Merge remote-tracking branch 'md/for-next'
[deliverable/linux.git] / net / openvswitch / flow.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/mpls.h>
47 #include <net/ndisc.h>
48
49 #include "conntrack.h"
50 #include "datapath.h"
51 #include "flow.h"
52 #include "flow_netlink.h"
53 #include "vport.h"
54
55 u64 ovs_flow_used_time(unsigned long flow_jiffies)
56 {
57 struct timespec cur_ts;
58 u64 cur_ms, idle_ms;
59
60 ktime_get_ts(&cur_ts);
61 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
62 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
63 cur_ts.tv_nsec / NSEC_PER_MSEC;
64
65 return cur_ms - idle_ms;
66 }
67
68 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
69
70 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
71 const struct sk_buff *skb)
72 {
73 struct flow_stats *stats;
74 int node = numa_node_id();
75 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
76
77 stats = rcu_dereference(flow->stats[node]);
78
79 /* Check if already have node-specific stats. */
80 if (likely(stats)) {
81 spin_lock(&stats->lock);
82 /* Mark if we write on the pre-allocated stats. */
83 if (node == 0 && unlikely(flow->stats_last_writer != node))
84 flow->stats_last_writer = node;
85 } else {
86 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
87 spin_lock(&stats->lock);
88
89 /* If the current NUMA-node is the only writer on the
90 * pre-allocated stats keep using them.
91 */
92 if (unlikely(flow->stats_last_writer != node)) {
93 /* A previous locker may have already allocated the
94 * stats, so we need to check again. If node-specific
95 * stats were already allocated, we update the pre-
96 * allocated stats as we have already locked them.
97 */
98 if (likely(flow->stats_last_writer != NUMA_NO_NODE)
99 && likely(!rcu_access_pointer(flow->stats[node]))) {
100 /* Try to allocate node-specific stats. */
101 struct flow_stats *new_stats;
102
103 new_stats =
104 kmem_cache_alloc_node(flow_stats_cache,
105 GFP_NOWAIT |
106 __GFP_THISNODE |
107 __GFP_NOWARN |
108 __GFP_NOMEMALLOC,
109 node);
110 if (likely(new_stats)) {
111 new_stats->used = jiffies;
112 new_stats->packet_count = 1;
113 new_stats->byte_count = len;
114 new_stats->tcp_flags = tcp_flags;
115 spin_lock_init(&new_stats->lock);
116
117 rcu_assign_pointer(flow->stats[node],
118 new_stats);
119 goto unlock;
120 }
121 }
122 flow->stats_last_writer = node;
123 }
124 }
125
126 stats->used = jiffies;
127 stats->packet_count++;
128 stats->byte_count += len;
129 stats->tcp_flags |= tcp_flags;
130 unlock:
131 spin_unlock(&stats->lock);
132 }
133
134 /* Must be called with rcu_read_lock or ovs_mutex. */
135 void ovs_flow_stats_get(const struct sw_flow *flow,
136 struct ovs_flow_stats *ovs_stats,
137 unsigned long *used, __be16 *tcp_flags)
138 {
139 int node;
140
141 *used = 0;
142 *tcp_flags = 0;
143 memset(ovs_stats, 0, sizeof(*ovs_stats));
144
145 for_each_node(node) {
146 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
147
148 if (stats) {
149 /* Local CPU may write on non-local stats, so we must
150 * block bottom-halves here.
151 */
152 spin_lock_bh(&stats->lock);
153 if (!*used || time_after(stats->used, *used))
154 *used = stats->used;
155 *tcp_flags |= stats->tcp_flags;
156 ovs_stats->n_packets += stats->packet_count;
157 ovs_stats->n_bytes += stats->byte_count;
158 spin_unlock_bh(&stats->lock);
159 }
160 }
161 }
162
163 /* Called with ovs_mutex. */
164 void ovs_flow_stats_clear(struct sw_flow *flow)
165 {
166 int node;
167
168 for_each_node(node) {
169 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
170
171 if (stats) {
172 spin_lock_bh(&stats->lock);
173 stats->used = 0;
174 stats->packet_count = 0;
175 stats->byte_count = 0;
176 stats->tcp_flags = 0;
177 spin_unlock_bh(&stats->lock);
178 }
179 }
180 }
181
182 static int check_header(struct sk_buff *skb, int len)
183 {
184 if (unlikely(skb->len < len))
185 return -EINVAL;
186 if (unlikely(!pskb_may_pull(skb, len)))
187 return -ENOMEM;
188 return 0;
189 }
190
191 static bool arphdr_ok(struct sk_buff *skb)
192 {
193 return pskb_may_pull(skb, skb_network_offset(skb) +
194 sizeof(struct arp_eth_header));
195 }
196
197 static int check_iphdr(struct sk_buff *skb)
198 {
199 unsigned int nh_ofs = skb_network_offset(skb);
200 unsigned int ip_len;
201 int err;
202
203 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
204 if (unlikely(err))
205 return err;
206
207 ip_len = ip_hdrlen(skb);
208 if (unlikely(ip_len < sizeof(struct iphdr) ||
209 skb->len < nh_ofs + ip_len))
210 return -EINVAL;
211
212 skb_set_transport_header(skb, nh_ofs + ip_len);
213 return 0;
214 }
215
216 static bool tcphdr_ok(struct sk_buff *skb)
217 {
218 int th_ofs = skb_transport_offset(skb);
219 int tcp_len;
220
221 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
222 return false;
223
224 tcp_len = tcp_hdrlen(skb);
225 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
226 skb->len < th_ofs + tcp_len))
227 return false;
228
229 return true;
230 }
231
232 static bool udphdr_ok(struct sk_buff *skb)
233 {
234 return pskb_may_pull(skb, skb_transport_offset(skb) +
235 sizeof(struct udphdr));
236 }
237
238 static bool sctphdr_ok(struct sk_buff *skb)
239 {
240 return pskb_may_pull(skb, skb_transport_offset(skb) +
241 sizeof(struct sctphdr));
242 }
243
244 static bool icmphdr_ok(struct sk_buff *skb)
245 {
246 return pskb_may_pull(skb, skb_transport_offset(skb) +
247 sizeof(struct icmphdr));
248 }
249
250 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
251 {
252 unsigned int nh_ofs = skb_network_offset(skb);
253 unsigned int nh_len;
254 int payload_ofs;
255 struct ipv6hdr *nh;
256 uint8_t nexthdr;
257 __be16 frag_off;
258 int err;
259
260 err = check_header(skb, nh_ofs + sizeof(*nh));
261 if (unlikely(err))
262 return err;
263
264 nh = ipv6_hdr(skb);
265 nexthdr = nh->nexthdr;
266 payload_ofs = (u8 *)(nh + 1) - skb->data;
267
268 key->ip.proto = NEXTHDR_NONE;
269 key->ip.tos = ipv6_get_dsfield(nh);
270 key->ip.ttl = nh->hop_limit;
271 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
272 key->ipv6.addr.src = nh->saddr;
273 key->ipv6.addr.dst = nh->daddr;
274
275 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
276
277 if (frag_off) {
278 if (frag_off & htons(~0x7))
279 key->ip.frag = OVS_FRAG_TYPE_LATER;
280 else
281 key->ip.frag = OVS_FRAG_TYPE_FIRST;
282 } else {
283 key->ip.frag = OVS_FRAG_TYPE_NONE;
284 }
285
286 /* Delayed handling of error in ipv6_skip_exthdr() as it
287 * always sets frag_off to a valid value which may be
288 * used to set key->ip.frag above.
289 */
290 if (unlikely(payload_ofs < 0))
291 return -EPROTO;
292
293 nh_len = payload_ofs - nh_ofs;
294 skb_set_transport_header(skb, nh_ofs + nh_len);
295 key->ip.proto = nexthdr;
296 return nh_len;
297 }
298
299 static bool icmp6hdr_ok(struct sk_buff *skb)
300 {
301 return pskb_may_pull(skb, skb_transport_offset(skb) +
302 sizeof(struct icmp6hdr));
303 }
304
305 /**
306 * Parse vlan tag from vlan header.
307 * Returns ERROR on memory error.
308 * Returns 0 if it encounters a non-vlan or incomplete packet.
309 * Returns 1 after successfully parsing vlan tag.
310 */
311 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh)
312 {
313 struct vlan_head *vh = (struct vlan_head *)skb->data;
314
315 if (likely(!eth_type_vlan(vh->tpid)))
316 return 0;
317
318 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
319 return 0;
320
321 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
322 sizeof(__be16))))
323 return -ENOMEM;
324
325 vh = (struct vlan_head *)skb->data;
326 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
327 key_vh->tpid = vh->tpid;
328
329 __skb_pull(skb, sizeof(struct vlan_head));
330 return 1;
331 }
332
333 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
334 {
335 int res;
336
337 key->eth.vlan.tci = 0;
338 key->eth.vlan.tpid = 0;
339 key->eth.cvlan.tci = 0;
340 key->eth.cvlan.tpid = 0;
341
342 if (likely(skb_vlan_tag_present(skb))) {
343 key->eth.vlan.tci = htons(skb->vlan_tci);
344 key->eth.vlan.tpid = skb->vlan_proto;
345 } else {
346 /* Parse outer vlan tag in the non-accelerated case. */
347 res = parse_vlan_tag(skb, &key->eth.vlan);
348 if (res <= 0)
349 return res;
350 }
351
352 /* Parse inner vlan tag. */
353 res = parse_vlan_tag(skb, &key->eth.cvlan);
354 if (res <= 0)
355 return res;
356
357 return 0;
358 }
359
360 static __be16 parse_ethertype(struct sk_buff *skb)
361 {
362 struct llc_snap_hdr {
363 u8 dsap; /* Always 0xAA */
364 u8 ssap; /* Always 0xAA */
365 u8 ctrl;
366 u8 oui[3];
367 __be16 ethertype;
368 };
369 struct llc_snap_hdr *llc;
370 __be16 proto;
371
372 proto = *(__be16 *) skb->data;
373 __skb_pull(skb, sizeof(__be16));
374
375 if (eth_proto_is_802_3(proto))
376 return proto;
377
378 if (skb->len < sizeof(struct llc_snap_hdr))
379 return htons(ETH_P_802_2);
380
381 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
382 return htons(0);
383
384 llc = (struct llc_snap_hdr *) skb->data;
385 if (llc->dsap != LLC_SAP_SNAP ||
386 llc->ssap != LLC_SAP_SNAP ||
387 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
388 return htons(ETH_P_802_2);
389
390 __skb_pull(skb, sizeof(struct llc_snap_hdr));
391
392 if (eth_proto_is_802_3(llc->ethertype))
393 return llc->ethertype;
394
395 return htons(ETH_P_802_2);
396 }
397
398 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
399 int nh_len)
400 {
401 struct icmp6hdr *icmp = icmp6_hdr(skb);
402
403 /* The ICMPv6 type and code fields use the 16-bit transport port
404 * fields, so we need to store them in 16-bit network byte order.
405 */
406 key->tp.src = htons(icmp->icmp6_type);
407 key->tp.dst = htons(icmp->icmp6_code);
408 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
409
410 if (icmp->icmp6_code == 0 &&
411 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
412 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
413 int icmp_len = skb->len - skb_transport_offset(skb);
414 struct nd_msg *nd;
415 int offset;
416
417 /* In order to process neighbor discovery options, we need the
418 * entire packet.
419 */
420 if (unlikely(icmp_len < sizeof(*nd)))
421 return 0;
422
423 if (unlikely(skb_linearize(skb)))
424 return -ENOMEM;
425
426 nd = (struct nd_msg *)skb_transport_header(skb);
427 key->ipv6.nd.target = nd->target;
428
429 icmp_len -= sizeof(*nd);
430 offset = 0;
431 while (icmp_len >= 8) {
432 struct nd_opt_hdr *nd_opt =
433 (struct nd_opt_hdr *)(nd->opt + offset);
434 int opt_len = nd_opt->nd_opt_len * 8;
435
436 if (unlikely(!opt_len || opt_len > icmp_len))
437 return 0;
438
439 /* Store the link layer address if the appropriate
440 * option is provided. It is considered an error if
441 * the same link layer option is specified twice.
442 */
443 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
444 && opt_len == 8) {
445 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
446 goto invalid;
447 ether_addr_copy(key->ipv6.nd.sll,
448 &nd->opt[offset+sizeof(*nd_opt)]);
449 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
450 && opt_len == 8) {
451 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
452 goto invalid;
453 ether_addr_copy(key->ipv6.nd.tll,
454 &nd->opt[offset+sizeof(*nd_opt)]);
455 }
456
457 icmp_len -= opt_len;
458 offset += opt_len;
459 }
460 }
461
462 return 0;
463
464 invalid:
465 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
466 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
467 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
468
469 return 0;
470 }
471
472 /**
473 * key_extract - extracts a flow key from an Ethernet frame.
474 * @skb: sk_buff that contains the frame, with skb->data pointing to the
475 * Ethernet header
476 * @key: output flow key
477 *
478 * The caller must ensure that skb->len >= ETH_HLEN.
479 *
480 * Returns 0 if successful, otherwise a negative errno value.
481 *
482 * Initializes @skb header pointers as follows:
483 *
484 * - skb->mac_header: the Ethernet header.
485 *
486 * - skb->network_header: just past the Ethernet header, or just past the
487 * VLAN header, to the first byte of the Ethernet payload.
488 *
489 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
490 * on output, then just past the IP header, if one is present and
491 * of a correct length, otherwise the same as skb->network_header.
492 * For other key->eth.type values it is left untouched.
493 */
494 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
495 {
496 int error;
497 struct ethhdr *eth;
498
499 /* Flags are always used as part of stats */
500 key->tp.flags = 0;
501
502 skb_reset_mac_header(skb);
503
504 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
505 * header in the linear data area.
506 */
507 eth = eth_hdr(skb);
508 ether_addr_copy(key->eth.src, eth->h_source);
509 ether_addr_copy(key->eth.dst, eth->h_dest);
510
511 __skb_pull(skb, 2 * ETH_ALEN);
512 /* We are going to push all headers that we pull, so no need to
513 * update skb->csum here.
514 */
515
516 if (unlikely(parse_vlan(skb, key)))
517 return -ENOMEM;
518
519 key->eth.type = parse_ethertype(skb);
520 if (unlikely(key->eth.type == htons(0)))
521 return -ENOMEM;
522
523 skb_reset_network_header(skb);
524 skb_reset_mac_len(skb);
525 __skb_push(skb, skb->data - skb_mac_header(skb));
526
527 /* Network layer. */
528 if (key->eth.type == htons(ETH_P_IP)) {
529 struct iphdr *nh;
530 __be16 offset;
531
532 error = check_iphdr(skb);
533 if (unlikely(error)) {
534 memset(&key->ip, 0, sizeof(key->ip));
535 memset(&key->ipv4, 0, sizeof(key->ipv4));
536 if (error == -EINVAL) {
537 skb->transport_header = skb->network_header;
538 error = 0;
539 }
540 return error;
541 }
542
543 nh = ip_hdr(skb);
544 key->ipv4.addr.src = nh->saddr;
545 key->ipv4.addr.dst = nh->daddr;
546
547 key->ip.proto = nh->protocol;
548 key->ip.tos = nh->tos;
549 key->ip.ttl = nh->ttl;
550
551 offset = nh->frag_off & htons(IP_OFFSET);
552 if (offset) {
553 key->ip.frag = OVS_FRAG_TYPE_LATER;
554 return 0;
555 }
556 if (nh->frag_off & htons(IP_MF) ||
557 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
558 key->ip.frag = OVS_FRAG_TYPE_FIRST;
559 else
560 key->ip.frag = OVS_FRAG_TYPE_NONE;
561
562 /* Transport layer. */
563 if (key->ip.proto == IPPROTO_TCP) {
564 if (tcphdr_ok(skb)) {
565 struct tcphdr *tcp = tcp_hdr(skb);
566 key->tp.src = tcp->source;
567 key->tp.dst = tcp->dest;
568 key->tp.flags = TCP_FLAGS_BE16(tcp);
569 } else {
570 memset(&key->tp, 0, sizeof(key->tp));
571 }
572
573 } else if (key->ip.proto == IPPROTO_UDP) {
574 if (udphdr_ok(skb)) {
575 struct udphdr *udp = udp_hdr(skb);
576 key->tp.src = udp->source;
577 key->tp.dst = udp->dest;
578 } else {
579 memset(&key->tp, 0, sizeof(key->tp));
580 }
581 } else if (key->ip.proto == IPPROTO_SCTP) {
582 if (sctphdr_ok(skb)) {
583 struct sctphdr *sctp = sctp_hdr(skb);
584 key->tp.src = sctp->source;
585 key->tp.dst = sctp->dest;
586 } else {
587 memset(&key->tp, 0, sizeof(key->tp));
588 }
589 } else if (key->ip.proto == IPPROTO_ICMP) {
590 if (icmphdr_ok(skb)) {
591 struct icmphdr *icmp = icmp_hdr(skb);
592 /* The ICMP type and code fields use the 16-bit
593 * transport port fields, so we need to store
594 * them in 16-bit network byte order. */
595 key->tp.src = htons(icmp->type);
596 key->tp.dst = htons(icmp->code);
597 } else {
598 memset(&key->tp, 0, sizeof(key->tp));
599 }
600 }
601
602 } else if (key->eth.type == htons(ETH_P_ARP) ||
603 key->eth.type == htons(ETH_P_RARP)) {
604 struct arp_eth_header *arp;
605 bool arp_available = arphdr_ok(skb);
606
607 arp = (struct arp_eth_header *)skb_network_header(skb);
608
609 if (arp_available &&
610 arp->ar_hrd == htons(ARPHRD_ETHER) &&
611 arp->ar_pro == htons(ETH_P_IP) &&
612 arp->ar_hln == ETH_ALEN &&
613 arp->ar_pln == 4) {
614
615 /* We only match on the lower 8 bits of the opcode. */
616 if (ntohs(arp->ar_op) <= 0xff)
617 key->ip.proto = ntohs(arp->ar_op);
618 else
619 key->ip.proto = 0;
620
621 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
622 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
623 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
624 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
625 } else {
626 memset(&key->ip, 0, sizeof(key->ip));
627 memset(&key->ipv4, 0, sizeof(key->ipv4));
628 }
629 } else if (eth_p_mpls(key->eth.type)) {
630 size_t stack_len = MPLS_HLEN;
631
632 /* In the presence of an MPLS label stack the end of the L2
633 * header and the beginning of the L3 header differ.
634 *
635 * Advance network_header to the beginning of the L3
636 * header. mac_len corresponds to the end of the L2 header.
637 */
638 while (1) {
639 __be32 lse;
640
641 error = check_header(skb, skb->mac_len + stack_len);
642 if (unlikely(error))
643 return 0;
644
645 memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
646
647 if (stack_len == MPLS_HLEN)
648 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
649
650 skb_set_network_header(skb, skb->mac_len + stack_len);
651 if (lse & htonl(MPLS_LS_S_MASK))
652 break;
653
654 stack_len += MPLS_HLEN;
655 }
656 } else if (key->eth.type == htons(ETH_P_IPV6)) {
657 int nh_len; /* IPv6 Header + Extensions */
658
659 nh_len = parse_ipv6hdr(skb, key);
660 if (unlikely(nh_len < 0)) {
661 switch (nh_len) {
662 case -EINVAL:
663 memset(&key->ip, 0, sizeof(key->ip));
664 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
665 /* fall-through */
666 case -EPROTO:
667 skb->transport_header = skb->network_header;
668 error = 0;
669 break;
670 default:
671 error = nh_len;
672 }
673 return error;
674 }
675
676 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
677 return 0;
678 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
679 key->ip.frag = OVS_FRAG_TYPE_FIRST;
680
681 /* Transport layer. */
682 if (key->ip.proto == NEXTHDR_TCP) {
683 if (tcphdr_ok(skb)) {
684 struct tcphdr *tcp = tcp_hdr(skb);
685 key->tp.src = tcp->source;
686 key->tp.dst = tcp->dest;
687 key->tp.flags = TCP_FLAGS_BE16(tcp);
688 } else {
689 memset(&key->tp, 0, sizeof(key->tp));
690 }
691 } else if (key->ip.proto == NEXTHDR_UDP) {
692 if (udphdr_ok(skb)) {
693 struct udphdr *udp = udp_hdr(skb);
694 key->tp.src = udp->source;
695 key->tp.dst = udp->dest;
696 } else {
697 memset(&key->tp, 0, sizeof(key->tp));
698 }
699 } else if (key->ip.proto == NEXTHDR_SCTP) {
700 if (sctphdr_ok(skb)) {
701 struct sctphdr *sctp = sctp_hdr(skb);
702 key->tp.src = sctp->source;
703 key->tp.dst = sctp->dest;
704 } else {
705 memset(&key->tp, 0, sizeof(key->tp));
706 }
707 } else if (key->ip.proto == NEXTHDR_ICMP) {
708 if (icmp6hdr_ok(skb)) {
709 error = parse_icmpv6(skb, key, nh_len);
710 if (error)
711 return error;
712 } else {
713 memset(&key->tp, 0, sizeof(key->tp));
714 }
715 }
716 }
717 return 0;
718 }
719
720 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
721 {
722 return key_extract(skb, key);
723 }
724
725 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
726 struct sk_buff *skb, struct sw_flow_key *key)
727 {
728 /* Extract metadata from packet. */
729 if (tun_info) {
730 key->tun_proto = ip_tunnel_info_af(tun_info);
731 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
732
733 if (tun_info->options_len) {
734 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
735 8)) - 1
736 > sizeof(key->tun_opts));
737
738 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
739 tun_info);
740 key->tun_opts_len = tun_info->options_len;
741 } else {
742 key->tun_opts_len = 0;
743 }
744 } else {
745 key->tun_proto = 0;
746 key->tun_opts_len = 0;
747 memset(&key->tun_key, 0, sizeof(key->tun_key));
748 }
749
750 key->phy.priority = skb->priority;
751 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
752 key->phy.skb_mark = skb->mark;
753 ovs_ct_fill_key(skb, key);
754 key->ovs_flow_hash = 0;
755 key->recirc_id = 0;
756
757 return key_extract(skb, key);
758 }
759
760 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
761 struct sk_buff *skb,
762 struct sw_flow_key *key, bool log)
763 {
764 int err;
765
766 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE);
767
768 /* Extract metadata from netlink attributes. */
769 err = ovs_nla_get_flow_metadata(net, attr, key, log);
770 if (err)
771 return err;
772
773 return key_extract(skb, key);
774 }
This page took 0.063184 seconds and 5 git commands to generate.