sctp: implement prsctp PRIO policy
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256 }
257
258 /* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287 }
288
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294 {
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319 }
320
321 /* Bind a local address either to an endpoint or to an association. */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC);
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399 }
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411 static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413 {
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433 out:
434 return retval;
435 }
436
437 /* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450 {
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 addrs, addrcnt);
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477 err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487 }
488
489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499 static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502 {
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 __func__, sk, addrs, addrcnt);
526
527 list_for_each_entry(asoc, &ep->asocs, asocs) {
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len);
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC);
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,
589 &asoc->peer.transport_addr_list, transports) {
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 2*asoc->pathmtu, 4380));
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL,
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605 out:
606 return retval;
607 }
608
609 /* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 {
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 __func__, sk, addrs, addrcnt);
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL)) {
658 retval = -EADDRNOTAVAIL;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)) {
664 retval = -EINVAL;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port);
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681 err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691 }
692
693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703 static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706 {
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL;
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 __func__, sk, addrs, addrcnt);
731
732 list_for_each_entry(asoc, &ep->asocs, asocs) {
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 if (asoc->asconf_addr_del_pending == NULL) {
779 retval = -ENOMEM;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port);
786 if (addrs->sa_family == AF_INET) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET6) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 asoc->asconf_addr_del_pending);
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL)
808 return -EINVAL;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM;
818 goto out;
819 }
820
821 skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list) {
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 transports) {
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL,
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852 out:
853 return retval;
854 }
855
856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858 {
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876 }
877
878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954 static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957 {
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 __func__, sk, addrs, addrs_size, op);
968
969 if (unlikely(addrs_size <= 0))
970 return -EINVAL;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 return -EFAULT;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 if (unlikely(!kaddrs))
979 return -ENOMEM;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL;
1027 break;
1028 }
1029
1030 out:
1031 kfree(kaddrs);
1032
1033 return err;
1034 }
1035
1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041 static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045 {
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL;
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL;
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED) ||
1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 err = -EISCONN;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 err = -EACCES;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 if (!asoc) {
1165 err = -ENOMEM;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 sp->pf->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216
1217 err = sctp_wait_for_connect(asoc, &timeo);
1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1219 *assoc_id = asoc->assoc_id;
1220
1221 /* Don't free association on exit. */
1222 asoc = NULL;
1223
1224 out_free:
1225 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1226 __func__, asoc, kaddrs, err);
1227
1228 if (asoc) {
1229 /* sctp_primitive_ASSOCIATE may have added this association
1230 * To the hash table, try to unhash it, just in case, its a noop
1231 * if it wasn't hashed so we're safe
1232 */
1233 sctp_association_free(asoc);
1234 }
1235 return err;
1236 }
1237
1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239 *
1240 * API 8.9
1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242 * sctp_assoc_t *asoc);
1243 *
1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246 * or IPv6 addresses.
1247 *
1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249 * Section 3.1.2 for this usage.
1250 *
1251 * addrs is a pointer to an array of one or more socket addresses. Each
1252 * address is contained in its appropriate structure (i.e. struct
1253 * sockaddr_in or struct sockaddr_in6) the family of the address type
1254 * must be used to distengish the address length (note that this
1255 * representation is termed a "packed array" of addresses). The caller
1256 * specifies the number of addresses in the array with addrcnt.
1257 *
1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259 * the association id of the new association. On failure, sctp_connectx()
1260 * returns -1, and sets errno to the appropriate error code. The assoc_id
1261 * is not touched by the kernel.
1262 *
1263 * For SCTP, the port given in each socket address must be the same, or
1264 * sctp_connectx() will fail, setting errno to EINVAL.
1265 *
1266 * An application can use sctp_connectx to initiate an association with
1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1268 * allows a caller to specify multiple addresses at which a peer can be
1269 * reached. The way the SCTP stack uses the list of addresses to set up
1270 * the association is implementation dependent. This function only
1271 * specifies that the stack will try to make use of all the addresses in
1272 * the list when needed.
1273 *
1274 * Note that the list of addresses passed in is only used for setting up
1275 * the association. It does not necessarily equal the set of addresses
1276 * the peer uses for the resulting association. If the caller wants to
1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278 * retrieve them after the association has been set up.
1279 *
1280 * Basically do nothing but copying the addresses from user to kernel
1281 * land and invoking either sctp_connectx(). This is used for tunneling
1282 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283 *
1284 * We don't use copy_from_user() for optimization: we first do the
1285 * sanity checks (buffer size -fast- and access check-healthy
1286 * pointer); if all of those succeed, then we can alloc the memory
1287 * (expensive operation) needed to copy the data to kernel. Then we do
1288 * the copying without checking the user space area
1289 * (__copy_from_user()).
1290 *
1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292 * it.
1293 *
1294 * sk The sk of the socket
1295 * addrs The pointer to the addresses in user land
1296 * addrssize Size of the addrs buffer
1297 *
1298 * Returns >=0 if ok, <0 errno code on error.
1299 */
1300 static int __sctp_setsockopt_connectx(struct sock *sk,
1301 struct sockaddr __user *addrs,
1302 int addrs_size,
1303 sctp_assoc_t *assoc_id)
1304 {
1305 struct sockaddr *kaddrs;
1306 gfp_t gfp = GFP_KERNEL;
1307 int err = 0;
1308
1309 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1310 __func__, sk, addrs, addrs_size);
1311
1312 if (unlikely(addrs_size <= 0))
1313 return -EINVAL;
1314
1315 /* Check the user passed a healthy pointer. */
1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1317 return -EFAULT;
1318
1319 /* Alloc space for the address array in kernel memory. */
1320 if (sk->sk_socket->file)
1321 gfp = GFP_USER | __GFP_NOWARN;
1322 kaddrs = kmalloc(addrs_size, gfp);
1323 if (unlikely(!kaddrs))
1324 return -ENOMEM;
1325
1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 err = -EFAULT;
1328 } else {
1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 }
1331
1332 kfree(kaddrs);
1333
1334 return err;
1335 }
1336
1337 /*
1338 * This is an older interface. It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 struct sockaddr __user *addrs,
1343 int addrs_size)
1344 {
1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347
1348 /*
1349 * New interface for the API. The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call. Error is always negative and association id is
1352 * always positive.
1353 */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 struct sockaddr __user *addrs,
1356 int addrs_size)
1357 {
1358 sctp_assoc_t assoc_id = 0;
1359 int err = 0;
1360
1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362
1363 if (err)
1364 return err;
1365 else
1366 return assoc_id;
1367 }
1368
1369 /*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 sctp_assoc_t assoc_id;
1380 s32 addr_num;
1381 compat_uptr_t addrs; /* struct sockaddr * */
1382 };
1383 #endif
1384
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 char __user *optval,
1387 int __user *optlen)
1388 {
1389 struct sctp_getaddrs_old param;
1390 sctp_assoc_t assoc_id = 0;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(&param32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(&param, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 param.addrs, param.addr_num,
1416 &assoc_id);
1417 if (err == 0 || err == -EINPROGRESS) {
1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 return -EFAULT;
1420 if (put_user(sizeof(assoc_id), optlen))
1421 return -EFAULT;
1422 }
1423
1424 return err;
1425 }
1426
1427 /* API 3.1.4 close() - UDP Style Syntax
1428 * Applications use close() to perform graceful shutdown (as described in
1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430 * by a UDP-style socket.
1431 *
1432 * The syntax is
1433 *
1434 * ret = close(int sd);
1435 *
1436 * sd - the socket descriptor of the associations to be closed.
1437 *
1438 * To gracefully shutdown a specific association represented by the
1439 * UDP-style socket, an application should use the sendmsg() call,
1440 * passing no user data, but including the appropriate flag in the
1441 * ancillary data (see Section xxxx).
1442 *
1443 * If sd in the close() call is a branched-off socket representing only
1444 * one association, the shutdown is performed on that association only.
1445 *
1446 * 4.1.6 close() - TCP Style Syntax
1447 *
1448 * Applications use close() to gracefully close down an association.
1449 *
1450 * The syntax is:
1451 *
1452 * int close(int sd);
1453 *
1454 * sd - the socket descriptor of the association to be closed.
1455 *
1456 * After an application calls close() on a socket descriptor, no further
1457 * socket operations will succeed on that descriptor.
1458 *
1459 * API 7.1.4 SO_LINGER
1460 *
1461 * An application using the TCP-style socket can use this option to
1462 * perform the SCTP ABORT primitive. The linger option structure is:
1463 *
1464 * struct linger {
1465 * int l_onoff; // option on/off
1466 * int l_linger; // linger time
1467 * };
1468 *
1469 * To enable the option, set l_onoff to 1. If the l_linger value is set
1470 * to 0, calling close() is the same as the ABORT primitive. If the
1471 * value is set to a negative value, the setsockopt() call will return
1472 * an error. If the value is set to a positive value linger_time, the
1473 * close() can be blocked for at most linger_time ms. If the graceful
1474 * shutdown phase does not finish during this period, close() will
1475 * return but the graceful shutdown phase continues in the system.
1476 */
1477 static void sctp_close(struct sock *sk, long timeout)
1478 {
1479 struct net *net = sock_net(sk);
1480 struct sctp_endpoint *ep;
1481 struct sctp_association *asoc;
1482 struct list_head *pos, *temp;
1483 unsigned int data_was_unread;
1484
1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486
1487 lock_sock(sk);
1488 sk->sk_shutdown = SHUTDOWN_MASK;
1489 sk->sk_state = SCTP_SS_CLOSING;
1490
1491 ep = sctp_sk(sk)->ep;
1492
1493 /* Clean up any skbs sitting on the receive queue. */
1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496
1497 /* Walk all associations on an endpoint. */
1498 list_for_each_safe(pos, temp, &ep->asocs) {
1499 asoc = list_entry(pos, struct sctp_association, asocs);
1500
1501 if (sctp_style(sk, TCP)) {
1502 /* A closed association can still be in the list if
1503 * it belongs to a TCP-style listening socket that is
1504 * not yet accepted. If so, free it. If not, send an
1505 * ABORT or SHUTDOWN based on the linger options.
1506 */
1507 if (sctp_state(asoc, CLOSED)) {
1508 sctp_association_free(asoc);
1509 continue;
1510 }
1511 }
1512
1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1514 !skb_queue_empty(&asoc->ulpq.reasm) ||
1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1516 struct sctp_chunk *chunk;
1517
1518 chunk = sctp_make_abort_user(asoc, NULL, 0);
1519 sctp_primitive_ABORT(net, asoc, chunk);
1520 } else
1521 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1522 }
1523
1524 /* On a TCP-style socket, block for at most linger_time if set. */
1525 if (sctp_style(sk, TCP) && timeout)
1526 sctp_wait_for_close(sk, timeout);
1527
1528 /* This will run the backlog queue. */
1529 release_sock(sk);
1530
1531 /* Supposedly, no process has access to the socket, but
1532 * the net layers still may.
1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1534 * held and that should be grabbed before socket lock.
1535 */
1536 spin_lock_bh(&net->sctp.addr_wq_lock);
1537 bh_lock_sock(sk);
1538
1539 /* Hold the sock, since sk_common_release() will put sock_put()
1540 * and we have just a little more cleanup.
1541 */
1542 sock_hold(sk);
1543 sk_common_release(sk);
1544
1545 bh_unlock_sock(sk);
1546 spin_unlock_bh(&net->sctp.addr_wq_lock);
1547
1548 sock_put(sk);
1549
1550 SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 if (err == -EPIPE)
1557 err = sock_error(sk) ? : -EPIPE;
1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 send_sig(SIGPIPE, current, 0);
1560 return err;
1561 }
1562
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 * ssize_t sendmsg(int socket, const struct msghdr *message,
1569 * int flags);
1570 *
1571 * socket - the socket descriptor of the endpoint.
1572 * message - pointer to the msghdr structure which contains a single
1573 * user message and possibly some ancillary data.
1574 *
1575 * See Section 5 for complete description of the data
1576 * structures.
1577 *
1578 * flags - flags sent or received with the user message, see Section
1579 * 5 for complete description of the flags.
1580 *
1581 * Note: This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1589 {
1590 struct net *net = sock_net(sk);
1591 struct sctp_sock *sp;
1592 struct sctp_endpoint *ep;
1593 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1594 struct sctp_transport *transport, *chunk_tp;
1595 struct sctp_chunk *chunk;
1596 union sctp_addr to;
1597 struct sockaddr *msg_name = NULL;
1598 struct sctp_sndrcvinfo default_sinfo;
1599 struct sctp_sndrcvinfo *sinfo;
1600 struct sctp_initmsg *sinit;
1601 sctp_assoc_t associd = 0;
1602 sctp_cmsgs_t cmsgs = { NULL };
1603 sctp_scope_t scope;
1604 bool fill_sinfo_ttl = false, wait_connect = false;
1605 struct sctp_datamsg *datamsg;
1606 int msg_flags = msg->msg_flags;
1607 __u16 sinfo_flags = 0;
1608 long timeo;
1609 int err;
1610
1611 err = 0;
1612 sp = sctp_sk(sk);
1613 ep = sp->ep;
1614
1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 msg, msg_len, ep);
1617
1618 /* We cannot send a message over a TCP-style listening socket. */
1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 err = -EPIPE;
1621 goto out_nounlock;
1622 }
1623
1624 /* Parse out the SCTP CMSGs. */
1625 err = sctp_msghdr_parse(msg, &cmsgs);
1626 if (err) {
1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 goto out_nounlock;
1629 }
1630
1631 /* Fetch the destination address for this packet. This
1632 * address only selects the association--it is not necessarily
1633 * the address we will send to.
1634 * For a peeled-off socket, msg_name is ignored.
1635 */
1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 int msg_namelen = msg->msg_namelen;
1638
1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 msg_namelen);
1641 if (err)
1642 return err;
1643
1644 if (msg_namelen > sizeof(to))
1645 msg_namelen = sizeof(to);
1646 memcpy(&to, msg->msg_name, msg_namelen);
1647 msg_name = msg->msg_name;
1648 }
1649
1650 sinit = cmsgs.init;
1651 if (cmsgs.sinfo != NULL) {
1652 memset(&default_sinfo, 0, sizeof(default_sinfo));
1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1658
1659 sinfo = &default_sinfo;
1660 fill_sinfo_ttl = true;
1661 } else {
1662 sinfo = cmsgs.srinfo;
1663 }
1664 /* Did the user specify SNDINFO/SNDRCVINFO? */
1665 if (sinfo) {
1666 sinfo_flags = sinfo->sinfo_flags;
1667 associd = sinfo->sinfo_assoc_id;
1668 }
1669
1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1671 msg_len, sinfo_flags);
1672
1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1680 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1681 * If SCTP_ABORT is set, the message length could be non zero with
1682 * the msg_iov set to the user abort reason.
1683 */
1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1686 err = -EINVAL;
1687 goto out_nounlock;
1688 }
1689
1690 /* If SCTP_ADDR_OVER is set, there must be an address
1691 * specified in msg_name.
1692 */
1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1694 err = -EINVAL;
1695 goto out_nounlock;
1696 }
1697
1698 transport = NULL;
1699
1700 pr_debug("%s: about to look up association\n", __func__);
1701
1702 lock_sock(sk);
1703
1704 /* If a msg_name has been specified, assume this is to be used. */
1705 if (msg_name) {
1706 /* Look for a matching association on the endpoint. */
1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1708 if (!asoc) {
1709 /* If we could not find a matching association on the
1710 * endpoint, make sure that it is not a TCP-style
1711 * socket that already has an association or there is
1712 * no peeled-off association on another socket.
1713 */
1714 if ((sctp_style(sk, TCP) &&
1715 sctp_sstate(sk, ESTABLISHED)) ||
1716 sctp_endpoint_is_peeled_off(ep, &to)) {
1717 err = -EADDRNOTAVAIL;
1718 goto out_unlock;
1719 }
1720 }
1721 } else {
1722 asoc = sctp_id2assoc(sk, associd);
1723 if (!asoc) {
1724 err = -EPIPE;
1725 goto out_unlock;
1726 }
1727 }
1728
1729 if (asoc) {
1730 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1731
1732 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1733 * socket that has an association in CLOSED state. This can
1734 * happen when an accepted socket has an association that is
1735 * already CLOSED.
1736 */
1737 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1738 err = -EPIPE;
1739 goto out_unlock;
1740 }
1741
1742 if (sinfo_flags & SCTP_EOF) {
1743 pr_debug("%s: shutting down association:%p\n",
1744 __func__, asoc);
1745
1746 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1747 err = 0;
1748 goto out_unlock;
1749 }
1750 if (sinfo_flags & SCTP_ABORT) {
1751
1752 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1753 if (!chunk) {
1754 err = -ENOMEM;
1755 goto out_unlock;
1756 }
1757
1758 pr_debug("%s: aborting association:%p\n",
1759 __func__, asoc);
1760
1761 sctp_primitive_ABORT(net, asoc, chunk);
1762 err = 0;
1763 goto out_unlock;
1764 }
1765 }
1766
1767 /* Do we need to create the association? */
1768 if (!asoc) {
1769 pr_debug("%s: there is no association yet\n", __func__);
1770
1771 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1772 err = -EINVAL;
1773 goto out_unlock;
1774 }
1775
1776 /* Check for invalid stream against the stream counts,
1777 * either the default or the user specified stream counts.
1778 */
1779 if (sinfo) {
1780 if (!sinit || !sinit->sinit_num_ostreams) {
1781 /* Check against the defaults. */
1782 if (sinfo->sinfo_stream >=
1783 sp->initmsg.sinit_num_ostreams) {
1784 err = -EINVAL;
1785 goto out_unlock;
1786 }
1787 } else {
1788 /* Check against the requested. */
1789 if (sinfo->sinfo_stream >=
1790 sinit->sinit_num_ostreams) {
1791 err = -EINVAL;
1792 goto out_unlock;
1793 }
1794 }
1795 }
1796
1797 /*
1798 * API 3.1.2 bind() - UDP Style Syntax
1799 * If a bind() or sctp_bindx() is not called prior to a
1800 * sendmsg() call that initiates a new association, the
1801 * system picks an ephemeral port and will choose an address
1802 * set equivalent to binding with a wildcard address.
1803 */
1804 if (!ep->base.bind_addr.port) {
1805 if (sctp_autobind(sk)) {
1806 err = -EAGAIN;
1807 goto out_unlock;
1808 }
1809 } else {
1810 /*
1811 * If an unprivileged user inherits a one-to-many
1812 * style socket with open associations on a privileged
1813 * port, it MAY be permitted to accept new associations,
1814 * but it SHOULD NOT be permitted to open new
1815 * associations.
1816 */
1817 if (ep->base.bind_addr.port < PROT_SOCK &&
1818 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1819 err = -EACCES;
1820 goto out_unlock;
1821 }
1822 }
1823
1824 scope = sctp_scope(&to);
1825 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1826 if (!new_asoc) {
1827 err = -ENOMEM;
1828 goto out_unlock;
1829 }
1830 asoc = new_asoc;
1831 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1832 if (err < 0) {
1833 err = -ENOMEM;
1834 goto out_free;
1835 }
1836
1837 /* If the SCTP_INIT ancillary data is specified, set all
1838 * the association init values accordingly.
1839 */
1840 if (sinit) {
1841 if (sinit->sinit_num_ostreams) {
1842 asoc->c.sinit_num_ostreams =
1843 sinit->sinit_num_ostreams;
1844 }
1845 if (sinit->sinit_max_instreams) {
1846 asoc->c.sinit_max_instreams =
1847 sinit->sinit_max_instreams;
1848 }
1849 if (sinit->sinit_max_attempts) {
1850 asoc->max_init_attempts
1851 = sinit->sinit_max_attempts;
1852 }
1853 if (sinit->sinit_max_init_timeo) {
1854 asoc->max_init_timeo =
1855 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1856 }
1857 }
1858
1859 /* Prime the peer's transport structures. */
1860 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1861 if (!transport) {
1862 err = -ENOMEM;
1863 goto out_free;
1864 }
1865 }
1866
1867 /* ASSERT: we have a valid association at this point. */
1868 pr_debug("%s: we have a valid association\n", __func__);
1869
1870 if (!sinfo) {
1871 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1872 * one with some defaults.
1873 */
1874 memset(&default_sinfo, 0, sizeof(default_sinfo));
1875 default_sinfo.sinfo_stream = asoc->default_stream;
1876 default_sinfo.sinfo_flags = asoc->default_flags;
1877 default_sinfo.sinfo_ppid = asoc->default_ppid;
1878 default_sinfo.sinfo_context = asoc->default_context;
1879 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1880 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1881
1882 sinfo = &default_sinfo;
1883 } else if (fill_sinfo_ttl) {
1884 /* In case SNDINFO was specified, we still need to fill
1885 * it with a default ttl from the assoc here.
1886 */
1887 sinfo->sinfo_timetolive = asoc->default_timetolive;
1888 }
1889
1890 /* API 7.1.7, the sndbuf size per association bounds the
1891 * maximum size of data that can be sent in a single send call.
1892 */
1893 if (msg_len > sk->sk_sndbuf) {
1894 err = -EMSGSIZE;
1895 goto out_free;
1896 }
1897
1898 if (asoc->pmtu_pending)
1899 sctp_assoc_pending_pmtu(sk, asoc);
1900
1901 /* If fragmentation is disabled and the message length exceeds the
1902 * association fragmentation point, return EMSGSIZE. The I-D
1903 * does not specify what this error is, but this looks like
1904 * a great fit.
1905 */
1906 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1907 err = -EMSGSIZE;
1908 goto out_free;
1909 }
1910
1911 /* Check for invalid stream. */
1912 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1913 err = -EINVAL;
1914 goto out_free;
1915 }
1916
1917 if (sctp_wspace(asoc) < msg_len)
1918 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1919
1920 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1921 if (!sctp_wspace(asoc)) {
1922 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1923 if (err)
1924 goto out_free;
1925 }
1926
1927 /* If an address is passed with the sendto/sendmsg call, it is used
1928 * to override the primary destination address in the TCP model, or
1929 * when SCTP_ADDR_OVER flag is set in the UDP model.
1930 */
1931 if ((sctp_style(sk, TCP) && msg_name) ||
1932 (sinfo_flags & SCTP_ADDR_OVER)) {
1933 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1934 if (!chunk_tp) {
1935 err = -EINVAL;
1936 goto out_free;
1937 }
1938 } else
1939 chunk_tp = NULL;
1940
1941 /* Auto-connect, if we aren't connected already. */
1942 if (sctp_state(asoc, CLOSED)) {
1943 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1944 if (err < 0)
1945 goto out_free;
1946
1947 wait_connect = true;
1948 pr_debug("%s: we associated primitively\n", __func__);
1949 }
1950
1951 /* Break the message into multiple chunks of maximum size. */
1952 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1953 if (IS_ERR(datamsg)) {
1954 err = PTR_ERR(datamsg);
1955 goto out_free;
1956 }
1957
1958 /* Now send the (possibly) fragmented message. */
1959 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1960 /* Do accounting for the write space. */
1961 sctp_set_owner_w(chunk);
1962
1963 chunk->transport = chunk_tp;
1964 }
1965
1966 /* Send it to the lower layers. Note: all chunks
1967 * must either fail or succeed. The lower layer
1968 * works that way today. Keep it that way or this
1969 * breaks.
1970 */
1971 err = sctp_primitive_SEND(net, asoc, datamsg);
1972 sctp_datamsg_put(datamsg);
1973 /* Did the lower layer accept the chunk? */
1974 if (err)
1975 goto out_free;
1976
1977 pr_debug("%s: we sent primitively\n", __func__);
1978
1979 err = msg_len;
1980
1981 if (unlikely(wait_connect)) {
1982 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1983 sctp_wait_for_connect(asoc, &timeo);
1984 }
1985
1986 /* If we are already past ASSOCIATE, the lower
1987 * layers are responsible for association cleanup.
1988 */
1989 goto out_unlock;
1990
1991 out_free:
1992 if (new_asoc)
1993 sctp_association_free(asoc);
1994 out_unlock:
1995 release_sock(sk);
1996
1997 out_nounlock:
1998 return sctp_error(sk, msg_flags, err);
1999
2000 #if 0
2001 do_sock_err:
2002 if (msg_len)
2003 err = msg_len;
2004 else
2005 err = sock_error(sk);
2006 goto out;
2007
2008 do_interrupted:
2009 if (msg_len)
2010 err = msg_len;
2011 goto out;
2012 #endif /* 0 */
2013 }
2014
2015 /* This is an extended version of skb_pull() that removes the data from the
2016 * start of a skb even when data is spread across the list of skb's in the
2017 * frag_list. len specifies the total amount of data that needs to be removed.
2018 * when 'len' bytes could be removed from the skb, it returns 0.
2019 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2020 * could not be removed.
2021 */
2022 static int sctp_skb_pull(struct sk_buff *skb, int len)
2023 {
2024 struct sk_buff *list;
2025 int skb_len = skb_headlen(skb);
2026 int rlen;
2027
2028 if (len <= skb_len) {
2029 __skb_pull(skb, len);
2030 return 0;
2031 }
2032 len -= skb_len;
2033 __skb_pull(skb, skb_len);
2034
2035 skb_walk_frags(skb, list) {
2036 rlen = sctp_skb_pull(list, len);
2037 skb->len -= (len-rlen);
2038 skb->data_len -= (len-rlen);
2039
2040 if (!rlen)
2041 return 0;
2042
2043 len = rlen;
2044 }
2045
2046 return len;
2047 }
2048
2049 /* API 3.1.3 recvmsg() - UDP Style Syntax
2050 *
2051 * ssize_t recvmsg(int socket, struct msghdr *message,
2052 * int flags);
2053 *
2054 * socket - the socket descriptor of the endpoint.
2055 * message - pointer to the msghdr structure which contains a single
2056 * user message and possibly some ancillary data.
2057 *
2058 * See Section 5 for complete description of the data
2059 * structures.
2060 *
2061 * flags - flags sent or received with the user message, see Section
2062 * 5 for complete description of the flags.
2063 */
2064 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2065 int noblock, int flags, int *addr_len)
2066 {
2067 struct sctp_ulpevent *event = NULL;
2068 struct sctp_sock *sp = sctp_sk(sk);
2069 struct sk_buff *skb;
2070 int copied;
2071 int err = 0;
2072 int skb_len;
2073
2074 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2075 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2076 addr_len);
2077
2078 lock_sock(sk);
2079
2080 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2081 err = -ENOTCONN;
2082 goto out;
2083 }
2084
2085 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2086 if (!skb)
2087 goto out;
2088
2089 /* Get the total length of the skb including any skb's in the
2090 * frag_list.
2091 */
2092 skb_len = skb->len;
2093
2094 copied = skb_len;
2095 if (copied > len)
2096 copied = len;
2097
2098 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2099
2100 event = sctp_skb2event(skb);
2101
2102 if (err)
2103 goto out_free;
2104
2105 sock_recv_ts_and_drops(msg, sk, skb);
2106 if (sctp_ulpevent_is_notification(event)) {
2107 msg->msg_flags |= MSG_NOTIFICATION;
2108 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2109 } else {
2110 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2111 }
2112
2113 /* Check if we allow SCTP_NXTINFO. */
2114 if (sp->recvnxtinfo)
2115 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2116 /* Check if we allow SCTP_RCVINFO. */
2117 if (sp->recvrcvinfo)
2118 sctp_ulpevent_read_rcvinfo(event, msg);
2119 /* Check if we allow SCTP_SNDRCVINFO. */
2120 if (sp->subscribe.sctp_data_io_event)
2121 sctp_ulpevent_read_sndrcvinfo(event, msg);
2122
2123 err = copied;
2124
2125 /* If skb's length exceeds the user's buffer, update the skb and
2126 * push it back to the receive_queue so that the next call to
2127 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2128 */
2129 if (skb_len > copied) {
2130 msg->msg_flags &= ~MSG_EOR;
2131 if (flags & MSG_PEEK)
2132 goto out_free;
2133 sctp_skb_pull(skb, copied);
2134 skb_queue_head(&sk->sk_receive_queue, skb);
2135
2136 /* When only partial message is copied to the user, increase
2137 * rwnd by that amount. If all the data in the skb is read,
2138 * rwnd is updated when the event is freed.
2139 */
2140 if (!sctp_ulpevent_is_notification(event))
2141 sctp_assoc_rwnd_increase(event->asoc, copied);
2142 goto out;
2143 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2144 (event->msg_flags & MSG_EOR))
2145 msg->msg_flags |= MSG_EOR;
2146 else
2147 msg->msg_flags &= ~MSG_EOR;
2148
2149 out_free:
2150 if (flags & MSG_PEEK) {
2151 /* Release the skb reference acquired after peeking the skb in
2152 * sctp_skb_recv_datagram().
2153 */
2154 kfree_skb(skb);
2155 } else {
2156 /* Free the event which includes releasing the reference to
2157 * the owner of the skb, freeing the skb and updating the
2158 * rwnd.
2159 */
2160 sctp_ulpevent_free(event);
2161 }
2162 out:
2163 release_sock(sk);
2164 return err;
2165 }
2166
2167 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2168 *
2169 * This option is a on/off flag. If enabled no SCTP message
2170 * fragmentation will be performed. Instead if a message being sent
2171 * exceeds the current PMTU size, the message will NOT be sent and
2172 * instead a error will be indicated to the user.
2173 */
2174 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2175 char __user *optval,
2176 unsigned int optlen)
2177 {
2178 int val;
2179
2180 if (optlen < sizeof(int))
2181 return -EINVAL;
2182
2183 if (get_user(val, (int __user *)optval))
2184 return -EFAULT;
2185
2186 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2187
2188 return 0;
2189 }
2190
2191 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2192 unsigned int optlen)
2193 {
2194 struct sctp_association *asoc;
2195 struct sctp_ulpevent *event;
2196
2197 if (optlen > sizeof(struct sctp_event_subscribe))
2198 return -EINVAL;
2199 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2200 return -EFAULT;
2201
2202 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2203 * if there is no data to be sent or retransmit, the stack will
2204 * immediately send up this notification.
2205 */
2206 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2207 &sctp_sk(sk)->subscribe)) {
2208 asoc = sctp_id2assoc(sk, 0);
2209
2210 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2211 event = sctp_ulpevent_make_sender_dry_event(asoc,
2212 GFP_ATOMIC);
2213 if (!event)
2214 return -ENOMEM;
2215
2216 sctp_ulpq_tail_event(&asoc->ulpq, event);
2217 }
2218 }
2219
2220 return 0;
2221 }
2222
2223 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2224 *
2225 * This socket option is applicable to the UDP-style socket only. When
2226 * set it will cause associations that are idle for more than the
2227 * specified number of seconds to automatically close. An association
2228 * being idle is defined an association that has NOT sent or received
2229 * user data. The special value of '0' indicates that no automatic
2230 * close of any associations should be performed. The option expects an
2231 * integer defining the number of seconds of idle time before an
2232 * association is closed.
2233 */
2234 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2235 unsigned int optlen)
2236 {
2237 struct sctp_sock *sp = sctp_sk(sk);
2238 struct net *net = sock_net(sk);
2239
2240 /* Applicable to UDP-style socket only */
2241 if (sctp_style(sk, TCP))
2242 return -EOPNOTSUPP;
2243 if (optlen != sizeof(int))
2244 return -EINVAL;
2245 if (copy_from_user(&sp->autoclose, optval, optlen))
2246 return -EFAULT;
2247
2248 if (sp->autoclose > net->sctp.max_autoclose)
2249 sp->autoclose = net->sctp.max_autoclose;
2250
2251 return 0;
2252 }
2253
2254 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2255 *
2256 * Applications can enable or disable heartbeats for any peer address of
2257 * an association, modify an address's heartbeat interval, force a
2258 * heartbeat to be sent immediately, and adjust the address's maximum
2259 * number of retransmissions sent before an address is considered
2260 * unreachable. The following structure is used to access and modify an
2261 * address's parameters:
2262 *
2263 * struct sctp_paddrparams {
2264 * sctp_assoc_t spp_assoc_id;
2265 * struct sockaddr_storage spp_address;
2266 * uint32_t spp_hbinterval;
2267 * uint16_t spp_pathmaxrxt;
2268 * uint32_t spp_pathmtu;
2269 * uint32_t spp_sackdelay;
2270 * uint32_t spp_flags;
2271 * };
2272 *
2273 * spp_assoc_id - (one-to-many style socket) This is filled in the
2274 * application, and identifies the association for
2275 * this query.
2276 * spp_address - This specifies which address is of interest.
2277 * spp_hbinterval - This contains the value of the heartbeat interval,
2278 * in milliseconds. If a value of zero
2279 * is present in this field then no changes are to
2280 * be made to this parameter.
2281 * spp_pathmaxrxt - This contains the maximum number of
2282 * retransmissions before this address shall be
2283 * considered unreachable. If a value of zero
2284 * is present in this field then no changes are to
2285 * be made to this parameter.
2286 * spp_pathmtu - When Path MTU discovery is disabled the value
2287 * specified here will be the "fixed" path mtu.
2288 * Note that if the spp_address field is empty
2289 * then all associations on this address will
2290 * have this fixed path mtu set upon them.
2291 *
2292 * spp_sackdelay - When delayed sack is enabled, this value specifies
2293 * the number of milliseconds that sacks will be delayed
2294 * for. This value will apply to all addresses of an
2295 * association if the spp_address field is empty. Note
2296 * also, that if delayed sack is enabled and this
2297 * value is set to 0, no change is made to the last
2298 * recorded delayed sack timer value.
2299 *
2300 * spp_flags - These flags are used to control various features
2301 * on an association. The flag field may contain
2302 * zero or more of the following options.
2303 *
2304 * SPP_HB_ENABLE - Enable heartbeats on the
2305 * specified address. Note that if the address
2306 * field is empty all addresses for the association
2307 * have heartbeats enabled upon them.
2308 *
2309 * SPP_HB_DISABLE - Disable heartbeats on the
2310 * speicifed address. Note that if the address
2311 * field is empty all addresses for the association
2312 * will have their heartbeats disabled. Note also
2313 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2314 * mutually exclusive, only one of these two should
2315 * be specified. Enabling both fields will have
2316 * undetermined results.
2317 *
2318 * SPP_HB_DEMAND - Request a user initiated heartbeat
2319 * to be made immediately.
2320 *
2321 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2322 * heartbeat delayis to be set to the value of 0
2323 * milliseconds.
2324 *
2325 * SPP_PMTUD_ENABLE - This field will enable PMTU
2326 * discovery upon the specified address. Note that
2327 * if the address feild is empty then all addresses
2328 * on the association are effected.
2329 *
2330 * SPP_PMTUD_DISABLE - This field will disable PMTU
2331 * discovery upon the specified address. Note that
2332 * if the address feild is empty then all addresses
2333 * on the association are effected. Not also that
2334 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2335 * exclusive. Enabling both will have undetermined
2336 * results.
2337 *
2338 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2339 * on delayed sack. The time specified in spp_sackdelay
2340 * is used to specify the sack delay for this address. Note
2341 * that if spp_address is empty then all addresses will
2342 * enable delayed sack and take on the sack delay
2343 * value specified in spp_sackdelay.
2344 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2345 * off delayed sack. If the spp_address field is blank then
2346 * delayed sack is disabled for the entire association. Note
2347 * also that this field is mutually exclusive to
2348 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2349 * results.
2350 */
2351 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2352 struct sctp_transport *trans,
2353 struct sctp_association *asoc,
2354 struct sctp_sock *sp,
2355 int hb_change,
2356 int pmtud_change,
2357 int sackdelay_change)
2358 {
2359 int error;
2360
2361 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2362 struct net *net = sock_net(trans->asoc->base.sk);
2363
2364 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2365 if (error)
2366 return error;
2367 }
2368
2369 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2370 * this field is ignored. Note also that a value of zero indicates
2371 * the current setting should be left unchanged.
2372 */
2373 if (params->spp_flags & SPP_HB_ENABLE) {
2374
2375 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2376 * set. This lets us use 0 value when this flag
2377 * is set.
2378 */
2379 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2380 params->spp_hbinterval = 0;
2381
2382 if (params->spp_hbinterval ||
2383 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2384 if (trans) {
2385 trans->hbinterval =
2386 msecs_to_jiffies(params->spp_hbinterval);
2387 } else if (asoc) {
2388 asoc->hbinterval =
2389 msecs_to_jiffies(params->spp_hbinterval);
2390 } else {
2391 sp->hbinterval = params->spp_hbinterval;
2392 }
2393 }
2394 }
2395
2396 if (hb_change) {
2397 if (trans) {
2398 trans->param_flags =
2399 (trans->param_flags & ~SPP_HB) | hb_change;
2400 } else if (asoc) {
2401 asoc->param_flags =
2402 (asoc->param_flags & ~SPP_HB) | hb_change;
2403 } else {
2404 sp->param_flags =
2405 (sp->param_flags & ~SPP_HB) | hb_change;
2406 }
2407 }
2408
2409 /* When Path MTU discovery is disabled the value specified here will
2410 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2411 * include the flag SPP_PMTUD_DISABLE for this field to have any
2412 * effect).
2413 */
2414 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2415 if (trans) {
2416 trans->pathmtu = params->spp_pathmtu;
2417 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2418 } else if (asoc) {
2419 asoc->pathmtu = params->spp_pathmtu;
2420 sctp_frag_point(asoc, params->spp_pathmtu);
2421 } else {
2422 sp->pathmtu = params->spp_pathmtu;
2423 }
2424 }
2425
2426 if (pmtud_change) {
2427 if (trans) {
2428 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2429 (params->spp_flags & SPP_PMTUD_ENABLE);
2430 trans->param_flags =
2431 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2432 if (update) {
2433 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2434 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2435 }
2436 } else if (asoc) {
2437 asoc->param_flags =
2438 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2439 } else {
2440 sp->param_flags =
2441 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2442 }
2443 }
2444
2445 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2446 * value of this field is ignored. Note also that a value of zero
2447 * indicates the current setting should be left unchanged.
2448 */
2449 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2450 if (trans) {
2451 trans->sackdelay =
2452 msecs_to_jiffies(params->spp_sackdelay);
2453 } else if (asoc) {
2454 asoc->sackdelay =
2455 msecs_to_jiffies(params->spp_sackdelay);
2456 } else {
2457 sp->sackdelay = params->spp_sackdelay;
2458 }
2459 }
2460
2461 if (sackdelay_change) {
2462 if (trans) {
2463 trans->param_flags =
2464 (trans->param_flags & ~SPP_SACKDELAY) |
2465 sackdelay_change;
2466 } else if (asoc) {
2467 asoc->param_flags =
2468 (asoc->param_flags & ~SPP_SACKDELAY) |
2469 sackdelay_change;
2470 } else {
2471 sp->param_flags =
2472 (sp->param_flags & ~SPP_SACKDELAY) |
2473 sackdelay_change;
2474 }
2475 }
2476
2477 /* Note that a value of zero indicates the current setting should be
2478 left unchanged.
2479 */
2480 if (params->spp_pathmaxrxt) {
2481 if (trans) {
2482 trans->pathmaxrxt = params->spp_pathmaxrxt;
2483 } else if (asoc) {
2484 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2485 } else {
2486 sp->pathmaxrxt = params->spp_pathmaxrxt;
2487 }
2488 }
2489
2490 return 0;
2491 }
2492
2493 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2494 char __user *optval,
2495 unsigned int optlen)
2496 {
2497 struct sctp_paddrparams params;
2498 struct sctp_transport *trans = NULL;
2499 struct sctp_association *asoc = NULL;
2500 struct sctp_sock *sp = sctp_sk(sk);
2501 int error;
2502 int hb_change, pmtud_change, sackdelay_change;
2503
2504 if (optlen != sizeof(struct sctp_paddrparams))
2505 return -EINVAL;
2506
2507 if (copy_from_user(&params, optval, optlen))
2508 return -EFAULT;
2509
2510 /* Validate flags and value parameters. */
2511 hb_change = params.spp_flags & SPP_HB;
2512 pmtud_change = params.spp_flags & SPP_PMTUD;
2513 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2514
2515 if (hb_change == SPP_HB ||
2516 pmtud_change == SPP_PMTUD ||
2517 sackdelay_change == SPP_SACKDELAY ||
2518 params.spp_sackdelay > 500 ||
2519 (params.spp_pathmtu &&
2520 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2521 return -EINVAL;
2522
2523 /* If an address other than INADDR_ANY is specified, and
2524 * no transport is found, then the request is invalid.
2525 */
2526 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2527 trans = sctp_addr_id2transport(sk, &params.spp_address,
2528 params.spp_assoc_id);
2529 if (!trans)
2530 return -EINVAL;
2531 }
2532
2533 /* Get association, if assoc_id != 0 and the socket is a one
2534 * to many style socket, and an association was not found, then
2535 * the id was invalid.
2536 */
2537 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2538 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2539 return -EINVAL;
2540
2541 /* Heartbeat demand can only be sent on a transport or
2542 * association, but not a socket.
2543 */
2544 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2545 return -EINVAL;
2546
2547 /* Process parameters. */
2548 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2549 hb_change, pmtud_change,
2550 sackdelay_change);
2551
2552 if (error)
2553 return error;
2554
2555 /* If changes are for association, also apply parameters to each
2556 * transport.
2557 */
2558 if (!trans && asoc) {
2559 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2560 transports) {
2561 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2562 hb_change, pmtud_change,
2563 sackdelay_change);
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
2570 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2571 {
2572 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2573 }
2574
2575 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2576 {
2577 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2578 }
2579
2580 /*
2581 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2582 *
2583 * This option will effect the way delayed acks are performed. This
2584 * option allows you to get or set the delayed ack time, in
2585 * milliseconds. It also allows changing the delayed ack frequency.
2586 * Changing the frequency to 1 disables the delayed sack algorithm. If
2587 * the assoc_id is 0, then this sets or gets the endpoints default
2588 * values. If the assoc_id field is non-zero, then the set or get
2589 * effects the specified association for the one to many model (the
2590 * assoc_id field is ignored by the one to one model). Note that if
2591 * sack_delay or sack_freq are 0 when setting this option, then the
2592 * current values will remain unchanged.
2593 *
2594 * struct sctp_sack_info {
2595 * sctp_assoc_t sack_assoc_id;
2596 * uint32_t sack_delay;
2597 * uint32_t sack_freq;
2598 * };
2599 *
2600 * sack_assoc_id - This parameter, indicates which association the user
2601 * is performing an action upon. Note that if this field's value is
2602 * zero then the endpoints default value is changed (effecting future
2603 * associations only).
2604 *
2605 * sack_delay - This parameter contains the number of milliseconds that
2606 * the user is requesting the delayed ACK timer be set to. Note that
2607 * this value is defined in the standard to be between 200 and 500
2608 * milliseconds.
2609 *
2610 * sack_freq - This parameter contains the number of packets that must
2611 * be received before a sack is sent without waiting for the delay
2612 * timer to expire. The default value for this is 2, setting this
2613 * value to 1 will disable the delayed sack algorithm.
2614 */
2615
2616 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2617 char __user *optval, unsigned int optlen)
2618 {
2619 struct sctp_sack_info params;
2620 struct sctp_transport *trans = NULL;
2621 struct sctp_association *asoc = NULL;
2622 struct sctp_sock *sp = sctp_sk(sk);
2623
2624 if (optlen == sizeof(struct sctp_sack_info)) {
2625 if (copy_from_user(&params, optval, optlen))
2626 return -EFAULT;
2627
2628 if (params.sack_delay == 0 && params.sack_freq == 0)
2629 return 0;
2630 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2631 pr_warn_ratelimited(DEPRECATED
2632 "%s (pid %d) "
2633 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2634 "Use struct sctp_sack_info instead\n",
2635 current->comm, task_pid_nr(current));
2636 if (copy_from_user(&params, optval, optlen))
2637 return -EFAULT;
2638
2639 if (params.sack_delay == 0)
2640 params.sack_freq = 1;
2641 else
2642 params.sack_freq = 0;
2643 } else
2644 return -EINVAL;
2645
2646 /* Validate value parameter. */
2647 if (params.sack_delay > 500)
2648 return -EINVAL;
2649
2650 /* Get association, if sack_assoc_id != 0 and the socket is a one
2651 * to many style socket, and an association was not found, then
2652 * the id was invalid.
2653 */
2654 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2655 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2656 return -EINVAL;
2657
2658 if (params.sack_delay) {
2659 if (asoc) {
2660 asoc->sackdelay =
2661 msecs_to_jiffies(params.sack_delay);
2662 asoc->param_flags =
2663 sctp_spp_sackdelay_enable(asoc->param_flags);
2664 } else {
2665 sp->sackdelay = params.sack_delay;
2666 sp->param_flags =
2667 sctp_spp_sackdelay_enable(sp->param_flags);
2668 }
2669 }
2670
2671 if (params.sack_freq == 1) {
2672 if (asoc) {
2673 asoc->param_flags =
2674 sctp_spp_sackdelay_disable(asoc->param_flags);
2675 } else {
2676 sp->param_flags =
2677 sctp_spp_sackdelay_disable(sp->param_flags);
2678 }
2679 } else if (params.sack_freq > 1) {
2680 if (asoc) {
2681 asoc->sackfreq = params.sack_freq;
2682 asoc->param_flags =
2683 sctp_spp_sackdelay_enable(asoc->param_flags);
2684 } else {
2685 sp->sackfreq = params.sack_freq;
2686 sp->param_flags =
2687 sctp_spp_sackdelay_enable(sp->param_flags);
2688 }
2689 }
2690
2691 /* If change is for association, also apply to each transport. */
2692 if (asoc) {
2693 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2694 transports) {
2695 if (params.sack_delay) {
2696 trans->sackdelay =
2697 msecs_to_jiffies(params.sack_delay);
2698 trans->param_flags =
2699 sctp_spp_sackdelay_enable(trans->param_flags);
2700 }
2701 if (params.sack_freq == 1) {
2702 trans->param_flags =
2703 sctp_spp_sackdelay_disable(trans->param_flags);
2704 } else if (params.sack_freq > 1) {
2705 trans->sackfreq = params.sack_freq;
2706 trans->param_flags =
2707 sctp_spp_sackdelay_enable(trans->param_flags);
2708 }
2709 }
2710 }
2711
2712 return 0;
2713 }
2714
2715 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2716 *
2717 * Applications can specify protocol parameters for the default association
2718 * initialization. The option name argument to setsockopt() and getsockopt()
2719 * is SCTP_INITMSG.
2720 *
2721 * Setting initialization parameters is effective only on an unconnected
2722 * socket (for UDP-style sockets only future associations are effected
2723 * by the change). With TCP-style sockets, this option is inherited by
2724 * sockets derived from a listener socket.
2725 */
2726 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2727 {
2728 struct sctp_initmsg sinit;
2729 struct sctp_sock *sp = sctp_sk(sk);
2730
2731 if (optlen != sizeof(struct sctp_initmsg))
2732 return -EINVAL;
2733 if (copy_from_user(&sinit, optval, optlen))
2734 return -EFAULT;
2735
2736 if (sinit.sinit_num_ostreams)
2737 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2738 if (sinit.sinit_max_instreams)
2739 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2740 if (sinit.sinit_max_attempts)
2741 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2742 if (sinit.sinit_max_init_timeo)
2743 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2744
2745 return 0;
2746 }
2747
2748 /*
2749 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2750 *
2751 * Applications that wish to use the sendto() system call may wish to
2752 * specify a default set of parameters that would normally be supplied
2753 * through the inclusion of ancillary data. This socket option allows
2754 * such an application to set the default sctp_sndrcvinfo structure.
2755 * The application that wishes to use this socket option simply passes
2756 * in to this call the sctp_sndrcvinfo structure defined in Section
2757 * 5.2.2) The input parameters accepted by this call include
2758 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2759 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2760 * to this call if the caller is using the UDP model.
2761 */
2762 static int sctp_setsockopt_default_send_param(struct sock *sk,
2763 char __user *optval,
2764 unsigned int optlen)
2765 {
2766 struct sctp_sock *sp = sctp_sk(sk);
2767 struct sctp_association *asoc;
2768 struct sctp_sndrcvinfo info;
2769
2770 if (optlen != sizeof(info))
2771 return -EINVAL;
2772 if (copy_from_user(&info, optval, optlen))
2773 return -EFAULT;
2774 if (info.sinfo_flags &
2775 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2776 SCTP_ABORT | SCTP_EOF))
2777 return -EINVAL;
2778
2779 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2780 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2781 return -EINVAL;
2782 if (asoc) {
2783 asoc->default_stream = info.sinfo_stream;
2784 asoc->default_flags = info.sinfo_flags;
2785 asoc->default_ppid = info.sinfo_ppid;
2786 asoc->default_context = info.sinfo_context;
2787 asoc->default_timetolive = info.sinfo_timetolive;
2788 } else {
2789 sp->default_stream = info.sinfo_stream;
2790 sp->default_flags = info.sinfo_flags;
2791 sp->default_ppid = info.sinfo_ppid;
2792 sp->default_context = info.sinfo_context;
2793 sp->default_timetolive = info.sinfo_timetolive;
2794 }
2795
2796 return 0;
2797 }
2798
2799 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2800 * (SCTP_DEFAULT_SNDINFO)
2801 */
2802 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2803 char __user *optval,
2804 unsigned int optlen)
2805 {
2806 struct sctp_sock *sp = sctp_sk(sk);
2807 struct sctp_association *asoc;
2808 struct sctp_sndinfo info;
2809
2810 if (optlen != sizeof(info))
2811 return -EINVAL;
2812 if (copy_from_user(&info, optval, optlen))
2813 return -EFAULT;
2814 if (info.snd_flags &
2815 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2816 SCTP_ABORT | SCTP_EOF))
2817 return -EINVAL;
2818
2819 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2820 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2821 return -EINVAL;
2822 if (asoc) {
2823 asoc->default_stream = info.snd_sid;
2824 asoc->default_flags = info.snd_flags;
2825 asoc->default_ppid = info.snd_ppid;
2826 asoc->default_context = info.snd_context;
2827 } else {
2828 sp->default_stream = info.snd_sid;
2829 sp->default_flags = info.snd_flags;
2830 sp->default_ppid = info.snd_ppid;
2831 sp->default_context = info.snd_context;
2832 }
2833
2834 return 0;
2835 }
2836
2837 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2838 *
2839 * Requests that the local SCTP stack use the enclosed peer address as
2840 * the association primary. The enclosed address must be one of the
2841 * association peer's addresses.
2842 */
2843 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2844 unsigned int optlen)
2845 {
2846 struct sctp_prim prim;
2847 struct sctp_transport *trans;
2848
2849 if (optlen != sizeof(struct sctp_prim))
2850 return -EINVAL;
2851
2852 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2853 return -EFAULT;
2854
2855 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2856 if (!trans)
2857 return -EINVAL;
2858
2859 sctp_assoc_set_primary(trans->asoc, trans);
2860
2861 return 0;
2862 }
2863
2864 /*
2865 * 7.1.5 SCTP_NODELAY
2866 *
2867 * Turn on/off any Nagle-like algorithm. This means that packets are
2868 * generally sent as soon as possible and no unnecessary delays are
2869 * introduced, at the cost of more packets in the network. Expects an
2870 * integer boolean flag.
2871 */
2872 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2873 unsigned int optlen)
2874 {
2875 int val;
2876
2877 if (optlen < sizeof(int))
2878 return -EINVAL;
2879 if (get_user(val, (int __user *)optval))
2880 return -EFAULT;
2881
2882 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2883 return 0;
2884 }
2885
2886 /*
2887 *
2888 * 7.1.1 SCTP_RTOINFO
2889 *
2890 * The protocol parameters used to initialize and bound retransmission
2891 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2892 * and modify these parameters.
2893 * All parameters are time values, in milliseconds. A value of 0, when
2894 * modifying the parameters, indicates that the current value should not
2895 * be changed.
2896 *
2897 */
2898 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2899 {
2900 struct sctp_rtoinfo rtoinfo;
2901 struct sctp_association *asoc;
2902 unsigned long rto_min, rto_max;
2903 struct sctp_sock *sp = sctp_sk(sk);
2904
2905 if (optlen != sizeof (struct sctp_rtoinfo))
2906 return -EINVAL;
2907
2908 if (copy_from_user(&rtoinfo, optval, optlen))
2909 return -EFAULT;
2910
2911 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2912
2913 /* Set the values to the specific association */
2914 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2915 return -EINVAL;
2916
2917 rto_max = rtoinfo.srto_max;
2918 rto_min = rtoinfo.srto_min;
2919
2920 if (rto_max)
2921 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2922 else
2923 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2924
2925 if (rto_min)
2926 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2927 else
2928 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2929
2930 if (rto_min > rto_max)
2931 return -EINVAL;
2932
2933 if (asoc) {
2934 if (rtoinfo.srto_initial != 0)
2935 asoc->rto_initial =
2936 msecs_to_jiffies(rtoinfo.srto_initial);
2937 asoc->rto_max = rto_max;
2938 asoc->rto_min = rto_min;
2939 } else {
2940 /* If there is no association or the association-id = 0
2941 * set the values to the endpoint.
2942 */
2943 if (rtoinfo.srto_initial != 0)
2944 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2945 sp->rtoinfo.srto_max = rto_max;
2946 sp->rtoinfo.srto_min = rto_min;
2947 }
2948
2949 return 0;
2950 }
2951
2952 /*
2953 *
2954 * 7.1.2 SCTP_ASSOCINFO
2955 *
2956 * This option is used to tune the maximum retransmission attempts
2957 * of the association.
2958 * Returns an error if the new association retransmission value is
2959 * greater than the sum of the retransmission value of the peer.
2960 * See [SCTP] for more information.
2961 *
2962 */
2963 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2964 {
2965
2966 struct sctp_assocparams assocparams;
2967 struct sctp_association *asoc;
2968
2969 if (optlen != sizeof(struct sctp_assocparams))
2970 return -EINVAL;
2971 if (copy_from_user(&assocparams, optval, optlen))
2972 return -EFAULT;
2973
2974 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2975
2976 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2977 return -EINVAL;
2978
2979 /* Set the values to the specific association */
2980 if (asoc) {
2981 if (assocparams.sasoc_asocmaxrxt != 0) {
2982 __u32 path_sum = 0;
2983 int paths = 0;
2984 struct sctp_transport *peer_addr;
2985
2986 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2987 transports) {
2988 path_sum += peer_addr->pathmaxrxt;
2989 paths++;
2990 }
2991
2992 /* Only validate asocmaxrxt if we have more than
2993 * one path/transport. We do this because path
2994 * retransmissions are only counted when we have more
2995 * then one path.
2996 */
2997 if (paths > 1 &&
2998 assocparams.sasoc_asocmaxrxt > path_sum)
2999 return -EINVAL;
3000
3001 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3002 }
3003
3004 if (assocparams.sasoc_cookie_life != 0)
3005 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3006 } else {
3007 /* Set the values to the endpoint */
3008 struct sctp_sock *sp = sctp_sk(sk);
3009
3010 if (assocparams.sasoc_asocmaxrxt != 0)
3011 sp->assocparams.sasoc_asocmaxrxt =
3012 assocparams.sasoc_asocmaxrxt;
3013 if (assocparams.sasoc_cookie_life != 0)
3014 sp->assocparams.sasoc_cookie_life =
3015 assocparams.sasoc_cookie_life;
3016 }
3017 return 0;
3018 }
3019
3020 /*
3021 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3022 *
3023 * This socket option is a boolean flag which turns on or off mapped V4
3024 * addresses. If this option is turned on and the socket is type
3025 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3026 * If this option is turned off, then no mapping will be done of V4
3027 * addresses and a user will receive both PF_INET6 and PF_INET type
3028 * addresses on the socket.
3029 */
3030 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3031 {
3032 int val;
3033 struct sctp_sock *sp = sctp_sk(sk);
3034
3035 if (optlen < sizeof(int))
3036 return -EINVAL;
3037 if (get_user(val, (int __user *)optval))
3038 return -EFAULT;
3039 if (val)
3040 sp->v4mapped = 1;
3041 else
3042 sp->v4mapped = 0;
3043
3044 return 0;
3045 }
3046
3047 /*
3048 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3049 * This option will get or set the maximum size to put in any outgoing
3050 * SCTP DATA chunk. If a message is larger than this size it will be
3051 * fragmented by SCTP into the specified size. Note that the underlying
3052 * SCTP implementation may fragment into smaller sized chunks when the
3053 * PMTU of the underlying association is smaller than the value set by
3054 * the user. The default value for this option is '0' which indicates
3055 * the user is NOT limiting fragmentation and only the PMTU will effect
3056 * SCTP's choice of DATA chunk size. Note also that values set larger
3057 * than the maximum size of an IP datagram will effectively let SCTP
3058 * control fragmentation (i.e. the same as setting this option to 0).
3059 *
3060 * The following structure is used to access and modify this parameter:
3061 *
3062 * struct sctp_assoc_value {
3063 * sctp_assoc_t assoc_id;
3064 * uint32_t assoc_value;
3065 * };
3066 *
3067 * assoc_id: This parameter is ignored for one-to-one style sockets.
3068 * For one-to-many style sockets this parameter indicates which
3069 * association the user is performing an action upon. Note that if
3070 * this field's value is zero then the endpoints default value is
3071 * changed (effecting future associations only).
3072 * assoc_value: This parameter specifies the maximum size in bytes.
3073 */
3074 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3075 {
3076 struct sctp_assoc_value params;
3077 struct sctp_association *asoc;
3078 struct sctp_sock *sp = sctp_sk(sk);
3079 int val;
3080
3081 if (optlen == sizeof(int)) {
3082 pr_warn_ratelimited(DEPRECATED
3083 "%s (pid %d) "
3084 "Use of int in maxseg socket option.\n"
3085 "Use struct sctp_assoc_value instead\n",
3086 current->comm, task_pid_nr(current));
3087 if (copy_from_user(&val, optval, optlen))
3088 return -EFAULT;
3089 params.assoc_id = 0;
3090 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3091 if (copy_from_user(&params, optval, optlen))
3092 return -EFAULT;
3093 val = params.assoc_value;
3094 } else
3095 return -EINVAL;
3096
3097 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3098 return -EINVAL;
3099
3100 asoc = sctp_id2assoc(sk, params.assoc_id);
3101 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3102 return -EINVAL;
3103
3104 if (asoc) {
3105 if (val == 0) {
3106 val = asoc->pathmtu;
3107 val -= sp->pf->af->net_header_len;
3108 val -= sizeof(struct sctphdr) +
3109 sizeof(struct sctp_data_chunk);
3110 }
3111 asoc->user_frag = val;
3112 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3113 } else {
3114 sp->user_frag = val;
3115 }
3116
3117 return 0;
3118 }
3119
3120
3121 /*
3122 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3123 *
3124 * Requests that the peer mark the enclosed address as the association
3125 * primary. The enclosed address must be one of the association's
3126 * locally bound addresses. The following structure is used to make a
3127 * set primary request:
3128 */
3129 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3130 unsigned int optlen)
3131 {
3132 struct net *net = sock_net(sk);
3133 struct sctp_sock *sp;
3134 struct sctp_association *asoc = NULL;
3135 struct sctp_setpeerprim prim;
3136 struct sctp_chunk *chunk;
3137 struct sctp_af *af;
3138 int err;
3139
3140 sp = sctp_sk(sk);
3141
3142 if (!net->sctp.addip_enable)
3143 return -EPERM;
3144
3145 if (optlen != sizeof(struct sctp_setpeerprim))
3146 return -EINVAL;
3147
3148 if (copy_from_user(&prim, optval, optlen))
3149 return -EFAULT;
3150
3151 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3152 if (!asoc)
3153 return -EINVAL;
3154
3155 if (!asoc->peer.asconf_capable)
3156 return -EPERM;
3157
3158 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3159 return -EPERM;
3160
3161 if (!sctp_state(asoc, ESTABLISHED))
3162 return -ENOTCONN;
3163
3164 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3165 if (!af)
3166 return -EINVAL;
3167
3168 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3169 return -EADDRNOTAVAIL;
3170
3171 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3172 return -EADDRNOTAVAIL;
3173
3174 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3175 chunk = sctp_make_asconf_set_prim(asoc,
3176 (union sctp_addr *)&prim.sspp_addr);
3177 if (!chunk)
3178 return -ENOMEM;
3179
3180 err = sctp_send_asconf(asoc, chunk);
3181
3182 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3183
3184 return err;
3185 }
3186
3187 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3188 unsigned int optlen)
3189 {
3190 struct sctp_setadaptation adaptation;
3191
3192 if (optlen != sizeof(struct sctp_setadaptation))
3193 return -EINVAL;
3194 if (copy_from_user(&adaptation, optval, optlen))
3195 return -EFAULT;
3196
3197 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3198
3199 return 0;
3200 }
3201
3202 /*
3203 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3204 *
3205 * The context field in the sctp_sndrcvinfo structure is normally only
3206 * used when a failed message is retrieved holding the value that was
3207 * sent down on the actual send call. This option allows the setting of
3208 * a default context on an association basis that will be received on
3209 * reading messages from the peer. This is especially helpful in the
3210 * one-2-many model for an application to keep some reference to an
3211 * internal state machine that is processing messages on the
3212 * association. Note that the setting of this value only effects
3213 * received messages from the peer and does not effect the value that is
3214 * saved with outbound messages.
3215 */
3216 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3217 unsigned int optlen)
3218 {
3219 struct sctp_assoc_value params;
3220 struct sctp_sock *sp;
3221 struct sctp_association *asoc;
3222
3223 if (optlen != sizeof(struct sctp_assoc_value))
3224 return -EINVAL;
3225 if (copy_from_user(&params, optval, optlen))
3226 return -EFAULT;
3227
3228 sp = sctp_sk(sk);
3229
3230 if (params.assoc_id != 0) {
3231 asoc = sctp_id2assoc(sk, params.assoc_id);
3232 if (!asoc)
3233 return -EINVAL;
3234 asoc->default_rcv_context = params.assoc_value;
3235 } else {
3236 sp->default_rcv_context = params.assoc_value;
3237 }
3238
3239 return 0;
3240 }
3241
3242 /*
3243 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3244 *
3245 * This options will at a minimum specify if the implementation is doing
3246 * fragmented interleave. Fragmented interleave, for a one to many
3247 * socket, is when subsequent calls to receive a message may return
3248 * parts of messages from different associations. Some implementations
3249 * may allow you to turn this value on or off. If so, when turned off,
3250 * no fragment interleave will occur (which will cause a head of line
3251 * blocking amongst multiple associations sharing the same one to many
3252 * socket). When this option is turned on, then each receive call may
3253 * come from a different association (thus the user must receive data
3254 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3255 * association each receive belongs to.
3256 *
3257 * This option takes a boolean value. A non-zero value indicates that
3258 * fragmented interleave is on. A value of zero indicates that
3259 * fragmented interleave is off.
3260 *
3261 * Note that it is important that an implementation that allows this
3262 * option to be turned on, have it off by default. Otherwise an unaware
3263 * application using the one to many model may become confused and act
3264 * incorrectly.
3265 */
3266 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3267 char __user *optval,
3268 unsigned int optlen)
3269 {
3270 int val;
3271
3272 if (optlen != sizeof(int))
3273 return -EINVAL;
3274 if (get_user(val, (int __user *)optval))
3275 return -EFAULT;
3276
3277 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3278
3279 return 0;
3280 }
3281
3282 /*
3283 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3284 * (SCTP_PARTIAL_DELIVERY_POINT)
3285 *
3286 * This option will set or get the SCTP partial delivery point. This
3287 * point is the size of a message where the partial delivery API will be
3288 * invoked to help free up rwnd space for the peer. Setting this to a
3289 * lower value will cause partial deliveries to happen more often. The
3290 * calls argument is an integer that sets or gets the partial delivery
3291 * point. Note also that the call will fail if the user attempts to set
3292 * this value larger than the socket receive buffer size.
3293 *
3294 * Note that any single message having a length smaller than or equal to
3295 * the SCTP partial delivery point will be delivered in one single read
3296 * call as long as the user provided buffer is large enough to hold the
3297 * message.
3298 */
3299 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3300 char __user *optval,
3301 unsigned int optlen)
3302 {
3303 u32 val;
3304
3305 if (optlen != sizeof(u32))
3306 return -EINVAL;
3307 if (get_user(val, (int __user *)optval))
3308 return -EFAULT;
3309
3310 /* Note: We double the receive buffer from what the user sets
3311 * it to be, also initial rwnd is based on rcvbuf/2.
3312 */
3313 if (val > (sk->sk_rcvbuf >> 1))
3314 return -EINVAL;
3315
3316 sctp_sk(sk)->pd_point = val;
3317
3318 return 0; /* is this the right error code? */
3319 }
3320
3321 /*
3322 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3323 *
3324 * This option will allow a user to change the maximum burst of packets
3325 * that can be emitted by this association. Note that the default value
3326 * is 4, and some implementations may restrict this setting so that it
3327 * can only be lowered.
3328 *
3329 * NOTE: This text doesn't seem right. Do this on a socket basis with
3330 * future associations inheriting the socket value.
3331 */
3332 static int sctp_setsockopt_maxburst(struct sock *sk,
3333 char __user *optval,
3334 unsigned int optlen)
3335 {
3336 struct sctp_assoc_value params;
3337 struct sctp_sock *sp;
3338 struct sctp_association *asoc;
3339 int val;
3340 int assoc_id = 0;
3341
3342 if (optlen == sizeof(int)) {
3343 pr_warn_ratelimited(DEPRECATED
3344 "%s (pid %d) "
3345 "Use of int in max_burst socket option deprecated.\n"
3346 "Use struct sctp_assoc_value instead\n",
3347 current->comm, task_pid_nr(current));
3348 if (copy_from_user(&val, optval, optlen))
3349 return -EFAULT;
3350 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3351 if (copy_from_user(&params, optval, optlen))
3352 return -EFAULT;
3353 val = params.assoc_value;
3354 assoc_id = params.assoc_id;
3355 } else
3356 return -EINVAL;
3357
3358 sp = sctp_sk(sk);
3359
3360 if (assoc_id != 0) {
3361 asoc = sctp_id2assoc(sk, assoc_id);
3362 if (!asoc)
3363 return -EINVAL;
3364 asoc->max_burst = val;
3365 } else
3366 sp->max_burst = val;
3367
3368 return 0;
3369 }
3370
3371 /*
3372 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3373 *
3374 * This set option adds a chunk type that the user is requesting to be
3375 * received only in an authenticated way. Changes to the list of chunks
3376 * will only effect future associations on the socket.
3377 */
3378 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3379 char __user *optval,
3380 unsigned int optlen)
3381 {
3382 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3383 struct sctp_authchunk val;
3384
3385 if (!ep->auth_enable)
3386 return -EACCES;
3387
3388 if (optlen != sizeof(struct sctp_authchunk))
3389 return -EINVAL;
3390 if (copy_from_user(&val, optval, optlen))
3391 return -EFAULT;
3392
3393 switch (val.sauth_chunk) {
3394 case SCTP_CID_INIT:
3395 case SCTP_CID_INIT_ACK:
3396 case SCTP_CID_SHUTDOWN_COMPLETE:
3397 case SCTP_CID_AUTH:
3398 return -EINVAL;
3399 }
3400
3401 /* add this chunk id to the endpoint */
3402 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3403 }
3404
3405 /*
3406 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3407 *
3408 * This option gets or sets the list of HMAC algorithms that the local
3409 * endpoint requires the peer to use.
3410 */
3411 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3412 char __user *optval,
3413 unsigned int optlen)
3414 {
3415 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3416 struct sctp_hmacalgo *hmacs;
3417 u32 idents;
3418 int err;
3419
3420 if (!ep->auth_enable)
3421 return -EACCES;
3422
3423 if (optlen < sizeof(struct sctp_hmacalgo))
3424 return -EINVAL;
3425
3426 hmacs = memdup_user(optval, optlen);
3427 if (IS_ERR(hmacs))
3428 return PTR_ERR(hmacs);
3429
3430 idents = hmacs->shmac_num_idents;
3431 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3432 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3433 err = -EINVAL;
3434 goto out;
3435 }
3436
3437 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3438 out:
3439 kfree(hmacs);
3440 return err;
3441 }
3442
3443 /*
3444 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3445 *
3446 * This option will set a shared secret key which is used to build an
3447 * association shared key.
3448 */
3449 static int sctp_setsockopt_auth_key(struct sock *sk,
3450 char __user *optval,
3451 unsigned int optlen)
3452 {
3453 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3454 struct sctp_authkey *authkey;
3455 struct sctp_association *asoc;
3456 int ret;
3457
3458 if (!ep->auth_enable)
3459 return -EACCES;
3460
3461 if (optlen <= sizeof(struct sctp_authkey))
3462 return -EINVAL;
3463
3464 authkey = memdup_user(optval, optlen);
3465 if (IS_ERR(authkey))
3466 return PTR_ERR(authkey);
3467
3468 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3469 ret = -EINVAL;
3470 goto out;
3471 }
3472
3473 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3474 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3475 ret = -EINVAL;
3476 goto out;
3477 }
3478
3479 ret = sctp_auth_set_key(ep, asoc, authkey);
3480 out:
3481 kzfree(authkey);
3482 return ret;
3483 }
3484
3485 /*
3486 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3487 *
3488 * This option will get or set the active shared key to be used to build
3489 * the association shared key.
3490 */
3491 static int sctp_setsockopt_active_key(struct sock *sk,
3492 char __user *optval,
3493 unsigned int optlen)
3494 {
3495 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3496 struct sctp_authkeyid val;
3497 struct sctp_association *asoc;
3498
3499 if (!ep->auth_enable)
3500 return -EACCES;
3501
3502 if (optlen != sizeof(struct sctp_authkeyid))
3503 return -EINVAL;
3504 if (copy_from_user(&val, optval, optlen))
3505 return -EFAULT;
3506
3507 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3508 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3509 return -EINVAL;
3510
3511 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3512 }
3513
3514 /*
3515 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3516 *
3517 * This set option will delete a shared secret key from use.
3518 */
3519 static int sctp_setsockopt_del_key(struct sock *sk,
3520 char __user *optval,
3521 unsigned int optlen)
3522 {
3523 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3524 struct sctp_authkeyid val;
3525 struct sctp_association *asoc;
3526
3527 if (!ep->auth_enable)
3528 return -EACCES;
3529
3530 if (optlen != sizeof(struct sctp_authkeyid))
3531 return -EINVAL;
3532 if (copy_from_user(&val, optval, optlen))
3533 return -EFAULT;
3534
3535 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3536 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3537 return -EINVAL;
3538
3539 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3540
3541 }
3542
3543 /*
3544 * 8.1.23 SCTP_AUTO_ASCONF
3545 *
3546 * This option will enable or disable the use of the automatic generation of
3547 * ASCONF chunks to add and delete addresses to an existing association. Note
3548 * that this option has two caveats namely: a) it only affects sockets that
3549 * are bound to all addresses available to the SCTP stack, and b) the system
3550 * administrator may have an overriding control that turns the ASCONF feature
3551 * off no matter what setting the socket option may have.
3552 * This option expects an integer boolean flag, where a non-zero value turns on
3553 * the option, and a zero value turns off the option.
3554 * Note. In this implementation, socket operation overrides default parameter
3555 * being set by sysctl as well as FreeBSD implementation
3556 */
3557 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3558 unsigned int optlen)
3559 {
3560 int val;
3561 struct sctp_sock *sp = sctp_sk(sk);
3562
3563 if (optlen < sizeof(int))
3564 return -EINVAL;
3565 if (get_user(val, (int __user *)optval))
3566 return -EFAULT;
3567 if (!sctp_is_ep_boundall(sk) && val)
3568 return -EINVAL;
3569 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3570 return 0;
3571
3572 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3573 if (val == 0 && sp->do_auto_asconf) {
3574 list_del(&sp->auto_asconf_list);
3575 sp->do_auto_asconf = 0;
3576 } else if (val && !sp->do_auto_asconf) {
3577 list_add_tail(&sp->auto_asconf_list,
3578 &sock_net(sk)->sctp.auto_asconf_splist);
3579 sp->do_auto_asconf = 1;
3580 }
3581 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3582 return 0;
3583 }
3584
3585 /*
3586 * SCTP_PEER_ADDR_THLDS
3587 *
3588 * This option allows us to alter the partially failed threshold for one or all
3589 * transports in an association. See Section 6.1 of:
3590 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3591 */
3592 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3593 char __user *optval,
3594 unsigned int optlen)
3595 {
3596 struct sctp_paddrthlds val;
3597 struct sctp_transport *trans;
3598 struct sctp_association *asoc;
3599
3600 if (optlen < sizeof(struct sctp_paddrthlds))
3601 return -EINVAL;
3602 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3603 sizeof(struct sctp_paddrthlds)))
3604 return -EFAULT;
3605
3606
3607 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3608 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3609 if (!asoc)
3610 return -ENOENT;
3611 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3612 transports) {
3613 if (val.spt_pathmaxrxt)
3614 trans->pathmaxrxt = val.spt_pathmaxrxt;
3615 trans->pf_retrans = val.spt_pathpfthld;
3616 }
3617
3618 if (val.spt_pathmaxrxt)
3619 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3620 asoc->pf_retrans = val.spt_pathpfthld;
3621 } else {
3622 trans = sctp_addr_id2transport(sk, &val.spt_address,
3623 val.spt_assoc_id);
3624 if (!trans)
3625 return -ENOENT;
3626
3627 if (val.spt_pathmaxrxt)
3628 trans->pathmaxrxt = val.spt_pathmaxrxt;
3629 trans->pf_retrans = val.spt_pathpfthld;
3630 }
3631
3632 return 0;
3633 }
3634
3635 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3636 char __user *optval,
3637 unsigned int optlen)
3638 {
3639 int val;
3640
3641 if (optlen < sizeof(int))
3642 return -EINVAL;
3643 if (get_user(val, (int __user *) optval))
3644 return -EFAULT;
3645
3646 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3647
3648 return 0;
3649 }
3650
3651 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3652 char __user *optval,
3653 unsigned int optlen)
3654 {
3655 int val;
3656
3657 if (optlen < sizeof(int))
3658 return -EINVAL;
3659 if (get_user(val, (int __user *) optval))
3660 return -EFAULT;
3661
3662 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3663
3664 return 0;
3665 }
3666
3667 static int sctp_setsockopt_pr_supported(struct sock *sk,
3668 char __user *optval,
3669 unsigned int optlen)
3670 {
3671 struct sctp_assoc_value params;
3672 struct sctp_association *asoc;
3673 int retval = -EINVAL;
3674
3675 if (optlen != sizeof(params))
3676 goto out;
3677
3678 if (copy_from_user(&params, optval, optlen)) {
3679 retval = -EFAULT;
3680 goto out;
3681 }
3682
3683 asoc = sctp_id2assoc(sk, params.assoc_id);
3684 if (asoc) {
3685 asoc->prsctp_enable = !!params.assoc_value;
3686 } else if (!params.assoc_id) {
3687 struct sctp_sock *sp = sctp_sk(sk);
3688
3689 sp->ep->prsctp_enable = !!params.assoc_value;
3690 } else {
3691 goto out;
3692 }
3693
3694 retval = 0;
3695
3696 out:
3697 return retval;
3698 }
3699
3700 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3701 char __user *optval,
3702 unsigned int optlen)
3703 {
3704 struct sctp_default_prinfo info;
3705 struct sctp_association *asoc;
3706 int retval = -EINVAL;
3707
3708 if (optlen != sizeof(info))
3709 goto out;
3710
3711 if (copy_from_user(&info, optval, sizeof(info))) {
3712 retval = -EFAULT;
3713 goto out;
3714 }
3715
3716 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3717 goto out;
3718
3719 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3720 info.pr_value = 0;
3721
3722 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3723 if (asoc) {
3724 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3725 asoc->default_timetolive = info.pr_value;
3726 } else if (!info.pr_assoc_id) {
3727 struct sctp_sock *sp = sctp_sk(sk);
3728
3729 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3730 sp->default_timetolive = info.pr_value;
3731 } else {
3732 goto out;
3733 }
3734
3735 retval = 0;
3736
3737 out:
3738 return retval;
3739 }
3740
3741 /* API 6.2 setsockopt(), getsockopt()
3742 *
3743 * Applications use setsockopt() and getsockopt() to set or retrieve
3744 * socket options. Socket options are used to change the default
3745 * behavior of sockets calls. They are described in Section 7.
3746 *
3747 * The syntax is:
3748 *
3749 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3750 * int __user *optlen);
3751 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3752 * int optlen);
3753 *
3754 * sd - the socket descript.
3755 * level - set to IPPROTO_SCTP for all SCTP options.
3756 * optname - the option name.
3757 * optval - the buffer to store the value of the option.
3758 * optlen - the size of the buffer.
3759 */
3760 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3761 char __user *optval, unsigned int optlen)
3762 {
3763 int retval = 0;
3764
3765 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3766
3767 /* I can hardly begin to describe how wrong this is. This is
3768 * so broken as to be worse than useless. The API draft
3769 * REALLY is NOT helpful here... I am not convinced that the
3770 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3771 * are at all well-founded.
3772 */
3773 if (level != SOL_SCTP) {
3774 struct sctp_af *af = sctp_sk(sk)->pf->af;
3775 retval = af->setsockopt(sk, level, optname, optval, optlen);
3776 goto out_nounlock;
3777 }
3778
3779 lock_sock(sk);
3780
3781 switch (optname) {
3782 case SCTP_SOCKOPT_BINDX_ADD:
3783 /* 'optlen' is the size of the addresses buffer. */
3784 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3785 optlen, SCTP_BINDX_ADD_ADDR);
3786 break;
3787
3788 case SCTP_SOCKOPT_BINDX_REM:
3789 /* 'optlen' is the size of the addresses buffer. */
3790 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3791 optlen, SCTP_BINDX_REM_ADDR);
3792 break;
3793
3794 case SCTP_SOCKOPT_CONNECTX_OLD:
3795 /* 'optlen' is the size of the addresses buffer. */
3796 retval = sctp_setsockopt_connectx_old(sk,
3797 (struct sockaddr __user *)optval,
3798 optlen);
3799 break;
3800
3801 case SCTP_SOCKOPT_CONNECTX:
3802 /* 'optlen' is the size of the addresses buffer. */
3803 retval = sctp_setsockopt_connectx(sk,
3804 (struct sockaddr __user *)optval,
3805 optlen);
3806 break;
3807
3808 case SCTP_DISABLE_FRAGMENTS:
3809 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3810 break;
3811
3812 case SCTP_EVENTS:
3813 retval = sctp_setsockopt_events(sk, optval, optlen);
3814 break;
3815
3816 case SCTP_AUTOCLOSE:
3817 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3818 break;
3819
3820 case SCTP_PEER_ADDR_PARAMS:
3821 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3822 break;
3823
3824 case SCTP_DELAYED_SACK:
3825 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3826 break;
3827 case SCTP_PARTIAL_DELIVERY_POINT:
3828 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3829 break;
3830
3831 case SCTP_INITMSG:
3832 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3833 break;
3834 case SCTP_DEFAULT_SEND_PARAM:
3835 retval = sctp_setsockopt_default_send_param(sk, optval,
3836 optlen);
3837 break;
3838 case SCTP_DEFAULT_SNDINFO:
3839 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3840 break;
3841 case SCTP_PRIMARY_ADDR:
3842 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3843 break;
3844 case SCTP_SET_PEER_PRIMARY_ADDR:
3845 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3846 break;
3847 case SCTP_NODELAY:
3848 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3849 break;
3850 case SCTP_RTOINFO:
3851 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3852 break;
3853 case SCTP_ASSOCINFO:
3854 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3855 break;
3856 case SCTP_I_WANT_MAPPED_V4_ADDR:
3857 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3858 break;
3859 case SCTP_MAXSEG:
3860 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3861 break;
3862 case SCTP_ADAPTATION_LAYER:
3863 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3864 break;
3865 case SCTP_CONTEXT:
3866 retval = sctp_setsockopt_context(sk, optval, optlen);
3867 break;
3868 case SCTP_FRAGMENT_INTERLEAVE:
3869 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3870 break;
3871 case SCTP_MAX_BURST:
3872 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3873 break;
3874 case SCTP_AUTH_CHUNK:
3875 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3876 break;
3877 case SCTP_HMAC_IDENT:
3878 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3879 break;
3880 case SCTP_AUTH_KEY:
3881 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3882 break;
3883 case SCTP_AUTH_ACTIVE_KEY:
3884 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3885 break;
3886 case SCTP_AUTH_DELETE_KEY:
3887 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3888 break;
3889 case SCTP_AUTO_ASCONF:
3890 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3891 break;
3892 case SCTP_PEER_ADDR_THLDS:
3893 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3894 break;
3895 case SCTP_RECVRCVINFO:
3896 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3897 break;
3898 case SCTP_RECVNXTINFO:
3899 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3900 break;
3901 case SCTP_PR_SUPPORTED:
3902 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3903 break;
3904 case SCTP_DEFAULT_PRINFO:
3905 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3906 break;
3907 default:
3908 retval = -ENOPROTOOPT;
3909 break;
3910 }
3911
3912 release_sock(sk);
3913
3914 out_nounlock:
3915 return retval;
3916 }
3917
3918 /* API 3.1.6 connect() - UDP Style Syntax
3919 *
3920 * An application may use the connect() call in the UDP model to initiate an
3921 * association without sending data.
3922 *
3923 * The syntax is:
3924 *
3925 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3926 *
3927 * sd: the socket descriptor to have a new association added to.
3928 *
3929 * nam: the address structure (either struct sockaddr_in or struct
3930 * sockaddr_in6 defined in RFC2553 [7]).
3931 *
3932 * len: the size of the address.
3933 */
3934 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3935 int addr_len)
3936 {
3937 int err = 0;
3938 struct sctp_af *af;
3939
3940 lock_sock(sk);
3941
3942 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3943 addr, addr_len);
3944
3945 /* Validate addr_len before calling common connect/connectx routine. */
3946 af = sctp_get_af_specific(addr->sa_family);
3947 if (!af || addr_len < af->sockaddr_len) {
3948 err = -EINVAL;
3949 } else {
3950 /* Pass correct addr len to common routine (so it knows there
3951 * is only one address being passed.
3952 */
3953 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3954 }
3955
3956 release_sock(sk);
3957 return err;
3958 }
3959
3960 /* FIXME: Write comments. */
3961 static int sctp_disconnect(struct sock *sk, int flags)
3962 {
3963 return -EOPNOTSUPP; /* STUB */
3964 }
3965
3966 /* 4.1.4 accept() - TCP Style Syntax
3967 *
3968 * Applications use accept() call to remove an established SCTP
3969 * association from the accept queue of the endpoint. A new socket
3970 * descriptor will be returned from accept() to represent the newly
3971 * formed association.
3972 */
3973 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3974 {
3975 struct sctp_sock *sp;
3976 struct sctp_endpoint *ep;
3977 struct sock *newsk = NULL;
3978 struct sctp_association *asoc;
3979 long timeo;
3980 int error = 0;
3981
3982 lock_sock(sk);
3983
3984 sp = sctp_sk(sk);
3985 ep = sp->ep;
3986
3987 if (!sctp_style(sk, TCP)) {
3988 error = -EOPNOTSUPP;
3989 goto out;
3990 }
3991
3992 if (!sctp_sstate(sk, LISTENING)) {
3993 error = -EINVAL;
3994 goto out;
3995 }
3996
3997 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3998
3999 error = sctp_wait_for_accept(sk, timeo);
4000 if (error)
4001 goto out;
4002
4003 /* We treat the list of associations on the endpoint as the accept
4004 * queue and pick the first association on the list.
4005 */
4006 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4007
4008 newsk = sp->pf->create_accept_sk(sk, asoc);
4009 if (!newsk) {
4010 error = -ENOMEM;
4011 goto out;
4012 }
4013
4014 /* Populate the fields of the newsk from the oldsk and migrate the
4015 * asoc to the newsk.
4016 */
4017 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4018
4019 out:
4020 release_sock(sk);
4021 *err = error;
4022 return newsk;
4023 }
4024
4025 /* The SCTP ioctl handler. */
4026 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4027 {
4028 int rc = -ENOTCONN;
4029
4030 lock_sock(sk);
4031
4032 /*
4033 * SEQPACKET-style sockets in LISTENING state are valid, for
4034 * SCTP, so only discard TCP-style sockets in LISTENING state.
4035 */
4036 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4037 goto out;
4038
4039 switch (cmd) {
4040 case SIOCINQ: {
4041 struct sk_buff *skb;
4042 unsigned int amount = 0;
4043
4044 skb = skb_peek(&sk->sk_receive_queue);
4045 if (skb != NULL) {
4046 /*
4047 * We will only return the amount of this packet since
4048 * that is all that will be read.
4049 */
4050 amount = skb->len;
4051 }
4052 rc = put_user(amount, (int __user *)arg);
4053 break;
4054 }
4055 default:
4056 rc = -ENOIOCTLCMD;
4057 break;
4058 }
4059 out:
4060 release_sock(sk);
4061 return rc;
4062 }
4063
4064 /* This is the function which gets called during socket creation to
4065 * initialized the SCTP-specific portion of the sock.
4066 * The sock structure should already be zero-filled memory.
4067 */
4068 static int sctp_init_sock(struct sock *sk)
4069 {
4070 struct net *net = sock_net(sk);
4071 struct sctp_sock *sp;
4072
4073 pr_debug("%s: sk:%p\n", __func__, sk);
4074
4075 sp = sctp_sk(sk);
4076
4077 /* Initialize the SCTP per socket area. */
4078 switch (sk->sk_type) {
4079 case SOCK_SEQPACKET:
4080 sp->type = SCTP_SOCKET_UDP;
4081 break;
4082 case SOCK_STREAM:
4083 sp->type = SCTP_SOCKET_TCP;
4084 break;
4085 default:
4086 return -ESOCKTNOSUPPORT;
4087 }
4088
4089 sk->sk_gso_type = SKB_GSO_SCTP;
4090
4091 /* Initialize default send parameters. These parameters can be
4092 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4093 */
4094 sp->default_stream = 0;
4095 sp->default_ppid = 0;
4096 sp->default_flags = 0;
4097 sp->default_context = 0;
4098 sp->default_timetolive = 0;
4099
4100 sp->default_rcv_context = 0;
4101 sp->max_burst = net->sctp.max_burst;
4102
4103 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4104
4105 /* Initialize default setup parameters. These parameters
4106 * can be modified with the SCTP_INITMSG socket option or
4107 * overridden by the SCTP_INIT CMSG.
4108 */
4109 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4110 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4111 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4112 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4113
4114 /* Initialize default RTO related parameters. These parameters can
4115 * be modified for with the SCTP_RTOINFO socket option.
4116 */
4117 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4118 sp->rtoinfo.srto_max = net->sctp.rto_max;
4119 sp->rtoinfo.srto_min = net->sctp.rto_min;
4120
4121 /* Initialize default association related parameters. These parameters
4122 * can be modified with the SCTP_ASSOCINFO socket option.
4123 */
4124 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4125 sp->assocparams.sasoc_number_peer_destinations = 0;
4126 sp->assocparams.sasoc_peer_rwnd = 0;
4127 sp->assocparams.sasoc_local_rwnd = 0;
4128 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4129
4130 /* Initialize default event subscriptions. By default, all the
4131 * options are off.
4132 */
4133 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4134
4135 /* Default Peer Address Parameters. These defaults can
4136 * be modified via SCTP_PEER_ADDR_PARAMS
4137 */
4138 sp->hbinterval = net->sctp.hb_interval;
4139 sp->pathmaxrxt = net->sctp.max_retrans_path;
4140 sp->pathmtu = 0; /* allow default discovery */
4141 sp->sackdelay = net->sctp.sack_timeout;
4142 sp->sackfreq = 2;
4143 sp->param_flags = SPP_HB_ENABLE |
4144 SPP_PMTUD_ENABLE |
4145 SPP_SACKDELAY_ENABLE;
4146
4147 /* If enabled no SCTP message fragmentation will be performed.
4148 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4149 */
4150 sp->disable_fragments = 0;
4151
4152 /* Enable Nagle algorithm by default. */
4153 sp->nodelay = 0;
4154
4155 sp->recvrcvinfo = 0;
4156 sp->recvnxtinfo = 0;
4157
4158 /* Enable by default. */
4159 sp->v4mapped = 1;
4160
4161 /* Auto-close idle associations after the configured
4162 * number of seconds. A value of 0 disables this
4163 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4164 * for UDP-style sockets only.
4165 */
4166 sp->autoclose = 0;
4167
4168 /* User specified fragmentation limit. */
4169 sp->user_frag = 0;
4170
4171 sp->adaptation_ind = 0;
4172
4173 sp->pf = sctp_get_pf_specific(sk->sk_family);
4174
4175 /* Control variables for partial data delivery. */
4176 atomic_set(&sp->pd_mode, 0);
4177 skb_queue_head_init(&sp->pd_lobby);
4178 sp->frag_interleave = 0;
4179
4180 /* Create a per socket endpoint structure. Even if we
4181 * change the data structure relationships, this may still
4182 * be useful for storing pre-connect address information.
4183 */
4184 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4185 if (!sp->ep)
4186 return -ENOMEM;
4187
4188 sp->hmac = NULL;
4189
4190 sk->sk_destruct = sctp_destruct_sock;
4191
4192 SCTP_DBG_OBJCNT_INC(sock);
4193
4194 local_bh_disable();
4195 percpu_counter_inc(&sctp_sockets_allocated);
4196 sock_prot_inuse_add(net, sk->sk_prot, 1);
4197
4198 /* Nothing can fail after this block, otherwise
4199 * sctp_destroy_sock() will be called without addr_wq_lock held
4200 */
4201 if (net->sctp.default_auto_asconf) {
4202 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4203 list_add_tail(&sp->auto_asconf_list,
4204 &net->sctp.auto_asconf_splist);
4205 sp->do_auto_asconf = 1;
4206 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4207 } else {
4208 sp->do_auto_asconf = 0;
4209 }
4210
4211 local_bh_enable();
4212
4213 return 0;
4214 }
4215
4216 /* Cleanup any SCTP per socket resources. Must be called with
4217 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4218 */
4219 static void sctp_destroy_sock(struct sock *sk)
4220 {
4221 struct sctp_sock *sp;
4222
4223 pr_debug("%s: sk:%p\n", __func__, sk);
4224
4225 /* Release our hold on the endpoint. */
4226 sp = sctp_sk(sk);
4227 /* This could happen during socket init, thus we bail out
4228 * early, since the rest of the below is not setup either.
4229 */
4230 if (sp->ep == NULL)
4231 return;
4232
4233 if (sp->do_auto_asconf) {
4234 sp->do_auto_asconf = 0;
4235 list_del(&sp->auto_asconf_list);
4236 }
4237 sctp_endpoint_free(sp->ep);
4238 local_bh_disable();
4239 percpu_counter_dec(&sctp_sockets_allocated);
4240 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4241 local_bh_enable();
4242 }
4243
4244 /* Triggered when there are no references on the socket anymore */
4245 static void sctp_destruct_sock(struct sock *sk)
4246 {
4247 struct sctp_sock *sp = sctp_sk(sk);
4248
4249 /* Free up the HMAC transform. */
4250 crypto_free_shash(sp->hmac);
4251
4252 inet_sock_destruct(sk);
4253 }
4254
4255 /* API 4.1.7 shutdown() - TCP Style Syntax
4256 * int shutdown(int socket, int how);
4257 *
4258 * sd - the socket descriptor of the association to be closed.
4259 * how - Specifies the type of shutdown. The values are
4260 * as follows:
4261 * SHUT_RD
4262 * Disables further receive operations. No SCTP
4263 * protocol action is taken.
4264 * SHUT_WR
4265 * Disables further send operations, and initiates
4266 * the SCTP shutdown sequence.
4267 * SHUT_RDWR
4268 * Disables further send and receive operations
4269 * and initiates the SCTP shutdown sequence.
4270 */
4271 static void sctp_shutdown(struct sock *sk, int how)
4272 {
4273 struct net *net = sock_net(sk);
4274 struct sctp_endpoint *ep;
4275 struct sctp_association *asoc;
4276
4277 if (!sctp_style(sk, TCP))
4278 return;
4279
4280 if (how & SEND_SHUTDOWN) {
4281 sk->sk_state = SCTP_SS_CLOSING;
4282 ep = sctp_sk(sk)->ep;
4283 if (!list_empty(&ep->asocs)) {
4284 asoc = list_entry(ep->asocs.next,
4285 struct sctp_association, asocs);
4286 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4287 }
4288 }
4289 }
4290
4291 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4292 struct sctp_info *info)
4293 {
4294 struct sctp_transport *prim;
4295 struct list_head *pos;
4296 int mask;
4297
4298 memset(info, 0, sizeof(*info));
4299 if (!asoc) {
4300 struct sctp_sock *sp = sctp_sk(sk);
4301
4302 info->sctpi_s_autoclose = sp->autoclose;
4303 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4304 info->sctpi_s_pd_point = sp->pd_point;
4305 info->sctpi_s_nodelay = sp->nodelay;
4306 info->sctpi_s_disable_fragments = sp->disable_fragments;
4307 info->sctpi_s_v4mapped = sp->v4mapped;
4308 info->sctpi_s_frag_interleave = sp->frag_interleave;
4309 info->sctpi_s_type = sp->type;
4310
4311 return 0;
4312 }
4313
4314 info->sctpi_tag = asoc->c.my_vtag;
4315 info->sctpi_state = asoc->state;
4316 info->sctpi_rwnd = asoc->a_rwnd;
4317 info->sctpi_unackdata = asoc->unack_data;
4318 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4319 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4320 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4321 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4322 info->sctpi_inqueue++;
4323 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4324 info->sctpi_outqueue++;
4325 info->sctpi_overall_error = asoc->overall_error_count;
4326 info->sctpi_max_burst = asoc->max_burst;
4327 info->sctpi_maxseg = asoc->frag_point;
4328 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4329 info->sctpi_peer_tag = asoc->c.peer_vtag;
4330
4331 mask = asoc->peer.ecn_capable << 1;
4332 mask = (mask | asoc->peer.ipv4_address) << 1;
4333 mask = (mask | asoc->peer.ipv6_address) << 1;
4334 mask = (mask | asoc->peer.hostname_address) << 1;
4335 mask = (mask | asoc->peer.asconf_capable) << 1;
4336 mask = (mask | asoc->peer.prsctp_capable) << 1;
4337 mask = (mask | asoc->peer.auth_capable);
4338 info->sctpi_peer_capable = mask;
4339 mask = asoc->peer.sack_needed << 1;
4340 mask = (mask | asoc->peer.sack_generation) << 1;
4341 mask = (mask | asoc->peer.zero_window_announced);
4342 info->sctpi_peer_sack = mask;
4343
4344 info->sctpi_isacks = asoc->stats.isacks;
4345 info->sctpi_osacks = asoc->stats.osacks;
4346 info->sctpi_opackets = asoc->stats.opackets;
4347 info->sctpi_ipackets = asoc->stats.ipackets;
4348 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4349 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4350 info->sctpi_idupchunks = asoc->stats.idupchunks;
4351 info->sctpi_gapcnt = asoc->stats.gapcnt;
4352 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4353 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4354 info->sctpi_oodchunks = asoc->stats.oodchunks;
4355 info->sctpi_iodchunks = asoc->stats.iodchunks;
4356 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4357 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4358
4359 prim = asoc->peer.primary_path;
4360 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4361 sizeof(struct sockaddr_storage));
4362 info->sctpi_p_state = prim->state;
4363 info->sctpi_p_cwnd = prim->cwnd;
4364 info->sctpi_p_srtt = prim->srtt;
4365 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4366 info->sctpi_p_hbinterval = prim->hbinterval;
4367 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4368 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4369 info->sctpi_p_ssthresh = prim->ssthresh;
4370 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4371 info->sctpi_p_flight_size = prim->flight_size;
4372 info->sctpi_p_error = prim->error_count;
4373
4374 return 0;
4375 }
4376 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4377
4378 /* use callback to avoid exporting the core structure */
4379 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4380 {
4381 int err;
4382
4383 err = rhashtable_walk_init(&sctp_transport_hashtable, iter,
4384 GFP_KERNEL);
4385 if (err)
4386 return err;
4387
4388 err = rhashtable_walk_start(iter);
4389 if (err && err != -EAGAIN) {
4390 rhashtable_walk_exit(iter);
4391 return err;
4392 }
4393
4394 return 0;
4395 }
4396
4397 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4398 {
4399 rhashtable_walk_stop(iter);
4400 rhashtable_walk_exit(iter);
4401 }
4402
4403 struct sctp_transport *sctp_transport_get_next(struct net *net,
4404 struct rhashtable_iter *iter)
4405 {
4406 struct sctp_transport *t;
4407
4408 t = rhashtable_walk_next(iter);
4409 for (; t; t = rhashtable_walk_next(iter)) {
4410 if (IS_ERR(t)) {
4411 if (PTR_ERR(t) == -EAGAIN)
4412 continue;
4413 break;
4414 }
4415
4416 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4417 t->asoc->peer.primary_path == t)
4418 break;
4419 }
4420
4421 return t;
4422 }
4423
4424 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4425 struct rhashtable_iter *iter,
4426 int pos)
4427 {
4428 void *obj = SEQ_START_TOKEN;
4429
4430 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4431 !IS_ERR(obj))
4432 pos--;
4433
4434 return obj;
4435 }
4436
4437 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4438 void *p) {
4439 int err = 0;
4440 int hash = 0;
4441 struct sctp_ep_common *epb;
4442 struct sctp_hashbucket *head;
4443
4444 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4445 hash++, head++) {
4446 read_lock(&head->lock);
4447 sctp_for_each_hentry(epb, &head->chain) {
4448 err = cb(sctp_ep(epb), p);
4449 if (err)
4450 break;
4451 }
4452 read_unlock(&head->lock);
4453 }
4454
4455 return err;
4456 }
4457 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4458
4459 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4460 struct net *net,
4461 const union sctp_addr *laddr,
4462 const union sctp_addr *paddr, void *p)
4463 {
4464 struct sctp_transport *transport;
4465 int err = 0;
4466
4467 rcu_read_lock();
4468 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4469 if (!transport || !sctp_transport_hold(transport))
4470 goto out;
4471 err = cb(transport, p);
4472 sctp_transport_put(transport);
4473
4474 out:
4475 rcu_read_unlock();
4476 return err;
4477 }
4478 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4479
4480 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4481 struct net *net, int pos, void *p) {
4482 struct rhashtable_iter hti;
4483 void *obj;
4484 int err;
4485
4486 err = sctp_transport_walk_start(&hti);
4487 if (err)
4488 return err;
4489
4490 sctp_transport_get_idx(net, &hti, pos);
4491 obj = sctp_transport_get_next(net, &hti);
4492 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4493 struct sctp_transport *transport = obj;
4494
4495 if (!sctp_transport_hold(transport))
4496 continue;
4497 err = cb(transport, p);
4498 sctp_transport_put(transport);
4499 if (err)
4500 break;
4501 }
4502 sctp_transport_walk_stop(&hti);
4503
4504 return err;
4505 }
4506 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4507
4508 /* 7.2.1 Association Status (SCTP_STATUS)
4509
4510 * Applications can retrieve current status information about an
4511 * association, including association state, peer receiver window size,
4512 * number of unacked data chunks, and number of data chunks pending
4513 * receipt. This information is read-only.
4514 */
4515 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4516 char __user *optval,
4517 int __user *optlen)
4518 {
4519 struct sctp_status status;
4520 struct sctp_association *asoc = NULL;
4521 struct sctp_transport *transport;
4522 sctp_assoc_t associd;
4523 int retval = 0;
4524
4525 if (len < sizeof(status)) {
4526 retval = -EINVAL;
4527 goto out;
4528 }
4529
4530 len = sizeof(status);
4531 if (copy_from_user(&status, optval, len)) {
4532 retval = -EFAULT;
4533 goto out;
4534 }
4535
4536 associd = status.sstat_assoc_id;
4537 asoc = sctp_id2assoc(sk, associd);
4538 if (!asoc) {
4539 retval = -EINVAL;
4540 goto out;
4541 }
4542
4543 transport = asoc->peer.primary_path;
4544
4545 status.sstat_assoc_id = sctp_assoc2id(asoc);
4546 status.sstat_state = sctp_assoc_to_state(asoc);
4547 status.sstat_rwnd = asoc->peer.rwnd;
4548 status.sstat_unackdata = asoc->unack_data;
4549
4550 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4551 status.sstat_instrms = asoc->c.sinit_max_instreams;
4552 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4553 status.sstat_fragmentation_point = asoc->frag_point;
4554 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4555 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4556 transport->af_specific->sockaddr_len);
4557 /* Map ipv4 address into v4-mapped-on-v6 address. */
4558 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4559 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4560 status.sstat_primary.spinfo_state = transport->state;
4561 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4562 status.sstat_primary.spinfo_srtt = transport->srtt;
4563 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4564 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4565
4566 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4567 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4568
4569 if (put_user(len, optlen)) {
4570 retval = -EFAULT;
4571 goto out;
4572 }
4573
4574 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4575 __func__, len, status.sstat_state, status.sstat_rwnd,
4576 status.sstat_assoc_id);
4577
4578 if (copy_to_user(optval, &status, len)) {
4579 retval = -EFAULT;
4580 goto out;
4581 }
4582
4583 out:
4584 return retval;
4585 }
4586
4587
4588 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4589 *
4590 * Applications can retrieve information about a specific peer address
4591 * of an association, including its reachability state, congestion
4592 * window, and retransmission timer values. This information is
4593 * read-only.
4594 */
4595 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4596 char __user *optval,
4597 int __user *optlen)
4598 {
4599 struct sctp_paddrinfo pinfo;
4600 struct sctp_transport *transport;
4601 int retval = 0;
4602
4603 if (len < sizeof(pinfo)) {
4604 retval = -EINVAL;
4605 goto out;
4606 }
4607
4608 len = sizeof(pinfo);
4609 if (copy_from_user(&pinfo, optval, len)) {
4610 retval = -EFAULT;
4611 goto out;
4612 }
4613
4614 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4615 pinfo.spinfo_assoc_id);
4616 if (!transport)
4617 return -EINVAL;
4618
4619 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4620 pinfo.spinfo_state = transport->state;
4621 pinfo.spinfo_cwnd = transport->cwnd;
4622 pinfo.spinfo_srtt = transport->srtt;
4623 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4624 pinfo.spinfo_mtu = transport->pathmtu;
4625
4626 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4627 pinfo.spinfo_state = SCTP_ACTIVE;
4628
4629 if (put_user(len, optlen)) {
4630 retval = -EFAULT;
4631 goto out;
4632 }
4633
4634 if (copy_to_user(optval, &pinfo, len)) {
4635 retval = -EFAULT;
4636 goto out;
4637 }
4638
4639 out:
4640 return retval;
4641 }
4642
4643 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4644 *
4645 * This option is a on/off flag. If enabled no SCTP message
4646 * fragmentation will be performed. Instead if a message being sent
4647 * exceeds the current PMTU size, the message will NOT be sent and
4648 * instead a error will be indicated to the user.
4649 */
4650 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4651 char __user *optval, int __user *optlen)
4652 {
4653 int val;
4654
4655 if (len < sizeof(int))
4656 return -EINVAL;
4657
4658 len = sizeof(int);
4659 val = (sctp_sk(sk)->disable_fragments == 1);
4660 if (put_user(len, optlen))
4661 return -EFAULT;
4662 if (copy_to_user(optval, &val, len))
4663 return -EFAULT;
4664 return 0;
4665 }
4666
4667 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4668 *
4669 * This socket option is used to specify various notifications and
4670 * ancillary data the user wishes to receive.
4671 */
4672 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4673 int __user *optlen)
4674 {
4675 if (len <= 0)
4676 return -EINVAL;
4677 if (len > sizeof(struct sctp_event_subscribe))
4678 len = sizeof(struct sctp_event_subscribe);
4679 if (put_user(len, optlen))
4680 return -EFAULT;
4681 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4682 return -EFAULT;
4683 return 0;
4684 }
4685
4686 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4687 *
4688 * This socket option is applicable to the UDP-style socket only. When
4689 * set it will cause associations that are idle for more than the
4690 * specified number of seconds to automatically close. An association
4691 * being idle is defined an association that has NOT sent or received
4692 * user data. The special value of '0' indicates that no automatic
4693 * close of any associations should be performed. The option expects an
4694 * integer defining the number of seconds of idle time before an
4695 * association is closed.
4696 */
4697 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4698 {
4699 /* Applicable to UDP-style socket only */
4700 if (sctp_style(sk, TCP))
4701 return -EOPNOTSUPP;
4702 if (len < sizeof(int))
4703 return -EINVAL;
4704 len = sizeof(int);
4705 if (put_user(len, optlen))
4706 return -EFAULT;
4707 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4708 return -EFAULT;
4709 return 0;
4710 }
4711
4712 /* Helper routine to branch off an association to a new socket. */
4713 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4714 {
4715 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4716 struct sctp_sock *sp = sctp_sk(sk);
4717 struct socket *sock;
4718 int err = 0;
4719
4720 if (!asoc)
4721 return -EINVAL;
4722
4723 /* An association cannot be branched off from an already peeled-off
4724 * socket, nor is this supported for tcp style sockets.
4725 */
4726 if (!sctp_style(sk, UDP))
4727 return -EINVAL;
4728
4729 /* Create a new socket. */
4730 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4731 if (err < 0)
4732 return err;
4733
4734 sctp_copy_sock(sock->sk, sk, asoc);
4735
4736 /* Make peeled-off sockets more like 1-1 accepted sockets.
4737 * Set the daddr and initialize id to something more random
4738 */
4739 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4740
4741 /* Populate the fields of the newsk from the oldsk and migrate the
4742 * asoc to the newsk.
4743 */
4744 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4745
4746 *sockp = sock;
4747
4748 return err;
4749 }
4750 EXPORT_SYMBOL(sctp_do_peeloff);
4751
4752 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4753 {
4754 sctp_peeloff_arg_t peeloff;
4755 struct socket *newsock;
4756 struct file *newfile;
4757 int retval = 0;
4758
4759 if (len < sizeof(sctp_peeloff_arg_t))
4760 return -EINVAL;
4761 len = sizeof(sctp_peeloff_arg_t);
4762 if (copy_from_user(&peeloff, optval, len))
4763 return -EFAULT;
4764
4765 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4766 if (retval < 0)
4767 goto out;
4768
4769 /* Map the socket to an unused fd that can be returned to the user. */
4770 retval = get_unused_fd_flags(0);
4771 if (retval < 0) {
4772 sock_release(newsock);
4773 goto out;
4774 }
4775
4776 newfile = sock_alloc_file(newsock, 0, NULL);
4777 if (IS_ERR(newfile)) {
4778 put_unused_fd(retval);
4779 sock_release(newsock);
4780 return PTR_ERR(newfile);
4781 }
4782
4783 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4784 retval);
4785
4786 /* Return the fd mapped to the new socket. */
4787 if (put_user(len, optlen)) {
4788 fput(newfile);
4789 put_unused_fd(retval);
4790 return -EFAULT;
4791 }
4792 peeloff.sd = retval;
4793 if (copy_to_user(optval, &peeloff, len)) {
4794 fput(newfile);
4795 put_unused_fd(retval);
4796 return -EFAULT;
4797 }
4798 fd_install(retval, newfile);
4799 out:
4800 return retval;
4801 }
4802
4803 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4804 *
4805 * Applications can enable or disable heartbeats for any peer address of
4806 * an association, modify an address's heartbeat interval, force a
4807 * heartbeat to be sent immediately, and adjust the address's maximum
4808 * number of retransmissions sent before an address is considered
4809 * unreachable. The following structure is used to access and modify an
4810 * address's parameters:
4811 *
4812 * struct sctp_paddrparams {
4813 * sctp_assoc_t spp_assoc_id;
4814 * struct sockaddr_storage spp_address;
4815 * uint32_t spp_hbinterval;
4816 * uint16_t spp_pathmaxrxt;
4817 * uint32_t spp_pathmtu;
4818 * uint32_t spp_sackdelay;
4819 * uint32_t spp_flags;
4820 * };
4821 *
4822 * spp_assoc_id - (one-to-many style socket) This is filled in the
4823 * application, and identifies the association for
4824 * this query.
4825 * spp_address - This specifies which address is of interest.
4826 * spp_hbinterval - This contains the value of the heartbeat interval,
4827 * in milliseconds. If a value of zero
4828 * is present in this field then no changes are to
4829 * be made to this parameter.
4830 * spp_pathmaxrxt - This contains the maximum number of
4831 * retransmissions before this address shall be
4832 * considered unreachable. If a value of zero
4833 * is present in this field then no changes are to
4834 * be made to this parameter.
4835 * spp_pathmtu - When Path MTU discovery is disabled the value
4836 * specified here will be the "fixed" path mtu.
4837 * Note that if the spp_address field is empty
4838 * then all associations on this address will
4839 * have this fixed path mtu set upon them.
4840 *
4841 * spp_sackdelay - When delayed sack is enabled, this value specifies
4842 * the number of milliseconds that sacks will be delayed
4843 * for. This value will apply to all addresses of an
4844 * association if the spp_address field is empty. Note
4845 * also, that if delayed sack is enabled and this
4846 * value is set to 0, no change is made to the last
4847 * recorded delayed sack timer value.
4848 *
4849 * spp_flags - These flags are used to control various features
4850 * on an association. The flag field may contain
4851 * zero or more of the following options.
4852 *
4853 * SPP_HB_ENABLE - Enable heartbeats on the
4854 * specified address. Note that if the address
4855 * field is empty all addresses for the association
4856 * have heartbeats enabled upon them.
4857 *
4858 * SPP_HB_DISABLE - Disable heartbeats on the
4859 * speicifed address. Note that if the address
4860 * field is empty all addresses for the association
4861 * will have their heartbeats disabled. Note also
4862 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4863 * mutually exclusive, only one of these two should
4864 * be specified. Enabling both fields will have
4865 * undetermined results.
4866 *
4867 * SPP_HB_DEMAND - Request a user initiated heartbeat
4868 * to be made immediately.
4869 *
4870 * SPP_PMTUD_ENABLE - This field will enable PMTU
4871 * discovery upon the specified address. Note that
4872 * if the address feild is empty then all addresses
4873 * on the association are effected.
4874 *
4875 * SPP_PMTUD_DISABLE - This field will disable PMTU
4876 * discovery upon the specified address. Note that
4877 * if the address feild is empty then all addresses
4878 * on the association are effected. Not also that
4879 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4880 * exclusive. Enabling both will have undetermined
4881 * results.
4882 *
4883 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4884 * on delayed sack. The time specified in spp_sackdelay
4885 * is used to specify the sack delay for this address. Note
4886 * that if spp_address is empty then all addresses will
4887 * enable delayed sack and take on the sack delay
4888 * value specified in spp_sackdelay.
4889 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4890 * off delayed sack. If the spp_address field is blank then
4891 * delayed sack is disabled for the entire association. Note
4892 * also that this field is mutually exclusive to
4893 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4894 * results.
4895 */
4896 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4897 char __user *optval, int __user *optlen)
4898 {
4899 struct sctp_paddrparams params;
4900 struct sctp_transport *trans = NULL;
4901 struct sctp_association *asoc = NULL;
4902 struct sctp_sock *sp = sctp_sk(sk);
4903
4904 if (len < sizeof(struct sctp_paddrparams))
4905 return -EINVAL;
4906 len = sizeof(struct sctp_paddrparams);
4907 if (copy_from_user(&params, optval, len))
4908 return -EFAULT;
4909
4910 /* If an address other than INADDR_ANY is specified, and
4911 * no transport is found, then the request is invalid.
4912 */
4913 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4914 trans = sctp_addr_id2transport(sk, &params.spp_address,
4915 params.spp_assoc_id);
4916 if (!trans) {
4917 pr_debug("%s: failed no transport\n", __func__);
4918 return -EINVAL;
4919 }
4920 }
4921
4922 /* Get association, if assoc_id != 0 and the socket is a one
4923 * to many style socket, and an association was not found, then
4924 * the id was invalid.
4925 */
4926 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4927 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4928 pr_debug("%s: failed no association\n", __func__);
4929 return -EINVAL;
4930 }
4931
4932 if (trans) {
4933 /* Fetch transport values. */
4934 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4935 params.spp_pathmtu = trans->pathmtu;
4936 params.spp_pathmaxrxt = trans->pathmaxrxt;
4937 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4938
4939 /*draft-11 doesn't say what to return in spp_flags*/
4940 params.spp_flags = trans->param_flags;
4941 } else if (asoc) {
4942 /* Fetch association values. */
4943 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4944 params.spp_pathmtu = asoc->pathmtu;
4945 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4946 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4947
4948 /*draft-11 doesn't say what to return in spp_flags*/
4949 params.spp_flags = asoc->param_flags;
4950 } else {
4951 /* Fetch socket values. */
4952 params.spp_hbinterval = sp->hbinterval;
4953 params.spp_pathmtu = sp->pathmtu;
4954 params.spp_sackdelay = sp->sackdelay;
4955 params.spp_pathmaxrxt = sp->pathmaxrxt;
4956
4957 /*draft-11 doesn't say what to return in spp_flags*/
4958 params.spp_flags = sp->param_flags;
4959 }
4960
4961 if (copy_to_user(optval, &params, len))
4962 return -EFAULT;
4963
4964 if (put_user(len, optlen))
4965 return -EFAULT;
4966
4967 return 0;
4968 }
4969
4970 /*
4971 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4972 *
4973 * This option will effect the way delayed acks are performed. This
4974 * option allows you to get or set the delayed ack time, in
4975 * milliseconds. It also allows changing the delayed ack frequency.
4976 * Changing the frequency to 1 disables the delayed sack algorithm. If
4977 * the assoc_id is 0, then this sets or gets the endpoints default
4978 * values. If the assoc_id field is non-zero, then the set or get
4979 * effects the specified association for the one to many model (the
4980 * assoc_id field is ignored by the one to one model). Note that if
4981 * sack_delay or sack_freq are 0 when setting this option, then the
4982 * current values will remain unchanged.
4983 *
4984 * struct sctp_sack_info {
4985 * sctp_assoc_t sack_assoc_id;
4986 * uint32_t sack_delay;
4987 * uint32_t sack_freq;
4988 * };
4989 *
4990 * sack_assoc_id - This parameter, indicates which association the user
4991 * is performing an action upon. Note that if this field's value is
4992 * zero then the endpoints default value is changed (effecting future
4993 * associations only).
4994 *
4995 * sack_delay - This parameter contains the number of milliseconds that
4996 * the user is requesting the delayed ACK timer be set to. Note that
4997 * this value is defined in the standard to be between 200 and 500
4998 * milliseconds.
4999 *
5000 * sack_freq - This parameter contains the number of packets that must
5001 * be received before a sack is sent without waiting for the delay
5002 * timer to expire. The default value for this is 2, setting this
5003 * value to 1 will disable the delayed sack algorithm.
5004 */
5005 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5006 char __user *optval,
5007 int __user *optlen)
5008 {
5009 struct sctp_sack_info params;
5010 struct sctp_association *asoc = NULL;
5011 struct sctp_sock *sp = sctp_sk(sk);
5012
5013 if (len >= sizeof(struct sctp_sack_info)) {
5014 len = sizeof(struct sctp_sack_info);
5015
5016 if (copy_from_user(&params, optval, len))
5017 return -EFAULT;
5018 } else if (len == sizeof(struct sctp_assoc_value)) {
5019 pr_warn_ratelimited(DEPRECATED
5020 "%s (pid %d) "
5021 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5022 "Use struct sctp_sack_info instead\n",
5023 current->comm, task_pid_nr(current));
5024 if (copy_from_user(&params, optval, len))
5025 return -EFAULT;
5026 } else
5027 return -EINVAL;
5028
5029 /* Get association, if sack_assoc_id != 0 and the socket is a one
5030 * to many style socket, and an association was not found, then
5031 * the id was invalid.
5032 */
5033 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5034 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5035 return -EINVAL;
5036
5037 if (asoc) {
5038 /* Fetch association values. */
5039 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5040 params.sack_delay = jiffies_to_msecs(
5041 asoc->sackdelay);
5042 params.sack_freq = asoc->sackfreq;
5043
5044 } else {
5045 params.sack_delay = 0;
5046 params.sack_freq = 1;
5047 }
5048 } else {
5049 /* Fetch socket values. */
5050 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5051 params.sack_delay = sp->sackdelay;
5052 params.sack_freq = sp->sackfreq;
5053 } else {
5054 params.sack_delay = 0;
5055 params.sack_freq = 1;
5056 }
5057 }
5058
5059 if (copy_to_user(optval, &params, len))
5060 return -EFAULT;
5061
5062 if (put_user(len, optlen))
5063 return -EFAULT;
5064
5065 return 0;
5066 }
5067
5068 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5069 *
5070 * Applications can specify protocol parameters for the default association
5071 * initialization. The option name argument to setsockopt() and getsockopt()
5072 * is SCTP_INITMSG.
5073 *
5074 * Setting initialization parameters is effective only on an unconnected
5075 * socket (for UDP-style sockets only future associations are effected
5076 * by the change). With TCP-style sockets, this option is inherited by
5077 * sockets derived from a listener socket.
5078 */
5079 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5080 {
5081 if (len < sizeof(struct sctp_initmsg))
5082 return -EINVAL;
5083 len = sizeof(struct sctp_initmsg);
5084 if (put_user(len, optlen))
5085 return -EFAULT;
5086 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5087 return -EFAULT;
5088 return 0;
5089 }
5090
5091
5092 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5093 char __user *optval, int __user *optlen)
5094 {
5095 struct sctp_association *asoc;
5096 int cnt = 0;
5097 struct sctp_getaddrs getaddrs;
5098 struct sctp_transport *from;
5099 void __user *to;
5100 union sctp_addr temp;
5101 struct sctp_sock *sp = sctp_sk(sk);
5102 int addrlen;
5103 size_t space_left;
5104 int bytes_copied;
5105
5106 if (len < sizeof(struct sctp_getaddrs))
5107 return -EINVAL;
5108
5109 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5110 return -EFAULT;
5111
5112 /* For UDP-style sockets, id specifies the association to query. */
5113 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5114 if (!asoc)
5115 return -EINVAL;
5116
5117 to = optval + offsetof(struct sctp_getaddrs, addrs);
5118 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5119
5120 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5121 transports) {
5122 memcpy(&temp, &from->ipaddr, sizeof(temp));
5123 addrlen = sctp_get_pf_specific(sk->sk_family)
5124 ->addr_to_user(sp, &temp);
5125 if (space_left < addrlen)
5126 return -ENOMEM;
5127 if (copy_to_user(to, &temp, addrlen))
5128 return -EFAULT;
5129 to += addrlen;
5130 cnt++;
5131 space_left -= addrlen;
5132 }
5133
5134 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5135 return -EFAULT;
5136 bytes_copied = ((char __user *)to) - optval;
5137 if (put_user(bytes_copied, optlen))
5138 return -EFAULT;
5139
5140 return 0;
5141 }
5142
5143 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5144 size_t space_left, int *bytes_copied)
5145 {
5146 struct sctp_sockaddr_entry *addr;
5147 union sctp_addr temp;
5148 int cnt = 0;
5149 int addrlen;
5150 struct net *net = sock_net(sk);
5151
5152 rcu_read_lock();
5153 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5154 if (!addr->valid)
5155 continue;
5156
5157 if ((PF_INET == sk->sk_family) &&
5158 (AF_INET6 == addr->a.sa.sa_family))
5159 continue;
5160 if ((PF_INET6 == sk->sk_family) &&
5161 inet_v6_ipv6only(sk) &&
5162 (AF_INET == addr->a.sa.sa_family))
5163 continue;
5164 memcpy(&temp, &addr->a, sizeof(temp));
5165 if (!temp.v4.sin_port)
5166 temp.v4.sin_port = htons(port);
5167
5168 addrlen = sctp_get_pf_specific(sk->sk_family)
5169 ->addr_to_user(sctp_sk(sk), &temp);
5170
5171 if (space_left < addrlen) {
5172 cnt = -ENOMEM;
5173 break;
5174 }
5175 memcpy(to, &temp, addrlen);
5176
5177 to += addrlen;
5178 cnt++;
5179 space_left -= addrlen;
5180 *bytes_copied += addrlen;
5181 }
5182 rcu_read_unlock();
5183
5184 return cnt;
5185 }
5186
5187
5188 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5189 char __user *optval, int __user *optlen)
5190 {
5191 struct sctp_bind_addr *bp;
5192 struct sctp_association *asoc;
5193 int cnt = 0;
5194 struct sctp_getaddrs getaddrs;
5195 struct sctp_sockaddr_entry *addr;
5196 void __user *to;
5197 union sctp_addr temp;
5198 struct sctp_sock *sp = sctp_sk(sk);
5199 int addrlen;
5200 int err = 0;
5201 size_t space_left;
5202 int bytes_copied = 0;
5203 void *addrs;
5204 void *buf;
5205
5206 if (len < sizeof(struct sctp_getaddrs))
5207 return -EINVAL;
5208
5209 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5210 return -EFAULT;
5211
5212 /*
5213 * For UDP-style sockets, id specifies the association to query.
5214 * If the id field is set to the value '0' then the locally bound
5215 * addresses are returned without regard to any particular
5216 * association.
5217 */
5218 if (0 == getaddrs.assoc_id) {
5219 bp = &sctp_sk(sk)->ep->base.bind_addr;
5220 } else {
5221 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5222 if (!asoc)
5223 return -EINVAL;
5224 bp = &asoc->base.bind_addr;
5225 }
5226
5227 to = optval + offsetof(struct sctp_getaddrs, addrs);
5228 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5229
5230 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5231 if (!addrs)
5232 return -ENOMEM;
5233
5234 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5235 * addresses from the global local address list.
5236 */
5237 if (sctp_list_single_entry(&bp->address_list)) {
5238 addr = list_entry(bp->address_list.next,
5239 struct sctp_sockaddr_entry, list);
5240 if (sctp_is_any(sk, &addr->a)) {
5241 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5242 space_left, &bytes_copied);
5243 if (cnt < 0) {
5244 err = cnt;
5245 goto out;
5246 }
5247 goto copy_getaddrs;
5248 }
5249 }
5250
5251 buf = addrs;
5252 /* Protection on the bound address list is not needed since
5253 * in the socket option context we hold a socket lock and
5254 * thus the bound address list can't change.
5255 */
5256 list_for_each_entry(addr, &bp->address_list, list) {
5257 memcpy(&temp, &addr->a, sizeof(temp));
5258 addrlen = sctp_get_pf_specific(sk->sk_family)
5259 ->addr_to_user(sp, &temp);
5260 if (space_left < addrlen) {
5261 err = -ENOMEM; /*fixme: right error?*/
5262 goto out;
5263 }
5264 memcpy(buf, &temp, addrlen);
5265 buf += addrlen;
5266 bytes_copied += addrlen;
5267 cnt++;
5268 space_left -= addrlen;
5269 }
5270
5271 copy_getaddrs:
5272 if (copy_to_user(to, addrs, bytes_copied)) {
5273 err = -EFAULT;
5274 goto out;
5275 }
5276 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5277 err = -EFAULT;
5278 goto out;
5279 }
5280 if (put_user(bytes_copied, optlen))
5281 err = -EFAULT;
5282 out:
5283 kfree(addrs);
5284 return err;
5285 }
5286
5287 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5288 *
5289 * Requests that the local SCTP stack use the enclosed peer address as
5290 * the association primary. The enclosed address must be one of the
5291 * association peer's addresses.
5292 */
5293 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5294 char __user *optval, int __user *optlen)
5295 {
5296 struct sctp_prim prim;
5297 struct sctp_association *asoc;
5298 struct sctp_sock *sp = sctp_sk(sk);
5299
5300 if (len < sizeof(struct sctp_prim))
5301 return -EINVAL;
5302
5303 len = sizeof(struct sctp_prim);
5304
5305 if (copy_from_user(&prim, optval, len))
5306 return -EFAULT;
5307
5308 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5309 if (!asoc)
5310 return -EINVAL;
5311
5312 if (!asoc->peer.primary_path)
5313 return -ENOTCONN;
5314
5315 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5316 asoc->peer.primary_path->af_specific->sockaddr_len);
5317
5318 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5319 (union sctp_addr *)&prim.ssp_addr);
5320
5321 if (put_user(len, optlen))
5322 return -EFAULT;
5323 if (copy_to_user(optval, &prim, len))
5324 return -EFAULT;
5325
5326 return 0;
5327 }
5328
5329 /*
5330 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5331 *
5332 * Requests that the local endpoint set the specified Adaptation Layer
5333 * Indication parameter for all future INIT and INIT-ACK exchanges.
5334 */
5335 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5336 char __user *optval, int __user *optlen)
5337 {
5338 struct sctp_setadaptation adaptation;
5339
5340 if (len < sizeof(struct sctp_setadaptation))
5341 return -EINVAL;
5342
5343 len = sizeof(struct sctp_setadaptation);
5344
5345 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5346
5347 if (put_user(len, optlen))
5348 return -EFAULT;
5349 if (copy_to_user(optval, &adaptation, len))
5350 return -EFAULT;
5351
5352 return 0;
5353 }
5354
5355 /*
5356 *
5357 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5358 *
5359 * Applications that wish to use the sendto() system call may wish to
5360 * specify a default set of parameters that would normally be supplied
5361 * through the inclusion of ancillary data. This socket option allows
5362 * such an application to set the default sctp_sndrcvinfo structure.
5363
5364
5365 * The application that wishes to use this socket option simply passes
5366 * in to this call the sctp_sndrcvinfo structure defined in Section
5367 * 5.2.2) The input parameters accepted by this call include
5368 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5369 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5370 * to this call if the caller is using the UDP model.
5371 *
5372 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5373 */
5374 static int sctp_getsockopt_default_send_param(struct sock *sk,
5375 int len, char __user *optval,
5376 int __user *optlen)
5377 {
5378 struct sctp_sock *sp = sctp_sk(sk);
5379 struct sctp_association *asoc;
5380 struct sctp_sndrcvinfo info;
5381
5382 if (len < sizeof(info))
5383 return -EINVAL;
5384
5385 len = sizeof(info);
5386
5387 if (copy_from_user(&info, optval, len))
5388 return -EFAULT;
5389
5390 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5391 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5392 return -EINVAL;
5393 if (asoc) {
5394 info.sinfo_stream = asoc->default_stream;
5395 info.sinfo_flags = asoc->default_flags;
5396 info.sinfo_ppid = asoc->default_ppid;
5397 info.sinfo_context = asoc->default_context;
5398 info.sinfo_timetolive = asoc->default_timetolive;
5399 } else {
5400 info.sinfo_stream = sp->default_stream;
5401 info.sinfo_flags = sp->default_flags;
5402 info.sinfo_ppid = sp->default_ppid;
5403 info.sinfo_context = sp->default_context;
5404 info.sinfo_timetolive = sp->default_timetolive;
5405 }
5406
5407 if (put_user(len, optlen))
5408 return -EFAULT;
5409 if (copy_to_user(optval, &info, len))
5410 return -EFAULT;
5411
5412 return 0;
5413 }
5414
5415 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5416 * (SCTP_DEFAULT_SNDINFO)
5417 */
5418 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5419 char __user *optval,
5420 int __user *optlen)
5421 {
5422 struct sctp_sock *sp = sctp_sk(sk);
5423 struct sctp_association *asoc;
5424 struct sctp_sndinfo info;
5425
5426 if (len < sizeof(info))
5427 return -EINVAL;
5428
5429 len = sizeof(info);
5430
5431 if (copy_from_user(&info, optval, len))
5432 return -EFAULT;
5433
5434 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5435 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5436 return -EINVAL;
5437 if (asoc) {
5438 info.snd_sid = asoc->default_stream;
5439 info.snd_flags = asoc->default_flags;
5440 info.snd_ppid = asoc->default_ppid;
5441 info.snd_context = asoc->default_context;
5442 } else {
5443 info.snd_sid = sp->default_stream;
5444 info.snd_flags = sp->default_flags;
5445 info.snd_ppid = sp->default_ppid;
5446 info.snd_context = sp->default_context;
5447 }
5448
5449 if (put_user(len, optlen))
5450 return -EFAULT;
5451 if (copy_to_user(optval, &info, len))
5452 return -EFAULT;
5453
5454 return 0;
5455 }
5456
5457 /*
5458 *
5459 * 7.1.5 SCTP_NODELAY
5460 *
5461 * Turn on/off any Nagle-like algorithm. This means that packets are
5462 * generally sent as soon as possible and no unnecessary delays are
5463 * introduced, at the cost of more packets in the network. Expects an
5464 * integer boolean flag.
5465 */
5466
5467 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5468 char __user *optval, int __user *optlen)
5469 {
5470 int val;
5471
5472 if (len < sizeof(int))
5473 return -EINVAL;
5474
5475 len = sizeof(int);
5476 val = (sctp_sk(sk)->nodelay == 1);
5477 if (put_user(len, optlen))
5478 return -EFAULT;
5479 if (copy_to_user(optval, &val, len))
5480 return -EFAULT;
5481 return 0;
5482 }
5483
5484 /*
5485 *
5486 * 7.1.1 SCTP_RTOINFO
5487 *
5488 * The protocol parameters used to initialize and bound retransmission
5489 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5490 * and modify these parameters.
5491 * All parameters are time values, in milliseconds. A value of 0, when
5492 * modifying the parameters, indicates that the current value should not
5493 * be changed.
5494 *
5495 */
5496 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5497 char __user *optval,
5498 int __user *optlen) {
5499 struct sctp_rtoinfo rtoinfo;
5500 struct sctp_association *asoc;
5501
5502 if (len < sizeof (struct sctp_rtoinfo))
5503 return -EINVAL;
5504
5505 len = sizeof(struct sctp_rtoinfo);
5506
5507 if (copy_from_user(&rtoinfo, optval, len))
5508 return -EFAULT;
5509
5510 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5511
5512 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5513 return -EINVAL;
5514
5515 /* Values corresponding to the specific association. */
5516 if (asoc) {
5517 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5518 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5519 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5520 } else {
5521 /* Values corresponding to the endpoint. */
5522 struct sctp_sock *sp = sctp_sk(sk);
5523
5524 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5525 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5526 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5527 }
5528
5529 if (put_user(len, optlen))
5530 return -EFAULT;
5531
5532 if (copy_to_user(optval, &rtoinfo, len))
5533 return -EFAULT;
5534
5535 return 0;
5536 }
5537
5538 /*
5539 *
5540 * 7.1.2 SCTP_ASSOCINFO
5541 *
5542 * This option is used to tune the maximum retransmission attempts
5543 * of the association.
5544 * Returns an error if the new association retransmission value is
5545 * greater than the sum of the retransmission value of the peer.
5546 * See [SCTP] for more information.
5547 *
5548 */
5549 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5550 char __user *optval,
5551 int __user *optlen)
5552 {
5553
5554 struct sctp_assocparams assocparams;
5555 struct sctp_association *asoc;
5556 struct list_head *pos;
5557 int cnt = 0;
5558
5559 if (len < sizeof (struct sctp_assocparams))
5560 return -EINVAL;
5561
5562 len = sizeof(struct sctp_assocparams);
5563
5564 if (copy_from_user(&assocparams, optval, len))
5565 return -EFAULT;
5566
5567 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5568
5569 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5570 return -EINVAL;
5571
5572 /* Values correspoinding to the specific association */
5573 if (asoc) {
5574 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5575 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5576 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5577 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5578
5579 list_for_each(pos, &asoc->peer.transport_addr_list) {
5580 cnt++;
5581 }
5582
5583 assocparams.sasoc_number_peer_destinations = cnt;
5584 } else {
5585 /* Values corresponding to the endpoint */
5586 struct sctp_sock *sp = sctp_sk(sk);
5587
5588 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5589 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5590 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5591 assocparams.sasoc_cookie_life =
5592 sp->assocparams.sasoc_cookie_life;
5593 assocparams.sasoc_number_peer_destinations =
5594 sp->assocparams.
5595 sasoc_number_peer_destinations;
5596 }
5597
5598 if (put_user(len, optlen))
5599 return -EFAULT;
5600
5601 if (copy_to_user(optval, &assocparams, len))
5602 return -EFAULT;
5603
5604 return 0;
5605 }
5606
5607 /*
5608 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5609 *
5610 * This socket option is a boolean flag which turns on or off mapped V4
5611 * addresses. If this option is turned on and the socket is type
5612 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5613 * If this option is turned off, then no mapping will be done of V4
5614 * addresses and a user will receive both PF_INET6 and PF_INET type
5615 * addresses on the socket.
5616 */
5617 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5618 char __user *optval, int __user *optlen)
5619 {
5620 int val;
5621 struct sctp_sock *sp = sctp_sk(sk);
5622
5623 if (len < sizeof(int))
5624 return -EINVAL;
5625
5626 len = sizeof(int);
5627 val = sp->v4mapped;
5628 if (put_user(len, optlen))
5629 return -EFAULT;
5630 if (copy_to_user(optval, &val, len))
5631 return -EFAULT;
5632
5633 return 0;
5634 }
5635
5636 /*
5637 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5638 * (chapter and verse is quoted at sctp_setsockopt_context())
5639 */
5640 static int sctp_getsockopt_context(struct sock *sk, int len,
5641 char __user *optval, int __user *optlen)
5642 {
5643 struct sctp_assoc_value params;
5644 struct sctp_sock *sp;
5645 struct sctp_association *asoc;
5646
5647 if (len < sizeof(struct sctp_assoc_value))
5648 return -EINVAL;
5649
5650 len = sizeof(struct sctp_assoc_value);
5651
5652 if (copy_from_user(&params, optval, len))
5653 return -EFAULT;
5654
5655 sp = sctp_sk(sk);
5656
5657 if (params.assoc_id != 0) {
5658 asoc = sctp_id2assoc(sk, params.assoc_id);
5659 if (!asoc)
5660 return -EINVAL;
5661 params.assoc_value = asoc->default_rcv_context;
5662 } else {
5663 params.assoc_value = sp->default_rcv_context;
5664 }
5665
5666 if (put_user(len, optlen))
5667 return -EFAULT;
5668 if (copy_to_user(optval, &params, len))
5669 return -EFAULT;
5670
5671 return 0;
5672 }
5673
5674 /*
5675 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5676 * This option will get or set the maximum size to put in any outgoing
5677 * SCTP DATA chunk. If a message is larger than this size it will be
5678 * fragmented by SCTP into the specified size. Note that the underlying
5679 * SCTP implementation may fragment into smaller sized chunks when the
5680 * PMTU of the underlying association is smaller than the value set by
5681 * the user. The default value for this option is '0' which indicates
5682 * the user is NOT limiting fragmentation and only the PMTU will effect
5683 * SCTP's choice of DATA chunk size. Note also that values set larger
5684 * than the maximum size of an IP datagram will effectively let SCTP
5685 * control fragmentation (i.e. the same as setting this option to 0).
5686 *
5687 * The following structure is used to access and modify this parameter:
5688 *
5689 * struct sctp_assoc_value {
5690 * sctp_assoc_t assoc_id;
5691 * uint32_t assoc_value;
5692 * };
5693 *
5694 * assoc_id: This parameter is ignored for one-to-one style sockets.
5695 * For one-to-many style sockets this parameter indicates which
5696 * association the user is performing an action upon. Note that if
5697 * this field's value is zero then the endpoints default value is
5698 * changed (effecting future associations only).
5699 * assoc_value: This parameter specifies the maximum size in bytes.
5700 */
5701 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5702 char __user *optval, int __user *optlen)
5703 {
5704 struct sctp_assoc_value params;
5705 struct sctp_association *asoc;
5706
5707 if (len == sizeof(int)) {
5708 pr_warn_ratelimited(DEPRECATED
5709 "%s (pid %d) "
5710 "Use of int in maxseg socket option.\n"
5711 "Use struct sctp_assoc_value instead\n",
5712 current->comm, task_pid_nr(current));
5713 params.assoc_id = 0;
5714 } else if (len >= sizeof(struct sctp_assoc_value)) {
5715 len = sizeof(struct sctp_assoc_value);
5716 if (copy_from_user(&params, optval, sizeof(params)))
5717 return -EFAULT;
5718 } else
5719 return -EINVAL;
5720
5721 asoc = sctp_id2assoc(sk, params.assoc_id);
5722 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5723 return -EINVAL;
5724
5725 if (asoc)
5726 params.assoc_value = asoc->frag_point;
5727 else
5728 params.assoc_value = sctp_sk(sk)->user_frag;
5729
5730 if (put_user(len, optlen))
5731 return -EFAULT;
5732 if (len == sizeof(int)) {
5733 if (copy_to_user(optval, &params.assoc_value, len))
5734 return -EFAULT;
5735 } else {
5736 if (copy_to_user(optval, &params, len))
5737 return -EFAULT;
5738 }
5739
5740 return 0;
5741 }
5742
5743 /*
5744 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5745 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5746 */
5747 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5748 char __user *optval, int __user *optlen)
5749 {
5750 int val;
5751
5752 if (len < sizeof(int))
5753 return -EINVAL;
5754
5755 len = sizeof(int);
5756
5757 val = sctp_sk(sk)->frag_interleave;
5758 if (put_user(len, optlen))
5759 return -EFAULT;
5760 if (copy_to_user(optval, &val, len))
5761 return -EFAULT;
5762
5763 return 0;
5764 }
5765
5766 /*
5767 * 7.1.25. Set or Get the sctp partial delivery point
5768 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5769 */
5770 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5771 char __user *optval,
5772 int __user *optlen)
5773 {
5774 u32 val;
5775
5776 if (len < sizeof(u32))
5777 return -EINVAL;
5778
5779 len = sizeof(u32);
5780
5781 val = sctp_sk(sk)->pd_point;
5782 if (put_user(len, optlen))
5783 return -EFAULT;
5784 if (copy_to_user(optval, &val, len))
5785 return -EFAULT;
5786
5787 return 0;
5788 }
5789
5790 /*
5791 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5792 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5793 */
5794 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5795 char __user *optval,
5796 int __user *optlen)
5797 {
5798 struct sctp_assoc_value params;
5799 struct sctp_sock *sp;
5800 struct sctp_association *asoc;
5801
5802 if (len == sizeof(int)) {
5803 pr_warn_ratelimited(DEPRECATED
5804 "%s (pid %d) "
5805 "Use of int in max_burst socket option.\n"
5806 "Use struct sctp_assoc_value instead\n",
5807 current->comm, task_pid_nr(current));
5808 params.assoc_id = 0;
5809 } else if (len >= sizeof(struct sctp_assoc_value)) {
5810 len = sizeof(struct sctp_assoc_value);
5811 if (copy_from_user(&params, optval, len))
5812 return -EFAULT;
5813 } else
5814 return -EINVAL;
5815
5816 sp = sctp_sk(sk);
5817
5818 if (params.assoc_id != 0) {
5819 asoc = sctp_id2assoc(sk, params.assoc_id);
5820 if (!asoc)
5821 return -EINVAL;
5822 params.assoc_value = asoc->max_burst;
5823 } else
5824 params.assoc_value = sp->max_burst;
5825
5826 if (len == sizeof(int)) {
5827 if (copy_to_user(optval, &params.assoc_value, len))
5828 return -EFAULT;
5829 } else {
5830 if (copy_to_user(optval, &params, len))
5831 return -EFAULT;
5832 }
5833
5834 return 0;
5835
5836 }
5837
5838 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5839 char __user *optval, int __user *optlen)
5840 {
5841 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5842 struct sctp_hmacalgo __user *p = (void __user *)optval;
5843 struct sctp_hmac_algo_param *hmacs;
5844 __u16 data_len = 0;
5845 u32 num_idents;
5846 int i;
5847
5848 if (!ep->auth_enable)
5849 return -EACCES;
5850
5851 hmacs = ep->auth_hmacs_list;
5852 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5853
5854 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5855 return -EINVAL;
5856
5857 len = sizeof(struct sctp_hmacalgo) + data_len;
5858 num_idents = data_len / sizeof(u16);
5859
5860 if (put_user(len, optlen))
5861 return -EFAULT;
5862 if (put_user(num_idents, &p->shmac_num_idents))
5863 return -EFAULT;
5864 for (i = 0; i < num_idents; i++) {
5865 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5866
5867 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5868 return -EFAULT;
5869 }
5870 return 0;
5871 }
5872
5873 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5874 char __user *optval, int __user *optlen)
5875 {
5876 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5877 struct sctp_authkeyid val;
5878 struct sctp_association *asoc;
5879
5880 if (!ep->auth_enable)
5881 return -EACCES;
5882
5883 if (len < sizeof(struct sctp_authkeyid))
5884 return -EINVAL;
5885 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5886 return -EFAULT;
5887
5888 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5889 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5890 return -EINVAL;
5891
5892 if (asoc)
5893 val.scact_keynumber = asoc->active_key_id;
5894 else
5895 val.scact_keynumber = ep->active_key_id;
5896
5897 len = sizeof(struct sctp_authkeyid);
5898 if (put_user(len, optlen))
5899 return -EFAULT;
5900 if (copy_to_user(optval, &val, len))
5901 return -EFAULT;
5902
5903 return 0;
5904 }
5905
5906 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5907 char __user *optval, int __user *optlen)
5908 {
5909 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5910 struct sctp_authchunks __user *p = (void __user *)optval;
5911 struct sctp_authchunks val;
5912 struct sctp_association *asoc;
5913 struct sctp_chunks_param *ch;
5914 u32 num_chunks = 0;
5915 char __user *to;
5916
5917 if (!ep->auth_enable)
5918 return -EACCES;
5919
5920 if (len < sizeof(struct sctp_authchunks))
5921 return -EINVAL;
5922
5923 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5924 return -EFAULT;
5925
5926 to = p->gauth_chunks;
5927 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5928 if (!asoc)
5929 return -EINVAL;
5930
5931 ch = asoc->peer.peer_chunks;
5932 if (!ch)
5933 goto num;
5934
5935 /* See if the user provided enough room for all the data */
5936 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5937 if (len < num_chunks)
5938 return -EINVAL;
5939
5940 if (copy_to_user(to, ch->chunks, num_chunks))
5941 return -EFAULT;
5942 num:
5943 len = sizeof(struct sctp_authchunks) + num_chunks;
5944 if (put_user(len, optlen))
5945 return -EFAULT;
5946 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5947 return -EFAULT;
5948 return 0;
5949 }
5950
5951 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5952 char __user *optval, int __user *optlen)
5953 {
5954 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5955 struct sctp_authchunks __user *p = (void __user *)optval;
5956 struct sctp_authchunks val;
5957 struct sctp_association *asoc;
5958 struct sctp_chunks_param *ch;
5959 u32 num_chunks = 0;
5960 char __user *to;
5961
5962 if (!ep->auth_enable)
5963 return -EACCES;
5964
5965 if (len < sizeof(struct sctp_authchunks))
5966 return -EINVAL;
5967
5968 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5969 return -EFAULT;
5970
5971 to = p->gauth_chunks;
5972 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5973 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5974 return -EINVAL;
5975
5976 if (asoc)
5977 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5978 else
5979 ch = ep->auth_chunk_list;
5980
5981 if (!ch)
5982 goto num;
5983
5984 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5985 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5986 return -EINVAL;
5987
5988 if (copy_to_user(to, ch->chunks, num_chunks))
5989 return -EFAULT;
5990 num:
5991 len = sizeof(struct sctp_authchunks) + num_chunks;
5992 if (put_user(len, optlen))
5993 return -EFAULT;
5994 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5995 return -EFAULT;
5996
5997 return 0;
5998 }
5999
6000 /*
6001 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6002 * This option gets the current number of associations that are attached
6003 * to a one-to-many style socket. The option value is an uint32_t.
6004 */
6005 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6006 char __user *optval, int __user *optlen)
6007 {
6008 struct sctp_sock *sp = sctp_sk(sk);
6009 struct sctp_association *asoc;
6010 u32 val = 0;
6011
6012 if (sctp_style(sk, TCP))
6013 return -EOPNOTSUPP;
6014
6015 if (len < sizeof(u32))
6016 return -EINVAL;
6017
6018 len = sizeof(u32);
6019
6020 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6021 val++;
6022 }
6023
6024 if (put_user(len, optlen))
6025 return -EFAULT;
6026 if (copy_to_user(optval, &val, len))
6027 return -EFAULT;
6028
6029 return 0;
6030 }
6031
6032 /*
6033 * 8.1.23 SCTP_AUTO_ASCONF
6034 * See the corresponding setsockopt entry as description
6035 */
6036 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6037 char __user *optval, int __user *optlen)
6038 {
6039 int val = 0;
6040
6041 if (len < sizeof(int))
6042 return -EINVAL;
6043
6044 len = sizeof(int);
6045 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6046 val = 1;
6047 if (put_user(len, optlen))
6048 return -EFAULT;
6049 if (copy_to_user(optval, &val, len))
6050 return -EFAULT;
6051 return 0;
6052 }
6053
6054 /*
6055 * 8.2.6. Get the Current Identifiers of Associations
6056 * (SCTP_GET_ASSOC_ID_LIST)
6057 *
6058 * This option gets the current list of SCTP association identifiers of
6059 * the SCTP associations handled by a one-to-many style socket.
6060 */
6061 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6062 char __user *optval, int __user *optlen)
6063 {
6064 struct sctp_sock *sp = sctp_sk(sk);
6065 struct sctp_association *asoc;
6066 struct sctp_assoc_ids *ids;
6067 u32 num = 0;
6068
6069 if (sctp_style(sk, TCP))
6070 return -EOPNOTSUPP;
6071
6072 if (len < sizeof(struct sctp_assoc_ids))
6073 return -EINVAL;
6074
6075 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6076 num++;
6077 }
6078
6079 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6080 return -EINVAL;
6081
6082 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6083
6084 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6085 if (unlikely(!ids))
6086 return -ENOMEM;
6087
6088 ids->gaids_number_of_ids = num;
6089 num = 0;
6090 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6091 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6092 }
6093
6094 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6095 kfree(ids);
6096 return -EFAULT;
6097 }
6098
6099 kfree(ids);
6100 return 0;
6101 }
6102
6103 /*
6104 * SCTP_PEER_ADDR_THLDS
6105 *
6106 * This option allows us to fetch the partially failed threshold for one or all
6107 * transports in an association. See Section 6.1 of:
6108 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6109 */
6110 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6111 char __user *optval,
6112 int len,
6113 int __user *optlen)
6114 {
6115 struct sctp_paddrthlds val;
6116 struct sctp_transport *trans;
6117 struct sctp_association *asoc;
6118
6119 if (len < sizeof(struct sctp_paddrthlds))
6120 return -EINVAL;
6121 len = sizeof(struct sctp_paddrthlds);
6122 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6123 return -EFAULT;
6124
6125 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6126 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6127 if (!asoc)
6128 return -ENOENT;
6129
6130 val.spt_pathpfthld = asoc->pf_retrans;
6131 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6132 } else {
6133 trans = sctp_addr_id2transport(sk, &val.spt_address,
6134 val.spt_assoc_id);
6135 if (!trans)
6136 return -ENOENT;
6137
6138 val.spt_pathmaxrxt = trans->pathmaxrxt;
6139 val.spt_pathpfthld = trans->pf_retrans;
6140 }
6141
6142 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6143 return -EFAULT;
6144
6145 return 0;
6146 }
6147
6148 /*
6149 * SCTP_GET_ASSOC_STATS
6150 *
6151 * This option retrieves local per endpoint statistics. It is modeled
6152 * after OpenSolaris' implementation
6153 */
6154 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6155 char __user *optval,
6156 int __user *optlen)
6157 {
6158 struct sctp_assoc_stats sas;
6159 struct sctp_association *asoc = NULL;
6160
6161 /* User must provide at least the assoc id */
6162 if (len < sizeof(sctp_assoc_t))
6163 return -EINVAL;
6164
6165 /* Allow the struct to grow and fill in as much as possible */
6166 len = min_t(size_t, len, sizeof(sas));
6167
6168 if (copy_from_user(&sas, optval, len))
6169 return -EFAULT;
6170
6171 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6172 if (!asoc)
6173 return -EINVAL;
6174
6175 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6176 sas.sas_gapcnt = asoc->stats.gapcnt;
6177 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6178 sas.sas_osacks = asoc->stats.osacks;
6179 sas.sas_isacks = asoc->stats.isacks;
6180 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6181 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6182 sas.sas_oodchunks = asoc->stats.oodchunks;
6183 sas.sas_iodchunks = asoc->stats.iodchunks;
6184 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6185 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6186 sas.sas_idupchunks = asoc->stats.idupchunks;
6187 sas.sas_opackets = asoc->stats.opackets;
6188 sas.sas_ipackets = asoc->stats.ipackets;
6189
6190 /* New high max rto observed, will return 0 if not a single
6191 * RTO update took place. obs_rto_ipaddr will be bogus
6192 * in such a case
6193 */
6194 sas.sas_maxrto = asoc->stats.max_obs_rto;
6195 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6196 sizeof(struct sockaddr_storage));
6197
6198 /* Mark beginning of a new observation period */
6199 asoc->stats.max_obs_rto = asoc->rto_min;
6200
6201 if (put_user(len, optlen))
6202 return -EFAULT;
6203
6204 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6205
6206 if (copy_to_user(optval, &sas, len))
6207 return -EFAULT;
6208
6209 return 0;
6210 }
6211
6212 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6213 char __user *optval,
6214 int __user *optlen)
6215 {
6216 int val = 0;
6217
6218 if (len < sizeof(int))
6219 return -EINVAL;
6220
6221 len = sizeof(int);
6222 if (sctp_sk(sk)->recvrcvinfo)
6223 val = 1;
6224 if (put_user(len, optlen))
6225 return -EFAULT;
6226 if (copy_to_user(optval, &val, len))
6227 return -EFAULT;
6228
6229 return 0;
6230 }
6231
6232 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6233 char __user *optval,
6234 int __user *optlen)
6235 {
6236 int val = 0;
6237
6238 if (len < sizeof(int))
6239 return -EINVAL;
6240
6241 len = sizeof(int);
6242 if (sctp_sk(sk)->recvnxtinfo)
6243 val = 1;
6244 if (put_user(len, optlen))
6245 return -EFAULT;
6246 if (copy_to_user(optval, &val, len))
6247 return -EFAULT;
6248
6249 return 0;
6250 }
6251
6252 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6253 char __user *optval,
6254 int __user *optlen)
6255 {
6256 struct sctp_assoc_value params;
6257 struct sctp_association *asoc;
6258 int retval = -EFAULT;
6259
6260 if (len < sizeof(params)) {
6261 retval = -EINVAL;
6262 goto out;
6263 }
6264
6265 len = sizeof(params);
6266 if (copy_from_user(&params, optval, len))
6267 goto out;
6268
6269 asoc = sctp_id2assoc(sk, params.assoc_id);
6270 if (asoc) {
6271 params.assoc_value = asoc->prsctp_enable;
6272 } else if (!params.assoc_id) {
6273 struct sctp_sock *sp = sctp_sk(sk);
6274
6275 params.assoc_value = sp->ep->prsctp_enable;
6276 } else {
6277 retval = -EINVAL;
6278 goto out;
6279 }
6280
6281 if (put_user(len, optlen))
6282 goto out;
6283
6284 if (copy_to_user(optval, &params, len))
6285 goto out;
6286
6287 retval = 0;
6288
6289 out:
6290 return retval;
6291 }
6292
6293 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6294 char __user *optval,
6295 int __user *optlen)
6296 {
6297 struct sctp_default_prinfo info;
6298 struct sctp_association *asoc;
6299 int retval = -EFAULT;
6300
6301 if (len < sizeof(info)) {
6302 retval = -EINVAL;
6303 goto out;
6304 }
6305
6306 len = sizeof(info);
6307 if (copy_from_user(&info, optval, len))
6308 goto out;
6309
6310 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6311 if (asoc) {
6312 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6313 info.pr_value = asoc->default_timetolive;
6314 } else if (!info.pr_assoc_id) {
6315 struct sctp_sock *sp = sctp_sk(sk);
6316
6317 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6318 info.pr_value = sp->default_timetolive;
6319 } else {
6320 retval = -EINVAL;
6321 goto out;
6322 }
6323
6324 if (put_user(len, optlen))
6325 goto out;
6326
6327 if (copy_to_user(optval, &info, len))
6328 goto out;
6329
6330 retval = 0;
6331
6332 out:
6333 return retval;
6334 }
6335
6336 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6337 char __user *optval,
6338 int __user *optlen)
6339 {
6340 struct sctp_prstatus params;
6341 struct sctp_association *asoc;
6342 int policy;
6343 int retval = -EINVAL;
6344
6345 if (len < sizeof(params))
6346 goto out;
6347
6348 len = sizeof(params);
6349 if (copy_from_user(&params, optval, len)) {
6350 retval = -EFAULT;
6351 goto out;
6352 }
6353
6354 policy = params.sprstat_policy;
6355 if (policy & ~SCTP_PR_SCTP_MASK)
6356 goto out;
6357
6358 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6359 if (!asoc)
6360 goto out;
6361
6362 if (policy == SCTP_PR_SCTP_NONE) {
6363 params.sprstat_abandoned_unsent = 0;
6364 params.sprstat_abandoned_sent = 0;
6365 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6366 params.sprstat_abandoned_unsent +=
6367 asoc->abandoned_unsent[policy];
6368 params.sprstat_abandoned_sent +=
6369 asoc->abandoned_sent[policy];
6370 }
6371 } else {
6372 params.sprstat_abandoned_unsent =
6373 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6374 params.sprstat_abandoned_sent =
6375 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6376 }
6377
6378 if (put_user(len, optlen)) {
6379 retval = -EFAULT;
6380 goto out;
6381 }
6382
6383 if (copy_to_user(optval, &params, len)) {
6384 retval = -EFAULT;
6385 goto out;
6386 }
6387
6388 retval = 0;
6389
6390 out:
6391 return retval;
6392 }
6393
6394 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6395 char __user *optval, int __user *optlen)
6396 {
6397 int retval = 0;
6398 int len;
6399
6400 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6401
6402 /* I can hardly begin to describe how wrong this is. This is
6403 * so broken as to be worse than useless. The API draft
6404 * REALLY is NOT helpful here... I am not convinced that the
6405 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6406 * are at all well-founded.
6407 */
6408 if (level != SOL_SCTP) {
6409 struct sctp_af *af = sctp_sk(sk)->pf->af;
6410
6411 retval = af->getsockopt(sk, level, optname, optval, optlen);
6412 return retval;
6413 }
6414
6415 if (get_user(len, optlen))
6416 return -EFAULT;
6417
6418 lock_sock(sk);
6419
6420 switch (optname) {
6421 case SCTP_STATUS:
6422 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6423 break;
6424 case SCTP_DISABLE_FRAGMENTS:
6425 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6426 optlen);
6427 break;
6428 case SCTP_EVENTS:
6429 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6430 break;
6431 case SCTP_AUTOCLOSE:
6432 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6433 break;
6434 case SCTP_SOCKOPT_PEELOFF:
6435 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6436 break;
6437 case SCTP_PEER_ADDR_PARAMS:
6438 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6439 optlen);
6440 break;
6441 case SCTP_DELAYED_SACK:
6442 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6443 optlen);
6444 break;
6445 case SCTP_INITMSG:
6446 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6447 break;
6448 case SCTP_GET_PEER_ADDRS:
6449 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6450 optlen);
6451 break;
6452 case SCTP_GET_LOCAL_ADDRS:
6453 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6454 optlen);
6455 break;
6456 case SCTP_SOCKOPT_CONNECTX3:
6457 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6458 break;
6459 case SCTP_DEFAULT_SEND_PARAM:
6460 retval = sctp_getsockopt_default_send_param(sk, len,
6461 optval, optlen);
6462 break;
6463 case SCTP_DEFAULT_SNDINFO:
6464 retval = sctp_getsockopt_default_sndinfo(sk, len,
6465 optval, optlen);
6466 break;
6467 case SCTP_PRIMARY_ADDR:
6468 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6469 break;
6470 case SCTP_NODELAY:
6471 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6472 break;
6473 case SCTP_RTOINFO:
6474 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6475 break;
6476 case SCTP_ASSOCINFO:
6477 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6478 break;
6479 case SCTP_I_WANT_MAPPED_V4_ADDR:
6480 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6481 break;
6482 case SCTP_MAXSEG:
6483 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6484 break;
6485 case SCTP_GET_PEER_ADDR_INFO:
6486 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6487 optlen);
6488 break;
6489 case SCTP_ADAPTATION_LAYER:
6490 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6491 optlen);
6492 break;
6493 case SCTP_CONTEXT:
6494 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6495 break;
6496 case SCTP_FRAGMENT_INTERLEAVE:
6497 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6498 optlen);
6499 break;
6500 case SCTP_PARTIAL_DELIVERY_POINT:
6501 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6502 optlen);
6503 break;
6504 case SCTP_MAX_BURST:
6505 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6506 break;
6507 case SCTP_AUTH_KEY:
6508 case SCTP_AUTH_CHUNK:
6509 case SCTP_AUTH_DELETE_KEY:
6510 retval = -EOPNOTSUPP;
6511 break;
6512 case SCTP_HMAC_IDENT:
6513 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6514 break;
6515 case SCTP_AUTH_ACTIVE_KEY:
6516 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6517 break;
6518 case SCTP_PEER_AUTH_CHUNKS:
6519 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6520 optlen);
6521 break;
6522 case SCTP_LOCAL_AUTH_CHUNKS:
6523 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6524 optlen);
6525 break;
6526 case SCTP_GET_ASSOC_NUMBER:
6527 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6528 break;
6529 case SCTP_GET_ASSOC_ID_LIST:
6530 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6531 break;
6532 case SCTP_AUTO_ASCONF:
6533 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6534 break;
6535 case SCTP_PEER_ADDR_THLDS:
6536 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6537 break;
6538 case SCTP_GET_ASSOC_STATS:
6539 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6540 break;
6541 case SCTP_RECVRCVINFO:
6542 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6543 break;
6544 case SCTP_RECVNXTINFO:
6545 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6546 break;
6547 case SCTP_PR_SUPPORTED:
6548 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6549 break;
6550 case SCTP_DEFAULT_PRINFO:
6551 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6552 optlen);
6553 break;
6554 case SCTP_PR_ASSOC_STATUS:
6555 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6556 optlen);
6557 break;
6558 default:
6559 retval = -ENOPROTOOPT;
6560 break;
6561 }
6562
6563 release_sock(sk);
6564 return retval;
6565 }
6566
6567 static int sctp_hash(struct sock *sk)
6568 {
6569 /* STUB */
6570 return 0;
6571 }
6572
6573 static void sctp_unhash(struct sock *sk)
6574 {
6575 /* STUB */
6576 }
6577
6578 /* Check if port is acceptable. Possibly find first available port.
6579 *
6580 * The port hash table (contained in the 'global' SCTP protocol storage
6581 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6582 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6583 * list (the list number is the port number hashed out, so as you
6584 * would expect from a hash function, all the ports in a given list have
6585 * such a number that hashes out to the same list number; you were
6586 * expecting that, right?); so each list has a set of ports, with a
6587 * link to the socket (struct sock) that uses it, the port number and
6588 * a fastreuse flag (FIXME: NPI ipg).
6589 */
6590 static struct sctp_bind_bucket *sctp_bucket_create(
6591 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6592
6593 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6594 {
6595 struct sctp_bind_hashbucket *head; /* hash list */
6596 struct sctp_bind_bucket *pp;
6597 unsigned short snum;
6598 int ret;
6599
6600 snum = ntohs(addr->v4.sin_port);
6601
6602 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6603
6604 local_bh_disable();
6605
6606 if (snum == 0) {
6607 /* Search for an available port. */
6608 int low, high, remaining, index;
6609 unsigned int rover;
6610 struct net *net = sock_net(sk);
6611
6612 inet_get_local_port_range(net, &low, &high);
6613 remaining = (high - low) + 1;
6614 rover = prandom_u32() % remaining + low;
6615
6616 do {
6617 rover++;
6618 if ((rover < low) || (rover > high))
6619 rover = low;
6620 if (inet_is_local_reserved_port(net, rover))
6621 continue;
6622 index = sctp_phashfn(sock_net(sk), rover);
6623 head = &sctp_port_hashtable[index];
6624 spin_lock(&head->lock);
6625 sctp_for_each_hentry(pp, &head->chain)
6626 if ((pp->port == rover) &&
6627 net_eq(sock_net(sk), pp->net))
6628 goto next;
6629 break;
6630 next:
6631 spin_unlock(&head->lock);
6632 } while (--remaining > 0);
6633
6634 /* Exhausted local port range during search? */
6635 ret = 1;
6636 if (remaining <= 0)
6637 goto fail;
6638
6639 /* OK, here is the one we will use. HEAD (the port
6640 * hash table list entry) is non-NULL and we hold it's
6641 * mutex.
6642 */
6643 snum = rover;
6644 } else {
6645 /* We are given an specific port number; we verify
6646 * that it is not being used. If it is used, we will
6647 * exahust the search in the hash list corresponding
6648 * to the port number (snum) - we detect that with the
6649 * port iterator, pp being NULL.
6650 */
6651 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6652 spin_lock(&head->lock);
6653 sctp_for_each_hentry(pp, &head->chain) {
6654 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6655 goto pp_found;
6656 }
6657 }
6658 pp = NULL;
6659 goto pp_not_found;
6660 pp_found:
6661 if (!hlist_empty(&pp->owner)) {
6662 /* We had a port hash table hit - there is an
6663 * available port (pp != NULL) and it is being
6664 * used by other socket (pp->owner not empty); that other
6665 * socket is going to be sk2.
6666 */
6667 int reuse = sk->sk_reuse;
6668 struct sock *sk2;
6669
6670 pr_debug("%s: found a possible match\n", __func__);
6671
6672 if (pp->fastreuse && sk->sk_reuse &&
6673 sk->sk_state != SCTP_SS_LISTENING)
6674 goto success;
6675
6676 /* Run through the list of sockets bound to the port
6677 * (pp->port) [via the pointers bind_next and
6678 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6679 * we get the endpoint they describe and run through
6680 * the endpoint's list of IP (v4 or v6) addresses,
6681 * comparing each of the addresses with the address of
6682 * the socket sk. If we find a match, then that means
6683 * that this port/socket (sk) combination are already
6684 * in an endpoint.
6685 */
6686 sk_for_each_bound(sk2, &pp->owner) {
6687 struct sctp_endpoint *ep2;
6688 ep2 = sctp_sk(sk2)->ep;
6689
6690 if (sk == sk2 ||
6691 (reuse && sk2->sk_reuse &&
6692 sk2->sk_state != SCTP_SS_LISTENING))
6693 continue;
6694
6695 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6696 sctp_sk(sk2), sctp_sk(sk))) {
6697 ret = (long)sk2;
6698 goto fail_unlock;
6699 }
6700 }
6701
6702 pr_debug("%s: found a match\n", __func__);
6703 }
6704 pp_not_found:
6705 /* If there was a hash table miss, create a new port. */
6706 ret = 1;
6707 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6708 goto fail_unlock;
6709
6710 /* In either case (hit or miss), make sure fastreuse is 1 only
6711 * if sk->sk_reuse is too (that is, if the caller requested
6712 * SO_REUSEADDR on this socket -sk-).
6713 */
6714 if (hlist_empty(&pp->owner)) {
6715 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6716 pp->fastreuse = 1;
6717 else
6718 pp->fastreuse = 0;
6719 } else if (pp->fastreuse &&
6720 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6721 pp->fastreuse = 0;
6722
6723 /* We are set, so fill up all the data in the hash table
6724 * entry, tie the socket list information with the rest of the
6725 * sockets FIXME: Blurry, NPI (ipg).
6726 */
6727 success:
6728 if (!sctp_sk(sk)->bind_hash) {
6729 inet_sk(sk)->inet_num = snum;
6730 sk_add_bind_node(sk, &pp->owner);
6731 sctp_sk(sk)->bind_hash = pp;
6732 }
6733 ret = 0;
6734
6735 fail_unlock:
6736 spin_unlock(&head->lock);
6737
6738 fail:
6739 local_bh_enable();
6740 return ret;
6741 }
6742
6743 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6744 * port is requested.
6745 */
6746 static int sctp_get_port(struct sock *sk, unsigned short snum)
6747 {
6748 union sctp_addr addr;
6749 struct sctp_af *af = sctp_sk(sk)->pf->af;
6750
6751 /* Set up a dummy address struct from the sk. */
6752 af->from_sk(&addr, sk);
6753 addr.v4.sin_port = htons(snum);
6754
6755 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6756 return !!sctp_get_port_local(sk, &addr);
6757 }
6758
6759 /*
6760 * Move a socket to LISTENING state.
6761 */
6762 static int sctp_listen_start(struct sock *sk, int backlog)
6763 {
6764 struct sctp_sock *sp = sctp_sk(sk);
6765 struct sctp_endpoint *ep = sp->ep;
6766 struct crypto_shash *tfm = NULL;
6767 char alg[32];
6768
6769 /* Allocate HMAC for generating cookie. */
6770 if (!sp->hmac && sp->sctp_hmac_alg) {
6771 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6772 tfm = crypto_alloc_shash(alg, 0, 0);
6773 if (IS_ERR(tfm)) {
6774 net_info_ratelimited("failed to load transform for %s: %ld\n",
6775 sp->sctp_hmac_alg, PTR_ERR(tfm));
6776 return -ENOSYS;
6777 }
6778 sctp_sk(sk)->hmac = tfm;
6779 }
6780
6781 /*
6782 * If a bind() or sctp_bindx() is not called prior to a listen()
6783 * call that allows new associations to be accepted, the system
6784 * picks an ephemeral port and will choose an address set equivalent
6785 * to binding with a wildcard address.
6786 *
6787 * This is not currently spelled out in the SCTP sockets
6788 * extensions draft, but follows the practice as seen in TCP
6789 * sockets.
6790 *
6791 */
6792 sk->sk_state = SCTP_SS_LISTENING;
6793 if (!ep->base.bind_addr.port) {
6794 if (sctp_autobind(sk))
6795 return -EAGAIN;
6796 } else {
6797 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6798 sk->sk_state = SCTP_SS_CLOSED;
6799 return -EADDRINUSE;
6800 }
6801 }
6802
6803 sk->sk_max_ack_backlog = backlog;
6804 sctp_hash_endpoint(ep);
6805 return 0;
6806 }
6807
6808 /*
6809 * 4.1.3 / 5.1.3 listen()
6810 *
6811 * By default, new associations are not accepted for UDP style sockets.
6812 * An application uses listen() to mark a socket as being able to
6813 * accept new associations.
6814 *
6815 * On TCP style sockets, applications use listen() to ready the SCTP
6816 * endpoint for accepting inbound associations.
6817 *
6818 * On both types of endpoints a backlog of '0' disables listening.
6819 *
6820 * Move a socket to LISTENING state.
6821 */
6822 int sctp_inet_listen(struct socket *sock, int backlog)
6823 {
6824 struct sock *sk = sock->sk;
6825 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6826 int err = -EINVAL;
6827
6828 if (unlikely(backlog < 0))
6829 return err;
6830
6831 lock_sock(sk);
6832
6833 /* Peeled-off sockets are not allowed to listen(). */
6834 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6835 goto out;
6836
6837 if (sock->state != SS_UNCONNECTED)
6838 goto out;
6839
6840 /* If backlog is zero, disable listening. */
6841 if (!backlog) {
6842 if (sctp_sstate(sk, CLOSED))
6843 goto out;
6844
6845 err = 0;
6846 sctp_unhash_endpoint(ep);
6847 sk->sk_state = SCTP_SS_CLOSED;
6848 if (sk->sk_reuse)
6849 sctp_sk(sk)->bind_hash->fastreuse = 1;
6850 goto out;
6851 }
6852
6853 /* If we are already listening, just update the backlog */
6854 if (sctp_sstate(sk, LISTENING))
6855 sk->sk_max_ack_backlog = backlog;
6856 else {
6857 err = sctp_listen_start(sk, backlog);
6858 if (err)
6859 goto out;
6860 }
6861
6862 err = 0;
6863 out:
6864 release_sock(sk);
6865 return err;
6866 }
6867
6868 /*
6869 * This function is done by modeling the current datagram_poll() and the
6870 * tcp_poll(). Note that, based on these implementations, we don't
6871 * lock the socket in this function, even though it seems that,
6872 * ideally, locking or some other mechanisms can be used to ensure
6873 * the integrity of the counters (sndbuf and wmem_alloc) used
6874 * in this place. We assume that we don't need locks either until proven
6875 * otherwise.
6876 *
6877 * Another thing to note is that we include the Async I/O support
6878 * here, again, by modeling the current TCP/UDP code. We don't have
6879 * a good way to test with it yet.
6880 */
6881 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6882 {
6883 struct sock *sk = sock->sk;
6884 struct sctp_sock *sp = sctp_sk(sk);
6885 unsigned int mask;
6886
6887 poll_wait(file, sk_sleep(sk), wait);
6888
6889 sock_rps_record_flow(sk);
6890
6891 /* A TCP-style listening socket becomes readable when the accept queue
6892 * is not empty.
6893 */
6894 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6895 return (!list_empty(&sp->ep->asocs)) ?
6896 (POLLIN | POLLRDNORM) : 0;
6897
6898 mask = 0;
6899
6900 /* Is there any exceptional events? */
6901 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6902 mask |= POLLERR |
6903 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6904 if (sk->sk_shutdown & RCV_SHUTDOWN)
6905 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6906 if (sk->sk_shutdown == SHUTDOWN_MASK)
6907 mask |= POLLHUP;
6908
6909 /* Is it readable? Reconsider this code with TCP-style support. */
6910 if (!skb_queue_empty(&sk->sk_receive_queue))
6911 mask |= POLLIN | POLLRDNORM;
6912
6913 /* The association is either gone or not ready. */
6914 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6915 return mask;
6916
6917 /* Is it writable? */
6918 if (sctp_writeable(sk)) {
6919 mask |= POLLOUT | POLLWRNORM;
6920 } else {
6921 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6922 /*
6923 * Since the socket is not locked, the buffer
6924 * might be made available after the writeable check and
6925 * before the bit is set. This could cause a lost I/O
6926 * signal. tcp_poll() has a race breaker for this race
6927 * condition. Based on their implementation, we put
6928 * in the following code to cover it as well.
6929 */
6930 if (sctp_writeable(sk))
6931 mask |= POLLOUT | POLLWRNORM;
6932 }
6933 return mask;
6934 }
6935
6936 /********************************************************************
6937 * 2nd Level Abstractions
6938 ********************************************************************/
6939
6940 static struct sctp_bind_bucket *sctp_bucket_create(
6941 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6942 {
6943 struct sctp_bind_bucket *pp;
6944
6945 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6946 if (pp) {
6947 SCTP_DBG_OBJCNT_INC(bind_bucket);
6948 pp->port = snum;
6949 pp->fastreuse = 0;
6950 INIT_HLIST_HEAD(&pp->owner);
6951 pp->net = net;
6952 hlist_add_head(&pp->node, &head->chain);
6953 }
6954 return pp;
6955 }
6956
6957 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6958 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6959 {
6960 if (pp && hlist_empty(&pp->owner)) {
6961 __hlist_del(&pp->node);
6962 kmem_cache_free(sctp_bucket_cachep, pp);
6963 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6964 }
6965 }
6966
6967 /* Release this socket's reference to a local port. */
6968 static inline void __sctp_put_port(struct sock *sk)
6969 {
6970 struct sctp_bind_hashbucket *head =
6971 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6972 inet_sk(sk)->inet_num)];
6973 struct sctp_bind_bucket *pp;
6974
6975 spin_lock(&head->lock);
6976 pp = sctp_sk(sk)->bind_hash;
6977 __sk_del_bind_node(sk);
6978 sctp_sk(sk)->bind_hash = NULL;
6979 inet_sk(sk)->inet_num = 0;
6980 sctp_bucket_destroy(pp);
6981 spin_unlock(&head->lock);
6982 }
6983
6984 void sctp_put_port(struct sock *sk)
6985 {
6986 local_bh_disable();
6987 __sctp_put_port(sk);
6988 local_bh_enable();
6989 }
6990
6991 /*
6992 * The system picks an ephemeral port and choose an address set equivalent
6993 * to binding with a wildcard address.
6994 * One of those addresses will be the primary address for the association.
6995 * This automatically enables the multihoming capability of SCTP.
6996 */
6997 static int sctp_autobind(struct sock *sk)
6998 {
6999 union sctp_addr autoaddr;
7000 struct sctp_af *af;
7001 __be16 port;
7002
7003 /* Initialize a local sockaddr structure to INADDR_ANY. */
7004 af = sctp_sk(sk)->pf->af;
7005
7006 port = htons(inet_sk(sk)->inet_num);
7007 af->inaddr_any(&autoaddr, port);
7008
7009 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7010 }
7011
7012 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7013 *
7014 * From RFC 2292
7015 * 4.2 The cmsghdr Structure *
7016 *
7017 * When ancillary data is sent or received, any number of ancillary data
7018 * objects can be specified by the msg_control and msg_controllen members of
7019 * the msghdr structure, because each object is preceded by
7020 * a cmsghdr structure defining the object's length (the cmsg_len member).
7021 * Historically Berkeley-derived implementations have passed only one object
7022 * at a time, but this API allows multiple objects to be
7023 * passed in a single call to sendmsg() or recvmsg(). The following example
7024 * shows two ancillary data objects in a control buffer.
7025 *
7026 * |<--------------------------- msg_controllen -------------------------->|
7027 * | |
7028 *
7029 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7030 *
7031 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7032 * | | |
7033 *
7034 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7035 *
7036 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7037 * | | | | |
7038 *
7039 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7040 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7041 *
7042 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7043 *
7044 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7045 * ^
7046 * |
7047 *
7048 * msg_control
7049 * points here
7050 */
7051 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7052 {
7053 struct cmsghdr *cmsg;
7054 struct msghdr *my_msg = (struct msghdr *)msg;
7055
7056 for_each_cmsghdr(cmsg, my_msg) {
7057 if (!CMSG_OK(my_msg, cmsg))
7058 return -EINVAL;
7059
7060 /* Should we parse this header or ignore? */
7061 if (cmsg->cmsg_level != IPPROTO_SCTP)
7062 continue;
7063
7064 /* Strictly check lengths following example in SCM code. */
7065 switch (cmsg->cmsg_type) {
7066 case SCTP_INIT:
7067 /* SCTP Socket API Extension
7068 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7069 *
7070 * This cmsghdr structure provides information for
7071 * initializing new SCTP associations with sendmsg().
7072 * The SCTP_INITMSG socket option uses this same data
7073 * structure. This structure is not used for
7074 * recvmsg().
7075 *
7076 * cmsg_level cmsg_type cmsg_data[]
7077 * ------------ ------------ ----------------------
7078 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7079 */
7080 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7081 return -EINVAL;
7082
7083 cmsgs->init = CMSG_DATA(cmsg);
7084 break;
7085
7086 case SCTP_SNDRCV:
7087 /* SCTP Socket API Extension
7088 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7089 *
7090 * This cmsghdr structure specifies SCTP options for
7091 * sendmsg() and describes SCTP header information
7092 * about a received message through recvmsg().
7093 *
7094 * cmsg_level cmsg_type cmsg_data[]
7095 * ------------ ------------ ----------------------
7096 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7097 */
7098 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7099 return -EINVAL;
7100
7101 cmsgs->srinfo = CMSG_DATA(cmsg);
7102
7103 if (cmsgs->srinfo->sinfo_flags &
7104 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7105 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7106 SCTP_ABORT | SCTP_EOF))
7107 return -EINVAL;
7108 break;
7109
7110 case SCTP_SNDINFO:
7111 /* SCTP Socket API Extension
7112 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7113 *
7114 * This cmsghdr structure specifies SCTP options for
7115 * sendmsg(). This structure and SCTP_RCVINFO replaces
7116 * SCTP_SNDRCV which has been deprecated.
7117 *
7118 * cmsg_level cmsg_type cmsg_data[]
7119 * ------------ ------------ ---------------------
7120 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7121 */
7122 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7123 return -EINVAL;
7124
7125 cmsgs->sinfo = CMSG_DATA(cmsg);
7126
7127 if (cmsgs->sinfo->snd_flags &
7128 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7129 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7130 SCTP_ABORT | SCTP_EOF))
7131 return -EINVAL;
7132 break;
7133 default:
7134 return -EINVAL;
7135 }
7136 }
7137
7138 return 0;
7139 }
7140
7141 /*
7142 * Wait for a packet..
7143 * Note: This function is the same function as in core/datagram.c
7144 * with a few modifications to make lksctp work.
7145 */
7146 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7147 {
7148 int error;
7149 DEFINE_WAIT(wait);
7150
7151 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7152
7153 /* Socket errors? */
7154 error = sock_error(sk);
7155 if (error)
7156 goto out;
7157
7158 if (!skb_queue_empty(&sk->sk_receive_queue))
7159 goto ready;
7160
7161 /* Socket shut down? */
7162 if (sk->sk_shutdown & RCV_SHUTDOWN)
7163 goto out;
7164
7165 /* Sequenced packets can come disconnected. If so we report the
7166 * problem.
7167 */
7168 error = -ENOTCONN;
7169
7170 /* Is there a good reason to think that we may receive some data? */
7171 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7172 goto out;
7173
7174 /* Handle signals. */
7175 if (signal_pending(current))
7176 goto interrupted;
7177
7178 /* Let another process have a go. Since we are going to sleep
7179 * anyway. Note: This may cause odd behaviors if the message
7180 * does not fit in the user's buffer, but this seems to be the
7181 * only way to honor MSG_DONTWAIT realistically.
7182 */
7183 release_sock(sk);
7184 *timeo_p = schedule_timeout(*timeo_p);
7185 lock_sock(sk);
7186
7187 ready:
7188 finish_wait(sk_sleep(sk), &wait);
7189 return 0;
7190
7191 interrupted:
7192 error = sock_intr_errno(*timeo_p);
7193
7194 out:
7195 finish_wait(sk_sleep(sk), &wait);
7196 *err = error;
7197 return error;
7198 }
7199
7200 /* Receive a datagram.
7201 * Note: This is pretty much the same routine as in core/datagram.c
7202 * with a few changes to make lksctp work.
7203 */
7204 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7205 int noblock, int *err)
7206 {
7207 int error;
7208 struct sk_buff *skb;
7209 long timeo;
7210
7211 timeo = sock_rcvtimeo(sk, noblock);
7212
7213 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7214 MAX_SCHEDULE_TIMEOUT);
7215
7216 do {
7217 /* Again only user level code calls this function,
7218 * so nothing interrupt level
7219 * will suddenly eat the receive_queue.
7220 *
7221 * Look at current nfs client by the way...
7222 * However, this function was correct in any case. 8)
7223 */
7224 if (flags & MSG_PEEK) {
7225 skb = skb_peek(&sk->sk_receive_queue);
7226 if (skb)
7227 atomic_inc(&skb->users);
7228 } else {
7229 skb = __skb_dequeue(&sk->sk_receive_queue);
7230 }
7231
7232 if (skb)
7233 return skb;
7234
7235 /* Caller is allowed not to check sk->sk_err before calling. */
7236 error = sock_error(sk);
7237 if (error)
7238 goto no_packet;
7239
7240 if (sk->sk_shutdown & RCV_SHUTDOWN)
7241 break;
7242
7243 if (sk_can_busy_loop(sk) &&
7244 sk_busy_loop(sk, noblock))
7245 continue;
7246
7247 /* User doesn't want to wait. */
7248 error = -EAGAIN;
7249 if (!timeo)
7250 goto no_packet;
7251 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7252
7253 return NULL;
7254
7255 no_packet:
7256 *err = error;
7257 return NULL;
7258 }
7259
7260 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7261 static void __sctp_write_space(struct sctp_association *asoc)
7262 {
7263 struct sock *sk = asoc->base.sk;
7264
7265 if (sctp_wspace(asoc) <= 0)
7266 return;
7267
7268 if (waitqueue_active(&asoc->wait))
7269 wake_up_interruptible(&asoc->wait);
7270
7271 if (sctp_writeable(sk)) {
7272 struct socket_wq *wq;
7273
7274 rcu_read_lock();
7275 wq = rcu_dereference(sk->sk_wq);
7276 if (wq) {
7277 if (waitqueue_active(&wq->wait))
7278 wake_up_interruptible(&wq->wait);
7279
7280 /* Note that we try to include the Async I/O support
7281 * here by modeling from the current TCP/UDP code.
7282 * We have not tested with it yet.
7283 */
7284 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7285 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7286 }
7287 rcu_read_unlock();
7288 }
7289 }
7290
7291 static void sctp_wake_up_waiters(struct sock *sk,
7292 struct sctp_association *asoc)
7293 {
7294 struct sctp_association *tmp = asoc;
7295
7296 /* We do accounting for the sndbuf space per association,
7297 * so we only need to wake our own association.
7298 */
7299 if (asoc->ep->sndbuf_policy)
7300 return __sctp_write_space(asoc);
7301
7302 /* If association goes down and is just flushing its
7303 * outq, then just normally notify others.
7304 */
7305 if (asoc->base.dead)
7306 return sctp_write_space(sk);
7307
7308 /* Accounting for the sndbuf space is per socket, so we
7309 * need to wake up others, try to be fair and in case of
7310 * other associations, let them have a go first instead
7311 * of just doing a sctp_write_space() call.
7312 *
7313 * Note that we reach sctp_wake_up_waiters() only when
7314 * associations free up queued chunks, thus we are under
7315 * lock and the list of associations on a socket is
7316 * guaranteed not to change.
7317 */
7318 for (tmp = list_next_entry(tmp, asocs); 1;
7319 tmp = list_next_entry(tmp, asocs)) {
7320 /* Manually skip the head element. */
7321 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7322 continue;
7323 /* Wake up association. */
7324 __sctp_write_space(tmp);
7325 /* We've reached the end. */
7326 if (tmp == asoc)
7327 break;
7328 }
7329 }
7330
7331 /* Do accounting for the sndbuf space.
7332 * Decrement the used sndbuf space of the corresponding association by the
7333 * data size which was just transmitted(freed).
7334 */
7335 static void sctp_wfree(struct sk_buff *skb)
7336 {
7337 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7338 struct sctp_association *asoc = chunk->asoc;
7339 struct sock *sk = asoc->base.sk;
7340
7341 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7342 sizeof(struct sk_buff) +
7343 sizeof(struct sctp_chunk);
7344
7345 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7346
7347 /*
7348 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7349 */
7350 sk->sk_wmem_queued -= skb->truesize;
7351 sk_mem_uncharge(sk, skb->truesize);
7352
7353 sock_wfree(skb);
7354 sctp_wake_up_waiters(sk, asoc);
7355
7356 sctp_association_put(asoc);
7357 }
7358
7359 /* Do accounting for the receive space on the socket.
7360 * Accounting for the association is done in ulpevent.c
7361 * We set this as a destructor for the cloned data skbs so that
7362 * accounting is done at the correct time.
7363 */
7364 void sctp_sock_rfree(struct sk_buff *skb)
7365 {
7366 struct sock *sk = skb->sk;
7367 struct sctp_ulpevent *event = sctp_skb2event(skb);
7368
7369 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7370
7371 /*
7372 * Mimic the behavior of sock_rfree
7373 */
7374 sk_mem_uncharge(sk, event->rmem_len);
7375 }
7376
7377
7378 /* Helper function to wait for space in the sndbuf. */
7379 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7380 size_t msg_len)
7381 {
7382 struct sock *sk = asoc->base.sk;
7383 int err = 0;
7384 long current_timeo = *timeo_p;
7385 DEFINE_WAIT(wait);
7386
7387 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7388 *timeo_p, msg_len);
7389
7390 /* Increment the association's refcnt. */
7391 sctp_association_hold(asoc);
7392
7393 /* Wait on the association specific sndbuf space. */
7394 for (;;) {
7395 prepare_to_wait_exclusive(&asoc->wait, &wait,
7396 TASK_INTERRUPTIBLE);
7397 if (!*timeo_p)
7398 goto do_nonblock;
7399 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7400 asoc->base.dead)
7401 goto do_error;
7402 if (signal_pending(current))
7403 goto do_interrupted;
7404 if (msg_len <= sctp_wspace(asoc))
7405 break;
7406
7407 /* Let another process have a go. Since we are going
7408 * to sleep anyway.
7409 */
7410 release_sock(sk);
7411 current_timeo = schedule_timeout(current_timeo);
7412 BUG_ON(sk != asoc->base.sk);
7413 lock_sock(sk);
7414
7415 *timeo_p = current_timeo;
7416 }
7417
7418 out:
7419 finish_wait(&asoc->wait, &wait);
7420
7421 /* Release the association's refcnt. */
7422 sctp_association_put(asoc);
7423
7424 return err;
7425
7426 do_error:
7427 err = -EPIPE;
7428 goto out;
7429
7430 do_interrupted:
7431 err = sock_intr_errno(*timeo_p);
7432 goto out;
7433
7434 do_nonblock:
7435 err = -EAGAIN;
7436 goto out;
7437 }
7438
7439 void sctp_data_ready(struct sock *sk)
7440 {
7441 struct socket_wq *wq;
7442
7443 rcu_read_lock();
7444 wq = rcu_dereference(sk->sk_wq);
7445 if (skwq_has_sleeper(wq))
7446 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7447 POLLRDNORM | POLLRDBAND);
7448 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7449 rcu_read_unlock();
7450 }
7451
7452 /* If socket sndbuf has changed, wake up all per association waiters. */
7453 void sctp_write_space(struct sock *sk)
7454 {
7455 struct sctp_association *asoc;
7456
7457 /* Wake up the tasks in each wait queue. */
7458 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7459 __sctp_write_space(asoc);
7460 }
7461 }
7462
7463 /* Is there any sndbuf space available on the socket?
7464 *
7465 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7466 * associations on the same socket. For a UDP-style socket with
7467 * multiple associations, it is possible for it to be "unwriteable"
7468 * prematurely. I assume that this is acceptable because
7469 * a premature "unwriteable" is better than an accidental "writeable" which
7470 * would cause an unwanted block under certain circumstances. For the 1-1
7471 * UDP-style sockets or TCP-style sockets, this code should work.
7472 * - Daisy
7473 */
7474 static int sctp_writeable(struct sock *sk)
7475 {
7476 int amt = 0;
7477
7478 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7479 if (amt < 0)
7480 amt = 0;
7481 return amt;
7482 }
7483
7484 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7485 * returns immediately with EINPROGRESS.
7486 */
7487 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7488 {
7489 struct sock *sk = asoc->base.sk;
7490 int err = 0;
7491 long current_timeo = *timeo_p;
7492 DEFINE_WAIT(wait);
7493
7494 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7495
7496 /* Increment the association's refcnt. */
7497 sctp_association_hold(asoc);
7498
7499 for (;;) {
7500 prepare_to_wait_exclusive(&asoc->wait, &wait,
7501 TASK_INTERRUPTIBLE);
7502 if (!*timeo_p)
7503 goto do_nonblock;
7504 if (sk->sk_shutdown & RCV_SHUTDOWN)
7505 break;
7506 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7507 asoc->base.dead)
7508 goto do_error;
7509 if (signal_pending(current))
7510 goto do_interrupted;
7511
7512 if (sctp_state(asoc, ESTABLISHED))
7513 break;
7514
7515 /* Let another process have a go. Since we are going
7516 * to sleep anyway.
7517 */
7518 release_sock(sk);
7519 current_timeo = schedule_timeout(current_timeo);
7520 lock_sock(sk);
7521
7522 *timeo_p = current_timeo;
7523 }
7524
7525 out:
7526 finish_wait(&asoc->wait, &wait);
7527
7528 /* Release the association's refcnt. */
7529 sctp_association_put(asoc);
7530
7531 return err;
7532
7533 do_error:
7534 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7535 err = -ETIMEDOUT;
7536 else
7537 err = -ECONNREFUSED;
7538 goto out;
7539
7540 do_interrupted:
7541 err = sock_intr_errno(*timeo_p);
7542 goto out;
7543
7544 do_nonblock:
7545 err = -EINPROGRESS;
7546 goto out;
7547 }
7548
7549 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7550 {
7551 struct sctp_endpoint *ep;
7552 int err = 0;
7553 DEFINE_WAIT(wait);
7554
7555 ep = sctp_sk(sk)->ep;
7556
7557
7558 for (;;) {
7559 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7560 TASK_INTERRUPTIBLE);
7561
7562 if (list_empty(&ep->asocs)) {
7563 release_sock(sk);
7564 timeo = schedule_timeout(timeo);
7565 lock_sock(sk);
7566 }
7567
7568 err = -EINVAL;
7569 if (!sctp_sstate(sk, LISTENING))
7570 break;
7571
7572 err = 0;
7573 if (!list_empty(&ep->asocs))
7574 break;
7575
7576 err = sock_intr_errno(timeo);
7577 if (signal_pending(current))
7578 break;
7579
7580 err = -EAGAIN;
7581 if (!timeo)
7582 break;
7583 }
7584
7585 finish_wait(sk_sleep(sk), &wait);
7586
7587 return err;
7588 }
7589
7590 static void sctp_wait_for_close(struct sock *sk, long timeout)
7591 {
7592 DEFINE_WAIT(wait);
7593
7594 do {
7595 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7596 if (list_empty(&sctp_sk(sk)->ep->asocs))
7597 break;
7598 release_sock(sk);
7599 timeout = schedule_timeout(timeout);
7600 lock_sock(sk);
7601 } while (!signal_pending(current) && timeout);
7602
7603 finish_wait(sk_sleep(sk), &wait);
7604 }
7605
7606 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7607 {
7608 struct sk_buff *frag;
7609
7610 if (!skb->data_len)
7611 goto done;
7612
7613 /* Don't forget the fragments. */
7614 skb_walk_frags(skb, frag)
7615 sctp_skb_set_owner_r_frag(frag, sk);
7616
7617 done:
7618 sctp_skb_set_owner_r(skb, sk);
7619 }
7620
7621 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7622 struct sctp_association *asoc)
7623 {
7624 struct inet_sock *inet = inet_sk(sk);
7625 struct inet_sock *newinet;
7626
7627 newsk->sk_type = sk->sk_type;
7628 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7629 newsk->sk_flags = sk->sk_flags;
7630 newsk->sk_tsflags = sk->sk_tsflags;
7631 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7632 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7633 newsk->sk_reuse = sk->sk_reuse;
7634
7635 newsk->sk_shutdown = sk->sk_shutdown;
7636 newsk->sk_destruct = sctp_destruct_sock;
7637 newsk->sk_family = sk->sk_family;
7638 newsk->sk_protocol = IPPROTO_SCTP;
7639 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7640 newsk->sk_sndbuf = sk->sk_sndbuf;
7641 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7642 newsk->sk_lingertime = sk->sk_lingertime;
7643 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7644 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7645 newsk->sk_rxhash = sk->sk_rxhash;
7646
7647 newinet = inet_sk(newsk);
7648
7649 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7650 * getsockname() and getpeername()
7651 */
7652 newinet->inet_sport = inet->inet_sport;
7653 newinet->inet_saddr = inet->inet_saddr;
7654 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7655 newinet->inet_dport = htons(asoc->peer.port);
7656 newinet->pmtudisc = inet->pmtudisc;
7657 newinet->inet_id = asoc->next_tsn ^ jiffies;
7658
7659 newinet->uc_ttl = inet->uc_ttl;
7660 newinet->mc_loop = 1;
7661 newinet->mc_ttl = 1;
7662 newinet->mc_index = 0;
7663 newinet->mc_list = NULL;
7664
7665 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7666 net_enable_timestamp();
7667
7668 security_sk_clone(sk, newsk);
7669 }
7670
7671 static inline void sctp_copy_descendant(struct sock *sk_to,
7672 const struct sock *sk_from)
7673 {
7674 int ancestor_size = sizeof(struct inet_sock) +
7675 sizeof(struct sctp_sock) -
7676 offsetof(struct sctp_sock, auto_asconf_list);
7677
7678 if (sk_from->sk_family == PF_INET6)
7679 ancestor_size += sizeof(struct ipv6_pinfo);
7680
7681 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7682 }
7683
7684 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7685 * and its messages to the newsk.
7686 */
7687 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7688 struct sctp_association *assoc,
7689 sctp_socket_type_t type)
7690 {
7691 struct sctp_sock *oldsp = sctp_sk(oldsk);
7692 struct sctp_sock *newsp = sctp_sk(newsk);
7693 struct sctp_bind_bucket *pp; /* hash list port iterator */
7694 struct sctp_endpoint *newep = newsp->ep;
7695 struct sk_buff *skb, *tmp;
7696 struct sctp_ulpevent *event;
7697 struct sctp_bind_hashbucket *head;
7698
7699 /* Migrate socket buffer sizes and all the socket level options to the
7700 * new socket.
7701 */
7702 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7703 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7704 /* Brute force copy old sctp opt. */
7705 sctp_copy_descendant(newsk, oldsk);
7706
7707 /* Restore the ep value that was overwritten with the above structure
7708 * copy.
7709 */
7710 newsp->ep = newep;
7711 newsp->hmac = NULL;
7712
7713 /* Hook this new socket in to the bind_hash list. */
7714 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7715 inet_sk(oldsk)->inet_num)];
7716 spin_lock_bh(&head->lock);
7717 pp = sctp_sk(oldsk)->bind_hash;
7718 sk_add_bind_node(newsk, &pp->owner);
7719 sctp_sk(newsk)->bind_hash = pp;
7720 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7721 spin_unlock_bh(&head->lock);
7722
7723 /* Copy the bind_addr list from the original endpoint to the new
7724 * endpoint so that we can handle restarts properly
7725 */
7726 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7727 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7728
7729 /* Move any messages in the old socket's receive queue that are for the
7730 * peeled off association to the new socket's receive queue.
7731 */
7732 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7733 event = sctp_skb2event(skb);
7734 if (event->asoc == assoc) {
7735 __skb_unlink(skb, &oldsk->sk_receive_queue);
7736 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7737 sctp_skb_set_owner_r_frag(skb, newsk);
7738 }
7739 }
7740
7741 /* Clean up any messages pending delivery due to partial
7742 * delivery. Three cases:
7743 * 1) No partial deliver; no work.
7744 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7745 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7746 */
7747 skb_queue_head_init(&newsp->pd_lobby);
7748 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7749
7750 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7751 struct sk_buff_head *queue;
7752
7753 /* Decide which queue to move pd_lobby skbs to. */
7754 if (assoc->ulpq.pd_mode) {
7755 queue = &newsp->pd_lobby;
7756 } else
7757 queue = &newsk->sk_receive_queue;
7758
7759 /* Walk through the pd_lobby, looking for skbs that
7760 * need moved to the new socket.
7761 */
7762 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7763 event = sctp_skb2event(skb);
7764 if (event->asoc == assoc) {
7765 __skb_unlink(skb, &oldsp->pd_lobby);
7766 __skb_queue_tail(queue, skb);
7767 sctp_skb_set_owner_r_frag(skb, newsk);
7768 }
7769 }
7770
7771 /* Clear up any skbs waiting for the partial
7772 * delivery to finish.
7773 */
7774 if (assoc->ulpq.pd_mode)
7775 sctp_clear_pd(oldsk, NULL);
7776
7777 }
7778
7779 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7780 sctp_skb_set_owner_r_frag(skb, newsk);
7781
7782 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7783 sctp_skb_set_owner_r_frag(skb, newsk);
7784
7785 /* Set the type of socket to indicate that it is peeled off from the
7786 * original UDP-style socket or created with the accept() call on a
7787 * TCP-style socket..
7788 */
7789 newsp->type = type;
7790
7791 /* Mark the new socket "in-use" by the user so that any packets
7792 * that may arrive on the association after we've moved it are
7793 * queued to the backlog. This prevents a potential race between
7794 * backlog processing on the old socket and new-packet processing
7795 * on the new socket.
7796 *
7797 * The caller has just allocated newsk so we can guarantee that other
7798 * paths won't try to lock it and then oldsk.
7799 */
7800 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7801 sctp_assoc_migrate(assoc, newsk);
7802
7803 /* If the association on the newsk is already closed before accept()
7804 * is called, set RCV_SHUTDOWN flag.
7805 */
7806 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7807 newsk->sk_state = SCTP_SS_CLOSED;
7808 newsk->sk_shutdown |= RCV_SHUTDOWN;
7809 } else {
7810 newsk->sk_state = SCTP_SS_ESTABLISHED;
7811 }
7812
7813 release_sock(newsk);
7814 }
7815
7816
7817 /* This proto struct describes the ULP interface for SCTP. */
7818 struct proto sctp_prot = {
7819 .name = "SCTP",
7820 .owner = THIS_MODULE,
7821 .close = sctp_close,
7822 .connect = sctp_connect,
7823 .disconnect = sctp_disconnect,
7824 .accept = sctp_accept,
7825 .ioctl = sctp_ioctl,
7826 .init = sctp_init_sock,
7827 .destroy = sctp_destroy_sock,
7828 .shutdown = sctp_shutdown,
7829 .setsockopt = sctp_setsockopt,
7830 .getsockopt = sctp_getsockopt,
7831 .sendmsg = sctp_sendmsg,
7832 .recvmsg = sctp_recvmsg,
7833 .bind = sctp_bind,
7834 .backlog_rcv = sctp_backlog_rcv,
7835 .hash = sctp_hash,
7836 .unhash = sctp_unhash,
7837 .get_port = sctp_get_port,
7838 .obj_size = sizeof(struct sctp_sock),
7839 .sysctl_mem = sysctl_sctp_mem,
7840 .sysctl_rmem = sysctl_sctp_rmem,
7841 .sysctl_wmem = sysctl_sctp_wmem,
7842 .memory_pressure = &sctp_memory_pressure,
7843 .enter_memory_pressure = sctp_enter_memory_pressure,
7844 .memory_allocated = &sctp_memory_allocated,
7845 .sockets_allocated = &sctp_sockets_allocated,
7846 };
7847
7848 #if IS_ENABLED(CONFIG_IPV6)
7849
7850 #include <net/transp_v6.h>
7851 static void sctp_v6_destroy_sock(struct sock *sk)
7852 {
7853 sctp_destroy_sock(sk);
7854 inet6_destroy_sock(sk);
7855 }
7856
7857 struct proto sctpv6_prot = {
7858 .name = "SCTPv6",
7859 .owner = THIS_MODULE,
7860 .close = sctp_close,
7861 .connect = sctp_connect,
7862 .disconnect = sctp_disconnect,
7863 .accept = sctp_accept,
7864 .ioctl = sctp_ioctl,
7865 .init = sctp_init_sock,
7866 .destroy = sctp_v6_destroy_sock,
7867 .shutdown = sctp_shutdown,
7868 .setsockopt = sctp_setsockopt,
7869 .getsockopt = sctp_getsockopt,
7870 .sendmsg = sctp_sendmsg,
7871 .recvmsg = sctp_recvmsg,
7872 .bind = sctp_bind,
7873 .backlog_rcv = sctp_backlog_rcv,
7874 .hash = sctp_hash,
7875 .unhash = sctp_unhash,
7876 .get_port = sctp_get_port,
7877 .obj_size = sizeof(struct sctp6_sock),
7878 .sysctl_mem = sysctl_sctp_mem,
7879 .sysctl_rmem = sysctl_sctp_rmem,
7880 .sysctl_wmem = sysctl_sctp_wmem,
7881 .memory_pressure = &sctp_memory_pressure,
7882 .enter_memory_pressure = sctp_enter_memory_pressure,
7883 .memory_allocated = &sctp_memory_allocated,
7884 .sockets_allocated = &sctp_sockets_allocated,
7885 };
7886 #endif /* IS_ENABLED(CONFIG_IPV6) */
This page took 0.203407 seconds and 5 git commands to generate.