delta > 0)
2214 timeout = delta;
2215 }
2216
2217 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2218 TCP_RTO_MAX);
2219 return true;
2220 }
2221
2222 /* Thanks to skb fast clones, we can detect if a prior transmit of
2223 * a packet is still in a qdisc or driver queue.
2224 * In this case, there is very little point doing a retransmit !
2225 */
2226 static bool skb_still_in_host_queue(const struct sock *sk,
2227 const struct sk_buff *skb)
2228 {
2229 if (unlikely(skb_fclone_busy(sk, skb))) {
2230 NET_INC_STATS(sock_net(sk),
2231 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2232 return true;
2233 }
2234 return false;
2235 }
2236
2237 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2238 * retransmit the last segment.
2239 */
2240 void tcp_send_loss_probe(struct sock *sk)
2241 {
2242 struct tcp_sock *tp = tcp_sk(sk);
2243 struct sk_buff *skb;
2244 int pcount;
2245 int mss = tcp_current_mss(sk);
2246
2247 skb = tcp_send_head(sk);
2248 if (skb) {
2249 if (tcp_snd_wnd_test(tp, skb, mss)) {
2250 pcount = tp->packets_out;
2251 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2252 if (tp->packets_out > pcount)
2253 goto probe_sent;
2254 goto rearm_timer;
2255 }
2256 skb = tcp_write_queue_prev(sk, skb);
2257 } else {
2258 skb = tcp_write_queue_tail(sk);
2259 }
2260
2261 /* At most one outstanding TLP retransmission. */
2262 if (tp->tlp_high_seq)
2263 goto rearm_timer;
2264
2265 /* Retransmit last segment. */
2266 if (WARN_ON(!skb))
2267 goto rearm_timer;
2268
2269 if (skb_still_in_host_queue(sk, skb))
2270 goto rearm_timer;
2271
2272 pcount = tcp_skb_pcount(skb);
2273 if (WARN_ON(!pcount))
2274 goto rearm_timer;
2275
2276 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2277 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2278 GFP_ATOMIC)))
2279 goto rearm_timer;
2280 skb = tcp_write_queue_next(sk, skb);
2281 }
2282
2283 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2284 goto rearm_timer;
2285
2286 if (__tcp_retransmit_skb(sk, skb, 1))
2287 goto rearm_timer;
2288
2289 /* Record snd_nxt for loss detection. */
2290 tp->tlp_high_seq = tp->snd_nxt;
2291
2292 probe_sent:
2293 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2294 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2295 inet_csk(sk)->icsk_pending = 0;
2296 rearm_timer:
2297 tcp_rearm_rto(sk);
2298 }
2299
2300 /* Push out any pending frames which were held back due to
2301 * TCP_CORK or attempt at coalescing tiny packets.
2302 * The socket must be locked by the caller.
2303 */
2304 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2305 int nonagle)
2306 {
2307 /* If we are closed, the bytes will have to remain here.
2308 * In time closedown will finish, we empty the write queue and
2309 * all will be happy.
2310 */
2311 if (unlikely(sk->sk_state == TCP_CLOSE))
2312 return;
2313
2314 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2315 sk_gfp_mask(sk, GFP_ATOMIC)))
2316 tcp_check_probe_timer(sk);
2317 }
2318
2319 /* Send _single_ skb sitting at the send head. This function requires
2320 * true push pending frames to setup probe timer etc.
2321 */
2322 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2323 {
2324 struct sk_buff *skb = tcp_send_head(sk);
2325
2326 BUG_ON(!skb || skb->len < mss_now);
2327
2328 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2329 }
2330
2331 /* This function returns the amount that we can raise the
2332 * usable window based on the following constraints
2333 *
2334 * 1. The window can never be shrunk once it is offered (RFC 793)
2335 * 2. We limit memory per socket
2336 *
2337 * RFC 1122:
2338 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2339 * RECV.NEXT + RCV.WIN fixed until:
2340 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2341 *
2342 * i.e. don't raise the right edge of the window until you can raise
2343 * it at least MSS bytes.
2344 *
2345 * Unfortunately, the recommended algorithm breaks header prediction,
2346 * since header prediction assumes th->window stays fixed.
2347 *
2348 * Strictly speaking, keeping th->window fixed violates the receiver
2349 * side SWS prevention criteria. The problem is that under this rule
2350 * a stream of single byte packets will cause the right side of the
2351 * window to always advance by a single byte.
2352 *
2353 * Of course, if the sender implements sender side SWS prevention
2354 * then this will not be a problem.
2355 *
2356 * BSD seems to make the following compromise:
2357 *
2358 * If the free space is less than the 1/4 of the maximum
2359 * space available and the free space is less than 1/2 mss,
2360 * then set the window to 0.
2361 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2362 * Otherwise, just prevent the window from shrinking
2363 * and from being larger than the largest representable value.
2364 *
2365 * This prevents incremental opening of the window in the regime
2366 * where TCP is limited by the speed of the reader side taking
2367 * data out of the TCP receive queue. It does nothing about
2368 * those cases where the window is constrained on the sender side
2369 * because the pipeline is full.
2370 *
2371 * BSD also seems to "accidentally" limit itself to windows that are a
2372 * multiple of MSS, at least until the free space gets quite small.
2373 * This would appear to be a side effect of the mbuf implementation.
2374 * Combining these two algorithms results in the observed behavior
2375 * of having a fixed window size at almost all times.
2376 *
2377 * Below we obtain similar behavior by forcing the offered window to
2378 * a multiple of the mss when it is feasible to do so.
2379 *
2380 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2381 * Regular options like TIMESTAMP are taken into account.
2382 */
2383 u32 __tcp_select_window(struct sock *sk)
2384 {
2385 struct inet_connection_sock *icsk = inet_csk(sk);
2386 struct tcp_sock *tp = tcp_sk(sk);
2387 /* MSS for the peer's data. Previous versions used mss_clamp
2388 * here. I don't know if the value based on our guesses
2389 * of peer's MSS is better for the performance. It's more correct
2390 * but may be worse for the performance because of rcv_mss
2391 * fluctuations. --SAW 1998/11/1
2392 */
2393 int mss = icsk->icsk_ack.rcv_mss;
2394 int free_space = tcp_space(sk);
2395 int allowed_space = tcp_full_space(sk);
2396 int full_space = min_t(int, tp->window_clamp, allowed_space);
2397 int window;
2398
2399 if (mss > full_space)
2400 mss = full_space;
2401
2402 if (free_space < (full_space >> 1)) {
2403 icsk->icsk_ack.quick = 0;
2404
2405 if (tcp_under_memory_pressure(sk))
2406 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2407 4U * tp->advmss);
2408
2409 /* free_space might become our new window, make sure we don't
2410 * increase it due to wscale.
2411 */
2412 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2413
2414 /* if free space is less than mss estimate, or is below 1/16th
2415 * of the maximum allowed, try to move to zero-window, else
2416 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2417 * new incoming data is dropped due to memory limits.
2418 * With large window, mss test triggers way too late in order
2419 * to announce zero window in time before rmem limit kicks in.
2420 */
2421 if (free_space < (allowed_space >> 4) || free_space < mss)
2422 return 0;
2423 }
2424
2425 if (free_space > tp->rcv_ssthresh)
2426 free_space = tp->rcv_ssthresh;
2427
2428 /* Don't do rounding if we are using window scaling, since the
2429 * scaled window will not line up with the MSS boundary anyway.
2430 */
2431 window = tp->rcv_wnd;
2432 if (tp->rx_opt.rcv_wscale) {
2433 window = free_space;
2434
2435 /* Advertise enough space so that it won't get scaled away.
2436 * Import case: prevent zero window announcement if
2437 * 1<<rcv_wscale > mss.
2438 */
2439 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2440 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2441 << tp->rx_opt.rcv_wscale);
2442 } else {
2443 /* Get the largest window that is a nice multiple of mss.
2444 * Window clamp already applied above.
2445 * If our current window offering is within 1 mss of the
2446 * free space we just keep it. This prevents the divide
2447 * and multiply from happening most of the time.
2448 * We also don't do any window rounding when the free space
2449 * is too small.
2450 */
2451 if (window <= free_space - mss || window > free_space)
2452 window = (free_space / mss) * mss;
2453 else if (mss == full_space &&
2454 free_space > window + (full_space >> 1))
2455 window = free_space;
2456 }
2457
2458 return window;
2459 }
2460
2461 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2462 const struct sk_buff *next_skb)
2463 {
2464 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2465 const struct skb_shared_info *next_shinfo =
2466 skb_shinfo(next_skb);
2467 struct skb_shared_info *shinfo = skb_shinfo(skb);
2468
2469 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2470 shinfo->tskey = next_shinfo->tskey;
2471 TCP_SKB_CB(skb)->txstamp_ack |=
2472 TCP_SKB_CB(next_skb)->txstamp_ack;
2473 }
2474 }
2475
2476 /* Collapses two adjacent SKB's during retransmission. */
2477 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2481 int skb_size, next_skb_size;
2482
2483 skb_size = skb->len;
2484 next_skb_size = next_skb->len;
2485
2486 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2487
2488 tcp_highest_sack_combine(sk, next_skb, skb);
2489
2490 tcp_unlink_write_queue(next_skb, sk);
2491
2492 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2493 next_skb_size);
2494
2495 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2496 skb->ip_summed = CHECKSUM_PARTIAL;
2497
2498 if (skb->ip_summed != CHECKSUM_PARTIAL)
2499 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2500
2501 /* Update sequence range on original skb. */
2502 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2503
2504 /* Merge over control information. This moves PSH/FIN etc. over */
2505 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2506
2507 /* All done, get rid of second SKB and account for it so
2508 * packet counting does not break.
2509 */
2510 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2511 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2512
2513 /* changed transmit queue under us so clear hints */
2514 tcp_clear_retrans_hints_partial(tp);
2515 if (next_skb == tp->retransmit_skb_hint)
2516 tp->retransmit_skb_hint = skb;
2517
2518 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2519
2520 tcp_skb_collapse_tstamp(skb, next_skb);
2521
2522 sk_wmem_free_skb(sk, next_skb);
2523 }
2524
2525 /* Check if coalescing SKBs is legal. */
2526 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2527 {
2528 if (tcp_skb_pcount(skb) > 1)
2529 return false;
2530 /* TODO: SACK collapsing could be used to remove this condition */
2531 if (skb_shinfo(skb)->nr_frags != 0)
2532 return false;
2533 if (skb_cloned(skb))
2534 return false;
2535 if (skb == tcp_send_head(sk))
2536 return false;
2537 /* Some heurestics for collapsing over SACK'd could be invented */
2538 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2539 return false;
2540
2541 return true;
2542 }
2543
2544 /* Collapse packets in the retransmit queue to make to create
2545 * less packets on the wire. This is only done on retransmission.
2546 */
2547 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2548 int space)
2549 {
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb = to, *tmp;
2552 bool first = true;
2553
2554 if (!sysctl_tcp_retrans_collapse)
2555 return;
2556 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2557 return;
2558
2559 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2560 if (!tcp_can_collapse(sk, skb))
2561 break;
2562
2563 if (!tcp_skb_can_collapse_to(to))
2564 break;
2565
2566 space -= skb->len;
2567
2568 if (first) {
2569 first = false;
2570 continue;
2571 }
2572
2573 if (space < 0)
2574 break;
2575 /* Punt if not enough space exists in the first SKB for
2576 * the data in the second
2577 */
2578 if (skb->len > skb_availroom(to))
2579 break;
2580
2581 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2582 break;
2583
2584 tcp_collapse_retrans(sk, to);
2585 }
2586 }
2587
2588 /* This retransmits one SKB. Policy decisions and retransmit queue
2589 * state updates are done by the caller. Returns non-zero if an
2590 * error occurred which prevented the send.
2591 */
2592 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2593 {
2594 struct inet_connection_sock *icsk = inet_csk(sk);
2595 struct tcp_sock *tp = tcp_sk(sk);
2596 unsigned int cur_mss;
2597 int diff, len, err;
2598
2599
2600 /* Inconclusive MTU probe */
2601 if (icsk->icsk_mtup.probe_size)
2602 icsk->icsk_mtup.probe_size = 0;
2603
2604 /* Do not sent more than we queued. 1/4 is reserved for possible
2605 * copying overhead: fragmentation, tunneling, mangling etc.
2606 */
2607 if (atomic_read(&sk->sk_wmem_alloc) >
2608 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2609 return -EAGAIN;
2610
2611 if (skb_still_in_host_queue(sk, skb))
2612 return -EBUSY;
2613
2614 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2615 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2616 BUG();
2617 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2618 return -ENOMEM;
2619 }
2620
2621 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2622 return -EHOSTUNREACH; /* Routing failure or similar. */
2623
2624 cur_mss = tcp_current_mss(sk);
2625
2626 /* If receiver has shrunk his window, and skb is out of
2627 * new window, do not retransmit it. The exception is the
2628 * case, when window is shrunk to zero. In this case
2629 * our retransmit serves as a zero window probe.
2630 */
2631 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2632 TCP_SKB_CB(skb)->seq != tp->snd_una)
2633 return -EAGAIN;
2634
2635 len = cur_mss * segs;
2636 if (skb->len > len) {
2637 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2638 return -ENOMEM; /* We'll try again later. */
2639 } else {
2640 if (skb_unclone(skb, GFP_ATOMIC))
2641 return -ENOMEM;
2642
2643 diff = tcp_skb_pcount(skb);
2644 tcp_set_skb_tso_segs(skb, cur_mss);
2645 diff -= tcp_skb_pcount(skb);
2646 if (diff)
2647 tcp_adjust_pcount(sk, skb, diff);
2648 if (skb->len < cur_mss)
2649 tcp_retrans_try_collapse(sk, skb, cur_mss);
2650 }
2651
2652 /* RFC3168, section 6.1.1.1. ECN fallback */
2653 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2654 tcp_ecn_clear_syn(sk, skb);
2655
2656 /* make sure skb->data is aligned on arches that require it
2657 * and check if ack-trimming & collapsing extended the headroom
2658 * beyond what csum_start can cover.
2659 */
2660 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2661 skb_headroom(skb) >= 0xFFFF)) {
2662 struct sk_buff *nskb;
2663
2664 skb_mstamp_get(&skb->skb_mstamp);
2665 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2666 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2667 -ENOBUFS;
2668 } else {
2669 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2670 }
2671
2672 if (likely(!err)) {
2673 segs = tcp_skb_pcount(skb);
2674
2675 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2676 /* Update global TCP statistics. */
2677 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2679 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2680 tp->total_retrans += segs;
2681 }
2682 return err;
2683 }
2684
2685 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2686 {
2687 struct tcp_sock *tp = tcp_sk(sk);
2688 int err = __tcp_retransmit_skb(sk, skb, segs);
2689
2690 if (err == 0) {
2691 #if FASTRETRANS_DEBUG > 0
2692 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2693 net_dbg_ratelimited("retrans_out leaked\n");
2694 }
2695 #endif
2696 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2697 tp->retrans_out += tcp_skb_pcount(skb);
2698
2699 /* Save stamp of the first retransmit. */
2700 if (!tp->retrans_stamp)
2701 tp->retrans_stamp = tcp_skb_timestamp(skb);
2702
2703 } else if (err != -EBUSY) {
2704 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2705 }
2706
2707 if (tp->undo_retrans < 0)
2708 tp->undo_retrans = 0;
2709 tp->undo_retrans += tcp_skb_pcount(skb);
2710 return err;
2711 }
2712
2713 /* Check if we forward retransmits are possible in the current
2714 * window/congestion state.
2715 */
2716 static bool tcp_can_forward_retransmit(struct sock *sk)
2717 {
2718 const struct inet_connection_sock *icsk = inet_csk(sk);
2719 const struct tcp_sock *tp = tcp_sk(sk);
2720
2721 /* Forward retransmissions are possible only during Recovery. */
2722 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2723 return false;
2724
2725 /* No forward retransmissions in Reno are possible. */
2726 if (tcp_is_reno(tp))
2727 return false;
2728
2729 /* Yeah, we have to make difficult choice between forward transmission
2730 * and retransmission... Both ways have their merits...
2731 *
2732 * For now we do not retransmit anything, while we have some new
2733 * segments to send. In the other cases, follow rule 3 for
2734 * NextSeg() specified in RFC3517.
2735 */
2736
2737 if (tcp_may_send_now(sk))
2738 return false;
2739
2740 return true;
2741 }
2742
2743 /* This gets called after a retransmit timeout, and the initially
2744 * retransmitted data is acknowledged. It tries to continue
2745 * resending the rest of the retransmit queue, until either
2746 * we've sent it all or the congestion window limit is reached.
2747 * If doing SACK, the first ACK which comes back for a timeout
2748 * based retransmit packet might feed us FACK information again.
2749 * If so, we use it to avoid unnecessarily retransmissions.
2750 */
2751 void tcp_xmit_retransmit_queue(struct sock *sk)
2752 {
2753 const struct inet_connection_sock *icsk = inet_csk(sk);
2754 struct tcp_sock *tp = tcp_sk(sk);
2755 struct sk_buff *skb;
2756 struct sk_buff *hole = NULL;
2757 u32 max_segs, last_lost;
2758 int mib_idx;
2759 int fwd_rexmitting = 0;
2760
2761 if (!tp->packets_out)
2762 return;
2763
2764 if (!tp->lost_out)
2765 tp->retransmit_high = tp->snd_una;
2766
2767 if (tp->retransmit_skb_hint) {
2768 skb = tp->retransmit_skb_hint;
2769 last_lost = TCP_SKB_CB(skb)->end_seq;
2770 if (after(last_lost, tp->retransmit_high))
2771 last_lost = tp->retransmit_high;
2772 } else {
2773 skb = tcp_write_queue_head(sk);
2774 last_lost = tp->snd_una;
2775 }
2776
2777 max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk));
2778 tcp_for_write_queue_from(skb, sk) {
2779 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2780 int segs;
2781
2782 if (skb == tcp_send_head(sk))
2783 break;
2784 /* we could do better than to assign each time */
2785 if (!hole)
2786 tp->retransmit_skb_hint = skb;
2787
2788 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2789 if (segs <= 0)
2790 return;
2791 /* In case tcp_shift_skb_data() have aggregated large skbs,
2792 * we need to make sure not sending too bigs TSO packets
2793 */
2794 segs = min_t(int, segs, max_segs);
2795
2796 if (fwd_rexmitting) {
2797 begin_fwd:
2798 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2799 break;
2800 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2801
2802 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2803 tp->retransmit_high = last_lost;
2804 if (!tcp_can_forward_retransmit(sk))
2805 break;
2806 /* Backtrack if necessary to non-L'ed skb */
2807 if (hole) {
2808 skb = hole;
2809 hole = NULL;
2810 }
2811 fwd_rexmitting = 1;
2812 goto begin_fwd;
2813
2814 } else if (!(sacked & TCPCB_LOST)) {
2815 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2816 hole = skb;
2817 continue;
2818
2819 } else {
2820 last_lost = TCP_SKB_CB(skb)->end_seq;
2821 if (icsk->icsk_ca_state != TCP_CA_Loss)
2822 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2823 else
2824 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2825 }
2826
2827 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2828 continue;
2829
2830 if (tcp_retransmit_skb(sk, skb, segs))
2831 return;
2832
2833 NET_INC_STATS(sock_net(sk), mib_idx);
2834
2835 if (tcp_in_cwnd_reduction(sk))
2836 tp->prr_out += tcp_skb_pcount(skb);
2837
2838 if (skb == tcp_write_queue_head(sk))
2839 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2840 inet_csk(sk)->icsk_rto,
2841 TCP_RTO_MAX);
2842 }
2843 }
2844
2845 /* We allow to exceed memory limits for FIN packets to expedite
2846 * connection tear down and (memory) recovery.
2847 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2848 * or even be forced to close flow without any FIN.
2849 * In general, we want to allow one skb per socket to avoid hangs
2850 * with edge trigger epoll()
2851 */
2852 void sk_forced_mem_schedule(struct sock *sk, int size)
2853 {
2854 int amt;
2855
2856 if (size <= sk->sk_forward_alloc)
2857 return;
2858 amt = sk_mem_pages(size);
2859 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2860 sk_memory_allocated_add(sk, amt);
2861
2862 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2863 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2864 }
2865
2866 /* Send a FIN. The caller locks the socket for us.
2867 * We should try to send a FIN packet really hard, but eventually give up.
2868 */
2869 void tcp_send_fin(struct sock *sk)
2870 {
2871 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2872 struct tcp_sock *tp = tcp_sk(sk);
2873
2874 /* Optimization, tack on the FIN if we have one skb in write queue and
2875 * this skb was not yet sent, or we are under memory pressure.
2876 * Note: in the latter case, FIN packet will be sent after a timeout,
2877 * as TCP stack thinks it has already been transmitted.
2878 */
2879 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2880 coalesce:
2881 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2882 TCP_SKB_CB(tskb)->end_seq++;
2883 tp->write_seq++;
2884 if (!tcp_send_head(sk)) {
2885 /* This means tskb was already sent.
2886 * Pretend we included the FIN on previous transmit.
2887 * We need to set tp->snd_nxt to the value it would have
2888 * if FIN had been sent. This is because retransmit path
2889 * does not change tp->snd_nxt.
2890 */
2891 tp->snd_nxt++;
2892 return;
2893 }
2894 } else {
2895 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2896 if (unlikely(!skb)) {
2897 if (tskb)
2898 goto coalesce;
2899 return;
2900 }
2901 skb_reserve(skb, MAX_TCP_HEADER);
2902 sk_forced_mem_schedule(sk, skb->truesize);
2903 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2904 tcp_init_nondata_skb(skb, tp->write_seq,
2905 TCPHDR_ACK | TCPHDR_FIN);
2906 tcp_queue_skb(sk, skb);
2907 }
2908 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2909 }
2910
2911 /* We get here when a process closes a file descriptor (either due to
2912 * an explicit close() or as a byproduct of exit()'ing) and there
2913 * was unread data in the receive queue. This behavior is recommended
2914 * by RFC 2525, section 2.17. -DaveM
2915 */
2916 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2917 {
2918 struct sk_buff *skb;
2919
2920 /* NOTE: No TCP options attached and we never retransmit this. */
2921 skb = alloc_skb(MAX_TCP_HEADER, priority);
2922 if (!skb) {
2923 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2924 return;
2925 }
2926
2927 /* Reserve space for headers and prepare control bits. */
2928 skb_reserve(skb, MAX_TCP_HEADER);
2929 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2930 TCPHDR_ACK | TCPHDR_RST);
2931 skb_mstamp_get(&skb->skb_mstamp);
2932 /* Send it off. */
2933 if (tcp_transmit_skb(sk, skb, 0, priority))
2934 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2935
2936 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2937 }
2938
2939 /* Send a crossed SYN-ACK during socket establishment.
2940 * WARNING: This routine must only be called when we have already sent
2941 * a SYN packet that crossed the incoming SYN that caused this routine
2942 * to get called. If this assumption fails then the initial rcv_wnd
2943 * and rcv_wscale values will not be correct.
2944 */
2945 int tcp_send_synack(struct sock *sk)
2946 {
2947 struct sk_buff *skb;
2948
2949 skb = tcp_write_queue_head(sk);
2950 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2951 pr_debug("%s: wrong queue state\n", __func__);
2952 return -EFAULT;
2953 }
2954 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2955 if (skb_cloned(skb)) {
2956 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2957 if (!nskb)
2958 return -ENOMEM;
2959 tcp_unlink_write_queue(skb, sk);
2960 __skb_header_release(nskb);
2961 __tcp_add_write_queue_head(sk, nskb);
2962 sk_wmem_free_skb(sk, skb);
2963 sk->sk_wmem_queued += nskb->truesize;
2964 sk_mem_charge(sk, nskb->truesize);
2965 skb = nskb;
2966 }
2967
2968 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2969 tcp_ecn_send_synack(sk, skb);
2970 }
2971 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2972 }
2973
2974 /**
2975 * tcp_make_synack - Prepare a SYN-ACK.
2976 * sk: listener socket
2977 * dst: dst entry attached to the SYNACK
2978 * req: request_sock pointer
2979 *
2980 * Allocate one skb and build a SYNACK packet.
2981 * @dst is consumed : Caller should not use it again.
2982 */
2983 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2984 struct request_sock *req,
2985 struct tcp_fastopen_cookie *foc,
2986 enum tcp_synack_type synack_type)
2987 {
2988 struct inet_request_sock *ireq = inet_rsk(req);
2989 const struct tcp_sock *tp = tcp_sk(sk);
2990 struct tcp_md5sig_key *md5 = NULL;
2991 struct tcp_out_options opts;
2992 struct sk_buff *skb;
2993 int tcp_header_size;
2994 struct tcphdr *th;
2995 u16 user_mss;
2996 int mss;
2997
2998 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2999 if (unlikely(!skb)) {
3000 dst_release(dst);
3001 return NULL;
3002 }
3003 /* Reserve space for headers. */
3004 skb_reserve(skb, MAX_TCP_HEADER);
3005
3006 switch (synack_type) {
3007 case TCP_SYNACK_NORMAL:
3008 skb_set_owner_w(skb, req_to_sk(req));
3009 break;
3010 case TCP_SYNACK_COOKIE:
3011 /* Under synflood, we do not attach skb to a socket,
3012 * to avoid false sharing.
3013 */
3014 break;
3015 case TCP_SYNACK_FASTOPEN:
3016 /* sk is a const pointer, because we want to express multiple
3017 * cpu might call us concurrently.
3018 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3019 */
3020 skb_set_owner_w(skb, (struct sock *)sk);
3021 break;
3022 }
3023 skb_dst_set(skb, dst);
3024
3025 mss = dst_metric_advmss(dst);
3026 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3027 if (user_mss && user_mss < mss)
3028 mss = user_mss;
3029
3030 memset(&opts, 0, sizeof(opts));
3031 #ifdef CONFIG_SYN_COOKIES
3032 if (unlikely(req->cookie_ts))
3033 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3034 else
3035 #endif
3036 skb_mstamp_get(&skb->skb_mstamp);
3037
3038 #ifdef CONFIG_TCP_MD5SIG
3039 rcu_read_lock();
3040 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3041 #endif
3042 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3043 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3044 sizeof(*th);
3045
3046 skb_push(skb, tcp_header_size);
3047 skb_reset_transport_header(skb);
3048
3049 th = (struct tcphdr *)skb->data;
3050 memset(th, 0, sizeof(struct tcphdr));
3051 th->syn = 1;
3052 th->ack = 1;
3053 tcp_ecn_make_synack(req, th);
3054 th->source = htons(ireq->ir_num);
3055 th->dest = ireq->ir_rmt_port;
3056 /* Setting of flags are superfluous here for callers (and ECE is
3057 * not even correctly set)
3058 */
3059 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3060 TCPHDR_SYN | TCPHDR_ACK);
3061
3062 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3063 /* XXX data is queued and acked as is. No buffer/window check */
3064 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3065
3066 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3067 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3068 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3069 th->doff = (tcp_header_size >> 2);
3070 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3071
3072 #ifdef CONFIG_TCP_MD5SIG
3073 /* Okay, we have all we need - do the md5 hash if needed */
3074 if (md5)
3075 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3076 md5, req_to_sk(req), skb);
3077 rcu_read_unlock();
3078 #endif
3079
3080 /* Do not fool tcpdump (if any), clean our debris */
3081 skb->tstamp.tv64 = 0;
3082 return skb;
3083 }
3084 EXPORT_SYMBOL(tcp_make_synack);
3085
3086 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3087 {
3088 struct inet_connection_sock *icsk = inet_csk(sk);
3089 const struct tcp_congestion_ops *ca;
3090 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3091
3092 if (ca_key == TCP_CA_UNSPEC)
3093 return;
3094
3095 rcu_read_lock();
3096 ca = tcp_ca_find_key(ca_key);
3097 if (likely(ca && try_module_get(ca->owner))) {
3098 module_put(icsk->icsk_ca_ops->owner);
3099 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3100 icsk->icsk_ca_ops = ca;
3101 }
3102 rcu_read_unlock();
3103 }
3104
3105 /* Do all connect socket setups that can be done AF independent. */
3106 static void tcp_connect_init(struct sock *sk)
3107 {
3108 const struct dst_entry *dst = __sk_dst_get(sk);
3109 struct tcp_sock *tp = tcp_sk(sk);
3110 __u8 rcv_wscale;
3111
3112 /* We'll fix this up when we get a response from the other end.
3113 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3114 */
3115 tp->tcp_header_len = sizeof(struct tcphdr) +
3116 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3117
3118 #ifdef CONFIG_TCP_MD5SIG
3119 if (tp->af_specific->md5_lookup(sk, sk))
3120 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3121 #endif
3122
3123 /* If user gave his TCP_MAXSEG, record it to clamp */
3124 if (tp->rx_opt.user_mss)
3125 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3126 tp->max_window = 0;
3127 tcp_mtup_init(sk);
3128 tcp_sync_mss(sk, dst_mtu(dst));
3129
3130 tcp_ca_dst_init(sk, dst);
3131
3132 if (!tp->window_clamp)
3133 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3134 tp->advmss = dst_metric_advmss(dst);
3135 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3136 tp->advmss = tp->rx_opt.user_mss;
3137
3138 tcp_initialize_rcv_mss(sk);
3139
3140 /* limit the window selection if the user enforce a smaller rx buffer */
3141 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3142 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3143 tp->window_clamp = tcp_full_space(sk);
3144
3145 tcp_select_initial_window(tcp_full_space(sk),
3146 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3147 &tp->rcv_wnd,
3148 &tp->window_clamp,
3149 sysctl_tcp_window_scaling,
3150 &rcv_wscale,
3151 dst_metric(dst, RTAX_INITRWND));
3152
3153 tp->rx_opt.rcv_wscale = rcv_wscale;
3154 tp->rcv_ssthresh = tp->rcv_wnd;
3155
3156 sk->sk_err = 0;
3157 sock_reset_flag(sk, SOCK_DONE);
3158 tp->snd_wnd = 0;
3159 tcp_init_wl(tp, 0);
3160 tp->snd_una = tp->write_seq;
3161 tp->snd_sml = tp->write_seq;
3162 tp->snd_up = tp->write_seq;
3163 tp->snd_nxt = tp->write_seq;
3164
3165 if (likely(!tp->repair))
3166 tp->rcv_nxt = 0;
3167 else
3168 tp->rcv_tstamp = tcp_time_stamp;
3169 tp->rcv_wup = tp->rcv_nxt;
3170 tp->copied_seq = tp->rcv_nxt;
3171
3172 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3173 inet_csk(sk)->icsk_retransmits = 0;
3174 tcp_clear_retrans(tp);
3175 }
3176
3177 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3178 {
3179 struct tcp_sock *tp = tcp_sk(sk);
3180 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3181
3182 tcb->end_seq += skb->len;
3183 __skb_header_release(skb);
3184 __tcp_add_write_queue_tail(sk, skb);
3185 sk->sk_wmem_queued += skb->truesize;
3186 sk_mem_charge(sk, skb->truesize);
3187 tp->write_seq = tcb->end_seq;
3188 tp->packets_out += tcp_skb_pcount(skb);
3189 }
3190
3191 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3192 * queue a data-only packet after the regular SYN, such that regular SYNs
3193 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3194 * only the SYN sequence, the data are retransmitted in the first ACK.
3195 * If cookie is not cached or other error occurs, falls back to send a
3196 * regular SYN with Fast Open cookie request option.
3197 */
3198 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3199 {
3200 struct tcp_sock *tp = tcp_sk(sk);
3201 struct tcp_fastopen_request *fo = tp->fastopen_req;
3202 int syn_loss = 0, space, err = 0;
3203 unsigned long last_syn_loss = 0;
3204 struct sk_buff *syn_data;
3205
3206 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3207 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3208 &syn_loss, &last_syn_loss);
3209 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3210 if (syn_loss > 1 &&
3211 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3212 fo->cookie.len = -1;
3213 goto fallback;
3214 }
3215
3216 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3217 fo->cookie.len = -1;
3218 else if (fo->cookie.len <= 0)
3219 goto fallback;
3220
3221 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3222 * user-MSS. Reserve maximum option space for middleboxes that add
3223 * private TCP options. The cost is reduced data space in SYN :(
3224 */
3225 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3226 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3227 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3228 MAX_TCP_OPTION_SPACE;
3229
3230 space = min_t(size_t, space, fo->size);
3231
3232 /* limit to order-0 allocations */
3233 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3234
3235 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3236 if (!syn_data)
3237 goto fallback;
3238 syn_data->ip_summed = CHECKSUM_PARTIAL;
3239 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3240 if (space) {
3241 int copied = copy_from_iter(skb_put(syn_data, space), space,
3242 &fo->data->msg_iter);
3243 if (unlikely(!copied)) {
3244 kfree_skb(syn_data);
3245 goto fallback;
3246 }
3247 if (copied != space) {
3248 skb_trim(syn_data, copied);
3249 space = copied;
3250 }
3251 }
3252 /* No more data pending in inet_wait_for_connect() */
3253 if (space == fo->size)
3254 fo->data = NULL;
3255 fo->copied = space;
3256
3257 tcp_connect_queue_skb(sk, syn_data);
3258
3259 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3260
3261 syn->skb_mstamp = syn_data->skb_mstamp;
3262
3263 /* Now full SYN+DATA was cloned and sent (or not),
3264 * remove the SYN from the original skb (syn_data)
3265 * we keep in write queue in case of a retransmit, as we
3266 * also have the SYN packet (with no data) in the same queue.
3267 */
3268 TCP_SKB_CB(syn_data)->seq++;
3269 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3270 if (!err) {
3271 tp->syn_data = (fo->copied > 0);
3272 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3273 goto done;
3274 }
3275
3276 fallback:
3277 /* Send a regular SYN with Fast Open cookie request option */
3278 if (fo->cookie.len > 0)
3279 fo->cookie.len = 0;
3280 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3281 if (err)
3282 tp->syn_fastopen = 0;
3283 done:
3284 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3285 return err;
3286 }
3287
3288 /* Build a SYN and send it off. */
3289 int tcp_connect(struct sock *sk)
3290 {
3291 struct tcp_sock *tp = tcp_sk(sk);
3292 struct sk_buff *buff;
3293 int err;
3294
3295 tcp_connect_init(sk);
3296
3297 if (unlikely(tp->repair)) {
3298 tcp_finish_connect(sk, NULL);
3299 return 0;
3300 }
3301
3302 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3303 if (unlikely(!buff))
3304 return -ENOBUFS;
3305
3306 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3307 tp->retrans_stamp = tcp_time_stamp;
3308 tcp_connect_queue_skb(sk, buff);
3309 tcp_ecn_send_syn(sk, buff);
3310
3311 /* Send off SYN; include data in Fast Open. */
3312 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3313 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3314 if (err == -ECONNREFUSED)
3315 return err;
3316
3317 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3318 * in order to make this packet get counted in tcpOutSegs.
3319 */
3320 tp->snd_nxt = tp->write_seq;
3321 tp->pushed_seq = tp->write_seq;
3322 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3323
3324 /* Timer for repeating the SYN until an answer. */
3325 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3326 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3327 return 0;
3328 }
3329 EXPORT_SYMBOL(tcp_connect);
3330
3331 /* Send out a delayed ack, the caller does the policy checking
3332 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3333 * for details.
3334 */
3335 void tcp_send_delayed_ack(struct sock *sk)
3336 {
3337 struct inet_connection_sock *icsk = inet_csk(sk);
3338 int ato = icsk->icsk_ack.ato;
3339 unsigned long timeout;
3340
3341 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3342
3343 if (ato > TCP_DELACK_MIN) {
3344 const struct tcp_sock *tp = tcp_sk(sk);
3345 int max_ato = HZ / 2;
3346
3347 if (icsk->icsk_ack.pingpong ||
3348 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3349 max_ato = TCP_DELACK_MAX;
3350
3351 /* Slow path, intersegment interval is "high". */
3352
3353 /* If some rtt estimate is known, use it to bound delayed ack.
3354 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3355 * directly.
3356 */
3357 if (tp->srtt_us) {
3358 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3359 TCP_DELACK_MIN);
3360
3361 if (rtt < max_ato)
3362 max_ato = rtt;
3363 }
3364
3365 ato = min(ato, max_ato);
3366 }
3367
3368 /* Stay within the limit we were given */
3369 timeout = jiffies + ato;
3370
3371 /* Use new timeout only if there wasn't a older one earlier. */
3372 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3373 /* If delack timer was blocked or is about to expire,
3374 * send ACK now.
3375 */
3376 if (icsk->icsk_ack.blocked ||
3377 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3378 tcp_send_ack(sk);
3379 return;
3380 }
3381
3382 if (!time_before(timeout, icsk->icsk_ack.timeout))
3383 timeout = icsk->icsk_ack.timeout;
3384 }
3385 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3386 icsk->icsk_ack.timeout = timeout;
3387 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3388 }
3389
3390 /* This routine sends an ack and also updates the window. */
3391 void tcp_send_ack(struct sock *sk)
3392 {
3393 struct sk_buff *buff;
3394
3395 /* If we have been reset, we may not send again. */
3396 if (sk->sk_state == TCP_CLOSE)
3397 return;
3398
3399 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3400
3401 /* We are not putting this on the write queue, so
3402 * tcp_transmit_skb() will set the ownership to this
3403 * sock.
3404 */
3405 buff = alloc_skb(MAX_TCP_HEADER,
3406 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3407 if (unlikely(!buff)) {
3408 inet_csk_schedule_ack(sk);
3409 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3410 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3411 TCP_DELACK_MAX, TCP_RTO_MAX);
3412 return;
3413 }
3414
3415 /* Reserve space for headers and prepare control bits. */
3416 skb_reserve(buff, MAX_TCP_HEADER);
3417 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3418
3419 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3420 * too much.
3421 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3422 * We also avoid tcp_wfree() overhead (cache line miss accessing
3423 * tp->tsq_flags) by using regular sock_wfree()
3424 */
3425 skb_set_tcp_pure_ack(buff);
3426
3427 /* Send it off, this clears delayed acks for us. */
3428 skb_mstamp_get(&buff->skb_mstamp);
3429 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3430 }
3431 EXPORT_SYMBOL_GPL(tcp_send_ack);
3432
3433 /* This routine sends a packet with an out of date sequence
3434 * number. It assumes the other end will try to ack it.
3435 *
3436 * Question: what should we make while urgent mode?
3437 * 4.4BSD forces sending single byte of data. We cannot send
3438 * out of window data, because we have SND.NXT==SND.MAX...
3439 *
3440 * Current solution: to send TWO zero-length segments in urgent mode:
3441 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3442 * out-of-date with SND.UNA-1 to probe window.
3443 */
3444 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3445 {
3446 struct tcp_sock *tp = tcp_sk(sk);
3447 struct sk_buff *skb;
3448
3449 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3450 skb = alloc_skb(MAX_TCP_HEADER,
3451 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3452 if (!skb)
3453 return -1;
3454
3455 /* Reserve space for headers and set control bits. */
3456 skb_reserve(skb, MAX_TCP_HEADER);
3457 /* Use a previous sequence. This should cause the other
3458 * end to send an ack. Don't queue or clone SKB, just
3459 * send it.
3460 */
3461 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3462 skb_mstamp_get(&skb->skb_mstamp);
3463 NET_INC_STATS(sock_net(sk), mib);
3464 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3465 }
3466
3467 void tcp_send_window_probe(struct sock *sk)
3468 {
3469 if (sk->sk_state == TCP_ESTABLISHED) {
3470 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3471 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3472 }
3473 }
3474
3475 /* Initiate keepalive or window probe from timer. */
3476 int tcp_write_wakeup(struct sock *sk, int mib)
3477 {
3478 struct tcp_sock *tp = tcp_sk(sk);
3479 struct sk_buff *skb;
3480
3481 if (sk->sk_state == TCP_CLOSE)
3482 return -1;
3483
3484 skb = tcp_send_head(sk);
3485 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3486 int err;
3487 unsigned int mss = tcp_current_mss(sk);
3488 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3489
3490 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3491 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3492
3493 /* We are probing the opening of a window
3494 * but the window size is != 0
3495 * must have been a result SWS avoidance ( sender )
3496 */
3497 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3498 skb->len > mss) {
3499 seg_size = min(seg_size, mss);
3500 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3501 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3502 return -1;
3503 } else if (!tcp_skb_pcount(skb))
3504 tcp_set_skb_tso_segs(skb, mss);
3505
3506 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3507 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3508 if (!err)
3509 tcp_event_new_data_sent(sk, skb);
3510 return err;
3511 } else {
3512 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3513 tcp_xmit_probe_skb(sk, 1, mib);
3514 return tcp_xmit_probe_skb(sk, 0, mib);
3515 }
3516 }
3517
3518 /* A window probe timeout has occurred. If window is not closed send
3519 * a partial packet else a zero probe.
3520 */
3521 void tcp_send_probe0(struct sock *sk)
3522 {
3523 struct inet_connection_sock *icsk = inet_csk(sk);
3524 struct tcp_sock *tp = tcp_sk(sk);
3525 struct net *net = sock_net(sk);
3526 unsigned long probe_max;
3527 int err;
3528
3529 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3530
3531 if (tp->packets_out || !tcp_send_head(sk)) {
3532 /* Cancel probe timer, if it is not required. */
3533 icsk->icsk_probes_out = 0;
3534 icsk->icsk_backoff = 0;
3535 return;
3536 }
3537
3538 if (err <= 0) {
3539 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3540 icsk->icsk_backoff++;
3541 icsk->icsk_probes_out++;
3542 probe_max = TCP_RTO_MAX;
3543 } else {
3544 /* If packet was not sent due to local congestion,
3545 * do not backoff and do not remember icsk_probes_out.
3546 * Let local senders to fight for local resources.
3547 *
3548 * Use accumulated backoff yet.
3549 */
3550 if (!icsk->icsk_probes_out)
3551 icsk->icsk_probes_out = 1;
3552 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3553 }
3554 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3555 tcp_probe0_when(sk, probe_max),
3556 TCP_RTO_MAX);
3557 }
3558
3559 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3560 {
3561 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3562 struct flowi fl;
3563 int res;
3564
3565 tcp_rsk(req)->txhash = net_tx_rndhash();
3566 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3567 if (!res) {
3568 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3569 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3570 }
3571 return res;
3572 }
3573 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.117689 seconds and 5 git commands to generate.