Merge remote-tracking branch 'ftrace/for-next'
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
45 }
46
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
49 {
50 __le16 fc = hdr->frame_control;
51
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
55
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
62
63 return hdr->addr3;
64 }
65
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
75
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
85 }
86 }
87 }
88
89 return NULL;
90 }
91
92 /*
93 * monitor mode reception
94 *
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
97 */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 unsigned int rtap_vendor_space)
101 {
102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 if (likely(skb->len > FCS_LEN))
104 __pskb_trim(skb, skb->len - FCS_LEN);
105 else {
106 /* driver bug */
107 WARN_ON(1);
108 dev_kfree_skb(skb);
109 return NULL;
110 }
111 }
112
113 __pskb_pull(skb, rtap_vendor_space);
114
115 return skb;
116 }
117
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 unsigned int rtap_vendor_space)
120 {
121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 struct ieee80211_hdr *hdr;
123
124 hdr = (void *)(skb->data + rtap_vendor_space);
125
126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 RX_FLAG_FAILED_PLCP_CRC |
128 RX_FLAG_ONLY_MONITOR))
129 return true;
130
131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 return true;
133
134 if (ieee80211_is_ctl(hdr->frame_control) &&
135 !ieee80211_is_pspoll(hdr->frame_control) &&
136 !ieee80211_is_back_req(hdr->frame_control))
137 return true;
138
139 return false;
140 }
141
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 struct ieee80211_rx_status *status,
145 struct sk_buff *skb)
146 {
147 int len;
148
149 /* always present fields */
150 len = sizeof(struct ieee80211_radiotap_header) + 8;
151
152 /* allocate extra bitmaps */
153 if (status->chains)
154 len += 4 * hweight8(status->chains);
155
156 if (ieee80211_have_rx_timestamp(status)) {
157 len = ALIGN(len, 8);
158 len += 8;
159 }
160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 len += 1;
162
163 /* antenna field, if we don't have per-chain info */
164 if (!status->chains)
165 len += 1;
166
167 /* padding for RX_FLAGS if necessary */
168 len = ALIGN(len, 2);
169
170 if (status->flag & RX_FLAG_HT) /* HT info */
171 len += 3;
172
173 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 len = ALIGN(len, 4);
175 len += 8;
176 }
177
178 if (status->flag & RX_FLAG_VHT) {
179 len = ALIGN(len, 2);
180 len += 12;
181 }
182
183 if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 len = ALIGN(len, 8);
185 len += 12;
186 }
187
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
191 }
192
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
195
196 /* vendor presence bitmap */
197 len += 4;
198 /* alignment for fixed 6-byte vendor data header */
199 len = ALIGN(len, 2);
200 /* vendor data header */
201 len += 6;
202 if (WARN_ON(rtap->align == 0))
203 rtap->align = 1;
204 len = ALIGN(len, rtap->align);
205 len += rtap->len + rtap->pad;
206 }
207
208 return len;
209 }
210
211 /*
212 * ieee80211_add_rx_radiotap_header - add radiotap header
213 *
214 * add a radiotap header containing all the fields which the hardware provided.
215 */
216 static void
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
218 struct sk_buff *skb,
219 struct ieee80211_rate *rate,
220 int rtap_len, bool has_fcs)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 struct ieee80211_radiotap_header *rthdr;
224 unsigned char *pos;
225 __le32 *it_present;
226 u32 it_present_val;
227 u16 rx_flags = 0;
228 u16 channel_flags = 0;
229 int mpdulen, chain;
230 unsigned long chains = status->chains;
231 struct ieee80211_vendor_radiotap rtap = {};
232
233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
235 /* rtap.len and rtap.pad are undone immediately */
236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
237 }
238
239 mpdulen = skb->len;
240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
241 mpdulen += FCS_LEN;
242
243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
245 it_present = &rthdr->it_present;
246
247 /* radiotap header, set always present flags */
248 rthdr->it_len = cpu_to_le16(rtap_len);
249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
250 BIT(IEEE80211_RADIOTAP_CHANNEL) |
251 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
252
253 if (!status->chains)
254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
255
256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
257 it_present_val |=
258 BIT(IEEE80211_RADIOTAP_EXT) |
259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
260 put_unaligned_le32(it_present_val, it_present);
261 it_present++;
262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
264 }
265
266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
268 BIT(IEEE80211_RADIOTAP_EXT);
269 put_unaligned_le32(it_present_val, it_present);
270 it_present++;
271 it_present_val = rtap.present;
272 }
273
274 put_unaligned_le32(it_present_val, it_present);
275
276 pos = (void *)(it_present + 1);
277
278 /* the order of the following fields is important */
279
280 /* IEEE80211_RADIOTAP_TSFT */
281 if (ieee80211_have_rx_timestamp(status)) {
282 /* padding */
283 while ((pos - (u8 *)rthdr) & 7)
284 *pos++ = 0;
285 put_unaligned_le64(
286 ieee80211_calculate_rx_timestamp(local, status,
287 mpdulen, 0),
288 pos);
289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
290 pos += 8;
291 }
292
293 /* IEEE80211_RADIOTAP_FLAGS */
294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
295 *pos |= IEEE80211_RADIOTAP_F_FCS;
296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
297 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
298 if (status->flag & RX_FLAG_SHORTPRE)
299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
300 pos++;
301
302 /* IEEE80211_RADIOTAP_RATE */
303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
304 /*
305 * Without rate information don't add it. If we have,
306 * MCS information is a separate field in radiotap,
307 * added below. The byte here is needed as padding
308 * for the channel though, so initialise it to 0.
309 */
310 *pos = 0;
311 } else {
312 int shift = 0;
313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
314 if (status->flag & RX_FLAG_10MHZ)
315 shift = 1;
316 else if (status->flag & RX_FLAG_5MHZ)
317 shift = 2;
318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
319 }
320 pos++;
321
322 /* IEEE80211_RADIOTAP_CHANNEL */
323 put_unaligned_le16(status->freq, pos);
324 pos += 2;
325 if (status->flag & RX_FLAG_10MHZ)
326 channel_flags |= IEEE80211_CHAN_HALF;
327 else if (status->flag & RX_FLAG_5MHZ)
328 channel_flags |= IEEE80211_CHAN_QUARTER;
329
330 if (status->band == NL80211_BAND_5GHZ)
331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
336 else if (rate)
337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
338 else
339 channel_flags |= IEEE80211_CHAN_2GHZ;
340 put_unaligned_le16(channel_flags, pos);
341 pos += 2;
342
343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
346 *pos = status->signal;
347 rthdr->it_present |=
348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
349 pos++;
350 }
351
352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
353
354 if (!status->chains) {
355 /* IEEE80211_RADIOTAP_ANTENNA */
356 *pos = status->antenna;
357 pos++;
358 }
359
360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
361
362 /* IEEE80211_RADIOTAP_RX_FLAGS */
363 /* ensure 2 byte alignment for the 2 byte field as required */
364 if ((pos - (u8 *)rthdr) & 1)
365 *pos++ = 0;
366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
368 put_unaligned_le16(rx_flags, pos);
369 pos += 2;
370
371 if (status->flag & RX_FLAG_HT) {
372 unsigned int stbc;
373
374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
375 *pos++ = local->hw.radiotap_mcs_details;
376 *pos = 0;
377 if (status->flag & RX_FLAG_SHORT_GI)
378 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
379 if (status->flag & RX_FLAG_40MHZ)
380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
381 if (status->flag & RX_FLAG_HT_GF)
382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
383 if (status->flag & RX_FLAG_LDPC)
384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
387 pos++;
388 *pos++ = status->rate_idx;
389 }
390
391 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
392 u16 flags = 0;
393
394 /* ensure 4 byte alignment */
395 while ((pos - (u8 *)rthdr) & 3)
396 pos++;
397 rthdr->it_present |=
398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
399 put_unaligned_le32(status->ampdu_reference, pos);
400 pos += 4;
401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
403 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
409 put_unaligned_le16(flags, pos);
410 pos += 2;
411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
412 *pos++ = status->ampdu_delimiter_crc;
413 else
414 *pos++ = 0;
415 *pos++ = 0;
416 }
417
418 if (status->flag & RX_FLAG_VHT) {
419 u16 known = local->hw.radiotap_vht_details;
420
421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
422 put_unaligned_le16(known, pos);
423 pos += 2;
424 /* flags */
425 if (status->flag & RX_FLAG_SHORT_GI)
426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
427 /* in VHT, STBC is binary */
428 if (status->flag & RX_FLAG_STBC_MASK)
429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
430 if (status->vht_flag & RX_VHT_FLAG_BF)
431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
432 pos++;
433 /* bandwidth */
434 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
435 *pos++ = 4;
436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
437 *pos++ = 11;
438 else if (status->flag & RX_FLAG_40MHZ)
439 *pos++ = 1;
440 else /* 20 MHz */
441 *pos++ = 0;
442 /* MCS/NSS */
443 *pos = (status->rate_idx << 4) | status->vht_nss;
444 pos += 4;
445 /* coding field */
446 if (status->flag & RX_FLAG_LDPC)
447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
448 pos++;
449 /* group ID */
450 pos++;
451 /* partial_aid */
452 pos += 2;
453 }
454
455 if (local->hw.radiotap_timestamp.units_pos >= 0) {
456 u16 accuracy = 0;
457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
458
459 rthdr->it_present |=
460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
461
462 /* ensure 8 byte alignment */
463 while ((pos - (u8 *)rthdr) & 7)
464 pos++;
465
466 put_unaligned_le64(status->device_timestamp, pos);
467 pos += sizeof(u64);
468
469 if (local->hw.radiotap_timestamp.accuracy >= 0) {
470 accuracy = local->hw.radiotap_timestamp.accuracy;
471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
472 }
473 put_unaligned_le16(accuracy, pos);
474 pos += sizeof(u16);
475
476 *pos++ = local->hw.radiotap_timestamp.units_pos;
477 *pos++ = flags;
478 }
479
480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
481 *pos++ = status->chain_signal[chain];
482 *pos++ = chain;
483 }
484
485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
486 /* ensure 2 byte alignment for the vendor field as required */
487 if ((pos - (u8 *)rthdr) & 1)
488 *pos++ = 0;
489 *pos++ = rtap.oui[0];
490 *pos++ = rtap.oui[1];
491 *pos++ = rtap.oui[2];
492 *pos++ = rtap.subns;
493 put_unaligned_le16(rtap.len, pos);
494 pos += 2;
495 /* align the actual payload as requested */
496 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
497 *pos++ = 0;
498 /* data (and possible padding) already follows */
499 }
500 }
501
502 /*
503 * This function copies a received frame to all monitor interfaces and
504 * returns a cleaned-up SKB that no longer includes the FCS nor the
505 * radiotap header the driver might have added.
506 */
507 static struct sk_buff *
508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
509 struct ieee80211_rate *rate)
510 {
511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
512 struct ieee80211_sub_if_data *sdata;
513 int rt_hdrlen, needed_headroom;
514 struct sk_buff *skb, *skb2;
515 struct net_device *prev_dev = NULL;
516 int present_fcs_len = 0;
517 unsigned int rtap_vendor_space = 0;
518 struct ieee80211_mgmt *mgmt;
519 struct ieee80211_sub_if_data *monitor_sdata =
520 rcu_dereference(local->monitor_sdata);
521
522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
524
525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
526 }
527
528 /*
529 * First, we may need to make a copy of the skb because
530 * (1) we need to modify it for radiotap (if not present), and
531 * (2) the other RX handlers will modify the skb we got.
532 *
533 * We don't need to, of course, if we aren't going to return
534 * the SKB because it has a bad FCS/PLCP checksum.
535 */
536
537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
538 present_fcs_len = FCS_LEN;
539
540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
542 dev_kfree_skb(origskb);
543 return NULL;
544 }
545
546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
547 if (should_drop_frame(origskb, present_fcs_len,
548 rtap_vendor_space)) {
549 dev_kfree_skb(origskb);
550 return NULL;
551 }
552
553 return remove_monitor_info(local, origskb, rtap_vendor_space);
554 }
555
556 /* room for the radiotap header based on driver features */
557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
558 needed_headroom = rt_hdrlen - rtap_vendor_space;
559
560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
561 /* only need to expand headroom if necessary */
562 skb = origskb;
563 origskb = NULL;
564
565 /*
566 * This shouldn't trigger often because most devices have an
567 * RX header they pull before we get here, and that should
568 * be big enough for our radiotap information. We should
569 * probably export the length to drivers so that we can have
570 * them allocate enough headroom to start with.
571 */
572 if (skb_headroom(skb) < needed_headroom &&
573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
574 dev_kfree_skb(skb);
575 return NULL;
576 }
577 } else {
578 /*
579 * Need to make a copy and possibly remove radiotap header
580 * and FCS from the original.
581 */
582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
583
584 origskb = remove_monitor_info(local, origskb,
585 rtap_vendor_space);
586
587 if (!skb)
588 return origskb;
589 }
590
591 /* prepend radiotap information */
592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
593
594 skb_reset_mac_header(skb);
595 skb->ip_summed = CHECKSUM_UNNECESSARY;
596 skb->pkt_type = PACKET_OTHERHOST;
597 skb->protocol = htons(ETH_P_802_2);
598
599 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
601 continue;
602
603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
604 continue;
605
606 if (!ieee80211_sdata_running(sdata))
607 continue;
608
609 if (prev_dev) {
610 skb2 = skb_clone(skb, GFP_ATOMIC);
611 if (skb2) {
612 skb2->dev = prev_dev;
613 netif_receive_skb(skb2);
614 }
615 }
616
617 prev_dev = sdata->dev;
618 ieee80211_rx_stats(sdata->dev, skb->len);
619 }
620
621 mgmt = (void *)skb->data;
622 if (monitor_sdata &&
623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN &&
624 ieee80211_is_action(mgmt->frame_control) &&
625 mgmt->u.action.category == WLAN_CATEGORY_VHT &&
626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT &&
627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) &&
628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) {
629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC);
630
631 if (mu_skb) {
632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb);
634 ieee80211_queue_work(&local->hw, &monitor_sdata->work);
635 }
636 }
637
638 if (prev_dev) {
639 skb->dev = prev_dev;
640 netif_receive_skb(skb);
641 } else
642 dev_kfree_skb(skb);
643
644 return origskb;
645 }
646
647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
648 {
649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
651 int tid, seqno_idx, security_idx;
652
653 /* does the frame have a qos control field? */
654 if (ieee80211_is_data_qos(hdr->frame_control)) {
655 u8 *qc = ieee80211_get_qos_ctl(hdr);
656 /* frame has qos control */
657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
659 status->rx_flags |= IEEE80211_RX_AMSDU;
660
661 seqno_idx = tid;
662 security_idx = tid;
663 } else {
664 /*
665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
666 *
667 * Sequence numbers for management frames, QoS data
668 * frames with a broadcast/multicast address in the
669 * Address 1 field, and all non-QoS data frames sent
670 * by QoS STAs are assigned using an additional single
671 * modulo-4096 counter, [...]
672 *
673 * We also use that counter for non-QoS STAs.
674 */
675 seqno_idx = IEEE80211_NUM_TIDS;
676 security_idx = 0;
677 if (ieee80211_is_mgmt(hdr->frame_control))
678 security_idx = IEEE80211_NUM_TIDS;
679 tid = 0;
680 }
681
682 rx->seqno_idx = seqno_idx;
683 rx->security_idx = security_idx;
684 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 * For now, set skb->priority to 0 for other cases. */
686 rx->skb->priority = (tid > 7) ? 0 : tid;
687 }
688
689 /**
690 * DOC: Packet alignment
691 *
692 * Drivers always need to pass packets that are aligned to two-byte boundaries
693 * to the stack.
694 *
695 * Additionally, should, if possible, align the payload data in a way that
696 * guarantees that the contained IP header is aligned to a four-byte
697 * boundary. In the case of regular frames, this simply means aligning the
698 * payload to a four-byte boundary (because either the IP header is directly
699 * contained, or IV/RFC1042 headers that have a length divisible by four are
700 * in front of it). If the payload data is not properly aligned and the
701 * architecture doesn't support efficient unaligned operations, mac80211
702 * will align the data.
703 *
704 * With A-MSDU frames, however, the payload data address must yield two modulo
705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706 * push the IP header further back to a multiple of four again. Thankfully, the
707 * specs were sane enough this time around to require padding each A-MSDU
708 * subframe to a length that is a multiple of four.
709 *
710 * Padding like Atheros hardware adds which is between the 802.11 header and
711 * the payload is not supported, the driver is required to move the 802.11
712 * header to be directly in front of the payload in that case.
713 */
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
715 {
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
718 #endif
719 }
720
721
722 /* rx handlers */
723
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
725 {
726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
727
728 if (is_multicast_ether_addr(hdr->addr1))
729 return 0;
730
731 return ieee80211_is_robust_mgmt_frame(skb);
732 }
733
734
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
736 {
737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
738
739 if (!is_multicast_ether_addr(hdr->addr1))
740 return 0;
741
742 return ieee80211_is_robust_mgmt_frame(skb);
743 }
744
745
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
748 {
749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
750 struct ieee80211_mmie *mmie;
751 struct ieee80211_mmie_16 *mmie16;
752
753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
754 return -1;
755
756 if (!ieee80211_is_robust_mgmt_frame(skb))
757 return -1; /* not a robust management frame */
758
759 mmie = (struct ieee80211_mmie *)
760 (skb->data + skb->len - sizeof(*mmie));
761 if (mmie->element_id == WLAN_EID_MMIE &&
762 mmie->length == sizeof(*mmie) - 2)
763 return le16_to_cpu(mmie->key_id);
764
765 mmie16 = (struct ieee80211_mmie_16 *)
766 (skb->data + skb->len - sizeof(*mmie16));
767 if (skb->len >= 24 + sizeof(*mmie16) &&
768 mmie16->element_id == WLAN_EID_MMIE &&
769 mmie16->length == sizeof(*mmie16) - 2)
770 return le16_to_cpu(mmie16->key_id);
771
772 return -1;
773 }
774
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
776 struct sk_buff *skb)
777 {
778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
779 __le16 fc;
780 int hdrlen;
781 u8 keyid;
782
783 fc = hdr->frame_control;
784 hdrlen = ieee80211_hdrlen(fc);
785
786 if (skb->len < hdrlen + cs->hdr_len)
787 return -EINVAL;
788
789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
790 keyid &= cs->key_idx_mask;
791 keyid >>= cs->key_idx_shift;
792
793 return keyid;
794 }
795
796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
797 {
798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
799 char *dev_addr = rx->sdata->vif.addr;
800
801 if (ieee80211_is_data(hdr->frame_control)) {
802 if (is_multicast_ether_addr(hdr->addr1)) {
803 if (ieee80211_has_tods(hdr->frame_control) ||
804 !ieee80211_has_fromds(hdr->frame_control))
805 return RX_DROP_MONITOR;
806 if (ether_addr_equal(hdr->addr3, dev_addr))
807 return RX_DROP_MONITOR;
808 } else {
809 if (!ieee80211_has_a4(hdr->frame_control))
810 return RX_DROP_MONITOR;
811 if (ether_addr_equal(hdr->addr4, dev_addr))
812 return RX_DROP_MONITOR;
813 }
814 }
815
816 /* If there is not an established peer link and this is not a peer link
817 * establisment frame, beacon or probe, drop the frame.
818 */
819
820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
821 struct ieee80211_mgmt *mgmt;
822
823 if (!ieee80211_is_mgmt(hdr->frame_control))
824 return RX_DROP_MONITOR;
825
826 if (ieee80211_is_action(hdr->frame_control)) {
827 u8 category;
828
829 /* make sure category field is present */
830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
831 return RX_DROP_MONITOR;
832
833 mgmt = (struct ieee80211_mgmt *)hdr;
834 category = mgmt->u.action.category;
835 if (category != WLAN_CATEGORY_MESH_ACTION &&
836 category != WLAN_CATEGORY_SELF_PROTECTED)
837 return RX_DROP_MONITOR;
838 return RX_CONTINUE;
839 }
840
841 if (ieee80211_is_probe_req(hdr->frame_control) ||
842 ieee80211_is_probe_resp(hdr->frame_control) ||
843 ieee80211_is_beacon(hdr->frame_control) ||
844 ieee80211_is_auth(hdr->frame_control))
845 return RX_CONTINUE;
846
847 return RX_DROP_MONITOR;
848 }
849
850 return RX_CONTINUE;
851 }
852
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
854 int index)
855 {
856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
857 struct sk_buff *tail = skb_peek_tail(frames);
858 struct ieee80211_rx_status *status;
859
860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
861 return true;
862
863 if (!tail)
864 return false;
865
866 status = IEEE80211_SKB_RXCB(tail);
867 if (status->flag & RX_FLAG_AMSDU_MORE)
868 return false;
869
870 return true;
871 }
872
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
874 struct tid_ampdu_rx *tid_agg_rx,
875 int index,
876 struct sk_buff_head *frames)
877 {
878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
879 struct sk_buff *skb;
880 struct ieee80211_rx_status *status;
881
882 lockdep_assert_held(&tid_agg_rx->reorder_lock);
883
884 if (skb_queue_empty(skb_list))
885 goto no_frame;
886
887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
888 __skb_queue_purge(skb_list);
889 goto no_frame;
890 }
891
892 /* release frames from the reorder ring buffer */
893 tid_agg_rx->stored_mpdu_num--;
894 while ((skb = __skb_dequeue(skb_list))) {
895 status = IEEE80211_SKB_RXCB(skb);
896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
897 __skb_queue_tail(frames, skb);
898 }
899
900 no_frame:
901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
903 }
904
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
906 struct tid_ampdu_rx *tid_agg_rx,
907 u16 head_seq_num,
908 struct sk_buff_head *frames)
909 {
910 int index;
911
912 lockdep_assert_held(&tid_agg_rx->reorder_lock);
913
914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
917 frames);
918 }
919 }
920
921 /*
922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923 * the skb was added to the buffer longer than this time ago, the earlier
924 * frames that have not yet been received are assumed to be lost and the skb
925 * can be released for processing. This may also release other skb's from the
926 * reorder buffer if there are no additional gaps between the frames.
927 *
928 * Callers must hold tid_agg_rx->reorder_lock.
929 */
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
931
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
933 struct tid_ampdu_rx *tid_agg_rx,
934 struct sk_buff_head *frames)
935 {
936 int index, i, j;
937
938 lockdep_assert_held(&tid_agg_rx->reorder_lock);
939
940 /* release the buffer until next missing frame */
941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
943 tid_agg_rx->stored_mpdu_num) {
944 /*
945 * No buffers ready to be released, but check whether any
946 * frames in the reorder buffer have timed out.
947 */
948 int skipped = 1;
949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
950 j = (j + 1) % tid_agg_rx->buf_size) {
951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
952 skipped++;
953 continue;
954 }
955 if (skipped &&
956 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
957 HT_RX_REORDER_BUF_TIMEOUT))
958 goto set_release_timer;
959
960 /* don't leave incomplete A-MSDUs around */
961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
962 i = (i + 1) % tid_agg_rx->buf_size)
963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
964
965 ht_dbg_ratelimited(sdata,
966 "release an RX reorder frame due to timeout on earlier frames\n");
967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
968 frames);
969
970 /*
971 * Increment the head seq# also for the skipped slots.
972 */
973 tid_agg_rx->head_seq_num =
974 (tid_agg_rx->head_seq_num +
975 skipped) & IEEE80211_SN_MASK;
976 skipped = 0;
977 }
978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
980 frames);
981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
982 }
983
984 if (tid_agg_rx->stored_mpdu_num) {
985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
986
987 for (; j != (index - 1) % tid_agg_rx->buf_size;
988 j = (j + 1) % tid_agg_rx->buf_size) {
989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
990 break;
991 }
992
993 set_release_timer:
994
995 if (!tid_agg_rx->removed)
996 mod_timer(&tid_agg_rx->reorder_timer,
997 tid_agg_rx->reorder_time[j] + 1 +
998 HT_RX_REORDER_BUF_TIMEOUT);
999 } else {
1000 del_timer(&tid_agg_rx->reorder_timer);
1001 }
1002 }
1003
1004 /*
1005 * As this function belongs to the RX path it must be under
1006 * rcu_read_lock protection. It returns false if the frame
1007 * can be processed immediately, true if it was consumed.
1008 */
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1010 struct tid_ampdu_rx *tid_agg_rx,
1011 struct sk_buff *skb,
1012 struct sk_buff_head *frames)
1013 {
1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1018 u16 head_seq_num, buf_size;
1019 int index;
1020 bool ret = true;
1021
1022 spin_lock(&tid_agg_rx->reorder_lock);
1023
1024 /*
1025 * Offloaded BA sessions have no known starting sequence number so pick
1026 * one from first Rxed frame for this tid after BA was started.
1027 */
1028 if (unlikely(tid_agg_rx->auto_seq)) {
1029 tid_agg_rx->auto_seq = false;
1030 tid_agg_rx->ssn = mpdu_seq_num;
1031 tid_agg_rx->head_seq_num = mpdu_seq_num;
1032 }
1033
1034 buf_size = tid_agg_rx->buf_size;
1035 head_seq_num = tid_agg_rx->head_seq_num;
1036
1037 /* frame with out of date sequence number */
1038 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1039 dev_kfree_skb(skb);
1040 goto out;
1041 }
1042
1043 /*
1044 * If frame the sequence number exceeds our buffering window
1045 * size release some previous frames to make room for this one.
1046 */
1047 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1048 head_seq_num = ieee80211_sn_inc(
1049 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1050 /* release stored frames up to new head to stack */
1051 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1052 head_seq_num, frames);
1053 }
1054
1055 /* Now the new frame is always in the range of the reordering buffer */
1056
1057 index = mpdu_seq_num % tid_agg_rx->buf_size;
1058
1059 /* check if we already stored this frame */
1060 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1061 dev_kfree_skb(skb);
1062 goto out;
1063 }
1064
1065 /*
1066 * If the current MPDU is in the right order and nothing else
1067 * is stored we can process it directly, no need to buffer it.
1068 * If it is first but there's something stored, we may be able
1069 * to release frames after this one.
1070 */
1071 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1072 tid_agg_rx->stored_mpdu_num == 0) {
1073 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1074 tid_agg_rx->head_seq_num =
1075 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1076 ret = false;
1077 goto out;
1078 }
1079
1080 /* put the frame in the reordering buffer */
1081 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1082 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1083 tid_agg_rx->reorder_time[index] = jiffies;
1084 tid_agg_rx->stored_mpdu_num++;
1085 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1086 }
1087
1088 out:
1089 spin_unlock(&tid_agg_rx->reorder_lock);
1090 return ret;
1091 }
1092
1093 /*
1094 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1095 * true if the MPDU was buffered, false if it should be processed.
1096 */
1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1098 struct sk_buff_head *frames)
1099 {
1100 struct sk_buff *skb = rx->skb;
1101 struct ieee80211_local *local = rx->local;
1102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1103 struct sta_info *sta = rx->sta;
1104 struct tid_ampdu_rx *tid_agg_rx;
1105 u16 sc;
1106 u8 tid, ack_policy;
1107
1108 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1109 is_multicast_ether_addr(hdr->addr1))
1110 goto dont_reorder;
1111
1112 /*
1113 * filter the QoS data rx stream according to
1114 * STA/TID and check if this STA/TID is on aggregation
1115 */
1116
1117 if (!sta)
1118 goto dont_reorder;
1119
1120 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1121 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1122 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1123
1124 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1125 if (!tid_agg_rx) {
1126 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1127 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1128 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1129 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1130 WLAN_BACK_RECIPIENT,
1131 WLAN_REASON_QSTA_REQUIRE_SETUP);
1132 goto dont_reorder;
1133 }
1134
1135 /* qos null data frames are excluded */
1136 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1137 goto dont_reorder;
1138
1139 /* not part of a BA session */
1140 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1141 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1142 goto dont_reorder;
1143
1144 /* new, potentially un-ordered, ampdu frame - process it */
1145
1146 /* reset session timer */
1147 if (tid_agg_rx->timeout)
1148 tid_agg_rx->last_rx = jiffies;
1149
1150 /* if this mpdu is fragmented - terminate rx aggregation session */
1151 sc = le16_to_cpu(hdr->seq_ctrl);
1152 if (sc & IEEE80211_SCTL_FRAG) {
1153 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1154 skb_queue_tail(&rx->sdata->skb_queue, skb);
1155 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1156 return;
1157 }
1158
1159 /*
1160 * No locking needed -- we will only ever process one
1161 * RX packet at a time, and thus own tid_agg_rx. All
1162 * other code manipulating it needs to (and does) make
1163 * sure that we cannot get to it any more before doing
1164 * anything with it.
1165 */
1166 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1167 frames))
1168 return;
1169
1170 dont_reorder:
1171 __skb_queue_tail(frames, skb);
1172 }
1173
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1176 {
1177 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1178 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1179
1180 if (status->flag & RX_FLAG_DUP_VALIDATED)
1181 return RX_CONTINUE;
1182
1183 /*
1184 * Drop duplicate 802.11 retransmissions
1185 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1186 */
1187
1188 if (rx->skb->len < 24)
1189 return RX_CONTINUE;
1190
1191 if (ieee80211_is_ctl(hdr->frame_control) ||
1192 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1193 is_multicast_ether_addr(hdr->addr1))
1194 return RX_CONTINUE;
1195
1196 if (!rx->sta)
1197 return RX_CONTINUE;
1198
1199 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1200 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1201 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1202 rx->sta->rx_stats.num_duplicates++;
1203 return RX_DROP_UNUSABLE;
1204 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1205 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1206 }
1207
1208 return RX_CONTINUE;
1209 }
1210
1211 static ieee80211_rx_result debug_noinline
1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1213 {
1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1215
1216 /* Drop disallowed frame classes based on STA auth/assoc state;
1217 * IEEE 802.11, Chap 5.5.
1218 *
1219 * mac80211 filters only based on association state, i.e. it drops
1220 * Class 3 frames from not associated stations. hostapd sends
1221 * deauth/disassoc frames when needed. In addition, hostapd is
1222 * responsible for filtering on both auth and assoc states.
1223 */
1224
1225 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1226 return ieee80211_rx_mesh_check(rx);
1227
1228 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1229 ieee80211_is_pspoll(hdr->frame_control)) &&
1230 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1231 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1232 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1233 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1234 /*
1235 * accept port control frames from the AP even when it's not
1236 * yet marked ASSOC to prevent a race where we don't set the
1237 * assoc bit quickly enough before it sends the first frame
1238 */
1239 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1240 ieee80211_is_data_present(hdr->frame_control)) {
1241 unsigned int hdrlen;
1242 __be16 ethertype;
1243
1244 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1245
1246 if (rx->skb->len < hdrlen + 8)
1247 return RX_DROP_MONITOR;
1248
1249 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1250 if (ethertype == rx->sdata->control_port_protocol)
1251 return RX_CONTINUE;
1252 }
1253
1254 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1255 cfg80211_rx_spurious_frame(rx->sdata->dev,
1256 hdr->addr2,
1257 GFP_ATOMIC))
1258 return RX_DROP_UNUSABLE;
1259
1260 return RX_DROP_MONITOR;
1261 }
1262
1263 return RX_CONTINUE;
1264 }
1265
1266
1267 static ieee80211_rx_result debug_noinline
1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1269 {
1270 struct ieee80211_local *local;
1271 struct ieee80211_hdr *hdr;
1272 struct sk_buff *skb;
1273
1274 local = rx->local;
1275 skb = rx->skb;
1276 hdr = (struct ieee80211_hdr *) skb->data;
1277
1278 if (!local->pspolling)
1279 return RX_CONTINUE;
1280
1281 if (!ieee80211_has_fromds(hdr->frame_control))
1282 /* this is not from AP */
1283 return RX_CONTINUE;
1284
1285 if (!ieee80211_is_data(hdr->frame_control))
1286 return RX_CONTINUE;
1287
1288 if (!ieee80211_has_moredata(hdr->frame_control)) {
1289 /* AP has no more frames buffered for us */
1290 local->pspolling = false;
1291 return RX_CONTINUE;
1292 }
1293
1294 /* more data bit is set, let's request a new frame from the AP */
1295 ieee80211_send_pspoll(local, rx->sdata);
1296
1297 return RX_CONTINUE;
1298 }
1299
1300 static void sta_ps_start(struct sta_info *sta)
1301 {
1302 struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 struct ieee80211_local *local = sdata->local;
1304 struct ps_data *ps;
1305 int tid;
1306
1307 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1308 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1309 ps = &sdata->bss->ps;
1310 else
1311 return;
1312
1313 atomic_inc(&ps->num_sta_ps);
1314 set_sta_flag(sta, WLAN_STA_PS_STA);
1315 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1316 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1317 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1318 sta->sta.addr, sta->sta.aid);
1319
1320 ieee80211_clear_fast_xmit(sta);
1321
1322 if (!sta->sta.txq[0])
1323 return;
1324
1325 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1326 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1327
1328 if (txqi->tin.backlog_packets)
1329 set_bit(tid, &sta->txq_buffered_tids);
1330 else
1331 clear_bit(tid, &sta->txq_buffered_tids);
1332 }
1333 }
1334
1335 static void sta_ps_end(struct sta_info *sta)
1336 {
1337 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1338 sta->sta.addr, sta->sta.aid);
1339
1340 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1341 /*
1342 * Clear the flag only if the other one is still set
1343 * so that the TX path won't start TX'ing new frames
1344 * directly ... In the case that the driver flag isn't
1345 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1346 */
1347 clear_sta_flag(sta, WLAN_STA_PS_STA);
1348 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1349 sta->sta.addr, sta->sta.aid);
1350 return;
1351 }
1352
1353 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1354 clear_sta_flag(sta, WLAN_STA_PS_STA);
1355 ieee80211_sta_ps_deliver_wakeup(sta);
1356 }
1357
1358 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1359 {
1360 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1361 bool in_ps;
1362
1363 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1364
1365 /* Don't let the same PS state be set twice */
1366 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1367 if ((start && in_ps) || (!start && !in_ps))
1368 return -EINVAL;
1369
1370 if (start)
1371 sta_ps_start(sta);
1372 else
1373 sta_ps_end(sta);
1374
1375 return 0;
1376 }
1377 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1378
1379 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1380 {
1381 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1382
1383 if (test_sta_flag(sta, WLAN_STA_SP))
1384 return;
1385
1386 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1387 ieee80211_sta_ps_deliver_poll_response(sta);
1388 else
1389 set_sta_flag(sta, WLAN_STA_PSPOLL);
1390 }
1391 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1392
1393 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1394 {
1395 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1396 u8 ac = ieee802_1d_to_ac[tid & 7];
1397
1398 /*
1399 * If this AC is not trigger-enabled do nothing.
1400 *
1401 * NB: This could/should check a separate bitmap of trigger-
1402 * enabled queues, but for now we only implement uAPSD w/o
1403 * TSPEC changes to the ACs, so they're always the same.
1404 */
1405 if (!(sta->sta.uapsd_queues & BIT(ac)))
1406 return;
1407
1408 /* if we are in a service period, do nothing */
1409 if (test_sta_flag(sta, WLAN_STA_SP))
1410 return;
1411
1412 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1413 ieee80211_sta_ps_deliver_uapsd(sta);
1414 else
1415 set_sta_flag(sta, WLAN_STA_UAPSD);
1416 }
1417 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1418
1419 static ieee80211_rx_result debug_noinline
1420 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1421 {
1422 struct ieee80211_sub_if_data *sdata = rx->sdata;
1423 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1424 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1425
1426 if (!rx->sta)
1427 return RX_CONTINUE;
1428
1429 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1430 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1431 return RX_CONTINUE;
1432
1433 /*
1434 * The device handles station powersave, so don't do anything about
1435 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1436 * it to mac80211 since they're handled.)
1437 */
1438 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1439 return RX_CONTINUE;
1440
1441 /*
1442 * Don't do anything if the station isn't already asleep. In
1443 * the uAPSD case, the station will probably be marked asleep,
1444 * in the PS-Poll case the station must be confused ...
1445 */
1446 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1447 return RX_CONTINUE;
1448
1449 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1450 ieee80211_sta_pspoll(&rx->sta->sta);
1451
1452 /* Free PS Poll skb here instead of returning RX_DROP that would
1453 * count as an dropped frame. */
1454 dev_kfree_skb(rx->skb);
1455
1456 return RX_QUEUED;
1457 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1458 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1459 ieee80211_has_pm(hdr->frame_control) &&
1460 (ieee80211_is_data_qos(hdr->frame_control) ||
1461 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1462 u8 tid;
1463
1464 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1465
1466 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1467 }
1468
1469 return RX_CONTINUE;
1470 }
1471
1472 static ieee80211_rx_result debug_noinline
1473 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1474 {
1475 struct sta_info *sta = rx->sta;
1476 struct sk_buff *skb = rx->skb;
1477 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1479 int i;
1480
1481 if (!sta)
1482 return RX_CONTINUE;
1483
1484 /*
1485 * Update last_rx only for IBSS packets which are for the current
1486 * BSSID and for station already AUTHORIZED to avoid keeping the
1487 * current IBSS network alive in cases where other STAs start
1488 * using different BSSID. This will also give the station another
1489 * chance to restart the authentication/authorization in case
1490 * something went wrong the first time.
1491 */
1492 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1493 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1494 NL80211_IFTYPE_ADHOC);
1495 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1496 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1497 sta->rx_stats.last_rx = jiffies;
1498 if (ieee80211_is_data(hdr->frame_control) &&
1499 !is_multicast_ether_addr(hdr->addr1))
1500 sta->rx_stats.last_rate =
1501 sta_stats_encode_rate(status);
1502 }
1503 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1504 sta->rx_stats.last_rx = jiffies;
1505 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1506 /*
1507 * Mesh beacons will update last_rx when if they are found to
1508 * match the current local configuration when processed.
1509 */
1510 sta->rx_stats.last_rx = jiffies;
1511 if (ieee80211_is_data(hdr->frame_control))
1512 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1513 }
1514
1515 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1516 ieee80211_sta_rx_notify(rx->sdata, hdr);
1517
1518 sta->rx_stats.fragments++;
1519
1520 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1521 sta->rx_stats.bytes += rx->skb->len;
1522 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1523
1524 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1525 sta->rx_stats.last_signal = status->signal;
1526 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1527 }
1528
1529 if (status->chains) {
1530 sta->rx_stats.chains = status->chains;
1531 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1532 int signal = status->chain_signal[i];
1533
1534 if (!(status->chains & BIT(i)))
1535 continue;
1536
1537 sta->rx_stats.chain_signal_last[i] = signal;
1538 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1539 -signal);
1540 }
1541 }
1542
1543 /*
1544 * Change STA power saving mode only at the end of a frame
1545 * exchange sequence.
1546 */
1547 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1548 !ieee80211_has_morefrags(hdr->frame_control) &&
1549 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1550 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1551 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1552 /* PM bit is only checked in frames where it isn't reserved,
1553 * in AP mode it's reserved in non-bufferable management frames
1554 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1555 */
1556 (!ieee80211_is_mgmt(hdr->frame_control) ||
1557 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1558 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1559 if (!ieee80211_has_pm(hdr->frame_control))
1560 sta_ps_end(sta);
1561 } else {
1562 if (ieee80211_has_pm(hdr->frame_control))
1563 sta_ps_start(sta);
1564 }
1565 }
1566
1567 /* mesh power save support */
1568 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1569 ieee80211_mps_rx_h_sta_process(sta, hdr);
1570
1571 /*
1572 * Drop (qos-)data::nullfunc frames silently, since they
1573 * are used only to control station power saving mode.
1574 */
1575 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1576 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1577 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1578
1579 /*
1580 * If we receive a 4-addr nullfunc frame from a STA
1581 * that was not moved to a 4-addr STA vlan yet send
1582 * the event to userspace and for older hostapd drop
1583 * the frame to the monitor interface.
1584 */
1585 if (ieee80211_has_a4(hdr->frame_control) &&
1586 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1587 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1588 !rx->sdata->u.vlan.sta))) {
1589 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1590 cfg80211_rx_unexpected_4addr_frame(
1591 rx->sdata->dev, sta->sta.addr,
1592 GFP_ATOMIC);
1593 return RX_DROP_MONITOR;
1594 }
1595 /*
1596 * Update counter and free packet here to avoid
1597 * counting this as a dropped packed.
1598 */
1599 sta->rx_stats.packets++;
1600 dev_kfree_skb(rx->skb);
1601 return RX_QUEUED;
1602 }
1603
1604 return RX_CONTINUE;
1605 } /* ieee80211_rx_h_sta_process */
1606
1607 static ieee80211_rx_result debug_noinline
1608 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1609 {
1610 struct sk_buff *skb = rx->skb;
1611 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1613 int keyidx;
1614 int hdrlen;
1615 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1616 struct ieee80211_key *sta_ptk = NULL;
1617 int mmie_keyidx = -1;
1618 __le16 fc;
1619 const struct ieee80211_cipher_scheme *cs = NULL;
1620
1621 /*
1622 * Key selection 101
1623 *
1624 * There are four types of keys:
1625 * - GTK (group keys)
1626 * - IGTK (group keys for management frames)
1627 * - PTK (pairwise keys)
1628 * - STK (station-to-station pairwise keys)
1629 *
1630 * When selecting a key, we have to distinguish between multicast
1631 * (including broadcast) and unicast frames, the latter can only
1632 * use PTKs and STKs while the former always use GTKs and IGTKs.
1633 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1634 * unicast frames can also use key indices like GTKs. Hence, if we
1635 * don't have a PTK/STK we check the key index for a WEP key.
1636 *
1637 * Note that in a regular BSS, multicast frames are sent by the
1638 * AP only, associated stations unicast the frame to the AP first
1639 * which then multicasts it on their behalf.
1640 *
1641 * There is also a slight problem in IBSS mode: GTKs are negotiated
1642 * with each station, that is something we don't currently handle.
1643 * The spec seems to expect that one negotiates the same key with
1644 * every station but there's no such requirement; VLANs could be
1645 * possible.
1646 */
1647
1648 /* start without a key */
1649 rx->key = NULL;
1650 fc = hdr->frame_control;
1651
1652 if (rx->sta) {
1653 int keyid = rx->sta->ptk_idx;
1654
1655 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1656 cs = rx->sta->cipher_scheme;
1657 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1658 if (unlikely(keyid < 0))
1659 return RX_DROP_UNUSABLE;
1660 }
1661 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1662 }
1663
1664 if (!ieee80211_has_protected(fc))
1665 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1666
1667 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1668 rx->key = sta_ptk;
1669 if ((status->flag & RX_FLAG_DECRYPTED) &&
1670 (status->flag & RX_FLAG_IV_STRIPPED))
1671 return RX_CONTINUE;
1672 /* Skip decryption if the frame is not protected. */
1673 if (!ieee80211_has_protected(fc))
1674 return RX_CONTINUE;
1675 } else if (mmie_keyidx >= 0) {
1676 /* Broadcast/multicast robust management frame / BIP */
1677 if ((status->flag & RX_FLAG_DECRYPTED) &&
1678 (status->flag & RX_FLAG_IV_STRIPPED))
1679 return RX_CONTINUE;
1680
1681 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1682 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1683 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1684 if (rx->sta) {
1685 if (ieee80211_is_group_privacy_action(skb) &&
1686 test_sta_flag(rx->sta, WLAN_STA_MFP))
1687 return RX_DROP_MONITOR;
1688
1689 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1690 }
1691 if (!rx->key)
1692 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1693 } else if (!ieee80211_has_protected(fc)) {
1694 /*
1695 * The frame was not protected, so skip decryption. However, we
1696 * need to set rx->key if there is a key that could have been
1697 * used so that the frame may be dropped if encryption would
1698 * have been expected.
1699 */
1700 struct ieee80211_key *key = NULL;
1701 struct ieee80211_sub_if_data *sdata = rx->sdata;
1702 int i;
1703
1704 if (ieee80211_is_mgmt(fc) &&
1705 is_multicast_ether_addr(hdr->addr1) &&
1706 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1707 rx->key = key;
1708 else {
1709 if (rx->sta) {
1710 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1711 key = rcu_dereference(rx->sta->gtk[i]);
1712 if (key)
1713 break;
1714 }
1715 }
1716 if (!key) {
1717 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1718 key = rcu_dereference(sdata->keys[i]);
1719 if (key)
1720 break;
1721 }
1722 }
1723 if (key)
1724 rx->key = key;
1725 }
1726 return RX_CONTINUE;
1727 } else {
1728 u8 keyid;
1729
1730 /*
1731 * The device doesn't give us the IV so we won't be
1732 * able to look up the key. That's ok though, we
1733 * don't need to decrypt the frame, we just won't
1734 * be able to keep statistics accurate.
1735 * Except for key threshold notifications, should
1736 * we somehow allow the driver to tell us which key
1737 * the hardware used if this flag is set?
1738 */
1739 if ((status->flag & RX_FLAG_DECRYPTED) &&
1740 (status->flag & RX_FLAG_IV_STRIPPED))
1741 return RX_CONTINUE;
1742
1743 hdrlen = ieee80211_hdrlen(fc);
1744
1745 if (cs) {
1746 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1747
1748 if (unlikely(keyidx < 0))
1749 return RX_DROP_UNUSABLE;
1750 } else {
1751 if (rx->skb->len < 8 + hdrlen)
1752 return RX_DROP_UNUSABLE; /* TODO: count this? */
1753 /*
1754 * no need to call ieee80211_wep_get_keyidx,
1755 * it verifies a bunch of things we've done already
1756 */
1757 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1758 keyidx = keyid >> 6;
1759 }
1760
1761 /* check per-station GTK first, if multicast packet */
1762 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1763 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1764
1765 /* if not found, try default key */
1766 if (!rx->key) {
1767 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1768
1769 /*
1770 * RSNA-protected unicast frames should always be
1771 * sent with pairwise or station-to-station keys,
1772 * but for WEP we allow using a key index as well.
1773 */
1774 if (rx->key &&
1775 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1776 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1777 !is_multicast_ether_addr(hdr->addr1))
1778 rx->key = NULL;
1779 }
1780 }
1781
1782 if (rx->key) {
1783 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1784 return RX_DROP_MONITOR;
1785
1786 /* TODO: add threshold stuff again */
1787 } else {
1788 return RX_DROP_MONITOR;
1789 }
1790
1791 switch (rx->key->conf.cipher) {
1792 case WLAN_CIPHER_SUITE_WEP40:
1793 case WLAN_CIPHER_SUITE_WEP104:
1794 result = ieee80211_crypto_wep_decrypt(rx);
1795 break;
1796 case WLAN_CIPHER_SUITE_TKIP:
1797 result = ieee80211_crypto_tkip_decrypt(rx);
1798 break;
1799 case WLAN_CIPHER_SUITE_CCMP:
1800 result = ieee80211_crypto_ccmp_decrypt(
1801 rx, IEEE80211_CCMP_MIC_LEN);
1802 break;
1803 case WLAN_CIPHER_SUITE_CCMP_256:
1804 result = ieee80211_crypto_ccmp_decrypt(
1805 rx, IEEE80211_CCMP_256_MIC_LEN);
1806 break;
1807 case WLAN_CIPHER_SUITE_AES_CMAC:
1808 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1809 break;
1810 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1811 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1812 break;
1813 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1814 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1815 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1816 break;
1817 case WLAN_CIPHER_SUITE_GCMP:
1818 case WLAN_CIPHER_SUITE_GCMP_256:
1819 result = ieee80211_crypto_gcmp_decrypt(rx);
1820 break;
1821 default:
1822 result = ieee80211_crypto_hw_decrypt(rx);
1823 }
1824
1825 /* the hdr variable is invalid after the decrypt handlers */
1826
1827 /* either the frame has been decrypted or will be dropped */
1828 status->flag |= RX_FLAG_DECRYPTED;
1829
1830 return result;
1831 }
1832
1833 static inline struct ieee80211_fragment_entry *
1834 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1835 unsigned int frag, unsigned int seq, int rx_queue,
1836 struct sk_buff **skb)
1837 {
1838 struct ieee80211_fragment_entry *entry;
1839
1840 entry = &sdata->fragments[sdata->fragment_next++];
1841 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1842 sdata->fragment_next = 0;
1843
1844 if (!skb_queue_empty(&entry->skb_list))
1845 __skb_queue_purge(&entry->skb_list);
1846
1847 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1848 *skb = NULL;
1849 entry->first_frag_time = jiffies;
1850 entry->seq = seq;
1851 entry->rx_queue = rx_queue;
1852 entry->last_frag = frag;
1853 entry->check_sequential_pn = false;
1854 entry->extra_len = 0;
1855
1856 return entry;
1857 }
1858
1859 static inline struct ieee80211_fragment_entry *
1860 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1861 unsigned int frag, unsigned int seq,
1862 int rx_queue, struct ieee80211_hdr *hdr)
1863 {
1864 struct ieee80211_fragment_entry *entry;
1865 int i, idx;
1866
1867 idx = sdata->fragment_next;
1868 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1869 struct ieee80211_hdr *f_hdr;
1870
1871 idx--;
1872 if (idx < 0)
1873 idx = IEEE80211_FRAGMENT_MAX - 1;
1874
1875 entry = &sdata->fragments[idx];
1876 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1877 entry->rx_queue != rx_queue ||
1878 entry->last_frag + 1 != frag)
1879 continue;
1880
1881 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1882
1883 /*
1884 * Check ftype and addresses are equal, else check next fragment
1885 */
1886 if (((hdr->frame_control ^ f_hdr->frame_control) &
1887 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1888 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1889 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1890 continue;
1891
1892 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1893 __skb_queue_purge(&entry->skb_list);
1894 continue;
1895 }
1896 return entry;
1897 }
1898
1899 return NULL;
1900 }
1901
1902 static ieee80211_rx_result debug_noinline
1903 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1904 {
1905 struct ieee80211_hdr *hdr;
1906 u16 sc;
1907 __le16 fc;
1908 unsigned int frag, seq;
1909 struct ieee80211_fragment_entry *entry;
1910 struct sk_buff *skb;
1911 struct ieee80211_rx_status *status;
1912
1913 hdr = (struct ieee80211_hdr *)rx->skb->data;
1914 fc = hdr->frame_control;
1915
1916 if (ieee80211_is_ctl(fc))
1917 return RX_CONTINUE;
1918
1919 sc = le16_to_cpu(hdr->seq_ctrl);
1920 frag = sc & IEEE80211_SCTL_FRAG;
1921
1922 if (is_multicast_ether_addr(hdr->addr1)) {
1923 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1924 goto out_no_led;
1925 }
1926
1927 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1928 goto out;
1929
1930 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1931
1932 if (skb_linearize(rx->skb))
1933 return RX_DROP_UNUSABLE;
1934
1935 /*
1936 * skb_linearize() might change the skb->data and
1937 * previously cached variables (in this case, hdr) need to
1938 * be refreshed with the new data.
1939 */
1940 hdr = (struct ieee80211_hdr *)rx->skb->data;
1941 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1942
1943 if (frag == 0) {
1944 /* This is the first fragment of a new frame. */
1945 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1946 rx->seqno_idx, &(rx->skb));
1947 if (rx->key &&
1948 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1949 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1950 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1951 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1952 ieee80211_has_protected(fc)) {
1953 int queue = rx->security_idx;
1954
1955 /* Store CCMP/GCMP PN so that we can verify that the
1956 * next fragment has a sequential PN value.
1957 */
1958 entry->check_sequential_pn = true;
1959 memcpy(entry->last_pn,
1960 rx->key->u.ccmp.rx_pn[queue],
1961 IEEE80211_CCMP_PN_LEN);
1962 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1963 u.ccmp.rx_pn) !=
1964 offsetof(struct ieee80211_key,
1965 u.gcmp.rx_pn));
1966 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1967 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1968 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1969 IEEE80211_GCMP_PN_LEN);
1970 }
1971 return RX_QUEUED;
1972 }
1973
1974 /* This is a fragment for a frame that should already be pending in
1975 * fragment cache. Add this fragment to the end of the pending entry.
1976 */
1977 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1978 rx->seqno_idx, hdr);
1979 if (!entry) {
1980 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1981 return RX_DROP_MONITOR;
1982 }
1983
1984 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1985 * MPDU PN values are not incrementing in steps of 1."
1986 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1987 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1988 */
1989 if (entry->check_sequential_pn) {
1990 int i;
1991 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1992 int queue;
1993
1994 if (!rx->key ||
1995 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1996 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1997 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1998 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1999 return RX_DROP_UNUSABLE;
2000 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2001 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2002 pn[i]++;
2003 if (pn[i])
2004 break;
2005 }
2006 queue = rx->security_idx;
2007 rpn = rx->key->u.ccmp.rx_pn[queue];
2008 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2009 return RX_DROP_UNUSABLE;
2010 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2011 }
2012
2013 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2014 __skb_queue_tail(&entry->skb_list, rx->skb);
2015 entry->last_frag = frag;
2016 entry->extra_len += rx->skb->len;
2017 if (ieee80211_has_morefrags(fc)) {
2018 rx->skb = NULL;
2019 return RX_QUEUED;
2020 }
2021
2022 rx->skb = __skb_dequeue(&entry->skb_list);
2023 if (skb_tailroom(rx->skb) < entry->extra_len) {
2024 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2025 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2026 GFP_ATOMIC))) {
2027 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2028 __skb_queue_purge(&entry->skb_list);
2029 return RX_DROP_UNUSABLE;
2030 }
2031 }
2032 while ((skb = __skb_dequeue(&entry->skb_list))) {
2033 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2034 dev_kfree_skb(skb);
2035 }
2036
2037 /* Complete frame has been reassembled - process it now */
2038 status = IEEE80211_SKB_RXCB(rx->skb);
2039
2040 out:
2041 ieee80211_led_rx(rx->local);
2042 out_no_led:
2043 if (rx->sta)
2044 rx->sta->rx_stats.packets++;
2045 return RX_CONTINUE;
2046 }
2047
2048 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2049 {
2050 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2051 return -EACCES;
2052
2053 return 0;
2054 }
2055
2056 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2057 {
2058 struct sk_buff *skb = rx->skb;
2059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2060
2061 /*
2062 * Pass through unencrypted frames if the hardware has
2063 * decrypted them already.
2064 */
2065 if (status->flag & RX_FLAG_DECRYPTED)
2066 return 0;
2067
2068 /* Drop unencrypted frames if key is set. */
2069 if (unlikely(!ieee80211_has_protected(fc) &&
2070 !ieee80211_is_nullfunc(fc) &&
2071 ieee80211_is_data(fc) && rx->key))
2072 return -EACCES;
2073
2074 return 0;
2075 }
2076
2077 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2078 {
2079 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2080 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2081 __le16 fc = hdr->frame_control;
2082
2083 /*
2084 * Pass through unencrypted frames if the hardware has
2085 * decrypted them already.
2086 */
2087 if (status->flag & RX_FLAG_DECRYPTED)
2088 return 0;
2089
2090 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2091 if (unlikely(!ieee80211_has_protected(fc) &&
2092 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2093 rx->key)) {
2094 if (ieee80211_is_deauth(fc) ||
2095 ieee80211_is_disassoc(fc))
2096 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2097 rx->skb->data,
2098 rx->skb->len);
2099 return -EACCES;
2100 }
2101 /* BIP does not use Protected field, so need to check MMIE */
2102 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2103 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2104 if (ieee80211_is_deauth(fc) ||
2105 ieee80211_is_disassoc(fc))
2106 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2107 rx->skb->data,
2108 rx->skb->len);
2109 return -EACCES;
2110 }
2111 /*
2112 * When using MFP, Action frames are not allowed prior to
2113 * having configured keys.
2114 */
2115 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2116 ieee80211_is_robust_mgmt_frame(rx->skb)))
2117 return -EACCES;
2118 }
2119
2120 return 0;
2121 }
2122
2123 static int
2124 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2125 {
2126 struct ieee80211_sub_if_data *sdata = rx->sdata;
2127 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2128 bool check_port_control = false;
2129 struct ethhdr *ehdr;
2130 int ret;
2131
2132 *port_control = false;
2133 if (ieee80211_has_a4(hdr->frame_control) &&
2134 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2135 return -1;
2136
2137 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2138 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2139
2140 if (!sdata->u.mgd.use_4addr)
2141 return -1;
2142 else
2143 check_port_control = true;
2144 }
2145
2146 if (is_multicast_ether_addr(hdr->addr1) &&
2147 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2148 return -1;
2149
2150 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2151 if (ret < 0)
2152 return ret;
2153
2154 ehdr = (struct ethhdr *) rx->skb->data;
2155 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2156 *port_control = true;
2157 else if (check_port_control)
2158 return -1;
2159
2160 return 0;
2161 }
2162
2163 /*
2164 * requires that rx->skb is a frame with ethernet header
2165 */
2166 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2167 {
2168 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2169 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2170 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2171
2172 /*
2173 * Allow EAPOL frames to us/the PAE group address regardless
2174 * of whether the frame was encrypted or not.
2175 */
2176 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2177 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2178 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2179 return true;
2180
2181 if (ieee80211_802_1x_port_control(rx) ||
2182 ieee80211_drop_unencrypted(rx, fc))
2183 return false;
2184
2185 return true;
2186 }
2187
2188 /*
2189 * requires that rx->skb is a frame with ethernet header
2190 */
2191 static void
2192 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2193 {
2194 struct ieee80211_sub_if_data *sdata = rx->sdata;
2195 struct net_device *dev = sdata->dev;
2196 struct sk_buff *skb, *xmit_skb;
2197 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2198 struct sta_info *dsta;
2199
2200 skb = rx->skb;
2201 xmit_skb = NULL;
2202
2203 ieee80211_rx_stats(dev, skb->len);
2204
2205 if (rx->sta) {
2206 /* The seqno index has the same property as needed
2207 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2208 * for non-QoS-data frames. Here we know it's a data
2209 * frame, so count MSDUs.
2210 */
2211 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2212 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2213 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2214 }
2215
2216 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2217 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2218 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2219 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2220 if (is_multicast_ether_addr(ehdr->h_dest)) {
2221 /*
2222 * send multicast frames both to higher layers in
2223 * local net stack and back to the wireless medium
2224 */
2225 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2226 if (!xmit_skb)
2227 net_info_ratelimited("%s: failed to clone multicast frame\n",
2228 dev->name);
2229 } else {
2230 dsta = sta_info_get(sdata, skb->data);
2231 if (dsta) {
2232 /*
2233 * The destination station is associated to
2234 * this AP (in this VLAN), so send the frame
2235 * directly to it and do not pass it to local
2236 * net stack.
2237 */
2238 xmit_skb = skb;
2239 skb = NULL;
2240 }
2241 }
2242 }
2243
2244 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2245 if (skb) {
2246 /* 'align' will only take the values 0 or 2 here since all
2247 * frames are required to be aligned to 2-byte boundaries
2248 * when being passed to mac80211; the code here works just
2249 * as well if that isn't true, but mac80211 assumes it can
2250 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2251 */
2252 int align;
2253
2254 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2255 if (align) {
2256 if (WARN_ON(skb_headroom(skb) < 3)) {
2257 dev_kfree_skb(skb);
2258 skb = NULL;
2259 } else {
2260 u8 *data = skb->data;
2261 size_t len = skb_headlen(skb);
2262 skb->data -= align;
2263 memmove(skb->data, data, len);
2264 skb_set_tail_pointer(skb, len);
2265 }
2266 }
2267 }
2268 #endif
2269
2270 if (skb) {
2271 /* deliver to local stack */
2272 skb->protocol = eth_type_trans(skb, dev);
2273 memset(skb->cb, 0, sizeof(skb->cb));
2274 if (rx->napi)
2275 napi_gro_receive(rx->napi, skb);
2276 else
2277 netif_receive_skb(skb);
2278 }
2279
2280 if (xmit_skb) {
2281 /*
2282 * Send to wireless media and increase priority by 256 to
2283 * keep the received priority instead of reclassifying
2284 * the frame (see cfg80211_classify8021d).
2285 */
2286 xmit_skb->priority += 256;
2287 xmit_skb->protocol = htons(ETH_P_802_3);
2288 skb_reset_network_header(xmit_skb);
2289 skb_reset_mac_header(xmit_skb);
2290 dev_queue_xmit(xmit_skb);
2291 }
2292 }
2293
2294 static ieee80211_rx_result debug_noinline
2295 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2296 {
2297 struct net_device *dev = rx->sdata->dev;
2298 struct sk_buff *skb = rx->skb;
2299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2300 __le16 fc = hdr->frame_control;
2301 struct sk_buff_head frame_list;
2302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2303
2304 if (unlikely(!ieee80211_is_data(fc)))
2305 return RX_CONTINUE;
2306
2307 if (unlikely(!ieee80211_is_data_present(fc)))
2308 return RX_DROP_MONITOR;
2309
2310 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2311 return RX_CONTINUE;
2312
2313 if (ieee80211_has_a4(hdr->frame_control) &&
2314 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2315 !rx->sdata->u.vlan.sta)
2316 return RX_DROP_UNUSABLE;
2317
2318 if (is_multicast_ether_addr(hdr->addr1) &&
2319 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2320 rx->sdata->u.vlan.sta) ||
2321 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2322 rx->sdata->u.mgd.use_4addr)))
2323 return RX_DROP_UNUSABLE;
2324
2325 skb->dev = dev;
2326 __skb_queue_head_init(&frame_list);
2327
2328 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2329 rx->sdata->vif.type,
2330 rx->local->hw.extra_tx_headroom, true);
2331
2332 while (!skb_queue_empty(&frame_list)) {
2333 rx->skb = __skb_dequeue(&frame_list);
2334
2335 if (!ieee80211_frame_allowed(rx, fc)) {
2336 dev_kfree_skb(rx->skb);
2337 continue;
2338 }
2339
2340 ieee80211_deliver_skb(rx);
2341 }
2342
2343 return RX_QUEUED;
2344 }
2345
2346 #ifdef CONFIG_MAC80211_MESH
2347 static ieee80211_rx_result
2348 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2349 {
2350 struct ieee80211_hdr *fwd_hdr, *hdr;
2351 struct ieee80211_tx_info *info;
2352 struct ieee80211s_hdr *mesh_hdr;
2353 struct sk_buff *skb = rx->skb, *fwd_skb;
2354 struct ieee80211_local *local = rx->local;
2355 struct ieee80211_sub_if_data *sdata = rx->sdata;
2356 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2357 u16 ac, q, hdrlen;
2358
2359 hdr = (struct ieee80211_hdr *) skb->data;
2360 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2361
2362 /* make sure fixed part of mesh header is there, also checks skb len */
2363 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2364 return RX_DROP_MONITOR;
2365
2366 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2367
2368 /* make sure full mesh header is there, also checks skb len */
2369 if (!pskb_may_pull(rx->skb,
2370 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2371 return RX_DROP_MONITOR;
2372
2373 /* reload pointers */
2374 hdr = (struct ieee80211_hdr *) skb->data;
2375 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2376
2377 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2378 return RX_DROP_MONITOR;
2379
2380 /* frame is in RMC, don't forward */
2381 if (ieee80211_is_data(hdr->frame_control) &&
2382 is_multicast_ether_addr(hdr->addr1) &&
2383 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2384 return RX_DROP_MONITOR;
2385
2386 if (!ieee80211_is_data(hdr->frame_control))
2387 return RX_CONTINUE;
2388
2389 if (!mesh_hdr->ttl)
2390 return RX_DROP_MONITOR;
2391
2392 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2393 struct mesh_path *mppath;
2394 char *proxied_addr;
2395 char *mpp_addr;
2396
2397 if (is_multicast_ether_addr(hdr->addr1)) {
2398 mpp_addr = hdr->addr3;
2399 proxied_addr = mesh_hdr->eaddr1;
2400 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2401 /* has_a4 already checked in ieee80211_rx_mesh_check */
2402 mpp_addr = hdr->addr4;
2403 proxied_addr = mesh_hdr->eaddr2;
2404 } else {
2405 return RX_DROP_MONITOR;
2406 }
2407
2408 rcu_read_lock();
2409 mppath = mpp_path_lookup(sdata, proxied_addr);
2410 if (!mppath) {
2411 mpp_path_add(sdata, proxied_addr, mpp_addr);
2412 } else {
2413 spin_lock_bh(&mppath->state_lock);
2414 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2415 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2416 mppath->exp_time = jiffies;
2417 spin_unlock_bh(&mppath->state_lock);
2418 }
2419 rcu_read_unlock();
2420 }
2421
2422 /* Frame has reached destination. Don't forward */
2423 if (!is_multicast_ether_addr(hdr->addr1) &&
2424 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2425 return RX_CONTINUE;
2426
2427 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2428 q = sdata->vif.hw_queue[ac];
2429 if (ieee80211_queue_stopped(&local->hw, q)) {
2430 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2431 return RX_DROP_MONITOR;
2432 }
2433 skb_set_queue_mapping(skb, q);
2434
2435 if (!--mesh_hdr->ttl) {
2436 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2437 goto out;
2438 }
2439
2440 if (!ifmsh->mshcfg.dot11MeshForwarding)
2441 goto out;
2442
2443 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2444 if (!fwd_skb) {
2445 net_info_ratelimited("%s: failed to clone mesh frame\n",
2446 sdata->name);
2447 goto out;
2448 }
2449
2450 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2451 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2452 info = IEEE80211_SKB_CB(fwd_skb);
2453 memset(info, 0, sizeof(*info));
2454 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2455 info->control.vif = &rx->sdata->vif;
2456 info->control.jiffies = jiffies;
2457 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2458 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2459 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2460 /* update power mode indication when forwarding */
2461 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2462 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2463 /* mesh power mode flags updated in mesh_nexthop_lookup */
2464 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2465 } else {
2466 /* unable to resolve next hop */
2467 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2468 fwd_hdr->addr3, 0,
2469 WLAN_REASON_MESH_PATH_NOFORWARD,
2470 fwd_hdr->addr2);
2471 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2472 kfree_skb(fwd_skb);
2473 return RX_DROP_MONITOR;
2474 }
2475
2476 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2477 ieee80211_add_pending_skb(local, fwd_skb);
2478 out:
2479 if (is_multicast_ether_addr(hdr->addr1))
2480 return RX_CONTINUE;
2481 return RX_DROP_MONITOR;
2482 }
2483 #endif
2484
2485 static ieee80211_rx_result debug_noinline
2486 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2487 {
2488 struct ieee80211_sub_if_data *sdata = rx->sdata;
2489 struct ieee80211_local *local = rx->local;
2490 struct net_device *dev = sdata->dev;
2491 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2492 __le16 fc = hdr->frame_control;
2493 bool port_control;
2494 int err;
2495
2496 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2497 return RX_CONTINUE;
2498
2499 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2500 return RX_DROP_MONITOR;
2501
2502 /*
2503 * Send unexpected-4addr-frame event to hostapd. For older versions,
2504 * also drop the frame to cooked monitor interfaces.
2505 */
2506 if (ieee80211_has_a4(hdr->frame_control) &&
2507 sdata->vif.type == NL80211_IFTYPE_AP) {
2508 if (rx->sta &&
2509 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2510 cfg80211_rx_unexpected_4addr_frame(
2511 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2512 return RX_DROP_MONITOR;
2513 }
2514
2515 err = __ieee80211_data_to_8023(rx, &port_control);
2516 if (unlikely(err))
2517 return RX_DROP_UNUSABLE;
2518
2519 if (!ieee80211_frame_allowed(rx, fc))
2520 return RX_DROP_MONITOR;
2521
2522 /* directly handle TDLS channel switch requests/responses */
2523 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2524 cpu_to_be16(ETH_P_TDLS))) {
2525 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2526
2527 if (pskb_may_pull(rx->skb,
2528 offsetof(struct ieee80211_tdls_data, u)) &&
2529 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2530 tf->category == WLAN_CATEGORY_TDLS &&
2531 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2532 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2533 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2534 schedule_work(&local->tdls_chsw_work);
2535 if (rx->sta)
2536 rx->sta->rx_stats.packets++;
2537
2538 return RX_QUEUED;
2539 }
2540 }
2541
2542 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2543 unlikely(port_control) && sdata->bss) {
2544 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2545 u.ap);
2546 dev = sdata->dev;
2547 rx->sdata = sdata;
2548 }
2549
2550 rx->skb->dev = dev;
2551
2552 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2553 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2554 !is_multicast_ether_addr(
2555 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2556 (!local->scanning &&
2557 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2558 mod_timer(&local->dynamic_ps_timer, jiffies +
2559 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2560
2561 ieee80211_deliver_skb(rx);
2562
2563 return RX_QUEUED;
2564 }
2565
2566 static ieee80211_rx_result debug_noinline
2567 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2568 {
2569 struct sk_buff *skb = rx->skb;
2570 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2571 struct tid_ampdu_rx *tid_agg_rx;
2572 u16 start_seq_num;
2573 u16 tid;
2574
2575 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2576 return RX_CONTINUE;
2577
2578 if (ieee80211_is_back_req(bar->frame_control)) {
2579 struct {
2580 __le16 control, start_seq_num;
2581 } __packed bar_data;
2582 struct ieee80211_event event = {
2583 .type = BAR_RX_EVENT,
2584 };
2585
2586 if (!rx->sta)
2587 return RX_DROP_MONITOR;
2588
2589 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2590 &bar_data, sizeof(bar_data)))
2591 return RX_DROP_MONITOR;
2592
2593 tid = le16_to_cpu(bar_data.control) >> 12;
2594
2595 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2596 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2597 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2598 WLAN_BACK_RECIPIENT,
2599 WLAN_REASON_QSTA_REQUIRE_SETUP);
2600
2601 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2602 if (!tid_agg_rx)
2603 return RX_DROP_MONITOR;
2604
2605 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2606 event.u.ba.tid = tid;
2607 event.u.ba.ssn = start_seq_num;
2608 event.u.ba.sta = &rx->sta->sta;
2609
2610 /* reset session timer */
2611 if (tid_agg_rx->timeout)
2612 mod_timer(&tid_agg_rx->session_timer,
2613 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2614
2615 spin_lock(&tid_agg_rx->reorder_lock);
2616 /* release stored frames up to start of BAR */
2617 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2618 start_seq_num, frames);
2619 spin_unlock(&tid_agg_rx->reorder_lock);
2620
2621 drv_event_callback(rx->local, rx->sdata, &event);
2622
2623 kfree_skb(skb);
2624 return RX_QUEUED;
2625 }
2626
2627 /*
2628 * After this point, we only want management frames,
2629 * so we can drop all remaining control frames to
2630 * cooked monitor interfaces.
2631 */
2632 return RX_DROP_MONITOR;
2633 }
2634
2635 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2636 struct ieee80211_mgmt *mgmt,
2637 size_t len)
2638 {
2639 struct ieee80211_local *local = sdata->local;
2640 struct sk_buff *skb;
2641 struct ieee80211_mgmt *resp;
2642
2643 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2644 /* Not to own unicast address */
2645 return;
2646 }
2647
2648 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2649 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2650 /* Not from the current AP or not associated yet. */
2651 return;
2652 }
2653
2654 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2655 /* Too short SA Query request frame */
2656 return;
2657 }
2658
2659 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2660 if (skb == NULL)
2661 return;
2662
2663 skb_reserve(skb, local->hw.extra_tx_headroom);
2664 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2665 memset(resp, 0, 24);
2666 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2667 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2668 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2669 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2670 IEEE80211_STYPE_ACTION);
2671 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2672 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2673 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2674 memcpy(resp->u.action.u.sa_query.trans_id,
2675 mgmt->u.action.u.sa_query.trans_id,
2676 WLAN_SA_QUERY_TR_ID_LEN);
2677
2678 ieee80211_tx_skb(sdata, skb);
2679 }
2680
2681 static ieee80211_rx_result debug_noinline
2682 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2683 {
2684 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2685 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2686
2687 /*
2688 * From here on, look only at management frames.
2689 * Data and control frames are already handled,
2690 * and unknown (reserved) frames are useless.
2691 */
2692 if (rx->skb->len < 24)
2693 return RX_DROP_MONITOR;
2694
2695 if (!ieee80211_is_mgmt(mgmt->frame_control))
2696 return RX_DROP_MONITOR;
2697
2698 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2699 ieee80211_is_beacon(mgmt->frame_control) &&
2700 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2701 int sig = 0;
2702
2703 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2704 sig = status->signal;
2705
2706 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2707 rx->skb->data, rx->skb->len,
2708 status->freq, sig);
2709 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2710 }
2711
2712 if (ieee80211_drop_unencrypted_mgmt(rx))
2713 return RX_DROP_UNUSABLE;
2714
2715 return RX_CONTINUE;
2716 }
2717
2718 static ieee80211_rx_result debug_noinline
2719 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2720 {
2721 struct ieee80211_local *local = rx->local;
2722 struct ieee80211_sub_if_data *sdata = rx->sdata;
2723 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2725 int len = rx->skb->len;
2726
2727 if (!ieee80211_is_action(mgmt->frame_control))
2728 return RX_CONTINUE;
2729
2730 /* drop too small frames */
2731 if (len < IEEE80211_MIN_ACTION_SIZE)
2732 return RX_DROP_UNUSABLE;
2733
2734 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2735 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2736 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2737 return RX_DROP_UNUSABLE;
2738
2739 switch (mgmt->u.action.category) {
2740 case WLAN_CATEGORY_HT:
2741 /* reject HT action frames from stations not supporting HT */
2742 if (!rx->sta->sta.ht_cap.ht_supported)
2743 goto invalid;
2744
2745 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2746 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2747 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2748 sdata->vif.type != NL80211_IFTYPE_AP &&
2749 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2750 break;
2751
2752 /* verify action & smps_control/chanwidth are present */
2753 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2754 goto invalid;
2755
2756 switch (mgmt->u.action.u.ht_smps.action) {
2757 case WLAN_HT_ACTION_SMPS: {
2758 struct ieee80211_supported_band *sband;
2759 enum ieee80211_smps_mode smps_mode;
2760
2761 /* convert to HT capability */
2762 switch (mgmt->u.action.u.ht_smps.smps_control) {
2763 case WLAN_HT_SMPS_CONTROL_DISABLED:
2764 smps_mode = IEEE80211_SMPS_OFF;
2765 break;
2766 case WLAN_HT_SMPS_CONTROL_STATIC:
2767 smps_mode = IEEE80211_SMPS_STATIC;
2768 break;
2769 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2770 smps_mode = IEEE80211_SMPS_DYNAMIC;
2771 break;
2772 default:
2773 goto invalid;
2774 }
2775
2776 /* if no change do nothing */
2777 if (rx->sta->sta.smps_mode == smps_mode)
2778 goto handled;
2779 rx->sta->sta.smps_mode = smps_mode;
2780
2781 sband = rx->local->hw.wiphy->bands[status->band];
2782
2783 rate_control_rate_update(local, sband, rx->sta,
2784 IEEE80211_RC_SMPS_CHANGED);
2785 goto handled;
2786 }
2787 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2788 struct ieee80211_supported_band *sband;
2789 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2790 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2791
2792 /* If it doesn't support 40 MHz it can't change ... */
2793 if (!(rx->sta->sta.ht_cap.cap &
2794 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2795 goto handled;
2796
2797 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2798 max_bw = IEEE80211_STA_RX_BW_20;
2799 else
2800 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2801
2802 /* set cur_max_bandwidth and recalc sta bw */
2803 rx->sta->cur_max_bandwidth = max_bw;
2804 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2805
2806 if (rx->sta->sta.bandwidth == new_bw)
2807 goto handled;
2808
2809 rx->sta->sta.bandwidth = new_bw;
2810 sband = rx->local->hw.wiphy->bands[status->band];
2811
2812 rate_control_rate_update(local, sband, rx->sta,
2813 IEEE80211_RC_BW_CHANGED);
2814 goto handled;
2815 }
2816 default:
2817 goto invalid;
2818 }
2819
2820 break;
2821 case WLAN_CATEGORY_PUBLIC:
2822 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2823 goto invalid;
2824 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2825 break;
2826 if (!rx->sta)
2827 break;
2828 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2829 break;
2830 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2831 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2832 break;
2833 if (len < offsetof(struct ieee80211_mgmt,
2834 u.action.u.ext_chan_switch.variable))
2835 goto invalid;
2836 goto queue;
2837 case WLAN_CATEGORY_VHT:
2838 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2839 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2840 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2841 sdata->vif.type != NL80211_IFTYPE_AP &&
2842 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2843 break;
2844
2845 /* verify action code is present */
2846 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2847 goto invalid;
2848
2849 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2850 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2851 u8 opmode;
2852
2853 /* verify opmode is present */
2854 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2855 goto invalid;
2856
2857 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2858
2859 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2860 opmode, status->band);
2861 goto handled;
2862 }
2863 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2864 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2865 goto invalid;
2866 goto queue;
2867 }
2868 default:
2869 break;
2870 }
2871 break;
2872 case WLAN_CATEGORY_BACK:
2873 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2874 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2875 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2876 sdata->vif.type != NL80211_IFTYPE_AP &&
2877 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2878 break;
2879
2880 /* verify action_code is present */
2881 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2882 break;
2883
2884 switch (mgmt->u.action.u.addba_req.action_code) {
2885 case WLAN_ACTION_ADDBA_REQ:
2886 if (len < (IEEE80211_MIN_ACTION_SIZE +
2887 sizeof(mgmt->u.action.u.addba_req)))
2888 goto invalid;
2889 break;
2890 case WLAN_ACTION_ADDBA_RESP:
2891 if (len < (IEEE80211_MIN_ACTION_SIZE +
2892 sizeof(mgmt->u.action.u.addba_resp)))
2893 goto invalid;
2894 break;
2895 case WLAN_ACTION_DELBA:
2896 if (len < (IEEE80211_MIN_ACTION_SIZE +
2897 sizeof(mgmt->u.action.u.delba)))
2898 goto invalid;
2899 break;
2900 default:
2901 goto invalid;
2902 }
2903
2904 goto queue;
2905 case WLAN_CATEGORY_SPECTRUM_MGMT:
2906 /* verify action_code is present */
2907 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2908 break;
2909
2910 switch (mgmt->u.action.u.measurement.action_code) {
2911 case WLAN_ACTION_SPCT_MSR_REQ:
2912 if (status->band != NL80211_BAND_5GHZ)
2913 break;
2914
2915 if (len < (IEEE80211_MIN_ACTION_SIZE +
2916 sizeof(mgmt->u.action.u.measurement)))
2917 break;
2918
2919 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2920 break;
2921
2922 ieee80211_process_measurement_req(sdata, mgmt, len);
2923 goto handled;
2924 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2925 u8 *bssid;
2926 if (len < (IEEE80211_MIN_ACTION_SIZE +
2927 sizeof(mgmt->u.action.u.chan_switch)))
2928 break;
2929
2930 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2931 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2932 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2933 break;
2934
2935 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2936 bssid = sdata->u.mgd.bssid;
2937 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2938 bssid = sdata->u.ibss.bssid;
2939 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2940 bssid = mgmt->sa;
2941 else
2942 break;
2943
2944 if (!ether_addr_equal(mgmt->bssid, bssid))
2945 break;
2946
2947 goto queue;
2948 }
2949 }
2950 break;
2951 case WLAN_CATEGORY_SA_QUERY:
2952 if (len < (IEEE80211_MIN_ACTION_SIZE +
2953 sizeof(mgmt->u.action.u.sa_query)))
2954 break;
2955
2956 switch (mgmt->u.action.u.sa_query.action) {
2957 case WLAN_ACTION_SA_QUERY_REQUEST:
2958 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2959 break;
2960 ieee80211_process_sa_query_req(sdata, mgmt, len);
2961 goto handled;
2962 }
2963 break;
2964 case WLAN_CATEGORY_SELF_PROTECTED:
2965 if (len < (IEEE80211_MIN_ACTION_SIZE +
2966 sizeof(mgmt->u.action.u.self_prot.action_code)))
2967 break;
2968
2969 switch (mgmt->u.action.u.self_prot.action_code) {
2970 case WLAN_SP_MESH_PEERING_OPEN:
2971 case WLAN_SP_MESH_PEERING_CLOSE:
2972 case WLAN_SP_MESH_PEERING_CONFIRM:
2973 if (!ieee80211_vif_is_mesh(&sdata->vif))
2974 goto invalid;
2975 if (sdata->u.mesh.user_mpm)
2976 /* userspace handles this frame */
2977 break;
2978 goto queue;
2979 case WLAN_SP_MGK_INFORM:
2980 case WLAN_SP_MGK_ACK:
2981 if (!ieee80211_vif_is_mesh(&sdata->vif))
2982 goto invalid;
2983 break;
2984 }
2985 break;
2986 case WLAN_CATEGORY_MESH_ACTION:
2987 if (len < (IEEE80211_MIN_ACTION_SIZE +
2988 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2989 break;
2990
2991 if (!ieee80211_vif_is_mesh(&sdata->vif))
2992 break;
2993 if (mesh_action_is_path_sel(mgmt) &&
2994 !mesh_path_sel_is_hwmp(sdata))
2995 break;
2996 goto queue;
2997 }
2998
2999 return RX_CONTINUE;
3000
3001 invalid:
3002 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3003 /* will return in the next handlers */
3004 return RX_CONTINUE;
3005
3006 handled:
3007 if (rx->sta)
3008 rx->sta->rx_stats.packets++;
3009 dev_kfree_skb(rx->skb);
3010 return RX_QUEUED;
3011
3012 queue:
3013 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3014 skb_queue_tail(&sdata->skb_queue, rx->skb);
3015 ieee80211_queue_work(&local->hw, &sdata->work);
3016 if (rx->sta)
3017 rx->sta->rx_stats.packets++;
3018 return RX_QUEUED;
3019 }
3020
3021 static ieee80211_rx_result debug_noinline
3022 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3023 {
3024 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3025 int sig = 0;
3026
3027 /* skip known-bad action frames and return them in the next handler */
3028 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3029 return RX_CONTINUE;
3030
3031 /*
3032 * Getting here means the kernel doesn't know how to handle
3033 * it, but maybe userspace does ... include returned frames
3034 * so userspace can register for those to know whether ones
3035 * it transmitted were processed or returned.
3036 */
3037
3038 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3039 sig = status->signal;
3040
3041 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3042 rx->skb->data, rx->skb->len, 0)) {
3043 if (rx->sta)
3044 rx->sta->rx_stats.packets++;
3045 dev_kfree_skb(rx->skb);
3046 return RX_QUEUED;
3047 }
3048
3049 return RX_CONTINUE;
3050 }
3051
3052 static ieee80211_rx_result debug_noinline
3053 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3054 {
3055 struct ieee80211_local *local = rx->local;
3056 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3057 struct sk_buff *nskb;
3058 struct ieee80211_sub_if_data *sdata = rx->sdata;
3059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3060
3061 if (!ieee80211_is_action(mgmt->frame_control))
3062 return RX_CONTINUE;
3063
3064 /*
3065 * For AP mode, hostapd is responsible for handling any action
3066 * frames that we didn't handle, including returning unknown
3067 * ones. For all other modes we will return them to the sender,
3068 * setting the 0x80 bit in the action category, as required by
3069 * 802.11-2012 9.24.4.
3070 * Newer versions of hostapd shall also use the management frame
3071 * registration mechanisms, but older ones still use cooked
3072 * monitor interfaces so push all frames there.
3073 */
3074 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3075 (sdata->vif.type == NL80211_IFTYPE_AP ||
3076 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3077 return RX_DROP_MONITOR;
3078
3079 if (is_multicast_ether_addr(mgmt->da))
3080 return RX_DROP_MONITOR;
3081
3082 /* do not return rejected action frames */
3083 if (mgmt->u.action.category & 0x80)
3084 return RX_DROP_UNUSABLE;
3085
3086 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3087 GFP_ATOMIC);
3088 if (nskb) {
3089 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3090
3091 nmgmt->u.action.category |= 0x80;
3092 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3093 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3094
3095 memset(nskb->cb, 0, sizeof(nskb->cb));
3096
3097 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3098 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3099
3100 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3101 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3102 IEEE80211_TX_CTL_NO_CCK_RATE;
3103 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3104 info->hw_queue =
3105 local->hw.offchannel_tx_hw_queue;
3106 }
3107
3108 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3109 status->band);
3110 }
3111 dev_kfree_skb(rx->skb);
3112 return RX_QUEUED;
3113 }
3114
3115 static ieee80211_rx_result debug_noinline
3116 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3117 {
3118 struct ieee80211_sub_if_data *sdata = rx->sdata;
3119 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3120 __le16 stype;
3121
3122 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3123
3124 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3125 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3126 sdata->vif.type != NL80211_IFTYPE_OCB &&
3127 sdata->vif.type != NL80211_IFTYPE_STATION)
3128 return RX_DROP_MONITOR;
3129
3130 switch (stype) {
3131 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3132 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3133 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3134 /* process for all: mesh, mlme, ibss */
3135 break;
3136 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3137 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3138 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3139 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3140 if (is_multicast_ether_addr(mgmt->da) &&
3141 !is_broadcast_ether_addr(mgmt->da))
3142 return RX_DROP_MONITOR;
3143
3144 /* process only for station */
3145 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3146 return RX_DROP_MONITOR;
3147 break;
3148 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3149 /* process only for ibss and mesh */
3150 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3151 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3152 return RX_DROP_MONITOR;
3153 break;
3154 default:
3155 return RX_DROP_MONITOR;
3156 }
3157
3158 /* queue up frame and kick off work to process it */
3159 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3160 skb_queue_tail(&sdata->skb_queue, rx->skb);
3161 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3162 if (rx->sta)
3163 rx->sta->rx_stats.packets++;
3164
3165 return RX_QUEUED;
3166 }
3167
3168 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3169 struct ieee80211_rate *rate)
3170 {
3171 struct ieee80211_sub_if_data *sdata;
3172 struct ieee80211_local *local = rx->local;
3173 struct sk_buff *skb = rx->skb, *skb2;
3174 struct net_device *prev_dev = NULL;
3175 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3176 int needed_headroom;
3177
3178 /*
3179 * If cooked monitor has been processed already, then
3180 * don't do it again. If not, set the flag.
3181 */
3182 if (rx->flags & IEEE80211_RX_CMNTR)
3183 goto out_free_skb;
3184 rx->flags |= IEEE80211_RX_CMNTR;
3185
3186 /* If there are no cooked monitor interfaces, just free the SKB */
3187 if (!local->cooked_mntrs)
3188 goto out_free_skb;
3189
3190 /* vendor data is long removed here */
3191 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3192 /* room for the radiotap header based on driver features */
3193 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3194
3195 if (skb_headroom(skb) < needed_headroom &&
3196 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3197 goto out_free_skb;
3198
3199 /* prepend radiotap information */
3200 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3201 false);
3202
3203 skb_reset_mac_header(skb);
3204 skb->ip_summed = CHECKSUM_UNNECESSARY;
3205 skb->pkt_type = PACKET_OTHERHOST;
3206 skb->protocol = htons(ETH_P_802_2);
3207
3208 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3209 if (!ieee80211_sdata_running(sdata))
3210 continue;
3211
3212 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3213 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3214 continue;
3215
3216 if (prev_dev) {
3217 skb2 = skb_clone(skb, GFP_ATOMIC);
3218 if (skb2) {
3219 skb2->dev = prev_dev;
3220 netif_receive_skb(skb2);
3221 }
3222 }
3223
3224 prev_dev = sdata->dev;
3225 ieee80211_rx_stats(sdata->dev, skb->len);
3226 }
3227
3228 if (prev_dev) {
3229 skb->dev = prev_dev;
3230 netif_receive_skb(skb);
3231 return;
3232 }
3233
3234 out_free_skb:
3235 dev_kfree_skb(skb);
3236 }
3237
3238 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3239 ieee80211_rx_result res)
3240 {
3241 switch (res) {
3242 case RX_DROP_MONITOR:
3243 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3244 if (rx->sta)
3245 rx->sta->rx_stats.dropped++;
3246 /* fall through */
3247 case RX_CONTINUE: {
3248 struct ieee80211_rate *rate = NULL;
3249 struct ieee80211_supported_band *sband;
3250 struct ieee80211_rx_status *status;
3251
3252 status = IEEE80211_SKB_RXCB((rx->skb));
3253
3254 sband = rx->local->hw.wiphy->bands[status->band];
3255 if (!(status->flag & RX_FLAG_HT) &&
3256 !(status->flag & RX_FLAG_VHT))
3257 rate = &sband->bitrates[status->rate_idx];
3258
3259 ieee80211_rx_cooked_monitor(rx, rate);
3260 break;
3261 }
3262 case RX_DROP_UNUSABLE:
3263 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3264 if (rx->sta)
3265 rx->sta->rx_stats.dropped++;
3266 dev_kfree_skb(rx->skb);
3267 break;
3268 case RX_QUEUED:
3269 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3270 break;
3271 }
3272 }
3273
3274 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3275 struct sk_buff_head *frames)
3276 {
3277 ieee80211_rx_result res = RX_DROP_MONITOR;
3278 struct sk_buff *skb;
3279
3280 #define CALL_RXH(rxh) \
3281 do { \
3282 res = rxh(rx); \
3283 if (res != RX_CONTINUE) \
3284 goto rxh_next; \
3285 } while (0)
3286
3287 /* Lock here to avoid hitting all of the data used in the RX
3288 * path (e.g. key data, station data, ...) concurrently when
3289 * a frame is released from the reorder buffer due to timeout
3290 * from the timer, potentially concurrently with RX from the
3291 * driver.
3292 */
3293 spin_lock_bh(&rx->local->rx_path_lock);
3294
3295 while ((skb = __skb_dequeue(frames))) {
3296 /*
3297 * all the other fields are valid across frames
3298 * that belong to an aMPDU since they are on the
3299 * same TID from the same station
3300 */
3301 rx->skb = skb;
3302
3303 CALL_RXH(ieee80211_rx_h_check_more_data);
3304 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3305 CALL_RXH(ieee80211_rx_h_sta_process);
3306 CALL_RXH(ieee80211_rx_h_decrypt);
3307 CALL_RXH(ieee80211_rx_h_defragment);
3308 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3309 /* must be after MMIC verify so header is counted in MPDU mic */
3310 #ifdef CONFIG_MAC80211_MESH
3311 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3312 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3313 #endif
3314 CALL_RXH(ieee80211_rx_h_amsdu);
3315 CALL_RXH(ieee80211_rx_h_data);
3316
3317 /* special treatment -- needs the queue */
3318 res = ieee80211_rx_h_ctrl(rx, frames);
3319 if (res != RX_CONTINUE)
3320 goto rxh_next;
3321
3322 CALL_RXH(ieee80211_rx_h_mgmt_check);
3323 CALL_RXH(ieee80211_rx_h_action);
3324 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3325 CALL_RXH(ieee80211_rx_h_action_return);
3326 CALL_RXH(ieee80211_rx_h_mgmt);
3327
3328 rxh_next:
3329 ieee80211_rx_handlers_result(rx, res);
3330
3331 #undef CALL_RXH
3332 }
3333
3334 spin_unlock_bh(&rx->local->rx_path_lock);
3335 }
3336
3337 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3338 {
3339 struct sk_buff_head reorder_release;
3340 ieee80211_rx_result res = RX_DROP_MONITOR;
3341
3342 __skb_queue_head_init(&reorder_release);
3343
3344 #define CALL_RXH(rxh) \
3345 do { \
3346 res = rxh(rx); \
3347 if (res != RX_CONTINUE) \
3348 goto rxh_next; \
3349 } while (0)
3350
3351 CALL_RXH(ieee80211_rx_h_check_dup);
3352 CALL_RXH(ieee80211_rx_h_check);
3353
3354 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3355
3356 ieee80211_rx_handlers(rx, &reorder_release);
3357 return;
3358
3359 rxh_next:
3360 ieee80211_rx_handlers_result(rx, res);
3361
3362 #undef CALL_RXH
3363 }
3364
3365 /*
3366 * This function makes calls into the RX path, therefore
3367 * it has to be invoked under RCU read lock.
3368 */
3369 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3370 {
3371 struct sk_buff_head frames;
3372 struct ieee80211_rx_data rx = {
3373 .sta = sta,
3374 .sdata = sta->sdata,
3375 .local = sta->local,
3376 /* This is OK -- must be QoS data frame */
3377 .security_idx = tid,
3378 .seqno_idx = tid,
3379 .napi = NULL, /* must be NULL to not have races */
3380 };
3381 struct tid_ampdu_rx *tid_agg_rx;
3382
3383 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3384 if (!tid_agg_rx)
3385 return;
3386
3387 __skb_queue_head_init(&frames);
3388
3389 spin_lock(&tid_agg_rx->reorder_lock);
3390 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3391 spin_unlock(&tid_agg_rx->reorder_lock);
3392
3393 if (!skb_queue_empty(&frames)) {
3394 struct ieee80211_event event = {
3395 .type = BA_FRAME_TIMEOUT,
3396 .u.ba.tid = tid,
3397 .u.ba.sta = &sta->sta,
3398 };
3399 drv_event_callback(rx.local, rx.sdata, &event);
3400 }
3401
3402 ieee80211_rx_handlers(&rx, &frames);
3403 }
3404
3405 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3406 u16 ssn, u64 filtered,
3407 u16 received_mpdus)
3408 {
3409 struct sta_info *sta;
3410 struct tid_ampdu_rx *tid_agg_rx;
3411 struct sk_buff_head frames;
3412 struct ieee80211_rx_data rx = {
3413 /* This is OK -- must be QoS data frame */
3414 .security_idx = tid,
3415 .seqno_idx = tid,
3416 };
3417 int i, diff;
3418
3419 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3420 return;
3421
3422 __skb_queue_head_init(&frames);
3423
3424 sta = container_of(pubsta, struct sta_info, sta);
3425
3426 rx.sta = sta;
3427 rx.sdata = sta->sdata;
3428 rx.local = sta->local;
3429
3430 rcu_read_lock();
3431 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3432 if (!tid_agg_rx)
3433 goto out;
3434
3435 spin_lock_bh(&tid_agg_rx->reorder_lock);
3436
3437 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3438 int release;
3439
3440 /* release all frames in the reorder buffer */
3441 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3442 IEEE80211_SN_MODULO;
3443 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3444 release, &frames);
3445 /* update ssn to match received ssn */
3446 tid_agg_rx->head_seq_num = ssn;
3447 } else {
3448 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3449 &frames);
3450 }
3451
3452 /* handle the case that received ssn is behind the mac ssn.
3453 * it can be tid_agg_rx->buf_size behind and still be valid */
3454 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3455 if (diff >= tid_agg_rx->buf_size) {
3456 tid_agg_rx->reorder_buf_filtered = 0;
3457 goto release;
3458 }
3459 filtered = filtered >> diff;
3460 ssn += diff;
3461
3462 /* update bitmap */
3463 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3464 int index = (ssn + i) % tid_agg_rx->buf_size;
3465
3466 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3467 if (filtered & BIT_ULL(i))
3468 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3469 }
3470
3471 /* now process also frames that the filter marking released */
3472 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3473
3474 release:
3475 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3476
3477 ieee80211_rx_handlers(&rx, &frames);
3478
3479 out:
3480 rcu_read_unlock();
3481 }
3482 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3483
3484 /* main receive path */
3485
3486 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3487 {
3488 struct ieee80211_sub_if_data *sdata = rx->sdata;
3489 struct sk_buff *skb = rx->skb;
3490 struct ieee80211_hdr *hdr = (void *)skb->data;
3491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3492 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3493 int multicast = is_multicast_ether_addr(hdr->addr1);
3494
3495 switch (sdata->vif.type) {
3496 case NL80211_IFTYPE_STATION:
3497 if (!bssid && !sdata->u.mgd.use_4addr)
3498 return false;
3499 if (multicast)
3500 return true;
3501 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3502 case NL80211_IFTYPE_ADHOC:
3503 if (!bssid)
3504 return false;
3505 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3506 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3507 return false;
3508 if (ieee80211_is_beacon(hdr->frame_control))
3509 return true;
3510 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3511 return false;
3512 if (!multicast &&
3513 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3514 return false;
3515 if (!rx->sta) {
3516 int rate_idx;
3517 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3518 rate_idx = 0; /* TODO: HT/VHT rates */
3519 else
3520 rate_idx = status->rate_idx;
3521 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3522 BIT(rate_idx));
3523 }
3524 return true;
3525 case NL80211_IFTYPE_OCB:
3526 if (!bssid)
3527 return false;
3528 if (!ieee80211_is_data_present(hdr->frame_control))
3529 return false;
3530 if (!is_broadcast_ether_addr(bssid))
3531 return false;
3532 if (!multicast &&
3533 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3534 return false;
3535 if (!rx->sta) {
3536 int rate_idx;
3537 if (status->flag & RX_FLAG_HT)
3538 rate_idx = 0; /* TODO: HT rates */
3539 else
3540 rate_idx = status->rate_idx;
3541 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3542 BIT(rate_idx));
3543 }
3544 return true;
3545 case NL80211_IFTYPE_MESH_POINT:
3546 if (multicast)
3547 return true;
3548 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3549 case NL80211_IFTYPE_AP_VLAN:
3550 case NL80211_IFTYPE_AP:
3551 if (!bssid)
3552 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3553
3554 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3555 /*
3556 * Accept public action frames even when the
3557 * BSSID doesn't match, this is used for P2P
3558 * and location updates. Note that mac80211
3559 * itself never looks at these frames.
3560 */
3561 if (!multicast &&
3562 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3563 return false;
3564 if (ieee80211_is_public_action(hdr, skb->len))
3565 return true;
3566 return ieee80211_is_beacon(hdr->frame_control);
3567 }
3568
3569 if (!ieee80211_has_tods(hdr->frame_control)) {
3570 /* ignore data frames to TDLS-peers */
3571 if (ieee80211_is_data(hdr->frame_control))
3572 return false;
3573 /* ignore action frames to TDLS-peers */
3574 if (ieee80211_is_action(hdr->frame_control) &&
3575 !is_broadcast_ether_addr(bssid) &&
3576 !ether_addr_equal(bssid, hdr->addr1))
3577 return false;
3578 }
3579 return true;
3580 case NL80211_IFTYPE_WDS:
3581 if (bssid || !ieee80211_is_data(hdr->frame_control))
3582 return false;
3583 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3584 case NL80211_IFTYPE_P2P_DEVICE:
3585 return ieee80211_is_public_action(hdr, skb->len) ||
3586 ieee80211_is_probe_req(hdr->frame_control) ||
3587 ieee80211_is_probe_resp(hdr->frame_control) ||
3588 ieee80211_is_beacon(hdr->frame_control);
3589 default:
3590 break;
3591 }
3592
3593 WARN_ON_ONCE(1);
3594 return false;
3595 }
3596
3597 void ieee80211_check_fast_rx(struct sta_info *sta)
3598 {
3599 struct ieee80211_sub_if_data *sdata = sta->sdata;
3600 struct ieee80211_local *local = sdata->local;
3601 struct ieee80211_key *key;
3602 struct ieee80211_fast_rx fastrx = {
3603 .dev = sdata->dev,
3604 .vif_type = sdata->vif.type,
3605 .control_port_protocol = sdata->control_port_protocol,
3606 }, *old, *new = NULL;
3607 bool assign = false;
3608
3609 /* use sparse to check that we don't return without updating */
3610 __acquire(check_fast_rx);
3611
3612 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3613 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3614 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3615 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3616
3617 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3618
3619 /* fast-rx doesn't do reordering */
3620 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3621 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3622 goto clear;
3623
3624 switch (sdata->vif.type) {
3625 case NL80211_IFTYPE_STATION:
3626 /* 4-addr is harder to deal with, later maybe */
3627 if (sdata->u.mgd.use_4addr)
3628 goto clear;
3629 /* software powersave is a huge mess, avoid all of it */
3630 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3631 goto clear;
3632 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3633 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3634 goto clear;
3635 if (sta->sta.tdls) {
3636 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3637 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3638 fastrx.expected_ds_bits = 0;
3639 } else {
3640 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3641 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3642 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3643 fastrx.expected_ds_bits =
3644 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3645 }
3646 break;
3647 case NL80211_IFTYPE_AP_VLAN:
3648 case NL80211_IFTYPE_AP:
3649 /* parallel-rx requires this, at least with calls to
3650 * ieee80211_sta_ps_transition()
3651 */
3652 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3653 goto clear;
3654 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3655 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3656 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3657
3658 fastrx.internal_forward =
3659 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3660 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3661 !sdata->u.vlan.sta);
3662 break;
3663 default:
3664 goto clear;
3665 }
3666
3667 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3668 goto clear;
3669
3670 rcu_read_lock();
3671 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3672 if (key) {
3673 switch (key->conf.cipher) {
3674 case WLAN_CIPHER_SUITE_TKIP:
3675 /* we don't want to deal with MMIC in fast-rx */
3676 goto clear_rcu;
3677 case WLAN_CIPHER_SUITE_CCMP:
3678 case WLAN_CIPHER_SUITE_CCMP_256:
3679 case WLAN_CIPHER_SUITE_GCMP:
3680 case WLAN_CIPHER_SUITE_GCMP_256:
3681 break;
3682 default:
3683 /* we also don't want to deal with WEP or cipher scheme
3684 * since those require looking up the key idx in the
3685 * frame, rather than assuming the PTK is used
3686 * (we need to revisit this once we implement the real
3687 * PTK index, which is now valid in the spec, but we
3688 * haven't implemented that part yet)
3689 */
3690 goto clear_rcu;
3691 }
3692
3693 fastrx.key = true;
3694 fastrx.icv_len = key->conf.icv_len;
3695 }
3696
3697 assign = true;
3698 clear_rcu:
3699 rcu_read_unlock();
3700 clear:
3701 __release(check_fast_rx);
3702
3703 if (assign)
3704 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3705
3706 spin_lock_bh(&sta->lock);
3707 old = rcu_dereference_protected(sta->fast_rx, true);
3708 rcu_assign_pointer(sta->fast_rx, new);
3709 spin_unlock_bh(&sta->lock);
3710
3711 if (old)
3712 kfree_rcu(old, rcu_head);
3713 }
3714
3715 void ieee80211_clear_fast_rx(struct sta_info *sta)
3716 {
3717 struct ieee80211_fast_rx *old;
3718
3719 spin_lock_bh(&sta->lock);
3720 old = rcu_dereference_protected(sta->fast_rx, true);
3721 RCU_INIT_POINTER(sta->fast_rx, NULL);
3722 spin_unlock_bh(&sta->lock);
3723
3724 if (old)
3725 kfree_rcu(old, rcu_head);
3726 }
3727
3728 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3729 {
3730 struct ieee80211_local *local = sdata->local;
3731 struct sta_info *sta;
3732
3733 lockdep_assert_held(&local->sta_mtx);
3734
3735 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3736 if (sdata != sta->sdata &&
3737 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3738 continue;
3739 ieee80211_check_fast_rx(sta);
3740 }
3741 }
3742
3743 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3744 {
3745 struct ieee80211_local *local = sdata->local;
3746
3747 mutex_lock(&local->sta_mtx);
3748 __ieee80211_check_fast_rx_iface(sdata);
3749 mutex_unlock(&local->sta_mtx);
3750 }
3751
3752 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3753 struct ieee80211_fast_rx *fast_rx)
3754 {
3755 struct sk_buff *skb = rx->skb;
3756 struct ieee80211_hdr *hdr = (void *)skb->data;
3757 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3758 struct sta_info *sta = rx->sta;
3759 int orig_len = skb->len;
3760 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3761 struct {
3762 u8 snap[sizeof(rfc1042_header)];
3763 __be16 proto;
3764 } *payload __aligned(2);
3765 struct {
3766 u8 da[ETH_ALEN];
3767 u8 sa[ETH_ALEN];
3768 } addrs __aligned(2);
3769 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3770
3771 if (fast_rx->uses_rss)
3772 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3773
3774 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3775 * to a common data structure; drivers can implement that per queue
3776 * but we don't have that information in mac80211
3777 */
3778 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3779 return false;
3780
3781 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3782
3783 /* If using encryption, we also need to have:
3784 * - PN_VALIDATED: similar, but the implementation is tricky
3785 * - DECRYPTED: necessary for PN_VALIDATED
3786 */
3787 if (fast_rx->key &&
3788 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3789 return false;
3790
3791 /* we don't deal with A-MSDU deaggregation here */
3792 if (status->rx_flags & IEEE80211_RX_AMSDU)
3793 return false;
3794
3795 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3796 return false;
3797
3798 if (unlikely(ieee80211_is_frag(hdr)))
3799 return false;
3800
3801 /* Since our interface address cannot be multicast, this
3802 * implicitly also rejects multicast frames without the
3803 * explicit check.
3804 *
3805 * We shouldn't get any *data* frames not addressed to us
3806 * (AP mode will accept multicast *management* frames), but
3807 * punting here will make it go through the full checks in
3808 * ieee80211_accept_frame().
3809 */
3810 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3811 return false;
3812
3813 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3814 IEEE80211_FCTL_TODS)) !=
3815 fast_rx->expected_ds_bits)
3816 goto drop;
3817
3818 /* assign the key to drop unencrypted frames (later)
3819 * and strip the IV/MIC if necessary
3820 */
3821 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3822 /* GCMP header length is the same */
3823 snap_offs += IEEE80211_CCMP_HDR_LEN;
3824 }
3825
3826 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3827 goto drop;
3828 payload = (void *)(skb->data + snap_offs);
3829
3830 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3831 return false;
3832
3833 /* Don't handle these here since they require special code.
3834 * Accept AARP and IPX even though they should come with a
3835 * bridge-tunnel header - but if we get them this way then
3836 * there's little point in discarding them.
3837 */
3838 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3839 payload->proto == fast_rx->control_port_protocol))
3840 return false;
3841
3842 /* after this point, don't punt to the slowpath! */
3843
3844 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3845 pskb_trim(skb, skb->len - fast_rx->icv_len))
3846 goto drop;
3847
3848 if (unlikely(fast_rx->sta_notify)) {
3849 ieee80211_sta_rx_notify(rx->sdata, hdr);
3850 fast_rx->sta_notify = false;
3851 }
3852
3853 /* statistics part of ieee80211_rx_h_sta_process() */
3854 stats->last_rx = jiffies;
3855 stats->last_rate = sta_stats_encode_rate(status);
3856
3857 stats->fragments++;
3858
3859 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3860 stats->last_signal = status->signal;
3861 if (!fast_rx->uses_rss)
3862 ewma_signal_add(&sta->rx_stats_avg.signal,
3863 -status->signal);
3864 }
3865
3866 if (status->chains) {
3867 int i;
3868
3869 stats->chains = status->chains;
3870 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3871 int signal = status->chain_signal[i];
3872
3873 if (!(status->chains & BIT(i)))
3874 continue;
3875
3876 stats->chain_signal_last[i] = signal;
3877 if (!fast_rx->uses_rss)
3878 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3879 -signal);
3880 }
3881 }
3882 /* end of statistics */
3883
3884 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3885 goto drop;
3886
3887 /* do the header conversion - first grab the addresses */
3888 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3889 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3890 /* remove the SNAP but leave the ethertype */
3891 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3892 /* push the addresses in front */
3893 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3894
3895 skb->dev = fast_rx->dev;
3896
3897 ieee80211_rx_stats(fast_rx->dev, skb->len);
3898
3899 /* The seqno index has the same property as needed
3900 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3901 * for non-QoS-data frames. Here we know it's a data
3902 * frame, so count MSDUs.
3903 */
3904 u64_stats_update_begin(&stats->syncp);
3905 stats->msdu[rx->seqno_idx]++;
3906 stats->bytes += orig_len;
3907 u64_stats_update_end(&stats->syncp);
3908
3909 if (fast_rx->internal_forward) {
3910 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3911
3912 if (dsta) {
3913 /*
3914 * Send to wireless media and increase priority by 256
3915 * to keep the received priority instead of
3916 * reclassifying the frame (see cfg80211_classify8021d).
3917 */
3918 skb->priority += 256;
3919 skb->protocol = htons(ETH_P_802_3);
3920 skb_reset_network_header(skb);
3921 skb_reset_mac_header(skb);
3922 dev_queue_xmit(skb);
3923 return true;
3924 }
3925 }
3926
3927 /* deliver to local stack */
3928 skb->protocol = eth_type_trans(skb, fast_rx->dev);
3929 memset(skb->cb, 0, sizeof(skb->cb));
3930 if (rx->napi)
3931 napi_gro_receive(rx->napi, skb);
3932 else
3933 netif_receive_skb(skb);
3934
3935 return true;
3936 drop:
3937 dev_kfree_skb(skb);
3938 stats->dropped++;
3939 return true;
3940 }
3941
3942 /*
3943 * This function returns whether or not the SKB
3944 * was destined for RX processing or not, which,
3945 * if consume is true, is equivalent to whether
3946 * or not the skb was consumed.
3947 */
3948 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3949 struct sk_buff *skb, bool consume)
3950 {
3951 struct ieee80211_local *local = rx->local;
3952 struct ieee80211_sub_if_data *sdata = rx->sdata;
3953
3954 rx->skb = skb;
3955
3956 /* See if we can do fast-rx; if we have to copy we already lost,
3957 * so punt in that case. We should never have to deliver a data
3958 * frame to multiple interfaces anyway.
3959 *
3960 * We skip the ieee80211_accept_frame() call and do the necessary
3961 * checking inside ieee80211_invoke_fast_rx().
3962 */
3963 if (consume && rx->sta) {
3964 struct ieee80211_fast_rx *fast_rx;
3965
3966 fast_rx = rcu_dereference(rx->sta->fast_rx);
3967 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
3968 return true;
3969 }
3970
3971 if (!ieee80211_accept_frame(rx))
3972 return false;
3973
3974 if (!consume) {
3975 skb = skb_copy(skb, GFP_ATOMIC);
3976 if (!skb) {
3977 if (net_ratelimit())
3978 wiphy_debug(local->hw.wiphy,
3979 "failed to copy skb for %s\n",
3980 sdata->name);
3981 return true;
3982 }
3983
3984 rx->skb = skb;
3985 }
3986
3987 ieee80211_invoke_rx_handlers(rx);
3988 return true;
3989 }
3990
3991 /*
3992 * This is the actual Rx frames handler. as it belongs to Rx path it must
3993 * be called with rcu_read_lock protection.
3994 */
3995 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3996 struct ieee80211_sta *pubsta,
3997 struct sk_buff *skb,
3998 struct napi_struct *napi)
3999 {
4000 struct ieee80211_local *local = hw_to_local(hw);
4001 struct ieee80211_sub_if_data *sdata;
4002 struct ieee80211_hdr *hdr;
4003 __le16 fc;
4004 struct ieee80211_rx_data rx;
4005 struct ieee80211_sub_if_data *prev;
4006 struct rhash_head *tmp;
4007 int err = 0;
4008
4009 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4010 memset(&rx, 0, sizeof(rx));
4011 rx.skb = skb;
4012 rx.local = local;
4013 rx.napi = napi;
4014
4015 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4016 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4017
4018 if (ieee80211_is_mgmt(fc)) {
4019 /* drop frame if too short for header */
4020 if (skb->len < ieee80211_hdrlen(fc))
4021 err = -ENOBUFS;
4022 else
4023 err = skb_linearize(skb);
4024 } else {
4025 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4026 }
4027
4028 if (err) {
4029 dev_kfree_skb(skb);
4030 return;
4031 }
4032
4033 hdr = (struct ieee80211_hdr *)skb->data;
4034 ieee80211_parse_qos(&rx);
4035 ieee80211_verify_alignment(&rx);
4036
4037 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4038 ieee80211_is_beacon(hdr->frame_control)))
4039 ieee80211_scan_rx(local, skb);
4040
4041 if (pubsta) {
4042 rx.sta = container_of(pubsta, struct sta_info, sta);
4043 rx.sdata = rx.sta->sdata;
4044 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4045 return;
4046 goto out;
4047 } else if (ieee80211_is_data(fc)) {
4048 struct sta_info *sta, *prev_sta;
4049 const struct bucket_table *tbl;
4050
4051 prev_sta = NULL;
4052
4053 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
4054
4055 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
4056 if (!prev_sta) {
4057 prev_sta = sta;
4058 continue;
4059 }
4060
4061 rx.sta = prev_sta;
4062 rx.sdata = prev_sta->sdata;
4063 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4064
4065 prev_sta = sta;
4066 }
4067
4068 if (prev_sta) {
4069 rx.sta = prev_sta;
4070 rx.sdata = prev_sta->sdata;
4071
4072 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4073 return;
4074 goto out;
4075 }
4076 }
4077
4078 prev = NULL;
4079
4080 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4081 if (!ieee80211_sdata_running(sdata))
4082 continue;
4083
4084 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4085 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4086 continue;
4087
4088 /*
4089 * frame is destined for this interface, but if it's
4090 * not also for the previous one we handle that after
4091 * the loop to avoid copying the SKB once too much
4092 */
4093
4094 if (!prev) {
4095 prev = sdata;
4096 continue;
4097 }
4098
4099 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4100 rx.sdata = prev;
4101 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4102
4103 prev = sdata;
4104 }
4105
4106 if (prev) {
4107 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4108 rx.sdata = prev;
4109
4110 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4111 return;
4112 }
4113
4114 out:
4115 dev_kfree_skb(skb);
4116 }
4117
4118 /*
4119 * This is the receive path handler. It is called by a low level driver when an
4120 * 802.11 MPDU is received from the hardware.
4121 */
4122 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4123 struct sk_buff *skb, struct napi_struct *napi)
4124 {
4125 struct ieee80211_local *local = hw_to_local(hw);
4126 struct ieee80211_rate *rate = NULL;
4127 struct ieee80211_supported_band *sband;
4128 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4129
4130 WARN_ON_ONCE(softirq_count() == 0);
4131
4132 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4133 goto drop;
4134
4135 sband = local->hw.wiphy->bands[status->band];
4136 if (WARN_ON(!sband))
4137 goto drop;
4138
4139 /*
4140 * If we're suspending, it is possible although not too likely
4141 * that we'd be receiving frames after having already partially
4142 * quiesced the stack. We can't process such frames then since
4143 * that might, for example, cause stations to be added or other
4144 * driver callbacks be invoked.
4145 */
4146 if (unlikely(local->quiescing || local->suspended))
4147 goto drop;
4148
4149 /* We might be during a HW reconfig, prevent Rx for the same reason */
4150 if (unlikely(local->in_reconfig))
4151 goto drop;
4152
4153 /*
4154 * The same happens when we're not even started,
4155 * but that's worth a warning.
4156 */
4157 if (WARN_ON(!local->started))
4158 goto drop;
4159
4160 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4161 /*
4162 * Validate the rate, unless a PLCP error means that
4163 * we probably can't have a valid rate here anyway.
4164 */
4165
4166 if (status->flag & RX_FLAG_HT) {
4167 /*
4168 * rate_idx is MCS index, which can be [0-76]
4169 * as documented on:
4170 *
4171 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4172 *
4173 * Anything else would be some sort of driver or
4174 * hardware error. The driver should catch hardware
4175 * errors.
4176 */
4177 if (WARN(status->rate_idx > 76,
4178 "Rate marked as an HT rate but passed "
4179 "status->rate_idx is not "
4180 "an MCS index [0-76]: %d (0x%02x)\n",
4181 status->rate_idx,
4182 status->rate_idx))
4183 goto drop;
4184 } else if (status->flag & RX_FLAG_VHT) {
4185 if (WARN_ONCE(status->rate_idx > 9 ||
4186 !status->vht_nss ||
4187 status->vht_nss > 8,
4188 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4189 status->rate_idx, status->vht_nss))
4190 goto drop;
4191 } else {
4192 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4193 goto drop;
4194 rate = &sband->bitrates[status->rate_idx];
4195 }
4196 }
4197
4198 status->rx_flags = 0;
4199
4200 /*
4201 * key references and virtual interfaces are protected using RCU
4202 * and this requires that we are in a read-side RCU section during
4203 * receive processing
4204 */
4205 rcu_read_lock();
4206
4207 /*
4208 * Frames with failed FCS/PLCP checksum are not returned,
4209 * all other frames are returned without radiotap header
4210 * if it was previously present.
4211 * Also, frames with less than 16 bytes are dropped.
4212 */
4213 skb = ieee80211_rx_monitor(local, skb, rate);
4214 if (!skb) {
4215 rcu_read_unlock();
4216 return;
4217 }
4218
4219 ieee80211_tpt_led_trig_rx(local,
4220 ((struct ieee80211_hdr *)skb->data)->frame_control,
4221 skb->len);
4222
4223 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4224
4225 rcu_read_unlock();
4226
4227 return;
4228 drop:
4229 kfree_skb(skb);
4230 }
4231 EXPORT_SYMBOL(ieee80211_rx_napi);
4232
4233 /* This is a version of the rx handler that can be called from hard irq
4234 * context. Post the skb on the queue and schedule the tasklet */
4235 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4236 {
4237 struct ieee80211_local *local = hw_to_local(hw);
4238
4239 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4240
4241 skb->pkt_type = IEEE80211_RX_MSG;
4242 skb_queue_tail(&local->skb_queue, skb);
4243 tasklet_schedule(&local->tasklet);
4244 }
4245 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.165698 seconds and 5 git commands to generate.