tracing: extend sched_pi_setprio
[deliverable/linux.git] / net / sched / cls_flow.c
1 /*
2 * net/sched/cls_flow.c Generic flow classifier
3 *
4 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <net/inet_sock.h>
26
27 #include <net/pkt_cls.h>
28 #include <net/ip.h>
29 #include <net/route.h>
30 #include <net/flow_dissector.h>
31
32 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
33 #include <net/netfilter/nf_conntrack.h>
34 #endif
35
36 struct flow_head {
37 struct list_head filters;
38 struct rcu_head rcu;
39 };
40
41 struct flow_filter {
42 struct list_head list;
43 struct tcf_exts exts;
44 struct tcf_ematch_tree ematches;
45 struct tcf_proto *tp;
46 struct timer_list perturb_timer;
47 u32 perturb_period;
48 u32 handle;
49
50 u32 nkeys;
51 u32 keymask;
52 u32 mode;
53 u32 mask;
54 u32 xor;
55 u32 rshift;
56 u32 addend;
57 u32 divisor;
58 u32 baseclass;
59 u32 hashrnd;
60 struct rcu_head rcu;
61 };
62
63 static inline u32 addr_fold(void *addr)
64 {
65 unsigned long a = (unsigned long)addr;
66
67 return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
68 }
69
70 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
71 {
72 __be32 src = flow_get_u32_src(flow);
73
74 if (src)
75 return ntohl(src);
76
77 return addr_fold(skb->sk);
78 }
79
80 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
81 {
82 __be32 dst = flow_get_u32_dst(flow);
83
84 if (dst)
85 return ntohl(dst);
86
87 return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
88 }
89
90 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
91 {
92 return flow->basic.ip_proto;
93 }
94
95 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
96 {
97 if (flow->ports.ports)
98 return ntohs(flow->ports.src);
99
100 return addr_fold(skb->sk);
101 }
102
103 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
104 {
105 if (flow->ports.ports)
106 return ntohs(flow->ports.dst);
107
108 return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
109 }
110
111 static u32 flow_get_iif(const struct sk_buff *skb)
112 {
113 return skb->skb_iif;
114 }
115
116 static u32 flow_get_priority(const struct sk_buff *skb)
117 {
118 return skb->priority;
119 }
120
121 static u32 flow_get_mark(const struct sk_buff *skb)
122 {
123 return skb->mark;
124 }
125
126 static u32 flow_get_nfct(const struct sk_buff *skb)
127 {
128 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
129 return addr_fold(skb->nfct);
130 #else
131 return 0;
132 #endif
133 }
134
135 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
136 #define CTTUPLE(skb, member) \
137 ({ \
138 enum ip_conntrack_info ctinfo; \
139 const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
140 if (ct == NULL) \
141 goto fallback; \
142 ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
143 })
144 #else
145 #define CTTUPLE(skb, member) \
146 ({ \
147 goto fallback; \
148 0; \
149 })
150 #endif
151
152 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
153 {
154 switch (tc_skb_protocol(skb)) {
155 case htons(ETH_P_IP):
156 return ntohl(CTTUPLE(skb, src.u3.ip));
157 case htons(ETH_P_IPV6):
158 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
159 }
160 fallback:
161 return flow_get_src(skb, flow);
162 }
163
164 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
165 {
166 switch (tc_skb_protocol(skb)) {
167 case htons(ETH_P_IP):
168 return ntohl(CTTUPLE(skb, dst.u3.ip));
169 case htons(ETH_P_IPV6):
170 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
171 }
172 fallback:
173 return flow_get_dst(skb, flow);
174 }
175
176 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
177 {
178 return ntohs(CTTUPLE(skb, src.u.all));
179 fallback:
180 return flow_get_proto_src(skb, flow);
181 }
182
183 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
184 {
185 return ntohs(CTTUPLE(skb, dst.u.all));
186 fallback:
187 return flow_get_proto_dst(skb, flow);
188 }
189
190 static u32 flow_get_rtclassid(const struct sk_buff *skb)
191 {
192 #ifdef CONFIG_IP_ROUTE_CLASSID
193 if (skb_dst(skb))
194 return skb_dst(skb)->tclassid;
195 #endif
196 return 0;
197 }
198
199 static u32 flow_get_skuid(const struct sk_buff *skb)
200 {
201 struct sock *sk = skb_to_full_sk(skb);
202
203 if (sk && sk->sk_socket && sk->sk_socket->file) {
204 kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
205
206 return from_kuid(&init_user_ns, skuid);
207 }
208 return 0;
209 }
210
211 static u32 flow_get_skgid(const struct sk_buff *skb)
212 {
213 struct sock *sk = skb_to_full_sk(skb);
214
215 if (sk && sk->sk_socket && sk->sk_socket->file) {
216 kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
217
218 return from_kgid(&init_user_ns, skgid);
219 }
220 return 0;
221 }
222
223 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
224 {
225 u16 uninitialized_var(tag);
226
227 if (vlan_get_tag(skb, &tag) < 0)
228 return 0;
229 return tag & VLAN_VID_MASK;
230 }
231
232 static u32 flow_get_rxhash(struct sk_buff *skb)
233 {
234 return skb_get_hash(skb);
235 }
236
237 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
238 {
239 switch (key) {
240 case FLOW_KEY_SRC:
241 return flow_get_src(skb, flow);
242 case FLOW_KEY_DST:
243 return flow_get_dst(skb, flow);
244 case FLOW_KEY_PROTO:
245 return flow_get_proto(skb, flow);
246 case FLOW_KEY_PROTO_SRC:
247 return flow_get_proto_src(skb, flow);
248 case FLOW_KEY_PROTO_DST:
249 return flow_get_proto_dst(skb, flow);
250 case FLOW_KEY_IIF:
251 return flow_get_iif(skb);
252 case FLOW_KEY_PRIORITY:
253 return flow_get_priority(skb);
254 case FLOW_KEY_MARK:
255 return flow_get_mark(skb);
256 case FLOW_KEY_NFCT:
257 return flow_get_nfct(skb);
258 case FLOW_KEY_NFCT_SRC:
259 return flow_get_nfct_src(skb, flow);
260 case FLOW_KEY_NFCT_DST:
261 return flow_get_nfct_dst(skb, flow);
262 case FLOW_KEY_NFCT_PROTO_SRC:
263 return flow_get_nfct_proto_src(skb, flow);
264 case FLOW_KEY_NFCT_PROTO_DST:
265 return flow_get_nfct_proto_dst(skb, flow);
266 case FLOW_KEY_RTCLASSID:
267 return flow_get_rtclassid(skb);
268 case FLOW_KEY_SKUID:
269 return flow_get_skuid(skb);
270 case FLOW_KEY_SKGID:
271 return flow_get_skgid(skb);
272 case FLOW_KEY_VLAN_TAG:
273 return flow_get_vlan_tag(skb);
274 case FLOW_KEY_RXHASH:
275 return flow_get_rxhash(skb);
276 default:
277 WARN_ON(1);
278 return 0;
279 }
280 }
281
282 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \
283 (1 << FLOW_KEY_DST) | \
284 (1 << FLOW_KEY_PROTO) | \
285 (1 << FLOW_KEY_PROTO_SRC) | \
286 (1 << FLOW_KEY_PROTO_DST) | \
287 (1 << FLOW_KEY_NFCT_SRC) | \
288 (1 << FLOW_KEY_NFCT_DST) | \
289 (1 << FLOW_KEY_NFCT_PROTO_SRC) | \
290 (1 << FLOW_KEY_NFCT_PROTO_DST))
291
292 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
293 struct tcf_result *res)
294 {
295 struct flow_head *head = rcu_dereference_bh(tp->root);
296 struct flow_filter *f;
297 u32 keymask;
298 u32 classid;
299 unsigned int n, key;
300 int r;
301
302 list_for_each_entry_rcu(f, &head->filters, list) {
303 u32 keys[FLOW_KEY_MAX + 1];
304 struct flow_keys flow_keys;
305
306 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
307 continue;
308
309 keymask = f->keymask;
310 if (keymask & FLOW_KEYS_NEEDED)
311 skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
312
313 for (n = 0; n < f->nkeys; n++) {
314 key = ffs(keymask) - 1;
315 keymask &= ~(1 << key);
316 keys[n] = flow_key_get(skb, key, &flow_keys);
317 }
318
319 if (f->mode == FLOW_MODE_HASH)
320 classid = jhash2(keys, f->nkeys, f->hashrnd);
321 else {
322 classid = keys[0];
323 classid = (classid & f->mask) ^ f->xor;
324 classid = (classid >> f->rshift) + f->addend;
325 }
326
327 if (f->divisor)
328 classid %= f->divisor;
329
330 res->class = 0;
331 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
332
333 r = tcf_exts_exec(skb, &f->exts, res);
334 if (r < 0)
335 continue;
336 return r;
337 }
338 return -1;
339 }
340
341 static void flow_perturbation(unsigned long arg)
342 {
343 struct flow_filter *f = (struct flow_filter *)arg;
344
345 get_random_bytes(&f->hashrnd, 4);
346 if (f->perturb_period)
347 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
348 }
349
350 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
351 [TCA_FLOW_KEYS] = { .type = NLA_U32 },
352 [TCA_FLOW_MODE] = { .type = NLA_U32 },
353 [TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
354 [TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
355 [TCA_FLOW_ADDEND] = { .type = NLA_U32 },
356 [TCA_FLOW_MASK] = { .type = NLA_U32 },
357 [TCA_FLOW_XOR] = { .type = NLA_U32 },
358 [TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
359 [TCA_FLOW_ACT] = { .type = NLA_NESTED },
360 [TCA_FLOW_POLICE] = { .type = NLA_NESTED },
361 [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
362 [TCA_FLOW_PERTURB] = { .type = NLA_U32 },
363 };
364
365 static void flow_destroy_filter(struct rcu_head *head)
366 {
367 struct flow_filter *f = container_of(head, struct flow_filter, rcu);
368
369 del_timer_sync(&f->perturb_timer);
370 tcf_exts_destroy(&f->exts);
371 tcf_em_tree_destroy(&f->ematches);
372 kfree(f);
373 }
374
375 static int flow_change(struct net *net, struct sk_buff *in_skb,
376 struct tcf_proto *tp, unsigned long base,
377 u32 handle, struct nlattr **tca,
378 unsigned long *arg, bool ovr)
379 {
380 struct flow_head *head = rtnl_dereference(tp->root);
381 struct flow_filter *fold, *fnew;
382 struct nlattr *opt = tca[TCA_OPTIONS];
383 struct nlattr *tb[TCA_FLOW_MAX + 1];
384 struct tcf_exts e;
385 struct tcf_ematch_tree t;
386 unsigned int nkeys = 0;
387 unsigned int perturb_period = 0;
388 u32 baseclass = 0;
389 u32 keymask = 0;
390 u32 mode;
391 int err;
392
393 if (opt == NULL)
394 return -EINVAL;
395
396 err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
397 if (err < 0)
398 return err;
399
400 if (tb[TCA_FLOW_BASECLASS]) {
401 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
402 if (TC_H_MIN(baseclass) == 0)
403 return -EINVAL;
404 }
405
406 if (tb[TCA_FLOW_KEYS]) {
407 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
408
409 nkeys = hweight32(keymask);
410 if (nkeys == 0)
411 return -EINVAL;
412
413 if (fls(keymask) - 1 > FLOW_KEY_MAX)
414 return -EOPNOTSUPP;
415
416 if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
417 sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
418 return -EOPNOTSUPP;
419 }
420
421 err = tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE);
422 if (err < 0)
423 goto err1;
424 err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr);
425 if (err < 0)
426 goto err1;
427
428 err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
429 if (err < 0)
430 goto err1;
431
432 err = -ENOBUFS;
433 fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
434 if (!fnew)
435 goto err2;
436
437 err = tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
438 if (err < 0)
439 goto err3;
440
441 fold = (struct flow_filter *)*arg;
442 if (fold) {
443 err = -EINVAL;
444 if (fold->handle != handle && handle)
445 goto err3;
446
447 /* Copy fold into fnew */
448 fnew->tp = fold->tp;
449 fnew->handle = fold->handle;
450 fnew->nkeys = fold->nkeys;
451 fnew->keymask = fold->keymask;
452 fnew->mode = fold->mode;
453 fnew->mask = fold->mask;
454 fnew->xor = fold->xor;
455 fnew->rshift = fold->rshift;
456 fnew->addend = fold->addend;
457 fnew->divisor = fold->divisor;
458 fnew->baseclass = fold->baseclass;
459 fnew->hashrnd = fold->hashrnd;
460
461 mode = fold->mode;
462 if (tb[TCA_FLOW_MODE])
463 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
464 if (mode != FLOW_MODE_HASH && nkeys > 1)
465 goto err3;
466
467 if (mode == FLOW_MODE_HASH)
468 perturb_period = fold->perturb_period;
469 if (tb[TCA_FLOW_PERTURB]) {
470 if (mode != FLOW_MODE_HASH)
471 goto err3;
472 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
473 }
474 } else {
475 err = -EINVAL;
476 if (!handle)
477 goto err3;
478 if (!tb[TCA_FLOW_KEYS])
479 goto err3;
480
481 mode = FLOW_MODE_MAP;
482 if (tb[TCA_FLOW_MODE])
483 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
484 if (mode != FLOW_MODE_HASH && nkeys > 1)
485 goto err3;
486
487 if (tb[TCA_FLOW_PERTURB]) {
488 if (mode != FLOW_MODE_HASH)
489 goto err3;
490 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
491 }
492
493 if (TC_H_MAJ(baseclass) == 0)
494 baseclass = TC_H_MAKE(tp->q->handle, baseclass);
495 if (TC_H_MIN(baseclass) == 0)
496 baseclass = TC_H_MAKE(baseclass, 1);
497
498 fnew->handle = handle;
499 fnew->mask = ~0U;
500 fnew->tp = tp;
501 get_random_bytes(&fnew->hashrnd, 4);
502 }
503
504 fnew->perturb_timer.function = flow_perturbation;
505 fnew->perturb_timer.data = (unsigned long)fnew;
506 init_timer_deferrable(&fnew->perturb_timer);
507
508 tcf_exts_change(tp, &fnew->exts, &e);
509 tcf_em_tree_change(tp, &fnew->ematches, &t);
510
511 netif_keep_dst(qdisc_dev(tp->q));
512
513 if (tb[TCA_FLOW_KEYS]) {
514 fnew->keymask = keymask;
515 fnew->nkeys = nkeys;
516 }
517
518 fnew->mode = mode;
519
520 if (tb[TCA_FLOW_MASK])
521 fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
522 if (tb[TCA_FLOW_XOR])
523 fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
524 if (tb[TCA_FLOW_RSHIFT])
525 fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
526 if (tb[TCA_FLOW_ADDEND])
527 fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
528
529 if (tb[TCA_FLOW_DIVISOR])
530 fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
531 if (baseclass)
532 fnew->baseclass = baseclass;
533
534 fnew->perturb_period = perturb_period;
535 if (perturb_period)
536 mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
537
538 if (*arg == 0)
539 list_add_tail_rcu(&fnew->list, &head->filters);
540 else
541 list_replace_rcu(&fold->list, &fnew->list);
542
543 *arg = (unsigned long)fnew;
544
545 if (fold)
546 call_rcu(&fold->rcu, flow_destroy_filter);
547 return 0;
548
549 err3:
550 tcf_exts_destroy(&fnew->exts);
551 err2:
552 tcf_em_tree_destroy(&t);
553 kfree(fnew);
554 err1:
555 tcf_exts_destroy(&e);
556 return err;
557 }
558
559 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
560 {
561 struct flow_filter *f = (struct flow_filter *)arg;
562
563 list_del_rcu(&f->list);
564 call_rcu(&f->rcu, flow_destroy_filter);
565 return 0;
566 }
567
568 static int flow_init(struct tcf_proto *tp)
569 {
570 struct flow_head *head;
571
572 head = kzalloc(sizeof(*head), GFP_KERNEL);
573 if (head == NULL)
574 return -ENOBUFS;
575 INIT_LIST_HEAD(&head->filters);
576 rcu_assign_pointer(tp->root, head);
577 return 0;
578 }
579
580 static bool flow_destroy(struct tcf_proto *tp, bool force)
581 {
582 struct flow_head *head = rtnl_dereference(tp->root);
583 struct flow_filter *f, *next;
584
585 if (!force && !list_empty(&head->filters))
586 return false;
587
588 list_for_each_entry_safe(f, next, &head->filters, list) {
589 list_del_rcu(&f->list);
590 call_rcu(&f->rcu, flow_destroy_filter);
591 }
592 RCU_INIT_POINTER(tp->root, NULL);
593 kfree_rcu(head, rcu);
594 return true;
595 }
596
597 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
598 {
599 struct flow_head *head = rtnl_dereference(tp->root);
600 struct flow_filter *f;
601
602 list_for_each_entry(f, &head->filters, list)
603 if (f->handle == handle)
604 return (unsigned long)f;
605 return 0;
606 }
607
608 static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
609 struct sk_buff *skb, struct tcmsg *t)
610 {
611 struct flow_filter *f = (struct flow_filter *)fh;
612 struct nlattr *nest;
613
614 if (f == NULL)
615 return skb->len;
616
617 t->tcm_handle = f->handle;
618
619 nest = nla_nest_start(skb, TCA_OPTIONS);
620 if (nest == NULL)
621 goto nla_put_failure;
622
623 if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
624 nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
625 goto nla_put_failure;
626
627 if (f->mask != ~0 || f->xor != 0) {
628 if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
629 nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
630 goto nla_put_failure;
631 }
632 if (f->rshift &&
633 nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
634 goto nla_put_failure;
635 if (f->addend &&
636 nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
637 goto nla_put_failure;
638
639 if (f->divisor &&
640 nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
641 goto nla_put_failure;
642 if (f->baseclass &&
643 nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
644 goto nla_put_failure;
645
646 if (f->perturb_period &&
647 nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
648 goto nla_put_failure;
649
650 if (tcf_exts_dump(skb, &f->exts) < 0)
651 goto nla_put_failure;
652 #ifdef CONFIG_NET_EMATCH
653 if (f->ematches.hdr.nmatches &&
654 tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
655 goto nla_put_failure;
656 #endif
657 nla_nest_end(skb, nest);
658
659 if (tcf_exts_dump_stats(skb, &f->exts) < 0)
660 goto nla_put_failure;
661
662 return skb->len;
663
664 nla_put_failure:
665 nla_nest_cancel(skb, nest);
666 return -1;
667 }
668
669 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
670 {
671 struct flow_head *head = rtnl_dereference(tp->root);
672 struct flow_filter *f;
673
674 list_for_each_entry(f, &head->filters, list) {
675 if (arg->count < arg->skip)
676 goto skip;
677 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
678 arg->stop = 1;
679 break;
680 }
681 skip:
682 arg->count++;
683 }
684 }
685
686 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
687 .kind = "flow",
688 .classify = flow_classify,
689 .init = flow_init,
690 .destroy = flow_destroy,
691 .change = flow_change,
692 .delete = flow_delete,
693 .get = flow_get,
694 .dump = flow_dump,
695 .walk = flow_walk,
696 .owner = THIS_MODULE,
697 };
698
699 static int __init cls_flow_init(void)
700 {
701 return register_tcf_proto_ops(&cls_flow_ops);
702 }
703
704 static void __exit cls_flow_exit(void)
705 {
706 unregister_tcf_proto_ops(&cls_flow_ops);
707 }
708
709 module_init(cls_flow_init);
710 module_exit(cls_flow_exit);
711
712 MODULE_LICENSE("GPL");
713 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
714 MODULE_DESCRIPTION("TC flow classifier");
This page took 0.055754 seconds and 5 git commands to generate.