3d5feede962dc584408e9b5a79e4b723f5308319
[deliverable/linux.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71 #ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75
76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78 static u16 key_to_nfproto(const struct sw_flow_key *key)
79 {
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88 }
89
90 /* Map SKB connection state into the values used by flow definition. */
91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92 {
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121 }
122
123 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124 {
125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127 #else
128 return 0;
129 #endif
130 }
131
132 static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134 {
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = cl->words * sizeof(long);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148 }
149
150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153 {
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158 }
159
160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165 static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169 {
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201 }
202
203 /* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207 {
208 ovs_ct_update_key(skb, NULL, key, false, false);
209 }
210
211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212 {
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230 }
231
232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234 {
235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253 #else
254 return -ENOTSUPP;
255 #endif
256 }
257
258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261 {
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287 }
288
289 /* 'skb' should already be pulled to nh_ofs. */
290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291 {
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346 }
347
348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351 static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353 {
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 skb_orphan(skb);
371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
372 err = nf_ct_frag6_gather(net, skb, user);
373 if (err)
374 return err;
375
376 key->ip.proto = ipv6_hdr(skb)->nexthdr;
377 ovs_cb.mru = IP6CB(skb)->frag_max_size;
378 #endif
379 } else {
380 kfree_skb(skb);
381 return -EPFNOSUPPORT;
382 }
383
384 key->ip.frag = OVS_FRAG_TYPE_NONE;
385 skb_clear_hash(skb);
386 skb->ignore_df = 1;
387 *OVS_CB(skb) = ovs_cb;
388
389 return 0;
390 }
391
392 static struct nf_conntrack_expect *
393 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
394 u16 proto, const struct sk_buff *skb)
395 {
396 struct nf_conntrack_tuple tuple;
397
398 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
399 return NULL;
400 return __nf_ct_expect_find(net, zone, &tuple);
401 }
402
403 /* This replicates logic from nf_conntrack_core.c that is not exported. */
404 static enum ip_conntrack_info
405 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
406 {
407 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
408
409 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
410 return IP_CT_ESTABLISHED_REPLY;
411 /* Once we've had two way comms, always ESTABLISHED. */
412 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
413 return IP_CT_ESTABLISHED;
414 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
415 return IP_CT_RELATED;
416 return IP_CT_NEW;
417 }
418
419 /* Find an existing connection which this packet belongs to without
420 * re-attributing statistics or modifying the connection state. This allows an
421 * skb->nfct lost due to an upcall to be recovered during actions execution.
422 *
423 * Must be called with rcu_read_lock.
424 *
425 * On success, populates skb->nfct and skb->nfctinfo, and returns the
426 * connection. Returns NULL if there is no existing entry.
427 */
428 static struct nf_conn *
429 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
430 u8 l3num, struct sk_buff *skb)
431 {
432 struct nf_conntrack_l3proto *l3proto;
433 struct nf_conntrack_l4proto *l4proto;
434 struct nf_conntrack_tuple tuple;
435 struct nf_conntrack_tuple_hash *h;
436 enum ip_conntrack_info ctinfo;
437 struct nf_conn *ct;
438 unsigned int dataoff;
439 u8 protonum;
440
441 l3proto = __nf_ct_l3proto_find(l3num);
442 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
443 &protonum) <= 0) {
444 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
445 return NULL;
446 }
447 l4proto = __nf_ct_l4proto_find(l3num, protonum);
448 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
449 protonum, net, &tuple, l3proto, l4proto)) {
450 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
451 return NULL;
452 }
453
454 /* look for tuple match */
455 h = nf_conntrack_find_get(net, zone, &tuple);
456 if (!h)
457 return NULL; /* Not found. */
458
459 ct = nf_ct_tuplehash_to_ctrack(h);
460
461 ctinfo = ovs_ct_get_info(h);
462 if (ctinfo == IP_CT_NEW) {
463 /* This should not happen. */
464 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct);
465 }
466 skb->nfct = &ct->ct_general;
467 skb->nfctinfo = ctinfo;
468 return ct;
469 }
470
471 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */
472 static bool skb_nfct_cached(struct net *net,
473 const struct sw_flow_key *key,
474 const struct ovs_conntrack_info *info,
475 struct sk_buff *skb)
476 {
477 enum ip_conntrack_info ctinfo;
478 struct nf_conn *ct;
479
480 ct = nf_ct_get(skb, &ctinfo);
481 /* If no ct, check if we have evidence that an existing conntrack entry
482 * might be found for this skb. This happens when we lose a skb->nfct
483 * due to an upcall. If the connection was not confirmed, it is not
484 * cached and needs to be run through conntrack again.
485 */
486 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
487 !(key->ct.state & OVS_CS_F_INVALID) &&
488 key->ct.zone == info->zone.id)
489 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
490 if (!ct)
491 return false;
492 if (!net_eq(net, read_pnet(&ct->ct_net)))
493 return false;
494 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
495 return false;
496 if (info->helper) {
497 struct nf_conn_help *help;
498
499 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
500 if (help && rcu_access_pointer(help->helper) != info->helper)
501 return false;
502 }
503
504 return true;
505 }
506
507 #ifdef CONFIG_NF_NAT_NEEDED
508 /* Modelled after nf_nat_ipv[46]_fn().
509 * range is only used for new, uninitialized NAT state.
510 * Returns either NF_ACCEPT or NF_DROP.
511 */
512 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
513 enum ip_conntrack_info ctinfo,
514 const struct nf_nat_range *range,
515 enum nf_nat_manip_type maniptype)
516 {
517 int hooknum, nh_off, err = NF_ACCEPT;
518
519 nh_off = skb_network_offset(skb);
520 skb_pull(skb, nh_off);
521
522 /* See HOOK2MANIP(). */
523 if (maniptype == NF_NAT_MANIP_SRC)
524 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
525 else
526 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
527
528 switch (ctinfo) {
529 case IP_CT_RELATED:
530 case IP_CT_RELATED_REPLY:
531 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
532 skb->protocol == htons(ETH_P_IP) &&
533 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
534 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
535 hooknum))
536 err = NF_DROP;
537 goto push;
538 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
539 skb->protocol == htons(ETH_P_IPV6)) {
540 __be16 frag_off;
541 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
542 int hdrlen = ipv6_skip_exthdr(skb,
543 sizeof(struct ipv6hdr),
544 &nexthdr, &frag_off);
545
546 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
547 if (!nf_nat_icmpv6_reply_translation(skb, ct,
548 ctinfo,
549 hooknum,
550 hdrlen))
551 err = NF_DROP;
552 goto push;
553 }
554 }
555 /* Non-ICMP, fall thru to initialize if needed. */
556 case IP_CT_NEW:
557 /* Seen it before? This can happen for loopback, retrans,
558 * or local packets.
559 */
560 if (!nf_nat_initialized(ct, maniptype)) {
561 /* Initialize according to the NAT action. */
562 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
563 /* Action is set up to establish a new
564 * mapping.
565 */
566 ? nf_nat_setup_info(ct, range, maniptype)
567 : nf_nat_alloc_null_binding(ct, hooknum);
568 if (err != NF_ACCEPT)
569 goto push;
570 }
571 break;
572
573 case IP_CT_ESTABLISHED:
574 case IP_CT_ESTABLISHED_REPLY:
575 break;
576
577 default:
578 err = NF_DROP;
579 goto push;
580 }
581
582 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
583 push:
584 skb_push(skb, nh_off);
585
586 return err;
587 }
588
589 static void ovs_nat_update_key(struct sw_flow_key *key,
590 const struct sk_buff *skb,
591 enum nf_nat_manip_type maniptype)
592 {
593 if (maniptype == NF_NAT_MANIP_SRC) {
594 __be16 src;
595
596 key->ct.state |= OVS_CS_F_SRC_NAT;
597 if (key->eth.type == htons(ETH_P_IP))
598 key->ipv4.addr.src = ip_hdr(skb)->saddr;
599 else if (key->eth.type == htons(ETH_P_IPV6))
600 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
601 sizeof(key->ipv6.addr.src));
602 else
603 return;
604
605 if (key->ip.proto == IPPROTO_UDP)
606 src = udp_hdr(skb)->source;
607 else if (key->ip.proto == IPPROTO_TCP)
608 src = tcp_hdr(skb)->source;
609 else if (key->ip.proto == IPPROTO_SCTP)
610 src = sctp_hdr(skb)->source;
611 else
612 return;
613
614 key->tp.src = src;
615 } else {
616 __be16 dst;
617
618 key->ct.state |= OVS_CS_F_DST_NAT;
619 if (key->eth.type == htons(ETH_P_IP))
620 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
621 else if (key->eth.type == htons(ETH_P_IPV6))
622 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
623 sizeof(key->ipv6.addr.dst));
624 else
625 return;
626
627 if (key->ip.proto == IPPROTO_UDP)
628 dst = udp_hdr(skb)->dest;
629 else if (key->ip.proto == IPPROTO_TCP)
630 dst = tcp_hdr(skb)->dest;
631 else if (key->ip.proto == IPPROTO_SCTP)
632 dst = sctp_hdr(skb)->dest;
633 else
634 return;
635
636 key->tp.dst = dst;
637 }
638 }
639
640 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
641 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
642 const struct ovs_conntrack_info *info,
643 struct sk_buff *skb, struct nf_conn *ct,
644 enum ip_conntrack_info ctinfo)
645 {
646 enum nf_nat_manip_type maniptype;
647 int err;
648
649 if (nf_ct_is_untracked(ct)) {
650 /* A NAT action may only be performed on tracked packets. */
651 return NF_ACCEPT;
652 }
653
654 /* Add NAT extension if not confirmed yet. */
655 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
656 return NF_ACCEPT; /* Can't NAT. */
657
658 /* Determine NAT type.
659 * Check if the NAT type can be deduced from the tracked connection.
660 * Make sure new expected connections (IP_CT_RELATED) are NATted only
661 * when committing.
662 */
663 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
664 ct->status & IPS_NAT_MASK &&
665 (ctinfo != IP_CT_RELATED || info->commit)) {
666 /* NAT an established or related connection like before. */
667 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
668 /* This is the REPLY direction for a connection
669 * for which NAT was applied in the forward
670 * direction. Do the reverse NAT.
671 */
672 maniptype = ct->status & IPS_SRC_NAT
673 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
674 else
675 maniptype = ct->status & IPS_SRC_NAT
676 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
677 } else if (info->nat & OVS_CT_SRC_NAT) {
678 maniptype = NF_NAT_MANIP_SRC;
679 } else if (info->nat & OVS_CT_DST_NAT) {
680 maniptype = NF_NAT_MANIP_DST;
681 } else {
682 return NF_ACCEPT; /* Connection is not NATed. */
683 }
684 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
685
686 /* Mark NAT done if successful and update the flow key. */
687 if (err == NF_ACCEPT)
688 ovs_nat_update_key(key, skb, maniptype);
689
690 return err;
691 }
692 #else /* !CONFIG_NF_NAT_NEEDED */
693 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
694 const struct ovs_conntrack_info *info,
695 struct sk_buff *skb, struct nf_conn *ct,
696 enum ip_conntrack_info ctinfo)
697 {
698 return NF_ACCEPT;
699 }
700 #endif
701
702 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
703 * not done already. Update key with new CT state after passing the packet
704 * through conntrack.
705 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
706 * set to NULL and 0 will be returned.
707 */
708 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
709 const struct ovs_conntrack_info *info,
710 struct sk_buff *skb)
711 {
712 /* If we are recirculating packets to match on conntrack fields and
713 * committing with a separate conntrack action, then we don't need to
714 * actually run the packet through conntrack twice unless it's for a
715 * different zone.
716 */
717 bool cached = skb_nfct_cached(net, key, info, skb);
718 enum ip_conntrack_info ctinfo;
719 struct nf_conn *ct;
720
721 if (!cached) {
722 struct nf_conn *tmpl = info->ct;
723 int err;
724
725 /* Associate skb with specified zone. */
726 if (tmpl) {
727 if (skb->nfct)
728 nf_conntrack_put(skb->nfct);
729 nf_conntrack_get(&tmpl->ct_general);
730 skb->nfct = &tmpl->ct_general;
731 skb->nfctinfo = IP_CT_NEW;
732 }
733
734 /* Repeat if requested, see nf_iterate(). */
735 do {
736 err = nf_conntrack_in(net, info->family,
737 NF_INET_PRE_ROUTING, skb);
738 } while (err == NF_REPEAT);
739
740 if (err != NF_ACCEPT)
741 return -ENOENT;
742
743 /* Clear CT state NAT flags to mark that we have not yet done
744 * NAT after the nf_conntrack_in() call. We can actually clear
745 * the whole state, as it will be re-initialized below.
746 */
747 key->ct.state = 0;
748
749 /* Update the key, but keep the NAT flags. */
750 ovs_ct_update_key(skb, info, key, true, true);
751 }
752
753 ct = nf_ct_get(skb, &ctinfo);
754 if (ct) {
755 /* Packets starting a new connection must be NATted before the
756 * helper, so that the helper knows about the NAT. We enforce
757 * this by delaying both NAT and helper calls for unconfirmed
758 * connections until the committing CT action. For later
759 * packets NAT and Helper may be called in either order.
760 *
761 * NAT will be done only if the CT action has NAT, and only
762 * once per packet (per zone), as guarded by the NAT bits in
763 * the key->ct.state.
764 */
765 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
766 (nf_ct_is_confirmed(ct) || info->commit) &&
767 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
768 return -EINVAL;
769 }
770
771 /* Userspace may decide to perform a ct lookup without a helper
772 * specified followed by a (recirculate and) commit with one.
773 * Therefore, for unconfirmed connections which we will commit,
774 * we need to attach the helper here.
775 */
776 if (!nf_ct_is_confirmed(ct) && info->commit &&
777 info->helper && !nfct_help(ct)) {
778 int err = __nf_ct_try_assign_helper(ct, info->ct,
779 GFP_ATOMIC);
780 if (err)
781 return err;
782 }
783
784 /* Call the helper only if:
785 * - nf_conntrack_in() was executed above ("!cached") for a
786 * confirmed connection, or
787 * - When committing an unconfirmed connection.
788 */
789 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
790 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
791 return -EINVAL;
792 }
793 }
794
795 return 0;
796 }
797
798 /* Lookup connection and read fields into key. */
799 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
800 const struct ovs_conntrack_info *info,
801 struct sk_buff *skb)
802 {
803 struct nf_conntrack_expect *exp;
804
805 /* If we pass an expected packet through nf_conntrack_in() the
806 * expectation is typically removed, but the packet could still be
807 * lost in upcall processing. To prevent this from happening we
808 * perform an explicit expectation lookup. Expected connections are
809 * always new, and will be passed through conntrack only when they are
810 * committed, as it is OK to remove the expectation at that time.
811 */
812 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
813 if (exp) {
814 u8 state;
815
816 /* NOTE: New connections are NATted and Helped only when
817 * committed, so we are not calling into NAT here.
818 */
819 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
820 __ovs_ct_update_key(key, state, &info->zone, exp->master);
821 } else
822 return __ovs_ct_lookup(net, key, info, skb);
823
824 return 0;
825 }
826
827 /* Lookup connection and confirm if unconfirmed. */
828 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
829 const struct ovs_conntrack_info *info,
830 struct sk_buff *skb)
831 {
832 int err;
833
834 err = __ovs_ct_lookup(net, key, info, skb);
835 if (err)
836 return err;
837 /* This is a no-op if the connection has already been confirmed. */
838 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
839 return -EINVAL;
840
841 return 0;
842 }
843
844 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
845 {
846 size_t i;
847
848 for (i = 0; i < sizeof(*labels); i++)
849 if (labels->ct_labels[i])
850 return true;
851
852 return false;
853 }
854
855 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
856 * value if 'skb' is freed.
857 */
858 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
859 struct sw_flow_key *key,
860 const struct ovs_conntrack_info *info)
861 {
862 int nh_ofs;
863 int err;
864
865 /* The conntrack module expects to be working at L3. */
866 nh_ofs = skb_network_offset(skb);
867 skb_pull(skb, nh_ofs);
868
869 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
870 err = handle_fragments(net, key, info->zone.id, skb);
871 if (err)
872 return err;
873 }
874
875 if (info->commit)
876 err = ovs_ct_commit(net, key, info, skb);
877 else
878 err = ovs_ct_lookup(net, key, info, skb);
879 if (err)
880 goto err;
881
882 if (info->mark.mask) {
883 err = ovs_ct_set_mark(skb, key, info->mark.value,
884 info->mark.mask);
885 if (err)
886 goto err;
887 }
888 if (labels_nonzero(&info->labels.mask))
889 err = ovs_ct_set_labels(skb, key, &info->labels.value,
890 &info->labels.mask);
891 err:
892 skb_push(skb, nh_ofs);
893 if (err)
894 kfree_skb(skb);
895 return err;
896 }
897
898 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
899 const struct sw_flow_key *key, bool log)
900 {
901 struct nf_conntrack_helper *helper;
902 struct nf_conn_help *help;
903
904 helper = nf_conntrack_helper_try_module_get(name, info->family,
905 key->ip.proto);
906 if (!helper) {
907 OVS_NLERR(log, "Unknown helper \"%s\"", name);
908 return -EINVAL;
909 }
910
911 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
912 if (!help) {
913 module_put(helper->me);
914 return -ENOMEM;
915 }
916
917 rcu_assign_pointer(help->helper, helper);
918 info->helper = helper;
919 return 0;
920 }
921
922 #ifdef CONFIG_NF_NAT_NEEDED
923 static int parse_nat(const struct nlattr *attr,
924 struct ovs_conntrack_info *info, bool log)
925 {
926 struct nlattr *a;
927 int rem;
928 bool have_ip_max = false;
929 bool have_proto_max = false;
930 bool ip_vers = (info->family == NFPROTO_IPV6);
931
932 nla_for_each_nested(a, attr, rem) {
933 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
934 [OVS_NAT_ATTR_SRC] = {0, 0},
935 [OVS_NAT_ATTR_DST] = {0, 0},
936 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
937 sizeof(struct in6_addr)},
938 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
939 sizeof(struct in6_addr)},
940 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
941 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
942 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
943 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
944 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
945 };
946 int type = nla_type(a);
947
948 if (type > OVS_NAT_ATTR_MAX) {
949 OVS_NLERR(log,
950 "Unknown NAT attribute (type=%d, max=%d).\n",
951 type, OVS_NAT_ATTR_MAX);
952 return -EINVAL;
953 }
954
955 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
956 OVS_NLERR(log,
957 "NAT attribute type %d has unexpected length (%d != %d).\n",
958 type, nla_len(a),
959 ovs_nat_attr_lens[type][ip_vers]);
960 return -EINVAL;
961 }
962
963 switch (type) {
964 case OVS_NAT_ATTR_SRC:
965 case OVS_NAT_ATTR_DST:
966 if (info->nat) {
967 OVS_NLERR(log,
968 "Only one type of NAT may be specified.\n"
969 );
970 return -ERANGE;
971 }
972 info->nat |= OVS_CT_NAT;
973 info->nat |= ((type == OVS_NAT_ATTR_SRC)
974 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
975 break;
976
977 case OVS_NAT_ATTR_IP_MIN:
978 nla_memcpy(&info->range.min_addr, a,
979 sizeof(info->range.min_addr));
980 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
981 break;
982
983 case OVS_NAT_ATTR_IP_MAX:
984 have_ip_max = true;
985 nla_memcpy(&info->range.max_addr, a,
986 sizeof(info->range.max_addr));
987 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
988 break;
989
990 case OVS_NAT_ATTR_PROTO_MIN:
991 info->range.min_proto.all = htons(nla_get_u16(a));
992 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
993 break;
994
995 case OVS_NAT_ATTR_PROTO_MAX:
996 have_proto_max = true;
997 info->range.max_proto.all = htons(nla_get_u16(a));
998 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
999 break;
1000
1001 case OVS_NAT_ATTR_PERSISTENT:
1002 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1003 break;
1004
1005 case OVS_NAT_ATTR_PROTO_HASH:
1006 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1007 break;
1008
1009 case OVS_NAT_ATTR_PROTO_RANDOM:
1010 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1011 break;
1012
1013 default:
1014 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1015 return -EINVAL;
1016 }
1017 }
1018
1019 if (rem > 0) {
1020 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1021 return -EINVAL;
1022 }
1023 if (!info->nat) {
1024 /* Do not allow flags if no type is given. */
1025 if (info->range.flags) {
1026 OVS_NLERR(log,
1027 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1028 );
1029 return -EINVAL;
1030 }
1031 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1032 } else if (!info->commit) {
1033 OVS_NLERR(log,
1034 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1035 );
1036 return -EINVAL;
1037 }
1038 /* Allow missing IP_MAX. */
1039 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1040 memcpy(&info->range.max_addr, &info->range.min_addr,
1041 sizeof(info->range.max_addr));
1042 }
1043 /* Allow missing PROTO_MAX. */
1044 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1045 !have_proto_max) {
1046 info->range.max_proto.all = info->range.min_proto.all;
1047 }
1048 return 0;
1049 }
1050 #endif
1051
1052 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1053 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1054 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1055 .maxlen = sizeof(u16) },
1056 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1057 .maxlen = sizeof(struct md_mark) },
1058 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1059 .maxlen = sizeof(struct md_labels) },
1060 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1061 .maxlen = NF_CT_HELPER_NAME_LEN },
1062 #ifdef CONFIG_NF_NAT_NEEDED
1063 /* NAT length is checked when parsing the nested attributes. */
1064 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1065 #endif
1066 };
1067
1068 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1069 const char **helper, bool log)
1070 {
1071 struct nlattr *a;
1072 int rem;
1073
1074 nla_for_each_nested(a, attr, rem) {
1075 int type = nla_type(a);
1076 int maxlen = ovs_ct_attr_lens[type].maxlen;
1077 int minlen = ovs_ct_attr_lens[type].minlen;
1078
1079 if (type > OVS_CT_ATTR_MAX) {
1080 OVS_NLERR(log,
1081 "Unknown conntrack attr (type=%d, max=%d)",
1082 type, OVS_CT_ATTR_MAX);
1083 return -EINVAL;
1084 }
1085 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1086 OVS_NLERR(log,
1087 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1088 type, nla_len(a), maxlen);
1089 return -EINVAL;
1090 }
1091
1092 switch (type) {
1093 case OVS_CT_ATTR_COMMIT:
1094 info->commit = true;
1095 break;
1096 #ifdef CONFIG_NF_CONNTRACK_ZONES
1097 case OVS_CT_ATTR_ZONE:
1098 info->zone.id = nla_get_u16(a);
1099 break;
1100 #endif
1101 #ifdef CONFIG_NF_CONNTRACK_MARK
1102 case OVS_CT_ATTR_MARK: {
1103 struct md_mark *mark = nla_data(a);
1104
1105 if (!mark->mask) {
1106 OVS_NLERR(log, "ct_mark mask cannot be 0");
1107 return -EINVAL;
1108 }
1109 info->mark = *mark;
1110 break;
1111 }
1112 #endif
1113 #ifdef CONFIG_NF_CONNTRACK_LABELS
1114 case OVS_CT_ATTR_LABELS: {
1115 struct md_labels *labels = nla_data(a);
1116
1117 if (!labels_nonzero(&labels->mask)) {
1118 OVS_NLERR(log, "ct_labels mask cannot be 0");
1119 return -EINVAL;
1120 }
1121 info->labels = *labels;
1122 break;
1123 }
1124 #endif
1125 case OVS_CT_ATTR_HELPER:
1126 *helper = nla_data(a);
1127 if (!memchr(*helper, '\0', nla_len(a))) {
1128 OVS_NLERR(log, "Invalid conntrack helper");
1129 return -EINVAL;
1130 }
1131 break;
1132 #ifdef CONFIG_NF_NAT_NEEDED
1133 case OVS_CT_ATTR_NAT: {
1134 int err = parse_nat(a, info, log);
1135
1136 if (err)
1137 return err;
1138 break;
1139 }
1140 #endif
1141 default:
1142 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1143 type);
1144 return -EINVAL;
1145 }
1146 }
1147
1148 if (rem > 0) {
1149 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1150 return -EINVAL;
1151 }
1152
1153 return 0;
1154 }
1155
1156 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1157 {
1158 if (attr == OVS_KEY_ATTR_CT_STATE)
1159 return true;
1160 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1161 attr == OVS_KEY_ATTR_CT_ZONE)
1162 return true;
1163 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1164 attr == OVS_KEY_ATTR_CT_MARK)
1165 return true;
1166 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1167 attr == OVS_KEY_ATTR_CT_LABELS) {
1168 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1169
1170 return ovs_net->xt_label;
1171 }
1172
1173 return false;
1174 }
1175
1176 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1177 const struct sw_flow_key *key,
1178 struct sw_flow_actions **sfa, bool log)
1179 {
1180 struct ovs_conntrack_info ct_info;
1181 const char *helper = NULL;
1182 u16 family;
1183 int err;
1184
1185 family = key_to_nfproto(key);
1186 if (family == NFPROTO_UNSPEC) {
1187 OVS_NLERR(log, "ct family unspecified");
1188 return -EINVAL;
1189 }
1190
1191 memset(&ct_info, 0, sizeof(ct_info));
1192 ct_info.family = family;
1193
1194 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1195 NF_CT_DEFAULT_ZONE_DIR, 0);
1196
1197 err = parse_ct(attr, &ct_info, &helper, log);
1198 if (err)
1199 return err;
1200
1201 /* Set up template for tracking connections in specific zones. */
1202 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1203 if (!ct_info.ct) {
1204 OVS_NLERR(log, "Failed to allocate conntrack template");
1205 return -ENOMEM;
1206 }
1207
1208 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1209 nf_conntrack_get(&ct_info.ct->ct_general);
1210
1211 if (helper) {
1212 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1213 if (err)
1214 goto err_free_ct;
1215 }
1216
1217 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1218 sizeof(ct_info), log);
1219 if (err)
1220 goto err_free_ct;
1221
1222 return 0;
1223 err_free_ct:
1224 __ovs_ct_free_action(&ct_info);
1225 return err;
1226 }
1227
1228 #ifdef CONFIG_NF_NAT_NEEDED
1229 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1230 struct sk_buff *skb)
1231 {
1232 struct nlattr *start;
1233
1234 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1235 if (!start)
1236 return false;
1237
1238 if (info->nat & OVS_CT_SRC_NAT) {
1239 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1240 return false;
1241 } else if (info->nat & OVS_CT_DST_NAT) {
1242 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1243 return false;
1244 } else {
1245 goto out;
1246 }
1247
1248 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1249 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1250 info->family == NFPROTO_IPV4) {
1251 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1252 info->range.min_addr.ip) ||
1253 (info->range.max_addr.ip
1254 != info->range.min_addr.ip &&
1255 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1256 info->range.max_addr.ip))))
1257 return false;
1258 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1259 info->family == NFPROTO_IPV6) {
1260 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1261 &info->range.min_addr.in6) ||
1262 (memcmp(&info->range.max_addr.in6,
1263 &info->range.min_addr.in6,
1264 sizeof(info->range.max_addr.in6)) &&
1265 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1266 &info->range.max_addr.in6))))
1267 return false;
1268 } else {
1269 return false;
1270 }
1271 }
1272 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1273 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1274 ntohs(info->range.min_proto.all)) ||
1275 (info->range.max_proto.all != info->range.min_proto.all &&
1276 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1277 ntohs(info->range.max_proto.all)))))
1278 return false;
1279
1280 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1281 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1282 return false;
1283 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1284 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1285 return false;
1286 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1287 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1288 return false;
1289 out:
1290 nla_nest_end(skb, start);
1291
1292 return true;
1293 }
1294 #endif
1295
1296 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1297 struct sk_buff *skb)
1298 {
1299 struct nlattr *start;
1300
1301 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1302 if (!start)
1303 return -EMSGSIZE;
1304
1305 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1306 return -EMSGSIZE;
1307 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1308 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1309 return -EMSGSIZE;
1310 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1311 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1312 &ct_info->mark))
1313 return -EMSGSIZE;
1314 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1315 labels_nonzero(&ct_info->labels.mask) &&
1316 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1317 &ct_info->labels))
1318 return -EMSGSIZE;
1319 if (ct_info->helper) {
1320 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1321 ct_info->helper->name))
1322 return -EMSGSIZE;
1323 }
1324 #ifdef CONFIG_NF_NAT_NEEDED
1325 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1326 return -EMSGSIZE;
1327 #endif
1328 nla_nest_end(skb, start);
1329
1330 return 0;
1331 }
1332
1333 void ovs_ct_free_action(const struct nlattr *a)
1334 {
1335 struct ovs_conntrack_info *ct_info = nla_data(a);
1336
1337 __ovs_ct_free_action(ct_info);
1338 }
1339
1340 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1341 {
1342 if (ct_info->helper)
1343 module_put(ct_info->helper->me);
1344 if (ct_info->ct)
1345 nf_ct_put(ct_info->ct);
1346 }
1347
1348 void ovs_ct_init(struct net *net)
1349 {
1350 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1351 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1352
1353 if (nf_connlabels_get(net, n_bits - 1)) {
1354 ovs_net->xt_label = false;
1355 OVS_NLERR(true, "Failed to set connlabel length");
1356 } else {
1357 ovs_net->xt_label = true;
1358 }
1359 }
1360
1361 void ovs_ct_exit(struct net *net)
1362 {
1363 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1364
1365 if (ovs_net->xt_label)
1366 nf_connlabels_put(net);
1367 }
This page took 0.057469 seconds and 4 git commands to generate.