sched/numa: Avoid some pointless iterations
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136
137 /*
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
140 */
141
142 static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .aio_read = sock_aio_read,
146 .aio_write = sock_aio_write,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
158 };
159
160 /*
161 * The protocol list. Each protocol is registered in here.
162 */
163
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166
167 /*
168 * Statistics counters of the socket lists
169 */
170
171 static DEFINE_PER_CPU(int, sockets_in_use);
172
173 /*
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
177 */
178
179 /**
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
184 *
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 */
189
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
199 }
200
201 /**
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
207 *
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
216 */
217
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
220 {
221 int err;
222 int len;
223
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
237 }
238 /*
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
241 */
242 return __put_user(klen, ulen);
243 }
244
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
251
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
259 }
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static int init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303 }
304
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309 };
310
311 /*
312 * sockfs_dname() is called from d_path().
313 */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
318 }
319
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322 };
323
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
326 {
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330
331 static struct vfsmount *sock_mnt __read_mostly;
332
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
337 };
338
339 /*
340 * Obtains the first available file descriptor and sets it up for use.
341 *
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
349 *
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
354 */
355
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
361
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
368 }
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
373
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
383 }
384
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
398
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
403 }
404
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
407 }
408
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
413
414 *err = -ENOTSOCK;
415 return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct fd f = fdget(fd);
453 struct socket *sock;
454
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
461 }
462 fdput(f);
463 }
464 return NULL;
465 }
466
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
472 {
473 const char *proto_name;
474 size_t proto_size;
475 int error;
476
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
481
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
486
487 strncpy(value, proto_name, proto_size + 1);
488 }
489 error = proto_size + 1;
490 }
491
492 out:
493 return error;
494 }
495
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
498 {
499 ssize_t len;
500 ssize_t used = 0;
501
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
510 }
511
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
519 }
520
521 return used;
522 }
523
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
527 };
528
529 /**
530 * sock_alloc - allocate a socket
531 *
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
535 */
536
537 static struct socket *sock_alloc(void)
538 {
539 struct inode *inode;
540 struct socket *sock;
541
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
545
546 sock = SOCKET_I(inode);
547
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
554
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
557 }
558
559 /**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568 void sock_release(struct socket *sock)
569 {
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 return;
583
584 this_cpu_sub(sockets_in_use, 1);
585 if (!sock->file) {
586 iput(SOCK_INODE(sock));
587 return;
588 }
589 sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 u8 flags = *tx_flags;
596
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 flags |= SKBTX_HW_TSTAMP;
599
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 flags |= SKBTX_SW_TSTAMP;
602
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 flags |= SKBTX_SCHED_TSTAMP;
605
606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 flags |= SKBTX_ACK_TSTAMP;
608
609 *tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 struct msghdr *msg, size_t size)
615 {
616 struct sock_iocb *si = kiocb_to_siocb(iocb);
617
618 si->sock = sock;
619 si->scm = NULL;
620 si->msg = msg;
621 si->size = size;
622
623 return sock->ops->sendmsg(iocb, sock, msg, size);
624 }
625
626 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
627 struct msghdr *msg, size_t size)
628 {
629 int err = security_socket_sendmsg(sock, msg, size);
630
631 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
632 }
633
634 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
635 size_t size, bool nosec)
636 {
637 struct kiocb iocb;
638 struct sock_iocb siocb;
639 int ret;
640
641 init_sync_kiocb(&iocb, NULL);
642 iocb.private = &siocb;
643 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
644 __sock_sendmsg(&iocb, sock, msg, size);
645 if (-EIOCBQUEUED == ret)
646 ret = wait_on_sync_kiocb(&iocb);
647 return ret;
648 }
649
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
651 {
652 return do_sock_sendmsg(sock, msg, size, false);
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 return do_sock_sendmsg(sock, msg, size, true);
659 }
660
661 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
662 struct kvec *vec, size_t num, size_t size)
663 {
664 mm_segment_t oldfs = get_fs();
665 int result;
666
667 set_fs(KERNEL_DS);
668 /*
669 * the following is safe, since for compiler definitions of kvec and
670 * iovec are identical, yielding the same in-core layout and alignment
671 */
672 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
673 result = sock_sendmsg(sock, msg, size);
674 set_fs(oldfs);
675 return result;
676 }
677 EXPORT_SYMBOL(kernel_sendmsg);
678
679 /*
680 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
681 */
682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
683 struct sk_buff *skb)
684 {
685 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
686 struct scm_timestamping tss;
687 int empty = 1;
688 struct skb_shared_hwtstamps *shhwtstamps =
689 skb_hwtstamps(skb);
690
691 /* Race occurred between timestamp enabling and packet
692 receiving. Fill in the current time for now. */
693 if (need_software_tstamp && skb->tstamp.tv64 == 0)
694 __net_timestamp(skb);
695
696 if (need_software_tstamp) {
697 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
698 struct timeval tv;
699 skb_get_timestamp(skb, &tv);
700 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
701 sizeof(tv), &tv);
702 } else {
703 struct timespec ts;
704 skb_get_timestampns(skb, &ts);
705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
706 sizeof(ts), &ts);
707 }
708 }
709
710 memset(&tss, 0, sizeof(tss));
711 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
712 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
713 empty = 0;
714 if (shhwtstamps &&
715 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
716 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
717 empty = 0;
718 if (!empty)
719 put_cmsg(msg, SOL_SOCKET,
720 SCM_TIMESTAMPING, sizeof(tss), &tss);
721 }
722 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
723
724 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
725 struct sk_buff *skb)
726 {
727 int ack;
728
729 if (!sock_flag(sk, SOCK_WIFI_STATUS))
730 return;
731 if (!skb->wifi_acked_valid)
732 return;
733
734 ack = skb->wifi_acked;
735
736 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
737 }
738 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
739
740 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
742 {
743 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
744 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
745 sizeof(__u32), &skb->dropcount);
746 }
747
748 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
749 struct sk_buff *skb)
750 {
751 sock_recv_timestamp(msg, sk, skb);
752 sock_recv_drops(msg, sk, skb);
753 }
754 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
755
756 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
757 struct msghdr *msg, size_t size, int flags)
758 {
759 struct sock_iocb *si = kiocb_to_siocb(iocb);
760
761 si->sock = sock;
762 si->scm = NULL;
763 si->msg = msg;
764 si->size = size;
765 si->flags = flags;
766
767 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
768 }
769
770 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
771 struct msghdr *msg, size_t size, int flags)
772 {
773 int err = security_socket_recvmsg(sock, msg, size, flags);
774
775 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
776 }
777
778 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
779 size_t size, int flags)
780 {
781 struct kiocb iocb;
782 struct sock_iocb siocb;
783 int ret;
784
785 init_sync_kiocb(&iocb, NULL);
786 iocb.private = &siocb;
787 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
788 if (-EIOCBQUEUED == ret)
789 ret = wait_on_sync_kiocb(&iocb);
790 return ret;
791 }
792 EXPORT_SYMBOL(sock_recvmsg);
793
794 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
795 size_t size, int flags)
796 {
797 struct kiocb iocb;
798 struct sock_iocb siocb;
799 int ret;
800
801 init_sync_kiocb(&iocb, NULL);
802 iocb.private = &siocb;
803 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
804 if (-EIOCBQUEUED == ret)
805 ret = wait_on_sync_kiocb(&iocb);
806 return ret;
807 }
808
809 /**
810 * kernel_recvmsg - Receive a message from a socket (kernel space)
811 * @sock: The socket to receive the message from
812 * @msg: Received message
813 * @vec: Input s/g array for message data
814 * @num: Size of input s/g array
815 * @size: Number of bytes to read
816 * @flags: Message flags (MSG_DONTWAIT, etc...)
817 *
818 * On return the msg structure contains the scatter/gather array passed in the
819 * vec argument. The array is modified so that it consists of the unfilled
820 * portion of the original array.
821 *
822 * The returned value is the total number of bytes received, or an error.
823 */
824 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
825 struct kvec *vec, size_t num, size_t size, int flags)
826 {
827 mm_segment_t oldfs = get_fs();
828 int result;
829
830 set_fs(KERNEL_DS);
831 /*
832 * the following is safe, since for compiler definitions of kvec and
833 * iovec are identical, yielding the same in-core layout and alignment
834 */
835 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
836 result = sock_recvmsg(sock, msg, size, flags);
837 set_fs(oldfs);
838 return result;
839 }
840 EXPORT_SYMBOL(kernel_recvmsg);
841
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 int offset, size_t size, loff_t *ppos, int more)
844 {
845 struct socket *sock;
846 int flags;
847
848 sock = file->private_data;
849
850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 flags |= more;
853
854 return kernel_sendpage(sock, page, offset, size, flags);
855 }
856
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 struct pipe_inode_info *pipe, size_t len,
859 unsigned int flags)
860 {
861 struct socket *sock = file->private_data;
862
863 if (unlikely(!sock->ops->splice_read))
864 return -EINVAL;
865
866 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867 }
868
869 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
870 struct sock_iocb *siocb)
871 {
872 siocb->kiocb = iocb;
873 iocb->private = siocb;
874 return siocb;
875 }
876
877 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
878 struct file *file, const struct iovec *iov,
879 unsigned long nr_segs)
880 {
881 struct socket *sock = file->private_data;
882 size_t size = 0;
883 int i;
884
885 for (i = 0; i < nr_segs; i++)
886 size += iov[i].iov_len;
887
888 msg->msg_name = NULL;
889 msg->msg_namelen = 0;
890 msg->msg_control = NULL;
891 msg->msg_controllen = 0;
892 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
893 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
894
895 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
896 }
897
898 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
899 unsigned long nr_segs, loff_t pos)
900 {
901 struct sock_iocb siocb, *x;
902
903 if (pos != 0)
904 return -ESPIPE;
905
906 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
907 return 0;
908
909
910 x = alloc_sock_iocb(iocb, &siocb);
911 if (!x)
912 return -ENOMEM;
913 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
914 }
915
916 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
917 struct file *file, const struct iovec *iov,
918 unsigned long nr_segs)
919 {
920 struct socket *sock = file->private_data;
921 size_t size = 0;
922 int i;
923
924 for (i = 0; i < nr_segs; i++)
925 size += iov[i].iov_len;
926
927 msg->msg_name = NULL;
928 msg->msg_namelen = 0;
929 msg->msg_control = NULL;
930 msg->msg_controllen = 0;
931 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
932 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
933 if (sock->type == SOCK_SEQPACKET)
934 msg->msg_flags |= MSG_EOR;
935
936 return __sock_sendmsg(iocb, sock, msg, size);
937 }
938
939 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
940 unsigned long nr_segs, loff_t pos)
941 {
942 struct sock_iocb siocb, *x;
943
944 if (pos != 0)
945 return -ESPIPE;
946
947 x = alloc_sock_iocb(iocb, &siocb);
948 if (!x)
949 return -ENOMEM;
950
951 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
952 }
953
954 /*
955 * Atomic setting of ioctl hooks to avoid race
956 * with module unload.
957 */
958
959 static DEFINE_MUTEX(br_ioctl_mutex);
960 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
961
962 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
963 {
964 mutex_lock(&br_ioctl_mutex);
965 br_ioctl_hook = hook;
966 mutex_unlock(&br_ioctl_mutex);
967 }
968 EXPORT_SYMBOL(brioctl_set);
969
970 static DEFINE_MUTEX(vlan_ioctl_mutex);
971 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
972
973 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
974 {
975 mutex_lock(&vlan_ioctl_mutex);
976 vlan_ioctl_hook = hook;
977 mutex_unlock(&vlan_ioctl_mutex);
978 }
979 EXPORT_SYMBOL(vlan_ioctl_set);
980
981 static DEFINE_MUTEX(dlci_ioctl_mutex);
982 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
983
984 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
985 {
986 mutex_lock(&dlci_ioctl_mutex);
987 dlci_ioctl_hook = hook;
988 mutex_unlock(&dlci_ioctl_mutex);
989 }
990 EXPORT_SYMBOL(dlci_ioctl_set);
991
992 static long sock_do_ioctl(struct net *net, struct socket *sock,
993 unsigned int cmd, unsigned long arg)
994 {
995 int err;
996 void __user *argp = (void __user *)arg;
997
998 err = sock->ops->ioctl(sock, cmd, arg);
999
1000 /*
1001 * If this ioctl is unknown try to hand it down
1002 * to the NIC driver.
1003 */
1004 if (err == -ENOIOCTLCMD)
1005 err = dev_ioctl(net, cmd, argp);
1006
1007 return err;
1008 }
1009
1010 /*
1011 * With an ioctl, arg may well be a user mode pointer, but we don't know
1012 * what to do with it - that's up to the protocol still.
1013 */
1014
1015 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1016 {
1017 struct socket *sock;
1018 struct sock *sk;
1019 void __user *argp = (void __user *)arg;
1020 int pid, err;
1021 struct net *net;
1022
1023 sock = file->private_data;
1024 sk = sock->sk;
1025 net = sock_net(sk);
1026 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1027 err = dev_ioctl(net, cmd, argp);
1028 } else
1029 #ifdef CONFIG_WEXT_CORE
1030 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1031 err = dev_ioctl(net, cmd, argp);
1032 } else
1033 #endif
1034 switch (cmd) {
1035 case FIOSETOWN:
1036 case SIOCSPGRP:
1037 err = -EFAULT;
1038 if (get_user(pid, (int __user *)argp))
1039 break;
1040 f_setown(sock->file, pid, 1);
1041 err = 0;
1042 break;
1043 case FIOGETOWN:
1044 case SIOCGPGRP:
1045 err = put_user(f_getown(sock->file),
1046 (int __user *)argp);
1047 break;
1048 case SIOCGIFBR:
1049 case SIOCSIFBR:
1050 case SIOCBRADDBR:
1051 case SIOCBRDELBR:
1052 err = -ENOPKG;
1053 if (!br_ioctl_hook)
1054 request_module("bridge");
1055
1056 mutex_lock(&br_ioctl_mutex);
1057 if (br_ioctl_hook)
1058 err = br_ioctl_hook(net, cmd, argp);
1059 mutex_unlock(&br_ioctl_mutex);
1060 break;
1061 case SIOCGIFVLAN:
1062 case SIOCSIFVLAN:
1063 err = -ENOPKG;
1064 if (!vlan_ioctl_hook)
1065 request_module("8021q");
1066
1067 mutex_lock(&vlan_ioctl_mutex);
1068 if (vlan_ioctl_hook)
1069 err = vlan_ioctl_hook(net, argp);
1070 mutex_unlock(&vlan_ioctl_mutex);
1071 break;
1072 case SIOCADDDLCI:
1073 case SIOCDELDLCI:
1074 err = -ENOPKG;
1075 if (!dlci_ioctl_hook)
1076 request_module("dlci");
1077
1078 mutex_lock(&dlci_ioctl_mutex);
1079 if (dlci_ioctl_hook)
1080 err = dlci_ioctl_hook(cmd, argp);
1081 mutex_unlock(&dlci_ioctl_mutex);
1082 break;
1083 default:
1084 err = sock_do_ioctl(net, sock, cmd, arg);
1085 break;
1086 }
1087 return err;
1088 }
1089
1090 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1091 {
1092 int err;
1093 struct socket *sock = NULL;
1094
1095 err = security_socket_create(family, type, protocol, 1);
1096 if (err)
1097 goto out;
1098
1099 sock = sock_alloc();
1100 if (!sock) {
1101 err = -ENOMEM;
1102 goto out;
1103 }
1104
1105 sock->type = type;
1106 err = security_socket_post_create(sock, family, type, protocol, 1);
1107 if (err)
1108 goto out_release;
1109
1110 out:
1111 *res = sock;
1112 return err;
1113 out_release:
1114 sock_release(sock);
1115 sock = NULL;
1116 goto out;
1117 }
1118 EXPORT_SYMBOL(sock_create_lite);
1119
1120 /* No kernel lock held - perfect */
1121 static unsigned int sock_poll(struct file *file, poll_table *wait)
1122 {
1123 unsigned int busy_flag = 0;
1124 struct socket *sock;
1125
1126 /*
1127 * We can't return errors to poll, so it's either yes or no.
1128 */
1129 sock = file->private_data;
1130
1131 if (sk_can_busy_loop(sock->sk)) {
1132 /* this socket can poll_ll so tell the system call */
1133 busy_flag = POLL_BUSY_LOOP;
1134
1135 /* once, only if requested by syscall */
1136 if (wait && (wait->_key & POLL_BUSY_LOOP))
1137 sk_busy_loop(sock->sk, 1);
1138 }
1139
1140 return busy_flag | sock->ops->poll(file, sock, wait);
1141 }
1142
1143 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1144 {
1145 struct socket *sock = file->private_data;
1146
1147 return sock->ops->mmap(file, sock, vma);
1148 }
1149
1150 static int sock_close(struct inode *inode, struct file *filp)
1151 {
1152 sock_release(SOCKET_I(inode));
1153 return 0;
1154 }
1155
1156 /*
1157 * Update the socket async list
1158 *
1159 * Fasync_list locking strategy.
1160 *
1161 * 1. fasync_list is modified only under process context socket lock
1162 * i.e. under semaphore.
1163 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1164 * or under socket lock
1165 */
1166
1167 static int sock_fasync(int fd, struct file *filp, int on)
1168 {
1169 struct socket *sock = filp->private_data;
1170 struct sock *sk = sock->sk;
1171 struct socket_wq *wq;
1172
1173 if (sk == NULL)
1174 return -EINVAL;
1175
1176 lock_sock(sk);
1177 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1178 fasync_helper(fd, filp, on, &wq->fasync_list);
1179
1180 if (!wq->fasync_list)
1181 sock_reset_flag(sk, SOCK_FASYNC);
1182 else
1183 sock_set_flag(sk, SOCK_FASYNC);
1184
1185 release_sock(sk);
1186 return 0;
1187 }
1188
1189 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1190
1191 int sock_wake_async(struct socket *sock, int how, int band)
1192 {
1193 struct socket_wq *wq;
1194
1195 if (!sock)
1196 return -1;
1197 rcu_read_lock();
1198 wq = rcu_dereference(sock->wq);
1199 if (!wq || !wq->fasync_list) {
1200 rcu_read_unlock();
1201 return -1;
1202 }
1203 switch (how) {
1204 case SOCK_WAKE_WAITD:
1205 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1206 break;
1207 goto call_kill;
1208 case SOCK_WAKE_SPACE:
1209 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1210 break;
1211 /* fall through */
1212 case SOCK_WAKE_IO:
1213 call_kill:
1214 kill_fasync(&wq->fasync_list, SIGIO, band);
1215 break;
1216 case SOCK_WAKE_URG:
1217 kill_fasync(&wq->fasync_list, SIGURG, band);
1218 }
1219 rcu_read_unlock();
1220 return 0;
1221 }
1222 EXPORT_SYMBOL(sock_wake_async);
1223
1224 int __sock_create(struct net *net, int family, int type, int protocol,
1225 struct socket **res, int kern)
1226 {
1227 int err;
1228 struct socket *sock;
1229 const struct net_proto_family *pf;
1230
1231 /*
1232 * Check protocol is in range
1233 */
1234 if (family < 0 || family >= NPROTO)
1235 return -EAFNOSUPPORT;
1236 if (type < 0 || type >= SOCK_MAX)
1237 return -EINVAL;
1238
1239 /* Compatibility.
1240
1241 This uglymoron is moved from INET layer to here to avoid
1242 deadlock in module load.
1243 */
1244 if (family == PF_INET && type == SOCK_PACKET) {
1245 static int warned;
1246 if (!warned) {
1247 warned = 1;
1248 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1249 current->comm);
1250 }
1251 family = PF_PACKET;
1252 }
1253
1254 err = security_socket_create(family, type, protocol, kern);
1255 if (err)
1256 return err;
1257
1258 /*
1259 * Allocate the socket and allow the family to set things up. if
1260 * the protocol is 0, the family is instructed to select an appropriate
1261 * default.
1262 */
1263 sock = sock_alloc();
1264 if (!sock) {
1265 net_warn_ratelimited("socket: no more sockets\n");
1266 return -ENFILE; /* Not exactly a match, but its the
1267 closest posix thing */
1268 }
1269
1270 sock->type = type;
1271
1272 #ifdef CONFIG_MODULES
1273 /* Attempt to load a protocol module if the find failed.
1274 *
1275 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1276 * requested real, full-featured networking support upon configuration.
1277 * Otherwise module support will break!
1278 */
1279 if (rcu_access_pointer(net_families[family]) == NULL)
1280 request_module("net-pf-%d", family);
1281 #endif
1282
1283 rcu_read_lock();
1284 pf = rcu_dereference(net_families[family]);
1285 err = -EAFNOSUPPORT;
1286 if (!pf)
1287 goto out_release;
1288
1289 /*
1290 * We will call the ->create function, that possibly is in a loadable
1291 * module, so we have to bump that loadable module refcnt first.
1292 */
1293 if (!try_module_get(pf->owner))
1294 goto out_release;
1295
1296 /* Now protected by module ref count */
1297 rcu_read_unlock();
1298
1299 err = pf->create(net, sock, protocol, kern);
1300 if (err < 0)
1301 goto out_module_put;
1302
1303 /*
1304 * Now to bump the refcnt of the [loadable] module that owns this
1305 * socket at sock_release time we decrement its refcnt.
1306 */
1307 if (!try_module_get(sock->ops->owner))
1308 goto out_module_busy;
1309
1310 /*
1311 * Now that we're done with the ->create function, the [loadable]
1312 * module can have its refcnt decremented
1313 */
1314 module_put(pf->owner);
1315 err = security_socket_post_create(sock, family, type, protocol, kern);
1316 if (err)
1317 goto out_sock_release;
1318 *res = sock;
1319
1320 return 0;
1321
1322 out_module_busy:
1323 err = -EAFNOSUPPORT;
1324 out_module_put:
1325 sock->ops = NULL;
1326 module_put(pf->owner);
1327 out_sock_release:
1328 sock_release(sock);
1329 return err;
1330
1331 out_release:
1332 rcu_read_unlock();
1333 goto out_sock_release;
1334 }
1335 EXPORT_SYMBOL(__sock_create);
1336
1337 int sock_create(int family, int type, int protocol, struct socket **res)
1338 {
1339 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1340 }
1341 EXPORT_SYMBOL(sock_create);
1342
1343 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1344 {
1345 return __sock_create(&init_net, family, type, protocol, res, 1);
1346 }
1347 EXPORT_SYMBOL(sock_create_kern);
1348
1349 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1350 {
1351 int retval;
1352 struct socket *sock;
1353 int flags;
1354
1355 /* Check the SOCK_* constants for consistency. */
1356 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1357 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1358 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1359 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1360
1361 flags = type & ~SOCK_TYPE_MASK;
1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1363 return -EINVAL;
1364 type &= SOCK_TYPE_MASK;
1365
1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1368
1369 retval = sock_create(family, type, protocol, &sock);
1370 if (retval < 0)
1371 goto out;
1372
1373 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1374 if (retval < 0)
1375 goto out_release;
1376
1377 out:
1378 /* It may be already another descriptor 8) Not kernel problem. */
1379 return retval;
1380
1381 out_release:
1382 sock_release(sock);
1383 return retval;
1384 }
1385
1386 /*
1387 * Create a pair of connected sockets.
1388 */
1389
1390 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1391 int __user *, usockvec)
1392 {
1393 struct socket *sock1, *sock2;
1394 int fd1, fd2, err;
1395 struct file *newfile1, *newfile2;
1396 int flags;
1397
1398 flags = type & ~SOCK_TYPE_MASK;
1399 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1400 return -EINVAL;
1401 type &= SOCK_TYPE_MASK;
1402
1403 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1404 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1405
1406 /*
1407 * Obtain the first socket and check if the underlying protocol
1408 * supports the socketpair call.
1409 */
1410
1411 err = sock_create(family, type, protocol, &sock1);
1412 if (err < 0)
1413 goto out;
1414
1415 err = sock_create(family, type, protocol, &sock2);
1416 if (err < 0)
1417 goto out_release_1;
1418
1419 err = sock1->ops->socketpair(sock1, sock2);
1420 if (err < 0)
1421 goto out_release_both;
1422
1423 fd1 = get_unused_fd_flags(flags);
1424 if (unlikely(fd1 < 0)) {
1425 err = fd1;
1426 goto out_release_both;
1427 }
1428
1429 fd2 = get_unused_fd_flags(flags);
1430 if (unlikely(fd2 < 0)) {
1431 err = fd2;
1432 goto out_put_unused_1;
1433 }
1434
1435 newfile1 = sock_alloc_file(sock1, flags, NULL);
1436 if (unlikely(IS_ERR(newfile1))) {
1437 err = PTR_ERR(newfile1);
1438 goto out_put_unused_both;
1439 }
1440
1441 newfile2 = sock_alloc_file(sock2, flags, NULL);
1442 if (IS_ERR(newfile2)) {
1443 err = PTR_ERR(newfile2);
1444 goto out_fput_1;
1445 }
1446
1447 err = put_user(fd1, &usockvec[0]);
1448 if (err)
1449 goto out_fput_both;
1450
1451 err = put_user(fd2, &usockvec[1]);
1452 if (err)
1453 goto out_fput_both;
1454
1455 audit_fd_pair(fd1, fd2);
1456
1457 fd_install(fd1, newfile1);
1458 fd_install(fd2, newfile2);
1459 /* fd1 and fd2 may be already another descriptors.
1460 * Not kernel problem.
1461 */
1462
1463 return 0;
1464
1465 out_fput_both:
1466 fput(newfile2);
1467 fput(newfile1);
1468 put_unused_fd(fd2);
1469 put_unused_fd(fd1);
1470 goto out;
1471
1472 out_fput_1:
1473 fput(newfile1);
1474 put_unused_fd(fd2);
1475 put_unused_fd(fd1);
1476 sock_release(sock2);
1477 goto out;
1478
1479 out_put_unused_both:
1480 put_unused_fd(fd2);
1481 out_put_unused_1:
1482 put_unused_fd(fd1);
1483 out_release_both:
1484 sock_release(sock2);
1485 out_release_1:
1486 sock_release(sock1);
1487 out:
1488 return err;
1489 }
1490
1491 /*
1492 * Bind a name to a socket. Nothing much to do here since it's
1493 * the protocol's responsibility to handle the local address.
1494 *
1495 * We move the socket address to kernel space before we call
1496 * the protocol layer (having also checked the address is ok).
1497 */
1498
1499 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1500 {
1501 struct socket *sock;
1502 struct sockaddr_storage address;
1503 int err, fput_needed;
1504
1505 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1506 if (sock) {
1507 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1508 if (err >= 0) {
1509 err = security_socket_bind(sock,
1510 (struct sockaddr *)&address,
1511 addrlen);
1512 if (!err)
1513 err = sock->ops->bind(sock,
1514 (struct sockaddr *)
1515 &address, addrlen);
1516 }
1517 fput_light(sock->file, fput_needed);
1518 }
1519 return err;
1520 }
1521
1522 /*
1523 * Perform a listen. Basically, we allow the protocol to do anything
1524 * necessary for a listen, and if that works, we mark the socket as
1525 * ready for listening.
1526 */
1527
1528 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1529 {
1530 struct socket *sock;
1531 int err, fput_needed;
1532 int somaxconn;
1533
1534 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1535 if (sock) {
1536 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1537 if ((unsigned int)backlog > somaxconn)
1538 backlog = somaxconn;
1539
1540 err = security_socket_listen(sock, backlog);
1541 if (!err)
1542 err = sock->ops->listen(sock, backlog);
1543
1544 fput_light(sock->file, fput_needed);
1545 }
1546 return err;
1547 }
1548
1549 /*
1550 * For accept, we attempt to create a new socket, set up the link
1551 * with the client, wake up the client, then return the new
1552 * connected fd. We collect the address of the connector in kernel
1553 * space and move it to user at the very end. This is unclean because
1554 * we open the socket then return an error.
1555 *
1556 * 1003.1g adds the ability to recvmsg() to query connection pending
1557 * status to recvmsg. We need to add that support in a way thats
1558 * clean when we restucture accept also.
1559 */
1560
1561 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1562 int __user *, upeer_addrlen, int, flags)
1563 {
1564 struct socket *sock, *newsock;
1565 struct file *newfile;
1566 int err, len, newfd, fput_needed;
1567 struct sockaddr_storage address;
1568
1569 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 return -EINVAL;
1571
1572 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1573 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1574
1575 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1576 if (!sock)
1577 goto out;
1578
1579 err = -ENFILE;
1580 newsock = sock_alloc();
1581 if (!newsock)
1582 goto out_put;
1583
1584 newsock->type = sock->type;
1585 newsock->ops = sock->ops;
1586
1587 /*
1588 * We don't need try_module_get here, as the listening socket (sock)
1589 * has the protocol module (sock->ops->owner) held.
1590 */
1591 __module_get(newsock->ops->owner);
1592
1593 newfd = get_unused_fd_flags(flags);
1594 if (unlikely(newfd < 0)) {
1595 err = newfd;
1596 sock_release(newsock);
1597 goto out_put;
1598 }
1599 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1600 if (unlikely(IS_ERR(newfile))) {
1601 err = PTR_ERR(newfile);
1602 put_unused_fd(newfd);
1603 sock_release(newsock);
1604 goto out_put;
1605 }
1606
1607 err = security_socket_accept(sock, newsock);
1608 if (err)
1609 goto out_fd;
1610
1611 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1612 if (err < 0)
1613 goto out_fd;
1614
1615 if (upeer_sockaddr) {
1616 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1617 &len, 2) < 0) {
1618 err = -ECONNABORTED;
1619 goto out_fd;
1620 }
1621 err = move_addr_to_user(&address,
1622 len, upeer_sockaddr, upeer_addrlen);
1623 if (err < 0)
1624 goto out_fd;
1625 }
1626
1627 /* File flags are not inherited via accept() unlike another OSes. */
1628
1629 fd_install(newfd, newfile);
1630 err = newfd;
1631
1632 out_put:
1633 fput_light(sock->file, fput_needed);
1634 out:
1635 return err;
1636 out_fd:
1637 fput(newfile);
1638 put_unused_fd(newfd);
1639 goto out_put;
1640 }
1641
1642 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1643 int __user *, upeer_addrlen)
1644 {
1645 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1646 }
1647
1648 /*
1649 * Attempt to connect to a socket with the server address. The address
1650 * is in user space so we verify it is OK and move it to kernel space.
1651 *
1652 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1653 * break bindings
1654 *
1655 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1656 * other SEQPACKET protocols that take time to connect() as it doesn't
1657 * include the -EINPROGRESS status for such sockets.
1658 */
1659
1660 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1661 int, addrlen)
1662 {
1663 struct socket *sock;
1664 struct sockaddr_storage address;
1665 int err, fput_needed;
1666
1667 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 if (!sock)
1669 goto out;
1670 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1671 if (err < 0)
1672 goto out_put;
1673
1674 err =
1675 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1676 if (err)
1677 goto out_put;
1678
1679 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1680 sock->file->f_flags);
1681 out_put:
1682 fput_light(sock->file, fput_needed);
1683 out:
1684 return err;
1685 }
1686
1687 /*
1688 * Get the local address ('name') of a socket object. Move the obtained
1689 * name to user space.
1690 */
1691
1692 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1693 int __user *, usockaddr_len)
1694 {
1695 struct socket *sock;
1696 struct sockaddr_storage address;
1697 int len, err, fput_needed;
1698
1699 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 if (!sock)
1701 goto out;
1702
1703 err = security_socket_getsockname(sock);
1704 if (err)
1705 goto out_put;
1706
1707 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1708 if (err)
1709 goto out_put;
1710 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1711
1712 out_put:
1713 fput_light(sock->file, fput_needed);
1714 out:
1715 return err;
1716 }
1717
1718 /*
1719 * Get the remote address ('name') of a socket object. Move the obtained
1720 * name to user space.
1721 */
1722
1723 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1724 int __user *, usockaddr_len)
1725 {
1726 struct socket *sock;
1727 struct sockaddr_storage address;
1728 int len, err, fput_needed;
1729
1730 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 if (sock != NULL) {
1732 err = security_socket_getpeername(sock);
1733 if (err) {
1734 fput_light(sock->file, fput_needed);
1735 return err;
1736 }
1737
1738 err =
1739 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1740 1);
1741 if (!err)
1742 err = move_addr_to_user(&address, len, usockaddr,
1743 usockaddr_len);
1744 fput_light(sock->file, fput_needed);
1745 }
1746 return err;
1747 }
1748
1749 /*
1750 * Send a datagram to a given address. We move the address into kernel
1751 * space and check the user space data area is readable before invoking
1752 * the protocol.
1753 */
1754
1755 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1756 unsigned int, flags, struct sockaddr __user *, addr,
1757 int, addr_len)
1758 {
1759 struct socket *sock;
1760 struct sockaddr_storage address;
1761 int err;
1762 struct msghdr msg;
1763 struct iovec iov;
1764 int fput_needed;
1765
1766 if (len > INT_MAX)
1767 len = INT_MAX;
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (!sock)
1770 goto out;
1771
1772 iov.iov_base = buff;
1773 iov.iov_len = len;
1774 msg.msg_name = NULL;
1775 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1776 msg.msg_control = NULL;
1777 msg.msg_controllen = 0;
1778 msg.msg_namelen = 0;
1779 if (addr) {
1780 err = move_addr_to_kernel(addr, addr_len, &address);
1781 if (err < 0)
1782 goto out_put;
1783 msg.msg_name = (struct sockaddr *)&address;
1784 msg.msg_namelen = addr_len;
1785 }
1786 if (sock->file->f_flags & O_NONBLOCK)
1787 flags |= MSG_DONTWAIT;
1788 msg.msg_flags = flags;
1789 err = sock_sendmsg(sock, &msg, len);
1790
1791 out_put:
1792 fput_light(sock->file, fput_needed);
1793 out:
1794 return err;
1795 }
1796
1797 /*
1798 * Send a datagram down a socket.
1799 */
1800
1801 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1802 unsigned int, flags)
1803 {
1804 return sys_sendto(fd, buff, len, flags, NULL, 0);
1805 }
1806
1807 /*
1808 * Receive a frame from the socket and optionally record the address of the
1809 * sender. We verify the buffers are writable and if needed move the
1810 * sender address from kernel to user space.
1811 */
1812
1813 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1814 unsigned int, flags, struct sockaddr __user *, addr,
1815 int __user *, addr_len)
1816 {
1817 struct socket *sock;
1818 struct iovec iov;
1819 struct msghdr msg;
1820 struct sockaddr_storage address;
1821 int err, err2;
1822 int fput_needed;
1823
1824 if (size > INT_MAX)
1825 size = INT_MAX;
1826 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 if (!sock)
1828 goto out;
1829
1830 msg.msg_control = NULL;
1831 msg.msg_controllen = 0;
1832 iov.iov_len = size;
1833 iov.iov_base = ubuf;
1834 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1835 /* Save some cycles and don't copy the address if not needed */
1836 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1837 /* We assume all kernel code knows the size of sockaddr_storage */
1838 msg.msg_namelen = 0;
1839 if (sock->file->f_flags & O_NONBLOCK)
1840 flags |= MSG_DONTWAIT;
1841 err = sock_recvmsg(sock, &msg, size, flags);
1842
1843 if (err >= 0 && addr != NULL) {
1844 err2 = move_addr_to_user(&address,
1845 msg.msg_namelen, addr, addr_len);
1846 if (err2 < 0)
1847 err = err2;
1848 }
1849
1850 fput_light(sock->file, fput_needed);
1851 out:
1852 return err;
1853 }
1854
1855 /*
1856 * Receive a datagram from a socket.
1857 */
1858
1859 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1860 unsigned int, flags)
1861 {
1862 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1863 }
1864
1865 /*
1866 * Set a socket option. Because we don't know the option lengths we have
1867 * to pass the user mode parameter for the protocols to sort out.
1868 */
1869
1870 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1871 char __user *, optval, int, optlen)
1872 {
1873 int err, fput_needed;
1874 struct socket *sock;
1875
1876 if (optlen < 0)
1877 return -EINVAL;
1878
1879 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 if (sock != NULL) {
1881 err = security_socket_setsockopt(sock, level, optname);
1882 if (err)
1883 goto out_put;
1884
1885 if (level == SOL_SOCKET)
1886 err =
1887 sock_setsockopt(sock, level, optname, optval,
1888 optlen);
1889 else
1890 err =
1891 sock->ops->setsockopt(sock, level, optname, optval,
1892 optlen);
1893 out_put:
1894 fput_light(sock->file, fput_needed);
1895 }
1896 return err;
1897 }
1898
1899 /*
1900 * Get a socket option. Because we don't know the option lengths we have
1901 * to pass a user mode parameter for the protocols to sort out.
1902 */
1903
1904 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1905 char __user *, optval, int __user *, optlen)
1906 {
1907 int err, fput_needed;
1908 struct socket *sock;
1909
1910 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1911 if (sock != NULL) {
1912 err = security_socket_getsockopt(sock, level, optname);
1913 if (err)
1914 goto out_put;
1915
1916 if (level == SOL_SOCKET)
1917 err =
1918 sock_getsockopt(sock, level, optname, optval,
1919 optlen);
1920 else
1921 err =
1922 sock->ops->getsockopt(sock, level, optname, optval,
1923 optlen);
1924 out_put:
1925 fput_light(sock->file, fput_needed);
1926 }
1927 return err;
1928 }
1929
1930 /*
1931 * Shutdown a socket.
1932 */
1933
1934 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1935 {
1936 int err, fput_needed;
1937 struct socket *sock;
1938
1939 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1940 if (sock != NULL) {
1941 err = security_socket_shutdown(sock, how);
1942 if (!err)
1943 err = sock->ops->shutdown(sock, how);
1944 fput_light(sock->file, fput_needed);
1945 }
1946 return err;
1947 }
1948
1949 /* A couple of helpful macros for getting the address of the 32/64 bit
1950 * fields which are the same type (int / unsigned) on our platforms.
1951 */
1952 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1953 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1954 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1955
1956 struct used_address {
1957 struct sockaddr_storage name;
1958 unsigned int name_len;
1959 };
1960
1961 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1962 struct user_msghdr __user *umsg,
1963 struct sockaddr __user **save_addr,
1964 struct iovec **iov)
1965 {
1966 struct sockaddr __user *uaddr;
1967 struct iovec __user *uiov;
1968 size_t nr_segs;
1969 ssize_t err;
1970
1971 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1972 __get_user(uaddr, &umsg->msg_name) ||
1973 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1974 __get_user(uiov, &umsg->msg_iov) ||
1975 __get_user(nr_segs, &umsg->msg_iovlen) ||
1976 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1977 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1978 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1979 return -EFAULT;
1980
1981 if (!uaddr)
1982 kmsg->msg_namelen = 0;
1983
1984 if (kmsg->msg_namelen < 0)
1985 return -EINVAL;
1986
1987 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1988 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1989
1990 if (save_addr)
1991 *save_addr = uaddr;
1992
1993 if (uaddr && kmsg->msg_namelen) {
1994 if (!save_addr) {
1995 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1996 kmsg->msg_name);
1997 if (err < 0)
1998 return err;
1999 }
2000 } else {
2001 kmsg->msg_name = NULL;
2002 kmsg->msg_namelen = 0;
2003 }
2004
2005 if (nr_segs > UIO_MAXIOV)
2006 return -EMSGSIZE;
2007
2008 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2009 uiov, nr_segs,
2010 UIO_FASTIOV, *iov, iov);
2011 if (err >= 0)
2012 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2013 *iov, nr_segs, err);
2014 return err;
2015 }
2016
2017 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2018 struct msghdr *msg_sys, unsigned int flags,
2019 struct used_address *used_address)
2020 {
2021 struct compat_msghdr __user *msg_compat =
2022 (struct compat_msghdr __user *)msg;
2023 struct sockaddr_storage address;
2024 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2025 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2026 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2027 /* 20 is size of ipv6_pktinfo */
2028 unsigned char *ctl_buf = ctl;
2029 int ctl_len, total_len;
2030 ssize_t err;
2031
2032 msg_sys->msg_name = &address;
2033
2034 if (MSG_CMSG_COMPAT & flags)
2035 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2036 else
2037 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2038 if (err < 0)
2039 goto out_freeiov;
2040 total_len = err;
2041
2042 err = -ENOBUFS;
2043
2044 if (msg_sys->msg_controllen > INT_MAX)
2045 goto out_freeiov;
2046 ctl_len = msg_sys->msg_controllen;
2047 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2048 err =
2049 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2050 sizeof(ctl));
2051 if (err)
2052 goto out_freeiov;
2053 ctl_buf = msg_sys->msg_control;
2054 ctl_len = msg_sys->msg_controllen;
2055 } else if (ctl_len) {
2056 if (ctl_len > sizeof(ctl)) {
2057 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2058 if (ctl_buf == NULL)
2059 goto out_freeiov;
2060 }
2061 err = -EFAULT;
2062 /*
2063 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2064 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2065 * checking falls down on this.
2066 */
2067 if (copy_from_user(ctl_buf,
2068 (void __user __force *)msg_sys->msg_control,
2069 ctl_len))
2070 goto out_freectl;
2071 msg_sys->msg_control = ctl_buf;
2072 }
2073 msg_sys->msg_flags = flags;
2074
2075 if (sock->file->f_flags & O_NONBLOCK)
2076 msg_sys->msg_flags |= MSG_DONTWAIT;
2077 /*
2078 * If this is sendmmsg() and current destination address is same as
2079 * previously succeeded address, omit asking LSM's decision.
2080 * used_address->name_len is initialized to UINT_MAX so that the first
2081 * destination address never matches.
2082 */
2083 if (used_address && msg_sys->msg_name &&
2084 used_address->name_len == msg_sys->msg_namelen &&
2085 !memcmp(&used_address->name, msg_sys->msg_name,
2086 used_address->name_len)) {
2087 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2088 goto out_freectl;
2089 }
2090 err = sock_sendmsg(sock, msg_sys, total_len);
2091 /*
2092 * If this is sendmmsg() and sending to current destination address was
2093 * successful, remember it.
2094 */
2095 if (used_address && err >= 0) {
2096 used_address->name_len = msg_sys->msg_namelen;
2097 if (msg_sys->msg_name)
2098 memcpy(&used_address->name, msg_sys->msg_name,
2099 used_address->name_len);
2100 }
2101
2102 out_freectl:
2103 if (ctl_buf != ctl)
2104 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2105 out_freeiov:
2106 if (iov != iovstack)
2107 kfree(iov);
2108 return err;
2109 }
2110
2111 /*
2112 * BSD sendmsg interface
2113 */
2114
2115 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2116 {
2117 int fput_needed, err;
2118 struct msghdr msg_sys;
2119 struct socket *sock;
2120
2121 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2122 if (!sock)
2123 goto out;
2124
2125 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2126
2127 fput_light(sock->file, fput_needed);
2128 out:
2129 return err;
2130 }
2131
2132 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2133 {
2134 if (flags & MSG_CMSG_COMPAT)
2135 return -EINVAL;
2136 return __sys_sendmsg(fd, msg, flags);
2137 }
2138
2139 /*
2140 * Linux sendmmsg interface
2141 */
2142
2143 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2144 unsigned int flags)
2145 {
2146 int fput_needed, err, datagrams;
2147 struct socket *sock;
2148 struct mmsghdr __user *entry;
2149 struct compat_mmsghdr __user *compat_entry;
2150 struct msghdr msg_sys;
2151 struct used_address used_address;
2152
2153 if (vlen > UIO_MAXIOV)
2154 vlen = UIO_MAXIOV;
2155
2156 datagrams = 0;
2157
2158 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159 if (!sock)
2160 return err;
2161
2162 used_address.name_len = UINT_MAX;
2163 entry = mmsg;
2164 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2165 err = 0;
2166
2167 while (datagrams < vlen) {
2168 if (MSG_CMSG_COMPAT & flags) {
2169 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2170 &msg_sys, flags, &used_address);
2171 if (err < 0)
2172 break;
2173 err = __put_user(err, &compat_entry->msg_len);
2174 ++compat_entry;
2175 } else {
2176 err = ___sys_sendmsg(sock,
2177 (struct user_msghdr __user *)entry,
2178 &msg_sys, flags, &used_address);
2179 if (err < 0)
2180 break;
2181 err = put_user(err, &entry->msg_len);
2182 ++entry;
2183 }
2184
2185 if (err)
2186 break;
2187 ++datagrams;
2188 }
2189
2190 fput_light(sock->file, fput_needed);
2191
2192 /* We only return an error if no datagrams were able to be sent */
2193 if (datagrams != 0)
2194 return datagrams;
2195
2196 return err;
2197 }
2198
2199 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2200 unsigned int, vlen, unsigned int, flags)
2201 {
2202 if (flags & MSG_CMSG_COMPAT)
2203 return -EINVAL;
2204 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2205 }
2206
2207 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2208 struct msghdr *msg_sys, unsigned int flags, int nosec)
2209 {
2210 struct compat_msghdr __user *msg_compat =
2211 (struct compat_msghdr __user *)msg;
2212 struct iovec iovstack[UIO_FASTIOV];
2213 struct iovec *iov = iovstack;
2214 unsigned long cmsg_ptr;
2215 int total_len, len;
2216 ssize_t err;
2217
2218 /* kernel mode address */
2219 struct sockaddr_storage addr;
2220
2221 /* user mode address pointers */
2222 struct sockaddr __user *uaddr;
2223 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2224
2225 msg_sys->msg_name = &addr;
2226
2227 if (MSG_CMSG_COMPAT & flags)
2228 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2229 else
2230 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2231 if (err < 0)
2232 goto out_freeiov;
2233 total_len = err;
2234
2235 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2236 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2237
2238 /* We assume all kernel code knows the size of sockaddr_storage */
2239 msg_sys->msg_namelen = 0;
2240
2241 if (sock->file->f_flags & O_NONBLOCK)
2242 flags |= MSG_DONTWAIT;
2243 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2244 total_len, flags);
2245 if (err < 0)
2246 goto out_freeiov;
2247 len = err;
2248
2249 if (uaddr != NULL) {
2250 err = move_addr_to_user(&addr,
2251 msg_sys->msg_namelen, uaddr,
2252 uaddr_len);
2253 if (err < 0)
2254 goto out_freeiov;
2255 }
2256 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2257 COMPAT_FLAGS(msg));
2258 if (err)
2259 goto out_freeiov;
2260 if (MSG_CMSG_COMPAT & flags)
2261 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2262 &msg_compat->msg_controllen);
2263 else
2264 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2265 &msg->msg_controllen);
2266 if (err)
2267 goto out_freeiov;
2268 err = len;
2269
2270 out_freeiov:
2271 if (iov != iovstack)
2272 kfree(iov);
2273 return err;
2274 }
2275
2276 /*
2277 * BSD recvmsg interface
2278 */
2279
2280 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2281 {
2282 int fput_needed, err;
2283 struct msghdr msg_sys;
2284 struct socket *sock;
2285
2286 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2287 if (!sock)
2288 goto out;
2289
2290 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2291
2292 fput_light(sock->file, fput_needed);
2293 out:
2294 return err;
2295 }
2296
2297 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2298 unsigned int, flags)
2299 {
2300 if (flags & MSG_CMSG_COMPAT)
2301 return -EINVAL;
2302 return __sys_recvmsg(fd, msg, flags);
2303 }
2304
2305 /*
2306 * Linux recvmmsg interface
2307 */
2308
2309 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2310 unsigned int flags, struct timespec *timeout)
2311 {
2312 int fput_needed, err, datagrams;
2313 struct socket *sock;
2314 struct mmsghdr __user *entry;
2315 struct compat_mmsghdr __user *compat_entry;
2316 struct msghdr msg_sys;
2317 struct timespec end_time;
2318
2319 if (timeout &&
2320 poll_select_set_timeout(&end_time, timeout->tv_sec,
2321 timeout->tv_nsec))
2322 return -EINVAL;
2323
2324 datagrams = 0;
2325
2326 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2327 if (!sock)
2328 return err;
2329
2330 err = sock_error(sock->sk);
2331 if (err)
2332 goto out_put;
2333
2334 entry = mmsg;
2335 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2336
2337 while (datagrams < vlen) {
2338 /*
2339 * No need to ask LSM for more than the first datagram.
2340 */
2341 if (MSG_CMSG_COMPAT & flags) {
2342 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2343 &msg_sys, flags & ~MSG_WAITFORONE,
2344 datagrams);
2345 if (err < 0)
2346 break;
2347 err = __put_user(err, &compat_entry->msg_len);
2348 ++compat_entry;
2349 } else {
2350 err = ___sys_recvmsg(sock,
2351 (struct user_msghdr __user *)entry,
2352 &msg_sys, flags & ~MSG_WAITFORONE,
2353 datagrams);
2354 if (err < 0)
2355 break;
2356 err = put_user(err, &entry->msg_len);
2357 ++entry;
2358 }
2359
2360 if (err)
2361 break;
2362 ++datagrams;
2363
2364 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2365 if (flags & MSG_WAITFORONE)
2366 flags |= MSG_DONTWAIT;
2367
2368 if (timeout) {
2369 ktime_get_ts(timeout);
2370 *timeout = timespec_sub(end_time, *timeout);
2371 if (timeout->tv_sec < 0) {
2372 timeout->tv_sec = timeout->tv_nsec = 0;
2373 break;
2374 }
2375
2376 /* Timeout, return less than vlen datagrams */
2377 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2378 break;
2379 }
2380
2381 /* Out of band data, return right away */
2382 if (msg_sys.msg_flags & MSG_OOB)
2383 break;
2384 }
2385
2386 out_put:
2387 fput_light(sock->file, fput_needed);
2388
2389 if (err == 0)
2390 return datagrams;
2391
2392 if (datagrams != 0) {
2393 /*
2394 * We may return less entries than requested (vlen) if the
2395 * sock is non block and there aren't enough datagrams...
2396 */
2397 if (err != -EAGAIN) {
2398 /*
2399 * ... or if recvmsg returns an error after we
2400 * received some datagrams, where we record the
2401 * error to return on the next call or if the
2402 * app asks about it using getsockopt(SO_ERROR).
2403 */
2404 sock->sk->sk_err = -err;
2405 }
2406
2407 return datagrams;
2408 }
2409
2410 return err;
2411 }
2412
2413 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2414 unsigned int, vlen, unsigned int, flags,
2415 struct timespec __user *, timeout)
2416 {
2417 int datagrams;
2418 struct timespec timeout_sys;
2419
2420 if (flags & MSG_CMSG_COMPAT)
2421 return -EINVAL;
2422
2423 if (!timeout)
2424 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2425
2426 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2427 return -EFAULT;
2428
2429 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2430
2431 if (datagrams > 0 &&
2432 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2433 datagrams = -EFAULT;
2434
2435 return datagrams;
2436 }
2437
2438 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2439 /* Argument list sizes for sys_socketcall */
2440 #define AL(x) ((x) * sizeof(unsigned long))
2441 static const unsigned char nargs[21] = {
2442 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2443 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2444 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2445 AL(4), AL(5), AL(4)
2446 };
2447
2448 #undef AL
2449
2450 /*
2451 * System call vectors.
2452 *
2453 * Argument checking cleaned up. Saved 20% in size.
2454 * This function doesn't need to set the kernel lock because
2455 * it is set by the callees.
2456 */
2457
2458 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2459 {
2460 unsigned long a[AUDITSC_ARGS];
2461 unsigned long a0, a1;
2462 int err;
2463 unsigned int len;
2464
2465 if (call < 1 || call > SYS_SENDMMSG)
2466 return -EINVAL;
2467
2468 len = nargs[call];
2469 if (len > sizeof(a))
2470 return -EINVAL;
2471
2472 /* copy_from_user should be SMP safe. */
2473 if (copy_from_user(a, args, len))
2474 return -EFAULT;
2475
2476 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2477 if (err)
2478 return err;
2479
2480 a0 = a[0];
2481 a1 = a[1];
2482
2483 switch (call) {
2484 case SYS_SOCKET:
2485 err = sys_socket(a0, a1, a[2]);
2486 break;
2487 case SYS_BIND:
2488 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2489 break;
2490 case SYS_CONNECT:
2491 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2492 break;
2493 case SYS_LISTEN:
2494 err = sys_listen(a0, a1);
2495 break;
2496 case SYS_ACCEPT:
2497 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2498 (int __user *)a[2], 0);
2499 break;
2500 case SYS_GETSOCKNAME:
2501 err =
2502 sys_getsockname(a0, (struct sockaddr __user *)a1,
2503 (int __user *)a[2]);
2504 break;
2505 case SYS_GETPEERNAME:
2506 err =
2507 sys_getpeername(a0, (struct sockaddr __user *)a1,
2508 (int __user *)a[2]);
2509 break;
2510 case SYS_SOCKETPAIR:
2511 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2512 break;
2513 case SYS_SEND:
2514 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2515 break;
2516 case SYS_SENDTO:
2517 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2518 (struct sockaddr __user *)a[4], a[5]);
2519 break;
2520 case SYS_RECV:
2521 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2522 break;
2523 case SYS_RECVFROM:
2524 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2525 (struct sockaddr __user *)a[4],
2526 (int __user *)a[5]);
2527 break;
2528 case SYS_SHUTDOWN:
2529 err = sys_shutdown(a0, a1);
2530 break;
2531 case SYS_SETSOCKOPT:
2532 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2533 break;
2534 case SYS_GETSOCKOPT:
2535 err =
2536 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2537 (int __user *)a[4]);
2538 break;
2539 case SYS_SENDMSG:
2540 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2541 break;
2542 case SYS_SENDMMSG:
2543 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2544 break;
2545 case SYS_RECVMSG:
2546 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2547 break;
2548 case SYS_RECVMMSG:
2549 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2550 (struct timespec __user *)a[4]);
2551 break;
2552 case SYS_ACCEPT4:
2553 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2554 (int __user *)a[2], a[3]);
2555 break;
2556 default:
2557 err = -EINVAL;
2558 break;
2559 }
2560 return err;
2561 }
2562
2563 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2564
2565 /**
2566 * sock_register - add a socket protocol handler
2567 * @ops: description of protocol
2568 *
2569 * This function is called by a protocol handler that wants to
2570 * advertise its address family, and have it linked into the
2571 * socket interface. The value ops->family corresponds to the
2572 * socket system call protocol family.
2573 */
2574 int sock_register(const struct net_proto_family *ops)
2575 {
2576 int err;
2577
2578 if (ops->family >= NPROTO) {
2579 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2580 return -ENOBUFS;
2581 }
2582
2583 spin_lock(&net_family_lock);
2584 if (rcu_dereference_protected(net_families[ops->family],
2585 lockdep_is_held(&net_family_lock)))
2586 err = -EEXIST;
2587 else {
2588 rcu_assign_pointer(net_families[ops->family], ops);
2589 err = 0;
2590 }
2591 spin_unlock(&net_family_lock);
2592
2593 pr_info("NET: Registered protocol family %d\n", ops->family);
2594 return err;
2595 }
2596 EXPORT_SYMBOL(sock_register);
2597
2598 /**
2599 * sock_unregister - remove a protocol handler
2600 * @family: protocol family to remove
2601 *
2602 * This function is called by a protocol handler that wants to
2603 * remove its address family, and have it unlinked from the
2604 * new socket creation.
2605 *
2606 * If protocol handler is a module, then it can use module reference
2607 * counts to protect against new references. If protocol handler is not
2608 * a module then it needs to provide its own protection in
2609 * the ops->create routine.
2610 */
2611 void sock_unregister(int family)
2612 {
2613 BUG_ON(family < 0 || family >= NPROTO);
2614
2615 spin_lock(&net_family_lock);
2616 RCU_INIT_POINTER(net_families[family], NULL);
2617 spin_unlock(&net_family_lock);
2618
2619 synchronize_rcu();
2620
2621 pr_info("NET: Unregistered protocol family %d\n", family);
2622 }
2623 EXPORT_SYMBOL(sock_unregister);
2624
2625 static int __init sock_init(void)
2626 {
2627 int err;
2628 /*
2629 * Initialize the network sysctl infrastructure.
2630 */
2631 err = net_sysctl_init();
2632 if (err)
2633 goto out;
2634
2635 /*
2636 * Initialize skbuff SLAB cache
2637 */
2638 skb_init();
2639
2640 /*
2641 * Initialize the protocols module.
2642 */
2643
2644 init_inodecache();
2645
2646 err = register_filesystem(&sock_fs_type);
2647 if (err)
2648 goto out_fs;
2649 sock_mnt = kern_mount(&sock_fs_type);
2650 if (IS_ERR(sock_mnt)) {
2651 err = PTR_ERR(sock_mnt);
2652 goto out_mount;
2653 }
2654
2655 /* The real protocol initialization is performed in later initcalls.
2656 */
2657
2658 #ifdef CONFIG_NETFILTER
2659 err = netfilter_init();
2660 if (err)
2661 goto out;
2662 #endif
2663
2664 ptp_classifier_init();
2665
2666 out:
2667 return err;
2668
2669 out_mount:
2670 unregister_filesystem(&sock_fs_type);
2671 out_fs:
2672 goto out;
2673 }
2674
2675 core_initcall(sock_init); /* early initcall */
2676
2677 #ifdef CONFIG_PROC_FS
2678 void socket_seq_show(struct seq_file *seq)
2679 {
2680 int cpu;
2681 int counter = 0;
2682
2683 for_each_possible_cpu(cpu)
2684 counter += per_cpu(sockets_in_use, cpu);
2685
2686 /* It can be negative, by the way. 8) */
2687 if (counter < 0)
2688 counter = 0;
2689
2690 seq_printf(seq, "sockets: used %d\n", counter);
2691 }
2692 #endif /* CONFIG_PROC_FS */
2693
2694 #ifdef CONFIG_COMPAT
2695 static int do_siocgstamp(struct net *net, struct socket *sock,
2696 unsigned int cmd, void __user *up)
2697 {
2698 mm_segment_t old_fs = get_fs();
2699 struct timeval ktv;
2700 int err;
2701
2702 set_fs(KERNEL_DS);
2703 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2704 set_fs(old_fs);
2705 if (!err)
2706 err = compat_put_timeval(&ktv, up);
2707
2708 return err;
2709 }
2710
2711 static int do_siocgstampns(struct net *net, struct socket *sock,
2712 unsigned int cmd, void __user *up)
2713 {
2714 mm_segment_t old_fs = get_fs();
2715 struct timespec kts;
2716 int err;
2717
2718 set_fs(KERNEL_DS);
2719 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2720 set_fs(old_fs);
2721 if (!err)
2722 err = compat_put_timespec(&kts, up);
2723
2724 return err;
2725 }
2726
2727 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2728 {
2729 struct ifreq __user *uifr;
2730 int err;
2731
2732 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2733 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2734 return -EFAULT;
2735
2736 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2737 if (err)
2738 return err;
2739
2740 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2741 return -EFAULT;
2742
2743 return 0;
2744 }
2745
2746 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2747 {
2748 struct compat_ifconf ifc32;
2749 struct ifconf ifc;
2750 struct ifconf __user *uifc;
2751 struct compat_ifreq __user *ifr32;
2752 struct ifreq __user *ifr;
2753 unsigned int i, j;
2754 int err;
2755
2756 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2757 return -EFAULT;
2758
2759 memset(&ifc, 0, sizeof(ifc));
2760 if (ifc32.ifcbuf == 0) {
2761 ifc32.ifc_len = 0;
2762 ifc.ifc_len = 0;
2763 ifc.ifc_req = NULL;
2764 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2765 } else {
2766 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2767 sizeof(struct ifreq);
2768 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2769 ifc.ifc_len = len;
2770 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2771 ifr32 = compat_ptr(ifc32.ifcbuf);
2772 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2773 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2774 return -EFAULT;
2775 ifr++;
2776 ifr32++;
2777 }
2778 }
2779 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2780 return -EFAULT;
2781
2782 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2783 if (err)
2784 return err;
2785
2786 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2787 return -EFAULT;
2788
2789 ifr = ifc.ifc_req;
2790 ifr32 = compat_ptr(ifc32.ifcbuf);
2791 for (i = 0, j = 0;
2792 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2793 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2794 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2795 return -EFAULT;
2796 ifr32++;
2797 ifr++;
2798 }
2799
2800 if (ifc32.ifcbuf == 0) {
2801 /* Translate from 64-bit structure multiple to
2802 * a 32-bit one.
2803 */
2804 i = ifc.ifc_len;
2805 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2806 ifc32.ifc_len = i;
2807 } else {
2808 ifc32.ifc_len = i;
2809 }
2810 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2811 return -EFAULT;
2812
2813 return 0;
2814 }
2815
2816 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2817 {
2818 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2819 bool convert_in = false, convert_out = false;
2820 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2821 struct ethtool_rxnfc __user *rxnfc;
2822 struct ifreq __user *ifr;
2823 u32 rule_cnt = 0, actual_rule_cnt;
2824 u32 ethcmd;
2825 u32 data;
2826 int ret;
2827
2828 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2829 return -EFAULT;
2830
2831 compat_rxnfc = compat_ptr(data);
2832
2833 if (get_user(ethcmd, &compat_rxnfc->cmd))
2834 return -EFAULT;
2835
2836 /* Most ethtool structures are defined without padding.
2837 * Unfortunately struct ethtool_rxnfc is an exception.
2838 */
2839 switch (ethcmd) {
2840 default:
2841 break;
2842 case ETHTOOL_GRXCLSRLALL:
2843 /* Buffer size is variable */
2844 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2845 return -EFAULT;
2846 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2847 return -ENOMEM;
2848 buf_size += rule_cnt * sizeof(u32);
2849 /* fall through */
2850 case ETHTOOL_GRXRINGS:
2851 case ETHTOOL_GRXCLSRLCNT:
2852 case ETHTOOL_GRXCLSRULE:
2853 case ETHTOOL_SRXCLSRLINS:
2854 convert_out = true;
2855 /* fall through */
2856 case ETHTOOL_SRXCLSRLDEL:
2857 buf_size += sizeof(struct ethtool_rxnfc);
2858 convert_in = true;
2859 break;
2860 }
2861
2862 ifr = compat_alloc_user_space(buf_size);
2863 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2864
2865 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2866 return -EFAULT;
2867
2868 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2869 &ifr->ifr_ifru.ifru_data))
2870 return -EFAULT;
2871
2872 if (convert_in) {
2873 /* We expect there to be holes between fs.m_ext and
2874 * fs.ring_cookie and at the end of fs, but nowhere else.
2875 */
2876 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2877 sizeof(compat_rxnfc->fs.m_ext) !=
2878 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2879 sizeof(rxnfc->fs.m_ext));
2880 BUILD_BUG_ON(
2881 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2882 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2883 offsetof(struct ethtool_rxnfc, fs.location) -
2884 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2885
2886 if (copy_in_user(rxnfc, compat_rxnfc,
2887 (void __user *)(&rxnfc->fs.m_ext + 1) -
2888 (void __user *)rxnfc) ||
2889 copy_in_user(&rxnfc->fs.ring_cookie,
2890 &compat_rxnfc->fs.ring_cookie,
2891 (void __user *)(&rxnfc->fs.location + 1) -
2892 (void __user *)&rxnfc->fs.ring_cookie) ||
2893 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2894 sizeof(rxnfc->rule_cnt)))
2895 return -EFAULT;
2896 }
2897
2898 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2899 if (ret)
2900 return ret;
2901
2902 if (convert_out) {
2903 if (copy_in_user(compat_rxnfc, rxnfc,
2904 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2905 (const void __user *)rxnfc) ||
2906 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2907 &rxnfc->fs.ring_cookie,
2908 (const void __user *)(&rxnfc->fs.location + 1) -
2909 (const void __user *)&rxnfc->fs.ring_cookie) ||
2910 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2911 sizeof(rxnfc->rule_cnt)))
2912 return -EFAULT;
2913
2914 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2915 /* As an optimisation, we only copy the actual
2916 * number of rules that the underlying
2917 * function returned. Since Mallory might
2918 * change the rule count in user memory, we
2919 * check that it is less than the rule count
2920 * originally given (as the user buffer size),
2921 * which has been range-checked.
2922 */
2923 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2924 return -EFAULT;
2925 if (actual_rule_cnt < rule_cnt)
2926 rule_cnt = actual_rule_cnt;
2927 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2928 &rxnfc->rule_locs[0],
2929 rule_cnt * sizeof(u32)))
2930 return -EFAULT;
2931 }
2932 }
2933
2934 return 0;
2935 }
2936
2937 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2938 {
2939 void __user *uptr;
2940 compat_uptr_t uptr32;
2941 struct ifreq __user *uifr;
2942
2943 uifr = compat_alloc_user_space(sizeof(*uifr));
2944 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2945 return -EFAULT;
2946
2947 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2948 return -EFAULT;
2949
2950 uptr = compat_ptr(uptr32);
2951
2952 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2953 return -EFAULT;
2954
2955 return dev_ioctl(net, SIOCWANDEV, uifr);
2956 }
2957
2958 static int bond_ioctl(struct net *net, unsigned int cmd,
2959 struct compat_ifreq __user *ifr32)
2960 {
2961 struct ifreq kifr;
2962 mm_segment_t old_fs;
2963 int err;
2964
2965 switch (cmd) {
2966 case SIOCBONDENSLAVE:
2967 case SIOCBONDRELEASE:
2968 case SIOCBONDSETHWADDR:
2969 case SIOCBONDCHANGEACTIVE:
2970 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2971 return -EFAULT;
2972
2973 old_fs = get_fs();
2974 set_fs(KERNEL_DS);
2975 err = dev_ioctl(net, cmd,
2976 (struct ifreq __user __force *) &kifr);
2977 set_fs(old_fs);
2978
2979 return err;
2980 default:
2981 return -ENOIOCTLCMD;
2982 }
2983 }
2984
2985 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2986 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2987 struct compat_ifreq __user *u_ifreq32)
2988 {
2989 struct ifreq __user *u_ifreq64;
2990 char tmp_buf[IFNAMSIZ];
2991 void __user *data64;
2992 u32 data32;
2993
2994 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2995 IFNAMSIZ))
2996 return -EFAULT;
2997 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2998 return -EFAULT;
2999 data64 = compat_ptr(data32);
3000
3001 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3002
3003 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3004 IFNAMSIZ))
3005 return -EFAULT;
3006 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3007 return -EFAULT;
3008
3009 return dev_ioctl(net, cmd, u_ifreq64);
3010 }
3011
3012 static int dev_ifsioc(struct net *net, struct socket *sock,
3013 unsigned int cmd, struct compat_ifreq __user *uifr32)
3014 {
3015 struct ifreq __user *uifr;
3016 int err;
3017
3018 uifr = compat_alloc_user_space(sizeof(*uifr));
3019 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3020 return -EFAULT;
3021
3022 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3023
3024 if (!err) {
3025 switch (cmd) {
3026 case SIOCGIFFLAGS:
3027 case SIOCGIFMETRIC:
3028 case SIOCGIFMTU:
3029 case SIOCGIFMEM:
3030 case SIOCGIFHWADDR:
3031 case SIOCGIFINDEX:
3032 case SIOCGIFADDR:
3033 case SIOCGIFBRDADDR:
3034 case SIOCGIFDSTADDR:
3035 case SIOCGIFNETMASK:
3036 case SIOCGIFPFLAGS:
3037 case SIOCGIFTXQLEN:
3038 case SIOCGMIIPHY:
3039 case SIOCGMIIREG:
3040 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3041 err = -EFAULT;
3042 break;
3043 }
3044 }
3045 return err;
3046 }
3047
3048 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3049 struct compat_ifreq __user *uifr32)
3050 {
3051 struct ifreq ifr;
3052 struct compat_ifmap __user *uifmap32;
3053 mm_segment_t old_fs;
3054 int err;
3055
3056 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3057 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3058 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3059 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3060 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3061 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3062 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3063 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3064 if (err)
3065 return -EFAULT;
3066
3067 old_fs = get_fs();
3068 set_fs(KERNEL_DS);
3069 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3070 set_fs(old_fs);
3071
3072 if (cmd == SIOCGIFMAP && !err) {
3073 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3074 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3075 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3076 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3077 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3078 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3079 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3080 if (err)
3081 err = -EFAULT;
3082 }
3083 return err;
3084 }
3085
3086 struct rtentry32 {
3087 u32 rt_pad1;
3088 struct sockaddr rt_dst; /* target address */
3089 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3090 struct sockaddr rt_genmask; /* target network mask (IP) */
3091 unsigned short rt_flags;
3092 short rt_pad2;
3093 u32 rt_pad3;
3094 unsigned char rt_tos;
3095 unsigned char rt_class;
3096 short rt_pad4;
3097 short rt_metric; /* +1 for binary compatibility! */
3098 /* char * */ u32 rt_dev; /* forcing the device at add */
3099 u32 rt_mtu; /* per route MTU/Window */
3100 u32 rt_window; /* Window clamping */
3101 unsigned short rt_irtt; /* Initial RTT */
3102 };
3103
3104 struct in6_rtmsg32 {
3105 struct in6_addr rtmsg_dst;
3106 struct in6_addr rtmsg_src;
3107 struct in6_addr rtmsg_gateway;
3108 u32 rtmsg_type;
3109 u16 rtmsg_dst_len;
3110 u16 rtmsg_src_len;
3111 u32 rtmsg_metric;
3112 u32 rtmsg_info;
3113 u32 rtmsg_flags;
3114 s32 rtmsg_ifindex;
3115 };
3116
3117 static int routing_ioctl(struct net *net, struct socket *sock,
3118 unsigned int cmd, void __user *argp)
3119 {
3120 int ret;
3121 void *r = NULL;
3122 struct in6_rtmsg r6;
3123 struct rtentry r4;
3124 char devname[16];
3125 u32 rtdev;
3126 mm_segment_t old_fs = get_fs();
3127
3128 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3129 struct in6_rtmsg32 __user *ur6 = argp;
3130 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3131 3 * sizeof(struct in6_addr));
3132 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3133 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3134 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3135 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3136 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3137 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3138 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3139
3140 r = (void *) &r6;
3141 } else { /* ipv4 */
3142 struct rtentry32 __user *ur4 = argp;
3143 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3144 3 * sizeof(struct sockaddr));
3145 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3146 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3147 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3148 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3149 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3150 ret |= get_user(rtdev, &(ur4->rt_dev));
3151 if (rtdev) {
3152 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3153 r4.rt_dev = (char __user __force *)devname;
3154 devname[15] = 0;
3155 } else
3156 r4.rt_dev = NULL;
3157
3158 r = (void *) &r4;
3159 }
3160
3161 if (ret) {
3162 ret = -EFAULT;
3163 goto out;
3164 }
3165
3166 set_fs(KERNEL_DS);
3167 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3168 set_fs(old_fs);
3169
3170 out:
3171 return ret;
3172 }
3173
3174 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3175 * for some operations; this forces use of the newer bridge-utils that
3176 * use compatible ioctls
3177 */
3178 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3179 {
3180 compat_ulong_t tmp;
3181
3182 if (get_user(tmp, argp))
3183 return -EFAULT;
3184 if (tmp == BRCTL_GET_VERSION)
3185 return BRCTL_VERSION + 1;
3186 return -EINVAL;
3187 }
3188
3189 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3190 unsigned int cmd, unsigned long arg)
3191 {
3192 void __user *argp = compat_ptr(arg);
3193 struct sock *sk = sock->sk;
3194 struct net *net = sock_net(sk);
3195
3196 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3197 return compat_ifr_data_ioctl(net, cmd, argp);
3198
3199 switch (cmd) {
3200 case SIOCSIFBR:
3201 case SIOCGIFBR:
3202 return old_bridge_ioctl(argp);
3203 case SIOCGIFNAME:
3204 return dev_ifname32(net, argp);
3205 case SIOCGIFCONF:
3206 return dev_ifconf(net, argp);
3207 case SIOCETHTOOL:
3208 return ethtool_ioctl(net, argp);
3209 case SIOCWANDEV:
3210 return compat_siocwandev(net, argp);
3211 case SIOCGIFMAP:
3212 case SIOCSIFMAP:
3213 return compat_sioc_ifmap(net, cmd, argp);
3214 case SIOCBONDENSLAVE:
3215 case SIOCBONDRELEASE:
3216 case SIOCBONDSETHWADDR:
3217 case SIOCBONDCHANGEACTIVE:
3218 return bond_ioctl(net, cmd, argp);
3219 case SIOCADDRT:
3220 case SIOCDELRT:
3221 return routing_ioctl(net, sock, cmd, argp);
3222 case SIOCGSTAMP:
3223 return do_siocgstamp(net, sock, cmd, argp);
3224 case SIOCGSTAMPNS:
3225 return do_siocgstampns(net, sock, cmd, argp);
3226 case SIOCBONDSLAVEINFOQUERY:
3227 case SIOCBONDINFOQUERY:
3228 case SIOCSHWTSTAMP:
3229 case SIOCGHWTSTAMP:
3230 return compat_ifr_data_ioctl(net, cmd, argp);
3231
3232 case FIOSETOWN:
3233 case SIOCSPGRP:
3234 case FIOGETOWN:
3235 case SIOCGPGRP:
3236 case SIOCBRADDBR:
3237 case SIOCBRDELBR:
3238 case SIOCGIFVLAN:
3239 case SIOCSIFVLAN:
3240 case SIOCADDDLCI:
3241 case SIOCDELDLCI:
3242 return sock_ioctl(file, cmd, arg);
3243
3244 case SIOCGIFFLAGS:
3245 case SIOCSIFFLAGS:
3246 case SIOCGIFMETRIC:
3247 case SIOCSIFMETRIC:
3248 case SIOCGIFMTU:
3249 case SIOCSIFMTU:
3250 case SIOCGIFMEM:
3251 case SIOCSIFMEM:
3252 case SIOCGIFHWADDR:
3253 case SIOCSIFHWADDR:
3254 case SIOCADDMULTI:
3255 case SIOCDELMULTI:
3256 case SIOCGIFINDEX:
3257 case SIOCGIFADDR:
3258 case SIOCSIFADDR:
3259 case SIOCSIFHWBROADCAST:
3260 case SIOCDIFADDR:
3261 case SIOCGIFBRDADDR:
3262 case SIOCSIFBRDADDR:
3263 case SIOCGIFDSTADDR:
3264 case SIOCSIFDSTADDR:
3265 case SIOCGIFNETMASK:
3266 case SIOCSIFNETMASK:
3267 case SIOCSIFPFLAGS:
3268 case SIOCGIFPFLAGS:
3269 case SIOCGIFTXQLEN:
3270 case SIOCSIFTXQLEN:
3271 case SIOCBRADDIF:
3272 case SIOCBRDELIF:
3273 case SIOCSIFNAME:
3274 case SIOCGMIIPHY:
3275 case SIOCGMIIREG:
3276 case SIOCSMIIREG:
3277 return dev_ifsioc(net, sock, cmd, argp);
3278
3279 case SIOCSARP:
3280 case SIOCGARP:
3281 case SIOCDARP:
3282 case SIOCATMARK:
3283 return sock_do_ioctl(net, sock, cmd, arg);
3284 }
3285
3286 return -ENOIOCTLCMD;
3287 }
3288
3289 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3290 unsigned long arg)
3291 {
3292 struct socket *sock = file->private_data;
3293 int ret = -ENOIOCTLCMD;
3294 struct sock *sk;
3295 struct net *net;
3296
3297 sk = sock->sk;
3298 net = sock_net(sk);
3299
3300 if (sock->ops->compat_ioctl)
3301 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3302
3303 if (ret == -ENOIOCTLCMD &&
3304 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3305 ret = compat_wext_handle_ioctl(net, cmd, arg);
3306
3307 if (ret == -ENOIOCTLCMD)
3308 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3309
3310 return ret;
3311 }
3312 #endif
3313
3314 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3315 {
3316 return sock->ops->bind(sock, addr, addrlen);
3317 }
3318 EXPORT_SYMBOL(kernel_bind);
3319
3320 int kernel_listen(struct socket *sock, int backlog)
3321 {
3322 return sock->ops->listen(sock, backlog);
3323 }
3324 EXPORT_SYMBOL(kernel_listen);
3325
3326 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3327 {
3328 struct sock *sk = sock->sk;
3329 int err;
3330
3331 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3332 newsock);
3333 if (err < 0)
3334 goto done;
3335
3336 err = sock->ops->accept(sock, *newsock, flags);
3337 if (err < 0) {
3338 sock_release(*newsock);
3339 *newsock = NULL;
3340 goto done;
3341 }
3342
3343 (*newsock)->ops = sock->ops;
3344 __module_get((*newsock)->ops->owner);
3345
3346 done:
3347 return err;
3348 }
3349 EXPORT_SYMBOL(kernel_accept);
3350
3351 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3352 int flags)
3353 {
3354 return sock->ops->connect(sock, addr, addrlen, flags);
3355 }
3356 EXPORT_SYMBOL(kernel_connect);
3357
3358 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3359 int *addrlen)
3360 {
3361 return sock->ops->getname(sock, addr, addrlen, 0);
3362 }
3363 EXPORT_SYMBOL(kernel_getsockname);
3364
3365 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3366 int *addrlen)
3367 {
3368 return sock->ops->getname(sock, addr, addrlen, 1);
3369 }
3370 EXPORT_SYMBOL(kernel_getpeername);
3371
3372 int kernel_getsockopt(struct socket *sock, int level, int optname,
3373 char *optval, int *optlen)
3374 {
3375 mm_segment_t oldfs = get_fs();
3376 char __user *uoptval;
3377 int __user *uoptlen;
3378 int err;
3379
3380 uoptval = (char __user __force *) optval;
3381 uoptlen = (int __user __force *) optlen;
3382
3383 set_fs(KERNEL_DS);
3384 if (level == SOL_SOCKET)
3385 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3386 else
3387 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3388 uoptlen);
3389 set_fs(oldfs);
3390 return err;
3391 }
3392 EXPORT_SYMBOL(kernel_getsockopt);
3393
3394 int kernel_setsockopt(struct socket *sock, int level, int optname,
3395 char *optval, unsigned int optlen)
3396 {
3397 mm_segment_t oldfs = get_fs();
3398 char __user *uoptval;
3399 int err;
3400
3401 uoptval = (char __user __force *) optval;
3402
3403 set_fs(KERNEL_DS);
3404 if (level == SOL_SOCKET)
3405 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3406 else
3407 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3408 optlen);
3409 set_fs(oldfs);
3410 return err;
3411 }
3412 EXPORT_SYMBOL(kernel_setsockopt);
3413
3414 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3415 size_t size, int flags)
3416 {
3417 if (sock->ops->sendpage)
3418 return sock->ops->sendpage(sock, page, offset, size, flags);
3419
3420 return sock_no_sendpage(sock, page, offset, size, flags);
3421 }
3422 EXPORT_SYMBOL(kernel_sendpage);
3423
3424 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3425 {
3426 mm_segment_t oldfs = get_fs();
3427 int err;
3428
3429 set_fs(KERNEL_DS);
3430 err = sock->ops->ioctl(sock, cmd, arg);
3431 set_fs(oldfs);
3432
3433 return err;
3434 }
3435 EXPORT_SYMBOL(kernel_sock_ioctl);
3436
3437 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3438 {
3439 return sock->ops->shutdown(sock, how);
3440 }
3441 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.116843 seconds and 5 git commands to generate.