Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / net / openvswitch / flow_netlink.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51
52 #include "flow_netlink.h"
53
54 struct ovs_len_tbl {
55 int len;
56 const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61
62 static void update_range(struct sw_flow_match *match,
63 size_t offset, size_t size, bool is_mask)
64 {
65 struct sw_flow_key_range *range;
66 size_t start = rounddown(offset, sizeof(long));
67 size_t end = roundup(offset + size, sizeof(long));
68
69 if (!is_mask)
70 range = &match->range;
71 else
72 range = &match->mask->range;
73
74 if (range->start == range->end) {
75 range->start = start;
76 range->end = end;
77 return;
78 }
79
80 if (range->start > start)
81 range->start = start;
82
83 if (range->end < end)
84 range->end = end;
85 }
86
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 do { \
89 update_range(match, offsetof(struct sw_flow_key, field), \
90 sizeof((match)->key->field), is_mask); \
91 if (is_mask) \
92 (match)->mask->key.field = value; \
93 else \
94 (match)->key->field = value; \
95 } while (0)
96
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
98 do { \
99 update_range(match, offset, len, is_mask); \
100 if (is_mask) \
101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 len); \
103 else \
104 memcpy((u8 *)(match)->key + offset, value_p, len); \
105 } while (0)
106
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 value_p, len, is_mask)
110
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
112 do { \
113 update_range(match, offsetof(struct sw_flow_key, field), \
114 sizeof((match)->key->field), is_mask); \
115 if (is_mask) \
116 memset((u8 *)&(match)->mask->key.field, value, \
117 sizeof((match)->mask->key.field)); \
118 else \
119 memset((u8 *)&(match)->key->field, value, \
120 sizeof((match)->key->field)); \
121 } while (0)
122
123 static bool match_validate(const struct sw_flow_match *match,
124 u64 key_attrs, u64 mask_attrs, bool log)
125 {
126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
128
129 /* The following mask attributes allowed only if they
130 * pass the validation tests. */
131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 | (1 << OVS_KEY_ATTR_IPV6)
133 | (1 << OVS_KEY_ATTR_TCP)
134 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 | (1 << OVS_KEY_ATTR_UDP)
136 | (1 << OVS_KEY_ATTR_SCTP)
137 | (1 << OVS_KEY_ATTR_ICMP)
138 | (1 << OVS_KEY_ATTR_ICMPV6)
139 | (1 << OVS_KEY_ATTR_ARP)
140 | (1 << OVS_KEY_ATTR_ND)
141 | (1 << OVS_KEY_ATTR_MPLS));
142
143 /* Always allowed mask fields. */
144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 | (1 << OVS_KEY_ATTR_IN_PORT)
146 | (1 << OVS_KEY_ATTR_ETHERTYPE));
147
148 /* Check key attributes. */
149 if (match->key->eth.type == htons(ETH_P_ARP)
150 || match->key->eth.type == htons(ETH_P_RARP)) {
151 key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154 }
155
156 if (eth_p_mpls(match->key->eth.type)) {
157 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160 }
161
162 if (match->key->eth.type == htons(ETH_P_IP)) {
163 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166
167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 if (match->key->ip.proto == IPPROTO_UDP) {
169 key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 if (match->mask && (match->mask->key.ip.proto == 0xff))
171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172 }
173
174 if (match->key->ip.proto == IPPROTO_SCTP) {
175 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 if (match->mask && (match->mask->key.ip.proto == 0xff))
177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178 }
179
180 if (match->key->ip.proto == IPPROTO_TCP) {
181 key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186 }
187 }
188
189 if (match->key->ip.proto == IPPROTO_ICMP) {
190 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 if (match->mask && (match->mask->key.ip.proto == 0xff))
192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193 }
194 }
195 }
196
197 if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201
202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 if (match->key->ip.proto == IPPROTO_UDP) {
204 key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 if (match->mask && (match->mask->key.ip.proto == 0xff))
206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207 }
208
209 if (match->key->ip.proto == IPPROTO_SCTP) {
210 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 if (match->mask && (match->mask->key.ip.proto == 0xff))
212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213 }
214
215 if (match->key->ip.proto == IPPROTO_TCP) {
216 key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221 }
222 }
223
224 if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 if (match->mask && (match->mask->key.ip.proto == 0xff))
227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228
229 if (match->key->tp.src ==
230 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 key_expected |= 1 << OVS_KEY_ATTR_ND;
233 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235 }
236 }
237 }
238 }
239
240 if ((key_attrs & key_expected) != key_expected) {
241 /* Key attributes check failed. */
242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 (unsigned long long)key_attrs,
244 (unsigned long long)key_expected);
245 return false;
246 }
247
248 if ((mask_attrs & mask_allowed) != mask_attrs) {
249 /* Mask attributes check failed. */
250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 (unsigned long long)mask_attrs,
252 (unsigned long long)mask_allowed);
253 return false;
254 }
255
256 return true;
257 }
258
259 size_t ovs_tun_key_attr_size(void)
260 {
261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 * updating this function.
263 */
264 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 */
276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279
280 size_t ovs_key_attr_size(void)
281 {
282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 * updating this function.
284 */
285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286
287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
289 + ovs_tun_key_attr_size()
290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
310 };
311
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
325 .next = ovs_vxlan_ext_key_lens },
326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
328 };
329
330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
352 .next = ovs_tunnel_key_lens, },
353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358 };
359
360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361 {
362 return expected_len == attr_len ||
363 expected_len == OVS_ATTR_NESTED ||
364 expected_len == OVS_ATTR_VARIABLE;
365 }
366
367 static bool is_all_zero(const u8 *fp, size_t size)
368 {
369 int i;
370
371 if (!fp)
372 return false;
373
374 for (i = 0; i < size; i++)
375 if (fp[i])
376 return false;
377
378 return true;
379 }
380
381 static int __parse_flow_nlattrs(const struct nlattr *attr,
382 const struct nlattr *a[],
383 u64 *attrsp, bool log, bool nz)
384 {
385 const struct nlattr *nla;
386 u64 attrs;
387 int rem;
388
389 attrs = *attrsp;
390 nla_for_each_nested(nla, attr, rem) {
391 u16 type = nla_type(nla);
392 int expected_len;
393
394 if (type > OVS_KEY_ATTR_MAX) {
395 OVS_NLERR(log, "Key type %d is out of range max %d",
396 type, OVS_KEY_ATTR_MAX);
397 return -EINVAL;
398 }
399
400 if (attrs & (1 << type)) {
401 OVS_NLERR(log, "Duplicate key (type %d).", type);
402 return -EINVAL;
403 }
404
405 expected_len = ovs_key_lens[type].len;
406 if (!check_attr_len(nla_len(nla), expected_len)) {
407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 type, nla_len(nla), expected_len);
409 return -EINVAL;
410 }
411
412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 attrs |= 1 << type;
414 a[type] = nla;
415 }
416 }
417 if (rem) {
418 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 return -EINVAL;
420 }
421
422 *attrsp = attrs;
423 return 0;
424 }
425
426 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 const struct nlattr *a[], u64 *attrsp,
428 bool log)
429 {
430 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431 }
432
433 static int parse_flow_nlattrs(const struct nlattr *attr,
434 const struct nlattr *a[], u64 *attrsp,
435 bool log)
436 {
437 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438 }
439
440 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 struct sw_flow_match *match, bool is_mask,
442 bool log)
443 {
444 unsigned long opt_key_offset;
445
446 if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 nla_len(a), sizeof(match->key->tun_opts));
449 return -EINVAL;
450 }
451
452 if (nla_len(a) % 4 != 0) {
453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 nla_len(a));
455 return -EINVAL;
456 }
457
458 /* We need to record the length of the options passed
459 * down, otherwise packets with the same format but
460 * additional options will be silently matched.
461 */
462 if (!is_mask) {
463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 false);
465 } else {
466 /* This is somewhat unusual because it looks at
467 * both the key and mask while parsing the
468 * attributes (and by extension assumes the key
469 * is parsed first). Normally, we would verify
470 * that each is the correct length and that the
471 * attributes line up in the validate function.
472 * However, that is difficult because this is
473 * variable length and we won't have the
474 * information later.
475 */
476 if (match->key->tun_opts_len != nla_len(a)) {
477 OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 match->key->tun_opts_len, nla_len(a));
479 return -EINVAL;
480 }
481
482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483 }
484
485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 nla_len(a), is_mask);
488 return 0;
489 }
490
491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 struct sw_flow_match *match, bool is_mask,
493 bool log)
494 {
495 struct nlattr *a;
496 int rem;
497 unsigned long opt_key_offset;
498 struct vxlan_metadata opts;
499
500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501
502 memset(&opts, 0, sizeof(opts));
503 nla_for_each_nested(a, attr, rem) {
504 int type = nla_type(a);
505
506 if (type > OVS_VXLAN_EXT_MAX) {
507 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 type, OVS_VXLAN_EXT_MAX);
509 return -EINVAL;
510 }
511
512 if (!check_attr_len(nla_len(a),
513 ovs_vxlan_ext_key_lens[type].len)) {
514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 type, nla_len(a),
516 ovs_vxlan_ext_key_lens[type].len);
517 return -EINVAL;
518 }
519
520 switch (type) {
521 case OVS_VXLAN_EXT_GBP:
522 opts.gbp = nla_get_u32(a);
523 break;
524 default:
525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 type);
527 return -EINVAL;
528 }
529 }
530 if (rem) {
531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 rem);
533 return -EINVAL;
534 }
535
536 if (!is_mask)
537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 else
539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540
541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 is_mask);
544 return 0;
545 }
546
547 static int ip_tun_from_nlattr(const struct nlattr *attr,
548 struct sw_flow_match *match, bool is_mask,
549 bool log)
550 {
551 bool ttl = false, ipv4 = false, ipv6 = false;
552 __be16 tun_flags = 0;
553 int opts_type = 0;
554 struct nlattr *a;
555 int rem;
556
557 nla_for_each_nested(a, attr, rem) {
558 int type = nla_type(a);
559 int err;
560
561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 type, OVS_TUNNEL_KEY_ATTR_MAX);
564 return -EINVAL;
565 }
566
567 if (!check_attr_len(nla_len(a),
568 ovs_tunnel_key_lens[type].len)) {
569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 return -EINVAL;
572 }
573
574 switch (type) {
575 case OVS_TUNNEL_KEY_ATTR_ID:
576 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 nla_get_be64(a), is_mask);
578 tun_flags |= TUNNEL_KEY;
579 break;
580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 nla_get_in_addr(a), is_mask);
583 ipv4 = true;
584 break;
585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 nla_get_in_addr(a), is_mask);
588 ipv4 = true;
589 break;
590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
592 nla_get_in6_addr(a), is_mask);
593 ipv6 = true;
594 break;
595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 nla_get_in6_addr(a), is_mask);
598 ipv6 = true;
599 break;
600 case OVS_TUNNEL_KEY_ATTR_TOS:
601 SW_FLOW_KEY_PUT(match, tun_key.tos,
602 nla_get_u8(a), is_mask);
603 break;
604 case OVS_TUNNEL_KEY_ATTR_TTL:
605 SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 nla_get_u8(a), is_mask);
607 ttl = true;
608 break;
609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 tun_flags |= TUNNEL_DONT_FRAGMENT;
611 break;
612 case OVS_TUNNEL_KEY_ATTR_CSUM:
613 tun_flags |= TUNNEL_CSUM;
614 break;
615 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 nla_get_be16(a), is_mask);
618 break;
619 case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 nla_get_be16(a), is_mask);
622 break;
623 case OVS_TUNNEL_KEY_ATTR_OAM:
624 tun_flags |= TUNNEL_OAM;
625 break;
626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 if (opts_type) {
628 OVS_NLERR(log, "Multiple metadata blocks provided");
629 return -EINVAL;
630 }
631
632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 if (err)
634 return err;
635
636 tun_flags |= TUNNEL_GENEVE_OPT;
637 opts_type = type;
638 break;
639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 if (opts_type) {
641 OVS_NLERR(log, "Multiple metadata blocks provided");
642 return -EINVAL;
643 }
644
645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 if (err)
647 return err;
648
649 tun_flags |= TUNNEL_VXLAN_OPT;
650 opts_type = type;
651 break;
652 default:
653 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
654 type);
655 return -EINVAL;
656 }
657 }
658
659 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
660 if (is_mask)
661 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
662 else
663 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
664 false);
665
666 if (rem > 0) {
667 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
668 rem);
669 return -EINVAL;
670 }
671
672 if (ipv4 && ipv6) {
673 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
674 return -EINVAL;
675 }
676
677 if (!is_mask) {
678 if (!ipv4 && !ipv6) {
679 OVS_NLERR(log, "IP tunnel dst address not specified");
680 return -EINVAL;
681 }
682 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
683 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
684 return -EINVAL;
685 }
686 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
687 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
688 return -EINVAL;
689 }
690
691 if (!ttl) {
692 OVS_NLERR(log, "IP tunnel TTL not specified.");
693 return -EINVAL;
694 }
695 }
696
697 return opts_type;
698 }
699
700 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
701 const void *tun_opts, int swkey_tun_opts_len)
702 {
703 const struct vxlan_metadata *opts = tun_opts;
704 struct nlattr *nla;
705
706 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
707 if (!nla)
708 return -EMSGSIZE;
709
710 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
711 return -EMSGSIZE;
712
713 nla_nest_end(skb, nla);
714 return 0;
715 }
716
717 static int __ip_tun_to_nlattr(struct sk_buff *skb,
718 const struct ip_tunnel_key *output,
719 const void *tun_opts, int swkey_tun_opts_len,
720 unsigned short tun_proto)
721 {
722 if (output->tun_flags & TUNNEL_KEY &&
723 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
724 OVS_TUNNEL_KEY_ATTR_PAD))
725 return -EMSGSIZE;
726 switch (tun_proto) {
727 case AF_INET:
728 if (output->u.ipv4.src &&
729 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
730 output->u.ipv4.src))
731 return -EMSGSIZE;
732 if (output->u.ipv4.dst &&
733 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
734 output->u.ipv4.dst))
735 return -EMSGSIZE;
736 break;
737 case AF_INET6:
738 if (!ipv6_addr_any(&output->u.ipv6.src) &&
739 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
740 &output->u.ipv6.src))
741 return -EMSGSIZE;
742 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
743 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
744 &output->u.ipv6.dst))
745 return -EMSGSIZE;
746 break;
747 }
748 if (output->tos &&
749 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
750 return -EMSGSIZE;
751 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
752 return -EMSGSIZE;
753 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
754 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
755 return -EMSGSIZE;
756 if ((output->tun_flags & TUNNEL_CSUM) &&
757 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
758 return -EMSGSIZE;
759 if (output->tp_src &&
760 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
761 return -EMSGSIZE;
762 if (output->tp_dst &&
763 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
764 return -EMSGSIZE;
765 if ((output->tun_flags & TUNNEL_OAM) &&
766 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
767 return -EMSGSIZE;
768 if (swkey_tun_opts_len) {
769 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
770 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
771 swkey_tun_opts_len, tun_opts))
772 return -EMSGSIZE;
773 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
774 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
775 return -EMSGSIZE;
776 }
777
778 return 0;
779 }
780
781 static int ip_tun_to_nlattr(struct sk_buff *skb,
782 const struct ip_tunnel_key *output,
783 const void *tun_opts, int swkey_tun_opts_len,
784 unsigned short tun_proto)
785 {
786 struct nlattr *nla;
787 int err;
788
789 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
790 if (!nla)
791 return -EMSGSIZE;
792
793 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
794 tun_proto);
795 if (err)
796 return err;
797
798 nla_nest_end(skb, nla);
799 return 0;
800 }
801
802 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
803 struct ip_tunnel_info *tun_info)
804 {
805 return __ip_tun_to_nlattr(skb, &tun_info->key,
806 ip_tunnel_info_opts(tun_info),
807 tun_info->options_len,
808 ip_tunnel_info_af(tun_info));
809 }
810
811 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
812 const struct nlattr *a[],
813 bool is_mask, bool inner)
814 {
815 __be16 tci = 0;
816 __be16 tpid = 0;
817
818 if (a[OVS_KEY_ATTR_VLAN])
819 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
820
821 if (a[OVS_KEY_ATTR_ETHERTYPE])
822 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
823
824 if (likely(!inner)) {
825 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
826 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
827 } else {
828 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
829 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
830 }
831 return 0;
832 }
833
834 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
835 u64 key_attrs, bool inner,
836 const struct nlattr **a, bool log)
837 {
838 __be16 tci = 0;
839
840 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
841 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
842 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
843 /* Not a VLAN. */
844 return 0;
845 }
846
847 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
848 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
849 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
850 return -EINVAL;
851 }
852
853 if (a[OVS_KEY_ATTR_VLAN])
854 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
855
856 if (!(tci & htons(VLAN_TAG_PRESENT))) {
857 if (tci) {
858 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
859 (inner) ? "C-VLAN" : "VLAN");
860 return -EINVAL;
861 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
862 /* Corner case for truncated VLAN header. */
863 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
864 (inner) ? "C-VLAN" : "VLAN");
865 return -EINVAL;
866 }
867 }
868
869 return 1;
870 }
871
872 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
873 u64 key_attrs, bool inner,
874 const struct nlattr **a, bool log)
875 {
876 __be16 tci = 0;
877 __be16 tpid = 0;
878 bool encap_valid = !!(match->key->eth.vlan.tci &
879 htons(VLAN_TAG_PRESENT));
880 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
881 htons(VLAN_TAG_PRESENT));
882
883 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
884 /* Not a VLAN. */
885 return 0;
886 }
887
888 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
889 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
890 (inner) ? "C-VLAN" : "VLAN");
891 return -EINVAL;
892 }
893
894 if (a[OVS_KEY_ATTR_VLAN])
895 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
896
897 if (a[OVS_KEY_ATTR_ETHERTYPE])
898 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
899
900 if (tpid != htons(0xffff)) {
901 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
902 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
903 return -EINVAL;
904 }
905 if (!(tci & htons(VLAN_TAG_PRESENT))) {
906 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
907 (inner) ? "C-VLAN" : "VLAN");
908 return -EINVAL;
909 }
910
911 return 1;
912 }
913
914 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
915 u64 *key_attrs, bool inner,
916 const struct nlattr **a, bool is_mask,
917 bool log)
918 {
919 int err;
920 const struct nlattr *encap;
921
922 if (!is_mask)
923 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
924 a, log);
925 else
926 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
927 a, log);
928 if (err <= 0)
929 return err;
930
931 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
932 if (err)
933 return err;
934
935 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
936 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
937 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
938
939 encap = a[OVS_KEY_ATTR_ENCAP];
940
941 if (!is_mask)
942 err = parse_flow_nlattrs(encap, a, key_attrs, log);
943 else
944 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
945
946 return err;
947 }
948
949 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
950 u64 *key_attrs, const struct nlattr **a,
951 bool is_mask, bool log)
952 {
953 int err;
954 bool encap_valid = false;
955
956 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
957 is_mask, log);
958 if (err)
959 return err;
960
961 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
962 if (encap_valid) {
963 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
964 is_mask, log);
965 if (err)
966 return err;
967 }
968
969 return 0;
970 }
971
972 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
973 u64 *attrs, const struct nlattr **a,
974 bool is_mask, bool log)
975 {
976 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
977 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
978
979 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
980 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
981 }
982
983 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
984 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
985
986 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
987 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
988 }
989
990 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
991 SW_FLOW_KEY_PUT(match, phy.priority,
992 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
993 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994 }
995
996 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
997 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
998
999 if (is_mask) {
1000 in_port = 0xffffffff; /* Always exact match in_port. */
1001 } else if (in_port >= DP_MAX_PORTS) {
1002 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1003 in_port, DP_MAX_PORTS);
1004 return -EINVAL;
1005 }
1006
1007 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1008 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1009 } else if (!is_mask) {
1010 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1011 }
1012
1013 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1014 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1015
1016 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1017 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1018 }
1019 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1020 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1021 is_mask, log) < 0)
1022 return -EINVAL;
1023 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1024 }
1025
1026 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1027 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1028 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1029
1030 if (ct_state & ~CT_SUPPORTED_MASK) {
1031 OVS_NLERR(log, "ct_state flags %08x unsupported",
1032 ct_state);
1033 return -EINVAL;
1034 }
1035
1036 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1037 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1038 }
1039 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1040 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1041 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1042
1043 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1044 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1045 }
1046 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1047 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1048 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1049
1050 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1051 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1052 }
1053 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1054 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1055 const struct ovs_key_ct_labels *cl;
1056
1057 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1058 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1059 sizeof(*cl), is_mask);
1060 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1061 }
1062 return 0;
1063 }
1064
1065 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1066 u64 attrs, const struct nlattr **a,
1067 bool is_mask, bool log)
1068 {
1069 int err;
1070
1071 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1072 if (err)
1073 return err;
1074
1075 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1076 const struct ovs_key_ethernet *eth_key;
1077
1078 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1079 SW_FLOW_KEY_MEMCPY(match, eth.src,
1080 eth_key->eth_src, ETH_ALEN, is_mask);
1081 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1082 eth_key->eth_dst, ETH_ALEN, is_mask);
1083 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1084 }
1085
1086 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1087 /* VLAN attribute is always parsed before getting here since it
1088 * may occur multiple times.
1089 */
1090 OVS_NLERR(log, "VLAN attribute unexpected.");
1091 return -EINVAL;
1092 }
1093
1094 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1095 __be16 eth_type;
1096
1097 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1098 if (is_mask) {
1099 /* Always exact match EtherType. */
1100 eth_type = htons(0xffff);
1101 } else if (!eth_proto_is_802_3(eth_type)) {
1102 OVS_NLERR(log, "EtherType %x is less than min %x",
1103 ntohs(eth_type), ETH_P_802_3_MIN);
1104 return -EINVAL;
1105 }
1106
1107 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1108 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1109 } else if (!is_mask) {
1110 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1111 }
1112
1113 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1114 const struct ovs_key_ipv4 *ipv4_key;
1115
1116 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1117 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1118 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1119 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1120 return -EINVAL;
1121 }
1122 SW_FLOW_KEY_PUT(match, ip.proto,
1123 ipv4_key->ipv4_proto, is_mask);
1124 SW_FLOW_KEY_PUT(match, ip.tos,
1125 ipv4_key->ipv4_tos, is_mask);
1126 SW_FLOW_KEY_PUT(match, ip.ttl,
1127 ipv4_key->ipv4_ttl, is_mask);
1128 SW_FLOW_KEY_PUT(match, ip.frag,
1129 ipv4_key->ipv4_frag, is_mask);
1130 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1131 ipv4_key->ipv4_src, is_mask);
1132 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1133 ipv4_key->ipv4_dst, is_mask);
1134 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1135 }
1136
1137 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1138 const struct ovs_key_ipv6 *ipv6_key;
1139
1140 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1141 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1142 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1143 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1144 return -EINVAL;
1145 }
1146
1147 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1148 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1149 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1150 return -EINVAL;
1151 }
1152
1153 SW_FLOW_KEY_PUT(match, ipv6.label,
1154 ipv6_key->ipv6_label, is_mask);
1155 SW_FLOW_KEY_PUT(match, ip.proto,
1156 ipv6_key->ipv6_proto, is_mask);
1157 SW_FLOW_KEY_PUT(match, ip.tos,
1158 ipv6_key->ipv6_tclass, is_mask);
1159 SW_FLOW_KEY_PUT(match, ip.ttl,
1160 ipv6_key->ipv6_hlimit, is_mask);
1161 SW_FLOW_KEY_PUT(match, ip.frag,
1162 ipv6_key->ipv6_frag, is_mask);
1163 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1164 ipv6_key->ipv6_src,
1165 sizeof(match->key->ipv6.addr.src),
1166 is_mask);
1167 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1168 ipv6_key->ipv6_dst,
1169 sizeof(match->key->ipv6.addr.dst),
1170 is_mask);
1171
1172 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1173 }
1174
1175 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1176 const struct ovs_key_arp *arp_key;
1177
1178 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1179 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1180 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1181 arp_key->arp_op);
1182 return -EINVAL;
1183 }
1184
1185 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1186 arp_key->arp_sip, is_mask);
1187 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1188 arp_key->arp_tip, is_mask);
1189 SW_FLOW_KEY_PUT(match, ip.proto,
1190 ntohs(arp_key->arp_op), is_mask);
1191 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1192 arp_key->arp_sha, ETH_ALEN, is_mask);
1193 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1194 arp_key->arp_tha, ETH_ALEN, is_mask);
1195
1196 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1197 }
1198
1199 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1200 const struct ovs_key_mpls *mpls_key;
1201
1202 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1203 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1204 mpls_key->mpls_lse, is_mask);
1205
1206 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1207 }
1208
1209 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1210 const struct ovs_key_tcp *tcp_key;
1211
1212 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1213 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1214 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1215 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1216 }
1217
1218 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1219 SW_FLOW_KEY_PUT(match, tp.flags,
1220 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1221 is_mask);
1222 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1223 }
1224
1225 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1226 const struct ovs_key_udp *udp_key;
1227
1228 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1229 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1230 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1231 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1232 }
1233
1234 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1235 const struct ovs_key_sctp *sctp_key;
1236
1237 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1238 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1239 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1240 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1241 }
1242
1243 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1244 const struct ovs_key_icmp *icmp_key;
1245
1246 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1247 SW_FLOW_KEY_PUT(match, tp.src,
1248 htons(icmp_key->icmp_type), is_mask);
1249 SW_FLOW_KEY_PUT(match, tp.dst,
1250 htons(icmp_key->icmp_code), is_mask);
1251 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1252 }
1253
1254 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1255 const struct ovs_key_icmpv6 *icmpv6_key;
1256
1257 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1258 SW_FLOW_KEY_PUT(match, tp.src,
1259 htons(icmpv6_key->icmpv6_type), is_mask);
1260 SW_FLOW_KEY_PUT(match, tp.dst,
1261 htons(icmpv6_key->icmpv6_code), is_mask);
1262 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1263 }
1264
1265 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1266 const struct ovs_key_nd *nd_key;
1267
1268 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1269 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1270 nd_key->nd_target,
1271 sizeof(match->key->ipv6.nd.target),
1272 is_mask);
1273 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1274 nd_key->nd_sll, ETH_ALEN, is_mask);
1275 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1276 nd_key->nd_tll, ETH_ALEN, is_mask);
1277 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1278 }
1279
1280 if (attrs != 0) {
1281 OVS_NLERR(log, "Unknown key attributes %llx",
1282 (unsigned long long)attrs);
1283 return -EINVAL;
1284 }
1285
1286 return 0;
1287 }
1288
1289 static void nlattr_set(struct nlattr *attr, u8 val,
1290 const struct ovs_len_tbl *tbl)
1291 {
1292 struct nlattr *nla;
1293 int rem;
1294
1295 /* The nlattr stream should already have been validated */
1296 nla_for_each_nested(nla, attr, rem) {
1297 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1298 if (tbl[nla_type(nla)].next)
1299 tbl = tbl[nla_type(nla)].next;
1300 nlattr_set(nla, val, tbl);
1301 } else {
1302 memset(nla_data(nla), val, nla_len(nla));
1303 }
1304
1305 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1306 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1307 }
1308 }
1309
1310 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1311 {
1312 nlattr_set(attr, val, ovs_key_lens);
1313 }
1314
1315 /**
1316 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1317 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1318 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1319 * does not include any don't care bit.
1320 * @net: Used to determine per-namespace field support.
1321 * @match: receives the extracted flow match information.
1322 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1323 * sequence. The fields should of the packet that triggered the creation
1324 * of this flow.
1325 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1326 * attribute specifies the mask field of the wildcarded flow.
1327 * @log: Boolean to allow kernel error logging. Normally true, but when
1328 * probing for feature compatibility this should be passed in as false to
1329 * suppress unnecessary error logging.
1330 */
1331 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1332 const struct nlattr *nla_key,
1333 const struct nlattr *nla_mask,
1334 bool log)
1335 {
1336 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1337 struct nlattr *newmask = NULL;
1338 u64 key_attrs = 0;
1339 u64 mask_attrs = 0;
1340 int err;
1341
1342 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1343 if (err)
1344 return err;
1345
1346 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1347 if (err)
1348 return err;
1349
1350 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1351 if (err)
1352 return err;
1353
1354 if (match->mask) {
1355 if (!nla_mask) {
1356 /* Create an exact match mask. We need to set to 0xff
1357 * all the 'match->mask' fields that have been touched
1358 * in 'match->key'. We cannot simply memset
1359 * 'match->mask', because padding bytes and fields not
1360 * specified in 'match->key' should be left to 0.
1361 * Instead, we use a stream of netlink attributes,
1362 * copied from 'key' and set to 0xff.
1363 * ovs_key_from_nlattrs() will take care of filling
1364 * 'match->mask' appropriately.
1365 */
1366 newmask = kmemdup(nla_key,
1367 nla_total_size(nla_len(nla_key)),
1368 GFP_KERNEL);
1369 if (!newmask)
1370 return -ENOMEM;
1371
1372 mask_set_nlattr(newmask, 0xff);
1373
1374 /* The userspace does not send tunnel attributes that
1375 * are 0, but we should not wildcard them nonetheless.
1376 */
1377 if (match->key->tun_proto)
1378 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1379 0xff, true);
1380
1381 nla_mask = newmask;
1382 }
1383
1384 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1385 if (err)
1386 goto free_newmask;
1387
1388 /* Always match on tci. */
1389 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1390 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1391
1392 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1393 if (err)
1394 goto free_newmask;
1395
1396 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1397 log);
1398 if (err)
1399 goto free_newmask;
1400 }
1401
1402 if (!match_validate(match, key_attrs, mask_attrs, log))
1403 err = -EINVAL;
1404
1405 free_newmask:
1406 kfree(newmask);
1407 return err;
1408 }
1409
1410 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1411 {
1412 size_t len;
1413
1414 if (!attr)
1415 return 0;
1416
1417 len = nla_len(attr);
1418 if (len < 1 || len > MAX_UFID_LENGTH) {
1419 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1420 nla_len(attr), MAX_UFID_LENGTH);
1421 return 0;
1422 }
1423
1424 return len;
1425 }
1426
1427 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1428 * or false otherwise.
1429 */
1430 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1431 bool log)
1432 {
1433 sfid->ufid_len = get_ufid_len(attr, log);
1434 if (sfid->ufid_len)
1435 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1436
1437 return sfid->ufid_len;
1438 }
1439
1440 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1441 const struct sw_flow_key *key, bool log)
1442 {
1443 struct sw_flow_key *new_key;
1444
1445 if (ovs_nla_get_ufid(sfid, ufid, log))
1446 return 0;
1447
1448 /* If UFID was not provided, use unmasked key. */
1449 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1450 if (!new_key)
1451 return -ENOMEM;
1452 memcpy(new_key, key, sizeof(*key));
1453 sfid->unmasked_key = new_key;
1454
1455 return 0;
1456 }
1457
1458 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1459 {
1460 return attr ? nla_get_u32(attr) : 0;
1461 }
1462
1463 /**
1464 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1465 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1466 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1467 * sequence.
1468 * @log: Boolean to allow kernel error logging. Normally true, but when
1469 * probing for feature compatibility this should be passed in as false to
1470 * suppress unnecessary error logging.
1471 *
1472 * This parses a series of Netlink attributes that form a flow key, which must
1473 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1474 * get the metadata, that is, the parts of the flow key that cannot be
1475 * extracted from the packet itself.
1476 */
1477
1478 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1479 struct sw_flow_key *key,
1480 bool log)
1481 {
1482 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1483 struct sw_flow_match match;
1484 u64 attrs = 0;
1485 int err;
1486
1487 err = parse_flow_nlattrs(attr, a, &attrs, log);
1488 if (err)
1489 return -EINVAL;
1490
1491 memset(&match, 0, sizeof(match));
1492 match.key = key;
1493
1494 memset(&key->ct, 0, sizeof(key->ct));
1495 key->phy.in_port = DP_MAX_PORTS;
1496
1497 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1498 }
1499
1500 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1501 bool is_mask)
1502 {
1503 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1504
1505 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1506 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1507 return -EMSGSIZE;
1508 return 0;
1509 }
1510
1511 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1512 const struct sw_flow_key *output, bool is_mask,
1513 struct sk_buff *skb)
1514 {
1515 struct ovs_key_ethernet *eth_key;
1516 struct nlattr *nla;
1517 struct nlattr *encap = NULL;
1518 struct nlattr *in_encap = NULL;
1519
1520 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1521 goto nla_put_failure;
1522
1523 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1524 goto nla_put_failure;
1525
1526 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1527 goto nla_put_failure;
1528
1529 if ((swkey->tun_proto || is_mask)) {
1530 const void *opts = NULL;
1531
1532 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1533 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1534
1535 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1536 swkey->tun_opts_len, swkey->tun_proto))
1537 goto nla_put_failure;
1538 }
1539
1540 if (swkey->phy.in_port == DP_MAX_PORTS) {
1541 if (is_mask && (output->phy.in_port == 0xffff))
1542 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1543 goto nla_put_failure;
1544 } else {
1545 u16 upper_u16;
1546 upper_u16 = !is_mask ? 0 : 0xffff;
1547
1548 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1549 (upper_u16 << 16) | output->phy.in_port))
1550 goto nla_put_failure;
1551 }
1552
1553 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1554 goto nla_put_failure;
1555
1556 if (ovs_ct_put_key(output, skb))
1557 goto nla_put_failure;
1558
1559 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1560 if (!nla)
1561 goto nla_put_failure;
1562
1563 eth_key = nla_data(nla);
1564 ether_addr_copy(eth_key->eth_src, output->eth.src);
1565 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1566
1567 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1568 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1569 goto nla_put_failure;
1570 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1571 if (!swkey->eth.vlan.tci)
1572 goto unencap;
1573
1574 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1575 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1576 goto nla_put_failure;
1577 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1578 if (!swkey->eth.cvlan.tci)
1579 goto unencap;
1580 }
1581 }
1582
1583 if (swkey->eth.type == htons(ETH_P_802_2)) {
1584 /*
1585 * Ethertype 802.2 is represented in the netlink with omitted
1586 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1587 * 0xffff in the mask attribute. Ethertype can also
1588 * be wildcarded.
1589 */
1590 if (is_mask && output->eth.type)
1591 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1592 output->eth.type))
1593 goto nla_put_failure;
1594 goto unencap;
1595 }
1596
1597 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1598 goto nla_put_failure;
1599
1600 if (eth_type_vlan(swkey->eth.type)) {
1601 /* There are 3 VLAN tags, we don't know anything about the rest
1602 * of the packet, so truncate here.
1603 */
1604 WARN_ON_ONCE(!(encap && in_encap));
1605 goto unencap;
1606 }
1607
1608 if (swkey->eth.type == htons(ETH_P_IP)) {
1609 struct ovs_key_ipv4 *ipv4_key;
1610
1611 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1612 if (!nla)
1613 goto nla_put_failure;
1614 ipv4_key = nla_data(nla);
1615 ipv4_key->ipv4_src = output->ipv4.addr.src;
1616 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1617 ipv4_key->ipv4_proto = output->ip.proto;
1618 ipv4_key->ipv4_tos = output->ip.tos;
1619 ipv4_key->ipv4_ttl = output->ip.ttl;
1620 ipv4_key->ipv4_frag = output->ip.frag;
1621 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1622 struct ovs_key_ipv6 *ipv6_key;
1623
1624 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1625 if (!nla)
1626 goto nla_put_failure;
1627 ipv6_key = nla_data(nla);
1628 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1629 sizeof(ipv6_key->ipv6_src));
1630 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1631 sizeof(ipv6_key->ipv6_dst));
1632 ipv6_key->ipv6_label = output->ipv6.label;
1633 ipv6_key->ipv6_proto = output->ip.proto;
1634 ipv6_key->ipv6_tclass = output->ip.tos;
1635 ipv6_key->ipv6_hlimit = output->ip.ttl;
1636 ipv6_key->ipv6_frag = output->ip.frag;
1637 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1638 swkey->eth.type == htons(ETH_P_RARP)) {
1639 struct ovs_key_arp *arp_key;
1640
1641 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1642 if (!nla)
1643 goto nla_put_failure;
1644 arp_key = nla_data(nla);
1645 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1646 arp_key->arp_sip = output->ipv4.addr.src;
1647 arp_key->arp_tip = output->ipv4.addr.dst;
1648 arp_key->arp_op = htons(output->ip.proto);
1649 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1650 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1651 } else if (eth_p_mpls(swkey->eth.type)) {
1652 struct ovs_key_mpls *mpls_key;
1653
1654 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1655 if (!nla)
1656 goto nla_put_failure;
1657 mpls_key = nla_data(nla);
1658 mpls_key->mpls_lse = output->mpls.top_lse;
1659 }
1660
1661 if ((swkey->eth.type == htons(ETH_P_IP) ||
1662 swkey->eth.type == htons(ETH_P_IPV6)) &&
1663 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1664
1665 if (swkey->ip.proto == IPPROTO_TCP) {
1666 struct ovs_key_tcp *tcp_key;
1667
1668 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1669 if (!nla)
1670 goto nla_put_failure;
1671 tcp_key = nla_data(nla);
1672 tcp_key->tcp_src = output->tp.src;
1673 tcp_key->tcp_dst = output->tp.dst;
1674 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1675 output->tp.flags))
1676 goto nla_put_failure;
1677 } else if (swkey->ip.proto == IPPROTO_UDP) {
1678 struct ovs_key_udp *udp_key;
1679
1680 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1681 if (!nla)
1682 goto nla_put_failure;
1683 udp_key = nla_data(nla);
1684 udp_key->udp_src = output->tp.src;
1685 udp_key->udp_dst = output->tp.dst;
1686 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1687 struct ovs_key_sctp *sctp_key;
1688
1689 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1690 if (!nla)
1691 goto nla_put_failure;
1692 sctp_key = nla_data(nla);
1693 sctp_key->sctp_src = output->tp.src;
1694 sctp_key->sctp_dst = output->tp.dst;
1695 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1696 swkey->ip.proto == IPPROTO_ICMP) {
1697 struct ovs_key_icmp *icmp_key;
1698
1699 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1700 if (!nla)
1701 goto nla_put_failure;
1702 icmp_key = nla_data(nla);
1703 icmp_key->icmp_type = ntohs(output->tp.src);
1704 icmp_key->icmp_code = ntohs(output->tp.dst);
1705 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1706 swkey->ip.proto == IPPROTO_ICMPV6) {
1707 struct ovs_key_icmpv6 *icmpv6_key;
1708
1709 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1710 sizeof(*icmpv6_key));
1711 if (!nla)
1712 goto nla_put_failure;
1713 icmpv6_key = nla_data(nla);
1714 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1715 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1716
1717 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1718 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1719 struct ovs_key_nd *nd_key;
1720
1721 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1722 if (!nla)
1723 goto nla_put_failure;
1724 nd_key = nla_data(nla);
1725 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1726 sizeof(nd_key->nd_target));
1727 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1728 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1729 }
1730 }
1731 }
1732
1733 unencap:
1734 if (in_encap)
1735 nla_nest_end(skb, in_encap);
1736 if (encap)
1737 nla_nest_end(skb, encap);
1738
1739 return 0;
1740
1741 nla_put_failure:
1742 return -EMSGSIZE;
1743 }
1744
1745 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1746 const struct sw_flow_key *output, int attr, bool is_mask,
1747 struct sk_buff *skb)
1748 {
1749 int err;
1750 struct nlattr *nla;
1751
1752 nla = nla_nest_start(skb, attr);
1753 if (!nla)
1754 return -EMSGSIZE;
1755 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1756 if (err)
1757 return err;
1758 nla_nest_end(skb, nla);
1759
1760 return 0;
1761 }
1762
1763 /* Called with ovs_mutex or RCU read lock. */
1764 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1765 {
1766 if (ovs_identifier_is_ufid(&flow->id))
1767 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1768 flow->id.ufid);
1769
1770 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1771 OVS_FLOW_ATTR_KEY, false, skb);
1772 }
1773
1774 /* Called with ovs_mutex or RCU read lock. */
1775 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1776 {
1777 return ovs_nla_put_key(&flow->key, &flow->key,
1778 OVS_FLOW_ATTR_KEY, false, skb);
1779 }
1780
1781 /* Called with ovs_mutex or RCU read lock. */
1782 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1783 {
1784 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1785 OVS_FLOW_ATTR_MASK, true, skb);
1786 }
1787
1788 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1789
1790 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1791 {
1792 struct sw_flow_actions *sfa;
1793
1794 if (size > MAX_ACTIONS_BUFSIZE) {
1795 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1796 return ERR_PTR(-EINVAL);
1797 }
1798
1799 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1800 if (!sfa)
1801 return ERR_PTR(-ENOMEM);
1802
1803 sfa->actions_len = 0;
1804 return sfa;
1805 }
1806
1807 static void ovs_nla_free_set_action(const struct nlattr *a)
1808 {
1809 const struct nlattr *ovs_key = nla_data(a);
1810 struct ovs_tunnel_info *ovs_tun;
1811
1812 switch (nla_type(ovs_key)) {
1813 case OVS_KEY_ATTR_TUNNEL_INFO:
1814 ovs_tun = nla_data(ovs_key);
1815 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1816 break;
1817 }
1818 }
1819
1820 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1821 {
1822 const struct nlattr *a;
1823 int rem;
1824
1825 if (!sf_acts)
1826 return;
1827
1828 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1829 switch (nla_type(a)) {
1830 case OVS_ACTION_ATTR_SET:
1831 ovs_nla_free_set_action(a);
1832 break;
1833 case OVS_ACTION_ATTR_CT:
1834 ovs_ct_free_action(a);
1835 break;
1836 }
1837 }
1838
1839 kfree(sf_acts);
1840 }
1841
1842 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1843 {
1844 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1845 }
1846
1847 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1848 * The caller must hold rcu_read_lock for this to be sensible. */
1849 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1850 {
1851 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1852 }
1853
1854 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1855 int attr_len, bool log)
1856 {
1857
1858 struct sw_flow_actions *acts;
1859 int new_acts_size;
1860 int req_size = NLA_ALIGN(attr_len);
1861 int next_offset = offsetof(struct sw_flow_actions, actions) +
1862 (*sfa)->actions_len;
1863
1864 if (req_size <= (ksize(*sfa) - next_offset))
1865 goto out;
1866
1867 new_acts_size = ksize(*sfa) * 2;
1868
1869 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1870 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1871 return ERR_PTR(-EMSGSIZE);
1872 new_acts_size = MAX_ACTIONS_BUFSIZE;
1873 }
1874
1875 acts = nla_alloc_flow_actions(new_acts_size, log);
1876 if (IS_ERR(acts))
1877 return (void *)acts;
1878
1879 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1880 acts->actions_len = (*sfa)->actions_len;
1881 acts->orig_len = (*sfa)->orig_len;
1882 kfree(*sfa);
1883 *sfa = acts;
1884
1885 out:
1886 (*sfa)->actions_len += req_size;
1887 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1888 }
1889
1890 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1891 int attrtype, void *data, int len, bool log)
1892 {
1893 struct nlattr *a;
1894
1895 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1896 if (IS_ERR(a))
1897 return a;
1898
1899 a->nla_type = attrtype;
1900 a->nla_len = nla_attr_size(len);
1901
1902 if (data)
1903 memcpy(nla_data(a), data, len);
1904 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1905
1906 return a;
1907 }
1908
1909 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1910 int len, bool log)
1911 {
1912 struct nlattr *a;
1913
1914 a = __add_action(sfa, attrtype, data, len, log);
1915
1916 return PTR_ERR_OR_ZERO(a);
1917 }
1918
1919 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1920 int attrtype, bool log)
1921 {
1922 int used = (*sfa)->actions_len;
1923 int err;
1924
1925 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1926 if (err)
1927 return err;
1928
1929 return used;
1930 }
1931
1932 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1933 int st_offset)
1934 {
1935 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1936 st_offset);
1937
1938 a->nla_len = sfa->actions_len - st_offset;
1939 }
1940
1941 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1942 const struct sw_flow_key *key,
1943 int depth, struct sw_flow_actions **sfa,
1944 __be16 eth_type, __be16 vlan_tci, bool log);
1945
1946 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1947 const struct sw_flow_key *key, int depth,
1948 struct sw_flow_actions **sfa,
1949 __be16 eth_type, __be16 vlan_tci, bool log)
1950 {
1951 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1952 const struct nlattr *probability, *actions;
1953 const struct nlattr *a;
1954 int rem, start, err, st_acts;
1955
1956 memset(attrs, 0, sizeof(attrs));
1957 nla_for_each_nested(a, attr, rem) {
1958 int type = nla_type(a);
1959 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1960 return -EINVAL;
1961 attrs[type] = a;
1962 }
1963 if (rem)
1964 return -EINVAL;
1965
1966 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1967 if (!probability || nla_len(probability) != sizeof(u32))
1968 return -EINVAL;
1969
1970 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1971 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1972 return -EINVAL;
1973
1974 /* validation done, copy sample action. */
1975 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1976 if (start < 0)
1977 return start;
1978 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1979 nla_data(probability), sizeof(u32), log);
1980 if (err)
1981 return err;
1982 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1983 if (st_acts < 0)
1984 return st_acts;
1985
1986 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1987 eth_type, vlan_tci, log);
1988 if (err)
1989 return err;
1990
1991 add_nested_action_end(*sfa, st_acts);
1992 add_nested_action_end(*sfa, start);
1993
1994 return 0;
1995 }
1996
1997 void ovs_match_init(struct sw_flow_match *match,
1998 struct sw_flow_key *key,
1999 struct sw_flow_mask *mask)
2000 {
2001 memset(match, 0, sizeof(*match));
2002 match->key = key;
2003 match->mask = mask;
2004
2005 memset(key, 0, sizeof(*key));
2006
2007 if (mask) {
2008 memset(&mask->key, 0, sizeof(mask->key));
2009 mask->range.start = mask->range.end = 0;
2010 }
2011 }
2012
2013 static int validate_geneve_opts(struct sw_flow_key *key)
2014 {
2015 struct geneve_opt *option;
2016 int opts_len = key->tun_opts_len;
2017 bool crit_opt = false;
2018
2019 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2020 while (opts_len > 0) {
2021 int len;
2022
2023 if (opts_len < sizeof(*option))
2024 return -EINVAL;
2025
2026 len = sizeof(*option) + option->length * 4;
2027 if (len > opts_len)
2028 return -EINVAL;
2029
2030 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2031
2032 option = (struct geneve_opt *)((u8 *)option + len);
2033 opts_len -= len;
2034 };
2035
2036 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2037
2038 return 0;
2039 }
2040
2041 static int validate_and_copy_set_tun(const struct nlattr *attr,
2042 struct sw_flow_actions **sfa, bool log)
2043 {
2044 struct sw_flow_match match;
2045 struct sw_flow_key key;
2046 struct metadata_dst *tun_dst;
2047 struct ip_tunnel_info *tun_info;
2048 struct ovs_tunnel_info *ovs_tun;
2049 struct nlattr *a;
2050 int err = 0, start, opts_type;
2051
2052 ovs_match_init(&match, &key, NULL);
2053 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2054 if (opts_type < 0)
2055 return opts_type;
2056
2057 if (key.tun_opts_len) {
2058 switch (opts_type) {
2059 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2060 err = validate_geneve_opts(&key);
2061 if (err < 0)
2062 return err;
2063 break;
2064 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2065 break;
2066 }
2067 };
2068
2069 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2070 if (start < 0)
2071 return start;
2072
2073 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2074 if (!tun_dst)
2075 return -ENOMEM;
2076
2077 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2078 if (err) {
2079 dst_release((struct dst_entry *)tun_dst);
2080 return err;
2081 }
2082
2083 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2084 sizeof(*ovs_tun), log);
2085 if (IS_ERR(a)) {
2086 dst_release((struct dst_entry *)tun_dst);
2087 return PTR_ERR(a);
2088 }
2089
2090 ovs_tun = nla_data(a);
2091 ovs_tun->tun_dst = tun_dst;
2092
2093 tun_info = &tun_dst->u.tun_info;
2094 tun_info->mode = IP_TUNNEL_INFO_TX;
2095 if (key.tun_proto == AF_INET6)
2096 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2097 tun_info->key = key.tun_key;
2098
2099 /* We need to store the options in the action itself since
2100 * everything else will go away after flow setup. We can append
2101 * it to tun_info and then point there.
2102 */
2103 ip_tunnel_info_opts_set(tun_info,
2104 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2105 key.tun_opts_len);
2106 add_nested_action_end(*sfa, start);
2107
2108 return err;
2109 }
2110
2111 /* Return false if there are any non-masked bits set.
2112 * Mask follows data immediately, before any netlink padding.
2113 */
2114 static bool validate_masked(u8 *data, int len)
2115 {
2116 u8 *mask = data + len;
2117
2118 while (len--)
2119 if (*data++ & ~*mask++)
2120 return false;
2121
2122 return true;
2123 }
2124
2125 static int validate_set(const struct nlattr *a,
2126 const struct sw_flow_key *flow_key,
2127 struct sw_flow_actions **sfa,
2128 bool *skip_copy, __be16 eth_type, bool masked, bool log)
2129 {
2130 const struct nlattr *ovs_key = nla_data(a);
2131 int key_type = nla_type(ovs_key);
2132 size_t key_len;
2133
2134 /* There can be only one key in a action */
2135 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2136 return -EINVAL;
2137
2138 key_len = nla_len(ovs_key);
2139 if (masked)
2140 key_len /= 2;
2141
2142 if (key_type > OVS_KEY_ATTR_MAX ||
2143 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2144 return -EINVAL;
2145
2146 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2147 return -EINVAL;
2148
2149 switch (key_type) {
2150 const struct ovs_key_ipv4 *ipv4_key;
2151 const struct ovs_key_ipv6 *ipv6_key;
2152 int err;
2153
2154 case OVS_KEY_ATTR_PRIORITY:
2155 case OVS_KEY_ATTR_SKB_MARK:
2156 case OVS_KEY_ATTR_CT_MARK:
2157 case OVS_KEY_ATTR_CT_LABELS:
2158 case OVS_KEY_ATTR_ETHERNET:
2159 break;
2160
2161 case OVS_KEY_ATTR_TUNNEL:
2162 if (masked)
2163 return -EINVAL; /* Masked tunnel set not supported. */
2164
2165 *skip_copy = true;
2166 err = validate_and_copy_set_tun(a, sfa, log);
2167 if (err)
2168 return err;
2169 break;
2170
2171 case OVS_KEY_ATTR_IPV4:
2172 if (eth_type != htons(ETH_P_IP))
2173 return -EINVAL;
2174
2175 ipv4_key = nla_data(ovs_key);
2176
2177 if (masked) {
2178 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2179
2180 /* Non-writeable fields. */
2181 if (mask->ipv4_proto || mask->ipv4_frag)
2182 return -EINVAL;
2183 } else {
2184 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2185 return -EINVAL;
2186
2187 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2188 return -EINVAL;
2189 }
2190 break;
2191
2192 case OVS_KEY_ATTR_IPV6:
2193 if (eth_type != htons(ETH_P_IPV6))
2194 return -EINVAL;
2195
2196 ipv6_key = nla_data(ovs_key);
2197
2198 if (masked) {
2199 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2200
2201 /* Non-writeable fields. */
2202 if (mask->ipv6_proto || mask->ipv6_frag)
2203 return -EINVAL;
2204
2205 /* Invalid bits in the flow label mask? */
2206 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2207 return -EINVAL;
2208 } else {
2209 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2210 return -EINVAL;
2211
2212 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2213 return -EINVAL;
2214 }
2215 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2216 return -EINVAL;
2217
2218 break;
2219
2220 case OVS_KEY_ATTR_TCP:
2221 if ((eth_type != htons(ETH_P_IP) &&
2222 eth_type != htons(ETH_P_IPV6)) ||
2223 flow_key->ip.proto != IPPROTO_TCP)
2224 return -EINVAL;
2225
2226 break;
2227
2228 case OVS_KEY_ATTR_UDP:
2229 if ((eth_type != htons(ETH_P_IP) &&
2230 eth_type != htons(ETH_P_IPV6)) ||
2231 flow_key->ip.proto != IPPROTO_UDP)
2232 return -EINVAL;
2233
2234 break;
2235
2236 case OVS_KEY_ATTR_MPLS:
2237 if (!eth_p_mpls(eth_type))
2238 return -EINVAL;
2239 break;
2240
2241 case OVS_KEY_ATTR_SCTP:
2242 if ((eth_type != htons(ETH_P_IP) &&
2243 eth_type != htons(ETH_P_IPV6)) ||
2244 flow_key->ip.proto != IPPROTO_SCTP)
2245 return -EINVAL;
2246
2247 break;
2248
2249 default:
2250 return -EINVAL;
2251 }
2252
2253 /* Convert non-masked non-tunnel set actions to masked set actions. */
2254 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2255 int start, len = key_len * 2;
2256 struct nlattr *at;
2257
2258 *skip_copy = true;
2259
2260 start = add_nested_action_start(sfa,
2261 OVS_ACTION_ATTR_SET_TO_MASKED,
2262 log);
2263 if (start < 0)
2264 return start;
2265
2266 at = __add_action(sfa, key_type, NULL, len, log);
2267 if (IS_ERR(at))
2268 return PTR_ERR(at);
2269
2270 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2271 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2272 /* Clear non-writeable bits from otherwise writeable fields. */
2273 if (key_type == OVS_KEY_ATTR_IPV6) {
2274 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2275
2276 mask->ipv6_label &= htonl(0x000FFFFF);
2277 }
2278 add_nested_action_end(*sfa, start);
2279 }
2280
2281 return 0;
2282 }
2283
2284 static int validate_userspace(const struct nlattr *attr)
2285 {
2286 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2287 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2288 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2289 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2290 };
2291 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2292 int error;
2293
2294 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2295 attr, userspace_policy);
2296 if (error)
2297 return error;
2298
2299 if (!a[OVS_USERSPACE_ATTR_PID] ||
2300 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2301 return -EINVAL;
2302
2303 return 0;
2304 }
2305
2306 static int copy_action(const struct nlattr *from,
2307 struct sw_flow_actions **sfa, bool log)
2308 {
2309 int totlen = NLA_ALIGN(from->nla_len);
2310 struct nlattr *to;
2311
2312 to = reserve_sfa_size(sfa, from->nla_len, log);
2313 if (IS_ERR(to))
2314 return PTR_ERR(to);
2315
2316 memcpy(to, from, totlen);
2317 return 0;
2318 }
2319
2320 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2321 const struct sw_flow_key *key,
2322 int depth, struct sw_flow_actions **sfa,
2323 __be16 eth_type, __be16 vlan_tci, bool log)
2324 {
2325 const struct nlattr *a;
2326 int rem, err;
2327
2328 if (depth >= SAMPLE_ACTION_DEPTH)
2329 return -EOVERFLOW;
2330
2331 nla_for_each_nested(a, attr, rem) {
2332 /* Expected argument lengths, (u32)-1 for variable length. */
2333 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2334 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2335 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2336 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2337 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2338 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2339 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2340 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2341 [OVS_ACTION_ATTR_SET] = (u32)-1,
2342 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2343 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2344 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2345 [OVS_ACTION_ATTR_CT] = (u32)-1,
2346 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2347 };
2348 const struct ovs_action_push_vlan *vlan;
2349 int type = nla_type(a);
2350 bool skip_copy;
2351
2352 if (type > OVS_ACTION_ATTR_MAX ||
2353 (action_lens[type] != nla_len(a) &&
2354 action_lens[type] != (u32)-1))
2355 return -EINVAL;
2356
2357 skip_copy = false;
2358 switch (type) {
2359 case OVS_ACTION_ATTR_UNSPEC:
2360 return -EINVAL;
2361
2362 case OVS_ACTION_ATTR_USERSPACE:
2363 err = validate_userspace(a);
2364 if (err)
2365 return err;
2366 break;
2367
2368 case OVS_ACTION_ATTR_OUTPUT:
2369 if (nla_get_u32(a) >= DP_MAX_PORTS)
2370 return -EINVAL;
2371 break;
2372
2373 case OVS_ACTION_ATTR_TRUNC: {
2374 const struct ovs_action_trunc *trunc = nla_data(a);
2375
2376 if (trunc->max_len < ETH_HLEN)
2377 return -EINVAL;
2378 break;
2379 }
2380
2381 case OVS_ACTION_ATTR_HASH: {
2382 const struct ovs_action_hash *act_hash = nla_data(a);
2383
2384 switch (act_hash->hash_alg) {
2385 case OVS_HASH_ALG_L4:
2386 break;
2387 default:
2388 return -EINVAL;
2389 }
2390
2391 break;
2392 }
2393
2394 case OVS_ACTION_ATTR_POP_VLAN:
2395 vlan_tci = htons(0);
2396 break;
2397
2398 case OVS_ACTION_ATTR_PUSH_VLAN:
2399 vlan = nla_data(a);
2400 if (!eth_type_vlan(vlan->vlan_tpid))
2401 return -EINVAL;
2402 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2403 return -EINVAL;
2404 vlan_tci = vlan->vlan_tci;
2405 break;
2406
2407 case OVS_ACTION_ATTR_RECIRC:
2408 break;
2409
2410 case OVS_ACTION_ATTR_PUSH_MPLS: {
2411 const struct ovs_action_push_mpls *mpls = nla_data(a);
2412
2413 if (!eth_p_mpls(mpls->mpls_ethertype))
2414 return -EINVAL;
2415 /* Prohibit push MPLS other than to a white list
2416 * for packets that have a known tag order.
2417 */
2418 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2419 (eth_type != htons(ETH_P_IP) &&
2420 eth_type != htons(ETH_P_IPV6) &&
2421 eth_type != htons(ETH_P_ARP) &&
2422 eth_type != htons(ETH_P_RARP) &&
2423 !eth_p_mpls(eth_type)))
2424 return -EINVAL;
2425 eth_type = mpls->mpls_ethertype;
2426 break;
2427 }
2428
2429 case OVS_ACTION_ATTR_POP_MPLS:
2430 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2431 !eth_p_mpls(eth_type))
2432 return -EINVAL;
2433
2434 /* Disallow subsequent L2.5+ set and mpls_pop actions
2435 * as there is no check here to ensure that the new
2436 * eth_type is valid and thus set actions could
2437 * write off the end of the packet or otherwise
2438 * corrupt it.
2439 *
2440 * Support for these actions is planned using packet
2441 * recirculation.
2442 */
2443 eth_type = htons(0);
2444 break;
2445
2446 case OVS_ACTION_ATTR_SET:
2447 err = validate_set(a, key, sfa,
2448 &skip_copy, eth_type, false, log);
2449 if (err)
2450 return err;
2451 break;
2452
2453 case OVS_ACTION_ATTR_SET_MASKED:
2454 err = validate_set(a, key, sfa,
2455 &skip_copy, eth_type, true, log);
2456 if (err)
2457 return err;
2458 break;
2459
2460 case OVS_ACTION_ATTR_SAMPLE:
2461 err = validate_and_copy_sample(net, a, key, depth, sfa,
2462 eth_type, vlan_tci, log);
2463 if (err)
2464 return err;
2465 skip_copy = true;
2466 break;
2467
2468 case OVS_ACTION_ATTR_CT:
2469 err = ovs_ct_copy_action(net, a, key, sfa, log);
2470 if (err)
2471 return err;
2472 skip_copy = true;
2473 break;
2474
2475 default:
2476 OVS_NLERR(log, "Unknown Action type %d", type);
2477 return -EINVAL;
2478 }
2479 if (!skip_copy) {
2480 err = copy_action(a, sfa, log);
2481 if (err)
2482 return err;
2483 }
2484 }
2485
2486 if (rem > 0)
2487 return -EINVAL;
2488
2489 return 0;
2490 }
2491
2492 /* 'key' must be the masked key. */
2493 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2494 const struct sw_flow_key *key,
2495 struct sw_flow_actions **sfa, bool log)
2496 {
2497 int err;
2498
2499 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2500 if (IS_ERR(*sfa))
2501 return PTR_ERR(*sfa);
2502
2503 (*sfa)->orig_len = nla_len(attr);
2504 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2505 key->eth.vlan.tci, log);
2506 if (err)
2507 ovs_nla_free_flow_actions(*sfa);
2508
2509 return err;
2510 }
2511
2512 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2513 {
2514 const struct nlattr *a;
2515 struct nlattr *start;
2516 int err = 0, rem;
2517
2518 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2519 if (!start)
2520 return -EMSGSIZE;
2521
2522 nla_for_each_nested(a, attr, rem) {
2523 int type = nla_type(a);
2524 struct nlattr *st_sample;
2525
2526 switch (type) {
2527 case OVS_SAMPLE_ATTR_PROBABILITY:
2528 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2529 sizeof(u32), nla_data(a)))
2530 return -EMSGSIZE;
2531 break;
2532 case OVS_SAMPLE_ATTR_ACTIONS:
2533 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2534 if (!st_sample)
2535 return -EMSGSIZE;
2536 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2537 if (err)
2538 return err;
2539 nla_nest_end(skb, st_sample);
2540 break;
2541 }
2542 }
2543
2544 nla_nest_end(skb, start);
2545 return err;
2546 }
2547
2548 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2549 {
2550 const struct nlattr *ovs_key = nla_data(a);
2551 int key_type = nla_type(ovs_key);
2552 struct nlattr *start;
2553 int err;
2554
2555 switch (key_type) {
2556 case OVS_KEY_ATTR_TUNNEL_INFO: {
2557 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2558 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2559
2560 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2561 if (!start)
2562 return -EMSGSIZE;
2563
2564 err = ip_tun_to_nlattr(skb, &tun_info->key,
2565 ip_tunnel_info_opts(tun_info),
2566 tun_info->options_len,
2567 ip_tunnel_info_af(tun_info));
2568 if (err)
2569 return err;
2570 nla_nest_end(skb, start);
2571 break;
2572 }
2573 default:
2574 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2575 return -EMSGSIZE;
2576 break;
2577 }
2578
2579 return 0;
2580 }
2581
2582 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2583 struct sk_buff *skb)
2584 {
2585 const struct nlattr *ovs_key = nla_data(a);
2586 struct nlattr *nla;
2587 size_t key_len = nla_len(ovs_key) / 2;
2588
2589 /* Revert the conversion we did from a non-masked set action to
2590 * masked set action.
2591 */
2592 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2593 if (!nla)
2594 return -EMSGSIZE;
2595
2596 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2597 return -EMSGSIZE;
2598
2599 nla_nest_end(skb, nla);
2600 return 0;
2601 }
2602
2603 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2604 {
2605 const struct nlattr *a;
2606 int rem, err;
2607
2608 nla_for_each_attr(a, attr, len, rem) {
2609 int type = nla_type(a);
2610
2611 switch (type) {
2612 case OVS_ACTION_ATTR_SET:
2613 err = set_action_to_attr(a, skb);
2614 if (err)
2615 return err;
2616 break;
2617
2618 case OVS_ACTION_ATTR_SET_TO_MASKED:
2619 err = masked_set_action_to_set_action_attr(a, skb);
2620 if (err)
2621 return err;
2622 break;
2623
2624 case OVS_ACTION_ATTR_SAMPLE:
2625 err = sample_action_to_attr(a, skb);
2626 if (err)
2627 return err;
2628 break;
2629
2630 case OVS_ACTION_ATTR_CT:
2631 err = ovs_ct_action_to_attr(nla_data(a), skb);
2632 if (err)
2633 return err;
2634 break;
2635
2636 default:
2637 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2638 return -EMSGSIZE;
2639 break;
2640 }
2641 }
2642
2643 return 0;
2644 }
This page took 0.133775 seconds and 5 git commands to generate.