tracing: extend sched_pi_setprio
[deliverable/linux.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 * Copyright (C) 2015 - 2016 Intel Deutschland GmbH
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
22
23 #include <net/mac80211.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "rate.h"
27 #include "sta_info.h"
28 #include "debugfs_sta.h"
29 #include "mesh.h"
30 #include "wme.h"
31
32 /**
33 * DOC: STA information lifetime rules
34 *
35 * STA info structures (&struct sta_info) are managed in a hash table
36 * for faster lookup and a list for iteration. They are managed using
37 * RCU, i.e. access to the list and hash table is protected by RCU.
38 *
39 * Upon allocating a STA info structure with sta_info_alloc(), the caller
40 * owns that structure. It must then insert it into the hash table using
41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
42 * case (which acquires an rcu read section but must not be called from
43 * within one) will the pointer still be valid after the call. Note that
44 * the caller may not do much with the STA info before inserting it, in
45 * particular, it may not start any mesh peer link management or add
46 * encryption keys.
47 *
48 * When the insertion fails (sta_info_insert()) returns non-zero), the
49 * structure will have been freed by sta_info_insert()!
50 *
51 * Station entries are added by mac80211 when you establish a link with a
52 * peer. This means different things for the different type of interfaces
53 * we support. For a regular station this mean we add the AP sta when we
54 * receive an association response from the AP. For IBSS this occurs when
55 * get to know about a peer on the same IBSS. For WDS we add the sta for
56 * the peer immediately upon device open. When using AP mode we add stations
57 * for each respective station upon request from userspace through nl80211.
58 *
59 * In order to remove a STA info structure, various sta_info_destroy_*()
60 * calls are available.
61 *
62 * There is no concept of ownership on a STA entry, each structure is
63 * owned by the global hash table/list until it is removed. All users of
64 * the structure need to be RCU protected so that the structure won't be
65 * freed before they are done using it.
66 */
67
68 static const struct rhashtable_params sta_rht_params = {
69 .nelem_hint = 3, /* start small */
70 .insecure_elasticity = true, /* Disable chain-length checks. */
71 .automatic_shrinking = true,
72 .head_offset = offsetof(struct sta_info, hash_node),
73 .key_offset = offsetof(struct sta_info, addr),
74 .key_len = ETH_ALEN,
75 .hashfn = sta_addr_hash,
76 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
77 };
78
79 /* Caller must hold local->sta_mtx */
80 static int sta_info_hash_del(struct ieee80211_local *local,
81 struct sta_info *sta)
82 {
83 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node,
84 sta_rht_params);
85 }
86
87 static void __cleanup_single_sta(struct sta_info *sta)
88 {
89 int ac, i;
90 struct tid_ampdu_tx *tid_tx;
91 struct ieee80211_sub_if_data *sdata = sta->sdata;
92 struct ieee80211_local *local = sdata->local;
93 struct fq *fq = &local->fq;
94 struct ps_data *ps;
95
96 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
97 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
98 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
99 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
100 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
101 ps = &sdata->bss->ps;
102 else if (ieee80211_vif_is_mesh(&sdata->vif))
103 ps = &sdata->u.mesh.ps;
104 else
105 return;
106
107 clear_sta_flag(sta, WLAN_STA_PS_STA);
108 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
109 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
110
111 atomic_dec(&ps->num_sta_ps);
112 }
113
114 if (sta->sta.txq[0]) {
115 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
116 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
117
118 spin_lock_bh(&fq->lock);
119 ieee80211_txq_purge(local, txqi);
120 spin_unlock_bh(&fq->lock);
121 }
122 }
123
124 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
125 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
127 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
128 }
129
130 if (ieee80211_vif_is_mesh(&sdata->vif))
131 mesh_sta_cleanup(sta);
132
133 cancel_work_sync(&sta->drv_deliver_wk);
134
135 /*
136 * Destroy aggregation state here. It would be nice to wait for the
137 * driver to finish aggregation stop and then clean up, but for now
138 * drivers have to handle aggregation stop being requested, followed
139 * directly by station destruction.
140 */
141 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
142 kfree(sta->ampdu_mlme.tid_start_tx[i]);
143 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
144 if (!tid_tx)
145 continue;
146 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
147 kfree(tid_tx);
148 }
149 }
150
151 static void cleanup_single_sta(struct sta_info *sta)
152 {
153 struct ieee80211_sub_if_data *sdata = sta->sdata;
154 struct ieee80211_local *local = sdata->local;
155
156 __cleanup_single_sta(sta);
157 sta_info_free(local, sta);
158 }
159
160 /* protected by RCU */
161 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
162 const u8 *addr)
163 {
164 struct ieee80211_local *local = sdata->local;
165 struct sta_info *sta;
166 struct rhash_head *tmp;
167 const struct bucket_table *tbl;
168
169 rcu_read_lock();
170 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
171
172 for_each_sta_info(local, tbl, addr, sta, tmp) {
173 if (sta->sdata == sdata) {
174 rcu_read_unlock();
175 /* this is safe as the caller must already hold
176 * another rcu read section or the mutex
177 */
178 return sta;
179 }
180 }
181 rcu_read_unlock();
182 return NULL;
183 }
184
185 /*
186 * Get sta info either from the specified interface
187 * or from one of its vlans
188 */
189 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
190 const u8 *addr)
191 {
192 struct ieee80211_local *local = sdata->local;
193 struct sta_info *sta;
194 struct rhash_head *tmp;
195 const struct bucket_table *tbl;
196
197 rcu_read_lock();
198 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
199
200 for_each_sta_info(local, tbl, addr, sta, tmp) {
201 if (sta->sdata == sdata ||
202 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
203 rcu_read_unlock();
204 /* this is safe as the caller must already hold
205 * another rcu read section or the mutex
206 */
207 return sta;
208 }
209 }
210 rcu_read_unlock();
211 return NULL;
212 }
213
214 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
215 int idx)
216 {
217 struct ieee80211_local *local = sdata->local;
218 struct sta_info *sta;
219 int i = 0;
220
221 list_for_each_entry_rcu(sta, &local->sta_list, list) {
222 if (sdata != sta->sdata)
223 continue;
224 if (i < idx) {
225 ++i;
226 continue;
227 }
228 return sta;
229 }
230
231 return NULL;
232 }
233
234 /**
235 * sta_info_free - free STA
236 *
237 * @local: pointer to the global information
238 * @sta: STA info to free
239 *
240 * This function must undo everything done by sta_info_alloc()
241 * that may happen before sta_info_insert(). It may only be
242 * called when sta_info_insert() has not been attempted (and
243 * if that fails, the station is freed anyway.)
244 */
245 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
246 {
247 if (sta->rate_ctrl)
248 rate_control_free_sta(sta);
249
250 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
251
252 if (sta->sta.txq[0])
253 kfree(to_txq_info(sta->sta.txq[0]));
254 kfree(rcu_dereference_raw(sta->sta.rates));
255 #ifdef CONFIG_MAC80211_MESH
256 kfree(sta->mesh);
257 #endif
258 free_percpu(sta->pcpu_rx_stats);
259 kfree(sta);
260 }
261
262 /* Caller must hold local->sta_mtx */
263 static int sta_info_hash_add(struct ieee80211_local *local,
264 struct sta_info *sta)
265 {
266 return rhashtable_insert_fast(&local->sta_hash, &sta->hash_node,
267 sta_rht_params);
268 }
269
270 static void sta_deliver_ps_frames(struct work_struct *wk)
271 {
272 struct sta_info *sta;
273
274 sta = container_of(wk, struct sta_info, drv_deliver_wk);
275
276 if (sta->dead)
277 return;
278
279 local_bh_disable();
280 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
281 ieee80211_sta_ps_deliver_wakeup(sta);
282 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
283 ieee80211_sta_ps_deliver_poll_response(sta);
284 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
285 ieee80211_sta_ps_deliver_uapsd(sta);
286 local_bh_enable();
287 }
288
289 static int sta_prepare_rate_control(struct ieee80211_local *local,
290 struct sta_info *sta, gfp_t gfp)
291 {
292 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
293 return 0;
294
295 sta->rate_ctrl = local->rate_ctrl;
296 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
297 sta, gfp);
298 if (!sta->rate_ctrl_priv)
299 return -ENOMEM;
300
301 return 0;
302 }
303
304 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
305 const u8 *addr, gfp_t gfp)
306 {
307 struct ieee80211_local *local = sdata->local;
308 struct ieee80211_hw *hw = &local->hw;
309 struct sta_info *sta;
310 int i;
311
312 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
313 if (!sta)
314 return NULL;
315
316 if (ieee80211_hw_check(hw, USES_RSS)) {
317 sta->pcpu_rx_stats =
318 alloc_percpu(struct ieee80211_sta_rx_stats);
319 if (!sta->pcpu_rx_stats)
320 goto free;
321 }
322
323 spin_lock_init(&sta->lock);
324 spin_lock_init(&sta->ps_lock);
325 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
326 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
327 mutex_init(&sta->ampdu_mlme.mtx);
328 #ifdef CONFIG_MAC80211_MESH
329 if (ieee80211_vif_is_mesh(&sdata->vif)) {
330 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
331 if (!sta->mesh)
332 goto free;
333 spin_lock_init(&sta->mesh->plink_lock);
334 if (ieee80211_vif_is_mesh(&sdata->vif) &&
335 !sdata->u.mesh.user_mpm)
336 init_timer(&sta->mesh->plink_timer);
337 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
338 }
339 #endif
340
341 memcpy(sta->addr, addr, ETH_ALEN);
342 memcpy(sta->sta.addr, addr, ETH_ALEN);
343 sta->sta.max_rx_aggregation_subframes =
344 local->hw.max_rx_aggregation_subframes;
345
346 sta->local = local;
347 sta->sdata = sdata;
348 sta->rx_stats.last_rx = jiffies;
349
350 u64_stats_init(&sta->rx_stats.syncp);
351
352 sta->sta_state = IEEE80211_STA_NONE;
353
354 /* Mark TID as unreserved */
355 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
356
357 sta->last_connected = ktime_get_seconds();
358 ewma_signal_init(&sta->rx_stats_avg.signal);
359 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
360 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
361
362 if (local->ops->wake_tx_queue) {
363 void *txq_data;
364 int size = sizeof(struct txq_info) +
365 ALIGN(hw->txq_data_size, sizeof(void *));
366
367 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
368 if (!txq_data)
369 goto free;
370
371 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
372 struct txq_info *txq = txq_data + i * size;
373
374 ieee80211_txq_init(sdata, sta, txq, i);
375 }
376 }
377
378 if (sta_prepare_rate_control(local, sta, gfp))
379 goto free_txq;
380
381 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
382 /*
383 * timer_to_tid must be initialized with identity mapping
384 * to enable session_timer's data differentiation. See
385 * sta_rx_agg_session_timer_expired for usage.
386 */
387 sta->timer_to_tid[i] = i;
388 }
389 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
390 skb_queue_head_init(&sta->ps_tx_buf[i]);
391 skb_queue_head_init(&sta->tx_filtered[i]);
392 }
393
394 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
395 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
396
397 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
398 if (sdata->vif.type == NL80211_IFTYPE_AP ||
399 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
400 struct ieee80211_supported_band *sband =
401 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
402 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
403 IEEE80211_HT_CAP_SM_PS_SHIFT;
404 /*
405 * Assume that hostapd advertises our caps in the beacon and
406 * this is the known_smps_mode for a station that just assciated
407 */
408 switch (smps) {
409 case WLAN_HT_SMPS_CONTROL_DISABLED:
410 sta->known_smps_mode = IEEE80211_SMPS_OFF;
411 break;
412 case WLAN_HT_SMPS_CONTROL_STATIC:
413 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
414 break;
415 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
416 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
417 break;
418 default:
419 WARN_ON(1);
420 }
421 }
422
423 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
424
425 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
426
427 return sta;
428
429 free_txq:
430 if (sta->sta.txq[0])
431 kfree(to_txq_info(sta->sta.txq[0]));
432 free:
433 #ifdef CONFIG_MAC80211_MESH
434 kfree(sta->mesh);
435 #endif
436 kfree(sta);
437 return NULL;
438 }
439
440 static int sta_info_insert_check(struct sta_info *sta)
441 {
442 struct ieee80211_sub_if_data *sdata = sta->sdata;
443
444 /*
445 * Can't be a WARN_ON because it can be triggered through a race:
446 * something inserts a STA (on one CPU) without holding the RTNL
447 * and another CPU turns off the net device.
448 */
449 if (unlikely(!ieee80211_sdata_running(sdata)))
450 return -ENETDOWN;
451
452 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
453 is_multicast_ether_addr(sta->sta.addr)))
454 return -EINVAL;
455
456 /* Strictly speaking this isn't necessary as we hold the mutex, but
457 * the rhashtable code can't really deal with that distinction. We
458 * do require the mutex for correctness though.
459 */
460 rcu_read_lock();
461 lockdep_assert_held(&sdata->local->sta_mtx);
462 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
463 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
464 rcu_read_unlock();
465 return -ENOTUNIQ;
466 }
467 rcu_read_unlock();
468
469 return 0;
470 }
471
472 static int sta_info_insert_drv_state(struct ieee80211_local *local,
473 struct ieee80211_sub_if_data *sdata,
474 struct sta_info *sta)
475 {
476 enum ieee80211_sta_state state;
477 int err = 0;
478
479 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
480 err = drv_sta_state(local, sdata, sta, state, state + 1);
481 if (err)
482 break;
483 }
484
485 if (!err) {
486 /*
487 * Drivers using legacy sta_add/sta_remove callbacks only
488 * get uploaded set to true after sta_add is called.
489 */
490 if (!local->ops->sta_add)
491 sta->uploaded = true;
492 return 0;
493 }
494
495 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
496 sdata_info(sdata,
497 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
498 sta->sta.addr, state + 1, err);
499 err = 0;
500 }
501
502 /* unwind on error */
503 for (; state > IEEE80211_STA_NOTEXIST; state--)
504 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
505
506 return err;
507 }
508
509 /*
510 * should be called with sta_mtx locked
511 * this function replaces the mutex lock
512 * with a RCU lock
513 */
514 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
515 {
516 struct ieee80211_local *local = sta->local;
517 struct ieee80211_sub_if_data *sdata = sta->sdata;
518 struct station_info *sinfo;
519 int err = 0;
520
521 lockdep_assert_held(&local->sta_mtx);
522
523 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
524 if (!sinfo) {
525 err = -ENOMEM;
526 goto out_err;
527 }
528
529 /* check if STA exists already */
530 if (sta_info_get_bss(sdata, sta->sta.addr)) {
531 err = -EEXIST;
532 goto out_err;
533 }
534
535 local->num_sta++;
536 local->sta_generation++;
537 smp_mb();
538
539 /* simplify things and don't accept BA sessions yet */
540 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
541
542 /* make the station visible */
543 err = sta_info_hash_add(local, sta);
544 if (err)
545 goto out_drop_sta;
546
547 list_add_tail_rcu(&sta->list, &local->sta_list);
548
549 /* notify driver */
550 err = sta_info_insert_drv_state(local, sdata, sta);
551 if (err)
552 goto out_remove;
553
554 set_sta_flag(sta, WLAN_STA_INSERTED);
555 /* accept BA sessions now */
556 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
557
558 ieee80211_sta_debugfs_add(sta);
559 rate_control_add_sta_debugfs(sta);
560
561 sinfo->generation = local->sta_generation;
562 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
563 kfree(sinfo);
564
565 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
566
567 /* move reference to rcu-protected */
568 rcu_read_lock();
569 mutex_unlock(&local->sta_mtx);
570
571 if (ieee80211_vif_is_mesh(&sdata->vif))
572 mesh_accept_plinks_update(sdata);
573
574 return 0;
575 out_remove:
576 sta_info_hash_del(local, sta);
577 list_del_rcu(&sta->list);
578 out_drop_sta:
579 local->num_sta--;
580 synchronize_net();
581 __cleanup_single_sta(sta);
582 out_err:
583 mutex_unlock(&local->sta_mtx);
584 kfree(sinfo);
585 rcu_read_lock();
586 return err;
587 }
588
589 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
590 {
591 struct ieee80211_local *local = sta->local;
592 int err;
593
594 might_sleep();
595
596 mutex_lock(&local->sta_mtx);
597
598 err = sta_info_insert_check(sta);
599 if (err) {
600 mutex_unlock(&local->sta_mtx);
601 rcu_read_lock();
602 goto out_free;
603 }
604
605 err = sta_info_insert_finish(sta);
606 if (err)
607 goto out_free;
608
609 return 0;
610 out_free:
611 sta_info_free(local, sta);
612 return err;
613 }
614
615 int sta_info_insert(struct sta_info *sta)
616 {
617 int err = sta_info_insert_rcu(sta);
618
619 rcu_read_unlock();
620
621 return err;
622 }
623
624 static inline void __bss_tim_set(u8 *tim, u16 id)
625 {
626 /*
627 * This format has been mandated by the IEEE specifications,
628 * so this line may not be changed to use the __set_bit() format.
629 */
630 tim[id / 8] |= (1 << (id % 8));
631 }
632
633 static inline void __bss_tim_clear(u8 *tim, u16 id)
634 {
635 /*
636 * This format has been mandated by the IEEE specifications,
637 * so this line may not be changed to use the __clear_bit() format.
638 */
639 tim[id / 8] &= ~(1 << (id % 8));
640 }
641
642 static inline bool __bss_tim_get(u8 *tim, u16 id)
643 {
644 /*
645 * This format has been mandated by the IEEE specifications,
646 * so this line may not be changed to use the test_bit() format.
647 */
648 return tim[id / 8] & (1 << (id % 8));
649 }
650
651 static unsigned long ieee80211_tids_for_ac(int ac)
652 {
653 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
654 switch (ac) {
655 case IEEE80211_AC_VO:
656 return BIT(6) | BIT(7);
657 case IEEE80211_AC_VI:
658 return BIT(4) | BIT(5);
659 case IEEE80211_AC_BE:
660 return BIT(0) | BIT(3);
661 case IEEE80211_AC_BK:
662 return BIT(1) | BIT(2);
663 default:
664 WARN_ON(1);
665 return 0;
666 }
667 }
668
669 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
670 {
671 struct ieee80211_local *local = sta->local;
672 struct ps_data *ps;
673 bool indicate_tim = false;
674 u8 ignore_for_tim = sta->sta.uapsd_queues;
675 int ac;
676 u16 id = sta->sta.aid;
677
678 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
679 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
680 if (WARN_ON_ONCE(!sta->sdata->bss))
681 return;
682
683 ps = &sta->sdata->bss->ps;
684 #ifdef CONFIG_MAC80211_MESH
685 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
686 ps = &sta->sdata->u.mesh.ps;
687 #endif
688 } else {
689 return;
690 }
691
692 /* No need to do anything if the driver does all */
693 if (ieee80211_hw_check(&local->hw, AP_LINK_PS))
694 return;
695
696 if (sta->dead)
697 goto done;
698
699 /*
700 * If all ACs are delivery-enabled then we should build
701 * the TIM bit for all ACs anyway; if only some are then
702 * we ignore those and build the TIM bit using only the
703 * non-enabled ones.
704 */
705 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
706 ignore_for_tim = 0;
707
708 if (ignore_pending)
709 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
710
711 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
712 unsigned long tids;
713
714 if (ignore_for_tim & BIT(ac))
715 continue;
716
717 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
718 !skb_queue_empty(&sta->ps_tx_buf[ac]);
719 if (indicate_tim)
720 break;
721
722 tids = ieee80211_tids_for_ac(ac);
723
724 indicate_tim |=
725 sta->driver_buffered_tids & tids;
726 indicate_tim |=
727 sta->txq_buffered_tids & tids;
728 }
729
730 done:
731 spin_lock_bh(&local->tim_lock);
732
733 if (indicate_tim == __bss_tim_get(ps->tim, id))
734 goto out_unlock;
735
736 if (indicate_tim)
737 __bss_tim_set(ps->tim, id);
738 else
739 __bss_tim_clear(ps->tim, id);
740
741 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
742 local->tim_in_locked_section = true;
743 drv_set_tim(local, &sta->sta, indicate_tim);
744 local->tim_in_locked_section = false;
745 }
746
747 out_unlock:
748 spin_unlock_bh(&local->tim_lock);
749 }
750
751 void sta_info_recalc_tim(struct sta_info *sta)
752 {
753 __sta_info_recalc_tim(sta, false);
754 }
755
756 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
757 {
758 struct ieee80211_tx_info *info;
759 int timeout;
760
761 if (!skb)
762 return false;
763
764 info = IEEE80211_SKB_CB(skb);
765
766 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
767 timeout = (sta->listen_interval *
768 sta->sdata->vif.bss_conf.beacon_int *
769 32 / 15625) * HZ;
770 if (timeout < STA_TX_BUFFER_EXPIRE)
771 timeout = STA_TX_BUFFER_EXPIRE;
772 return time_after(jiffies, info->control.jiffies + timeout);
773 }
774
775
776 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
777 struct sta_info *sta, int ac)
778 {
779 unsigned long flags;
780 struct sk_buff *skb;
781
782 /*
783 * First check for frames that should expire on the filtered
784 * queue. Frames here were rejected by the driver and are on
785 * a separate queue to avoid reordering with normal PS-buffered
786 * frames. They also aren't accounted for right now in the
787 * total_ps_buffered counter.
788 */
789 for (;;) {
790 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
791 skb = skb_peek(&sta->tx_filtered[ac]);
792 if (sta_info_buffer_expired(sta, skb))
793 skb = __skb_dequeue(&sta->tx_filtered[ac]);
794 else
795 skb = NULL;
796 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
797
798 /*
799 * Frames are queued in order, so if this one
800 * hasn't expired yet we can stop testing. If
801 * we actually reached the end of the queue we
802 * also need to stop, of course.
803 */
804 if (!skb)
805 break;
806 ieee80211_free_txskb(&local->hw, skb);
807 }
808
809 /*
810 * Now also check the normal PS-buffered queue, this will
811 * only find something if the filtered queue was emptied
812 * since the filtered frames are all before the normal PS
813 * buffered frames.
814 */
815 for (;;) {
816 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
817 skb = skb_peek(&sta->ps_tx_buf[ac]);
818 if (sta_info_buffer_expired(sta, skb))
819 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
820 else
821 skb = NULL;
822 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
823
824 /*
825 * frames are queued in order, so if this one
826 * hasn't expired yet (or we reached the end of
827 * the queue) we can stop testing
828 */
829 if (!skb)
830 break;
831
832 local->total_ps_buffered--;
833 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
834 sta->sta.addr);
835 ieee80211_free_txskb(&local->hw, skb);
836 }
837
838 /*
839 * Finally, recalculate the TIM bit for this station -- it might
840 * now be clear because the station was too slow to retrieve its
841 * frames.
842 */
843 sta_info_recalc_tim(sta);
844
845 /*
846 * Return whether there are any frames still buffered, this is
847 * used to check whether the cleanup timer still needs to run,
848 * if there are no frames we don't need to rearm the timer.
849 */
850 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
851 skb_queue_empty(&sta->tx_filtered[ac]));
852 }
853
854 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
855 struct sta_info *sta)
856 {
857 bool have_buffered = false;
858 int ac;
859
860 /* This is only necessary for stations on BSS/MBSS interfaces */
861 if (!sta->sdata->bss &&
862 !ieee80211_vif_is_mesh(&sta->sdata->vif))
863 return false;
864
865 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
866 have_buffered |=
867 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
868
869 return have_buffered;
870 }
871
872 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
873 {
874 struct ieee80211_local *local;
875 struct ieee80211_sub_if_data *sdata;
876 int ret;
877
878 might_sleep();
879
880 if (!sta)
881 return -ENOENT;
882
883 local = sta->local;
884 sdata = sta->sdata;
885
886 lockdep_assert_held(&local->sta_mtx);
887
888 /*
889 * Before removing the station from the driver and
890 * rate control, it might still start new aggregation
891 * sessions -- block that to make sure the tear-down
892 * will be sufficient.
893 */
894 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
895 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
896
897 /*
898 * Before removing the station from the driver there might be pending
899 * rx frames on RSS queues sent prior to the disassociation - wait for
900 * all such frames to be processed.
901 */
902 drv_sync_rx_queues(local, sta);
903
904 ret = sta_info_hash_del(local, sta);
905 if (WARN_ON(ret))
906 return ret;
907
908 /*
909 * for TDLS peers, make sure to return to the base channel before
910 * removal.
911 */
912 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
913 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
914 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
915 }
916
917 list_del_rcu(&sta->list);
918 sta->removed = true;
919
920 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
921
922 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
923 rcu_access_pointer(sdata->u.vlan.sta) == sta)
924 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
925
926 return 0;
927 }
928
929 static void __sta_info_destroy_part2(struct sta_info *sta)
930 {
931 struct ieee80211_local *local = sta->local;
932 struct ieee80211_sub_if_data *sdata = sta->sdata;
933 struct station_info *sinfo;
934 int ret;
935
936 /*
937 * NOTE: This assumes at least synchronize_net() was done
938 * after _part1 and before _part2!
939 */
940
941 might_sleep();
942 lockdep_assert_held(&local->sta_mtx);
943
944 /* now keys can no longer be reached */
945 ieee80211_free_sta_keys(local, sta);
946
947 /* disable TIM bit - last chance to tell driver */
948 __sta_info_recalc_tim(sta, true);
949
950 sta->dead = true;
951
952 local->num_sta--;
953 local->sta_generation++;
954
955 while (sta->sta_state > IEEE80211_STA_NONE) {
956 ret = sta_info_move_state(sta, sta->sta_state - 1);
957 if (ret) {
958 WARN_ON_ONCE(1);
959 break;
960 }
961 }
962
963 if (sta->uploaded) {
964 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
965 IEEE80211_STA_NOTEXIST);
966 WARN_ON_ONCE(ret != 0);
967 }
968
969 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
970
971 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
972 if (sinfo)
973 sta_set_sinfo(sta, sinfo);
974 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
975 kfree(sinfo);
976
977 rate_control_remove_sta_debugfs(sta);
978 ieee80211_sta_debugfs_remove(sta);
979
980 cleanup_single_sta(sta);
981 }
982
983 int __must_check __sta_info_destroy(struct sta_info *sta)
984 {
985 int err = __sta_info_destroy_part1(sta);
986
987 if (err)
988 return err;
989
990 synchronize_net();
991
992 __sta_info_destroy_part2(sta);
993
994 return 0;
995 }
996
997 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
998 {
999 struct sta_info *sta;
1000 int ret;
1001
1002 mutex_lock(&sdata->local->sta_mtx);
1003 sta = sta_info_get(sdata, addr);
1004 ret = __sta_info_destroy(sta);
1005 mutex_unlock(&sdata->local->sta_mtx);
1006
1007 return ret;
1008 }
1009
1010 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1011 const u8 *addr)
1012 {
1013 struct sta_info *sta;
1014 int ret;
1015
1016 mutex_lock(&sdata->local->sta_mtx);
1017 sta = sta_info_get_bss(sdata, addr);
1018 ret = __sta_info_destroy(sta);
1019 mutex_unlock(&sdata->local->sta_mtx);
1020
1021 return ret;
1022 }
1023
1024 static void sta_info_cleanup(unsigned long data)
1025 {
1026 struct ieee80211_local *local = (struct ieee80211_local *) data;
1027 struct sta_info *sta;
1028 bool timer_needed = false;
1029
1030 rcu_read_lock();
1031 list_for_each_entry_rcu(sta, &local->sta_list, list)
1032 if (sta_info_cleanup_expire_buffered(local, sta))
1033 timer_needed = true;
1034 rcu_read_unlock();
1035
1036 if (local->quiescing)
1037 return;
1038
1039 if (!timer_needed)
1040 return;
1041
1042 mod_timer(&local->sta_cleanup,
1043 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1044 }
1045
1046 u32 sta_addr_hash(const void *key, u32 length, u32 seed)
1047 {
1048 return jhash(key, ETH_ALEN, seed);
1049 }
1050
1051 int sta_info_init(struct ieee80211_local *local)
1052 {
1053 int err;
1054
1055 err = rhashtable_init(&local->sta_hash, &sta_rht_params);
1056 if (err)
1057 return err;
1058
1059 spin_lock_init(&local->tim_lock);
1060 mutex_init(&local->sta_mtx);
1061 INIT_LIST_HEAD(&local->sta_list);
1062
1063 setup_timer(&local->sta_cleanup, sta_info_cleanup,
1064 (unsigned long)local);
1065 return 0;
1066 }
1067
1068 void sta_info_stop(struct ieee80211_local *local)
1069 {
1070 del_timer_sync(&local->sta_cleanup);
1071 rhashtable_destroy(&local->sta_hash);
1072 }
1073
1074
1075 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1076 {
1077 struct ieee80211_local *local = sdata->local;
1078 struct sta_info *sta, *tmp;
1079 LIST_HEAD(free_list);
1080 int ret = 0;
1081
1082 might_sleep();
1083
1084 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1085 WARN_ON(vlans && !sdata->bss);
1086
1087 mutex_lock(&local->sta_mtx);
1088 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1089 if (sdata == sta->sdata ||
1090 (vlans && sdata->bss == sta->sdata->bss)) {
1091 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1092 list_add(&sta->free_list, &free_list);
1093 ret++;
1094 }
1095 }
1096
1097 if (!list_empty(&free_list)) {
1098 synchronize_net();
1099 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1100 __sta_info_destroy_part2(sta);
1101 }
1102 mutex_unlock(&local->sta_mtx);
1103
1104 return ret;
1105 }
1106
1107 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1108 unsigned long exp_time)
1109 {
1110 struct ieee80211_local *local = sdata->local;
1111 struct sta_info *sta, *tmp;
1112
1113 mutex_lock(&local->sta_mtx);
1114
1115 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1116 unsigned long last_active = ieee80211_sta_last_active(sta);
1117
1118 if (sdata != sta->sdata)
1119 continue;
1120
1121 if (time_is_before_jiffies(last_active + exp_time)) {
1122 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1123 sta->sta.addr);
1124
1125 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1126 test_sta_flag(sta, WLAN_STA_PS_STA))
1127 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1128
1129 WARN_ON(__sta_info_destroy(sta));
1130 }
1131 }
1132
1133 mutex_unlock(&local->sta_mtx);
1134 }
1135
1136 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1137 const u8 *addr,
1138 const u8 *localaddr)
1139 {
1140 struct ieee80211_local *local = hw_to_local(hw);
1141 struct sta_info *sta;
1142 struct rhash_head *tmp;
1143 const struct bucket_table *tbl;
1144
1145 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
1146
1147 /*
1148 * Just return a random station if localaddr is NULL
1149 * ... first in list.
1150 */
1151 for_each_sta_info(local, tbl, addr, sta, tmp) {
1152 if (localaddr &&
1153 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1154 continue;
1155 if (!sta->uploaded)
1156 return NULL;
1157 return &sta->sta;
1158 }
1159
1160 return NULL;
1161 }
1162 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1163
1164 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1165 const u8 *addr)
1166 {
1167 struct sta_info *sta;
1168
1169 if (!vif)
1170 return NULL;
1171
1172 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1173 if (!sta)
1174 return NULL;
1175
1176 if (!sta->uploaded)
1177 return NULL;
1178
1179 return &sta->sta;
1180 }
1181 EXPORT_SYMBOL(ieee80211_find_sta);
1182
1183 /* powersave support code */
1184 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1185 {
1186 struct ieee80211_sub_if_data *sdata = sta->sdata;
1187 struct ieee80211_local *local = sdata->local;
1188 struct sk_buff_head pending;
1189 int filtered = 0, buffered = 0, ac, i;
1190 unsigned long flags;
1191 struct ps_data *ps;
1192
1193 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1194 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1195 u.ap);
1196
1197 if (sdata->vif.type == NL80211_IFTYPE_AP)
1198 ps = &sdata->bss->ps;
1199 else if (ieee80211_vif_is_mesh(&sdata->vif))
1200 ps = &sdata->u.mesh.ps;
1201 else
1202 return;
1203
1204 clear_sta_flag(sta, WLAN_STA_SP);
1205
1206 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1207 sta->driver_buffered_tids = 0;
1208 sta->txq_buffered_tids = 0;
1209
1210 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1211 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1212
1213 if (sta->sta.txq[0]) {
1214 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1215 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
1216
1217 if (!txqi->tin.backlog_packets)
1218 continue;
1219
1220 drv_wake_tx_queue(local, txqi);
1221 }
1222 }
1223
1224 skb_queue_head_init(&pending);
1225
1226 /* sync with ieee80211_tx_h_unicast_ps_buf */
1227 spin_lock(&sta->ps_lock);
1228 /* Send all buffered frames to the station */
1229 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1230 int count = skb_queue_len(&pending), tmp;
1231
1232 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1233 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1234 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1235 tmp = skb_queue_len(&pending);
1236 filtered += tmp - count;
1237 count = tmp;
1238
1239 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1240 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1241 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1242 tmp = skb_queue_len(&pending);
1243 buffered += tmp - count;
1244 }
1245
1246 ieee80211_add_pending_skbs(local, &pending);
1247
1248 /* now we're no longer in the deliver code */
1249 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1250
1251 /* The station might have polled and then woken up before we responded,
1252 * so clear these flags now to avoid them sticking around.
1253 */
1254 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1255 clear_sta_flag(sta, WLAN_STA_UAPSD);
1256 spin_unlock(&sta->ps_lock);
1257
1258 atomic_dec(&ps->num_sta_ps);
1259
1260 /* This station just woke up and isn't aware of our SMPS state */
1261 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1262 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1263 sdata->smps_mode) &&
1264 sta->known_smps_mode != sdata->bss->req_smps &&
1265 sta_info_tx_streams(sta) != 1) {
1266 ht_dbg(sdata,
1267 "%pM just woke up and MIMO capable - update SMPS\n",
1268 sta->sta.addr);
1269 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1270 sta->sta.addr,
1271 sdata->vif.bss_conf.bssid);
1272 }
1273
1274 local->total_ps_buffered -= buffered;
1275
1276 sta_info_recalc_tim(sta);
1277
1278 ps_dbg(sdata,
1279 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1280 sta->sta.addr, sta->sta.aid, filtered, buffered);
1281
1282 ieee80211_check_fast_xmit(sta);
1283 }
1284
1285 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1286 enum ieee80211_frame_release_type reason,
1287 bool call_driver, bool more_data)
1288 {
1289 struct ieee80211_sub_if_data *sdata = sta->sdata;
1290 struct ieee80211_local *local = sdata->local;
1291 struct ieee80211_qos_hdr *nullfunc;
1292 struct sk_buff *skb;
1293 int size = sizeof(*nullfunc);
1294 __le16 fc;
1295 bool qos = sta->sta.wme;
1296 struct ieee80211_tx_info *info;
1297 struct ieee80211_chanctx_conf *chanctx_conf;
1298
1299 if (qos) {
1300 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1301 IEEE80211_STYPE_QOS_NULLFUNC |
1302 IEEE80211_FCTL_FROMDS);
1303 } else {
1304 size -= 2;
1305 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1306 IEEE80211_STYPE_NULLFUNC |
1307 IEEE80211_FCTL_FROMDS);
1308 }
1309
1310 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1311 if (!skb)
1312 return;
1313
1314 skb_reserve(skb, local->hw.extra_tx_headroom);
1315
1316 nullfunc = (void *) skb_put(skb, size);
1317 nullfunc->frame_control = fc;
1318 nullfunc->duration_id = 0;
1319 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1320 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1321 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1322 nullfunc->seq_ctrl = 0;
1323
1324 skb->priority = tid;
1325 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1326 if (qos) {
1327 nullfunc->qos_ctrl = cpu_to_le16(tid);
1328
1329 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1330 nullfunc->qos_ctrl |=
1331 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1332 if (more_data)
1333 nullfunc->frame_control |=
1334 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1335 }
1336 }
1337
1338 info = IEEE80211_SKB_CB(skb);
1339
1340 /*
1341 * Tell TX path to send this frame even though the
1342 * STA may still remain is PS mode after this frame
1343 * exchange. Also set EOSP to indicate this packet
1344 * ends the poll/service period.
1345 */
1346 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1347 IEEE80211_TX_STATUS_EOSP |
1348 IEEE80211_TX_CTL_REQ_TX_STATUS;
1349
1350 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1351
1352 if (call_driver)
1353 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1354 reason, false);
1355
1356 skb->dev = sdata->dev;
1357
1358 rcu_read_lock();
1359 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1360 if (WARN_ON(!chanctx_conf)) {
1361 rcu_read_unlock();
1362 kfree_skb(skb);
1363 return;
1364 }
1365
1366 info->band = chanctx_conf->def.chan->band;
1367 ieee80211_xmit(sdata, sta, skb);
1368 rcu_read_unlock();
1369 }
1370
1371 static int find_highest_prio_tid(unsigned long tids)
1372 {
1373 /* lower 3 TIDs aren't ordered perfectly */
1374 if (tids & 0xF8)
1375 return fls(tids) - 1;
1376 /* TID 0 is BE just like TID 3 */
1377 if (tids & BIT(0))
1378 return 0;
1379 return fls(tids) - 1;
1380 }
1381
1382 /* Indicates if the MORE_DATA bit should be set in the last
1383 * frame obtained by ieee80211_sta_ps_get_frames.
1384 * Note that driver_release_tids is relevant only if
1385 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1386 */
1387 static bool
1388 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1389 enum ieee80211_frame_release_type reason,
1390 unsigned long driver_release_tids)
1391 {
1392 int ac;
1393
1394 /* If the driver has data on more than one TID then
1395 * certainly there's more data if we release just a
1396 * single frame now (from a single TID). This will
1397 * only happen for PS-Poll.
1398 */
1399 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1400 hweight16(driver_release_tids) > 1)
1401 return true;
1402
1403 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1404 if (ignored_acs & BIT(ac))
1405 continue;
1406
1407 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1408 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1409 return true;
1410 }
1411
1412 return false;
1413 }
1414
1415 static void
1416 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1417 enum ieee80211_frame_release_type reason,
1418 struct sk_buff_head *frames,
1419 unsigned long *driver_release_tids)
1420 {
1421 struct ieee80211_sub_if_data *sdata = sta->sdata;
1422 struct ieee80211_local *local = sdata->local;
1423 int ac;
1424
1425 /* Get response frame(s) and more data bit for the last one. */
1426 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1427 unsigned long tids;
1428
1429 if (ignored_acs & BIT(ac))
1430 continue;
1431
1432 tids = ieee80211_tids_for_ac(ac);
1433
1434 /* if we already have frames from software, then we can't also
1435 * release from hardware queues
1436 */
1437 if (skb_queue_empty(frames)) {
1438 *driver_release_tids |=
1439 sta->driver_buffered_tids & tids;
1440 *driver_release_tids |= sta->txq_buffered_tids & tids;
1441 }
1442
1443 if (!*driver_release_tids) {
1444 struct sk_buff *skb;
1445
1446 while (n_frames > 0) {
1447 skb = skb_dequeue(&sta->tx_filtered[ac]);
1448 if (!skb) {
1449 skb = skb_dequeue(
1450 &sta->ps_tx_buf[ac]);
1451 if (skb)
1452 local->total_ps_buffered--;
1453 }
1454 if (!skb)
1455 break;
1456 n_frames--;
1457 __skb_queue_tail(frames, skb);
1458 }
1459 }
1460
1461 /* If we have more frames buffered on this AC, then abort the
1462 * loop since we can't send more data from other ACs before
1463 * the buffered frames from this.
1464 */
1465 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1466 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1467 break;
1468 }
1469 }
1470
1471 static void
1472 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1473 int n_frames, u8 ignored_acs,
1474 enum ieee80211_frame_release_type reason)
1475 {
1476 struct ieee80211_sub_if_data *sdata = sta->sdata;
1477 struct ieee80211_local *local = sdata->local;
1478 unsigned long driver_release_tids = 0;
1479 struct sk_buff_head frames;
1480 bool more_data;
1481
1482 /* Service or PS-Poll period starts */
1483 set_sta_flag(sta, WLAN_STA_SP);
1484
1485 __skb_queue_head_init(&frames);
1486
1487 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1488 &frames, &driver_release_tids);
1489
1490 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1491
1492 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1493 driver_release_tids =
1494 BIT(find_highest_prio_tid(driver_release_tids));
1495
1496 if (skb_queue_empty(&frames) && !driver_release_tids) {
1497 int tid;
1498
1499 /*
1500 * For PS-Poll, this can only happen due to a race condition
1501 * when we set the TIM bit and the station notices it, but
1502 * before it can poll for the frame we expire it.
1503 *
1504 * For uAPSD, this is said in the standard (11.2.1.5 h):
1505 * At each unscheduled SP for a non-AP STA, the AP shall
1506 * attempt to transmit at least one MSDU or MMPDU, but no
1507 * more than the value specified in the Max SP Length field
1508 * in the QoS Capability element from delivery-enabled ACs,
1509 * that are destined for the non-AP STA.
1510 *
1511 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1512 */
1513
1514 /* This will evaluate to 1, 3, 5 or 7. */
1515 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1516
1517 ieee80211_send_null_response(sta, tid, reason, true, false);
1518 } else if (!driver_release_tids) {
1519 struct sk_buff_head pending;
1520 struct sk_buff *skb;
1521 int num = 0;
1522 u16 tids = 0;
1523 bool need_null = false;
1524
1525 skb_queue_head_init(&pending);
1526
1527 while ((skb = __skb_dequeue(&frames))) {
1528 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1529 struct ieee80211_hdr *hdr = (void *) skb->data;
1530 u8 *qoshdr = NULL;
1531
1532 num++;
1533
1534 /*
1535 * Tell TX path to send this frame even though the
1536 * STA may still remain is PS mode after this frame
1537 * exchange.
1538 */
1539 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1540 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1541
1542 /*
1543 * Use MoreData flag to indicate whether there are
1544 * more buffered frames for this STA
1545 */
1546 if (more_data || !skb_queue_empty(&frames))
1547 hdr->frame_control |=
1548 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1549 else
1550 hdr->frame_control &=
1551 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1552
1553 if (ieee80211_is_data_qos(hdr->frame_control) ||
1554 ieee80211_is_qos_nullfunc(hdr->frame_control))
1555 qoshdr = ieee80211_get_qos_ctl(hdr);
1556
1557 tids |= BIT(skb->priority);
1558
1559 __skb_queue_tail(&pending, skb);
1560
1561 /* end service period after last frame or add one */
1562 if (!skb_queue_empty(&frames))
1563 continue;
1564
1565 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1566 /* for PS-Poll, there's only one frame */
1567 info->flags |= IEEE80211_TX_STATUS_EOSP |
1568 IEEE80211_TX_CTL_REQ_TX_STATUS;
1569 break;
1570 }
1571
1572 /* For uAPSD, things are a bit more complicated. If the
1573 * last frame has a QoS header (i.e. is a QoS-data or
1574 * QoS-nulldata frame) then just set the EOSP bit there
1575 * and be done.
1576 * If the frame doesn't have a QoS header (which means
1577 * it should be a bufferable MMPDU) then we can't set
1578 * the EOSP bit in the QoS header; add a QoS-nulldata
1579 * frame to the list to send it after the MMPDU.
1580 *
1581 * Note that this code is only in the mac80211-release
1582 * code path, we assume that the driver will not buffer
1583 * anything but QoS-data frames, or if it does, will
1584 * create the QoS-nulldata frame by itself if needed.
1585 *
1586 * Cf. 802.11-2012 10.2.1.10 (c).
1587 */
1588 if (qoshdr) {
1589 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1590
1591 info->flags |= IEEE80211_TX_STATUS_EOSP |
1592 IEEE80211_TX_CTL_REQ_TX_STATUS;
1593 } else {
1594 /* The standard isn't completely clear on this
1595 * as it says the more-data bit should be set
1596 * if there are more BUs. The QoS-Null frame
1597 * we're about to send isn't buffered yet, we
1598 * only create it below, but let's pretend it
1599 * was buffered just in case some clients only
1600 * expect more-data=0 when eosp=1.
1601 */
1602 hdr->frame_control |=
1603 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1604 need_null = true;
1605 num++;
1606 }
1607 break;
1608 }
1609
1610 drv_allow_buffered_frames(local, sta, tids, num,
1611 reason, more_data);
1612
1613 ieee80211_add_pending_skbs(local, &pending);
1614
1615 if (need_null)
1616 ieee80211_send_null_response(
1617 sta, find_highest_prio_tid(tids),
1618 reason, false, false);
1619
1620 sta_info_recalc_tim(sta);
1621 } else {
1622 int tid;
1623
1624 /*
1625 * We need to release a frame that is buffered somewhere in the
1626 * driver ... it'll have to handle that.
1627 * Note that the driver also has to check the number of frames
1628 * on the TIDs we're releasing from - if there are more than
1629 * n_frames it has to set the more-data bit (if we didn't ask
1630 * it to set it anyway due to other buffered frames); if there
1631 * are fewer than n_frames it has to make sure to adjust that
1632 * to allow the service period to end properly.
1633 */
1634 drv_release_buffered_frames(local, sta, driver_release_tids,
1635 n_frames, reason, more_data);
1636
1637 /*
1638 * Note that we don't recalculate the TIM bit here as it would
1639 * most likely have no effect at all unless the driver told us
1640 * that the TID(s) became empty before returning here from the
1641 * release function.
1642 * Either way, however, when the driver tells us that the TID(s)
1643 * became empty or we find that a txq became empty, we'll do the
1644 * TIM recalculation.
1645 */
1646
1647 if (!sta->sta.txq[0])
1648 return;
1649
1650 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1651 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1652
1653 if (!(driver_release_tids & BIT(tid)) ||
1654 txqi->tin.backlog_packets)
1655 continue;
1656
1657 sta_info_recalc_tim(sta);
1658 break;
1659 }
1660 }
1661 }
1662
1663 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1664 {
1665 u8 ignore_for_response = sta->sta.uapsd_queues;
1666
1667 /*
1668 * If all ACs are delivery-enabled then we should reply
1669 * from any of them, if only some are enabled we reply
1670 * only from the non-enabled ones.
1671 */
1672 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1673 ignore_for_response = 0;
1674
1675 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1676 IEEE80211_FRAME_RELEASE_PSPOLL);
1677 }
1678
1679 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1680 {
1681 int n_frames = sta->sta.max_sp;
1682 u8 delivery_enabled = sta->sta.uapsd_queues;
1683
1684 /*
1685 * If we ever grow support for TSPEC this might happen if
1686 * the TSPEC update from hostapd comes in between a trigger
1687 * frame setting WLAN_STA_UAPSD in the RX path and this
1688 * actually getting called.
1689 */
1690 if (!delivery_enabled)
1691 return;
1692
1693 switch (sta->sta.max_sp) {
1694 case 1:
1695 n_frames = 2;
1696 break;
1697 case 2:
1698 n_frames = 4;
1699 break;
1700 case 3:
1701 n_frames = 6;
1702 break;
1703 case 0:
1704 /* XXX: what is a good value? */
1705 n_frames = 128;
1706 break;
1707 }
1708
1709 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1710 IEEE80211_FRAME_RELEASE_UAPSD);
1711 }
1712
1713 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1714 struct ieee80211_sta *pubsta, bool block)
1715 {
1716 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1717
1718 trace_api_sta_block_awake(sta->local, pubsta, block);
1719
1720 if (block) {
1721 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1722 ieee80211_clear_fast_xmit(sta);
1723 return;
1724 }
1725
1726 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1727 return;
1728
1729 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1730 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1731 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1732 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1733 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1734 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1735 /* must be asleep in this case */
1736 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1737 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1738 } else {
1739 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1740 ieee80211_check_fast_xmit(sta);
1741 }
1742 }
1743 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1744
1745 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1746 {
1747 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1748 struct ieee80211_local *local = sta->local;
1749
1750 trace_api_eosp(local, pubsta);
1751
1752 clear_sta_flag(sta, WLAN_STA_SP);
1753 }
1754 EXPORT_SYMBOL(ieee80211_sta_eosp);
1755
1756 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1757 {
1758 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1759 enum ieee80211_frame_release_type reason;
1760 bool more_data;
1761
1762 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1763
1764 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1765 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1766 reason, 0);
1767
1768 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1769 }
1770 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1771
1772 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1773 u8 tid, bool buffered)
1774 {
1775 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1776
1777 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1778 return;
1779
1780 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1781
1782 if (buffered)
1783 set_bit(tid, &sta->driver_buffered_tids);
1784 else
1785 clear_bit(tid, &sta->driver_buffered_tids);
1786
1787 sta_info_recalc_tim(sta);
1788 }
1789 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1790
1791 static void
1792 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
1793 {
1794 struct ieee80211_local *local = sdata->local;
1795 bool allow_p2p_go_ps = sdata->vif.p2p;
1796 struct sta_info *sta;
1797
1798 rcu_read_lock();
1799 list_for_each_entry_rcu(sta, &local->sta_list, list) {
1800 if (sdata != sta->sdata ||
1801 !test_sta_flag(sta, WLAN_STA_ASSOC))
1802 continue;
1803 if (!sta->sta.support_p2p_ps) {
1804 allow_p2p_go_ps = false;
1805 break;
1806 }
1807 }
1808 rcu_read_unlock();
1809
1810 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
1811 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
1812 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
1813 }
1814 }
1815
1816 int sta_info_move_state(struct sta_info *sta,
1817 enum ieee80211_sta_state new_state)
1818 {
1819 might_sleep();
1820
1821 if (sta->sta_state == new_state)
1822 return 0;
1823
1824 /* check allowed transitions first */
1825
1826 switch (new_state) {
1827 case IEEE80211_STA_NONE:
1828 if (sta->sta_state != IEEE80211_STA_AUTH)
1829 return -EINVAL;
1830 break;
1831 case IEEE80211_STA_AUTH:
1832 if (sta->sta_state != IEEE80211_STA_NONE &&
1833 sta->sta_state != IEEE80211_STA_ASSOC)
1834 return -EINVAL;
1835 break;
1836 case IEEE80211_STA_ASSOC:
1837 if (sta->sta_state != IEEE80211_STA_AUTH &&
1838 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1839 return -EINVAL;
1840 break;
1841 case IEEE80211_STA_AUTHORIZED:
1842 if (sta->sta_state != IEEE80211_STA_ASSOC)
1843 return -EINVAL;
1844 break;
1845 default:
1846 WARN(1, "invalid state %d", new_state);
1847 return -EINVAL;
1848 }
1849
1850 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1851 sta->sta.addr, new_state);
1852
1853 /*
1854 * notify the driver before the actual changes so it can
1855 * fail the transition
1856 */
1857 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1858 int err = drv_sta_state(sta->local, sta->sdata, sta,
1859 sta->sta_state, new_state);
1860 if (err)
1861 return err;
1862 }
1863
1864 /* reflect the change in all state variables */
1865
1866 switch (new_state) {
1867 case IEEE80211_STA_NONE:
1868 if (sta->sta_state == IEEE80211_STA_AUTH)
1869 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1870 break;
1871 case IEEE80211_STA_AUTH:
1872 if (sta->sta_state == IEEE80211_STA_NONE) {
1873 set_bit(WLAN_STA_AUTH, &sta->_flags);
1874 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1875 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1876 ieee80211_recalc_min_chandef(sta->sdata);
1877 if (!sta->sta.support_p2p_ps)
1878 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1879 }
1880 break;
1881 case IEEE80211_STA_ASSOC:
1882 if (sta->sta_state == IEEE80211_STA_AUTH) {
1883 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1884 ieee80211_recalc_min_chandef(sta->sdata);
1885 if (!sta->sta.support_p2p_ps)
1886 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1887 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1888 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1889 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1890 !sta->sdata->u.vlan.sta))
1891 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1892 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1893 ieee80211_clear_fast_xmit(sta);
1894 ieee80211_clear_fast_rx(sta);
1895 }
1896 break;
1897 case IEEE80211_STA_AUTHORIZED:
1898 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1899 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1900 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1901 !sta->sdata->u.vlan.sta))
1902 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1903 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1904 ieee80211_check_fast_xmit(sta);
1905 ieee80211_check_fast_rx(sta);
1906 }
1907 break;
1908 default:
1909 break;
1910 }
1911
1912 sta->sta_state = new_state;
1913
1914 return 0;
1915 }
1916
1917 u8 sta_info_tx_streams(struct sta_info *sta)
1918 {
1919 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1920 u8 rx_streams;
1921
1922 if (!sta->sta.ht_cap.ht_supported)
1923 return 1;
1924
1925 if (sta->sta.vht_cap.vht_supported) {
1926 int i;
1927 u16 tx_mcs_map =
1928 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1929
1930 for (i = 7; i >= 0; i--)
1931 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1932 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1933 return i + 1;
1934 }
1935
1936 if (ht_cap->mcs.rx_mask[3])
1937 rx_streams = 4;
1938 else if (ht_cap->mcs.rx_mask[2])
1939 rx_streams = 3;
1940 else if (ht_cap->mcs.rx_mask[1])
1941 rx_streams = 2;
1942 else
1943 rx_streams = 1;
1944
1945 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1946 return rx_streams;
1947
1948 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1949 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1950 }
1951
1952 static struct ieee80211_sta_rx_stats *
1953 sta_get_last_rx_stats(struct sta_info *sta)
1954 {
1955 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1956 struct ieee80211_local *local = sta->local;
1957 int cpu;
1958
1959 if (!ieee80211_hw_check(&local->hw, USES_RSS))
1960 return stats;
1961
1962 for_each_possible_cpu(cpu) {
1963 struct ieee80211_sta_rx_stats *cpustats;
1964
1965 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1966
1967 if (time_after(cpustats->last_rx, stats->last_rx))
1968 stats = cpustats;
1969 }
1970
1971 return stats;
1972 }
1973
1974 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1975 struct rate_info *rinfo)
1976 {
1977 rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >>
1978 STA_STATS_RATE_BW_SHIFT;
1979
1980 if (rate & STA_STATS_RATE_VHT) {
1981 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1982 rinfo->mcs = rate & 0xf;
1983 rinfo->nss = (rate & 0xf0) >> 4;
1984 } else if (rate & STA_STATS_RATE_HT) {
1985 rinfo->flags = RATE_INFO_FLAGS_MCS;
1986 rinfo->mcs = rate & 0xff;
1987 } else if (rate & STA_STATS_RATE_LEGACY) {
1988 struct ieee80211_supported_band *sband;
1989 u16 brate;
1990 unsigned int shift;
1991
1992 sband = local->hw.wiphy->bands[(rate >> 4) & 0xf];
1993 brate = sband->bitrates[rate & 0xf].bitrate;
1994 if (rinfo->bw == RATE_INFO_BW_5)
1995 shift = 2;
1996 else if (rinfo->bw == RATE_INFO_BW_10)
1997 shift = 1;
1998 else
1999 shift = 0;
2000 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2001 }
2002
2003 if (rate & STA_STATS_RATE_SGI)
2004 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2005 }
2006
2007 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2008 {
2009 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2010
2011 if (rate == STA_STATS_RATE_INVALID)
2012 rinfo->flags = 0;
2013 else
2014 sta_stats_decode_rate(sta->local, rate, rinfo);
2015 }
2016
2017 static void sta_set_tidstats(struct sta_info *sta,
2018 struct cfg80211_tid_stats *tidstats,
2019 int tid)
2020 {
2021 struct ieee80211_local *local = sta->local;
2022
2023 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2024 unsigned int start;
2025
2026 do {
2027 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2028 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2029 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2030
2031 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2032 }
2033
2034 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2035 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2036 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2037 }
2038
2039 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2040 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2041 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2042 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2043 }
2044
2045 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2046 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2047 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2048 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2049 }
2050 }
2051
2052 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2053 {
2054 unsigned int start;
2055 u64 value;
2056
2057 do {
2058 start = u64_stats_fetch_begin(&rxstats->syncp);
2059 value = rxstats->bytes;
2060 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2061
2062 return value;
2063 }
2064
2065 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2066 {
2067 struct ieee80211_sub_if_data *sdata = sta->sdata;
2068 struct ieee80211_local *local = sdata->local;
2069 struct rate_control_ref *ref = NULL;
2070 u32 thr = 0;
2071 int i, ac, cpu;
2072 struct ieee80211_sta_rx_stats *last_rxstats;
2073
2074 last_rxstats = sta_get_last_rx_stats(sta);
2075
2076 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2077 ref = local->rate_ctrl;
2078
2079 sinfo->generation = sdata->local->sta_generation;
2080
2081 /* do before driver, so beacon filtering drivers have a
2082 * chance to e.g. just add the number of filtered beacons
2083 * (or just modify the value entirely, of course)
2084 */
2085 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2086 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2087
2088 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2089
2090 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2091 BIT(NL80211_STA_INFO_STA_FLAGS) |
2092 BIT(NL80211_STA_INFO_BSS_PARAM) |
2093 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2094 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2095
2096 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2097 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2098 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2099 }
2100
2101 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2102 sinfo->inactive_time =
2103 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2104
2105 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2106 BIT(NL80211_STA_INFO_TX_BYTES)))) {
2107 sinfo->tx_bytes = 0;
2108 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2109 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2110 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2111 }
2112
2113 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2114 sinfo->tx_packets = 0;
2115 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2116 sinfo->tx_packets += sta->tx_stats.packets[ac];
2117 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2118 }
2119
2120 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2121 BIT(NL80211_STA_INFO_RX_BYTES)))) {
2122 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2123
2124 if (sta->pcpu_rx_stats) {
2125 for_each_possible_cpu(cpu) {
2126 struct ieee80211_sta_rx_stats *cpurxs;
2127
2128 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2129 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2130 }
2131 }
2132
2133 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2134 }
2135
2136 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2137 sinfo->rx_packets = sta->rx_stats.packets;
2138 if (sta->pcpu_rx_stats) {
2139 for_each_possible_cpu(cpu) {
2140 struct ieee80211_sta_rx_stats *cpurxs;
2141
2142 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2143 sinfo->rx_packets += cpurxs->packets;
2144 }
2145 }
2146 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2147 }
2148
2149 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2150 sinfo->tx_retries = sta->status_stats.retry_count;
2151 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2152 }
2153
2154 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2155 sinfo->tx_failed = sta->status_stats.retry_failed;
2156 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2157 }
2158
2159 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2160 if (sta->pcpu_rx_stats) {
2161 for_each_possible_cpu(cpu) {
2162 struct ieee80211_sta_rx_stats *cpurxs;
2163
2164 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2165 sinfo->rx_packets += cpurxs->dropped;
2166 }
2167 }
2168
2169 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2170 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2171 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2172 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2173 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2174 }
2175
2176 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2177 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2178 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2179 sinfo->signal = (s8)last_rxstats->last_signal;
2180 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2181 }
2182
2183 if (!sta->pcpu_rx_stats &&
2184 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2185 sinfo->signal_avg =
2186 -ewma_signal_read(&sta->rx_stats_avg.signal);
2187 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2188 }
2189 }
2190
2191 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2192 * the sta->rx_stats struct, so the check here is fine with and without
2193 * pcpu statistics
2194 */
2195 if (last_rxstats->chains &&
2196 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2197 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2198 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2199 if (!sta->pcpu_rx_stats)
2200 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2201
2202 sinfo->chains = last_rxstats->chains;
2203
2204 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2205 sinfo->chain_signal[i] =
2206 last_rxstats->chain_signal_last[i];
2207 sinfo->chain_signal_avg[i] =
2208 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2209 }
2210 }
2211
2212 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2213 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2214 &sinfo->txrate);
2215 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2216 }
2217
2218 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2219 sta_set_rate_info_rx(sta, &sinfo->rxrate);
2220 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2221 }
2222
2223 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2224 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2225 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2226
2227 sta_set_tidstats(sta, tidstats, i);
2228 }
2229
2230 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2231 #ifdef CONFIG_MAC80211_MESH
2232 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2233 BIT(NL80211_STA_INFO_PLID) |
2234 BIT(NL80211_STA_INFO_PLINK_STATE) |
2235 BIT(NL80211_STA_INFO_LOCAL_PM) |
2236 BIT(NL80211_STA_INFO_PEER_PM) |
2237 BIT(NL80211_STA_INFO_NONPEER_PM);
2238
2239 sinfo->llid = sta->mesh->llid;
2240 sinfo->plid = sta->mesh->plid;
2241 sinfo->plink_state = sta->mesh->plink_state;
2242 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2243 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2244 sinfo->t_offset = sta->mesh->t_offset;
2245 }
2246 sinfo->local_pm = sta->mesh->local_pm;
2247 sinfo->peer_pm = sta->mesh->peer_pm;
2248 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2249 #endif
2250 }
2251
2252 sinfo->bss_param.flags = 0;
2253 if (sdata->vif.bss_conf.use_cts_prot)
2254 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2255 if (sdata->vif.bss_conf.use_short_preamble)
2256 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2257 if (sdata->vif.bss_conf.use_short_slot)
2258 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2259 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2260 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2261
2262 sinfo->sta_flags.set = 0;
2263 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2264 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2265 BIT(NL80211_STA_FLAG_WME) |
2266 BIT(NL80211_STA_FLAG_MFP) |
2267 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2268 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2269 BIT(NL80211_STA_FLAG_TDLS_PEER);
2270 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2271 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2272 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2273 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2274 if (sta->sta.wme)
2275 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2276 if (test_sta_flag(sta, WLAN_STA_MFP))
2277 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2278 if (test_sta_flag(sta, WLAN_STA_AUTH))
2279 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2280 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2281 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2282 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2283 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2284
2285 thr = sta_get_expected_throughput(sta);
2286
2287 if (thr != 0) {
2288 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2289 sinfo->expected_throughput = thr;
2290 }
2291 }
2292
2293 u32 sta_get_expected_throughput(struct sta_info *sta)
2294 {
2295 struct ieee80211_sub_if_data *sdata = sta->sdata;
2296 struct ieee80211_local *local = sdata->local;
2297 struct rate_control_ref *ref = NULL;
2298 u32 thr = 0;
2299
2300 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2301 ref = local->rate_ctrl;
2302
2303 /* check if the driver has a SW RC implementation */
2304 if (ref && ref->ops->get_expected_throughput)
2305 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2306 else
2307 thr = drv_get_expected_throughput(local, sta);
2308
2309 return thr;
2310 }
2311
2312 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2313 {
2314 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2315
2316 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2317 return stats->last_rx;
2318 return sta->status_stats.last_ack;
2319 }
This page took 0.097939 seconds and 5 git commands to generate.