Merge branch 'for-4.9/block' into for-next
[deliverable/linux.git] / net / sched / cls_u32.c
1 /*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <net/netlink.h>
44 #include <net/act_api.h>
45 #include <net/pkt_cls.h>
46 #include <linux/netdevice.h>
47
48 struct tc_u_knode {
49 struct tc_u_knode __rcu *next;
50 u32 handle;
51 struct tc_u_hnode __rcu *ht_up;
52 struct tcf_exts exts;
53 #ifdef CONFIG_NET_CLS_IND
54 int ifindex;
55 #endif
56 u8 fshift;
57 struct tcf_result res;
58 struct tc_u_hnode __rcu *ht_down;
59 #ifdef CONFIG_CLS_U32_PERF
60 struct tc_u32_pcnt __percpu *pf;
61 #endif
62 u32 flags;
63 #ifdef CONFIG_CLS_U32_MARK
64 u32 val;
65 u32 mask;
66 u32 __percpu *pcpu_success;
67 #endif
68 struct tcf_proto *tp;
69 struct rcu_head rcu;
70 /* The 'sel' field MUST be the last field in structure to allow for
71 * tc_u32_keys allocated at end of structure.
72 */
73 struct tc_u32_sel sel;
74 };
75
76 struct tc_u_hnode {
77 struct tc_u_hnode __rcu *next;
78 u32 handle;
79 u32 prio;
80 struct tc_u_common *tp_c;
81 int refcnt;
82 unsigned int divisor;
83 struct rcu_head rcu;
84 /* The 'ht' field MUST be the last field in structure to allow for
85 * more entries allocated at end of structure.
86 */
87 struct tc_u_knode __rcu *ht[1];
88 };
89
90 struct tc_u_common {
91 struct tc_u_hnode __rcu *hlist;
92 struct Qdisc *q;
93 int refcnt;
94 u32 hgenerator;
95 struct rcu_head rcu;
96 };
97
98 static inline unsigned int u32_hash_fold(__be32 key,
99 const struct tc_u32_sel *sel,
100 u8 fshift)
101 {
102 unsigned int h = ntohl(key & sel->hmask) >> fshift;
103
104 return h;
105 }
106
107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res)
108 {
109 struct {
110 struct tc_u_knode *knode;
111 unsigned int off;
112 } stack[TC_U32_MAXDEPTH];
113
114 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
115 unsigned int off = skb_network_offset(skb);
116 struct tc_u_knode *n;
117 int sdepth = 0;
118 int off2 = 0;
119 int sel = 0;
120 #ifdef CONFIG_CLS_U32_PERF
121 int j;
122 #endif
123 int i, r;
124
125 next_ht:
126 n = rcu_dereference_bh(ht->ht[sel]);
127
128 next_knode:
129 if (n) {
130 struct tc_u32_key *key = n->sel.keys;
131
132 #ifdef CONFIG_CLS_U32_PERF
133 __this_cpu_inc(n->pf->rcnt);
134 j = 0;
135 #endif
136
137 if (tc_skip_sw(n->flags)) {
138 n = rcu_dereference_bh(n->next);
139 goto next_knode;
140 }
141
142 #ifdef CONFIG_CLS_U32_MARK
143 if ((skb->mark & n->mask) != n->val) {
144 n = rcu_dereference_bh(n->next);
145 goto next_knode;
146 } else {
147 __this_cpu_inc(*n->pcpu_success);
148 }
149 #endif
150
151 for (i = n->sel.nkeys; i > 0; i--, key++) {
152 int toff = off + key->off + (off2 & key->offmask);
153 __be32 *data, hdata;
154
155 if (skb_headroom(skb) + toff > INT_MAX)
156 goto out;
157
158 data = skb_header_pointer(skb, toff, 4, &hdata);
159 if (!data)
160 goto out;
161 if ((*data ^ key->val) & key->mask) {
162 n = rcu_dereference_bh(n->next);
163 goto next_knode;
164 }
165 #ifdef CONFIG_CLS_U32_PERF
166 __this_cpu_inc(n->pf->kcnts[j]);
167 j++;
168 #endif
169 }
170
171 ht = rcu_dereference_bh(n->ht_down);
172 if (!ht) {
173 check_terminal:
174 if (n->sel.flags & TC_U32_TERMINAL) {
175
176 *res = n->res;
177 #ifdef CONFIG_NET_CLS_IND
178 if (!tcf_match_indev(skb, n->ifindex)) {
179 n = rcu_dereference_bh(n->next);
180 goto next_knode;
181 }
182 #endif
183 #ifdef CONFIG_CLS_U32_PERF
184 __this_cpu_inc(n->pf->rhit);
185 #endif
186 r = tcf_exts_exec(skb, &n->exts, res);
187 if (r < 0) {
188 n = rcu_dereference_bh(n->next);
189 goto next_knode;
190 }
191
192 return r;
193 }
194 n = rcu_dereference_bh(n->next);
195 goto next_knode;
196 }
197
198 /* PUSH */
199 if (sdepth >= TC_U32_MAXDEPTH)
200 goto deadloop;
201 stack[sdepth].knode = n;
202 stack[sdepth].off = off;
203 sdepth++;
204
205 ht = rcu_dereference_bh(n->ht_down);
206 sel = 0;
207 if (ht->divisor) {
208 __be32 *data, hdata;
209
210 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
211 &hdata);
212 if (!data)
213 goto out;
214 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
215 n->fshift);
216 }
217 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
218 goto next_ht;
219
220 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
221 off2 = n->sel.off + 3;
222 if (n->sel.flags & TC_U32_VAROFFSET) {
223 __be16 *data, hdata;
224
225 data = skb_header_pointer(skb,
226 off + n->sel.offoff,
227 2, &hdata);
228 if (!data)
229 goto out;
230 off2 += ntohs(n->sel.offmask & *data) >>
231 n->sel.offshift;
232 }
233 off2 &= ~3;
234 }
235 if (n->sel.flags & TC_U32_EAT) {
236 off += off2;
237 off2 = 0;
238 }
239
240 if (off < skb->len)
241 goto next_ht;
242 }
243
244 /* POP */
245 if (sdepth--) {
246 n = stack[sdepth].knode;
247 ht = rcu_dereference_bh(n->ht_up);
248 off = stack[sdepth].off;
249 goto check_terminal;
250 }
251 out:
252 return -1;
253
254 deadloop:
255 net_warn_ratelimited("cls_u32: dead loop\n");
256 return -1;
257 }
258
259 static struct tc_u_hnode *
260 u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
261 {
262 struct tc_u_hnode *ht;
263
264 for (ht = rtnl_dereference(tp_c->hlist);
265 ht;
266 ht = rtnl_dereference(ht->next))
267 if (ht->handle == handle)
268 break;
269
270 return ht;
271 }
272
273 static struct tc_u_knode *
274 u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
275 {
276 unsigned int sel;
277 struct tc_u_knode *n = NULL;
278
279 sel = TC_U32_HASH(handle);
280 if (sel > ht->divisor)
281 goto out;
282
283 for (n = rtnl_dereference(ht->ht[sel]);
284 n;
285 n = rtnl_dereference(n->next))
286 if (n->handle == handle)
287 break;
288 out:
289 return n;
290 }
291
292
293 static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
294 {
295 struct tc_u_hnode *ht;
296 struct tc_u_common *tp_c = tp->data;
297
298 if (TC_U32_HTID(handle) == TC_U32_ROOT)
299 ht = rtnl_dereference(tp->root);
300 else
301 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
302
303 if (!ht)
304 return 0;
305
306 if (TC_U32_KEY(handle) == 0)
307 return (unsigned long)ht;
308
309 return (unsigned long)u32_lookup_key(ht, handle);
310 }
311
312 static u32 gen_new_htid(struct tc_u_common *tp_c)
313 {
314 int i = 0x800;
315
316 /* hgenerator only used inside rtnl lock it is safe to increment
317 * without read _copy_ update semantics
318 */
319 do {
320 if (++tp_c->hgenerator == 0x7FF)
321 tp_c->hgenerator = 1;
322 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
323
324 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
325 }
326
327 static int u32_init(struct tcf_proto *tp)
328 {
329 struct tc_u_hnode *root_ht;
330 struct tc_u_common *tp_c;
331
332 tp_c = tp->q->u32_node;
333
334 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
335 if (root_ht == NULL)
336 return -ENOBUFS;
337
338 root_ht->divisor = 0;
339 root_ht->refcnt++;
340 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
341 root_ht->prio = tp->prio;
342
343 if (tp_c == NULL) {
344 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
345 if (tp_c == NULL) {
346 kfree(root_ht);
347 return -ENOBUFS;
348 }
349 tp_c->q = tp->q;
350 tp->q->u32_node = tp_c;
351 }
352
353 tp_c->refcnt++;
354 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
355 rcu_assign_pointer(tp_c->hlist, root_ht);
356 root_ht->tp_c = tp_c;
357
358 rcu_assign_pointer(tp->root, root_ht);
359 tp->data = tp_c;
360 return 0;
361 }
362
363 static int u32_destroy_key(struct tcf_proto *tp,
364 struct tc_u_knode *n,
365 bool free_pf)
366 {
367 tcf_exts_destroy(&n->exts);
368 if (n->ht_down)
369 n->ht_down->refcnt--;
370 #ifdef CONFIG_CLS_U32_PERF
371 if (free_pf)
372 free_percpu(n->pf);
373 #endif
374 #ifdef CONFIG_CLS_U32_MARK
375 if (free_pf)
376 free_percpu(n->pcpu_success);
377 #endif
378 kfree(n);
379 return 0;
380 }
381
382 /* u32_delete_key_rcu should be called when free'ing a copied
383 * version of a tc_u_knode obtained from u32_init_knode(). When
384 * copies are obtained from u32_init_knode() the statistics are
385 * shared between the old and new copies to allow readers to
386 * continue to update the statistics during the copy. To support
387 * this the u32_delete_key_rcu variant does not free the percpu
388 * statistics.
389 */
390 static void u32_delete_key_rcu(struct rcu_head *rcu)
391 {
392 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
393
394 u32_destroy_key(key->tp, key, false);
395 }
396
397 /* u32_delete_key_freepf_rcu is the rcu callback variant
398 * that free's the entire structure including the statistics
399 * percpu variables. Only use this if the key is not a copy
400 * returned by u32_init_knode(). See u32_delete_key_rcu()
401 * for the variant that should be used with keys return from
402 * u32_init_knode()
403 */
404 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
405 {
406 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
407
408 u32_destroy_key(key->tp, key, true);
409 }
410
411 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
412 {
413 struct tc_u_knode __rcu **kp;
414 struct tc_u_knode *pkp;
415 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
416
417 if (ht) {
418 kp = &ht->ht[TC_U32_HASH(key->handle)];
419 for (pkp = rtnl_dereference(*kp); pkp;
420 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
421 if (pkp == key) {
422 RCU_INIT_POINTER(*kp, key->next);
423
424 tcf_unbind_filter(tp, &key->res);
425 call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
426 return 0;
427 }
428 }
429 }
430 WARN_ON(1);
431 return 0;
432 }
433
434 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
435 {
436 struct net_device *dev = tp->q->dev_queue->dev;
437 struct tc_cls_u32_offload u32_offload = {0};
438 struct tc_to_netdev offload;
439
440 offload.type = TC_SETUP_CLSU32;
441 offload.cls_u32 = &u32_offload;
442
443 if (tc_should_offload(dev, tp, 0)) {
444 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE;
445 offload.cls_u32->knode.handle = handle;
446 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
447 tp->protocol, &offload);
448 }
449 }
450
451 static int u32_replace_hw_hnode(struct tcf_proto *tp,
452 struct tc_u_hnode *h,
453 u32 flags)
454 {
455 struct net_device *dev = tp->q->dev_queue->dev;
456 struct tc_cls_u32_offload u32_offload = {0};
457 struct tc_to_netdev offload;
458 int err;
459
460 if (!tc_should_offload(dev, tp, flags))
461 return tc_skip_sw(flags) ? -EINVAL : 0;
462
463 offload.type = TC_SETUP_CLSU32;
464 offload.cls_u32 = &u32_offload;
465
466 offload.cls_u32->command = TC_CLSU32_NEW_HNODE;
467 offload.cls_u32->hnode.divisor = h->divisor;
468 offload.cls_u32->hnode.handle = h->handle;
469 offload.cls_u32->hnode.prio = h->prio;
470
471 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
472 tp->protocol, &offload);
473 if (tc_skip_sw(flags))
474 return err;
475
476 return 0;
477 }
478
479 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
480 {
481 struct net_device *dev = tp->q->dev_queue->dev;
482 struct tc_cls_u32_offload u32_offload = {0};
483 struct tc_to_netdev offload;
484
485 offload.type = TC_SETUP_CLSU32;
486 offload.cls_u32 = &u32_offload;
487
488 if (tc_should_offload(dev, tp, 0)) {
489 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE;
490 offload.cls_u32->hnode.divisor = h->divisor;
491 offload.cls_u32->hnode.handle = h->handle;
492 offload.cls_u32->hnode.prio = h->prio;
493
494 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
495 tp->protocol, &offload);
496 }
497 }
498
499 static int u32_replace_hw_knode(struct tcf_proto *tp,
500 struct tc_u_knode *n,
501 u32 flags)
502 {
503 struct net_device *dev = tp->q->dev_queue->dev;
504 struct tc_cls_u32_offload u32_offload = {0};
505 struct tc_to_netdev offload;
506 int err;
507
508 offload.type = TC_SETUP_CLSU32;
509 offload.cls_u32 = &u32_offload;
510
511 if (!tc_should_offload(dev, tp, flags))
512 return tc_skip_sw(flags) ? -EINVAL : 0;
513
514 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE;
515 offload.cls_u32->knode.handle = n->handle;
516 offload.cls_u32->knode.fshift = n->fshift;
517 #ifdef CONFIG_CLS_U32_MARK
518 offload.cls_u32->knode.val = n->val;
519 offload.cls_u32->knode.mask = n->mask;
520 #else
521 offload.cls_u32->knode.val = 0;
522 offload.cls_u32->knode.mask = 0;
523 #endif
524 offload.cls_u32->knode.sel = &n->sel;
525 offload.cls_u32->knode.exts = &n->exts;
526 if (n->ht_down)
527 offload.cls_u32->knode.link_handle = n->ht_down->handle;
528
529 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
530 tp->protocol, &offload);
531 if (tc_skip_sw(flags))
532 return err;
533
534 return 0;
535 }
536
537 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
538 {
539 struct tc_u_knode *n;
540 unsigned int h;
541
542 for (h = 0; h <= ht->divisor; h++) {
543 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
544 RCU_INIT_POINTER(ht->ht[h],
545 rtnl_dereference(n->next));
546 tcf_unbind_filter(tp, &n->res);
547 u32_remove_hw_knode(tp, n->handle);
548 call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
549 }
550 }
551 }
552
553 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
554 {
555 struct tc_u_common *tp_c = tp->data;
556 struct tc_u_hnode __rcu **hn;
557 struct tc_u_hnode *phn;
558
559 WARN_ON(ht->refcnt);
560
561 u32_clear_hnode(tp, ht);
562
563 hn = &tp_c->hlist;
564 for (phn = rtnl_dereference(*hn);
565 phn;
566 hn = &phn->next, phn = rtnl_dereference(*hn)) {
567 if (phn == ht) {
568 u32_clear_hw_hnode(tp, ht);
569 RCU_INIT_POINTER(*hn, ht->next);
570 kfree_rcu(ht, rcu);
571 return 0;
572 }
573 }
574
575 return -ENOENT;
576 }
577
578 static bool ht_empty(struct tc_u_hnode *ht)
579 {
580 unsigned int h;
581
582 for (h = 0; h <= ht->divisor; h++)
583 if (rcu_access_pointer(ht->ht[h]))
584 return false;
585
586 return true;
587 }
588
589 static bool u32_destroy(struct tcf_proto *tp, bool force)
590 {
591 struct tc_u_common *tp_c = tp->data;
592 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
593
594 WARN_ON(root_ht == NULL);
595
596 if (!force) {
597 if (root_ht) {
598 if (root_ht->refcnt > 1)
599 return false;
600 if (root_ht->refcnt == 1) {
601 if (!ht_empty(root_ht))
602 return false;
603 }
604 }
605
606 if (tp_c->refcnt > 1)
607 return false;
608
609 if (tp_c->refcnt == 1) {
610 struct tc_u_hnode *ht;
611
612 for (ht = rtnl_dereference(tp_c->hlist);
613 ht;
614 ht = rtnl_dereference(ht->next))
615 if (!ht_empty(ht))
616 return false;
617 }
618 }
619
620 if (root_ht && --root_ht->refcnt == 0)
621 u32_destroy_hnode(tp, root_ht);
622
623 if (--tp_c->refcnt == 0) {
624 struct tc_u_hnode *ht;
625
626 tp->q->u32_node = NULL;
627
628 for (ht = rtnl_dereference(tp_c->hlist);
629 ht;
630 ht = rtnl_dereference(ht->next)) {
631 ht->refcnt--;
632 u32_clear_hnode(tp, ht);
633 }
634
635 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
636 RCU_INIT_POINTER(tp_c->hlist, ht->next);
637 kfree_rcu(ht, rcu);
638 }
639
640 kfree(tp_c);
641 }
642
643 tp->data = NULL;
644 return true;
645 }
646
647 static int u32_delete(struct tcf_proto *tp, unsigned long arg)
648 {
649 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
650 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
651
652 if (ht == NULL)
653 return 0;
654
655 if (TC_U32_KEY(ht->handle)) {
656 u32_remove_hw_knode(tp, ht->handle);
657 return u32_delete_key(tp, (struct tc_u_knode *)ht);
658 }
659
660 if (root_ht == ht)
661 return -EINVAL;
662
663 if (ht->refcnt == 1) {
664 ht->refcnt--;
665 u32_destroy_hnode(tp, ht);
666 } else {
667 return -EBUSY;
668 }
669
670 return 0;
671 }
672
673 #define NR_U32_NODE (1<<12)
674 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
675 {
676 struct tc_u_knode *n;
677 unsigned long i;
678 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
679 GFP_KERNEL);
680 if (!bitmap)
681 return handle | 0xFFF;
682
683 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
684 n;
685 n = rtnl_dereference(n->next))
686 set_bit(TC_U32_NODE(n->handle), bitmap);
687
688 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
689 if (i >= NR_U32_NODE)
690 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
691
692 kfree(bitmap);
693 return handle | (i >= NR_U32_NODE ? 0xFFF : i);
694 }
695
696 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
697 [TCA_U32_CLASSID] = { .type = NLA_U32 },
698 [TCA_U32_HASH] = { .type = NLA_U32 },
699 [TCA_U32_LINK] = { .type = NLA_U32 },
700 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
701 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
702 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
703 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
704 [TCA_U32_FLAGS] = { .type = NLA_U32 },
705 };
706
707 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
708 unsigned long base, struct tc_u_hnode *ht,
709 struct tc_u_knode *n, struct nlattr **tb,
710 struct nlattr *est, bool ovr)
711 {
712 int err;
713 struct tcf_exts e;
714
715 tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE);
716 err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
717 if (err < 0)
718 return err;
719
720 err = -EINVAL;
721 if (tb[TCA_U32_LINK]) {
722 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
723 struct tc_u_hnode *ht_down = NULL, *ht_old;
724
725 if (TC_U32_KEY(handle))
726 goto errout;
727
728 if (handle) {
729 ht_down = u32_lookup_ht(ht->tp_c, handle);
730
731 if (ht_down == NULL)
732 goto errout;
733 ht_down->refcnt++;
734 }
735
736 ht_old = rtnl_dereference(n->ht_down);
737 rcu_assign_pointer(n->ht_down, ht_down);
738
739 if (ht_old)
740 ht_old->refcnt--;
741 }
742 if (tb[TCA_U32_CLASSID]) {
743 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
744 tcf_bind_filter(tp, &n->res, base);
745 }
746
747 #ifdef CONFIG_NET_CLS_IND
748 if (tb[TCA_U32_INDEV]) {
749 int ret;
750 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
751 if (ret < 0)
752 goto errout;
753 n->ifindex = ret;
754 }
755 #endif
756 tcf_exts_change(tp, &n->exts, &e);
757
758 return 0;
759 errout:
760 tcf_exts_destroy(&e);
761 return err;
762 }
763
764 static void u32_replace_knode(struct tcf_proto *tp,
765 struct tc_u_common *tp_c,
766 struct tc_u_knode *n)
767 {
768 struct tc_u_knode __rcu **ins;
769 struct tc_u_knode *pins;
770 struct tc_u_hnode *ht;
771
772 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
773 ht = rtnl_dereference(tp->root);
774 else
775 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
776
777 ins = &ht->ht[TC_U32_HASH(n->handle)];
778
779 /* The node must always exist for it to be replaced if this is not the
780 * case then something went very wrong elsewhere.
781 */
782 for (pins = rtnl_dereference(*ins); ;
783 ins = &pins->next, pins = rtnl_dereference(*ins))
784 if (pins->handle == n->handle)
785 break;
786
787 RCU_INIT_POINTER(n->next, pins->next);
788 rcu_assign_pointer(*ins, n);
789 }
790
791 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
792 struct tc_u_knode *n)
793 {
794 struct tc_u_knode *new;
795 struct tc_u32_sel *s = &n->sel;
796
797 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
798 GFP_KERNEL);
799
800 if (!new)
801 return NULL;
802
803 RCU_INIT_POINTER(new->next, n->next);
804 new->handle = n->handle;
805 RCU_INIT_POINTER(new->ht_up, n->ht_up);
806
807 #ifdef CONFIG_NET_CLS_IND
808 new->ifindex = n->ifindex;
809 #endif
810 new->fshift = n->fshift;
811 new->res = n->res;
812 new->flags = n->flags;
813 RCU_INIT_POINTER(new->ht_down, n->ht_down);
814
815 /* bump reference count as long as we hold pointer to structure */
816 if (new->ht_down)
817 new->ht_down->refcnt++;
818
819 #ifdef CONFIG_CLS_U32_PERF
820 /* Statistics may be incremented by readers during update
821 * so we must keep them in tact. When the node is later destroyed
822 * a special destroy call must be made to not free the pf memory.
823 */
824 new->pf = n->pf;
825 #endif
826
827 #ifdef CONFIG_CLS_U32_MARK
828 new->val = n->val;
829 new->mask = n->mask;
830 /* Similarly success statistics must be moved as pointers */
831 new->pcpu_success = n->pcpu_success;
832 #endif
833 new->tp = tp;
834 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
835
836 tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE);
837
838 return new;
839 }
840
841 static int u32_change(struct net *net, struct sk_buff *in_skb,
842 struct tcf_proto *tp, unsigned long base, u32 handle,
843 struct nlattr **tca,
844 unsigned long *arg, bool ovr)
845 {
846 struct tc_u_common *tp_c = tp->data;
847 struct tc_u_hnode *ht;
848 struct tc_u_knode *n;
849 struct tc_u32_sel *s;
850 struct nlattr *opt = tca[TCA_OPTIONS];
851 struct nlattr *tb[TCA_U32_MAX + 1];
852 u32 htid, flags = 0;
853 int err;
854 #ifdef CONFIG_CLS_U32_PERF
855 size_t size;
856 #endif
857
858 if (opt == NULL)
859 return handle ? -EINVAL : 0;
860
861 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
862 if (err < 0)
863 return err;
864
865 if (tb[TCA_U32_FLAGS]) {
866 flags = nla_get_u32(tb[TCA_U32_FLAGS]);
867 if (!tc_flags_valid(flags))
868 return -EINVAL;
869 }
870
871 n = (struct tc_u_knode *)*arg;
872 if (n) {
873 struct tc_u_knode *new;
874
875 if (TC_U32_KEY(n->handle) == 0)
876 return -EINVAL;
877
878 if (n->flags != flags)
879 return -EINVAL;
880
881 new = u32_init_knode(tp, n);
882 if (!new)
883 return -ENOMEM;
884
885 err = u32_set_parms(net, tp, base,
886 rtnl_dereference(n->ht_up), new, tb,
887 tca[TCA_RATE], ovr);
888
889 if (err) {
890 u32_destroy_key(tp, new, false);
891 return err;
892 }
893
894 err = u32_replace_hw_knode(tp, new, flags);
895 if (err) {
896 u32_destroy_key(tp, new, false);
897 return err;
898 }
899
900 u32_replace_knode(tp, tp_c, new);
901 tcf_unbind_filter(tp, &n->res);
902 call_rcu(&n->rcu, u32_delete_key_rcu);
903 return 0;
904 }
905
906 if (tb[TCA_U32_DIVISOR]) {
907 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
908
909 if (--divisor > 0x100)
910 return -EINVAL;
911 if (TC_U32_KEY(handle))
912 return -EINVAL;
913 if (handle == 0) {
914 handle = gen_new_htid(tp->data);
915 if (handle == 0)
916 return -ENOMEM;
917 }
918 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
919 if (ht == NULL)
920 return -ENOBUFS;
921 ht->tp_c = tp_c;
922 ht->refcnt = 1;
923 ht->divisor = divisor;
924 ht->handle = handle;
925 ht->prio = tp->prio;
926
927 err = u32_replace_hw_hnode(tp, ht, flags);
928 if (err) {
929 kfree(ht);
930 return err;
931 }
932
933 RCU_INIT_POINTER(ht->next, tp_c->hlist);
934 rcu_assign_pointer(tp_c->hlist, ht);
935 *arg = (unsigned long)ht;
936
937 return 0;
938 }
939
940 if (tb[TCA_U32_HASH]) {
941 htid = nla_get_u32(tb[TCA_U32_HASH]);
942 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
943 ht = rtnl_dereference(tp->root);
944 htid = ht->handle;
945 } else {
946 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
947 if (ht == NULL)
948 return -EINVAL;
949 }
950 } else {
951 ht = rtnl_dereference(tp->root);
952 htid = ht->handle;
953 }
954
955 if (ht->divisor < TC_U32_HASH(htid))
956 return -EINVAL;
957
958 if (handle) {
959 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
960 return -EINVAL;
961 handle = htid | TC_U32_NODE(handle);
962 } else
963 handle = gen_new_kid(ht, htid);
964
965 if (tb[TCA_U32_SEL] == NULL)
966 return -EINVAL;
967
968 s = nla_data(tb[TCA_U32_SEL]);
969
970 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
971 if (n == NULL)
972 return -ENOBUFS;
973
974 #ifdef CONFIG_CLS_U32_PERF
975 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
976 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
977 if (!n->pf) {
978 kfree(n);
979 return -ENOBUFS;
980 }
981 #endif
982
983 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
984 RCU_INIT_POINTER(n->ht_up, ht);
985 n->handle = handle;
986 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
987 n->flags = flags;
988 tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
989 n->tp = tp;
990
991 #ifdef CONFIG_CLS_U32_MARK
992 n->pcpu_success = alloc_percpu(u32);
993 if (!n->pcpu_success) {
994 err = -ENOMEM;
995 goto errout;
996 }
997
998 if (tb[TCA_U32_MARK]) {
999 struct tc_u32_mark *mark;
1000
1001 mark = nla_data(tb[TCA_U32_MARK]);
1002 n->val = mark->val;
1003 n->mask = mark->mask;
1004 }
1005 #endif
1006
1007 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1008 if (err == 0) {
1009 struct tc_u_knode __rcu **ins;
1010 struct tc_u_knode *pins;
1011
1012 err = u32_replace_hw_knode(tp, n, flags);
1013 if (err)
1014 goto errhw;
1015
1016 ins = &ht->ht[TC_U32_HASH(handle)];
1017 for (pins = rtnl_dereference(*ins); pins;
1018 ins = &pins->next, pins = rtnl_dereference(*ins))
1019 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1020 break;
1021
1022 RCU_INIT_POINTER(n->next, pins);
1023 rcu_assign_pointer(*ins, n);
1024 *arg = (unsigned long)n;
1025 return 0;
1026 }
1027
1028 errhw:
1029 #ifdef CONFIG_CLS_U32_MARK
1030 free_percpu(n->pcpu_success);
1031 errout:
1032 #endif
1033
1034 #ifdef CONFIG_CLS_U32_PERF
1035 free_percpu(n->pf);
1036 #endif
1037 kfree(n);
1038 return err;
1039 }
1040
1041 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1042 {
1043 struct tc_u_common *tp_c = tp->data;
1044 struct tc_u_hnode *ht;
1045 struct tc_u_knode *n;
1046 unsigned int h;
1047
1048 if (arg->stop)
1049 return;
1050
1051 for (ht = rtnl_dereference(tp_c->hlist);
1052 ht;
1053 ht = rtnl_dereference(ht->next)) {
1054 if (ht->prio != tp->prio)
1055 continue;
1056 if (arg->count >= arg->skip) {
1057 if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
1058 arg->stop = 1;
1059 return;
1060 }
1061 }
1062 arg->count++;
1063 for (h = 0; h <= ht->divisor; h++) {
1064 for (n = rtnl_dereference(ht->ht[h]);
1065 n;
1066 n = rtnl_dereference(n->next)) {
1067 if (arg->count < arg->skip) {
1068 arg->count++;
1069 continue;
1070 }
1071 if (arg->fn(tp, (unsigned long)n, arg) < 0) {
1072 arg->stop = 1;
1073 return;
1074 }
1075 arg->count++;
1076 }
1077 }
1078 }
1079 }
1080
1081 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
1082 struct sk_buff *skb, struct tcmsg *t)
1083 {
1084 struct tc_u_knode *n = (struct tc_u_knode *)fh;
1085 struct tc_u_hnode *ht_up, *ht_down;
1086 struct nlattr *nest;
1087
1088 if (n == NULL)
1089 return skb->len;
1090
1091 t->tcm_handle = n->handle;
1092
1093 nest = nla_nest_start(skb, TCA_OPTIONS);
1094 if (nest == NULL)
1095 goto nla_put_failure;
1096
1097 if (TC_U32_KEY(n->handle) == 0) {
1098 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
1099 u32 divisor = ht->divisor + 1;
1100
1101 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1102 goto nla_put_failure;
1103 } else {
1104 #ifdef CONFIG_CLS_U32_PERF
1105 struct tc_u32_pcnt *gpf;
1106 int cpu;
1107 #endif
1108
1109 if (nla_put(skb, TCA_U32_SEL,
1110 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1111 &n->sel))
1112 goto nla_put_failure;
1113
1114 ht_up = rtnl_dereference(n->ht_up);
1115 if (ht_up) {
1116 u32 htid = n->handle & 0xFFFFF000;
1117 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1118 goto nla_put_failure;
1119 }
1120 if (n->res.classid &&
1121 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1122 goto nla_put_failure;
1123
1124 ht_down = rtnl_dereference(n->ht_down);
1125 if (ht_down &&
1126 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1127 goto nla_put_failure;
1128
1129 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1130 goto nla_put_failure;
1131
1132 #ifdef CONFIG_CLS_U32_MARK
1133 if ((n->val || n->mask)) {
1134 struct tc_u32_mark mark = {.val = n->val,
1135 .mask = n->mask,
1136 .success = 0};
1137 int cpum;
1138
1139 for_each_possible_cpu(cpum) {
1140 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1141
1142 mark.success += cnt;
1143 }
1144
1145 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1146 goto nla_put_failure;
1147 }
1148 #endif
1149
1150 if (tcf_exts_dump(skb, &n->exts) < 0)
1151 goto nla_put_failure;
1152
1153 #ifdef CONFIG_NET_CLS_IND
1154 if (n->ifindex) {
1155 struct net_device *dev;
1156 dev = __dev_get_by_index(net, n->ifindex);
1157 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1158 goto nla_put_failure;
1159 }
1160 #endif
1161 #ifdef CONFIG_CLS_U32_PERF
1162 gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1163 n->sel.nkeys * sizeof(u64),
1164 GFP_KERNEL);
1165 if (!gpf)
1166 goto nla_put_failure;
1167
1168 for_each_possible_cpu(cpu) {
1169 int i;
1170 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1171
1172 gpf->rcnt += pf->rcnt;
1173 gpf->rhit += pf->rhit;
1174 for (i = 0; i < n->sel.nkeys; i++)
1175 gpf->kcnts[i] += pf->kcnts[i];
1176 }
1177
1178 if (nla_put_64bit(skb, TCA_U32_PCNT,
1179 sizeof(struct tc_u32_pcnt) +
1180 n->sel.nkeys * sizeof(u64),
1181 gpf, TCA_U32_PAD)) {
1182 kfree(gpf);
1183 goto nla_put_failure;
1184 }
1185 kfree(gpf);
1186 #endif
1187 }
1188
1189 nla_nest_end(skb, nest);
1190
1191 if (TC_U32_KEY(n->handle))
1192 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1193 goto nla_put_failure;
1194 return skb->len;
1195
1196 nla_put_failure:
1197 nla_nest_cancel(skb, nest);
1198 return -1;
1199 }
1200
1201 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1202 .kind = "u32",
1203 .classify = u32_classify,
1204 .init = u32_init,
1205 .destroy = u32_destroy,
1206 .get = u32_get,
1207 .change = u32_change,
1208 .delete = u32_delete,
1209 .walk = u32_walk,
1210 .dump = u32_dump,
1211 .owner = THIS_MODULE,
1212 };
1213
1214 static int __init init_u32(void)
1215 {
1216 pr_info("u32 classifier\n");
1217 #ifdef CONFIG_CLS_U32_PERF
1218 pr_info(" Performance counters on\n");
1219 #endif
1220 #ifdef CONFIG_NET_CLS_IND
1221 pr_info(" input device check on\n");
1222 #endif
1223 #ifdef CONFIG_NET_CLS_ACT
1224 pr_info(" Actions configured\n");
1225 #endif
1226 return register_tcf_proto_ops(&cls_u32_ops);
1227 }
1228
1229 static void __exit exit_u32(void)
1230 {
1231 unregister_tcf_proto_ops(&cls_u32_ops);
1232 }
1233
1234 module_init(init_u32)
1235 module_exit(exit_u32)
1236 MODULE_LICENSE("GPL");
This page took 0.058731 seconds and 5 git commands to generate.