cd0fb3bb493cd581c946320d4f0df72208df4bf4
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256 }
257
258 /* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287 }
288
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294 {
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319 }
320
321 /* Bind a local address either to an endpoint or to an association. */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC);
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399 }
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411 static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413 {
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433 out:
434 return retval;
435 }
436
437 /* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450 {
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 addrs, addrcnt);
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477 err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487 }
488
489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499 static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502 {
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 __func__, sk, addrs, addrcnt);
526
527 list_for_each_entry(asoc, &ep->asocs, asocs) {
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len);
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC);
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,
589 &asoc->peer.transport_addr_list, transports) {
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 2*asoc->pathmtu, 4380));
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL,
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605 out:
606 return retval;
607 }
608
609 /* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 {
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 __func__, sk, addrs, addrcnt);
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL)) {
658 retval = -EADDRNOTAVAIL;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)) {
664 retval = -EINVAL;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port);
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681 err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691 }
692
693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703 static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706 {
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL;
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 __func__, sk, addrs, addrcnt);
731
732 list_for_each_entry(asoc, &ep->asocs, asocs) {
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 if (asoc->asconf_addr_del_pending == NULL) {
779 retval = -ENOMEM;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port);
786 if (addrs->sa_family == AF_INET) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET6) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 asoc->asconf_addr_del_pending);
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL)
808 return -EINVAL;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM;
818 goto out;
819 }
820
821 skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list) {
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 transports) {
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL,
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852 out:
853 return retval;
854 }
855
856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858 {
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876 }
877
878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954 static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957 {
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 __func__, sk, addrs, addrs_size, op);
968
969 if (unlikely(addrs_size <= 0))
970 return -EINVAL;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 return -EFAULT;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 if (unlikely(!kaddrs))
979 return -ENOMEM;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL;
1027 break;
1028 }
1029
1030 out:
1031 kfree(kaddrs);
1032
1033 return err;
1034 }
1035
1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041 static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045 {
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL;
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL;
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED) ||
1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 err = -EISCONN;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 err = -EACCES;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 if (!asoc) {
1165 err = -ENOMEM;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 sp->pf->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216
1217 err = sctp_wait_for_connect(asoc, &timeo);
1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1219 *assoc_id = asoc->assoc_id;
1220
1221 /* Don't free association on exit. */
1222 asoc = NULL;
1223
1224 out_free:
1225 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1226 __func__, asoc, kaddrs, err);
1227
1228 if (asoc) {
1229 /* sctp_primitive_ASSOCIATE may have added this association
1230 * To the hash table, try to unhash it, just in case, its a noop
1231 * if it wasn't hashed so we're safe
1232 */
1233 sctp_association_free(asoc);
1234 }
1235 return err;
1236 }
1237
1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239 *
1240 * API 8.9
1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242 * sctp_assoc_t *asoc);
1243 *
1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246 * or IPv6 addresses.
1247 *
1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249 * Section 3.1.2 for this usage.
1250 *
1251 * addrs is a pointer to an array of one or more socket addresses. Each
1252 * address is contained in its appropriate structure (i.e. struct
1253 * sockaddr_in or struct sockaddr_in6) the family of the address type
1254 * must be used to distengish the address length (note that this
1255 * representation is termed a "packed array" of addresses). The caller
1256 * specifies the number of addresses in the array with addrcnt.
1257 *
1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259 * the association id of the new association. On failure, sctp_connectx()
1260 * returns -1, and sets errno to the appropriate error code. The assoc_id
1261 * is not touched by the kernel.
1262 *
1263 * For SCTP, the port given in each socket address must be the same, or
1264 * sctp_connectx() will fail, setting errno to EINVAL.
1265 *
1266 * An application can use sctp_connectx to initiate an association with
1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1268 * allows a caller to specify multiple addresses at which a peer can be
1269 * reached. The way the SCTP stack uses the list of addresses to set up
1270 * the association is implementation dependent. This function only
1271 * specifies that the stack will try to make use of all the addresses in
1272 * the list when needed.
1273 *
1274 * Note that the list of addresses passed in is only used for setting up
1275 * the association. It does not necessarily equal the set of addresses
1276 * the peer uses for the resulting association. If the caller wants to
1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278 * retrieve them after the association has been set up.
1279 *
1280 * Basically do nothing but copying the addresses from user to kernel
1281 * land and invoking either sctp_connectx(). This is used for tunneling
1282 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283 *
1284 * We don't use copy_from_user() for optimization: we first do the
1285 * sanity checks (buffer size -fast- and access check-healthy
1286 * pointer); if all of those succeed, then we can alloc the memory
1287 * (expensive operation) needed to copy the data to kernel. Then we do
1288 * the copying without checking the user space area
1289 * (__copy_from_user()).
1290 *
1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292 * it.
1293 *
1294 * sk The sk of the socket
1295 * addrs The pointer to the addresses in user land
1296 * addrssize Size of the addrs buffer
1297 *
1298 * Returns >=0 if ok, <0 errno code on error.
1299 */
1300 static int __sctp_setsockopt_connectx(struct sock *sk,
1301 struct sockaddr __user *addrs,
1302 int addrs_size,
1303 sctp_assoc_t *assoc_id)
1304 {
1305 struct sockaddr *kaddrs;
1306 gfp_t gfp = GFP_KERNEL;
1307 int err = 0;
1308
1309 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1310 __func__, sk, addrs, addrs_size);
1311
1312 if (unlikely(addrs_size <= 0))
1313 return -EINVAL;
1314
1315 /* Check the user passed a healthy pointer. */
1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1317 return -EFAULT;
1318
1319 /* Alloc space for the address array in kernel memory. */
1320 if (sk->sk_socket->file)
1321 gfp = GFP_USER | __GFP_NOWARN;
1322 kaddrs = kmalloc(addrs_size, gfp);
1323 if (unlikely(!kaddrs))
1324 return -ENOMEM;
1325
1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 err = -EFAULT;
1328 } else {
1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 }
1331
1332 kfree(kaddrs);
1333
1334 return err;
1335 }
1336
1337 /*
1338 * This is an older interface. It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 struct sockaddr __user *addrs,
1343 int addrs_size)
1344 {
1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347
1348 /*
1349 * New interface for the API. The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call. Error is always negative and association id is
1352 * always positive.
1353 */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 struct sockaddr __user *addrs,
1356 int addrs_size)
1357 {
1358 sctp_assoc_t assoc_id = 0;
1359 int err = 0;
1360
1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362
1363 if (err)
1364 return err;
1365 else
1366 return assoc_id;
1367 }
1368
1369 /*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 sctp_assoc_t assoc_id;
1380 s32 addr_num;
1381 compat_uptr_t addrs; /* struct sockaddr * */
1382 };
1383 #endif
1384
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 char __user *optval,
1387 int __user *optlen)
1388 {
1389 struct sctp_getaddrs_old param;
1390 sctp_assoc_t assoc_id = 0;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(&param32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(&param, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 param.addrs, param.addr_num,
1416 &assoc_id);
1417 if (err == 0 || err == -EINPROGRESS) {
1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 return -EFAULT;
1420 if (put_user(sizeof(assoc_id), optlen))
1421 return -EFAULT;
1422 }
1423
1424 return err;
1425 }
1426
1427 /* API 3.1.4 close() - UDP Style Syntax
1428 * Applications use close() to perform graceful shutdown (as described in
1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430 * by a UDP-style socket.
1431 *
1432 * The syntax is
1433 *
1434 * ret = close(int sd);
1435 *
1436 * sd - the socket descriptor of the associations to be closed.
1437 *
1438 * To gracefully shutdown a specific association represented by the
1439 * UDP-style socket, an application should use the sendmsg() call,
1440 * passing no user data, but including the appropriate flag in the
1441 * ancillary data (see Section xxxx).
1442 *
1443 * If sd in the close() call is a branched-off socket representing only
1444 * one association, the shutdown is performed on that association only.
1445 *
1446 * 4.1.6 close() - TCP Style Syntax
1447 *
1448 * Applications use close() to gracefully close down an association.
1449 *
1450 * The syntax is:
1451 *
1452 * int close(int sd);
1453 *
1454 * sd - the socket descriptor of the association to be closed.
1455 *
1456 * After an application calls close() on a socket descriptor, no further
1457 * socket operations will succeed on that descriptor.
1458 *
1459 * API 7.1.4 SO_LINGER
1460 *
1461 * An application using the TCP-style socket can use this option to
1462 * perform the SCTP ABORT primitive. The linger option structure is:
1463 *
1464 * struct linger {
1465 * int l_onoff; // option on/off
1466 * int l_linger; // linger time
1467 * };
1468 *
1469 * To enable the option, set l_onoff to 1. If the l_linger value is set
1470 * to 0, calling close() is the same as the ABORT primitive. If the
1471 * value is set to a negative value, the setsockopt() call will return
1472 * an error. If the value is set to a positive value linger_time, the
1473 * close() can be blocked for at most linger_time ms. If the graceful
1474 * shutdown phase does not finish during this period, close() will
1475 * return but the graceful shutdown phase continues in the system.
1476 */
1477 static void sctp_close(struct sock *sk, long timeout)
1478 {
1479 struct net *net = sock_net(sk);
1480 struct sctp_endpoint *ep;
1481 struct sctp_association *asoc;
1482 struct list_head *pos, *temp;
1483 unsigned int data_was_unread;
1484
1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486
1487 lock_sock(sk);
1488 sk->sk_shutdown = SHUTDOWN_MASK;
1489 sk->sk_state = SCTP_SS_CLOSING;
1490
1491 ep = sctp_sk(sk)->ep;
1492
1493 /* Clean up any skbs sitting on the receive queue. */
1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496
1497 /* Walk all associations on an endpoint. */
1498 list_for_each_safe(pos, temp, &ep->asocs) {
1499 asoc = list_entry(pos, struct sctp_association, asocs);
1500
1501 if (sctp_style(sk, TCP)) {
1502 /* A closed association can still be in the list if
1503 * it belongs to a TCP-style listening socket that is
1504 * not yet accepted. If so, free it. If not, send an
1505 * ABORT or SHUTDOWN based on the linger options.
1506 */
1507 if (sctp_state(asoc, CLOSED)) {
1508 sctp_association_free(asoc);
1509 continue;
1510 }
1511 }
1512
1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1514 !skb_queue_empty(&asoc->ulpq.reasm) ||
1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1516 struct sctp_chunk *chunk;
1517
1518 chunk = sctp_make_abort_user(asoc, NULL, 0);
1519 sctp_primitive_ABORT(net, asoc, chunk);
1520 } else
1521 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1522 }
1523
1524 /* On a TCP-style socket, block for at most linger_time if set. */
1525 if (sctp_style(sk, TCP) && timeout)
1526 sctp_wait_for_close(sk, timeout);
1527
1528 /* This will run the backlog queue. */
1529 release_sock(sk);
1530
1531 /* Supposedly, no process has access to the socket, but
1532 * the net layers still may.
1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1534 * held and that should be grabbed before socket lock.
1535 */
1536 spin_lock_bh(&net->sctp.addr_wq_lock);
1537 bh_lock_sock(sk);
1538
1539 /* Hold the sock, since sk_common_release() will put sock_put()
1540 * and we have just a little more cleanup.
1541 */
1542 sock_hold(sk);
1543 sk_common_release(sk);
1544
1545 bh_unlock_sock(sk);
1546 spin_unlock_bh(&net->sctp.addr_wq_lock);
1547
1548 sock_put(sk);
1549
1550 SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 if (err == -EPIPE)
1557 err = sock_error(sk) ? : -EPIPE;
1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 send_sig(SIGPIPE, current, 0);
1560 return err;
1561 }
1562
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 * ssize_t sendmsg(int socket, const struct msghdr *message,
1569 * int flags);
1570 *
1571 * socket - the socket descriptor of the endpoint.
1572 * message - pointer to the msghdr structure which contains a single
1573 * user message and possibly some ancillary data.
1574 *
1575 * See Section 5 for complete description of the data
1576 * structures.
1577 *
1578 * flags - flags sent or received with the user message, see Section
1579 * 5 for complete description of the flags.
1580 *
1581 * Note: This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1589 {
1590 struct net *net = sock_net(sk);
1591 struct sctp_sock *sp;
1592 struct sctp_endpoint *ep;
1593 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1594 struct sctp_transport *transport, *chunk_tp;
1595 struct sctp_chunk *chunk;
1596 union sctp_addr to;
1597 struct sockaddr *msg_name = NULL;
1598 struct sctp_sndrcvinfo default_sinfo;
1599 struct sctp_sndrcvinfo *sinfo;
1600 struct sctp_initmsg *sinit;
1601 sctp_assoc_t associd = 0;
1602 sctp_cmsgs_t cmsgs = { NULL };
1603 sctp_scope_t scope;
1604 bool fill_sinfo_ttl = false, wait_connect = false;
1605 struct sctp_datamsg *datamsg;
1606 int msg_flags = msg->msg_flags;
1607 __u16 sinfo_flags = 0;
1608 long timeo;
1609 int err;
1610
1611 err = 0;
1612 sp = sctp_sk(sk);
1613 ep = sp->ep;
1614
1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 msg, msg_len, ep);
1617
1618 /* We cannot send a message over a TCP-style listening socket. */
1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 err = -EPIPE;
1621 goto out_nounlock;
1622 }
1623
1624 /* Parse out the SCTP CMSGs. */
1625 err = sctp_msghdr_parse(msg, &cmsgs);
1626 if (err) {
1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 goto out_nounlock;
1629 }
1630
1631 /* Fetch the destination address for this packet. This
1632 * address only selects the association--it is not necessarily
1633 * the address we will send to.
1634 * For a peeled-off socket, msg_name is ignored.
1635 */
1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 int msg_namelen = msg->msg_namelen;
1638
1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 msg_namelen);
1641 if (err)
1642 return err;
1643
1644 if (msg_namelen > sizeof(to))
1645 msg_namelen = sizeof(to);
1646 memcpy(&to, msg->msg_name, msg_namelen);
1647 msg_name = msg->msg_name;
1648 }
1649
1650 sinit = cmsgs.init;
1651 if (cmsgs.sinfo != NULL) {
1652 memset(&default_sinfo, 0, sizeof(default_sinfo));
1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1658
1659 sinfo = &default_sinfo;
1660 fill_sinfo_ttl = true;
1661 } else {
1662 sinfo = cmsgs.srinfo;
1663 }
1664 /* Did the user specify SNDINFO/SNDRCVINFO? */
1665 if (sinfo) {
1666 sinfo_flags = sinfo->sinfo_flags;
1667 associd = sinfo->sinfo_assoc_id;
1668 }
1669
1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1671 msg_len, sinfo_flags);
1672
1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1680 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1681 * If SCTP_ABORT is set, the message length could be non zero with
1682 * the msg_iov set to the user abort reason.
1683 */
1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1686 err = -EINVAL;
1687 goto out_nounlock;
1688 }
1689
1690 /* If SCTP_ADDR_OVER is set, there must be an address
1691 * specified in msg_name.
1692 */
1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1694 err = -EINVAL;
1695 goto out_nounlock;
1696 }
1697
1698 transport = NULL;
1699
1700 pr_debug("%s: about to look up association\n", __func__);
1701
1702 lock_sock(sk);
1703
1704 /* If a msg_name has been specified, assume this is to be used. */
1705 if (msg_name) {
1706 /* Look for a matching association on the endpoint. */
1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1708 if (!asoc) {
1709 /* If we could not find a matching association on the
1710 * endpoint, make sure that it is not a TCP-style
1711 * socket that already has an association or there is
1712 * no peeled-off association on another socket.
1713 */
1714 if ((sctp_style(sk, TCP) &&
1715 sctp_sstate(sk, ESTABLISHED)) ||
1716 sctp_endpoint_is_peeled_off(ep, &to)) {
1717 err = -EADDRNOTAVAIL;
1718 goto out_unlock;
1719 }
1720 }
1721 } else {
1722 asoc = sctp_id2assoc(sk, associd);
1723 if (!asoc) {
1724 err = -EPIPE;
1725 goto out_unlock;
1726 }
1727 }
1728
1729 if (asoc) {
1730 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1731
1732 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1733 * socket that has an association in CLOSED state. This can
1734 * happen when an accepted socket has an association that is
1735 * already CLOSED.
1736 */
1737 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1738 err = -EPIPE;
1739 goto out_unlock;
1740 }
1741
1742 if (sinfo_flags & SCTP_EOF) {
1743 pr_debug("%s: shutting down association:%p\n",
1744 __func__, asoc);
1745
1746 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1747 err = 0;
1748 goto out_unlock;
1749 }
1750 if (sinfo_flags & SCTP_ABORT) {
1751
1752 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1753 if (!chunk) {
1754 err = -ENOMEM;
1755 goto out_unlock;
1756 }
1757
1758 pr_debug("%s: aborting association:%p\n",
1759 __func__, asoc);
1760
1761 sctp_primitive_ABORT(net, asoc, chunk);
1762 err = 0;
1763 goto out_unlock;
1764 }
1765 }
1766
1767 /* Do we need to create the association? */
1768 if (!asoc) {
1769 pr_debug("%s: there is no association yet\n", __func__);
1770
1771 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1772 err = -EINVAL;
1773 goto out_unlock;
1774 }
1775
1776 /* Check for invalid stream against the stream counts,
1777 * either the default or the user specified stream counts.
1778 */
1779 if (sinfo) {
1780 if (!sinit || !sinit->sinit_num_ostreams) {
1781 /* Check against the defaults. */
1782 if (sinfo->sinfo_stream >=
1783 sp->initmsg.sinit_num_ostreams) {
1784 err = -EINVAL;
1785 goto out_unlock;
1786 }
1787 } else {
1788 /* Check against the requested. */
1789 if (sinfo->sinfo_stream >=
1790 sinit->sinit_num_ostreams) {
1791 err = -EINVAL;
1792 goto out_unlock;
1793 }
1794 }
1795 }
1796
1797 /*
1798 * API 3.1.2 bind() - UDP Style Syntax
1799 * If a bind() or sctp_bindx() is not called prior to a
1800 * sendmsg() call that initiates a new association, the
1801 * system picks an ephemeral port and will choose an address
1802 * set equivalent to binding with a wildcard address.
1803 */
1804 if (!ep->base.bind_addr.port) {
1805 if (sctp_autobind(sk)) {
1806 err = -EAGAIN;
1807 goto out_unlock;
1808 }
1809 } else {
1810 /*
1811 * If an unprivileged user inherits a one-to-many
1812 * style socket with open associations on a privileged
1813 * port, it MAY be permitted to accept new associations,
1814 * but it SHOULD NOT be permitted to open new
1815 * associations.
1816 */
1817 if (ep->base.bind_addr.port < PROT_SOCK &&
1818 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1819 err = -EACCES;
1820 goto out_unlock;
1821 }
1822 }
1823
1824 scope = sctp_scope(&to);
1825 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1826 if (!new_asoc) {
1827 err = -ENOMEM;
1828 goto out_unlock;
1829 }
1830 asoc = new_asoc;
1831 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1832 if (err < 0) {
1833 err = -ENOMEM;
1834 goto out_free;
1835 }
1836
1837 /* If the SCTP_INIT ancillary data is specified, set all
1838 * the association init values accordingly.
1839 */
1840 if (sinit) {
1841 if (sinit->sinit_num_ostreams) {
1842 asoc->c.sinit_num_ostreams =
1843 sinit->sinit_num_ostreams;
1844 }
1845 if (sinit->sinit_max_instreams) {
1846 asoc->c.sinit_max_instreams =
1847 sinit->sinit_max_instreams;
1848 }
1849 if (sinit->sinit_max_attempts) {
1850 asoc->max_init_attempts
1851 = sinit->sinit_max_attempts;
1852 }
1853 if (sinit->sinit_max_init_timeo) {
1854 asoc->max_init_timeo =
1855 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1856 }
1857 }
1858
1859 /* Prime the peer's transport structures. */
1860 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1861 if (!transport) {
1862 err = -ENOMEM;
1863 goto out_free;
1864 }
1865 }
1866
1867 /* ASSERT: we have a valid association at this point. */
1868 pr_debug("%s: we have a valid association\n", __func__);
1869
1870 if (!sinfo) {
1871 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1872 * one with some defaults.
1873 */
1874 memset(&default_sinfo, 0, sizeof(default_sinfo));
1875 default_sinfo.sinfo_stream = asoc->default_stream;
1876 default_sinfo.sinfo_flags = asoc->default_flags;
1877 default_sinfo.sinfo_ppid = asoc->default_ppid;
1878 default_sinfo.sinfo_context = asoc->default_context;
1879 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1880 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1881
1882 sinfo = &default_sinfo;
1883 } else if (fill_sinfo_ttl) {
1884 /* In case SNDINFO was specified, we still need to fill
1885 * it with a default ttl from the assoc here.
1886 */
1887 sinfo->sinfo_timetolive = asoc->default_timetolive;
1888 }
1889
1890 /* API 7.1.7, the sndbuf size per association bounds the
1891 * maximum size of data that can be sent in a single send call.
1892 */
1893 if (msg_len > sk->sk_sndbuf) {
1894 err = -EMSGSIZE;
1895 goto out_free;
1896 }
1897
1898 if (asoc->pmtu_pending)
1899 sctp_assoc_pending_pmtu(sk, asoc);
1900
1901 /* If fragmentation is disabled and the message length exceeds the
1902 * association fragmentation point, return EMSGSIZE. The I-D
1903 * does not specify what this error is, but this looks like
1904 * a great fit.
1905 */
1906 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1907 err = -EMSGSIZE;
1908 goto out_free;
1909 }
1910
1911 /* Check for invalid stream. */
1912 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1913 err = -EINVAL;
1914 goto out_free;
1915 }
1916
1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 if (!sctp_wspace(asoc)) {
1919 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1920 if (err)
1921 goto out_free;
1922 }
1923
1924 /* If an address is passed with the sendto/sendmsg call, it is used
1925 * to override the primary destination address in the TCP model, or
1926 * when SCTP_ADDR_OVER flag is set in the UDP model.
1927 */
1928 if ((sctp_style(sk, TCP) && msg_name) ||
1929 (sinfo_flags & SCTP_ADDR_OVER)) {
1930 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1931 if (!chunk_tp) {
1932 err = -EINVAL;
1933 goto out_free;
1934 }
1935 } else
1936 chunk_tp = NULL;
1937
1938 /* Auto-connect, if we aren't connected already. */
1939 if (sctp_state(asoc, CLOSED)) {
1940 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1941 if (err < 0)
1942 goto out_free;
1943
1944 wait_connect = true;
1945 pr_debug("%s: we associated primitively\n", __func__);
1946 }
1947
1948 /* Break the message into multiple chunks of maximum size. */
1949 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1950 if (IS_ERR(datamsg)) {
1951 err = PTR_ERR(datamsg);
1952 goto out_free;
1953 }
1954
1955 /* Now send the (possibly) fragmented message. */
1956 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1957 /* Do accounting for the write space. */
1958 sctp_set_owner_w(chunk);
1959
1960 chunk->transport = chunk_tp;
1961 }
1962
1963 /* Send it to the lower layers. Note: all chunks
1964 * must either fail or succeed. The lower layer
1965 * works that way today. Keep it that way or this
1966 * breaks.
1967 */
1968 err = sctp_primitive_SEND(net, asoc, datamsg);
1969 sctp_datamsg_put(datamsg);
1970 /* Did the lower layer accept the chunk? */
1971 if (err)
1972 goto out_free;
1973
1974 pr_debug("%s: we sent primitively\n", __func__);
1975
1976 err = msg_len;
1977
1978 if (unlikely(wait_connect)) {
1979 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1980 sctp_wait_for_connect(asoc, &timeo);
1981 }
1982
1983 /* If we are already past ASSOCIATE, the lower
1984 * layers are responsible for association cleanup.
1985 */
1986 goto out_unlock;
1987
1988 out_free:
1989 if (new_asoc)
1990 sctp_association_free(asoc);
1991 out_unlock:
1992 release_sock(sk);
1993
1994 out_nounlock:
1995 return sctp_error(sk, msg_flags, err);
1996
1997 #if 0
1998 do_sock_err:
1999 if (msg_len)
2000 err = msg_len;
2001 else
2002 err = sock_error(sk);
2003 goto out;
2004
2005 do_interrupted:
2006 if (msg_len)
2007 err = msg_len;
2008 goto out;
2009 #endif /* 0 */
2010 }
2011
2012 /* This is an extended version of skb_pull() that removes the data from the
2013 * start of a skb even when data is spread across the list of skb's in the
2014 * frag_list. len specifies the total amount of data that needs to be removed.
2015 * when 'len' bytes could be removed from the skb, it returns 0.
2016 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2017 * could not be removed.
2018 */
2019 static int sctp_skb_pull(struct sk_buff *skb, int len)
2020 {
2021 struct sk_buff *list;
2022 int skb_len = skb_headlen(skb);
2023 int rlen;
2024
2025 if (len <= skb_len) {
2026 __skb_pull(skb, len);
2027 return 0;
2028 }
2029 len -= skb_len;
2030 __skb_pull(skb, skb_len);
2031
2032 skb_walk_frags(skb, list) {
2033 rlen = sctp_skb_pull(list, len);
2034 skb->len -= (len-rlen);
2035 skb->data_len -= (len-rlen);
2036
2037 if (!rlen)
2038 return 0;
2039
2040 len = rlen;
2041 }
2042
2043 return len;
2044 }
2045
2046 /* API 3.1.3 recvmsg() - UDP Style Syntax
2047 *
2048 * ssize_t recvmsg(int socket, struct msghdr *message,
2049 * int flags);
2050 *
2051 * socket - the socket descriptor of the endpoint.
2052 * message - pointer to the msghdr structure which contains a single
2053 * user message and possibly some ancillary data.
2054 *
2055 * See Section 5 for complete description of the data
2056 * structures.
2057 *
2058 * flags - flags sent or received with the user message, see Section
2059 * 5 for complete description of the flags.
2060 */
2061 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2062 int noblock, int flags, int *addr_len)
2063 {
2064 struct sctp_ulpevent *event = NULL;
2065 struct sctp_sock *sp = sctp_sk(sk);
2066 struct sk_buff *skb;
2067 int copied;
2068 int err = 0;
2069 int skb_len;
2070
2071 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2072 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2073 addr_len);
2074
2075 lock_sock(sk);
2076
2077 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2078 err = -ENOTCONN;
2079 goto out;
2080 }
2081
2082 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2083 if (!skb)
2084 goto out;
2085
2086 /* Get the total length of the skb including any skb's in the
2087 * frag_list.
2088 */
2089 skb_len = skb->len;
2090
2091 copied = skb_len;
2092 if (copied > len)
2093 copied = len;
2094
2095 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2096
2097 event = sctp_skb2event(skb);
2098
2099 if (err)
2100 goto out_free;
2101
2102 sock_recv_ts_and_drops(msg, sk, skb);
2103 if (sctp_ulpevent_is_notification(event)) {
2104 msg->msg_flags |= MSG_NOTIFICATION;
2105 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2106 } else {
2107 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2108 }
2109
2110 /* Check if we allow SCTP_NXTINFO. */
2111 if (sp->recvnxtinfo)
2112 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2113 /* Check if we allow SCTP_RCVINFO. */
2114 if (sp->recvrcvinfo)
2115 sctp_ulpevent_read_rcvinfo(event, msg);
2116 /* Check if we allow SCTP_SNDRCVINFO. */
2117 if (sp->subscribe.sctp_data_io_event)
2118 sctp_ulpevent_read_sndrcvinfo(event, msg);
2119
2120 err = copied;
2121
2122 /* If skb's length exceeds the user's buffer, update the skb and
2123 * push it back to the receive_queue so that the next call to
2124 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2125 */
2126 if (skb_len > copied) {
2127 msg->msg_flags &= ~MSG_EOR;
2128 if (flags & MSG_PEEK)
2129 goto out_free;
2130 sctp_skb_pull(skb, copied);
2131 skb_queue_head(&sk->sk_receive_queue, skb);
2132
2133 /* When only partial message is copied to the user, increase
2134 * rwnd by that amount. If all the data in the skb is read,
2135 * rwnd is updated when the event is freed.
2136 */
2137 if (!sctp_ulpevent_is_notification(event))
2138 sctp_assoc_rwnd_increase(event->asoc, copied);
2139 goto out;
2140 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2141 (event->msg_flags & MSG_EOR))
2142 msg->msg_flags |= MSG_EOR;
2143 else
2144 msg->msg_flags &= ~MSG_EOR;
2145
2146 out_free:
2147 if (flags & MSG_PEEK) {
2148 /* Release the skb reference acquired after peeking the skb in
2149 * sctp_skb_recv_datagram().
2150 */
2151 kfree_skb(skb);
2152 } else {
2153 /* Free the event which includes releasing the reference to
2154 * the owner of the skb, freeing the skb and updating the
2155 * rwnd.
2156 */
2157 sctp_ulpevent_free(event);
2158 }
2159 out:
2160 release_sock(sk);
2161 return err;
2162 }
2163
2164 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2165 *
2166 * This option is a on/off flag. If enabled no SCTP message
2167 * fragmentation will be performed. Instead if a message being sent
2168 * exceeds the current PMTU size, the message will NOT be sent and
2169 * instead a error will be indicated to the user.
2170 */
2171 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2172 char __user *optval,
2173 unsigned int optlen)
2174 {
2175 int val;
2176
2177 if (optlen < sizeof(int))
2178 return -EINVAL;
2179
2180 if (get_user(val, (int __user *)optval))
2181 return -EFAULT;
2182
2183 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2184
2185 return 0;
2186 }
2187
2188 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2189 unsigned int optlen)
2190 {
2191 struct sctp_association *asoc;
2192 struct sctp_ulpevent *event;
2193
2194 if (optlen > sizeof(struct sctp_event_subscribe))
2195 return -EINVAL;
2196 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2197 return -EFAULT;
2198
2199 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2200 * if there is no data to be sent or retransmit, the stack will
2201 * immediately send up this notification.
2202 */
2203 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2204 &sctp_sk(sk)->subscribe)) {
2205 asoc = sctp_id2assoc(sk, 0);
2206
2207 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2208 event = sctp_ulpevent_make_sender_dry_event(asoc,
2209 GFP_ATOMIC);
2210 if (!event)
2211 return -ENOMEM;
2212
2213 sctp_ulpq_tail_event(&asoc->ulpq, event);
2214 }
2215 }
2216
2217 return 0;
2218 }
2219
2220 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2221 *
2222 * This socket option is applicable to the UDP-style socket only. When
2223 * set it will cause associations that are idle for more than the
2224 * specified number of seconds to automatically close. An association
2225 * being idle is defined an association that has NOT sent or received
2226 * user data. The special value of '0' indicates that no automatic
2227 * close of any associations should be performed. The option expects an
2228 * integer defining the number of seconds of idle time before an
2229 * association is closed.
2230 */
2231 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2232 unsigned int optlen)
2233 {
2234 struct sctp_sock *sp = sctp_sk(sk);
2235 struct net *net = sock_net(sk);
2236
2237 /* Applicable to UDP-style socket only */
2238 if (sctp_style(sk, TCP))
2239 return -EOPNOTSUPP;
2240 if (optlen != sizeof(int))
2241 return -EINVAL;
2242 if (copy_from_user(&sp->autoclose, optval, optlen))
2243 return -EFAULT;
2244
2245 if (sp->autoclose > net->sctp.max_autoclose)
2246 sp->autoclose = net->sctp.max_autoclose;
2247
2248 return 0;
2249 }
2250
2251 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2252 *
2253 * Applications can enable or disable heartbeats for any peer address of
2254 * an association, modify an address's heartbeat interval, force a
2255 * heartbeat to be sent immediately, and adjust the address's maximum
2256 * number of retransmissions sent before an address is considered
2257 * unreachable. The following structure is used to access and modify an
2258 * address's parameters:
2259 *
2260 * struct sctp_paddrparams {
2261 * sctp_assoc_t spp_assoc_id;
2262 * struct sockaddr_storage spp_address;
2263 * uint32_t spp_hbinterval;
2264 * uint16_t spp_pathmaxrxt;
2265 * uint32_t spp_pathmtu;
2266 * uint32_t spp_sackdelay;
2267 * uint32_t spp_flags;
2268 * };
2269 *
2270 * spp_assoc_id - (one-to-many style socket) This is filled in the
2271 * application, and identifies the association for
2272 * this query.
2273 * spp_address - This specifies which address is of interest.
2274 * spp_hbinterval - This contains the value of the heartbeat interval,
2275 * in milliseconds. If a value of zero
2276 * is present in this field then no changes are to
2277 * be made to this parameter.
2278 * spp_pathmaxrxt - This contains the maximum number of
2279 * retransmissions before this address shall be
2280 * considered unreachable. If a value of zero
2281 * is present in this field then no changes are to
2282 * be made to this parameter.
2283 * spp_pathmtu - When Path MTU discovery is disabled the value
2284 * specified here will be the "fixed" path mtu.
2285 * Note that if the spp_address field is empty
2286 * then all associations on this address will
2287 * have this fixed path mtu set upon them.
2288 *
2289 * spp_sackdelay - When delayed sack is enabled, this value specifies
2290 * the number of milliseconds that sacks will be delayed
2291 * for. This value will apply to all addresses of an
2292 * association if the spp_address field is empty. Note
2293 * also, that if delayed sack is enabled and this
2294 * value is set to 0, no change is made to the last
2295 * recorded delayed sack timer value.
2296 *
2297 * spp_flags - These flags are used to control various features
2298 * on an association. The flag field may contain
2299 * zero or more of the following options.
2300 *
2301 * SPP_HB_ENABLE - Enable heartbeats on the
2302 * specified address. Note that if the address
2303 * field is empty all addresses for the association
2304 * have heartbeats enabled upon them.
2305 *
2306 * SPP_HB_DISABLE - Disable heartbeats on the
2307 * speicifed address. Note that if the address
2308 * field is empty all addresses for the association
2309 * will have their heartbeats disabled. Note also
2310 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2311 * mutually exclusive, only one of these two should
2312 * be specified. Enabling both fields will have
2313 * undetermined results.
2314 *
2315 * SPP_HB_DEMAND - Request a user initiated heartbeat
2316 * to be made immediately.
2317 *
2318 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2319 * heartbeat delayis to be set to the value of 0
2320 * milliseconds.
2321 *
2322 * SPP_PMTUD_ENABLE - This field will enable PMTU
2323 * discovery upon the specified address. Note that
2324 * if the address feild is empty then all addresses
2325 * on the association are effected.
2326 *
2327 * SPP_PMTUD_DISABLE - This field will disable PMTU
2328 * discovery upon the specified address. Note that
2329 * if the address feild is empty then all addresses
2330 * on the association are effected. Not also that
2331 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2332 * exclusive. Enabling both will have undetermined
2333 * results.
2334 *
2335 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2336 * on delayed sack. The time specified in spp_sackdelay
2337 * is used to specify the sack delay for this address. Note
2338 * that if spp_address is empty then all addresses will
2339 * enable delayed sack and take on the sack delay
2340 * value specified in spp_sackdelay.
2341 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2342 * off delayed sack. If the spp_address field is blank then
2343 * delayed sack is disabled for the entire association. Note
2344 * also that this field is mutually exclusive to
2345 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2346 * results.
2347 */
2348 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2349 struct sctp_transport *trans,
2350 struct sctp_association *asoc,
2351 struct sctp_sock *sp,
2352 int hb_change,
2353 int pmtud_change,
2354 int sackdelay_change)
2355 {
2356 int error;
2357
2358 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2359 struct net *net = sock_net(trans->asoc->base.sk);
2360
2361 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2362 if (error)
2363 return error;
2364 }
2365
2366 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2367 * this field is ignored. Note also that a value of zero indicates
2368 * the current setting should be left unchanged.
2369 */
2370 if (params->spp_flags & SPP_HB_ENABLE) {
2371
2372 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2373 * set. This lets us use 0 value when this flag
2374 * is set.
2375 */
2376 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2377 params->spp_hbinterval = 0;
2378
2379 if (params->spp_hbinterval ||
2380 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2381 if (trans) {
2382 trans->hbinterval =
2383 msecs_to_jiffies(params->spp_hbinterval);
2384 } else if (asoc) {
2385 asoc->hbinterval =
2386 msecs_to_jiffies(params->spp_hbinterval);
2387 } else {
2388 sp->hbinterval = params->spp_hbinterval;
2389 }
2390 }
2391 }
2392
2393 if (hb_change) {
2394 if (trans) {
2395 trans->param_flags =
2396 (trans->param_flags & ~SPP_HB) | hb_change;
2397 } else if (asoc) {
2398 asoc->param_flags =
2399 (asoc->param_flags & ~SPP_HB) | hb_change;
2400 } else {
2401 sp->param_flags =
2402 (sp->param_flags & ~SPP_HB) | hb_change;
2403 }
2404 }
2405
2406 /* When Path MTU discovery is disabled the value specified here will
2407 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2408 * include the flag SPP_PMTUD_DISABLE for this field to have any
2409 * effect).
2410 */
2411 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2412 if (trans) {
2413 trans->pathmtu = params->spp_pathmtu;
2414 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2415 } else if (asoc) {
2416 asoc->pathmtu = params->spp_pathmtu;
2417 sctp_frag_point(asoc, params->spp_pathmtu);
2418 } else {
2419 sp->pathmtu = params->spp_pathmtu;
2420 }
2421 }
2422
2423 if (pmtud_change) {
2424 if (trans) {
2425 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2426 (params->spp_flags & SPP_PMTUD_ENABLE);
2427 trans->param_flags =
2428 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2429 if (update) {
2430 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2431 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2432 }
2433 } else if (asoc) {
2434 asoc->param_flags =
2435 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2436 } else {
2437 sp->param_flags =
2438 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2439 }
2440 }
2441
2442 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2443 * value of this field is ignored. Note also that a value of zero
2444 * indicates the current setting should be left unchanged.
2445 */
2446 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2447 if (trans) {
2448 trans->sackdelay =
2449 msecs_to_jiffies(params->spp_sackdelay);
2450 } else if (asoc) {
2451 asoc->sackdelay =
2452 msecs_to_jiffies(params->spp_sackdelay);
2453 } else {
2454 sp->sackdelay = params->spp_sackdelay;
2455 }
2456 }
2457
2458 if (sackdelay_change) {
2459 if (trans) {
2460 trans->param_flags =
2461 (trans->param_flags & ~SPP_SACKDELAY) |
2462 sackdelay_change;
2463 } else if (asoc) {
2464 asoc->param_flags =
2465 (asoc->param_flags & ~SPP_SACKDELAY) |
2466 sackdelay_change;
2467 } else {
2468 sp->param_flags =
2469 (sp->param_flags & ~SPP_SACKDELAY) |
2470 sackdelay_change;
2471 }
2472 }
2473
2474 /* Note that a value of zero indicates the current setting should be
2475 left unchanged.
2476 */
2477 if (params->spp_pathmaxrxt) {
2478 if (trans) {
2479 trans->pathmaxrxt = params->spp_pathmaxrxt;
2480 } else if (asoc) {
2481 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2482 } else {
2483 sp->pathmaxrxt = params->spp_pathmaxrxt;
2484 }
2485 }
2486
2487 return 0;
2488 }
2489
2490 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2491 char __user *optval,
2492 unsigned int optlen)
2493 {
2494 struct sctp_paddrparams params;
2495 struct sctp_transport *trans = NULL;
2496 struct sctp_association *asoc = NULL;
2497 struct sctp_sock *sp = sctp_sk(sk);
2498 int error;
2499 int hb_change, pmtud_change, sackdelay_change;
2500
2501 if (optlen != sizeof(struct sctp_paddrparams))
2502 return -EINVAL;
2503
2504 if (copy_from_user(&params, optval, optlen))
2505 return -EFAULT;
2506
2507 /* Validate flags and value parameters. */
2508 hb_change = params.spp_flags & SPP_HB;
2509 pmtud_change = params.spp_flags & SPP_PMTUD;
2510 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2511
2512 if (hb_change == SPP_HB ||
2513 pmtud_change == SPP_PMTUD ||
2514 sackdelay_change == SPP_SACKDELAY ||
2515 params.spp_sackdelay > 500 ||
2516 (params.spp_pathmtu &&
2517 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2518 return -EINVAL;
2519
2520 /* If an address other than INADDR_ANY is specified, and
2521 * no transport is found, then the request is invalid.
2522 */
2523 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2524 trans = sctp_addr_id2transport(sk, &params.spp_address,
2525 params.spp_assoc_id);
2526 if (!trans)
2527 return -EINVAL;
2528 }
2529
2530 /* Get association, if assoc_id != 0 and the socket is a one
2531 * to many style socket, and an association was not found, then
2532 * the id was invalid.
2533 */
2534 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2535 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2536 return -EINVAL;
2537
2538 /* Heartbeat demand can only be sent on a transport or
2539 * association, but not a socket.
2540 */
2541 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2542 return -EINVAL;
2543
2544 /* Process parameters. */
2545 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2546 hb_change, pmtud_change,
2547 sackdelay_change);
2548
2549 if (error)
2550 return error;
2551
2552 /* If changes are for association, also apply parameters to each
2553 * transport.
2554 */
2555 if (!trans && asoc) {
2556 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2557 transports) {
2558 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2559 hb_change, pmtud_change,
2560 sackdelay_change);
2561 }
2562 }
2563
2564 return 0;
2565 }
2566
2567 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2568 {
2569 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2570 }
2571
2572 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2573 {
2574 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2575 }
2576
2577 /*
2578 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2579 *
2580 * This option will effect the way delayed acks are performed. This
2581 * option allows you to get or set the delayed ack time, in
2582 * milliseconds. It also allows changing the delayed ack frequency.
2583 * Changing the frequency to 1 disables the delayed sack algorithm. If
2584 * the assoc_id is 0, then this sets or gets the endpoints default
2585 * values. If the assoc_id field is non-zero, then the set or get
2586 * effects the specified association for the one to many model (the
2587 * assoc_id field is ignored by the one to one model). Note that if
2588 * sack_delay or sack_freq are 0 when setting this option, then the
2589 * current values will remain unchanged.
2590 *
2591 * struct sctp_sack_info {
2592 * sctp_assoc_t sack_assoc_id;
2593 * uint32_t sack_delay;
2594 * uint32_t sack_freq;
2595 * };
2596 *
2597 * sack_assoc_id - This parameter, indicates which association the user
2598 * is performing an action upon. Note that if this field's value is
2599 * zero then the endpoints default value is changed (effecting future
2600 * associations only).
2601 *
2602 * sack_delay - This parameter contains the number of milliseconds that
2603 * the user is requesting the delayed ACK timer be set to. Note that
2604 * this value is defined in the standard to be between 200 and 500
2605 * milliseconds.
2606 *
2607 * sack_freq - This parameter contains the number of packets that must
2608 * be received before a sack is sent without waiting for the delay
2609 * timer to expire. The default value for this is 2, setting this
2610 * value to 1 will disable the delayed sack algorithm.
2611 */
2612
2613 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2614 char __user *optval, unsigned int optlen)
2615 {
2616 struct sctp_sack_info params;
2617 struct sctp_transport *trans = NULL;
2618 struct sctp_association *asoc = NULL;
2619 struct sctp_sock *sp = sctp_sk(sk);
2620
2621 if (optlen == sizeof(struct sctp_sack_info)) {
2622 if (copy_from_user(&params, optval, optlen))
2623 return -EFAULT;
2624
2625 if (params.sack_delay == 0 && params.sack_freq == 0)
2626 return 0;
2627 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2628 pr_warn_ratelimited(DEPRECATED
2629 "%s (pid %d) "
2630 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2631 "Use struct sctp_sack_info instead\n",
2632 current->comm, task_pid_nr(current));
2633 if (copy_from_user(&params, optval, optlen))
2634 return -EFAULT;
2635
2636 if (params.sack_delay == 0)
2637 params.sack_freq = 1;
2638 else
2639 params.sack_freq = 0;
2640 } else
2641 return -EINVAL;
2642
2643 /* Validate value parameter. */
2644 if (params.sack_delay > 500)
2645 return -EINVAL;
2646
2647 /* Get association, if sack_assoc_id != 0 and the socket is a one
2648 * to many style socket, and an association was not found, then
2649 * the id was invalid.
2650 */
2651 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2652 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 if (params.sack_delay) {
2656 if (asoc) {
2657 asoc->sackdelay =
2658 msecs_to_jiffies(params.sack_delay);
2659 asoc->param_flags =
2660 sctp_spp_sackdelay_enable(asoc->param_flags);
2661 } else {
2662 sp->sackdelay = params.sack_delay;
2663 sp->param_flags =
2664 sctp_spp_sackdelay_enable(sp->param_flags);
2665 }
2666 }
2667
2668 if (params.sack_freq == 1) {
2669 if (asoc) {
2670 asoc->param_flags =
2671 sctp_spp_sackdelay_disable(asoc->param_flags);
2672 } else {
2673 sp->param_flags =
2674 sctp_spp_sackdelay_disable(sp->param_flags);
2675 }
2676 } else if (params.sack_freq > 1) {
2677 if (asoc) {
2678 asoc->sackfreq = params.sack_freq;
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackfreq = params.sack_freq;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 /* If change is for association, also apply to each transport. */
2689 if (asoc) {
2690 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2691 transports) {
2692 if (params.sack_delay) {
2693 trans->sackdelay =
2694 msecs_to_jiffies(params.sack_delay);
2695 trans->param_flags =
2696 sctp_spp_sackdelay_enable(trans->param_flags);
2697 }
2698 if (params.sack_freq == 1) {
2699 trans->param_flags =
2700 sctp_spp_sackdelay_disable(trans->param_flags);
2701 } else if (params.sack_freq > 1) {
2702 trans->sackfreq = params.sack_freq;
2703 trans->param_flags =
2704 sctp_spp_sackdelay_enable(trans->param_flags);
2705 }
2706 }
2707 }
2708
2709 return 0;
2710 }
2711
2712 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2713 *
2714 * Applications can specify protocol parameters for the default association
2715 * initialization. The option name argument to setsockopt() and getsockopt()
2716 * is SCTP_INITMSG.
2717 *
2718 * Setting initialization parameters is effective only on an unconnected
2719 * socket (for UDP-style sockets only future associations are effected
2720 * by the change). With TCP-style sockets, this option is inherited by
2721 * sockets derived from a listener socket.
2722 */
2723 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2724 {
2725 struct sctp_initmsg sinit;
2726 struct sctp_sock *sp = sctp_sk(sk);
2727
2728 if (optlen != sizeof(struct sctp_initmsg))
2729 return -EINVAL;
2730 if (copy_from_user(&sinit, optval, optlen))
2731 return -EFAULT;
2732
2733 if (sinit.sinit_num_ostreams)
2734 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2735 if (sinit.sinit_max_instreams)
2736 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2737 if (sinit.sinit_max_attempts)
2738 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2739 if (sinit.sinit_max_init_timeo)
2740 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2741
2742 return 0;
2743 }
2744
2745 /*
2746 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2747 *
2748 * Applications that wish to use the sendto() system call may wish to
2749 * specify a default set of parameters that would normally be supplied
2750 * through the inclusion of ancillary data. This socket option allows
2751 * such an application to set the default sctp_sndrcvinfo structure.
2752 * The application that wishes to use this socket option simply passes
2753 * in to this call the sctp_sndrcvinfo structure defined in Section
2754 * 5.2.2) The input parameters accepted by this call include
2755 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2756 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2757 * to this call if the caller is using the UDP model.
2758 */
2759 static int sctp_setsockopt_default_send_param(struct sock *sk,
2760 char __user *optval,
2761 unsigned int optlen)
2762 {
2763 struct sctp_sock *sp = sctp_sk(sk);
2764 struct sctp_association *asoc;
2765 struct sctp_sndrcvinfo info;
2766
2767 if (optlen != sizeof(info))
2768 return -EINVAL;
2769 if (copy_from_user(&info, optval, optlen))
2770 return -EFAULT;
2771 if (info.sinfo_flags &
2772 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2773 SCTP_ABORT | SCTP_EOF))
2774 return -EINVAL;
2775
2776 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2777 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2778 return -EINVAL;
2779 if (asoc) {
2780 asoc->default_stream = info.sinfo_stream;
2781 asoc->default_flags = info.sinfo_flags;
2782 asoc->default_ppid = info.sinfo_ppid;
2783 asoc->default_context = info.sinfo_context;
2784 asoc->default_timetolive = info.sinfo_timetolive;
2785 } else {
2786 sp->default_stream = info.sinfo_stream;
2787 sp->default_flags = info.sinfo_flags;
2788 sp->default_ppid = info.sinfo_ppid;
2789 sp->default_context = info.sinfo_context;
2790 sp->default_timetolive = info.sinfo_timetolive;
2791 }
2792
2793 return 0;
2794 }
2795
2796 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2797 * (SCTP_DEFAULT_SNDINFO)
2798 */
2799 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2800 char __user *optval,
2801 unsigned int optlen)
2802 {
2803 struct sctp_sock *sp = sctp_sk(sk);
2804 struct sctp_association *asoc;
2805 struct sctp_sndinfo info;
2806
2807 if (optlen != sizeof(info))
2808 return -EINVAL;
2809 if (copy_from_user(&info, optval, optlen))
2810 return -EFAULT;
2811 if (info.snd_flags &
2812 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2813 SCTP_ABORT | SCTP_EOF))
2814 return -EINVAL;
2815
2816 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2817 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2818 return -EINVAL;
2819 if (asoc) {
2820 asoc->default_stream = info.snd_sid;
2821 asoc->default_flags = info.snd_flags;
2822 asoc->default_ppid = info.snd_ppid;
2823 asoc->default_context = info.snd_context;
2824 } else {
2825 sp->default_stream = info.snd_sid;
2826 sp->default_flags = info.snd_flags;
2827 sp->default_ppid = info.snd_ppid;
2828 sp->default_context = info.snd_context;
2829 }
2830
2831 return 0;
2832 }
2833
2834 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2835 *
2836 * Requests that the local SCTP stack use the enclosed peer address as
2837 * the association primary. The enclosed address must be one of the
2838 * association peer's addresses.
2839 */
2840 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2841 unsigned int optlen)
2842 {
2843 struct sctp_prim prim;
2844 struct sctp_transport *trans;
2845
2846 if (optlen != sizeof(struct sctp_prim))
2847 return -EINVAL;
2848
2849 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2850 return -EFAULT;
2851
2852 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2853 if (!trans)
2854 return -EINVAL;
2855
2856 sctp_assoc_set_primary(trans->asoc, trans);
2857
2858 return 0;
2859 }
2860
2861 /*
2862 * 7.1.5 SCTP_NODELAY
2863 *
2864 * Turn on/off any Nagle-like algorithm. This means that packets are
2865 * generally sent as soon as possible and no unnecessary delays are
2866 * introduced, at the cost of more packets in the network. Expects an
2867 * integer boolean flag.
2868 */
2869 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2870 unsigned int optlen)
2871 {
2872 int val;
2873
2874 if (optlen < sizeof(int))
2875 return -EINVAL;
2876 if (get_user(val, (int __user *)optval))
2877 return -EFAULT;
2878
2879 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2880 return 0;
2881 }
2882
2883 /*
2884 *
2885 * 7.1.1 SCTP_RTOINFO
2886 *
2887 * The protocol parameters used to initialize and bound retransmission
2888 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2889 * and modify these parameters.
2890 * All parameters are time values, in milliseconds. A value of 0, when
2891 * modifying the parameters, indicates that the current value should not
2892 * be changed.
2893 *
2894 */
2895 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2896 {
2897 struct sctp_rtoinfo rtoinfo;
2898 struct sctp_association *asoc;
2899 unsigned long rto_min, rto_max;
2900 struct sctp_sock *sp = sctp_sk(sk);
2901
2902 if (optlen != sizeof (struct sctp_rtoinfo))
2903 return -EINVAL;
2904
2905 if (copy_from_user(&rtoinfo, optval, optlen))
2906 return -EFAULT;
2907
2908 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2909
2910 /* Set the values to the specific association */
2911 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2912 return -EINVAL;
2913
2914 rto_max = rtoinfo.srto_max;
2915 rto_min = rtoinfo.srto_min;
2916
2917 if (rto_max)
2918 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2919 else
2920 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2921
2922 if (rto_min)
2923 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2924 else
2925 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2926
2927 if (rto_min > rto_max)
2928 return -EINVAL;
2929
2930 if (asoc) {
2931 if (rtoinfo.srto_initial != 0)
2932 asoc->rto_initial =
2933 msecs_to_jiffies(rtoinfo.srto_initial);
2934 asoc->rto_max = rto_max;
2935 asoc->rto_min = rto_min;
2936 } else {
2937 /* If there is no association or the association-id = 0
2938 * set the values to the endpoint.
2939 */
2940 if (rtoinfo.srto_initial != 0)
2941 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2942 sp->rtoinfo.srto_max = rto_max;
2943 sp->rtoinfo.srto_min = rto_min;
2944 }
2945
2946 return 0;
2947 }
2948
2949 /*
2950 *
2951 * 7.1.2 SCTP_ASSOCINFO
2952 *
2953 * This option is used to tune the maximum retransmission attempts
2954 * of the association.
2955 * Returns an error if the new association retransmission value is
2956 * greater than the sum of the retransmission value of the peer.
2957 * See [SCTP] for more information.
2958 *
2959 */
2960 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2961 {
2962
2963 struct sctp_assocparams assocparams;
2964 struct sctp_association *asoc;
2965
2966 if (optlen != sizeof(struct sctp_assocparams))
2967 return -EINVAL;
2968 if (copy_from_user(&assocparams, optval, optlen))
2969 return -EFAULT;
2970
2971 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2972
2973 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2974 return -EINVAL;
2975
2976 /* Set the values to the specific association */
2977 if (asoc) {
2978 if (assocparams.sasoc_asocmaxrxt != 0) {
2979 __u32 path_sum = 0;
2980 int paths = 0;
2981 struct sctp_transport *peer_addr;
2982
2983 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2984 transports) {
2985 path_sum += peer_addr->pathmaxrxt;
2986 paths++;
2987 }
2988
2989 /* Only validate asocmaxrxt if we have more than
2990 * one path/transport. We do this because path
2991 * retransmissions are only counted when we have more
2992 * then one path.
2993 */
2994 if (paths > 1 &&
2995 assocparams.sasoc_asocmaxrxt > path_sum)
2996 return -EINVAL;
2997
2998 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2999 }
3000
3001 if (assocparams.sasoc_cookie_life != 0)
3002 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3003 } else {
3004 /* Set the values to the endpoint */
3005 struct sctp_sock *sp = sctp_sk(sk);
3006
3007 if (assocparams.sasoc_asocmaxrxt != 0)
3008 sp->assocparams.sasoc_asocmaxrxt =
3009 assocparams.sasoc_asocmaxrxt;
3010 if (assocparams.sasoc_cookie_life != 0)
3011 sp->assocparams.sasoc_cookie_life =
3012 assocparams.sasoc_cookie_life;
3013 }
3014 return 0;
3015 }
3016
3017 /*
3018 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3019 *
3020 * This socket option is a boolean flag which turns on or off mapped V4
3021 * addresses. If this option is turned on and the socket is type
3022 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3023 * If this option is turned off, then no mapping will be done of V4
3024 * addresses and a user will receive both PF_INET6 and PF_INET type
3025 * addresses on the socket.
3026 */
3027 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3028 {
3029 int val;
3030 struct sctp_sock *sp = sctp_sk(sk);
3031
3032 if (optlen < sizeof(int))
3033 return -EINVAL;
3034 if (get_user(val, (int __user *)optval))
3035 return -EFAULT;
3036 if (val)
3037 sp->v4mapped = 1;
3038 else
3039 sp->v4mapped = 0;
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3046 * This option will get or set the maximum size to put in any outgoing
3047 * SCTP DATA chunk. If a message is larger than this size it will be
3048 * fragmented by SCTP into the specified size. Note that the underlying
3049 * SCTP implementation may fragment into smaller sized chunks when the
3050 * PMTU of the underlying association is smaller than the value set by
3051 * the user. The default value for this option is '0' which indicates
3052 * the user is NOT limiting fragmentation and only the PMTU will effect
3053 * SCTP's choice of DATA chunk size. Note also that values set larger
3054 * than the maximum size of an IP datagram will effectively let SCTP
3055 * control fragmentation (i.e. the same as setting this option to 0).
3056 *
3057 * The following structure is used to access and modify this parameter:
3058 *
3059 * struct sctp_assoc_value {
3060 * sctp_assoc_t assoc_id;
3061 * uint32_t assoc_value;
3062 * };
3063 *
3064 * assoc_id: This parameter is ignored for one-to-one style sockets.
3065 * For one-to-many style sockets this parameter indicates which
3066 * association the user is performing an action upon. Note that if
3067 * this field's value is zero then the endpoints default value is
3068 * changed (effecting future associations only).
3069 * assoc_value: This parameter specifies the maximum size in bytes.
3070 */
3071 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3072 {
3073 struct sctp_assoc_value params;
3074 struct sctp_association *asoc;
3075 struct sctp_sock *sp = sctp_sk(sk);
3076 int val;
3077
3078 if (optlen == sizeof(int)) {
3079 pr_warn_ratelimited(DEPRECATED
3080 "%s (pid %d) "
3081 "Use of int in maxseg socket option.\n"
3082 "Use struct sctp_assoc_value instead\n",
3083 current->comm, task_pid_nr(current));
3084 if (copy_from_user(&val, optval, optlen))
3085 return -EFAULT;
3086 params.assoc_id = 0;
3087 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3088 if (copy_from_user(&params, optval, optlen))
3089 return -EFAULT;
3090 val = params.assoc_value;
3091 } else
3092 return -EINVAL;
3093
3094 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3095 return -EINVAL;
3096
3097 asoc = sctp_id2assoc(sk, params.assoc_id);
3098 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3099 return -EINVAL;
3100
3101 if (asoc) {
3102 if (val == 0) {
3103 val = asoc->pathmtu;
3104 val -= sp->pf->af->net_header_len;
3105 val -= sizeof(struct sctphdr) +
3106 sizeof(struct sctp_data_chunk);
3107 }
3108 asoc->user_frag = val;
3109 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3110 } else {
3111 sp->user_frag = val;
3112 }
3113
3114 return 0;
3115 }
3116
3117
3118 /*
3119 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3120 *
3121 * Requests that the peer mark the enclosed address as the association
3122 * primary. The enclosed address must be one of the association's
3123 * locally bound addresses. The following structure is used to make a
3124 * set primary request:
3125 */
3126 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3127 unsigned int optlen)
3128 {
3129 struct net *net = sock_net(sk);
3130 struct sctp_sock *sp;
3131 struct sctp_association *asoc = NULL;
3132 struct sctp_setpeerprim prim;
3133 struct sctp_chunk *chunk;
3134 struct sctp_af *af;
3135 int err;
3136
3137 sp = sctp_sk(sk);
3138
3139 if (!net->sctp.addip_enable)
3140 return -EPERM;
3141
3142 if (optlen != sizeof(struct sctp_setpeerprim))
3143 return -EINVAL;
3144
3145 if (copy_from_user(&prim, optval, optlen))
3146 return -EFAULT;
3147
3148 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3149 if (!asoc)
3150 return -EINVAL;
3151
3152 if (!asoc->peer.asconf_capable)
3153 return -EPERM;
3154
3155 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3156 return -EPERM;
3157
3158 if (!sctp_state(asoc, ESTABLISHED))
3159 return -ENOTCONN;
3160
3161 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3162 if (!af)
3163 return -EINVAL;
3164
3165 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3166 return -EADDRNOTAVAIL;
3167
3168 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3169 return -EADDRNOTAVAIL;
3170
3171 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3172 chunk = sctp_make_asconf_set_prim(asoc,
3173 (union sctp_addr *)&prim.sspp_addr);
3174 if (!chunk)
3175 return -ENOMEM;
3176
3177 err = sctp_send_asconf(asoc, chunk);
3178
3179 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3180
3181 return err;
3182 }
3183
3184 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3185 unsigned int optlen)
3186 {
3187 struct sctp_setadaptation adaptation;
3188
3189 if (optlen != sizeof(struct sctp_setadaptation))
3190 return -EINVAL;
3191 if (copy_from_user(&adaptation, optval, optlen))
3192 return -EFAULT;
3193
3194 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3195
3196 return 0;
3197 }
3198
3199 /*
3200 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3201 *
3202 * The context field in the sctp_sndrcvinfo structure is normally only
3203 * used when a failed message is retrieved holding the value that was
3204 * sent down on the actual send call. This option allows the setting of
3205 * a default context on an association basis that will be received on
3206 * reading messages from the peer. This is especially helpful in the
3207 * one-2-many model for an application to keep some reference to an
3208 * internal state machine that is processing messages on the
3209 * association. Note that the setting of this value only effects
3210 * received messages from the peer and does not effect the value that is
3211 * saved with outbound messages.
3212 */
3213 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3214 unsigned int optlen)
3215 {
3216 struct sctp_assoc_value params;
3217 struct sctp_sock *sp;
3218 struct sctp_association *asoc;
3219
3220 if (optlen != sizeof(struct sctp_assoc_value))
3221 return -EINVAL;
3222 if (copy_from_user(&params, optval, optlen))
3223 return -EFAULT;
3224
3225 sp = sctp_sk(sk);
3226
3227 if (params.assoc_id != 0) {
3228 asoc = sctp_id2assoc(sk, params.assoc_id);
3229 if (!asoc)
3230 return -EINVAL;
3231 asoc->default_rcv_context = params.assoc_value;
3232 } else {
3233 sp->default_rcv_context = params.assoc_value;
3234 }
3235
3236 return 0;
3237 }
3238
3239 /*
3240 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3241 *
3242 * This options will at a minimum specify if the implementation is doing
3243 * fragmented interleave. Fragmented interleave, for a one to many
3244 * socket, is when subsequent calls to receive a message may return
3245 * parts of messages from different associations. Some implementations
3246 * may allow you to turn this value on or off. If so, when turned off,
3247 * no fragment interleave will occur (which will cause a head of line
3248 * blocking amongst multiple associations sharing the same one to many
3249 * socket). When this option is turned on, then each receive call may
3250 * come from a different association (thus the user must receive data
3251 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3252 * association each receive belongs to.
3253 *
3254 * This option takes a boolean value. A non-zero value indicates that
3255 * fragmented interleave is on. A value of zero indicates that
3256 * fragmented interleave is off.
3257 *
3258 * Note that it is important that an implementation that allows this
3259 * option to be turned on, have it off by default. Otherwise an unaware
3260 * application using the one to many model may become confused and act
3261 * incorrectly.
3262 */
3263 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3264 char __user *optval,
3265 unsigned int optlen)
3266 {
3267 int val;
3268
3269 if (optlen != sizeof(int))
3270 return -EINVAL;
3271 if (get_user(val, (int __user *)optval))
3272 return -EFAULT;
3273
3274 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3275
3276 return 0;
3277 }
3278
3279 /*
3280 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3281 * (SCTP_PARTIAL_DELIVERY_POINT)
3282 *
3283 * This option will set or get the SCTP partial delivery point. This
3284 * point is the size of a message where the partial delivery API will be
3285 * invoked to help free up rwnd space for the peer. Setting this to a
3286 * lower value will cause partial deliveries to happen more often. The
3287 * calls argument is an integer that sets or gets the partial delivery
3288 * point. Note also that the call will fail if the user attempts to set
3289 * this value larger than the socket receive buffer size.
3290 *
3291 * Note that any single message having a length smaller than or equal to
3292 * the SCTP partial delivery point will be delivered in one single read
3293 * call as long as the user provided buffer is large enough to hold the
3294 * message.
3295 */
3296 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3297 char __user *optval,
3298 unsigned int optlen)
3299 {
3300 u32 val;
3301
3302 if (optlen != sizeof(u32))
3303 return -EINVAL;
3304 if (get_user(val, (int __user *)optval))
3305 return -EFAULT;
3306
3307 /* Note: We double the receive buffer from what the user sets
3308 * it to be, also initial rwnd is based on rcvbuf/2.
3309 */
3310 if (val > (sk->sk_rcvbuf >> 1))
3311 return -EINVAL;
3312
3313 sctp_sk(sk)->pd_point = val;
3314
3315 return 0; /* is this the right error code? */
3316 }
3317
3318 /*
3319 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3320 *
3321 * This option will allow a user to change the maximum burst of packets
3322 * that can be emitted by this association. Note that the default value
3323 * is 4, and some implementations may restrict this setting so that it
3324 * can only be lowered.
3325 *
3326 * NOTE: This text doesn't seem right. Do this on a socket basis with
3327 * future associations inheriting the socket value.
3328 */
3329 static int sctp_setsockopt_maxburst(struct sock *sk,
3330 char __user *optval,
3331 unsigned int optlen)
3332 {
3333 struct sctp_assoc_value params;
3334 struct sctp_sock *sp;
3335 struct sctp_association *asoc;
3336 int val;
3337 int assoc_id = 0;
3338
3339 if (optlen == sizeof(int)) {
3340 pr_warn_ratelimited(DEPRECATED
3341 "%s (pid %d) "
3342 "Use of int in max_burst socket option deprecated.\n"
3343 "Use struct sctp_assoc_value instead\n",
3344 current->comm, task_pid_nr(current));
3345 if (copy_from_user(&val, optval, optlen))
3346 return -EFAULT;
3347 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3348 if (copy_from_user(&params, optval, optlen))
3349 return -EFAULT;
3350 val = params.assoc_value;
3351 assoc_id = params.assoc_id;
3352 } else
3353 return -EINVAL;
3354
3355 sp = sctp_sk(sk);
3356
3357 if (assoc_id != 0) {
3358 asoc = sctp_id2assoc(sk, assoc_id);
3359 if (!asoc)
3360 return -EINVAL;
3361 asoc->max_burst = val;
3362 } else
3363 sp->max_burst = val;
3364
3365 return 0;
3366 }
3367
3368 /*
3369 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3370 *
3371 * This set option adds a chunk type that the user is requesting to be
3372 * received only in an authenticated way. Changes to the list of chunks
3373 * will only effect future associations on the socket.
3374 */
3375 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3376 char __user *optval,
3377 unsigned int optlen)
3378 {
3379 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3380 struct sctp_authchunk val;
3381
3382 if (!ep->auth_enable)
3383 return -EACCES;
3384
3385 if (optlen != sizeof(struct sctp_authchunk))
3386 return -EINVAL;
3387 if (copy_from_user(&val, optval, optlen))
3388 return -EFAULT;
3389
3390 switch (val.sauth_chunk) {
3391 case SCTP_CID_INIT:
3392 case SCTP_CID_INIT_ACK:
3393 case SCTP_CID_SHUTDOWN_COMPLETE:
3394 case SCTP_CID_AUTH:
3395 return -EINVAL;
3396 }
3397
3398 /* add this chunk id to the endpoint */
3399 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3400 }
3401
3402 /*
3403 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3404 *
3405 * This option gets or sets the list of HMAC algorithms that the local
3406 * endpoint requires the peer to use.
3407 */
3408 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3409 char __user *optval,
3410 unsigned int optlen)
3411 {
3412 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3413 struct sctp_hmacalgo *hmacs;
3414 u32 idents;
3415 int err;
3416
3417 if (!ep->auth_enable)
3418 return -EACCES;
3419
3420 if (optlen < sizeof(struct sctp_hmacalgo))
3421 return -EINVAL;
3422
3423 hmacs = memdup_user(optval, optlen);
3424 if (IS_ERR(hmacs))
3425 return PTR_ERR(hmacs);
3426
3427 idents = hmacs->shmac_num_idents;
3428 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3429 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3430 err = -EINVAL;
3431 goto out;
3432 }
3433
3434 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3435 out:
3436 kfree(hmacs);
3437 return err;
3438 }
3439
3440 /*
3441 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3442 *
3443 * This option will set a shared secret key which is used to build an
3444 * association shared key.
3445 */
3446 static int sctp_setsockopt_auth_key(struct sock *sk,
3447 char __user *optval,
3448 unsigned int optlen)
3449 {
3450 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3451 struct sctp_authkey *authkey;
3452 struct sctp_association *asoc;
3453 int ret;
3454
3455 if (!ep->auth_enable)
3456 return -EACCES;
3457
3458 if (optlen <= sizeof(struct sctp_authkey))
3459 return -EINVAL;
3460
3461 authkey = memdup_user(optval, optlen);
3462 if (IS_ERR(authkey))
3463 return PTR_ERR(authkey);
3464
3465 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3466 ret = -EINVAL;
3467 goto out;
3468 }
3469
3470 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3471 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3472 ret = -EINVAL;
3473 goto out;
3474 }
3475
3476 ret = sctp_auth_set_key(ep, asoc, authkey);
3477 out:
3478 kzfree(authkey);
3479 return ret;
3480 }
3481
3482 /*
3483 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3484 *
3485 * This option will get or set the active shared key to be used to build
3486 * the association shared key.
3487 */
3488 static int sctp_setsockopt_active_key(struct sock *sk,
3489 char __user *optval,
3490 unsigned int optlen)
3491 {
3492 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3493 struct sctp_authkeyid val;
3494 struct sctp_association *asoc;
3495
3496 if (!ep->auth_enable)
3497 return -EACCES;
3498
3499 if (optlen != sizeof(struct sctp_authkeyid))
3500 return -EINVAL;
3501 if (copy_from_user(&val, optval, optlen))
3502 return -EFAULT;
3503
3504 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3505 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3506 return -EINVAL;
3507
3508 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3509 }
3510
3511 /*
3512 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3513 *
3514 * This set option will delete a shared secret key from use.
3515 */
3516 static int sctp_setsockopt_del_key(struct sock *sk,
3517 char __user *optval,
3518 unsigned int optlen)
3519 {
3520 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3521 struct sctp_authkeyid val;
3522 struct sctp_association *asoc;
3523
3524 if (!ep->auth_enable)
3525 return -EACCES;
3526
3527 if (optlen != sizeof(struct sctp_authkeyid))
3528 return -EINVAL;
3529 if (copy_from_user(&val, optval, optlen))
3530 return -EFAULT;
3531
3532 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3533 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3534 return -EINVAL;
3535
3536 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3537
3538 }
3539
3540 /*
3541 * 8.1.23 SCTP_AUTO_ASCONF
3542 *
3543 * This option will enable or disable the use of the automatic generation of
3544 * ASCONF chunks to add and delete addresses to an existing association. Note
3545 * that this option has two caveats namely: a) it only affects sockets that
3546 * are bound to all addresses available to the SCTP stack, and b) the system
3547 * administrator may have an overriding control that turns the ASCONF feature
3548 * off no matter what setting the socket option may have.
3549 * This option expects an integer boolean flag, where a non-zero value turns on
3550 * the option, and a zero value turns off the option.
3551 * Note. In this implementation, socket operation overrides default parameter
3552 * being set by sysctl as well as FreeBSD implementation
3553 */
3554 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3555 unsigned int optlen)
3556 {
3557 int val;
3558 struct sctp_sock *sp = sctp_sk(sk);
3559
3560 if (optlen < sizeof(int))
3561 return -EINVAL;
3562 if (get_user(val, (int __user *)optval))
3563 return -EFAULT;
3564 if (!sctp_is_ep_boundall(sk) && val)
3565 return -EINVAL;
3566 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3567 return 0;
3568
3569 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3570 if (val == 0 && sp->do_auto_asconf) {
3571 list_del(&sp->auto_asconf_list);
3572 sp->do_auto_asconf = 0;
3573 } else if (val && !sp->do_auto_asconf) {
3574 list_add_tail(&sp->auto_asconf_list,
3575 &sock_net(sk)->sctp.auto_asconf_splist);
3576 sp->do_auto_asconf = 1;
3577 }
3578 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3579 return 0;
3580 }
3581
3582 /*
3583 * SCTP_PEER_ADDR_THLDS
3584 *
3585 * This option allows us to alter the partially failed threshold for one or all
3586 * transports in an association. See Section 6.1 of:
3587 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3588 */
3589 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3590 char __user *optval,
3591 unsigned int optlen)
3592 {
3593 struct sctp_paddrthlds val;
3594 struct sctp_transport *trans;
3595 struct sctp_association *asoc;
3596
3597 if (optlen < sizeof(struct sctp_paddrthlds))
3598 return -EINVAL;
3599 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3600 sizeof(struct sctp_paddrthlds)))
3601 return -EFAULT;
3602
3603
3604 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3605 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3606 if (!asoc)
3607 return -ENOENT;
3608 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3609 transports) {
3610 if (val.spt_pathmaxrxt)
3611 trans->pathmaxrxt = val.spt_pathmaxrxt;
3612 trans->pf_retrans = val.spt_pathpfthld;
3613 }
3614
3615 if (val.spt_pathmaxrxt)
3616 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3617 asoc->pf_retrans = val.spt_pathpfthld;
3618 } else {
3619 trans = sctp_addr_id2transport(sk, &val.spt_address,
3620 val.spt_assoc_id);
3621 if (!trans)
3622 return -ENOENT;
3623
3624 if (val.spt_pathmaxrxt)
3625 trans->pathmaxrxt = val.spt_pathmaxrxt;
3626 trans->pf_retrans = val.spt_pathpfthld;
3627 }
3628
3629 return 0;
3630 }
3631
3632 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3633 char __user *optval,
3634 unsigned int optlen)
3635 {
3636 int val;
3637
3638 if (optlen < sizeof(int))
3639 return -EINVAL;
3640 if (get_user(val, (int __user *) optval))
3641 return -EFAULT;
3642
3643 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3644
3645 return 0;
3646 }
3647
3648 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3649 char __user *optval,
3650 unsigned int optlen)
3651 {
3652 int val;
3653
3654 if (optlen < sizeof(int))
3655 return -EINVAL;
3656 if (get_user(val, (int __user *) optval))
3657 return -EFAULT;
3658
3659 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3660
3661 return 0;
3662 }
3663
3664 /* API 6.2 setsockopt(), getsockopt()
3665 *
3666 * Applications use setsockopt() and getsockopt() to set or retrieve
3667 * socket options. Socket options are used to change the default
3668 * behavior of sockets calls. They are described in Section 7.
3669 *
3670 * The syntax is:
3671 *
3672 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3673 * int __user *optlen);
3674 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3675 * int optlen);
3676 *
3677 * sd - the socket descript.
3678 * level - set to IPPROTO_SCTP for all SCTP options.
3679 * optname - the option name.
3680 * optval - the buffer to store the value of the option.
3681 * optlen - the size of the buffer.
3682 */
3683 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3684 char __user *optval, unsigned int optlen)
3685 {
3686 int retval = 0;
3687
3688 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3689
3690 /* I can hardly begin to describe how wrong this is. This is
3691 * so broken as to be worse than useless. The API draft
3692 * REALLY is NOT helpful here... I am not convinced that the
3693 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3694 * are at all well-founded.
3695 */
3696 if (level != SOL_SCTP) {
3697 struct sctp_af *af = sctp_sk(sk)->pf->af;
3698 retval = af->setsockopt(sk, level, optname, optval, optlen);
3699 goto out_nounlock;
3700 }
3701
3702 lock_sock(sk);
3703
3704 switch (optname) {
3705 case SCTP_SOCKOPT_BINDX_ADD:
3706 /* 'optlen' is the size of the addresses buffer. */
3707 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3708 optlen, SCTP_BINDX_ADD_ADDR);
3709 break;
3710
3711 case SCTP_SOCKOPT_BINDX_REM:
3712 /* 'optlen' is the size of the addresses buffer. */
3713 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3714 optlen, SCTP_BINDX_REM_ADDR);
3715 break;
3716
3717 case SCTP_SOCKOPT_CONNECTX_OLD:
3718 /* 'optlen' is the size of the addresses buffer. */
3719 retval = sctp_setsockopt_connectx_old(sk,
3720 (struct sockaddr __user *)optval,
3721 optlen);
3722 break;
3723
3724 case SCTP_SOCKOPT_CONNECTX:
3725 /* 'optlen' is the size of the addresses buffer. */
3726 retval = sctp_setsockopt_connectx(sk,
3727 (struct sockaddr __user *)optval,
3728 optlen);
3729 break;
3730
3731 case SCTP_DISABLE_FRAGMENTS:
3732 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3733 break;
3734
3735 case SCTP_EVENTS:
3736 retval = sctp_setsockopt_events(sk, optval, optlen);
3737 break;
3738
3739 case SCTP_AUTOCLOSE:
3740 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3741 break;
3742
3743 case SCTP_PEER_ADDR_PARAMS:
3744 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3745 break;
3746
3747 case SCTP_DELAYED_SACK:
3748 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3749 break;
3750 case SCTP_PARTIAL_DELIVERY_POINT:
3751 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3752 break;
3753
3754 case SCTP_INITMSG:
3755 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3756 break;
3757 case SCTP_DEFAULT_SEND_PARAM:
3758 retval = sctp_setsockopt_default_send_param(sk, optval,
3759 optlen);
3760 break;
3761 case SCTP_DEFAULT_SNDINFO:
3762 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3763 break;
3764 case SCTP_PRIMARY_ADDR:
3765 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3766 break;
3767 case SCTP_SET_PEER_PRIMARY_ADDR:
3768 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3769 break;
3770 case SCTP_NODELAY:
3771 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3772 break;
3773 case SCTP_RTOINFO:
3774 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3775 break;
3776 case SCTP_ASSOCINFO:
3777 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3778 break;
3779 case SCTP_I_WANT_MAPPED_V4_ADDR:
3780 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3781 break;
3782 case SCTP_MAXSEG:
3783 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3784 break;
3785 case SCTP_ADAPTATION_LAYER:
3786 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3787 break;
3788 case SCTP_CONTEXT:
3789 retval = sctp_setsockopt_context(sk, optval, optlen);
3790 break;
3791 case SCTP_FRAGMENT_INTERLEAVE:
3792 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3793 break;
3794 case SCTP_MAX_BURST:
3795 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3796 break;
3797 case SCTP_AUTH_CHUNK:
3798 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3799 break;
3800 case SCTP_HMAC_IDENT:
3801 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3802 break;
3803 case SCTP_AUTH_KEY:
3804 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3805 break;
3806 case SCTP_AUTH_ACTIVE_KEY:
3807 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3808 break;
3809 case SCTP_AUTH_DELETE_KEY:
3810 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3811 break;
3812 case SCTP_AUTO_ASCONF:
3813 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3814 break;
3815 case SCTP_PEER_ADDR_THLDS:
3816 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3817 break;
3818 case SCTP_RECVRCVINFO:
3819 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3820 break;
3821 case SCTP_RECVNXTINFO:
3822 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3823 break;
3824 default:
3825 retval = -ENOPROTOOPT;
3826 break;
3827 }
3828
3829 release_sock(sk);
3830
3831 out_nounlock:
3832 return retval;
3833 }
3834
3835 /* API 3.1.6 connect() - UDP Style Syntax
3836 *
3837 * An application may use the connect() call in the UDP model to initiate an
3838 * association without sending data.
3839 *
3840 * The syntax is:
3841 *
3842 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3843 *
3844 * sd: the socket descriptor to have a new association added to.
3845 *
3846 * nam: the address structure (either struct sockaddr_in or struct
3847 * sockaddr_in6 defined in RFC2553 [7]).
3848 *
3849 * len: the size of the address.
3850 */
3851 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3852 int addr_len)
3853 {
3854 int err = 0;
3855 struct sctp_af *af;
3856
3857 lock_sock(sk);
3858
3859 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3860 addr, addr_len);
3861
3862 /* Validate addr_len before calling common connect/connectx routine. */
3863 af = sctp_get_af_specific(addr->sa_family);
3864 if (!af || addr_len < af->sockaddr_len) {
3865 err = -EINVAL;
3866 } else {
3867 /* Pass correct addr len to common routine (so it knows there
3868 * is only one address being passed.
3869 */
3870 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3871 }
3872
3873 release_sock(sk);
3874 return err;
3875 }
3876
3877 /* FIXME: Write comments. */
3878 static int sctp_disconnect(struct sock *sk, int flags)
3879 {
3880 return -EOPNOTSUPP; /* STUB */
3881 }
3882
3883 /* 4.1.4 accept() - TCP Style Syntax
3884 *
3885 * Applications use accept() call to remove an established SCTP
3886 * association from the accept queue of the endpoint. A new socket
3887 * descriptor will be returned from accept() to represent the newly
3888 * formed association.
3889 */
3890 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3891 {
3892 struct sctp_sock *sp;
3893 struct sctp_endpoint *ep;
3894 struct sock *newsk = NULL;
3895 struct sctp_association *asoc;
3896 long timeo;
3897 int error = 0;
3898
3899 lock_sock(sk);
3900
3901 sp = sctp_sk(sk);
3902 ep = sp->ep;
3903
3904 if (!sctp_style(sk, TCP)) {
3905 error = -EOPNOTSUPP;
3906 goto out;
3907 }
3908
3909 if (!sctp_sstate(sk, LISTENING)) {
3910 error = -EINVAL;
3911 goto out;
3912 }
3913
3914 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3915
3916 error = sctp_wait_for_accept(sk, timeo);
3917 if (error)
3918 goto out;
3919
3920 /* We treat the list of associations on the endpoint as the accept
3921 * queue and pick the first association on the list.
3922 */
3923 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3924
3925 newsk = sp->pf->create_accept_sk(sk, asoc);
3926 if (!newsk) {
3927 error = -ENOMEM;
3928 goto out;
3929 }
3930
3931 /* Populate the fields of the newsk from the oldsk and migrate the
3932 * asoc to the newsk.
3933 */
3934 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3935
3936 out:
3937 release_sock(sk);
3938 *err = error;
3939 return newsk;
3940 }
3941
3942 /* The SCTP ioctl handler. */
3943 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3944 {
3945 int rc = -ENOTCONN;
3946
3947 lock_sock(sk);
3948
3949 /*
3950 * SEQPACKET-style sockets in LISTENING state are valid, for
3951 * SCTP, so only discard TCP-style sockets in LISTENING state.
3952 */
3953 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3954 goto out;
3955
3956 switch (cmd) {
3957 case SIOCINQ: {
3958 struct sk_buff *skb;
3959 unsigned int amount = 0;
3960
3961 skb = skb_peek(&sk->sk_receive_queue);
3962 if (skb != NULL) {
3963 /*
3964 * We will only return the amount of this packet since
3965 * that is all that will be read.
3966 */
3967 amount = skb->len;
3968 }
3969 rc = put_user(amount, (int __user *)arg);
3970 break;
3971 }
3972 default:
3973 rc = -ENOIOCTLCMD;
3974 break;
3975 }
3976 out:
3977 release_sock(sk);
3978 return rc;
3979 }
3980
3981 /* This is the function which gets called during socket creation to
3982 * initialized the SCTP-specific portion of the sock.
3983 * The sock structure should already be zero-filled memory.
3984 */
3985 static int sctp_init_sock(struct sock *sk)
3986 {
3987 struct net *net = sock_net(sk);
3988 struct sctp_sock *sp;
3989
3990 pr_debug("%s: sk:%p\n", __func__, sk);
3991
3992 sp = sctp_sk(sk);
3993
3994 /* Initialize the SCTP per socket area. */
3995 switch (sk->sk_type) {
3996 case SOCK_SEQPACKET:
3997 sp->type = SCTP_SOCKET_UDP;
3998 break;
3999 case SOCK_STREAM:
4000 sp->type = SCTP_SOCKET_TCP;
4001 break;
4002 default:
4003 return -ESOCKTNOSUPPORT;
4004 }
4005
4006 /* Initialize default send parameters. These parameters can be
4007 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4008 */
4009 sp->default_stream = 0;
4010 sp->default_ppid = 0;
4011 sp->default_flags = 0;
4012 sp->default_context = 0;
4013 sp->default_timetolive = 0;
4014
4015 sp->default_rcv_context = 0;
4016 sp->max_burst = net->sctp.max_burst;
4017
4018 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4019
4020 /* Initialize default setup parameters. These parameters
4021 * can be modified with the SCTP_INITMSG socket option or
4022 * overridden by the SCTP_INIT CMSG.
4023 */
4024 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4025 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4026 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4027 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4028
4029 /* Initialize default RTO related parameters. These parameters can
4030 * be modified for with the SCTP_RTOINFO socket option.
4031 */
4032 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4033 sp->rtoinfo.srto_max = net->sctp.rto_max;
4034 sp->rtoinfo.srto_min = net->sctp.rto_min;
4035
4036 /* Initialize default association related parameters. These parameters
4037 * can be modified with the SCTP_ASSOCINFO socket option.
4038 */
4039 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4040 sp->assocparams.sasoc_number_peer_destinations = 0;
4041 sp->assocparams.sasoc_peer_rwnd = 0;
4042 sp->assocparams.sasoc_local_rwnd = 0;
4043 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4044
4045 /* Initialize default event subscriptions. By default, all the
4046 * options are off.
4047 */
4048 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4049
4050 /* Default Peer Address Parameters. These defaults can
4051 * be modified via SCTP_PEER_ADDR_PARAMS
4052 */
4053 sp->hbinterval = net->sctp.hb_interval;
4054 sp->pathmaxrxt = net->sctp.max_retrans_path;
4055 sp->pathmtu = 0; /* allow default discovery */
4056 sp->sackdelay = net->sctp.sack_timeout;
4057 sp->sackfreq = 2;
4058 sp->param_flags = SPP_HB_ENABLE |
4059 SPP_PMTUD_ENABLE |
4060 SPP_SACKDELAY_ENABLE;
4061
4062 /* If enabled no SCTP message fragmentation will be performed.
4063 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4064 */
4065 sp->disable_fragments = 0;
4066
4067 /* Enable Nagle algorithm by default. */
4068 sp->nodelay = 0;
4069
4070 sp->recvrcvinfo = 0;
4071 sp->recvnxtinfo = 0;
4072
4073 /* Enable by default. */
4074 sp->v4mapped = 1;
4075
4076 /* Auto-close idle associations after the configured
4077 * number of seconds. A value of 0 disables this
4078 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4079 * for UDP-style sockets only.
4080 */
4081 sp->autoclose = 0;
4082
4083 /* User specified fragmentation limit. */
4084 sp->user_frag = 0;
4085
4086 sp->adaptation_ind = 0;
4087
4088 sp->pf = sctp_get_pf_specific(sk->sk_family);
4089
4090 /* Control variables for partial data delivery. */
4091 atomic_set(&sp->pd_mode, 0);
4092 skb_queue_head_init(&sp->pd_lobby);
4093 sp->frag_interleave = 0;
4094
4095 /* Create a per socket endpoint structure. Even if we
4096 * change the data structure relationships, this may still
4097 * be useful for storing pre-connect address information.
4098 */
4099 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4100 if (!sp->ep)
4101 return -ENOMEM;
4102
4103 sp->hmac = NULL;
4104
4105 sk->sk_destruct = sctp_destruct_sock;
4106
4107 SCTP_DBG_OBJCNT_INC(sock);
4108
4109 local_bh_disable();
4110 percpu_counter_inc(&sctp_sockets_allocated);
4111 sock_prot_inuse_add(net, sk->sk_prot, 1);
4112
4113 /* Nothing can fail after this block, otherwise
4114 * sctp_destroy_sock() will be called without addr_wq_lock held
4115 */
4116 if (net->sctp.default_auto_asconf) {
4117 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4118 list_add_tail(&sp->auto_asconf_list,
4119 &net->sctp.auto_asconf_splist);
4120 sp->do_auto_asconf = 1;
4121 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4122 } else {
4123 sp->do_auto_asconf = 0;
4124 }
4125
4126 local_bh_enable();
4127
4128 return 0;
4129 }
4130
4131 /* Cleanup any SCTP per socket resources. Must be called with
4132 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4133 */
4134 static void sctp_destroy_sock(struct sock *sk)
4135 {
4136 struct sctp_sock *sp;
4137
4138 pr_debug("%s: sk:%p\n", __func__, sk);
4139
4140 /* Release our hold on the endpoint. */
4141 sp = sctp_sk(sk);
4142 /* This could happen during socket init, thus we bail out
4143 * early, since the rest of the below is not setup either.
4144 */
4145 if (sp->ep == NULL)
4146 return;
4147
4148 if (sp->do_auto_asconf) {
4149 sp->do_auto_asconf = 0;
4150 list_del(&sp->auto_asconf_list);
4151 }
4152 sctp_endpoint_free(sp->ep);
4153 local_bh_disable();
4154 percpu_counter_dec(&sctp_sockets_allocated);
4155 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4156 local_bh_enable();
4157 }
4158
4159 /* Triggered when there are no references on the socket anymore */
4160 static void sctp_destruct_sock(struct sock *sk)
4161 {
4162 struct sctp_sock *sp = sctp_sk(sk);
4163
4164 /* Free up the HMAC transform. */
4165 crypto_free_shash(sp->hmac);
4166
4167 inet_sock_destruct(sk);
4168 }
4169
4170 /* API 4.1.7 shutdown() - TCP Style Syntax
4171 * int shutdown(int socket, int how);
4172 *
4173 * sd - the socket descriptor of the association to be closed.
4174 * how - Specifies the type of shutdown. The values are
4175 * as follows:
4176 * SHUT_RD
4177 * Disables further receive operations. No SCTP
4178 * protocol action is taken.
4179 * SHUT_WR
4180 * Disables further send operations, and initiates
4181 * the SCTP shutdown sequence.
4182 * SHUT_RDWR
4183 * Disables further send and receive operations
4184 * and initiates the SCTP shutdown sequence.
4185 */
4186 static void sctp_shutdown(struct sock *sk, int how)
4187 {
4188 struct net *net = sock_net(sk);
4189 struct sctp_endpoint *ep;
4190 struct sctp_association *asoc;
4191
4192 if (!sctp_style(sk, TCP))
4193 return;
4194
4195 if (how & SEND_SHUTDOWN) {
4196 ep = sctp_sk(sk)->ep;
4197 if (!list_empty(&ep->asocs)) {
4198 asoc = list_entry(ep->asocs.next,
4199 struct sctp_association, asocs);
4200 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4201 }
4202 }
4203 }
4204
4205 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4206 struct sctp_info *info)
4207 {
4208 struct sctp_transport *prim;
4209 struct list_head *pos;
4210 int mask;
4211
4212 memset(info, 0, sizeof(*info));
4213 if (!asoc) {
4214 struct sctp_sock *sp = sctp_sk(sk);
4215
4216 info->sctpi_s_autoclose = sp->autoclose;
4217 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4218 info->sctpi_s_pd_point = sp->pd_point;
4219 info->sctpi_s_nodelay = sp->nodelay;
4220 info->sctpi_s_disable_fragments = sp->disable_fragments;
4221 info->sctpi_s_v4mapped = sp->v4mapped;
4222 info->sctpi_s_frag_interleave = sp->frag_interleave;
4223
4224 return 0;
4225 }
4226
4227 info->sctpi_tag = asoc->c.my_vtag;
4228 info->sctpi_state = asoc->state;
4229 info->sctpi_rwnd = asoc->a_rwnd;
4230 info->sctpi_unackdata = asoc->unack_data;
4231 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4232 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4233 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4234 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4235 info->sctpi_inqueue++;
4236 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4237 info->sctpi_outqueue++;
4238 info->sctpi_overall_error = asoc->overall_error_count;
4239 info->sctpi_max_burst = asoc->max_burst;
4240 info->sctpi_maxseg = asoc->frag_point;
4241 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4242 info->sctpi_peer_tag = asoc->c.peer_vtag;
4243
4244 mask = asoc->peer.ecn_capable << 1;
4245 mask = (mask | asoc->peer.ipv4_address) << 1;
4246 mask = (mask | asoc->peer.ipv6_address) << 1;
4247 mask = (mask | asoc->peer.hostname_address) << 1;
4248 mask = (mask | asoc->peer.asconf_capable) << 1;
4249 mask = (mask | asoc->peer.prsctp_capable) << 1;
4250 mask = (mask | asoc->peer.auth_capable);
4251 info->sctpi_peer_capable = mask;
4252 mask = asoc->peer.sack_needed << 1;
4253 mask = (mask | asoc->peer.sack_generation) << 1;
4254 mask = (mask | asoc->peer.zero_window_announced);
4255 info->sctpi_peer_sack = mask;
4256
4257 info->sctpi_isacks = asoc->stats.isacks;
4258 info->sctpi_osacks = asoc->stats.osacks;
4259 info->sctpi_opackets = asoc->stats.opackets;
4260 info->sctpi_ipackets = asoc->stats.ipackets;
4261 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4262 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4263 info->sctpi_idupchunks = asoc->stats.idupchunks;
4264 info->sctpi_gapcnt = asoc->stats.gapcnt;
4265 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4266 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4267 info->sctpi_oodchunks = asoc->stats.oodchunks;
4268 info->sctpi_iodchunks = asoc->stats.iodchunks;
4269 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4270 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4271
4272 prim = asoc->peer.primary_path;
4273 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4274 sizeof(struct sockaddr_storage));
4275 info->sctpi_p_state = prim->state;
4276 info->sctpi_p_cwnd = prim->cwnd;
4277 info->sctpi_p_srtt = prim->srtt;
4278 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4279 info->sctpi_p_hbinterval = prim->hbinterval;
4280 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4281 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4282 info->sctpi_p_ssthresh = prim->ssthresh;
4283 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4284 info->sctpi_p_flight_size = prim->flight_size;
4285 info->sctpi_p_error = prim->error_count;
4286
4287 return 0;
4288 }
4289 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4290
4291 /* 7.2.1 Association Status (SCTP_STATUS)
4292
4293 * Applications can retrieve current status information about an
4294 * association, including association state, peer receiver window size,
4295 * number of unacked data chunks, and number of data chunks pending
4296 * receipt. This information is read-only.
4297 */
4298 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4299 char __user *optval,
4300 int __user *optlen)
4301 {
4302 struct sctp_status status;
4303 struct sctp_association *asoc = NULL;
4304 struct sctp_transport *transport;
4305 sctp_assoc_t associd;
4306 int retval = 0;
4307
4308 if (len < sizeof(status)) {
4309 retval = -EINVAL;
4310 goto out;
4311 }
4312
4313 len = sizeof(status);
4314 if (copy_from_user(&status, optval, len)) {
4315 retval = -EFAULT;
4316 goto out;
4317 }
4318
4319 associd = status.sstat_assoc_id;
4320 asoc = sctp_id2assoc(sk, associd);
4321 if (!asoc) {
4322 retval = -EINVAL;
4323 goto out;
4324 }
4325
4326 transport = asoc->peer.primary_path;
4327
4328 status.sstat_assoc_id = sctp_assoc2id(asoc);
4329 status.sstat_state = sctp_assoc_to_state(asoc);
4330 status.sstat_rwnd = asoc->peer.rwnd;
4331 status.sstat_unackdata = asoc->unack_data;
4332
4333 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4334 status.sstat_instrms = asoc->c.sinit_max_instreams;
4335 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4336 status.sstat_fragmentation_point = asoc->frag_point;
4337 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4338 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4339 transport->af_specific->sockaddr_len);
4340 /* Map ipv4 address into v4-mapped-on-v6 address. */
4341 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4342 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4343 status.sstat_primary.spinfo_state = transport->state;
4344 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4345 status.sstat_primary.spinfo_srtt = transport->srtt;
4346 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4347 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4348
4349 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4350 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4351
4352 if (put_user(len, optlen)) {
4353 retval = -EFAULT;
4354 goto out;
4355 }
4356
4357 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4358 __func__, len, status.sstat_state, status.sstat_rwnd,
4359 status.sstat_assoc_id);
4360
4361 if (copy_to_user(optval, &status, len)) {
4362 retval = -EFAULT;
4363 goto out;
4364 }
4365
4366 out:
4367 return retval;
4368 }
4369
4370
4371 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4372 *
4373 * Applications can retrieve information about a specific peer address
4374 * of an association, including its reachability state, congestion
4375 * window, and retransmission timer values. This information is
4376 * read-only.
4377 */
4378 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4379 char __user *optval,
4380 int __user *optlen)
4381 {
4382 struct sctp_paddrinfo pinfo;
4383 struct sctp_transport *transport;
4384 int retval = 0;
4385
4386 if (len < sizeof(pinfo)) {
4387 retval = -EINVAL;
4388 goto out;
4389 }
4390
4391 len = sizeof(pinfo);
4392 if (copy_from_user(&pinfo, optval, len)) {
4393 retval = -EFAULT;
4394 goto out;
4395 }
4396
4397 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4398 pinfo.spinfo_assoc_id);
4399 if (!transport)
4400 return -EINVAL;
4401
4402 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4403 pinfo.spinfo_state = transport->state;
4404 pinfo.spinfo_cwnd = transport->cwnd;
4405 pinfo.spinfo_srtt = transport->srtt;
4406 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4407 pinfo.spinfo_mtu = transport->pathmtu;
4408
4409 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4410 pinfo.spinfo_state = SCTP_ACTIVE;
4411
4412 if (put_user(len, optlen)) {
4413 retval = -EFAULT;
4414 goto out;
4415 }
4416
4417 if (copy_to_user(optval, &pinfo, len)) {
4418 retval = -EFAULT;
4419 goto out;
4420 }
4421
4422 out:
4423 return retval;
4424 }
4425
4426 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4427 *
4428 * This option is a on/off flag. If enabled no SCTP message
4429 * fragmentation will be performed. Instead if a message being sent
4430 * exceeds the current PMTU size, the message will NOT be sent and
4431 * instead a error will be indicated to the user.
4432 */
4433 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4434 char __user *optval, int __user *optlen)
4435 {
4436 int val;
4437
4438 if (len < sizeof(int))
4439 return -EINVAL;
4440
4441 len = sizeof(int);
4442 val = (sctp_sk(sk)->disable_fragments == 1);
4443 if (put_user(len, optlen))
4444 return -EFAULT;
4445 if (copy_to_user(optval, &val, len))
4446 return -EFAULT;
4447 return 0;
4448 }
4449
4450 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4451 *
4452 * This socket option is used to specify various notifications and
4453 * ancillary data the user wishes to receive.
4454 */
4455 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4456 int __user *optlen)
4457 {
4458 if (len <= 0)
4459 return -EINVAL;
4460 if (len > sizeof(struct sctp_event_subscribe))
4461 len = sizeof(struct sctp_event_subscribe);
4462 if (put_user(len, optlen))
4463 return -EFAULT;
4464 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4465 return -EFAULT;
4466 return 0;
4467 }
4468
4469 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4470 *
4471 * This socket option is applicable to the UDP-style socket only. When
4472 * set it will cause associations that are idle for more than the
4473 * specified number of seconds to automatically close. An association
4474 * being idle is defined an association that has NOT sent or received
4475 * user data. The special value of '0' indicates that no automatic
4476 * close of any associations should be performed. The option expects an
4477 * integer defining the number of seconds of idle time before an
4478 * association is closed.
4479 */
4480 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4481 {
4482 /* Applicable to UDP-style socket only */
4483 if (sctp_style(sk, TCP))
4484 return -EOPNOTSUPP;
4485 if (len < sizeof(int))
4486 return -EINVAL;
4487 len = sizeof(int);
4488 if (put_user(len, optlen))
4489 return -EFAULT;
4490 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4491 return -EFAULT;
4492 return 0;
4493 }
4494
4495 /* Helper routine to branch off an association to a new socket. */
4496 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4497 {
4498 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4499 struct sctp_sock *sp = sctp_sk(sk);
4500 struct socket *sock;
4501 int err = 0;
4502
4503 if (!asoc)
4504 return -EINVAL;
4505
4506 /* An association cannot be branched off from an already peeled-off
4507 * socket, nor is this supported for tcp style sockets.
4508 */
4509 if (!sctp_style(sk, UDP))
4510 return -EINVAL;
4511
4512 /* Create a new socket. */
4513 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4514 if (err < 0)
4515 return err;
4516
4517 sctp_copy_sock(sock->sk, sk, asoc);
4518
4519 /* Make peeled-off sockets more like 1-1 accepted sockets.
4520 * Set the daddr and initialize id to something more random
4521 */
4522 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4523
4524 /* Populate the fields of the newsk from the oldsk and migrate the
4525 * asoc to the newsk.
4526 */
4527 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4528
4529 *sockp = sock;
4530
4531 return err;
4532 }
4533 EXPORT_SYMBOL(sctp_do_peeloff);
4534
4535 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4536 {
4537 sctp_peeloff_arg_t peeloff;
4538 struct socket *newsock;
4539 struct file *newfile;
4540 int retval = 0;
4541
4542 if (len < sizeof(sctp_peeloff_arg_t))
4543 return -EINVAL;
4544 len = sizeof(sctp_peeloff_arg_t);
4545 if (copy_from_user(&peeloff, optval, len))
4546 return -EFAULT;
4547
4548 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4549 if (retval < 0)
4550 goto out;
4551
4552 /* Map the socket to an unused fd that can be returned to the user. */
4553 retval = get_unused_fd_flags(0);
4554 if (retval < 0) {
4555 sock_release(newsock);
4556 goto out;
4557 }
4558
4559 newfile = sock_alloc_file(newsock, 0, NULL);
4560 if (IS_ERR(newfile)) {
4561 put_unused_fd(retval);
4562 sock_release(newsock);
4563 return PTR_ERR(newfile);
4564 }
4565
4566 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4567 retval);
4568
4569 /* Return the fd mapped to the new socket. */
4570 if (put_user(len, optlen)) {
4571 fput(newfile);
4572 put_unused_fd(retval);
4573 return -EFAULT;
4574 }
4575 peeloff.sd = retval;
4576 if (copy_to_user(optval, &peeloff, len)) {
4577 fput(newfile);
4578 put_unused_fd(retval);
4579 return -EFAULT;
4580 }
4581 fd_install(retval, newfile);
4582 out:
4583 return retval;
4584 }
4585
4586 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4587 *
4588 * Applications can enable or disable heartbeats for any peer address of
4589 * an association, modify an address's heartbeat interval, force a
4590 * heartbeat to be sent immediately, and adjust the address's maximum
4591 * number of retransmissions sent before an address is considered
4592 * unreachable. The following structure is used to access and modify an
4593 * address's parameters:
4594 *
4595 * struct sctp_paddrparams {
4596 * sctp_assoc_t spp_assoc_id;
4597 * struct sockaddr_storage spp_address;
4598 * uint32_t spp_hbinterval;
4599 * uint16_t spp_pathmaxrxt;
4600 * uint32_t spp_pathmtu;
4601 * uint32_t spp_sackdelay;
4602 * uint32_t spp_flags;
4603 * };
4604 *
4605 * spp_assoc_id - (one-to-many style socket) This is filled in the
4606 * application, and identifies the association for
4607 * this query.
4608 * spp_address - This specifies which address is of interest.
4609 * spp_hbinterval - This contains the value of the heartbeat interval,
4610 * in milliseconds. If a value of zero
4611 * is present in this field then no changes are to
4612 * be made to this parameter.
4613 * spp_pathmaxrxt - This contains the maximum number of
4614 * retransmissions before this address shall be
4615 * considered unreachable. If a value of zero
4616 * is present in this field then no changes are to
4617 * be made to this parameter.
4618 * spp_pathmtu - When Path MTU discovery is disabled the value
4619 * specified here will be the "fixed" path mtu.
4620 * Note that if the spp_address field is empty
4621 * then all associations on this address will
4622 * have this fixed path mtu set upon them.
4623 *
4624 * spp_sackdelay - When delayed sack is enabled, this value specifies
4625 * the number of milliseconds that sacks will be delayed
4626 * for. This value will apply to all addresses of an
4627 * association if the spp_address field is empty. Note
4628 * also, that if delayed sack is enabled and this
4629 * value is set to 0, no change is made to the last
4630 * recorded delayed sack timer value.
4631 *
4632 * spp_flags - These flags are used to control various features
4633 * on an association. The flag field may contain
4634 * zero or more of the following options.
4635 *
4636 * SPP_HB_ENABLE - Enable heartbeats on the
4637 * specified address. Note that if the address
4638 * field is empty all addresses for the association
4639 * have heartbeats enabled upon them.
4640 *
4641 * SPP_HB_DISABLE - Disable heartbeats on the
4642 * speicifed address. Note that if the address
4643 * field is empty all addresses for the association
4644 * will have their heartbeats disabled. Note also
4645 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4646 * mutually exclusive, only one of these two should
4647 * be specified. Enabling both fields will have
4648 * undetermined results.
4649 *
4650 * SPP_HB_DEMAND - Request a user initiated heartbeat
4651 * to be made immediately.
4652 *
4653 * SPP_PMTUD_ENABLE - This field will enable PMTU
4654 * discovery upon the specified address. Note that
4655 * if the address feild is empty then all addresses
4656 * on the association are effected.
4657 *
4658 * SPP_PMTUD_DISABLE - This field will disable PMTU
4659 * discovery upon the specified address. Note that
4660 * if the address feild is empty then all addresses
4661 * on the association are effected. Not also that
4662 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4663 * exclusive. Enabling both will have undetermined
4664 * results.
4665 *
4666 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4667 * on delayed sack. The time specified in spp_sackdelay
4668 * is used to specify the sack delay for this address. Note
4669 * that if spp_address is empty then all addresses will
4670 * enable delayed sack and take on the sack delay
4671 * value specified in spp_sackdelay.
4672 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4673 * off delayed sack. If the spp_address field is blank then
4674 * delayed sack is disabled for the entire association. Note
4675 * also that this field is mutually exclusive to
4676 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4677 * results.
4678 */
4679 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4680 char __user *optval, int __user *optlen)
4681 {
4682 struct sctp_paddrparams params;
4683 struct sctp_transport *trans = NULL;
4684 struct sctp_association *asoc = NULL;
4685 struct sctp_sock *sp = sctp_sk(sk);
4686
4687 if (len < sizeof(struct sctp_paddrparams))
4688 return -EINVAL;
4689 len = sizeof(struct sctp_paddrparams);
4690 if (copy_from_user(&params, optval, len))
4691 return -EFAULT;
4692
4693 /* If an address other than INADDR_ANY is specified, and
4694 * no transport is found, then the request is invalid.
4695 */
4696 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4697 trans = sctp_addr_id2transport(sk, &params.spp_address,
4698 params.spp_assoc_id);
4699 if (!trans) {
4700 pr_debug("%s: failed no transport\n", __func__);
4701 return -EINVAL;
4702 }
4703 }
4704
4705 /* Get association, if assoc_id != 0 and the socket is a one
4706 * to many style socket, and an association was not found, then
4707 * the id was invalid.
4708 */
4709 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4710 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4711 pr_debug("%s: failed no association\n", __func__);
4712 return -EINVAL;
4713 }
4714
4715 if (trans) {
4716 /* Fetch transport values. */
4717 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4718 params.spp_pathmtu = trans->pathmtu;
4719 params.spp_pathmaxrxt = trans->pathmaxrxt;
4720 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4721
4722 /*draft-11 doesn't say what to return in spp_flags*/
4723 params.spp_flags = trans->param_flags;
4724 } else if (asoc) {
4725 /* Fetch association values. */
4726 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4727 params.spp_pathmtu = asoc->pathmtu;
4728 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4729 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4730
4731 /*draft-11 doesn't say what to return in spp_flags*/
4732 params.spp_flags = asoc->param_flags;
4733 } else {
4734 /* Fetch socket values. */
4735 params.spp_hbinterval = sp->hbinterval;
4736 params.spp_pathmtu = sp->pathmtu;
4737 params.spp_sackdelay = sp->sackdelay;
4738 params.spp_pathmaxrxt = sp->pathmaxrxt;
4739
4740 /*draft-11 doesn't say what to return in spp_flags*/
4741 params.spp_flags = sp->param_flags;
4742 }
4743
4744 if (copy_to_user(optval, &params, len))
4745 return -EFAULT;
4746
4747 if (put_user(len, optlen))
4748 return -EFAULT;
4749
4750 return 0;
4751 }
4752
4753 /*
4754 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4755 *
4756 * This option will effect the way delayed acks are performed. This
4757 * option allows you to get or set the delayed ack time, in
4758 * milliseconds. It also allows changing the delayed ack frequency.
4759 * Changing the frequency to 1 disables the delayed sack algorithm. If
4760 * the assoc_id is 0, then this sets or gets the endpoints default
4761 * values. If the assoc_id field is non-zero, then the set or get
4762 * effects the specified association for the one to many model (the
4763 * assoc_id field is ignored by the one to one model). Note that if
4764 * sack_delay or sack_freq are 0 when setting this option, then the
4765 * current values will remain unchanged.
4766 *
4767 * struct sctp_sack_info {
4768 * sctp_assoc_t sack_assoc_id;
4769 * uint32_t sack_delay;
4770 * uint32_t sack_freq;
4771 * };
4772 *
4773 * sack_assoc_id - This parameter, indicates which association the user
4774 * is performing an action upon. Note that if this field's value is
4775 * zero then the endpoints default value is changed (effecting future
4776 * associations only).
4777 *
4778 * sack_delay - This parameter contains the number of milliseconds that
4779 * the user is requesting the delayed ACK timer be set to. Note that
4780 * this value is defined in the standard to be between 200 and 500
4781 * milliseconds.
4782 *
4783 * sack_freq - This parameter contains the number of packets that must
4784 * be received before a sack is sent without waiting for the delay
4785 * timer to expire. The default value for this is 2, setting this
4786 * value to 1 will disable the delayed sack algorithm.
4787 */
4788 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4789 char __user *optval,
4790 int __user *optlen)
4791 {
4792 struct sctp_sack_info params;
4793 struct sctp_association *asoc = NULL;
4794 struct sctp_sock *sp = sctp_sk(sk);
4795
4796 if (len >= sizeof(struct sctp_sack_info)) {
4797 len = sizeof(struct sctp_sack_info);
4798
4799 if (copy_from_user(&params, optval, len))
4800 return -EFAULT;
4801 } else if (len == sizeof(struct sctp_assoc_value)) {
4802 pr_warn_ratelimited(DEPRECATED
4803 "%s (pid %d) "
4804 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4805 "Use struct sctp_sack_info instead\n",
4806 current->comm, task_pid_nr(current));
4807 if (copy_from_user(&params, optval, len))
4808 return -EFAULT;
4809 } else
4810 return -EINVAL;
4811
4812 /* Get association, if sack_assoc_id != 0 and the socket is a one
4813 * to many style socket, and an association was not found, then
4814 * the id was invalid.
4815 */
4816 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4817 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4818 return -EINVAL;
4819
4820 if (asoc) {
4821 /* Fetch association values. */
4822 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4823 params.sack_delay = jiffies_to_msecs(
4824 asoc->sackdelay);
4825 params.sack_freq = asoc->sackfreq;
4826
4827 } else {
4828 params.sack_delay = 0;
4829 params.sack_freq = 1;
4830 }
4831 } else {
4832 /* Fetch socket values. */
4833 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4834 params.sack_delay = sp->sackdelay;
4835 params.sack_freq = sp->sackfreq;
4836 } else {
4837 params.sack_delay = 0;
4838 params.sack_freq = 1;
4839 }
4840 }
4841
4842 if (copy_to_user(optval, &params, len))
4843 return -EFAULT;
4844
4845 if (put_user(len, optlen))
4846 return -EFAULT;
4847
4848 return 0;
4849 }
4850
4851 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4852 *
4853 * Applications can specify protocol parameters for the default association
4854 * initialization. The option name argument to setsockopt() and getsockopt()
4855 * is SCTP_INITMSG.
4856 *
4857 * Setting initialization parameters is effective only on an unconnected
4858 * socket (for UDP-style sockets only future associations are effected
4859 * by the change). With TCP-style sockets, this option is inherited by
4860 * sockets derived from a listener socket.
4861 */
4862 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4863 {
4864 if (len < sizeof(struct sctp_initmsg))
4865 return -EINVAL;
4866 len = sizeof(struct sctp_initmsg);
4867 if (put_user(len, optlen))
4868 return -EFAULT;
4869 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4870 return -EFAULT;
4871 return 0;
4872 }
4873
4874
4875 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4876 char __user *optval, int __user *optlen)
4877 {
4878 struct sctp_association *asoc;
4879 int cnt = 0;
4880 struct sctp_getaddrs getaddrs;
4881 struct sctp_transport *from;
4882 void __user *to;
4883 union sctp_addr temp;
4884 struct sctp_sock *sp = sctp_sk(sk);
4885 int addrlen;
4886 size_t space_left;
4887 int bytes_copied;
4888
4889 if (len < sizeof(struct sctp_getaddrs))
4890 return -EINVAL;
4891
4892 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4893 return -EFAULT;
4894
4895 /* For UDP-style sockets, id specifies the association to query. */
4896 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4897 if (!asoc)
4898 return -EINVAL;
4899
4900 to = optval + offsetof(struct sctp_getaddrs, addrs);
4901 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4902
4903 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4904 transports) {
4905 memcpy(&temp, &from->ipaddr, sizeof(temp));
4906 addrlen = sctp_get_pf_specific(sk->sk_family)
4907 ->addr_to_user(sp, &temp);
4908 if (space_left < addrlen)
4909 return -ENOMEM;
4910 if (copy_to_user(to, &temp, addrlen))
4911 return -EFAULT;
4912 to += addrlen;
4913 cnt++;
4914 space_left -= addrlen;
4915 }
4916
4917 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4918 return -EFAULT;
4919 bytes_copied = ((char __user *)to) - optval;
4920 if (put_user(bytes_copied, optlen))
4921 return -EFAULT;
4922
4923 return 0;
4924 }
4925
4926 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4927 size_t space_left, int *bytes_copied)
4928 {
4929 struct sctp_sockaddr_entry *addr;
4930 union sctp_addr temp;
4931 int cnt = 0;
4932 int addrlen;
4933 struct net *net = sock_net(sk);
4934
4935 rcu_read_lock();
4936 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4937 if (!addr->valid)
4938 continue;
4939
4940 if ((PF_INET == sk->sk_family) &&
4941 (AF_INET6 == addr->a.sa.sa_family))
4942 continue;
4943 if ((PF_INET6 == sk->sk_family) &&
4944 inet_v6_ipv6only(sk) &&
4945 (AF_INET == addr->a.sa.sa_family))
4946 continue;
4947 memcpy(&temp, &addr->a, sizeof(temp));
4948 if (!temp.v4.sin_port)
4949 temp.v4.sin_port = htons(port);
4950
4951 addrlen = sctp_get_pf_specific(sk->sk_family)
4952 ->addr_to_user(sctp_sk(sk), &temp);
4953
4954 if (space_left < addrlen) {
4955 cnt = -ENOMEM;
4956 break;
4957 }
4958 memcpy(to, &temp, addrlen);
4959
4960 to += addrlen;
4961 cnt++;
4962 space_left -= addrlen;
4963 *bytes_copied += addrlen;
4964 }
4965 rcu_read_unlock();
4966
4967 return cnt;
4968 }
4969
4970
4971 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4972 char __user *optval, int __user *optlen)
4973 {
4974 struct sctp_bind_addr *bp;
4975 struct sctp_association *asoc;
4976 int cnt = 0;
4977 struct sctp_getaddrs getaddrs;
4978 struct sctp_sockaddr_entry *addr;
4979 void __user *to;
4980 union sctp_addr temp;
4981 struct sctp_sock *sp = sctp_sk(sk);
4982 int addrlen;
4983 int err = 0;
4984 size_t space_left;
4985 int bytes_copied = 0;
4986 void *addrs;
4987 void *buf;
4988
4989 if (len < sizeof(struct sctp_getaddrs))
4990 return -EINVAL;
4991
4992 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4993 return -EFAULT;
4994
4995 /*
4996 * For UDP-style sockets, id specifies the association to query.
4997 * If the id field is set to the value '0' then the locally bound
4998 * addresses are returned without regard to any particular
4999 * association.
5000 */
5001 if (0 == getaddrs.assoc_id) {
5002 bp = &sctp_sk(sk)->ep->base.bind_addr;
5003 } else {
5004 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5005 if (!asoc)
5006 return -EINVAL;
5007 bp = &asoc->base.bind_addr;
5008 }
5009
5010 to = optval + offsetof(struct sctp_getaddrs, addrs);
5011 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5012
5013 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5014 if (!addrs)
5015 return -ENOMEM;
5016
5017 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5018 * addresses from the global local address list.
5019 */
5020 if (sctp_list_single_entry(&bp->address_list)) {
5021 addr = list_entry(bp->address_list.next,
5022 struct sctp_sockaddr_entry, list);
5023 if (sctp_is_any(sk, &addr->a)) {
5024 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5025 space_left, &bytes_copied);
5026 if (cnt < 0) {
5027 err = cnt;
5028 goto out;
5029 }
5030 goto copy_getaddrs;
5031 }
5032 }
5033
5034 buf = addrs;
5035 /* Protection on the bound address list is not needed since
5036 * in the socket option context we hold a socket lock and
5037 * thus the bound address list can't change.
5038 */
5039 list_for_each_entry(addr, &bp->address_list, list) {
5040 memcpy(&temp, &addr->a, sizeof(temp));
5041 addrlen = sctp_get_pf_specific(sk->sk_family)
5042 ->addr_to_user(sp, &temp);
5043 if (space_left < addrlen) {
5044 err = -ENOMEM; /*fixme: right error?*/
5045 goto out;
5046 }
5047 memcpy(buf, &temp, addrlen);
5048 buf += addrlen;
5049 bytes_copied += addrlen;
5050 cnt++;
5051 space_left -= addrlen;
5052 }
5053
5054 copy_getaddrs:
5055 if (copy_to_user(to, addrs, bytes_copied)) {
5056 err = -EFAULT;
5057 goto out;
5058 }
5059 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5060 err = -EFAULT;
5061 goto out;
5062 }
5063 if (put_user(bytes_copied, optlen))
5064 err = -EFAULT;
5065 out:
5066 kfree(addrs);
5067 return err;
5068 }
5069
5070 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5071 *
5072 * Requests that the local SCTP stack use the enclosed peer address as
5073 * the association primary. The enclosed address must be one of the
5074 * association peer's addresses.
5075 */
5076 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5077 char __user *optval, int __user *optlen)
5078 {
5079 struct sctp_prim prim;
5080 struct sctp_association *asoc;
5081 struct sctp_sock *sp = sctp_sk(sk);
5082
5083 if (len < sizeof(struct sctp_prim))
5084 return -EINVAL;
5085
5086 len = sizeof(struct sctp_prim);
5087
5088 if (copy_from_user(&prim, optval, len))
5089 return -EFAULT;
5090
5091 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5092 if (!asoc)
5093 return -EINVAL;
5094
5095 if (!asoc->peer.primary_path)
5096 return -ENOTCONN;
5097
5098 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5099 asoc->peer.primary_path->af_specific->sockaddr_len);
5100
5101 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5102 (union sctp_addr *)&prim.ssp_addr);
5103
5104 if (put_user(len, optlen))
5105 return -EFAULT;
5106 if (copy_to_user(optval, &prim, len))
5107 return -EFAULT;
5108
5109 return 0;
5110 }
5111
5112 /*
5113 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5114 *
5115 * Requests that the local endpoint set the specified Adaptation Layer
5116 * Indication parameter for all future INIT and INIT-ACK exchanges.
5117 */
5118 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5119 char __user *optval, int __user *optlen)
5120 {
5121 struct sctp_setadaptation adaptation;
5122
5123 if (len < sizeof(struct sctp_setadaptation))
5124 return -EINVAL;
5125
5126 len = sizeof(struct sctp_setadaptation);
5127
5128 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5129
5130 if (put_user(len, optlen))
5131 return -EFAULT;
5132 if (copy_to_user(optval, &adaptation, len))
5133 return -EFAULT;
5134
5135 return 0;
5136 }
5137
5138 /*
5139 *
5140 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5141 *
5142 * Applications that wish to use the sendto() system call may wish to
5143 * specify a default set of parameters that would normally be supplied
5144 * through the inclusion of ancillary data. This socket option allows
5145 * such an application to set the default sctp_sndrcvinfo structure.
5146
5147
5148 * The application that wishes to use this socket option simply passes
5149 * in to this call the sctp_sndrcvinfo structure defined in Section
5150 * 5.2.2) The input parameters accepted by this call include
5151 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5152 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5153 * to this call if the caller is using the UDP model.
5154 *
5155 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5156 */
5157 static int sctp_getsockopt_default_send_param(struct sock *sk,
5158 int len, char __user *optval,
5159 int __user *optlen)
5160 {
5161 struct sctp_sock *sp = sctp_sk(sk);
5162 struct sctp_association *asoc;
5163 struct sctp_sndrcvinfo info;
5164
5165 if (len < sizeof(info))
5166 return -EINVAL;
5167
5168 len = sizeof(info);
5169
5170 if (copy_from_user(&info, optval, len))
5171 return -EFAULT;
5172
5173 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5174 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5175 return -EINVAL;
5176 if (asoc) {
5177 info.sinfo_stream = asoc->default_stream;
5178 info.sinfo_flags = asoc->default_flags;
5179 info.sinfo_ppid = asoc->default_ppid;
5180 info.sinfo_context = asoc->default_context;
5181 info.sinfo_timetolive = asoc->default_timetolive;
5182 } else {
5183 info.sinfo_stream = sp->default_stream;
5184 info.sinfo_flags = sp->default_flags;
5185 info.sinfo_ppid = sp->default_ppid;
5186 info.sinfo_context = sp->default_context;
5187 info.sinfo_timetolive = sp->default_timetolive;
5188 }
5189
5190 if (put_user(len, optlen))
5191 return -EFAULT;
5192 if (copy_to_user(optval, &info, len))
5193 return -EFAULT;
5194
5195 return 0;
5196 }
5197
5198 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5199 * (SCTP_DEFAULT_SNDINFO)
5200 */
5201 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5202 char __user *optval,
5203 int __user *optlen)
5204 {
5205 struct sctp_sock *sp = sctp_sk(sk);
5206 struct sctp_association *asoc;
5207 struct sctp_sndinfo info;
5208
5209 if (len < sizeof(info))
5210 return -EINVAL;
5211
5212 len = sizeof(info);
5213
5214 if (copy_from_user(&info, optval, len))
5215 return -EFAULT;
5216
5217 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5218 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5219 return -EINVAL;
5220 if (asoc) {
5221 info.snd_sid = asoc->default_stream;
5222 info.snd_flags = asoc->default_flags;
5223 info.snd_ppid = asoc->default_ppid;
5224 info.snd_context = asoc->default_context;
5225 } else {
5226 info.snd_sid = sp->default_stream;
5227 info.snd_flags = sp->default_flags;
5228 info.snd_ppid = sp->default_ppid;
5229 info.snd_context = sp->default_context;
5230 }
5231
5232 if (put_user(len, optlen))
5233 return -EFAULT;
5234 if (copy_to_user(optval, &info, len))
5235 return -EFAULT;
5236
5237 return 0;
5238 }
5239
5240 /*
5241 *
5242 * 7.1.5 SCTP_NODELAY
5243 *
5244 * Turn on/off any Nagle-like algorithm. This means that packets are
5245 * generally sent as soon as possible and no unnecessary delays are
5246 * introduced, at the cost of more packets in the network. Expects an
5247 * integer boolean flag.
5248 */
5249
5250 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5251 char __user *optval, int __user *optlen)
5252 {
5253 int val;
5254
5255 if (len < sizeof(int))
5256 return -EINVAL;
5257
5258 len = sizeof(int);
5259 val = (sctp_sk(sk)->nodelay == 1);
5260 if (put_user(len, optlen))
5261 return -EFAULT;
5262 if (copy_to_user(optval, &val, len))
5263 return -EFAULT;
5264 return 0;
5265 }
5266
5267 /*
5268 *
5269 * 7.1.1 SCTP_RTOINFO
5270 *
5271 * The protocol parameters used to initialize and bound retransmission
5272 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5273 * and modify these parameters.
5274 * All parameters are time values, in milliseconds. A value of 0, when
5275 * modifying the parameters, indicates that the current value should not
5276 * be changed.
5277 *
5278 */
5279 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5280 char __user *optval,
5281 int __user *optlen) {
5282 struct sctp_rtoinfo rtoinfo;
5283 struct sctp_association *asoc;
5284
5285 if (len < sizeof (struct sctp_rtoinfo))
5286 return -EINVAL;
5287
5288 len = sizeof(struct sctp_rtoinfo);
5289
5290 if (copy_from_user(&rtoinfo, optval, len))
5291 return -EFAULT;
5292
5293 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5294
5295 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5296 return -EINVAL;
5297
5298 /* Values corresponding to the specific association. */
5299 if (asoc) {
5300 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5301 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5302 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5303 } else {
5304 /* Values corresponding to the endpoint. */
5305 struct sctp_sock *sp = sctp_sk(sk);
5306
5307 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5308 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5309 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5310 }
5311
5312 if (put_user(len, optlen))
5313 return -EFAULT;
5314
5315 if (copy_to_user(optval, &rtoinfo, len))
5316 return -EFAULT;
5317
5318 return 0;
5319 }
5320
5321 /*
5322 *
5323 * 7.1.2 SCTP_ASSOCINFO
5324 *
5325 * This option is used to tune the maximum retransmission attempts
5326 * of the association.
5327 * Returns an error if the new association retransmission value is
5328 * greater than the sum of the retransmission value of the peer.
5329 * See [SCTP] for more information.
5330 *
5331 */
5332 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5333 char __user *optval,
5334 int __user *optlen)
5335 {
5336
5337 struct sctp_assocparams assocparams;
5338 struct sctp_association *asoc;
5339 struct list_head *pos;
5340 int cnt = 0;
5341
5342 if (len < sizeof (struct sctp_assocparams))
5343 return -EINVAL;
5344
5345 len = sizeof(struct sctp_assocparams);
5346
5347 if (copy_from_user(&assocparams, optval, len))
5348 return -EFAULT;
5349
5350 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5351
5352 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5353 return -EINVAL;
5354
5355 /* Values correspoinding to the specific association */
5356 if (asoc) {
5357 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5358 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5359 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5360 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5361
5362 list_for_each(pos, &asoc->peer.transport_addr_list) {
5363 cnt++;
5364 }
5365
5366 assocparams.sasoc_number_peer_destinations = cnt;
5367 } else {
5368 /* Values corresponding to the endpoint */
5369 struct sctp_sock *sp = sctp_sk(sk);
5370
5371 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5372 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5373 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5374 assocparams.sasoc_cookie_life =
5375 sp->assocparams.sasoc_cookie_life;
5376 assocparams.sasoc_number_peer_destinations =
5377 sp->assocparams.
5378 sasoc_number_peer_destinations;
5379 }
5380
5381 if (put_user(len, optlen))
5382 return -EFAULT;
5383
5384 if (copy_to_user(optval, &assocparams, len))
5385 return -EFAULT;
5386
5387 return 0;
5388 }
5389
5390 /*
5391 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5392 *
5393 * This socket option is a boolean flag which turns on or off mapped V4
5394 * addresses. If this option is turned on and the socket is type
5395 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5396 * If this option is turned off, then no mapping will be done of V4
5397 * addresses and a user will receive both PF_INET6 and PF_INET type
5398 * addresses on the socket.
5399 */
5400 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5401 char __user *optval, int __user *optlen)
5402 {
5403 int val;
5404 struct sctp_sock *sp = sctp_sk(sk);
5405
5406 if (len < sizeof(int))
5407 return -EINVAL;
5408
5409 len = sizeof(int);
5410 val = sp->v4mapped;
5411 if (put_user(len, optlen))
5412 return -EFAULT;
5413 if (copy_to_user(optval, &val, len))
5414 return -EFAULT;
5415
5416 return 0;
5417 }
5418
5419 /*
5420 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5421 * (chapter and verse is quoted at sctp_setsockopt_context())
5422 */
5423 static int sctp_getsockopt_context(struct sock *sk, int len,
5424 char __user *optval, int __user *optlen)
5425 {
5426 struct sctp_assoc_value params;
5427 struct sctp_sock *sp;
5428 struct sctp_association *asoc;
5429
5430 if (len < sizeof(struct sctp_assoc_value))
5431 return -EINVAL;
5432
5433 len = sizeof(struct sctp_assoc_value);
5434
5435 if (copy_from_user(&params, optval, len))
5436 return -EFAULT;
5437
5438 sp = sctp_sk(sk);
5439
5440 if (params.assoc_id != 0) {
5441 asoc = sctp_id2assoc(sk, params.assoc_id);
5442 if (!asoc)
5443 return -EINVAL;
5444 params.assoc_value = asoc->default_rcv_context;
5445 } else {
5446 params.assoc_value = sp->default_rcv_context;
5447 }
5448
5449 if (put_user(len, optlen))
5450 return -EFAULT;
5451 if (copy_to_user(optval, &params, len))
5452 return -EFAULT;
5453
5454 return 0;
5455 }
5456
5457 /*
5458 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5459 * This option will get or set the maximum size to put in any outgoing
5460 * SCTP DATA chunk. If a message is larger than this size it will be
5461 * fragmented by SCTP into the specified size. Note that the underlying
5462 * SCTP implementation may fragment into smaller sized chunks when the
5463 * PMTU of the underlying association is smaller than the value set by
5464 * the user. The default value for this option is '0' which indicates
5465 * the user is NOT limiting fragmentation and only the PMTU will effect
5466 * SCTP's choice of DATA chunk size. Note also that values set larger
5467 * than the maximum size of an IP datagram will effectively let SCTP
5468 * control fragmentation (i.e. the same as setting this option to 0).
5469 *
5470 * The following structure is used to access and modify this parameter:
5471 *
5472 * struct sctp_assoc_value {
5473 * sctp_assoc_t assoc_id;
5474 * uint32_t assoc_value;
5475 * };
5476 *
5477 * assoc_id: This parameter is ignored for one-to-one style sockets.
5478 * For one-to-many style sockets this parameter indicates which
5479 * association the user is performing an action upon. Note that if
5480 * this field's value is zero then the endpoints default value is
5481 * changed (effecting future associations only).
5482 * assoc_value: This parameter specifies the maximum size in bytes.
5483 */
5484 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5485 char __user *optval, int __user *optlen)
5486 {
5487 struct sctp_assoc_value params;
5488 struct sctp_association *asoc;
5489
5490 if (len == sizeof(int)) {
5491 pr_warn_ratelimited(DEPRECATED
5492 "%s (pid %d) "
5493 "Use of int in maxseg socket option.\n"
5494 "Use struct sctp_assoc_value instead\n",
5495 current->comm, task_pid_nr(current));
5496 params.assoc_id = 0;
5497 } else if (len >= sizeof(struct sctp_assoc_value)) {
5498 len = sizeof(struct sctp_assoc_value);
5499 if (copy_from_user(&params, optval, sizeof(params)))
5500 return -EFAULT;
5501 } else
5502 return -EINVAL;
5503
5504 asoc = sctp_id2assoc(sk, params.assoc_id);
5505 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5506 return -EINVAL;
5507
5508 if (asoc)
5509 params.assoc_value = asoc->frag_point;
5510 else
5511 params.assoc_value = sctp_sk(sk)->user_frag;
5512
5513 if (put_user(len, optlen))
5514 return -EFAULT;
5515 if (len == sizeof(int)) {
5516 if (copy_to_user(optval, &params.assoc_value, len))
5517 return -EFAULT;
5518 } else {
5519 if (copy_to_user(optval, &params, len))
5520 return -EFAULT;
5521 }
5522
5523 return 0;
5524 }
5525
5526 /*
5527 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5528 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5529 */
5530 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5531 char __user *optval, int __user *optlen)
5532 {
5533 int val;
5534
5535 if (len < sizeof(int))
5536 return -EINVAL;
5537
5538 len = sizeof(int);
5539
5540 val = sctp_sk(sk)->frag_interleave;
5541 if (put_user(len, optlen))
5542 return -EFAULT;
5543 if (copy_to_user(optval, &val, len))
5544 return -EFAULT;
5545
5546 return 0;
5547 }
5548
5549 /*
5550 * 7.1.25. Set or Get the sctp partial delivery point
5551 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5552 */
5553 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5554 char __user *optval,
5555 int __user *optlen)
5556 {
5557 u32 val;
5558
5559 if (len < sizeof(u32))
5560 return -EINVAL;
5561
5562 len = sizeof(u32);
5563
5564 val = sctp_sk(sk)->pd_point;
5565 if (put_user(len, optlen))
5566 return -EFAULT;
5567 if (copy_to_user(optval, &val, len))
5568 return -EFAULT;
5569
5570 return 0;
5571 }
5572
5573 /*
5574 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5575 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5576 */
5577 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5578 char __user *optval,
5579 int __user *optlen)
5580 {
5581 struct sctp_assoc_value params;
5582 struct sctp_sock *sp;
5583 struct sctp_association *asoc;
5584
5585 if (len == sizeof(int)) {
5586 pr_warn_ratelimited(DEPRECATED
5587 "%s (pid %d) "
5588 "Use of int in max_burst socket option.\n"
5589 "Use struct sctp_assoc_value instead\n",
5590 current->comm, task_pid_nr(current));
5591 params.assoc_id = 0;
5592 } else if (len >= sizeof(struct sctp_assoc_value)) {
5593 len = sizeof(struct sctp_assoc_value);
5594 if (copy_from_user(&params, optval, len))
5595 return -EFAULT;
5596 } else
5597 return -EINVAL;
5598
5599 sp = sctp_sk(sk);
5600
5601 if (params.assoc_id != 0) {
5602 asoc = sctp_id2assoc(sk, params.assoc_id);
5603 if (!asoc)
5604 return -EINVAL;
5605 params.assoc_value = asoc->max_burst;
5606 } else
5607 params.assoc_value = sp->max_burst;
5608
5609 if (len == sizeof(int)) {
5610 if (copy_to_user(optval, &params.assoc_value, len))
5611 return -EFAULT;
5612 } else {
5613 if (copy_to_user(optval, &params, len))
5614 return -EFAULT;
5615 }
5616
5617 return 0;
5618
5619 }
5620
5621 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5622 char __user *optval, int __user *optlen)
5623 {
5624 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5625 struct sctp_hmacalgo __user *p = (void __user *)optval;
5626 struct sctp_hmac_algo_param *hmacs;
5627 __u16 data_len = 0;
5628 u32 num_idents;
5629 int i;
5630
5631 if (!ep->auth_enable)
5632 return -EACCES;
5633
5634 hmacs = ep->auth_hmacs_list;
5635 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5636
5637 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5638 return -EINVAL;
5639
5640 len = sizeof(struct sctp_hmacalgo) + data_len;
5641 num_idents = data_len / sizeof(u16);
5642
5643 if (put_user(len, optlen))
5644 return -EFAULT;
5645 if (put_user(num_idents, &p->shmac_num_idents))
5646 return -EFAULT;
5647 for (i = 0; i < num_idents; i++) {
5648 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5649
5650 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5651 return -EFAULT;
5652 }
5653 return 0;
5654 }
5655
5656 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5657 char __user *optval, int __user *optlen)
5658 {
5659 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5660 struct sctp_authkeyid val;
5661 struct sctp_association *asoc;
5662
5663 if (!ep->auth_enable)
5664 return -EACCES;
5665
5666 if (len < sizeof(struct sctp_authkeyid))
5667 return -EINVAL;
5668 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5669 return -EFAULT;
5670
5671 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5672 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5673 return -EINVAL;
5674
5675 if (asoc)
5676 val.scact_keynumber = asoc->active_key_id;
5677 else
5678 val.scact_keynumber = ep->active_key_id;
5679
5680 len = sizeof(struct sctp_authkeyid);
5681 if (put_user(len, optlen))
5682 return -EFAULT;
5683 if (copy_to_user(optval, &val, len))
5684 return -EFAULT;
5685
5686 return 0;
5687 }
5688
5689 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5690 char __user *optval, int __user *optlen)
5691 {
5692 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5693 struct sctp_authchunks __user *p = (void __user *)optval;
5694 struct sctp_authchunks val;
5695 struct sctp_association *asoc;
5696 struct sctp_chunks_param *ch;
5697 u32 num_chunks = 0;
5698 char __user *to;
5699
5700 if (!ep->auth_enable)
5701 return -EACCES;
5702
5703 if (len < sizeof(struct sctp_authchunks))
5704 return -EINVAL;
5705
5706 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5707 return -EFAULT;
5708
5709 to = p->gauth_chunks;
5710 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5711 if (!asoc)
5712 return -EINVAL;
5713
5714 ch = asoc->peer.peer_chunks;
5715 if (!ch)
5716 goto num;
5717
5718 /* See if the user provided enough room for all the data */
5719 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5720 if (len < num_chunks)
5721 return -EINVAL;
5722
5723 if (copy_to_user(to, ch->chunks, num_chunks))
5724 return -EFAULT;
5725 num:
5726 len = sizeof(struct sctp_authchunks) + num_chunks;
5727 if (put_user(len, optlen))
5728 return -EFAULT;
5729 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5730 return -EFAULT;
5731 return 0;
5732 }
5733
5734 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5735 char __user *optval, int __user *optlen)
5736 {
5737 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5738 struct sctp_authchunks __user *p = (void __user *)optval;
5739 struct sctp_authchunks val;
5740 struct sctp_association *asoc;
5741 struct sctp_chunks_param *ch;
5742 u32 num_chunks = 0;
5743 char __user *to;
5744
5745 if (!ep->auth_enable)
5746 return -EACCES;
5747
5748 if (len < sizeof(struct sctp_authchunks))
5749 return -EINVAL;
5750
5751 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5752 return -EFAULT;
5753
5754 to = p->gauth_chunks;
5755 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5756 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5757 return -EINVAL;
5758
5759 if (asoc)
5760 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5761 else
5762 ch = ep->auth_chunk_list;
5763
5764 if (!ch)
5765 goto num;
5766
5767 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5768 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5769 return -EINVAL;
5770
5771 if (copy_to_user(to, ch->chunks, num_chunks))
5772 return -EFAULT;
5773 num:
5774 len = sizeof(struct sctp_authchunks) + num_chunks;
5775 if (put_user(len, optlen))
5776 return -EFAULT;
5777 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5778 return -EFAULT;
5779
5780 return 0;
5781 }
5782
5783 /*
5784 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5785 * This option gets the current number of associations that are attached
5786 * to a one-to-many style socket. The option value is an uint32_t.
5787 */
5788 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5789 char __user *optval, int __user *optlen)
5790 {
5791 struct sctp_sock *sp = sctp_sk(sk);
5792 struct sctp_association *asoc;
5793 u32 val = 0;
5794
5795 if (sctp_style(sk, TCP))
5796 return -EOPNOTSUPP;
5797
5798 if (len < sizeof(u32))
5799 return -EINVAL;
5800
5801 len = sizeof(u32);
5802
5803 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5804 val++;
5805 }
5806
5807 if (put_user(len, optlen))
5808 return -EFAULT;
5809 if (copy_to_user(optval, &val, len))
5810 return -EFAULT;
5811
5812 return 0;
5813 }
5814
5815 /*
5816 * 8.1.23 SCTP_AUTO_ASCONF
5817 * See the corresponding setsockopt entry as description
5818 */
5819 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5820 char __user *optval, int __user *optlen)
5821 {
5822 int val = 0;
5823
5824 if (len < sizeof(int))
5825 return -EINVAL;
5826
5827 len = sizeof(int);
5828 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5829 val = 1;
5830 if (put_user(len, optlen))
5831 return -EFAULT;
5832 if (copy_to_user(optval, &val, len))
5833 return -EFAULT;
5834 return 0;
5835 }
5836
5837 /*
5838 * 8.2.6. Get the Current Identifiers of Associations
5839 * (SCTP_GET_ASSOC_ID_LIST)
5840 *
5841 * This option gets the current list of SCTP association identifiers of
5842 * the SCTP associations handled by a one-to-many style socket.
5843 */
5844 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5845 char __user *optval, int __user *optlen)
5846 {
5847 struct sctp_sock *sp = sctp_sk(sk);
5848 struct sctp_association *asoc;
5849 struct sctp_assoc_ids *ids;
5850 u32 num = 0;
5851
5852 if (sctp_style(sk, TCP))
5853 return -EOPNOTSUPP;
5854
5855 if (len < sizeof(struct sctp_assoc_ids))
5856 return -EINVAL;
5857
5858 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5859 num++;
5860 }
5861
5862 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5863 return -EINVAL;
5864
5865 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5866
5867 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
5868 if (unlikely(!ids))
5869 return -ENOMEM;
5870
5871 ids->gaids_number_of_ids = num;
5872 num = 0;
5873 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5874 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5875 }
5876
5877 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5878 kfree(ids);
5879 return -EFAULT;
5880 }
5881
5882 kfree(ids);
5883 return 0;
5884 }
5885
5886 /*
5887 * SCTP_PEER_ADDR_THLDS
5888 *
5889 * This option allows us to fetch the partially failed threshold for one or all
5890 * transports in an association. See Section 6.1 of:
5891 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5892 */
5893 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5894 char __user *optval,
5895 int len,
5896 int __user *optlen)
5897 {
5898 struct sctp_paddrthlds val;
5899 struct sctp_transport *trans;
5900 struct sctp_association *asoc;
5901
5902 if (len < sizeof(struct sctp_paddrthlds))
5903 return -EINVAL;
5904 len = sizeof(struct sctp_paddrthlds);
5905 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5906 return -EFAULT;
5907
5908 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5909 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5910 if (!asoc)
5911 return -ENOENT;
5912
5913 val.spt_pathpfthld = asoc->pf_retrans;
5914 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5915 } else {
5916 trans = sctp_addr_id2transport(sk, &val.spt_address,
5917 val.spt_assoc_id);
5918 if (!trans)
5919 return -ENOENT;
5920
5921 val.spt_pathmaxrxt = trans->pathmaxrxt;
5922 val.spt_pathpfthld = trans->pf_retrans;
5923 }
5924
5925 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5926 return -EFAULT;
5927
5928 return 0;
5929 }
5930
5931 /*
5932 * SCTP_GET_ASSOC_STATS
5933 *
5934 * This option retrieves local per endpoint statistics. It is modeled
5935 * after OpenSolaris' implementation
5936 */
5937 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5938 char __user *optval,
5939 int __user *optlen)
5940 {
5941 struct sctp_assoc_stats sas;
5942 struct sctp_association *asoc = NULL;
5943
5944 /* User must provide at least the assoc id */
5945 if (len < sizeof(sctp_assoc_t))
5946 return -EINVAL;
5947
5948 /* Allow the struct to grow and fill in as much as possible */
5949 len = min_t(size_t, len, sizeof(sas));
5950
5951 if (copy_from_user(&sas, optval, len))
5952 return -EFAULT;
5953
5954 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5955 if (!asoc)
5956 return -EINVAL;
5957
5958 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5959 sas.sas_gapcnt = asoc->stats.gapcnt;
5960 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5961 sas.sas_osacks = asoc->stats.osacks;
5962 sas.sas_isacks = asoc->stats.isacks;
5963 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5964 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5965 sas.sas_oodchunks = asoc->stats.oodchunks;
5966 sas.sas_iodchunks = asoc->stats.iodchunks;
5967 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5968 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5969 sas.sas_idupchunks = asoc->stats.idupchunks;
5970 sas.sas_opackets = asoc->stats.opackets;
5971 sas.sas_ipackets = asoc->stats.ipackets;
5972
5973 /* New high max rto observed, will return 0 if not a single
5974 * RTO update took place. obs_rto_ipaddr will be bogus
5975 * in such a case
5976 */
5977 sas.sas_maxrto = asoc->stats.max_obs_rto;
5978 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5979 sizeof(struct sockaddr_storage));
5980
5981 /* Mark beginning of a new observation period */
5982 asoc->stats.max_obs_rto = asoc->rto_min;
5983
5984 if (put_user(len, optlen))
5985 return -EFAULT;
5986
5987 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5988
5989 if (copy_to_user(optval, &sas, len))
5990 return -EFAULT;
5991
5992 return 0;
5993 }
5994
5995 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
5996 char __user *optval,
5997 int __user *optlen)
5998 {
5999 int val = 0;
6000
6001 if (len < sizeof(int))
6002 return -EINVAL;
6003
6004 len = sizeof(int);
6005 if (sctp_sk(sk)->recvrcvinfo)
6006 val = 1;
6007 if (put_user(len, optlen))
6008 return -EFAULT;
6009 if (copy_to_user(optval, &val, len))
6010 return -EFAULT;
6011
6012 return 0;
6013 }
6014
6015 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6016 char __user *optval,
6017 int __user *optlen)
6018 {
6019 int val = 0;
6020
6021 if (len < sizeof(int))
6022 return -EINVAL;
6023
6024 len = sizeof(int);
6025 if (sctp_sk(sk)->recvnxtinfo)
6026 val = 1;
6027 if (put_user(len, optlen))
6028 return -EFAULT;
6029 if (copy_to_user(optval, &val, len))
6030 return -EFAULT;
6031
6032 return 0;
6033 }
6034
6035 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6036 char __user *optval, int __user *optlen)
6037 {
6038 int retval = 0;
6039 int len;
6040
6041 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6042
6043 /* I can hardly begin to describe how wrong this is. This is
6044 * so broken as to be worse than useless. The API draft
6045 * REALLY is NOT helpful here... I am not convinced that the
6046 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6047 * are at all well-founded.
6048 */
6049 if (level != SOL_SCTP) {
6050 struct sctp_af *af = sctp_sk(sk)->pf->af;
6051
6052 retval = af->getsockopt(sk, level, optname, optval, optlen);
6053 return retval;
6054 }
6055
6056 if (get_user(len, optlen))
6057 return -EFAULT;
6058
6059 lock_sock(sk);
6060
6061 switch (optname) {
6062 case SCTP_STATUS:
6063 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6064 break;
6065 case SCTP_DISABLE_FRAGMENTS:
6066 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6067 optlen);
6068 break;
6069 case SCTP_EVENTS:
6070 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6071 break;
6072 case SCTP_AUTOCLOSE:
6073 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6074 break;
6075 case SCTP_SOCKOPT_PEELOFF:
6076 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6077 break;
6078 case SCTP_PEER_ADDR_PARAMS:
6079 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6080 optlen);
6081 break;
6082 case SCTP_DELAYED_SACK:
6083 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6084 optlen);
6085 break;
6086 case SCTP_INITMSG:
6087 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6088 break;
6089 case SCTP_GET_PEER_ADDRS:
6090 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6091 optlen);
6092 break;
6093 case SCTP_GET_LOCAL_ADDRS:
6094 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6095 optlen);
6096 break;
6097 case SCTP_SOCKOPT_CONNECTX3:
6098 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6099 break;
6100 case SCTP_DEFAULT_SEND_PARAM:
6101 retval = sctp_getsockopt_default_send_param(sk, len,
6102 optval, optlen);
6103 break;
6104 case SCTP_DEFAULT_SNDINFO:
6105 retval = sctp_getsockopt_default_sndinfo(sk, len,
6106 optval, optlen);
6107 break;
6108 case SCTP_PRIMARY_ADDR:
6109 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6110 break;
6111 case SCTP_NODELAY:
6112 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6113 break;
6114 case SCTP_RTOINFO:
6115 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6116 break;
6117 case SCTP_ASSOCINFO:
6118 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6119 break;
6120 case SCTP_I_WANT_MAPPED_V4_ADDR:
6121 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6122 break;
6123 case SCTP_MAXSEG:
6124 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6125 break;
6126 case SCTP_GET_PEER_ADDR_INFO:
6127 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6128 optlen);
6129 break;
6130 case SCTP_ADAPTATION_LAYER:
6131 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6132 optlen);
6133 break;
6134 case SCTP_CONTEXT:
6135 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6136 break;
6137 case SCTP_FRAGMENT_INTERLEAVE:
6138 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6139 optlen);
6140 break;
6141 case SCTP_PARTIAL_DELIVERY_POINT:
6142 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6143 optlen);
6144 break;
6145 case SCTP_MAX_BURST:
6146 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6147 break;
6148 case SCTP_AUTH_KEY:
6149 case SCTP_AUTH_CHUNK:
6150 case SCTP_AUTH_DELETE_KEY:
6151 retval = -EOPNOTSUPP;
6152 break;
6153 case SCTP_HMAC_IDENT:
6154 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6155 break;
6156 case SCTP_AUTH_ACTIVE_KEY:
6157 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6158 break;
6159 case SCTP_PEER_AUTH_CHUNKS:
6160 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6161 optlen);
6162 break;
6163 case SCTP_LOCAL_AUTH_CHUNKS:
6164 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6165 optlen);
6166 break;
6167 case SCTP_GET_ASSOC_NUMBER:
6168 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6169 break;
6170 case SCTP_GET_ASSOC_ID_LIST:
6171 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6172 break;
6173 case SCTP_AUTO_ASCONF:
6174 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6175 break;
6176 case SCTP_PEER_ADDR_THLDS:
6177 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6178 break;
6179 case SCTP_GET_ASSOC_STATS:
6180 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6181 break;
6182 case SCTP_RECVRCVINFO:
6183 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6184 break;
6185 case SCTP_RECVNXTINFO:
6186 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6187 break;
6188 default:
6189 retval = -ENOPROTOOPT;
6190 break;
6191 }
6192
6193 release_sock(sk);
6194 return retval;
6195 }
6196
6197 static int sctp_hash(struct sock *sk)
6198 {
6199 /* STUB */
6200 return 0;
6201 }
6202
6203 static void sctp_unhash(struct sock *sk)
6204 {
6205 /* STUB */
6206 }
6207
6208 /* Check if port is acceptable. Possibly find first available port.
6209 *
6210 * The port hash table (contained in the 'global' SCTP protocol storage
6211 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6212 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6213 * list (the list number is the port number hashed out, so as you
6214 * would expect from a hash function, all the ports in a given list have
6215 * such a number that hashes out to the same list number; you were
6216 * expecting that, right?); so each list has a set of ports, with a
6217 * link to the socket (struct sock) that uses it, the port number and
6218 * a fastreuse flag (FIXME: NPI ipg).
6219 */
6220 static struct sctp_bind_bucket *sctp_bucket_create(
6221 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6222
6223 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6224 {
6225 struct sctp_bind_hashbucket *head; /* hash list */
6226 struct sctp_bind_bucket *pp;
6227 unsigned short snum;
6228 int ret;
6229
6230 snum = ntohs(addr->v4.sin_port);
6231
6232 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6233
6234 local_bh_disable();
6235
6236 if (snum == 0) {
6237 /* Search for an available port. */
6238 int low, high, remaining, index;
6239 unsigned int rover;
6240 struct net *net = sock_net(sk);
6241
6242 inet_get_local_port_range(net, &low, &high);
6243 remaining = (high - low) + 1;
6244 rover = prandom_u32() % remaining + low;
6245
6246 do {
6247 rover++;
6248 if ((rover < low) || (rover > high))
6249 rover = low;
6250 if (inet_is_local_reserved_port(net, rover))
6251 continue;
6252 index = sctp_phashfn(sock_net(sk), rover);
6253 head = &sctp_port_hashtable[index];
6254 spin_lock(&head->lock);
6255 sctp_for_each_hentry(pp, &head->chain)
6256 if ((pp->port == rover) &&
6257 net_eq(sock_net(sk), pp->net))
6258 goto next;
6259 break;
6260 next:
6261 spin_unlock(&head->lock);
6262 } while (--remaining > 0);
6263
6264 /* Exhausted local port range during search? */
6265 ret = 1;
6266 if (remaining <= 0)
6267 goto fail;
6268
6269 /* OK, here is the one we will use. HEAD (the port
6270 * hash table list entry) is non-NULL and we hold it's
6271 * mutex.
6272 */
6273 snum = rover;
6274 } else {
6275 /* We are given an specific port number; we verify
6276 * that it is not being used. If it is used, we will
6277 * exahust the search in the hash list corresponding
6278 * to the port number (snum) - we detect that with the
6279 * port iterator, pp being NULL.
6280 */
6281 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6282 spin_lock(&head->lock);
6283 sctp_for_each_hentry(pp, &head->chain) {
6284 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6285 goto pp_found;
6286 }
6287 }
6288 pp = NULL;
6289 goto pp_not_found;
6290 pp_found:
6291 if (!hlist_empty(&pp->owner)) {
6292 /* We had a port hash table hit - there is an
6293 * available port (pp != NULL) and it is being
6294 * used by other socket (pp->owner not empty); that other
6295 * socket is going to be sk2.
6296 */
6297 int reuse = sk->sk_reuse;
6298 struct sock *sk2;
6299
6300 pr_debug("%s: found a possible match\n", __func__);
6301
6302 if (pp->fastreuse && sk->sk_reuse &&
6303 sk->sk_state != SCTP_SS_LISTENING)
6304 goto success;
6305
6306 /* Run through the list of sockets bound to the port
6307 * (pp->port) [via the pointers bind_next and
6308 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6309 * we get the endpoint they describe and run through
6310 * the endpoint's list of IP (v4 or v6) addresses,
6311 * comparing each of the addresses with the address of
6312 * the socket sk. If we find a match, then that means
6313 * that this port/socket (sk) combination are already
6314 * in an endpoint.
6315 */
6316 sk_for_each_bound(sk2, &pp->owner) {
6317 struct sctp_endpoint *ep2;
6318 ep2 = sctp_sk(sk2)->ep;
6319
6320 if (sk == sk2 ||
6321 (reuse && sk2->sk_reuse &&
6322 sk2->sk_state != SCTP_SS_LISTENING))
6323 continue;
6324
6325 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6326 sctp_sk(sk2), sctp_sk(sk))) {
6327 ret = (long)sk2;
6328 goto fail_unlock;
6329 }
6330 }
6331
6332 pr_debug("%s: found a match\n", __func__);
6333 }
6334 pp_not_found:
6335 /* If there was a hash table miss, create a new port. */
6336 ret = 1;
6337 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6338 goto fail_unlock;
6339
6340 /* In either case (hit or miss), make sure fastreuse is 1 only
6341 * if sk->sk_reuse is too (that is, if the caller requested
6342 * SO_REUSEADDR on this socket -sk-).
6343 */
6344 if (hlist_empty(&pp->owner)) {
6345 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6346 pp->fastreuse = 1;
6347 else
6348 pp->fastreuse = 0;
6349 } else if (pp->fastreuse &&
6350 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6351 pp->fastreuse = 0;
6352
6353 /* We are set, so fill up all the data in the hash table
6354 * entry, tie the socket list information with the rest of the
6355 * sockets FIXME: Blurry, NPI (ipg).
6356 */
6357 success:
6358 if (!sctp_sk(sk)->bind_hash) {
6359 inet_sk(sk)->inet_num = snum;
6360 sk_add_bind_node(sk, &pp->owner);
6361 sctp_sk(sk)->bind_hash = pp;
6362 }
6363 ret = 0;
6364
6365 fail_unlock:
6366 spin_unlock(&head->lock);
6367
6368 fail:
6369 local_bh_enable();
6370 return ret;
6371 }
6372
6373 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6374 * port is requested.
6375 */
6376 static int sctp_get_port(struct sock *sk, unsigned short snum)
6377 {
6378 union sctp_addr addr;
6379 struct sctp_af *af = sctp_sk(sk)->pf->af;
6380
6381 /* Set up a dummy address struct from the sk. */
6382 af->from_sk(&addr, sk);
6383 addr.v4.sin_port = htons(snum);
6384
6385 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6386 return !!sctp_get_port_local(sk, &addr);
6387 }
6388
6389 /*
6390 * Move a socket to LISTENING state.
6391 */
6392 static int sctp_listen_start(struct sock *sk, int backlog)
6393 {
6394 struct sctp_sock *sp = sctp_sk(sk);
6395 struct sctp_endpoint *ep = sp->ep;
6396 struct crypto_shash *tfm = NULL;
6397 char alg[32];
6398
6399 /* Allocate HMAC for generating cookie. */
6400 if (!sp->hmac && sp->sctp_hmac_alg) {
6401 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6402 tfm = crypto_alloc_shash(alg, 0, 0);
6403 if (IS_ERR(tfm)) {
6404 net_info_ratelimited("failed to load transform for %s: %ld\n",
6405 sp->sctp_hmac_alg, PTR_ERR(tfm));
6406 return -ENOSYS;
6407 }
6408 sctp_sk(sk)->hmac = tfm;
6409 }
6410
6411 /*
6412 * If a bind() or sctp_bindx() is not called prior to a listen()
6413 * call that allows new associations to be accepted, the system
6414 * picks an ephemeral port and will choose an address set equivalent
6415 * to binding with a wildcard address.
6416 *
6417 * This is not currently spelled out in the SCTP sockets
6418 * extensions draft, but follows the practice as seen in TCP
6419 * sockets.
6420 *
6421 */
6422 sk->sk_state = SCTP_SS_LISTENING;
6423 if (!ep->base.bind_addr.port) {
6424 if (sctp_autobind(sk))
6425 return -EAGAIN;
6426 } else {
6427 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6428 sk->sk_state = SCTP_SS_CLOSED;
6429 return -EADDRINUSE;
6430 }
6431 }
6432
6433 sk->sk_max_ack_backlog = backlog;
6434 sctp_hash_endpoint(ep);
6435 return 0;
6436 }
6437
6438 /*
6439 * 4.1.3 / 5.1.3 listen()
6440 *
6441 * By default, new associations are not accepted for UDP style sockets.
6442 * An application uses listen() to mark a socket as being able to
6443 * accept new associations.
6444 *
6445 * On TCP style sockets, applications use listen() to ready the SCTP
6446 * endpoint for accepting inbound associations.
6447 *
6448 * On both types of endpoints a backlog of '0' disables listening.
6449 *
6450 * Move a socket to LISTENING state.
6451 */
6452 int sctp_inet_listen(struct socket *sock, int backlog)
6453 {
6454 struct sock *sk = sock->sk;
6455 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6456 int err = -EINVAL;
6457
6458 if (unlikely(backlog < 0))
6459 return err;
6460
6461 lock_sock(sk);
6462
6463 /* Peeled-off sockets are not allowed to listen(). */
6464 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6465 goto out;
6466
6467 if (sock->state != SS_UNCONNECTED)
6468 goto out;
6469
6470 /* If backlog is zero, disable listening. */
6471 if (!backlog) {
6472 if (sctp_sstate(sk, CLOSED))
6473 goto out;
6474
6475 err = 0;
6476 sctp_unhash_endpoint(ep);
6477 sk->sk_state = SCTP_SS_CLOSED;
6478 if (sk->sk_reuse)
6479 sctp_sk(sk)->bind_hash->fastreuse = 1;
6480 goto out;
6481 }
6482
6483 /* If we are already listening, just update the backlog */
6484 if (sctp_sstate(sk, LISTENING))
6485 sk->sk_max_ack_backlog = backlog;
6486 else {
6487 err = sctp_listen_start(sk, backlog);
6488 if (err)
6489 goto out;
6490 }
6491
6492 err = 0;
6493 out:
6494 release_sock(sk);
6495 return err;
6496 }
6497
6498 /*
6499 * This function is done by modeling the current datagram_poll() and the
6500 * tcp_poll(). Note that, based on these implementations, we don't
6501 * lock the socket in this function, even though it seems that,
6502 * ideally, locking or some other mechanisms can be used to ensure
6503 * the integrity of the counters (sndbuf and wmem_alloc) used
6504 * in this place. We assume that we don't need locks either until proven
6505 * otherwise.
6506 *
6507 * Another thing to note is that we include the Async I/O support
6508 * here, again, by modeling the current TCP/UDP code. We don't have
6509 * a good way to test with it yet.
6510 */
6511 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6512 {
6513 struct sock *sk = sock->sk;
6514 struct sctp_sock *sp = sctp_sk(sk);
6515 unsigned int mask;
6516
6517 poll_wait(file, sk_sleep(sk), wait);
6518
6519 sock_rps_record_flow(sk);
6520
6521 /* A TCP-style listening socket becomes readable when the accept queue
6522 * is not empty.
6523 */
6524 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6525 return (!list_empty(&sp->ep->asocs)) ?
6526 (POLLIN | POLLRDNORM) : 0;
6527
6528 mask = 0;
6529
6530 /* Is there any exceptional events? */
6531 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6532 mask |= POLLERR |
6533 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6534 if (sk->sk_shutdown & RCV_SHUTDOWN)
6535 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6536 if (sk->sk_shutdown == SHUTDOWN_MASK)
6537 mask |= POLLHUP;
6538
6539 /* Is it readable? Reconsider this code with TCP-style support. */
6540 if (!skb_queue_empty(&sk->sk_receive_queue))
6541 mask |= POLLIN | POLLRDNORM;
6542
6543 /* The association is either gone or not ready. */
6544 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6545 return mask;
6546
6547 /* Is it writable? */
6548 if (sctp_writeable(sk)) {
6549 mask |= POLLOUT | POLLWRNORM;
6550 } else {
6551 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6552 /*
6553 * Since the socket is not locked, the buffer
6554 * might be made available after the writeable check and
6555 * before the bit is set. This could cause a lost I/O
6556 * signal. tcp_poll() has a race breaker for this race
6557 * condition. Based on their implementation, we put
6558 * in the following code to cover it as well.
6559 */
6560 if (sctp_writeable(sk))
6561 mask |= POLLOUT | POLLWRNORM;
6562 }
6563 return mask;
6564 }
6565
6566 /********************************************************************
6567 * 2nd Level Abstractions
6568 ********************************************************************/
6569
6570 static struct sctp_bind_bucket *sctp_bucket_create(
6571 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6572 {
6573 struct sctp_bind_bucket *pp;
6574
6575 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6576 if (pp) {
6577 SCTP_DBG_OBJCNT_INC(bind_bucket);
6578 pp->port = snum;
6579 pp->fastreuse = 0;
6580 INIT_HLIST_HEAD(&pp->owner);
6581 pp->net = net;
6582 hlist_add_head(&pp->node, &head->chain);
6583 }
6584 return pp;
6585 }
6586
6587 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6588 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6589 {
6590 if (pp && hlist_empty(&pp->owner)) {
6591 __hlist_del(&pp->node);
6592 kmem_cache_free(sctp_bucket_cachep, pp);
6593 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6594 }
6595 }
6596
6597 /* Release this socket's reference to a local port. */
6598 static inline void __sctp_put_port(struct sock *sk)
6599 {
6600 struct sctp_bind_hashbucket *head =
6601 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6602 inet_sk(sk)->inet_num)];
6603 struct sctp_bind_bucket *pp;
6604
6605 spin_lock(&head->lock);
6606 pp = sctp_sk(sk)->bind_hash;
6607 __sk_del_bind_node(sk);
6608 sctp_sk(sk)->bind_hash = NULL;
6609 inet_sk(sk)->inet_num = 0;
6610 sctp_bucket_destroy(pp);
6611 spin_unlock(&head->lock);
6612 }
6613
6614 void sctp_put_port(struct sock *sk)
6615 {
6616 local_bh_disable();
6617 __sctp_put_port(sk);
6618 local_bh_enable();
6619 }
6620
6621 /*
6622 * The system picks an ephemeral port and choose an address set equivalent
6623 * to binding with a wildcard address.
6624 * One of those addresses will be the primary address for the association.
6625 * This automatically enables the multihoming capability of SCTP.
6626 */
6627 static int sctp_autobind(struct sock *sk)
6628 {
6629 union sctp_addr autoaddr;
6630 struct sctp_af *af;
6631 __be16 port;
6632
6633 /* Initialize a local sockaddr structure to INADDR_ANY. */
6634 af = sctp_sk(sk)->pf->af;
6635
6636 port = htons(inet_sk(sk)->inet_num);
6637 af->inaddr_any(&autoaddr, port);
6638
6639 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6640 }
6641
6642 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6643 *
6644 * From RFC 2292
6645 * 4.2 The cmsghdr Structure *
6646 *
6647 * When ancillary data is sent or received, any number of ancillary data
6648 * objects can be specified by the msg_control and msg_controllen members of
6649 * the msghdr structure, because each object is preceded by
6650 * a cmsghdr structure defining the object's length (the cmsg_len member).
6651 * Historically Berkeley-derived implementations have passed only one object
6652 * at a time, but this API allows multiple objects to be
6653 * passed in a single call to sendmsg() or recvmsg(). The following example
6654 * shows two ancillary data objects in a control buffer.
6655 *
6656 * |<--------------------------- msg_controllen -------------------------->|
6657 * | |
6658 *
6659 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6660 *
6661 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6662 * | | |
6663 *
6664 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6665 *
6666 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6667 * | | | | |
6668 *
6669 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6670 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6671 *
6672 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6673 *
6674 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6675 * ^
6676 * |
6677 *
6678 * msg_control
6679 * points here
6680 */
6681 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6682 {
6683 struct cmsghdr *cmsg;
6684 struct msghdr *my_msg = (struct msghdr *)msg;
6685
6686 for_each_cmsghdr(cmsg, my_msg) {
6687 if (!CMSG_OK(my_msg, cmsg))
6688 return -EINVAL;
6689
6690 /* Should we parse this header or ignore? */
6691 if (cmsg->cmsg_level != IPPROTO_SCTP)
6692 continue;
6693
6694 /* Strictly check lengths following example in SCM code. */
6695 switch (cmsg->cmsg_type) {
6696 case SCTP_INIT:
6697 /* SCTP Socket API Extension
6698 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6699 *
6700 * This cmsghdr structure provides information for
6701 * initializing new SCTP associations with sendmsg().
6702 * The SCTP_INITMSG socket option uses this same data
6703 * structure. This structure is not used for
6704 * recvmsg().
6705 *
6706 * cmsg_level cmsg_type cmsg_data[]
6707 * ------------ ------------ ----------------------
6708 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6709 */
6710 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6711 return -EINVAL;
6712
6713 cmsgs->init = CMSG_DATA(cmsg);
6714 break;
6715
6716 case SCTP_SNDRCV:
6717 /* SCTP Socket API Extension
6718 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6719 *
6720 * This cmsghdr structure specifies SCTP options for
6721 * sendmsg() and describes SCTP header information
6722 * about a received message through recvmsg().
6723 *
6724 * cmsg_level cmsg_type cmsg_data[]
6725 * ------------ ------------ ----------------------
6726 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6727 */
6728 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6729 return -EINVAL;
6730
6731 cmsgs->srinfo = CMSG_DATA(cmsg);
6732
6733 if (cmsgs->srinfo->sinfo_flags &
6734 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6735 SCTP_SACK_IMMEDIATELY |
6736 SCTP_ABORT | SCTP_EOF))
6737 return -EINVAL;
6738 break;
6739
6740 case SCTP_SNDINFO:
6741 /* SCTP Socket API Extension
6742 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6743 *
6744 * This cmsghdr structure specifies SCTP options for
6745 * sendmsg(). This structure and SCTP_RCVINFO replaces
6746 * SCTP_SNDRCV which has been deprecated.
6747 *
6748 * cmsg_level cmsg_type cmsg_data[]
6749 * ------------ ------------ ---------------------
6750 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
6751 */
6752 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6753 return -EINVAL;
6754
6755 cmsgs->sinfo = CMSG_DATA(cmsg);
6756
6757 if (cmsgs->sinfo->snd_flags &
6758 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6759 SCTP_SACK_IMMEDIATELY |
6760 SCTP_ABORT | SCTP_EOF))
6761 return -EINVAL;
6762 break;
6763 default:
6764 return -EINVAL;
6765 }
6766 }
6767
6768 return 0;
6769 }
6770
6771 /*
6772 * Wait for a packet..
6773 * Note: This function is the same function as in core/datagram.c
6774 * with a few modifications to make lksctp work.
6775 */
6776 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6777 {
6778 int error;
6779 DEFINE_WAIT(wait);
6780
6781 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6782
6783 /* Socket errors? */
6784 error = sock_error(sk);
6785 if (error)
6786 goto out;
6787
6788 if (!skb_queue_empty(&sk->sk_receive_queue))
6789 goto ready;
6790
6791 /* Socket shut down? */
6792 if (sk->sk_shutdown & RCV_SHUTDOWN)
6793 goto out;
6794
6795 /* Sequenced packets can come disconnected. If so we report the
6796 * problem.
6797 */
6798 error = -ENOTCONN;
6799
6800 /* Is there a good reason to think that we may receive some data? */
6801 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6802 goto out;
6803
6804 /* Handle signals. */
6805 if (signal_pending(current))
6806 goto interrupted;
6807
6808 /* Let another process have a go. Since we are going to sleep
6809 * anyway. Note: This may cause odd behaviors if the message
6810 * does not fit in the user's buffer, but this seems to be the
6811 * only way to honor MSG_DONTWAIT realistically.
6812 */
6813 release_sock(sk);
6814 *timeo_p = schedule_timeout(*timeo_p);
6815 lock_sock(sk);
6816
6817 ready:
6818 finish_wait(sk_sleep(sk), &wait);
6819 return 0;
6820
6821 interrupted:
6822 error = sock_intr_errno(*timeo_p);
6823
6824 out:
6825 finish_wait(sk_sleep(sk), &wait);
6826 *err = error;
6827 return error;
6828 }
6829
6830 /* Receive a datagram.
6831 * Note: This is pretty much the same routine as in core/datagram.c
6832 * with a few changes to make lksctp work.
6833 */
6834 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6835 int noblock, int *err)
6836 {
6837 int error;
6838 struct sk_buff *skb;
6839 long timeo;
6840
6841 timeo = sock_rcvtimeo(sk, noblock);
6842
6843 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6844 MAX_SCHEDULE_TIMEOUT);
6845
6846 do {
6847 /* Again only user level code calls this function,
6848 * so nothing interrupt level
6849 * will suddenly eat the receive_queue.
6850 *
6851 * Look at current nfs client by the way...
6852 * However, this function was correct in any case. 8)
6853 */
6854 if (flags & MSG_PEEK) {
6855 skb = skb_peek(&sk->sk_receive_queue);
6856 if (skb)
6857 atomic_inc(&skb->users);
6858 } else {
6859 skb = __skb_dequeue(&sk->sk_receive_queue);
6860 }
6861
6862 if (skb)
6863 return skb;
6864
6865 /* Caller is allowed not to check sk->sk_err before calling. */
6866 error = sock_error(sk);
6867 if (error)
6868 goto no_packet;
6869
6870 if (sk->sk_shutdown & RCV_SHUTDOWN)
6871 break;
6872
6873 if (sk_can_busy_loop(sk) &&
6874 sk_busy_loop(sk, noblock))
6875 continue;
6876
6877 /* User doesn't want to wait. */
6878 error = -EAGAIN;
6879 if (!timeo)
6880 goto no_packet;
6881 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6882
6883 return NULL;
6884
6885 no_packet:
6886 *err = error;
6887 return NULL;
6888 }
6889
6890 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6891 static void __sctp_write_space(struct sctp_association *asoc)
6892 {
6893 struct sock *sk = asoc->base.sk;
6894
6895 if (sctp_wspace(asoc) <= 0)
6896 return;
6897
6898 if (waitqueue_active(&asoc->wait))
6899 wake_up_interruptible(&asoc->wait);
6900
6901 if (sctp_writeable(sk)) {
6902 struct socket_wq *wq;
6903
6904 rcu_read_lock();
6905 wq = rcu_dereference(sk->sk_wq);
6906 if (wq) {
6907 if (waitqueue_active(&wq->wait))
6908 wake_up_interruptible(&wq->wait);
6909
6910 /* Note that we try to include the Async I/O support
6911 * here by modeling from the current TCP/UDP code.
6912 * We have not tested with it yet.
6913 */
6914 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6915 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
6916 }
6917 rcu_read_unlock();
6918 }
6919 }
6920
6921 static void sctp_wake_up_waiters(struct sock *sk,
6922 struct sctp_association *asoc)
6923 {
6924 struct sctp_association *tmp = asoc;
6925
6926 /* We do accounting for the sndbuf space per association,
6927 * so we only need to wake our own association.
6928 */
6929 if (asoc->ep->sndbuf_policy)
6930 return __sctp_write_space(asoc);
6931
6932 /* If association goes down and is just flushing its
6933 * outq, then just normally notify others.
6934 */
6935 if (asoc->base.dead)
6936 return sctp_write_space(sk);
6937
6938 /* Accounting for the sndbuf space is per socket, so we
6939 * need to wake up others, try to be fair and in case of
6940 * other associations, let them have a go first instead
6941 * of just doing a sctp_write_space() call.
6942 *
6943 * Note that we reach sctp_wake_up_waiters() only when
6944 * associations free up queued chunks, thus we are under
6945 * lock and the list of associations on a socket is
6946 * guaranteed not to change.
6947 */
6948 for (tmp = list_next_entry(tmp, asocs); 1;
6949 tmp = list_next_entry(tmp, asocs)) {
6950 /* Manually skip the head element. */
6951 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6952 continue;
6953 /* Wake up association. */
6954 __sctp_write_space(tmp);
6955 /* We've reached the end. */
6956 if (tmp == asoc)
6957 break;
6958 }
6959 }
6960
6961 /* Do accounting for the sndbuf space.
6962 * Decrement the used sndbuf space of the corresponding association by the
6963 * data size which was just transmitted(freed).
6964 */
6965 static void sctp_wfree(struct sk_buff *skb)
6966 {
6967 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6968 struct sctp_association *asoc = chunk->asoc;
6969 struct sock *sk = asoc->base.sk;
6970
6971 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6972 sizeof(struct sk_buff) +
6973 sizeof(struct sctp_chunk);
6974
6975 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6976
6977 /*
6978 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6979 */
6980 sk->sk_wmem_queued -= skb->truesize;
6981 sk_mem_uncharge(sk, skb->truesize);
6982
6983 sock_wfree(skb);
6984 sctp_wake_up_waiters(sk, asoc);
6985
6986 sctp_association_put(asoc);
6987 }
6988
6989 /* Do accounting for the receive space on the socket.
6990 * Accounting for the association is done in ulpevent.c
6991 * We set this as a destructor for the cloned data skbs so that
6992 * accounting is done at the correct time.
6993 */
6994 void sctp_sock_rfree(struct sk_buff *skb)
6995 {
6996 struct sock *sk = skb->sk;
6997 struct sctp_ulpevent *event = sctp_skb2event(skb);
6998
6999 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7000
7001 /*
7002 * Mimic the behavior of sock_rfree
7003 */
7004 sk_mem_uncharge(sk, event->rmem_len);
7005 }
7006
7007
7008 /* Helper function to wait for space in the sndbuf. */
7009 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7010 size_t msg_len)
7011 {
7012 struct sock *sk = asoc->base.sk;
7013 int err = 0;
7014 long current_timeo = *timeo_p;
7015 DEFINE_WAIT(wait);
7016
7017 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7018 *timeo_p, msg_len);
7019
7020 /* Increment the association's refcnt. */
7021 sctp_association_hold(asoc);
7022
7023 /* Wait on the association specific sndbuf space. */
7024 for (;;) {
7025 prepare_to_wait_exclusive(&asoc->wait, &wait,
7026 TASK_INTERRUPTIBLE);
7027 if (!*timeo_p)
7028 goto do_nonblock;
7029 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7030 asoc->base.dead)
7031 goto do_error;
7032 if (signal_pending(current))
7033 goto do_interrupted;
7034 if (msg_len <= sctp_wspace(asoc))
7035 break;
7036
7037 /* Let another process have a go. Since we are going
7038 * to sleep anyway.
7039 */
7040 release_sock(sk);
7041 current_timeo = schedule_timeout(current_timeo);
7042 BUG_ON(sk != asoc->base.sk);
7043 lock_sock(sk);
7044
7045 *timeo_p = current_timeo;
7046 }
7047
7048 out:
7049 finish_wait(&asoc->wait, &wait);
7050
7051 /* Release the association's refcnt. */
7052 sctp_association_put(asoc);
7053
7054 return err;
7055
7056 do_error:
7057 err = -EPIPE;
7058 goto out;
7059
7060 do_interrupted:
7061 err = sock_intr_errno(*timeo_p);
7062 goto out;
7063
7064 do_nonblock:
7065 err = -EAGAIN;
7066 goto out;
7067 }
7068
7069 void sctp_data_ready(struct sock *sk)
7070 {
7071 struct socket_wq *wq;
7072
7073 rcu_read_lock();
7074 wq = rcu_dereference(sk->sk_wq);
7075 if (skwq_has_sleeper(wq))
7076 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7077 POLLRDNORM | POLLRDBAND);
7078 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7079 rcu_read_unlock();
7080 }
7081
7082 /* If socket sndbuf has changed, wake up all per association waiters. */
7083 void sctp_write_space(struct sock *sk)
7084 {
7085 struct sctp_association *asoc;
7086
7087 /* Wake up the tasks in each wait queue. */
7088 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7089 __sctp_write_space(asoc);
7090 }
7091 }
7092
7093 /* Is there any sndbuf space available on the socket?
7094 *
7095 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7096 * associations on the same socket. For a UDP-style socket with
7097 * multiple associations, it is possible for it to be "unwriteable"
7098 * prematurely. I assume that this is acceptable because
7099 * a premature "unwriteable" is better than an accidental "writeable" which
7100 * would cause an unwanted block under certain circumstances. For the 1-1
7101 * UDP-style sockets or TCP-style sockets, this code should work.
7102 * - Daisy
7103 */
7104 static int sctp_writeable(struct sock *sk)
7105 {
7106 int amt = 0;
7107
7108 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7109 if (amt < 0)
7110 amt = 0;
7111 return amt;
7112 }
7113
7114 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7115 * returns immediately with EINPROGRESS.
7116 */
7117 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7118 {
7119 struct sock *sk = asoc->base.sk;
7120 int err = 0;
7121 long current_timeo = *timeo_p;
7122 DEFINE_WAIT(wait);
7123
7124 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7125
7126 /* Increment the association's refcnt. */
7127 sctp_association_hold(asoc);
7128
7129 for (;;) {
7130 prepare_to_wait_exclusive(&asoc->wait, &wait,
7131 TASK_INTERRUPTIBLE);
7132 if (!*timeo_p)
7133 goto do_nonblock;
7134 if (sk->sk_shutdown & RCV_SHUTDOWN)
7135 break;
7136 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7137 asoc->base.dead)
7138 goto do_error;
7139 if (signal_pending(current))
7140 goto do_interrupted;
7141
7142 if (sctp_state(asoc, ESTABLISHED))
7143 break;
7144
7145 /* Let another process have a go. Since we are going
7146 * to sleep anyway.
7147 */
7148 release_sock(sk);
7149 current_timeo = schedule_timeout(current_timeo);
7150 lock_sock(sk);
7151
7152 *timeo_p = current_timeo;
7153 }
7154
7155 out:
7156 finish_wait(&asoc->wait, &wait);
7157
7158 /* Release the association's refcnt. */
7159 sctp_association_put(asoc);
7160
7161 return err;
7162
7163 do_error:
7164 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7165 err = -ETIMEDOUT;
7166 else
7167 err = -ECONNREFUSED;
7168 goto out;
7169
7170 do_interrupted:
7171 err = sock_intr_errno(*timeo_p);
7172 goto out;
7173
7174 do_nonblock:
7175 err = -EINPROGRESS;
7176 goto out;
7177 }
7178
7179 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7180 {
7181 struct sctp_endpoint *ep;
7182 int err = 0;
7183 DEFINE_WAIT(wait);
7184
7185 ep = sctp_sk(sk)->ep;
7186
7187
7188 for (;;) {
7189 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7190 TASK_INTERRUPTIBLE);
7191
7192 if (list_empty(&ep->asocs)) {
7193 release_sock(sk);
7194 timeo = schedule_timeout(timeo);
7195 lock_sock(sk);
7196 }
7197
7198 err = -EINVAL;
7199 if (!sctp_sstate(sk, LISTENING))
7200 break;
7201
7202 err = 0;
7203 if (!list_empty(&ep->asocs))
7204 break;
7205
7206 err = sock_intr_errno(timeo);
7207 if (signal_pending(current))
7208 break;
7209
7210 err = -EAGAIN;
7211 if (!timeo)
7212 break;
7213 }
7214
7215 finish_wait(sk_sleep(sk), &wait);
7216
7217 return err;
7218 }
7219
7220 static void sctp_wait_for_close(struct sock *sk, long timeout)
7221 {
7222 DEFINE_WAIT(wait);
7223
7224 do {
7225 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7226 if (list_empty(&sctp_sk(sk)->ep->asocs))
7227 break;
7228 release_sock(sk);
7229 timeout = schedule_timeout(timeout);
7230 lock_sock(sk);
7231 } while (!signal_pending(current) && timeout);
7232
7233 finish_wait(sk_sleep(sk), &wait);
7234 }
7235
7236 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7237 {
7238 struct sk_buff *frag;
7239
7240 if (!skb->data_len)
7241 goto done;
7242
7243 /* Don't forget the fragments. */
7244 skb_walk_frags(skb, frag)
7245 sctp_skb_set_owner_r_frag(frag, sk);
7246
7247 done:
7248 sctp_skb_set_owner_r(skb, sk);
7249 }
7250
7251 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7252 struct sctp_association *asoc)
7253 {
7254 struct inet_sock *inet = inet_sk(sk);
7255 struct inet_sock *newinet;
7256
7257 newsk->sk_type = sk->sk_type;
7258 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7259 newsk->sk_flags = sk->sk_flags;
7260 newsk->sk_tsflags = sk->sk_tsflags;
7261 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7262 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7263 newsk->sk_reuse = sk->sk_reuse;
7264
7265 newsk->sk_shutdown = sk->sk_shutdown;
7266 newsk->sk_destruct = sctp_destruct_sock;
7267 newsk->sk_family = sk->sk_family;
7268 newsk->sk_protocol = IPPROTO_SCTP;
7269 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7270 newsk->sk_sndbuf = sk->sk_sndbuf;
7271 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7272 newsk->sk_lingertime = sk->sk_lingertime;
7273 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7274 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7275 newsk->sk_rxhash = sk->sk_rxhash;
7276
7277 newinet = inet_sk(newsk);
7278
7279 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7280 * getsockname() and getpeername()
7281 */
7282 newinet->inet_sport = inet->inet_sport;
7283 newinet->inet_saddr = inet->inet_saddr;
7284 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7285 newinet->inet_dport = htons(asoc->peer.port);
7286 newinet->pmtudisc = inet->pmtudisc;
7287 newinet->inet_id = asoc->next_tsn ^ jiffies;
7288
7289 newinet->uc_ttl = inet->uc_ttl;
7290 newinet->mc_loop = 1;
7291 newinet->mc_ttl = 1;
7292 newinet->mc_index = 0;
7293 newinet->mc_list = NULL;
7294
7295 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7296 net_enable_timestamp();
7297
7298 security_sk_clone(sk, newsk);
7299 }
7300
7301 static inline void sctp_copy_descendant(struct sock *sk_to,
7302 const struct sock *sk_from)
7303 {
7304 int ancestor_size = sizeof(struct inet_sock) +
7305 sizeof(struct sctp_sock) -
7306 offsetof(struct sctp_sock, auto_asconf_list);
7307
7308 if (sk_from->sk_family == PF_INET6)
7309 ancestor_size += sizeof(struct ipv6_pinfo);
7310
7311 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7312 }
7313
7314 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7315 * and its messages to the newsk.
7316 */
7317 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7318 struct sctp_association *assoc,
7319 sctp_socket_type_t type)
7320 {
7321 struct sctp_sock *oldsp = sctp_sk(oldsk);
7322 struct sctp_sock *newsp = sctp_sk(newsk);
7323 struct sctp_bind_bucket *pp; /* hash list port iterator */
7324 struct sctp_endpoint *newep = newsp->ep;
7325 struct sk_buff *skb, *tmp;
7326 struct sctp_ulpevent *event;
7327 struct sctp_bind_hashbucket *head;
7328
7329 /* Migrate socket buffer sizes and all the socket level options to the
7330 * new socket.
7331 */
7332 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7333 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7334 /* Brute force copy old sctp opt. */
7335 sctp_copy_descendant(newsk, oldsk);
7336
7337 /* Restore the ep value that was overwritten with the above structure
7338 * copy.
7339 */
7340 newsp->ep = newep;
7341 newsp->hmac = NULL;
7342
7343 /* Hook this new socket in to the bind_hash list. */
7344 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7345 inet_sk(oldsk)->inet_num)];
7346 spin_lock_bh(&head->lock);
7347 pp = sctp_sk(oldsk)->bind_hash;
7348 sk_add_bind_node(newsk, &pp->owner);
7349 sctp_sk(newsk)->bind_hash = pp;
7350 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7351 spin_unlock_bh(&head->lock);
7352
7353 /* Copy the bind_addr list from the original endpoint to the new
7354 * endpoint so that we can handle restarts properly
7355 */
7356 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7357 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7358
7359 /* Move any messages in the old socket's receive queue that are for the
7360 * peeled off association to the new socket's receive queue.
7361 */
7362 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7363 event = sctp_skb2event(skb);
7364 if (event->asoc == assoc) {
7365 __skb_unlink(skb, &oldsk->sk_receive_queue);
7366 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7367 sctp_skb_set_owner_r_frag(skb, newsk);
7368 }
7369 }
7370
7371 /* Clean up any messages pending delivery due to partial
7372 * delivery. Three cases:
7373 * 1) No partial deliver; no work.
7374 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7375 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7376 */
7377 skb_queue_head_init(&newsp->pd_lobby);
7378 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7379
7380 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7381 struct sk_buff_head *queue;
7382
7383 /* Decide which queue to move pd_lobby skbs to. */
7384 if (assoc->ulpq.pd_mode) {
7385 queue = &newsp->pd_lobby;
7386 } else
7387 queue = &newsk->sk_receive_queue;
7388
7389 /* Walk through the pd_lobby, looking for skbs that
7390 * need moved to the new socket.
7391 */
7392 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7393 event = sctp_skb2event(skb);
7394 if (event->asoc == assoc) {
7395 __skb_unlink(skb, &oldsp->pd_lobby);
7396 __skb_queue_tail(queue, skb);
7397 sctp_skb_set_owner_r_frag(skb, newsk);
7398 }
7399 }
7400
7401 /* Clear up any skbs waiting for the partial
7402 * delivery to finish.
7403 */
7404 if (assoc->ulpq.pd_mode)
7405 sctp_clear_pd(oldsk, NULL);
7406
7407 }
7408
7409 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7410 sctp_skb_set_owner_r_frag(skb, newsk);
7411
7412 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7413 sctp_skb_set_owner_r_frag(skb, newsk);
7414
7415 /* Set the type of socket to indicate that it is peeled off from the
7416 * original UDP-style socket or created with the accept() call on a
7417 * TCP-style socket..
7418 */
7419 newsp->type = type;
7420
7421 /* Mark the new socket "in-use" by the user so that any packets
7422 * that may arrive on the association after we've moved it are
7423 * queued to the backlog. This prevents a potential race between
7424 * backlog processing on the old socket and new-packet processing
7425 * on the new socket.
7426 *
7427 * The caller has just allocated newsk so we can guarantee that other
7428 * paths won't try to lock it and then oldsk.
7429 */
7430 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7431 sctp_assoc_migrate(assoc, newsk);
7432
7433 /* If the association on the newsk is already closed before accept()
7434 * is called, set RCV_SHUTDOWN flag.
7435 */
7436 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7437 newsk->sk_shutdown |= RCV_SHUTDOWN;
7438
7439 newsk->sk_state = SCTP_SS_ESTABLISHED;
7440 release_sock(newsk);
7441 }
7442
7443
7444 /* This proto struct describes the ULP interface for SCTP. */
7445 struct proto sctp_prot = {
7446 .name = "SCTP",
7447 .owner = THIS_MODULE,
7448 .close = sctp_close,
7449 .connect = sctp_connect,
7450 .disconnect = sctp_disconnect,
7451 .accept = sctp_accept,
7452 .ioctl = sctp_ioctl,
7453 .init = sctp_init_sock,
7454 .destroy = sctp_destroy_sock,
7455 .shutdown = sctp_shutdown,
7456 .setsockopt = sctp_setsockopt,
7457 .getsockopt = sctp_getsockopt,
7458 .sendmsg = sctp_sendmsg,
7459 .recvmsg = sctp_recvmsg,
7460 .bind = sctp_bind,
7461 .backlog_rcv = sctp_backlog_rcv,
7462 .hash = sctp_hash,
7463 .unhash = sctp_unhash,
7464 .get_port = sctp_get_port,
7465 .obj_size = sizeof(struct sctp_sock),
7466 .sysctl_mem = sysctl_sctp_mem,
7467 .sysctl_rmem = sysctl_sctp_rmem,
7468 .sysctl_wmem = sysctl_sctp_wmem,
7469 .memory_pressure = &sctp_memory_pressure,
7470 .enter_memory_pressure = sctp_enter_memory_pressure,
7471 .memory_allocated = &sctp_memory_allocated,
7472 .sockets_allocated = &sctp_sockets_allocated,
7473 };
7474
7475 #if IS_ENABLED(CONFIG_IPV6)
7476
7477 #include <net/transp_v6.h>
7478 static void sctp_v6_destroy_sock(struct sock *sk)
7479 {
7480 sctp_destroy_sock(sk);
7481 inet6_destroy_sock(sk);
7482 }
7483
7484 struct proto sctpv6_prot = {
7485 .name = "SCTPv6",
7486 .owner = THIS_MODULE,
7487 .close = sctp_close,
7488 .connect = sctp_connect,
7489 .disconnect = sctp_disconnect,
7490 .accept = sctp_accept,
7491 .ioctl = sctp_ioctl,
7492 .init = sctp_init_sock,
7493 .destroy = sctp_v6_destroy_sock,
7494 .shutdown = sctp_shutdown,
7495 .setsockopt = sctp_setsockopt,
7496 .getsockopt = sctp_getsockopt,
7497 .sendmsg = sctp_sendmsg,
7498 .recvmsg = sctp_recvmsg,
7499 .bind = sctp_bind,
7500 .backlog_rcv = sctp_backlog_rcv,
7501 .hash = sctp_hash,
7502 .unhash = sctp_unhash,
7503 .get_port = sctp_get_port,
7504 .obj_size = sizeof(struct sctp6_sock),
7505 .sysctl_mem = sysctl_sctp_mem,
7506 .sysctl_rmem = sysctl_sctp_rmem,
7507 .sysctl_wmem = sysctl_sctp_wmem,
7508 .memory_pressure = &sctp_memory_pressure,
7509 .enter_memory_pressure = sctp_enter_memory_pressure,
7510 .memory_allocated = &sctp_memory_allocated,
7511 .sockets_allocated = &sctp_sockets_allocated,
7512 };
7513 #endif /* IS_ENABLED(CONFIG_IPV6) */
This page took 0.2785 seconds and 4 git commands to generate.